
Prepared exclusively for Vadim Kudria

What Readers Are Saying About

iPhone SDK Development

I love this book’s no-nonsense, straightforward approach to iPhone

SDK development. Chris and Bill’s approach is easy to follow, detailed,

and, at the same time, not over-written or preachy. As someone just

getting into iPhone development myself, this is definitely a must-have

for my digital bookshelf.

Alex Lindsay

Founder, Pixel Corps

Dudney and Adamson’s book streamlines the process of learning

iPhone development by providing well-organized coverage of the topic

that is both broad and deep in a way that any existing developer can

understand. Read this book, and then come and join us at the next

iPhoneDevCamp.

Raven Zachary

Founder, iPhoneDevCamp

President, Small Society

If you are looking to build the next big iPhone application, this book

is a great starting point. From the first chapters of Hello World to the

advanced topics of dealing with audio, Dudney and Adamson will

teach you what you need to know to build a great iPhone application.

Michael Sanford

Founder, FlipSide5, Inc.

Anyone who wants to learn and get better at iPhone development

should read this book. Beginning developers will love Bill Dudney and

Chris Adamson’s easy-to-follow code examples. Experienced devel-

opers will find great in-depth examples that use the iPhone SDK. I

strongly recommend it.

Henry Balanon

Founder and Lead Developer, Bickbot.inc

Writer, GigaOm’s TheAppleBlog.com

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

This is an excellent resource for the iPhone developer—the most thor-

ough and comprehensive of its kind.

Marcus Crafter

iPhone Developer, redartisan.com

If you are looking for a solid foundation to learn iPhone development, I

highly recommend this book. With extensive code examples and broad

coverage of all things iPhone SDK, you’ll hit the ground running.

John Muchow

Founder, iPhoneDeveloperTips.com

CTO, 3 Sixty Software

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

iPhone SDK Development
Building iPhone Applications

Bill Dudney

Chris Adamson

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Bill Dudney and Chris Adamson.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-25-5

ISBN-13: 978-1-934356-25-8

Printed on acid-free paper.

P1.0 printing, September 2009

Version: 2009-9-30

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://www.pragprog.com

Contents
Foreword 13

1 Introduction 15

1.1 In This Book . 17

1.2 Acknowledgments . 19

2 Hello iPhone 22

2.1 Gearing Up . 22

2.2 Create the Hello iPhone Project 24

2.3 Creating a Simple Interface 26

2.4 Rotating the Text—Adjusting the UI 29

2.5 Rotating the Text—Adjusting the Code 30

2.6 Code Navigation . 31

2.7 Running Your App on Your iPhone 32

3 iPhone Development Fundamentals 35

3.1 The iPhone Software Architecture 36

3.2 Coding in Objective-C 36

3.3 Essential Cocoa Touch Classes 38

3.4 Working with Xcode and Interface Builder 40

3.5 Anatomy of Your iPhone Application 50

3.6 Customizing Behavior with Delegation 52

3.7 Managing Application Memory 56

3.8 Accessing Variables as Properties 57

3.9 Take-Away: Stuff to Remember 60

4 View Controllers 62

4.1 Implementing a Button Action 62

4.2 Building a Model . 67

4.3 Adding Outlets and Actions to the Controller 69

4.4 Updating the UI . 71

4.5 Implementing the Controller 73

4.6 Creating the New View Controller 75

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

CONTENTS 8

4.7 Building the UI . 79

4.8 Making the MovieEditorViewController 83

4.9 The Editing View Controller in Interface Builder 84

5 Table Views 86

5.1 Parts of a Table . 86

5.2 Setting Up Table-Based Navigation 88

5.3 Modeling Table Data . 89

5.4 Table Cells . 92

5.5 Editing Tables . 96

5.6 Navigating with Tables 98

5.7 Custom Table View Cells 105

5.8 Sorting Table Data . 109

6 Navigation 114

6.1 Navigating Through Mail 114

6.2 The Navigation Controller 115

6.3 Navigation-Based Applications 116

6.4 Pushing View Controllers 120

6.5 Customizing the Navigation Bar 121

6.6 Popping View Controllers 126

7 Tab Bar Controllers 127

7.1 When to Use Tabs . 127

7.2 Creating a Tab Bar Controller 128

7.3 View Controllers in Tab Controllers 130

7.4 Many Controllers . 135

8 File I/O 138

8.1 Exploring Your Filesystem 139

8.2 Creating Our Project . 142

8.3 Getting File Attributes 148

8.4 Reading Data from Files 153

8.5 Asynchronous File Reading 157

8.6 Creating and Deleting Files and Directories 161

8.7 Writing Data to Files . 167

8.8 Property Lists and NSCoding 170

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=8

CONTENTS 9

9 Preferences 172

9.1 Displaying a Flippable Preference View in Your Appli-

cation . 172

9.2 Managing Preferences 175

9.3 Changing and Updating Preferences 178

9.4 Side Trip: Updating the Clock Label Every Second . . . 181

9.5 Using the System Settings Application for Preferences 182

9.6 Loading Preferences Configured in the Settings Appli-

cation . 190

10 The SQLite Database 194

10.1 Creating Your Database 195

10.2 Creating the Sample Application 198

10.3 Putting Your Database on the Device 200

10.4 Using Your Database on the Device 203

11 Core Data 212

11.1 The Conference Application 213

11.2 The Core Data Stack . 216

11.3 Building the Core Data Stack 219

11.4 Modeling . 222

11.5 Track Table View . 228

11.6 Fetching the Tracks . 233

11.7 Change the Tracks . 233

11.8 Navigation . 237

12 Connecting to the Internet 244

12.1 Building a Browser in Ten Minutes with UIWebView . . 244

12.2 Reading Data from the Network 249

12.3 HTTP Authentication . 255

12.4 Parsing XML from Web Services 262

12.5 Sending Mail from Your Application 273

13 Peer-to-Peer Networking 277

13.1 Using Ad Hoc Network Services with Bonjour 277

13.2 Bonjour Service Discovery 279

13.3 Game Kit Overview . 285

13.4 Setting Up a Bluetooth-Networked Game 286

13.5 Setting Up a Peer Picker 288

13.6 Providing a Peer Picker Delegate 289

13.7 Network Game Logic . 292

13.8 Communicating via the GKSession 294

13.9 Voice Chat . 298
Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=9

CONTENTS 10

14 Video Playback 301

14.1 Video Playback with MPMoviePlayerController 301

14.2 Receiving Notifications from the Movie Player 305

14.3 Supported Media Formats 307

15 iPod Library Access 310

15.1 Monitoring iPod Playback 310

15.2 Controlling iPod Playback 319

15.3 Using the iPod Library 321

15.4 Browsing the iPod Library 331

16 Playing and Recording Audio 334

16.1 Creating an AVAudioRecorder 334

16.2 Uncompressed Audio Formats 338

16.3 Encoded Audio Formats 342

16.4 Using the AVAudioRecorder 346

16.5 Monitoring Recording Levels 350

16.6 Playing Audio with the AVFramework 355

16.7 Interacting with Audio Sessions 360

17 Core Audio 363

17.1 Using the Procedural-C APIs 364

17.2 Playing System Sounds 366

17.3 A Core Audio Overview 372

18 Events, Multi-Touch, and Gestures 378

18.1 Event Model . 378

18.2 Tracking Touches . 380

18.3 Tapping . 383

18.4 Multi-Touch Gestures 384

19 Drawing in Custom Views 390

19.1 Drawing Model . 390

19.2 Vector Drawing . 391

19.3 Paths . 392

19.4 Graphics Context . 397

19.5 Redisplaying a View . 399

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=10

CONTENTS 11

20 Drawing Images and Photos 401

20.1 Basic Image Drawing . 402

20.2 Customizing the Image Display 404

20.3 Image Picker . 406

20.4 Capturing Video . 410

21 Core Animation 412

21.1 Introduction to Core Animation 412

21.2 Animating UIView . 413

21.3 Layers . 419

21.4 OpenGL ES . 422

22 Accelerometer 426

22.1 Getting Device Orientation 427

22.2 Getting Shakes from the UIResponder Chain 428

22.3 Getting Raw Accelerometer Data 429

22.4 Filtering Accelerometer Data 435

23 Address Book 443

23.1 Address Book UI . 443

23.2 People Picker Delegate 444

23.3 Creating and Configuring the People Picker 446

23.4 Person Controller . 447

23.5 Adding New Contacts . 449

24 iPhone Location API 453

24.1 Knowing Where . 453

24.2 Location Updates . 458

24.3 Compass . 462

25 Map Kit 465

25.1 Contact Mapper . 465

25.2 Showing a Map . 466

25.3 Map Annotations . 469

25.4 Selecting an Annotation 479

26 Application Integration 482

26.1 Launching Other Applications 482

26.2 Becoming Integration Ready 484

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=11

CONTENTS 12

27 Debugging 488

27.1 Understanding and Fixing Build Errors 489

27.2 Understanding and Fixing Importing/Linking Errors . 491

27.3 Using iPhone SDK Documentation 493

27.4 Understanding and Fixing Interface Builder Errors . . 497

27.5 Debugging . 498

27.6 Finding Over-Released “Zombie” Objects 506

28 Performance Tuning 512

28.1 Investigating Performance with Shark 513

28.2 Investigating Performance with Instruments 518

28.3 Investigating Performance with the Clang Static Analyzer524

29 Before and After 530

29.1 Starting Right . 531

29.2 Polish . 535

29.3 Other Features . 536

29.4 Beta Testing . 537

29.5 Getting into the Store . 538

29.6 Promoting Your Application 539

A Bibliography 541

Index 544

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=12

Foreword
On January 9, 2007, at 9:42 a.m., the world changed forever. Some-

thing special was introduced to us, but not all of us knew just how

special it would become in such a small amount of time.

The product we know as the iPhone is more than a gadget. It is a

phenomenon. Many of us know news headlines, stock trends, and our

day’s schedule before we even get out of bed. And thanks to the iPhone

SDK, there are more than 50,000 other things we can do, wherever and

whenever we want. It truly is “your life in your pocket.”

When I joined Apple in 2001, there was no App Store, no iPhone, and

no iPod. Mac OS X was just a few weeks old. It is amazing to think how

far things have come. The iPhone has created its own economy, where

you no longer need patents or institutional investment to be wildly suc-

cessful. All you need is an idea and the motivation to realize it.

As an iPhone developer, not only will you be participating in this phe-

nomenon, but you will join a family of passionate, brilliant engineers,

designers, and marketers who take more pride in their work than most

of the people you’ve met. In many cases, their dedication dates back

to the early releases of Mac OS X, and even the Classic Mac OS. They

make conferences feel like reunions. They share knowledge with “com-

petitors” because they know that better apps—whoever they’re from—

make a better platform. They love this technology. They live on it. They

have built their careers on it. Working closely with them for more than

eight years inspired me to leave my dream job and join their ranks.

This combination of technology and community has produced the his-

toric times we now live in. Just one year after the App Store was born,

it’s hard to remember life before it, and yet there is surely so much

more to come.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

FOREWORD 14

The platform is still growing, and we are all still learning. Your efforts

will contribute to that story as it continues to unfold. This book is your

first step in that special journey.

Welcome to our world. You’re going to love it.

Matt Drance

July 11, 2009

Sent from my iPhone

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=14

Chapter 1

Introduction
The iPhone has changed everything.

Maybe by the time you read this you’ll no longer notice that the lat-

est cool new phone from every manufacturer looks and behaves more

like the iPhone than like the models they used to sell before the iPhone

was released. Meanwhile, at the time we write this, Apple’s iPhone ads

showcase the apps that you and other third-party developers are cre-

ating. The Apple marketing campaign is highlighting the iPhone as a

platform for great software—software that you will create.

It’s hard to overstate just how much the iPhone SDK and the App Store

have changed the way we develop, release, and consume mobile soft-

ware, even in the short time that they’ve been available.

Before the iPhone, writing software for the small device was rife with

hazards. Many developers complained of fragmentation, the way that

different devices would have different characteristics (screen sizes,

color depths, input technologies, and so on) and different implemen-

tations of supposedly standard technologies, whose variant behaviors

forced developers into an expensive and difficult game of “write once,

test everywhere.” And that’s only in the cases where they had access to

a market; in some cases, handset makers and mobile telephony carriers

used the technology vendors’ security practices as a means of enforcing

business models, allowing only first-party applications on the device or

crippling third-party apps by denying essential services, such as access

to the network. It was enough to send developers fleeing back to the

desktop, if not the server.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

CHAPTER 1. INTRODUCTION 16

As an iPhone SDK developer, you don’t need to worry about fragmen-

tation. The iPhone and iPod touch are highly predictable, with only

a few models thus far and highly consistent features and behavior

between them. The SDK brings the tools and technologies of Mac OS

X—refined by years of use creating world-class desktop applications—

and makes its essential elements available for creating iPhone and iPod

touch applications. While other mobile platforms throw an exception if

you touch the networking stack, the iPhone gives you exceptional tech-

nologies such as the self-networking Bonjour. On other devices, playing

a sound file is a hit-or-miss affair, while the iPhone offers extraordinar-

ily deep support for media. And when you’ve finished writing your appli-

cation, instead of a carrier demanding that you “partner” with them

(and give them 99 cents of every dollar you make) and instead of being

shut out entirely if you’re not a big company touting a well-known intel-

lectual property, the App Store lets you put your application before

every iPhone and iPod touch user. And you set your own price with

Apple taking a much smaller and quite reasonable cut.

The result has been revolutionary. At the rate the App Store is growing,

there’s no point quoting numbers because they’ll be completely out-of-

date by the time you read this book. Instead, it might be more helpful

to notice the sea change in the industry that has resulted from the

one-two punch of the SDK and the App Store. Carriers that had locked

down their networks are now racing to open app stores of their own,

terrified that every cool new app for the iPhone potentially lures away

more of their customers. Some mobile developers are going iPhone-only.

Given the realization that with iPhone users far more likely to down-

load and pay for applications, it’s a sucker’s bet to work through the

miseries of other mobile platforms—the aforementioned fragmentation

and obstructionist carriers—in the hopes of reaching a user base that

doesn’t download third-party apps anyway. And in the enterprise, com-

panies are writing their own custom iPhone applications and deploying

them en masse in the field.

If you’re reading this book, chances are you’d like to get in on this

mobile revolution.

And we’re glad you do, because we’re eager to help see you through the

journey that will take you from downloading the SDK to releasing your

first application.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=16

IN THIS BOOK 17

We begin by assuming only two things:

• You have a computer capable of running the current iPhone SDK.

As of this writing, that means a Mac with an Intel CPU, running

Mac OS X Leopard 10.5.4 or later.1

• You are familiar with a “curly brace” programming language (C,

C++, C#, Java, Ruby, etc.) and with object-oriented programming

in general. If you’re primarily familiar with scripting languages

(JavaScript, ActionScript, PHP), then you may find some of the

iPhone’s programming practices challenging, but we hope not

insurmountable.

1.1 In This Book

We begin your journey with an introduction to the platform. We start

with a quick success in the form of a Hello World iPhone application.

Fresh on the heels of your first success, we dive into some of the funda-

mentals of the platform that you will need going forward. We cover the

basics of the tools (Xcode, Interface Builder) and Objective-C, which is

the language of Cocoa Touch development.

In the next four chapters, we look at view controllers and the views that

are integral to most iPhone applications. You’ll begin with a look at the

most generic views and view controllers and move to the UI metaphors

that are key to almost any iPhone application: tab bars, navigation, and

table views.

We recommend that you read these chapters no matter what sort of

iPhone application you are planning on building. You can then work

through the rest of the book in order, or you can pick and choose

according to your needs. We’ve grouped the remaining chapters into

roughly six sections.

If you need to persist data to your device, you’ll find four chapters

that cover the various techniques. We start with filesystem access and

options for saving and retrieving user preferences. Then we show two

approaches to using the built-in database: directly, with the SQLite API,

1. SDK requirements, particularly the minimum OS version, are highly likely to change
going forward. Check http://developer.apple.com/iphone for the current specs.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://developer.apple.com/iphone
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=17

IN THIS BOOK 18

or via the object-relational mapping power of the Core Data framework

added in iPhone OS 3.0.

Your application may require communication with servers or other de-

vices, so the next two chapters take you out to the network. The first

connects to websites, web services, and email on the public Internet,

while the second uses the self-networking abilities of Bonjour and the

new-in-3.0 Game Kit framework to connect iPhone OS devices to one

another.

The next section consists of four chapters on interacting with media on

your device. We start with the simple framework for viewing video on

the iPhone and then look at 3.0’s new framework for interacting with

the user’s iPod music library. For developers who want to exploit the

platform’s audio capabilities, we have a chapter on playing and record-

ing audio with 3.0’s new AVFoundation framework, closing the section

with an overview of the lower-level Core Audio framework.

You are probably going to want to customize the way your users interact

with your application. We return to presentation with a look at events,

Multi-Touch, and gestures. Custom drawing via custom views is the

topic of discussion in the next three chapters. We discuss drawing con-

tent in custom and unique ways with the sophisticated Core Graphics

library, as well as manipulating and drawing images, both those pro-

vided by your application as well as those from the user’s image library.

This section closes with a chapter on Core Animation, the technology

that underlies all the beautiful and natural-feeling animations that you

see throughout the iPhone UI.

Next, we cover the more specialized technologies that not every iPhone

application will use but that, when used properly, really make your

application stand out. Some developers will be interested in using the

built-in accelerometer to sense the device’s orientation and motion,

allowing the user to control applications in new and interesting ways.

Developers of productivity and social networking applications will be

able to use the Address Book framework to interact with a user’s con-

tact database. And because the iPhone and iPod touch are devices on

the move, we have two chapters on location: one on the Core Location

framework that helps determine the device’s location and a second on

the new-in-3.0 Map Kit framework that lets you present map data in

your application.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=18

ACKNOWLEDGMENTS 19

Our final section offers four chapters on the final steps you’ll need to

take to complete your application. A handful of “application integration”

APIs allow your application to launch other apps and to be launched by

others. You’ll learn to perfect your application with chapters on debug-

ging your code and improving its performance with Xcode’s various

tools. A final chapter puts it all together by helping you hone your devel-

opment process, get your work onto the App Store, and promote it to

the app-shopping public.

1.2 Acknowledgments

From Chris Adamson

When I was part of an office-emptying mass layoff in 2001, I swore

that I was done with mobile application development. A few years later,

crawling to the finish of my second book, I said I’d never write another

one. So, to be writing an introduction to a book on iPhone development,

it would seem I’ve got some explaining to do.

It really all comes down to one moment in March 2008. I was at a

Java conference, skeptically following the web coverage of the iPhone

SDK announcement. Few people, myself included, thought we’d get a

substantial level of functionality in the SDK and were shocked when

what was unveiled was most of Mac OS X’s Cocoa, with the UI rethought

for a touch-based handheld. While I’d never been able to get out to the

network with carrier-crippled Java phones, the SDK offered freakin’

BSD sockets and self-networking with Bonjour as a bonus. Media, often

presented at a toy level of functionality on other platforms, was present

in the form of Core Audio, the same code used by professional audio

applications on the Mac.

And this was all for a phone? I was hooked. I call it my “All Along

the Watchtower” moment: I immediately knew that everything I’d been

doing for years was instantly rendered irrelevant and that this is what

I wanted—needed—to be doing going forward. I got the SDK over a very

slow DSL connection that night, coded my first Hello World on the flight

home, and was recruited for this book a few months later.

Of course, I have to thank our editor Daniel Steinberg for reaching out

to me and convincing me that I was a good choice to coauthor the book.

He’s kept this enormous project on track through months of writing

and rewriting, a shutdown when we feared Apple’s nondisclosure agree-

ment might keep us from ever releasing it, and the first slam-it-together

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=19

ACKNOWLEDGMENTS 20

beta release when the NDA dropped. Prags Andy and Dave also deserve

kudos for a very productive (and yes, I’ll say it, agile) system for book

writing. Bill has been a responsive and productive coauthor, someone

whose strengths are a well-suited balance to my weaknesses. Both of

us are grateful to our many technical reviewers and the huge commu-

nity that has developed on http://pragprog.com/, in the book’s forum and

errata page, giving us tons of useful feedback. And thanks as always to

my family (Kelly, Keagan, and Quinn), who somehow withstood the col-

lateral damage and stress of not only this book-writing marathon but

also a cross-country move just a couple weeks before beta 1.

Obligatory end-of-book tune check: this time it was Bend Sinister, My

Chemical Romance, Rilo Kiley, The Polyphonic Spree, Immaculate

Machine, . . . And You Will Know Us by the Trail of Dead, The Cribs,

Kaki King, and the CBC Radio 3 stream and podcasts.2

From Bill Dudney

Writing a book is a big task. But of course it’s not just the authors who

work hard to produce the content. The editors (at least the ones who

have corrected my prose) work just as hard if not harder to turn the

technobabble and passive writing into acceptable English, so thanks to

Daniel for helping me over the hump again.

The iPhone engineering team of course deserves a huge thanks for

working nights and weekends to make something that is so much fun

to build for.

The reviewers were also very generous with their time. Many helped,

but a few stick in my mind as being especially helpful, so in no par-

ticular order let me say a hardy thanks to the following people: Tim

Isted, Steven Troughton Smith, Patrick Burleson, Jason Hunter, Andy

Simmons, Marcus Crafter, Tom Hauburger, David Hodge, David Smith,

and Dee Wu. The book is much better for all your hard work!

I’d also like to thank the many folks who have been in the iPhone Studio

for asking just the right question to help me see things from a different

perspective. Those questions and the shift it caused helped to make

this book. Thanks!

My family was also great during the long journey that has been this

book. Thanks to you all for allowing me to stay up late nights and work

2. You can find up-to-date stats at http://www.last.fm/user/invalidname.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://pragprog.com/
http://www.last.fm/user/invalidname
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=20

ACKNOWLEDGMENTS 21

early mornings (and most of the time in between) to finish this up. I’d

especially like to thank my oldest son, Andrew, who has been a great

help in finding the things that I’m constantly forgetting. And finally, I’d

like to thank the 2,000-year-old Jewish carpenter for making my life

more than I ever thought it would or could be.

We are really excited about this platform and what you are going to

build with your newfound knowledge. It is a great time to be an iPhone

developer, and it’s great to have you as part of the community!

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=21

Chapter 2

Hello iPhone
The iPhone is an amazing platform. It’s filled with really cool technology

that makes you want to create. The App Store is filled with applications

that should both inspire and challenge you. The possibilities are prac-

tically endless.

Let’s get started with a simple Hello World application. The rest of the

book will take you through many of the technologies and APIs. You’ll see

everything from location to the accelerometer and from view controllers

to Core Animation. In this chapter, we are going to introduce you to the

tools and the basic development cycle for the iPhone.

Our first application is purposefully simple. We’re going to build an ap-

plication that displays the static text “Hello iPhone” on the screen. You’ll

first check that you have all the developer tools you need installed.

You’ll then use two of them to create and run your application in the

iPhone Simulator. Because this is an iPhone app, you’ll rotate the text

when the device is turned sideways. Finally, you’ll download this appli-

cation and run it on your iPhone.

2.1 Gearing Up

If you are already developing applications for Mac OS X, then you are

familiar with Xcode, Interface Builder, and the other development tools.

Developing applications for the iPhone will be different because of the

device you are targeting, but many of the tools, APIs, and skills you

will use will be the same. You will be able to breeze through this first

chapter.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

GEARING UP 23

Terminology

From here on out when we say iPhone, we mean any iPhone
OS device. So, if you are pushing to an iPod touch, don’t feel
left out, because we mean you too.

If you are coming to the iPhone from another platform—welcome. You

have undoubtedly used an integrated development environment (IDE)

in the past. Xcode fills that role for iPhone developers. Xcode provides

all the features you’d expect such as file management, compilation,

debugging, and error reporting. Once you get to know Xcode, you will

find it as familiar as your existing IDE. If you are completely new to

development, we trust you will find it fun and rewarding.

You will use three main tools all the time in your iPhone development:

Xcode, Interface Builder, and Instruments. You’ll use Xcode to manage

your project and to write, run, and debug your code. You’ll use Interface

Builder to create your interface and to wire it to your code. Instruments

will help you identify areas that are hurting your performance. This

book will not fully plumb the depths of any of these tools. We’ll get

you up and going with each of them and point out features required to

achieve a goal for the app we are building. Any time you would like to

learn more about a particular feature of Xcode, Apple’s documentation

is excellent and is built into Xcode.

Let’s make sure that you have the development tools installed. If you’ve

not already done so, download the iPhone SDK from http://developer.

apple.com/iphone. You need to sign up as an iPhone developer, but

membership is free. Membership and the SDK are free. It’ll cost you

$99 USD to join the iPhone Developer Program, but you’ll need to do

that to get a certificate that allows you to run your applications on the

device.

After you download the package, install it by double-clicking the .dmg

file and then the iPhone SDK package. Follow the on-screen instruc-

tions, and choose the default location to install the developer tools.

When the install is complete, Xcode will be at /Developer/Applications/

Xcode.app. If you choose another root directory to install to, the devel-

oper tools should adjust the path accordingly.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://developer.apple.com/iphone
http://developer.apple.com/iphone
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=23

CREATE THE HELLO IPHONE PROJECT 24

Launch Xcode by double-clicking it. You’ll probably want to keep Xcode,

Interface Builder, and Instruments in your Dock for easy access.

When you launch Xcode, you see the friendly welcome screen that is a

great hub of information. Across the top you will notice several sections.

Each one takes you to a different set of kickoff points for documentation

or other helpful information. We use the Xcode News [RSS] section to

keep informed about what new examples and documentation sets Apple

has posted. The iPhone Dev Center is filled with links to the various

sections of the Development Center online. Keep this welcome screen

active at launch for at least a while as you get to know Xcode. Take the

time to poke through each of the sections of the screen and get to know

the content. It’s the best way to learn Xcode.

2.2 Create the Hello iPhone Project

Now that you have Xcode running, create your first project. Select File

> New Project or use D-B- N to launch the New Project Wizard. Select

iPhone OS > Application to see the list of iPhone project templates.

We will explore many of the templates in the examples throughout this

book. For now, choose the View-based Application template, and click

the Choose button.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=24

CREATE THE HELLO IPHONE PROJECT 25

Organizational Groups

Resource List

Editor

Toolbar

Figure 2.1: Hello iPhone project

When the open panel displays, choose a folder, and call the project Hello.

Xcode uses the View-based Application template to make an application

with a single view. Several other files are created for us, but we will look

at many of them later, so don’t worry about them now. You should have

something that looks very similar to Figure 2.1.

On the left side of the window, you see a list of organizational groups.

Each of these containers provides a bucket for you to put stuff into to

help you keep organized. The groups are not implicitly tied to a filesys-

tem structure, so there is a great deal of flexibility for you to organize

your code and resources in any way you see fit. If you are just getting

started, it is often easier to just learn the initial setup, but if you have

something that works for you, feel free to reorganize to your heart’s

content.

Along the top of the window is the toolbar. This configurable space is

where you can put the commands you most commonly use so that they

are easy to invoke. We have the Overview pull-down menu that allows

us to quickly switch between the iPhone Simulator and the device as

the target to deploy our application on. If you don’t see this Overview

pull-down menu, it’s probably a good idea for you to add it (some devel-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=25

CREATING A SIMPLE INTERFACE 26

opers are seeing it by default; if it’s already there, you don’t need to do

anything).

To customize your toolbar, select View > Customize Toolbar, or Ctrl+

click in the background of the toolbar and select Customize Toolbar.

Select the Overview item, and drag it to the toolbar. As you drag it up,

the cursor will change to a green circle with the + sign in it. Drop the

Overview item on the left side of the toolbar.

On the right side below the toolbar is the file/resource list. This list

displays files that are part of the group that is selected in the Groups &

Files list on the left. Since the project is currently selected, all the files

in the project are listed. As you click a file in this list, it is displayed

just below in the editor pane. This list tracks the selection in the Groups

& Files list; as you change the selected group, this list will change to

reflect only the files that are part of that group.

The editor pane is where you will be doing most of your editing. It is

where you access most of the code-centric features (completion, refac-

toring, and so on).

Now that we have our whirlwind tour of Xcode, let’s run our new appli-

cation to see what we get. Click the Build and Go button (or hit D-

F), and Xcode will take care of the rest. iPhone applications, like Mac

apps, are special directories called app bundles. During the build pro-

cess, Xcode makes an app bundle with your compiled code, and your

resources are copied to the appropriate places in the app bundle.

Now that Xcode has built your app and installed it into the simulator,

the app will launch in the simulator. This first run will be a simple light

gray background (a great flashlight app, if not quite as bright as a white

background). Not much is here yet, which is what we expect given that

we haven’t customized our template yet. Next let’s make some changes

to the interface.

2.3 Creating a Simple Interface

Now it’s time for you to meet Interface Builder. It’s one of the major

tools you will be using to build iPhone apps and the primary tool for

user interface (UI) layout and configuration.

For now, the application isn’t going to do anything, so we don’t need

to write any code. We’ll use visual tools to create the visual interface.

Interface Builder (IB), as the name implies, is responsible for enabling

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=26

CREATING A SIMPLE INTERFACE 27

us to build the interfaces that our users interact with. IB understands

the UIKit objects used to make interfaces and the Human Interface

Guidelines (HIG) meant to help us make consistent UIs. It is a very pow-

erful tool once you get your head wrapped around it. As with Xcode, this

book can’t possibly plumb the depths of IB, but through the experience

you gain building the examples in this book, you will know enough to

dig in and learn it yourself.

Let’s build the interface for your first application. Open HelloViewCon-

troller.xib by double-clicking it in Xcode (under the Resources group). We

want to add a label to the interface to contain our “Hello iPhone” text.

So, open the Library with D-B- L (or Tools > Library).

The Library is where you will find all the interface and controller objects

that you can instantiate into your nib file. In this case, we are looking

for a label, so you can type label into the filter field at the bottom of the

window.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=27

CREATING A SIMPLE INTERFACE 28

Drag the label out into the view, and move it until it snaps to the guides

on the left side.

Select the label if it’s not already selected. The little blue circles around

the edge of the label allow you to resize the label. Make it stretch from

the left guide to the right one so it takes the entire width of the view

minus the border recommended by the guides. Also resize the height

to 80 (you can drag with the mouse or just go to the Size inspector

with D- 3). Now change the font by pressing D- T and choosing a font

size of 48. Double-click the label to select the text and edit it. Change

it to Hello iPhone. You can also modify the color of the text and add

a shadow and many other attributes in the Attributes inspector (D-

1). Also, make sure to specify that you want the text centered in the

Attributes inspector.

Here’s what it looks like with the text centered, turned red, and with a

shadow applied:

Now we are ready to run the application. Save your changes in Interface

Builder. Switch back to Xcode, hit the Build and Go button, and check

out your masterpiece. Once the simulator launches, you should see the

text you set on the label show up in the center of the view on the gray

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=28

ROTATING THE TEXT—ADJUSTING THE UI 29

Joe Asks. . .

What Is with XIB and NIB?

Interface Builder understands two file types, .xib and .nib. The
.xib extension is simply the XML version of the .nib file. Since the
.nib file type has been around since Mac OS X 10.0 (and even
before in NeXTStep) and .xib is relatively new, people still refer to
them as nib files. We will do the same throughout the book.

background. In the simulator, choose the menu item Hardware > Rotate

Left or Hardware > Rotate Right. The simulator rotates the device left

or right by 90 degrees, and the text rotates along with it. We’ll make

adjustments so that when the user rotates the device, the text remains

oriented so that we can still easily read it.

2.4 Rotating the Text—Adjusting the UI

You have to perform two basic steps to properly respond when the

device is rotated. You’ll need to set some parameters on the UIView in

Interface Builder, and you’ll have to adjust a single line of code in the

HelloViewController class using Xcode. In this section we’ll make the UI

adjustments, and then in the next section we’ll make the changes to

the code.

Select the label, and use the Size inspector (D-3), under the Autosizing

section, to change the Struts and Springs configuration. Here, we want

to keep the label centered when the device is rotated, so we turn off

Struts for all four edges and turn on Springs for both directions.

The Struts and Springs configuration for views allows us to specify how

the view should act when resized or when the view that contains it is

resized. Struts runs along the outside edges of the view and allows us

to specify that the distance between view and the edges of the view

that contains it (the container view is referred to as the superview)

remains constant. Springs allows us to specify that the view can grow

or shrink in height or width. When the device rotates, the label’s super-

view changes size and will therefore update the label according to the

settings we put in place in the Size inspector. You also need to specify

the text alignment on the text field to be centered.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=29

ROTATING THE TEXT—ADJUSTING THE CODE 30

Here are the Struts and Springs configuration with the correct setup:

We are now finished with updating the UI. Let’s go back to Xcode

and make the necessary changes to the code so the app will properly

respond to device rotations.

2.5 Rotating the Text—Adjusting the Code

In Xcode, select the Classes group, and then in the list of files on the

top-right side select the HelloViewController.m file. Xcode will open the file

in the editor pane below the list. Find the shouldAutorotateToInterfaceOri-

entation: method (make sure to uncomment it if it’s commented out);

this is where you will change code to make your application under-

stand that the device has changed orientation.

The iPhone will ask your application whether it wants to rotate by

sending shouldAutorotateToInterfaceOrientation: to it (well, technically this

is not 100 percent accurate, but for now it’s close enough; you will

learn about this in much more detail in Chapter 4, View Controllers, on

page 62). You respond by returning either YES or NO from this method.

If you return YES, the iPhone will rotate your application to the orienta-

tion, and if you return NO, then your app will not rotate.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=30

CODE NAVIGATION 31

Here is the code for this method:

Download HelloiPhone/Hello/Classes/HelloViewController.m

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation {

return YES;

}

Since for this application you want to support all orientations, you just

return YES. We have updated the UI and the code, so now it’s time to

run; click the Build and Go button in Xcode to launch the application.

Once it’s launched, use D-→ and D-← to get the simulator to rotate.

The label stays centered in the view and changes its orientation along

with the device.

2.6 Code Navigation

We didn’t have much code in this example. As your projects become

larger and your classes grow, you will want better ways to quickly nav-

igate your source code with Xcode. Once you have selected a file in the

list, it is opened for you in the editor pane. The pane has several but-

tons along the top that give us a bunch of tools to navigate around in

the code. Click the symbols pull-down menu to navigate immediately to

any symbol.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/Hello/Classes/HelloViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=31

RUNNING YOUR APP ON YOUR IPHONE 32

A simple click of the symbols list will display the symbols in the order

they are found in the file. If it’s easier to find what you are looking

for from an alphabetically ordered list, you can hold down the option

key and click the symbol list; then Xcode will display the symbols in

alphabetical order.

2.7 Running Your App on Your iPhone

The simulator is a fine place to experiment, but there is no substitute

for pushing the code to your device and watching it react in your hands.

Unfortunately, you won’t be able to push to your phone until you have

received your developer certificates from Apple. If you already have your

certs installed, then the rest of this chapter takes you through the steps

to get your app pushed onto your device.

If you don’t have them installed and you are ready to get started, start

with iPhone Developer Program [App08c] where you can apply for the

program. Once accepted, you can go to Obtaining Your iPhone Develop-

ment Certificate [App08f] to get more information about putting your

certificates onto your devices and using them to sign your code from

Xcode. If you don’t have your certs, then please skip to the next chap-

ter because the remainder of this chapter won’t make much sense.

The change required to your project in Xcode is minimal to deploy an

app to your phone. First you have to specify the proper application

identifier in your project properties. Select the Hello target, hit D- i (or

right-click and choose Get Info), and then choose the Properties tab.

The identifier you use has to match one of the provisioning profiles you

set up with your iPhone developer certificates. We created a specific

provisioning profile for use with the examples in this book and suggest

you do the same. If you don’t want to make a specific profile, then feel

free to change the identifier to one that matches an existing profile.

On the next page, we show the setup we used for this example.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=32

RUNNING YOUR APP ON YOUR IPHONE 33

Now you need to change from running in the simulator to running on

the device. Select the Overview pull-down menu. Under the Active SDK

list, choose Device – iPhone OS X (where X is the version installed on

the device).

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=33

RUNNING YOUR APP ON YOUR IPHONE 34

If you don’t see this item, you probably have a problem in your devel-

oper certificates. Log onto the iPhone developer portal site, and review

the direction in Obtaining Your iPhone Development Certificate [App08f]

to make sure you have followed all the appropriate directions to get the

certificates installed and working.

Once you have selected the device, click the Build and Go button again.

This will take a few seconds to complete because Xcode has to rebuild

all your code for running on the iPhone processor instead of for the pro-

cessor on your Mac. Once it’s done compiling, packaging, and signing

your application, Xcode installs the application onto your device and

starts it. Once it’s started, try rotating the device to see how the “Hello

iPhone” text follows when the device is rotated.

Congratulations! You have completed building and running your very

own iPhone application. You have seen a bit of Xcode and IB and how

the two tools are used to build the code and the interface for your

applications.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=34

Chapter 3

iPhone Development
Fundamentals

Now that you’ve had a chance to get a simple application up and run-

ning with the iPhone SDK tools, let’s take a step back and understand

how we got here. In this chapter, we’ll take a look at the organization

of the iPhone’s application stack, how the tools work in relationship

to this architecture, and some of the concepts you’ll need to master in

pretty much any nontrivial iPhone application.

We barely touched the code in the previous chapter—we’re going to

dive more deeply into it now. iPhone applications are primarily writ-

ten in Objective-C, a set of object-oriented extensions to the classic C

language.

Our goal in this book is to make Objective-C programming for the

iPhone understandable to developers with experience in any of the var-

ious C-based, curly-brace languages. If you’ve worked with C++, C#,

or Java, many of Objective-C’s concepts will be familiar to you, even if

the syntax isn’t. If your primary background is in scripting languages

like Ruby, Python, or JavaScript, we expect that you’ll be familiar with

the concepts of object orientation, but some of the latent subtle C-

isms, particularly involving pointers and memory management, may

take some getting used to.

We will cover Objective-C’s everyday essentials in this chapter, and if

you want to dig deeper, you might want to look at Apple’s The Objective-

C 2.0 Programming Language [App09e], Bill’s “Coding in Objective-C

2.0” screencasts at http://www.pragprog.com/screencasts, or a book on

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://www.pragprog.com/screencasts

THE IPHONE SOFTWARE ARCHITECTURE 36

Cocoa for the Mac, such as Daniel Steinberg’s Cocoa Programming:

A Quick-Start Guide for Developers [Ste09], also from the Pragmatic

Programmers.

3.1 The iPhone Software Architecture

The iPhone’s software stack is divided into a number of layers, with

your application at the highest level of abstraction and core system

services at the lowest level. From highest to lowest level, the stack can

be summarized as follows:

• Your application.

• Cocoa Touch—A framework for developing touchscreen applica-

tions: UI elements, event dispatching, application life cycle, and

so on. This also includes object wrappers around essential data

types (strings, collections).

• Media—Graphics, animation, sound, video.

• Core services—Collections, strings, location awareness, SQLite

database, Address Book, networking, and so on.

• Core OS layer—Unix services, standard I/O, threads, BSD sock-

ets, power management, and so on.

You’ll mostly want to work primarily with the GUI frameworks and the

OO abstractions offered by the Cocoa Touch layer, and it’s this layer

that we primarily discuss in this book (with diversions deeper into the

stack as necessary for specific topics). Most of the Cocoa Touch classes

are designed to be called directly from your code; you can subclass

these classes to add functionality, but you’ll find that you need to do

this far less frequently than in other languages.

3.2 Coding in Objective-C

The Cocoa Touch frameworks you’ll be using are written in and called

with Objective-C, which is a superset of the original C. Because of this,

you can and will freely mix C and Objective-C syntax in your application

code.

Classes in Objective-C are developed by creating a header file and an

implementation file. These two files share the same name but different

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=36

CODING IN OBJECTIVE-C 37

Joe Asks. . .

Do I Have to Learn C to Write iPhone Applications?

Well, we’re not going to advise you to drop this book and read
“K&R”∗ first, but if you’re not already familiar with C, you will
surely be picking up some of it along the way.

Some iPhone APIs developed outside of Apple are used with
what we’d describe as typical C coding practices. These
include OpenGL, OpenAL, and SQLite. There are also Apple
APIs called with plain C (Apple often uses the term procedu-
ral C to distinguish it from Objective-C) that use Apple-specific
design patterns to craft an OO-like experience. These include
Core Foundation, Core Audio, and Quartz/Core Graphics,
which will be introduced in Section 17.1, Using the Procedural-C
APIs, on page 364.

Even within purely Objective-C Cocoa APIs, you’ll use C syntax
for things such as control flow, and you’ll encounter C idioms,
such as using pointers for all your Objective-C variables, provid-
ing their addresses (with the & operator) as a parameter to get
return values from method parameters, variable-length argu-
ment lists, and so on.

We learned C a long time ago, but we’re sympathetic to how
hard it is to go from modern languages back to C’s functional
style and memory management. We’ll try to make sure to warn
you of C’s idiosyncracies as we proceed.

∗. This is the short name for Brian Kernighan and Dennis Ritchie’s much-cited
The C Programming Language [KR98].

extensions; to create a class called Person, you would create both a Per-

son.h file and a Person.m file. In the header file, you include the public

parts of your class: the names and types of your instance variables and

your method signatures, which describe the return type and parame-

ters of a method. In the implementation file, you then implement these

methods with code, declaring and using any needed local variables that

are relevant only to the implementation and are not meant to be seen

by other classes. Like C, you also need to indicate where the compiler

can find other code you’re using, by importing the header file of classes

you refer to in your headers or implementation.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=37

ESSENTIAL COCOA TOUCH CLASSES 38

In Objective-C, method calls actually represent messages dispatched

by a small, lightweight runtime to the objects in memory. This is a

subtle but important distinction, which allows for surprisingly dynamic

behavior in what might initially seem like a fairly formal language. For

example, if you call a method on an object reference that turns out to be

nil, you don’t crash or get an error (like Java’s NullPointerException); the

runtime realizes that sending a message to a nonexistent object would

be meaningless and simply does nothing.

Typical Objective-C method calls are enclosed in square braces, begin-

ning with the object and followed by parameter names and the val-

ues you’re providing for those parameters. For example, if you had an

NSString instance called myString, you would get its third character with

a method invocation like this:

myChar = [myString characterAtIndex: 3];

The most significant difference from other languages, other than the

square braces, is that the parameters are always named with the

parameter-and-colon construct called a keyword. It does mean more

typing, but it makes code a lot easier to read, compared to other C-like

languages where you could have a half dozen parameters within a set

of parentheses and no readily apparent idea what each one represents.

3.3 Essential Cocoa Touch Classes

Now that you know you’ll be doing most of your coding in Objective-

C, let’s take a quick look at the classes provided in the iPhone SDK

frameworks.

The Cocoa Touch application frameworks, first mentioned above in Sec-

tion 3.1, The iPhone Software Architecture, on page 36, contain most of

the classes you will use to develop your first applications. The term

comes from Cocoa, the object-oriented frameworks developed for Mac

OS X programming (and NextStep before that), along with GUI classes

uniquely designed for use on a mobile, touchscreen device (hence the

“Touch”).

Cocoa’s Foundation framework includes essential data classes, includes

basic utilities, and establishes some core programming conventions

that cannot be expressed by the Objective-C language alone, such as

techniques for managing memory (which we’ll visit in Section 3.7, Man-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=38

ESSENTIAL COCOA TOUCH CLASSES 39

aging Application Memory, on page 56). Nearly all Cocoa classes inherit

from a root class, NSObject, defined in Foundation.

Perhaps the first and most important thing to discover in Foundation is

its data management classes, which are used throughout Cocoa instead

of the procedural C equivalents. For example, the traditional C string,

the null-terminated char array, is almost never used in Cocoa. Instead,

you use NSString, which represents not only the character data but also

its encoding; with rich support for Unicode (and the UTF-8 and UTF-

16 encodings), the NSString makes it easy to handle text in any of the

dozens of character sets on the iPhone.

Cocoa also provides a deep set of collection classes, obviating the need

for most uses of C arrays (or hand-rolled collections, such as linked lists

and hashtables). Three classes are used for collecting Cocoa objects:

NSArray for ordered collections of objects, NSSet for unordered collec-

tions, and NSDictionary for mapping key objects to value objects. These

three collections are immutable—once initialized, they can’t be changed.

If you want to add, delete, or otherwise change their contents, use

the mutable subclasses NSMutableArray, NSMutableSet, and NSMutable-

Dictionary.

The collections can store only NSObjects. If you have C primitives, you

can pass them around Cocoa with the wrapper classes NSData and

NSMutableData, which wrap a byte buffer, and NSNumber, an object con-

tainer for any of C’s scalar (numeric) types, such as int, float, or bool.

Cocoa has a few more specific data classes, including NSURL for URLs

(including file://-style URLs representing items on the local filesystem,

though you often use NSString paths too), and timekeeping classes such

as NSDate and NSTimeZone.

The “Touch” part of Cocoa Touch is largely represented by the UIKit

framework, also imported by default in every iPhone application. This

framework offers the drawing model, event handling, application life

cycle, and other essentials for a touch-based application. You’ll largely

interact with it through the various user interface component classes it

provides: UIButton, UITextView, UITableView, and so on.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=39

WORKING WITH XCODE AND INTERFACE BUILDER 40

Between the data types in Foundation and the UI components in UIKit,

Cocoa Touch gives you a great foundation on which to start coding your

application.1

3.4 Working with Xcode and Interface Builder

Now you might be thinking, “Hey, I barely wrote any code to create the

application in the previous chapter, so why are we talking about code

all of a sudden?” Fair enough. We’ve already introduced you to Xcode

and Interface Builder as your primary tools, so let’s take a look at the

roles they play by looking at the contents of the Hello.xcodeproj project

you created in Chapter 2, Hello iPhone, on page 22. With the project

open in Xcode, you should have a window whose left side shows the

Groups & Files list, which presents the contents of Hello as a set of

folders. With Hello clicked, you’ll see all the files listed in the right pane,

but by clicking each folder individually, you can examine the parts of

the project by type:

• Classes—Class files are the C and Objective-C source that you

create to provide the functionality of your application. The tem-

plate you used to create Hello set up two classes for you: HelloAp-

pDelegate is responsible for handling life-cycle events (such as the

application starting up or shutting down), and the HelloViewCon-

troller manages what you see on-screen.

• Other sources—These are source files that are generated automat-

ically and that you are largely not responsible for or interested

in. HelloPrefix.pch is the precompiled headers file, created by Xcode

to speed up processing of header files in your build. main.m is

the implementation of the main() function that the system calls

to launch your application. You could also put third-party library

source here or procedural-C sources (.c files) that aren’t “classes”

per se.

• Resources—Resources are noncode files that are nevertheless

needed by your application at runtime. Such files might include

graphics or sound files, localization dictionaries, and the like. In

1. Keep in mind that you can learn more about these classes at any time from Xcode’s
Help menu. See Section 27.3, Using iPhone SDK Documentation, on page 493 for an

overview of Xcode’s documentation viewers.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=40

WORKING WITH XCODE AND INTERFACE BUILDER 41

this project, the Info.plist2 file includes basic settings for the appli-

cation such as its icon and name. The resources also contain the

nib files that contain the “freeze-dried” GUI components used to

present the user interface. You edited the HelloViewController.xib file

with Interface Builder in the previous chapter.

• Frameworks—These represent the frameworks that your appli-

cation uses. By default, the Xcode template links in the frame-

works Core Graphics and UIKit so you’ll be able to call the various

GUI classes, and Foundation for commonly used classes such as

strings, collections, URLs, and the like. In later chapters, when we

go beyond basic functionality, we’ll add more frameworks to this

folder.

• Products—This folder represents the files that will be created by

the build process, in this case the Hello.app iPhone application.

Xcode is really the base for your application project. Although you’ll

use other applications to set up the GUI elements in the nib (Interface

Builder), create images (any graphics application such as Photoshop or

Pixelmator), and measure performance (Instruments), the job of man-

aging all the pieces of the application and building it falls to Xcode.

Typically, Xcode also provides your source editing, though you can con-

figure external applications (perhaps BBEdit, TextMate, or even emacs)

to do your source editing if you so desire.

Designing an Interactive Application

Our first application said “Hello iPhone,” so let’s return the favor by

saying hi to the user. This will require prompting the user for their

name.

Close out the Hello project by closing the project window if it’s still open,

and use DB N to create a new project. In the New Project window, you’ll

again choose a View-based Application, and when you’re asked to name

the project, choose a new name like HelloUser.

Just like in the previous chapter’s example, the template project pro-

vides us with two classes (HelloUserAppDelegate and HelloUserViewCon-

2. Starting in iPhone SDK 3.0, Xcode prepends the project name to the filename, like

Hello-Info.plist. We’ll continue to use the term Info.plist as a generic reference to whatever file

was created for your application’s settings.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=41

WORKING WITH XCODE AND INTERFACE BUILDER 42

troller), along with a few other classes that we’ll explain in the next sec-

tion. For now, it’s enough to know that in a single-view application, we

put stuff on-screen by working with the HelloUserViewController class and

its associated HelloUserViewController.xib, which contains the freeze-dried

GUI for this class. In the previous chapter, we edited only the .nib file,

but this time, we’re going to want to customize the class to provide

some interactivity.

Declaring IBOutlets and IBActions

Our new application lets the user type his or her name into a text field.

When they’re done, we’ll customize the message with the name. So, if

you type Quinn, the label will change to “Hello Quinn.” To do this, we will

use a label for the message, a text field for the user’s name, a button to

accept the input, and a method that updates the label when the button

is tapped.

To make this work, we need to create relationships between the logic

of the application and the GUI objects in the nib. We’ll use special key-

words when we declare variables that refer to objects in the nib and

when we declare methods to be called from events in the user interface,

such as button taps. A reference from code to an object in the nib is

called an outlet and is designated with the keyword IBOutlet. Similarly,

a method that you want a nib’s objects to be able to call is an action

and is designated with the keyword IBAction.

Typically, you declare outlets and actions in code so that IB will be able

to use them. Edit your HelloUserViewController.h header file so it looks like

this:

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.h

Line 1 #import <UIKit/UIKit.h>
-

- @interface HelloUserViewController : UIViewController {
-

5 IBOutlet UILabel *helloLabel;
- IBOutlet UITextField *nameField;
-

- }
-

10 - (IBAction) sayHello: (id) sender;
-

- @end

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=42

WORKING WITH XCODE AND INTERFACE BUILDER 43

This code declares two outlets and one action. Since the outlets are

variables and therefore part of the class structure, they go in the curly-

brace block of the @interface declaration. The first outlet, on line 5,

declares a pointer to a UILabel called helloLabel, with the additional IBOut-

let declaration signaling our desire to connect this reference to an object

created in Interface Builder. With this connection, we’ll be able to style

the label in Interface Builder, and also alter it from code at runtime,

in order to display the customized hello message. Similarly, on line 6,

we declare a UITextField as an IBOutlet, so we’ll be able to read its value

from code. Finally, on line 10, we declare a method that will handle the

button tap, and we declare it to be an action (note that we don’t need

an outlet to the button if we’re not going to be manipulating it, such as

changing its size or text, from code).

As you can see, method declarations in Objective-C have a unique syn-

tax. They start with a single character (-) to declare an instance method,

meaning that it is called on and applies to a single instance of the class,

or + for a class method, which is independent of an instance. Following

this is the return type in parentheses. (IBAction) is equivalent to (void)

in that it returns no value, but using the IBAction keyword indicates

our intent to connect the method to GUI events via Interface Builder.

Finally, the arguments are provided as pairs of types and parameter

names. In this case, the (id) type is a pointer to any object; the pattern

(id) sender is used for all IBAction declarations so the called method can

know what object (the sender) has called it.

Laying Out Your Interface in IB

Now you’re ready to create the GUI in Interface Builder and connect

its components to your code. First save the header file, if you haven’t

already.

Next, in Xcode’s project window, double-click HelloUserViewController.xib

to open it with IB. As in the previous chapter, IB will show a document

window with three objects: two proxy objects (File’s Owner and First

Responder, which we’ll explain later) and View. The view’s preview win-

dow may already be open; if not, double-click View to open it. Your view

starts as a blank area precisely the size of the iPhone screen. From the

library, drag over three objects: a label, a text field, and a button.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=43

WORKING WITH XCODE AND INTERFACE BUILDER 44

Your preview should look something like this:

Obviously, this GUI could use a little bit of layout and polish. Let’s

customize the three components as follows:

• Select the label to show its handles, and drag the right and left

edges until the dashed blue margin lines appear. This will let the

label span all the way across the screen in case the user has

a really long name. To center the text, bring up the Attributes

inspector (D 1), and where it says Alignment, click the “center text”

icon (the middle one).

• Select the text field, and drag its edges to the margins too. In

its Attributes inspector, you can use the placeholder to provide

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=44

WORKING WITH XCODE AND INTERFACE BUILDER 45

a grayed-out visual cue to tell the user what they should do with

the text field, for example, Name.

• Finally, double-click the button, or edit its Title attribute, to set

the button’s text to Say Hello.

Here’s the completed GUI. For simplicity, we won’t worry about sup-

porting rotation or resizing the components in this sample.

Now that we’ve set up our user interface, we’re ready to connect it to

our code. To do this, go back to the HelloUserViewController.xib document

window and its three icons. We’re going to be working with the File’s

Owner icon. This isn’t a real object but, instead, a proxy object that

represents an object assigned to be the “owner” of the nib when the nib

is loaded.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=45

WORKING WITH XCODE AND INTERFACE BUILDER 46

Xcode has already set the class of File’s Owner as HelloUserViewCon-

troller (which you can examine with the Identity inspector, D 4), and this

is key to getting our code connected to our interface. The object that

owns this nib and its customized view is a HelloUserViewController, and

we just created actions and outlets in that class by editing its header

file. That means IB knows that the File’s Owner will have those outlets

and actions at runtime.

Because we’ve added those IBOutlets and IBActions, when you right-click

(or Ctrl+click) the File’s Owner to see its outlets, you’ll see helloLabel

and nameField.3

Now we’re going to actually make the connections. In the gray heads-

up-display (HUD) window’s list of outlets, click the circle next to hel-

loLabel, and drag to the label in the preview window. As you hover over

the label, IB will show a box around it and open a window identifying

your proposed connection as Label (Label), meaning that you’re about

3. You can also examine an object’s outlets and received actions in the Connections

inspector (D 2).

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=46

WORKING WITH XCODE AND INTERFACE BUILDER 47

to connect to a label (specifically a UILabel), whose contents are cur-

rently the text “Label.” Lift up on the mouse button to complete the

drag and make the connection; the name of the connected component

will appear back in the HUD window.

Now do the same thing with the nameField outlet, whose drag gesture is

shown here:

You can connect the action with a similar gesture in the opposite direc-

tion, from the widget to the File’s Owner. Right-click the button to show

its list of events,4 and drag a connection from the Touch Up Inside

event to the File’s Owner. When you release the mouse, a small HUD

window will pop up and show the declared actions that you can con-

nect to. Since you declared only one IBAction, it’s your only choice here:

sayHello:.

This completes the wire-up of outlets and connections in Interface

Builder. To keep things clean, you might want to set the label’s title to

an empty string so the application doesn’t say “Label” when it launches.

You’re now done with IB and can save and quit.

4. Again, you could also see the list of connections with the Connections inspector. As a

shortcut, Ctrl+dragging from a button to a receiver object connects the Touch Up Inside

event without even bringing up the list of events.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=47

WORKING WITH XCODE AND INTERFACE BUILDER 48

Implementing the Action

Now you have a GUI, with connections from the IB-created widgets to

instance variables in your custom class. If you run it right now, a tap on

the Say Hello button will result in a call to sayHello:. Thing is, we haven’t

written that method yet, so our app will crash with an “unrecognized

selector” error. Let’s deal with that now.

Your method implementations go in the class’s implementation file,

which has a .m filename extension. Open HelloUserViewController.m from

the project window in Xcode. The method can go anywhere between the

lines containing the @implementation and @end keywords. Type in the

following method implementation in the line following @implementation

HelloUserViewController:

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.m

Line 1 - (void) sayHello: (id) sender {
2 NSString *userName = nameField.text;
3 NSString *helloMessage =
4 [[NSString alloc] initWithFormat: @"Hello %@", userName];
5 helloLabel.text = helloMessage;
6 [helloMessage release];
7 nameField.text = NULL;
8 }

• On line 2, we refer to the instance variable nameField and then get

the text that’s been typed into it. Since UILabel provides text as a

property, we get and set it with the dot operator. We’ll have more

to say about properties a little later in the chapter.

• Next, we create a new hello message by creating a new NSString

on line 3. As is usually the case with Cocoa objects created in

code, we first allocate memory for the object with alloc, and then

we initialize its contents. To create the string substitution, we can

use a format string and substitute in the user value. The leading

@ lets us quickly allocate a static NSString for the format, which is

just Hello %@. The %@ is a format specifier that allows us to insert

a string representation of any Cocoa object.5 Here, we insert the

value of userName.

• With the format string prepared, we set it on the label in 5. We do

this by getting the helloLabel instance variable and setting its text

property.

5. Formatting strings and other format specifiers is described further in Section 27.5,

Logging to Standard Output, on page 498.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=48

WORKING WITH XCODE AND INTERFACE BUILDER 49

• Finally, we have one little bit of housekeeping. We allocated mem-

ory for a string on line 3. As we no longer need this string, we are

obligated to release it in order to free up the allocated memory.

On line 6, we do this by sending the release message to the string.

Technically, this doesn’t free the memory; it says that we are no

longer interested in the object, so if nobody else is claiming the

string, it will be freed (it’s not freed, by the way, since the UILabel

also retained it when we set it as the label’s text). We’ll discuss the

memory management system in detail later in this chapter.

Our application is now ready to run. Click Build and Go to run it in the

simulator, and the resulting application will allow you to click in the

text field, type your name, and tap Say Hello to display your name like

this.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=49

ANATOMY OF YOUR IPHONE APPLICATION 50

3.5 Anatomy of Your iPhone Application

So far, you’ve had to endure a bit of “type this here, do that there, never

mind the little man behind the curtain”-type instruction, so let’s step

back and take a look at just how your application gets launched and

how all these pieces interact. If this ends up being more detail than

you need, you don’t need to worry about it; we’re covering it in order to

demystify the nature of how an iPhone app works and why the project

template is structured like it is.

As described earlier in Section 3.4, Working with Xcode and Interface

Builder, on page 40, the main.m file has the implementation of the main()

function that the system calls to launch your application. Open it up if

you like, and you’ll see it’s just four lines:

Download HelloiPhone/HelloUser/main.m

Line 1 int main(int argc, char *argv[]) {
2

3 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
4 int retVal = UIApplicationMain(argc, argv, nil, nil);
5 [pool release];
6 return retVal;
7 }

The signature on line 1 is a typical C main() function, designed to be

called from the command line with a variable number of arguments.

Line 3 sets up an autorelease pool for memory management (which

will be explained later in Section 3.7, Managing Application Memory, on

page 56), and line 5 releases it when the application ends.

On line 4, we call the UIApplicationMain function to start up the main

event loop and start your application. The first two arguments pass the

command-line arguments (if any), while the third and fourth indicate

the application’s main class and its application delegate, which is a

class in your project that handles application life-cycle events. If these

are nil, as they are here, then UIKit assumes that it needs to load the

application from a nib file.

The Info.plist file provides the application’s main nib bundle, typically

MainWindow.xib. So, UIKit expects to find the app delegate in this nib.

Double-click MainWindow.xib to open it in Interface Builder.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/main.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=50

ANATOMY OF YOUR IPHONE APPLICATION 51

You should see something like this:

The nib contains an app delegate icon (HelloUser App Delegate), a view

controller (HelloUser View Controller), a window (Window), in addition

to the File’s Owner and First Responder proxy objects that are always

present.

Open the Connections inspector (D 2) for the application delegate ob-

ject, and you can start to see how the pieces fit together. Every iPhone

application must have a single UIWindow object, and the application del-

egate has a connection to the nib’s window object. It also has a connec-

tion to a view controller object, which is an instance of the HelloUserView-

Controller class that we customized earlier in the chapter. And as you

saw before, the view controller provides the logic associated with an on-

screen view, the one that we customized in the HelloUserViewController.xib

file. In fact, if you investigate the view controller with the Attributes

inspector, you’ll be able to see where it refers to that nib file, and if

you double-click the view controller, the view’s preview window says it’s

“Loaded from HelloUserViewController.”

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=51

CUSTOMIZING BEHAVIOR WITH DELEGATION 52

w
in
d
o
w

MainWindow.xib

App Delegate

View Controller Window

File's Owner delegate

vi
ew
Co
nt
ro
lle
r

HelloUserViewController.xib

File's Owner

nibN
am
e

class:
UIApplication

class:
HelloUserView
Controller

class:
HelloUserApp
Delegate

So, to summarize, the system starts by calling the main() function,

which calls UIApplicationName(), which uses Info.plist to look up the main

nib, in which it finds an application delegate (connected to the app’s

one window) and a view controller, which loads from another nib file.

Your application’s first chances to provide custom logic come in the

life-cycle methods associated with the app delegate (such as application-

DidFinishLaunching:) and the view controller it loads (which gets callbacks

like initWithCoder: when it’s loaded from the nib and viewDidLoad when

its view is loaded). But in our application, we don’t need to do any-

thing until the button is tapped. You’ll probably never want or need to

mess with main.m or MainWindow.xib, because these life-cycle callbacks

offer more convenient points to insert start-up code, but now you know

how all the stuff in your Xcode project works together to bring up your

application.

3.6 Customizing Behavior with Delegation

The application delegate is an example of one of Cocoa’s most signifi-

cant design patterns: delegation.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=52

CUSTOMIZING BEHAVIOR WITH DELEGATION 53

The idea of delegation is that an object can have a single delegate object

that it will call when certain events occur. From the delegate’s point of

view, it’s sort of like a callback or notification scheme:6 “Call me when

this stuff happens.” From the delegating object’s point of view, it’s more

like handing off responsibility: “I don’t know what, if anything, needs to

happen when this event occurs, so you deal with it.”

In the case of the application delegate, the object that UIApplication-

Main declares as the application delegate gets callbacks when various

events that affect the whole application occur: when it’s launched from

the home screen, when it’s launched with a URL by another applica-

tion (see Chapter 26, Application Integration, on page 482), when it’s

warned of a low-memory condition, and so on. This is an example of

a formal delegate arrangement, one that is defined by an Objective-C

protocol, UIApplicationDelegate. This protocol has its own documentation

page, like a regular Cocoa class, but instead of describing how an exist-

ing class’s methods work, it describes when the delegate methods will

be called and what you as an implementor of those methods could or

should do when they are. For a class to actually become an applica-

tion delegate, it needs to declare in its header file that it implements

the protocol and then implement any delegate methods not marked as

“optional.”7

There are a few delegate protocols that we could add to Hello User to

make it behave more like a typical iPhone application. For example,

you might have noticed when you ran the application that the keyboard

didn’t disappear when you tapped the Say Hello button, and the Return

key did nothing. These are common tasks for iPhone applications, and

the latter requires us to provide a delegate to the text field.

To dismiss the keyboard, you need to tell the text field to give up its role

as the “first responder,” meaning the component that initially receives

the user input. It’s easy enough to do this when the button is tapped;

just add the following line to the bottom of sayHello:.

[nameField resignFirstResponder];

6. Cocoa also has a notification system that works with zero to many listeners, but

its design and use are profoundly different from delegation, and the two are in no way

interchangeable.
7. To Java programmers, Objective-C protocols are like Java interfaces but with the

potential for optional methods.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=53

CUSTOMIZING BEHAVIOR WITH DELEGATION 54

But what do we do when the Return key is tapped? That’s not a button

that comes from any of our GUI components—the keyboard is provided

automatically by the text field—so there’s no apparent way of wiring up

an event-handling method to it. However, if you look up the documen-

tation8 for UITextField, you’ll see that it has a delegate property that is

defined by the UITextFieldDelegate protocol, which is a defined group of

related methods. Look up this protocol, and you’ll see it has numerous

methods that alert the delegate of events relating to the text field. One

of them is textFieldShouldReturn, which looks like what we need in order

to know when the user has tapped Return.

You indicate that an object implements some or all of the delegate

methods by specifying the delegate name in the @interface header inside

angle brackets following the name of the class that this class extends.9

For our purposes, HelloUserViewController makes a good choice, since it

already knows about the text field. So, declare that it implements the

delegate protocol by editing the HelloUserViewController.h header file and

adding the protocol, in angle braces, to the class declaration, like this:

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.h

@interface HelloUserViewController : UIViewController <UITextFieldDelegate> {

Now you need to set the view controller as the text field’s delegate.

You can do this in code, but since we’ve defined the rest of our GUI

in Interface Builder, it makes sense to set the delegate with IB too.

Double-click HelloUserViewController.xib to open it in IB. By right-clicking

the text field or using its Connections inspector, you’ll see there’s an

empty connection called delegate. Drag from the circular connection

point to the File’s Owner (which represents the HelloUserViewController,

because it’s the object assigned to own this nib), and you’ll declare the

HelloUserViewController as the text field’s delegate. Be sure to save before

leaving IB.

With the view controller set as the text field delegate, it will get event-

driven callbacks from the text field. Now you just need to provide imple-

mentations for whatever callbacks interest you.

8. See Chapter 27, Debugging, on page 488 for a section on finding class documentation

in Xcode.
9. In some simple cases, there is no formal delegate protocol, and the delegate just
implements some or all of a list of methods listed in the documentation.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=54

CUSTOMIZING BEHAVIOR WITH DELEGATION 55

Here’s a simple method to dismiss the keyboard, which can go any-

where between the @implementation and the @end in HelloUserViewCon-

troller.m:

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.m

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

[textField resignFirstResponder];

return YES;

}

The signature of this method needs to exactly match the signature

defined by the delegate protocol, so you may want to get in the habit

of copy and pasting from the documentation or the header files if you

choose to look them up.

As you can see, the method is passed a textField (which presumably

is nameField, since our app has only one text field), to which we sim-

ply send the message resignFirstResponder. This tells the text field it’s

no longer going to receive text input (at least not until tapped again),

which will make the text field remove the virtual keyboard. Then we

return YES, because the protocol instructs us to do this if the button

should implement its default behavior for the Return button tap.

Build and Go in Xcode, type in some text, and tap the Return button.

You should see the keyboard disappear (if it doesn’t, verify that you’ve

connected the delegate to File’s Owner in IB and that your method sig-

nature exactly matches the previous code).

It doesn’t update the hello label, because the code to do that is in say-

Hello:, which is called only by the Say Hello button tap. In this common

case, where you want the same code called by both a button tap and the

Return key, you’d usually put the common functionality into a helper

method that both event handlers call.

You might have noticed that one of the nice things about protocols is

that you have to define only as much functionality as you’re interested

in. All the methods in UITextFieldDelegate are optional, so you can ignore

any of the events that don’t interest you. That’s not always the case,

since some delegate protocols declare required methods that the com-

piler will insist you implement. Still, it’s a convenient pattern and an

important one that you’ll see again and again in Cocoa.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=55

MANAGING APPLICATION MEMORY 56

3.7 Managing Application Memory

Another defining trait of iPhone applications—one that’s perhaps not as

pleasant as delegation—is dealing with memory management. If you’ve

been working in modern, garbage-collected languages (Java, C#, Ruby,

and even Objective-C on the desktop, for example), you may give little

thought to memory management, because the objects you no longer

have references to get freed without any action on your part. Having to

manually account for your memory use in iPhone applications is often

one of the hardest things that developers have to deal with. Handled

incorrectly, your application leaks memory and ultimately risks being

terminated by the system.

Conceptually, though, memory management in iPhone apps isn’t that

hard to get your head around; it’s the discipline of freeing up memory

that takes some getting used to. Cocoa uses a reference-counting sys-

tem that’s actually fairly simple to understand. All objects are allocated

with a reference count of 1. This reference count can be manipulated

with the use of two instance methods: retain increments the reference

count by one, while release decrements it. When the count goes to zero,

the object is ready to be freed.

Along with this “plus one” description, another analogy for memory

management is phrased in terms of interest. If you are interested in

an object that you receive from a method call, you retain it. When you

are no longer interested, you release it.

There is a fundamental rule for Cocoa memory management: you own

any object you create by means of a method that uses the words alloc,

new, or copy. And for any object you own, you must release it at some

point.

The flip side of this rule is that you don’t own any object you receive via

any other means, such as one you get as a value from a method. You

don’t release these objects, because whatever code that created them is

responsible for releasing them.

However, you might want to own such an object. In such a case, you

can retain the object. By doing this, you become an owner and therefore

must release it at some point.

One interesting twist is the idea of autoreleased objects. When you send

the autorelease message to an object, you add it to a pool of objects that

will all be sent a release method sometime in the future, typically when

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=56

ACCESSING VARIABLES AS PROPERTIES 57

the event-dispatching call stack returns. Autoreleasing makes a lot of

sense for methods that return objects that they themselves don’t or

can’t manage. With autorelease, the caller gets a chance to retain the

returned object, and if it doesn’t, the object will eventually be released.

You might remember that we had a taste of memory management back

in the sayHello: implementation in Section 3.4, Designing an Interac-

tive Application, on page 41. We created an NSString with alloc and were

therefore obligated to release it when we were done with it.

Some classes provide convenience constructors that can save you a

step. Rather than the usual alloc and initXXX pair, you can sometimes

use a class method that provides an autoreleased object. For example,

NSString offers a class method stringWithFormat: that works just like the

alloc and initWithFormat: calls, except that the returned string is autore-

leased, meaning you don’t (and shouldn’t) explicitly release it yourself.

We do have a little bit of a leak in our application. We declare retain-

ing properties for objects that never get released. Granted, these are

IB-created objects that are going to get freed only when the whole app

shuts down. But there’s a good habit we should get into now: when your

object goes away, it should release any object it’s holding references to.

You know when your object is being freed, because its dealloc method

gets called. So, in HelloUserViewController.m, release the objects you have

instance variable references to:

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.m

- (void)dealloc {

[helloLabel release];

[nameField release];

[super dealloc];

}

3.8 Accessing Variables as Properties

One recent addition to Objective-C that you see throughout the iPhone

APIs is the property. We dealt with properties earlier when retrieving the

text from the text field and setting a different text property on the label.

Conceptually, properties are just instance variables with a naming con-

vention for getter and setter methods. For example, the UILabel class has

a text property that you could set via a setText method and retrieve via

text, though you typically just use the dot operator to do assignments,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=57

ACCESSING VARIABLES AS PROPERTIES 58

so instead of [myLabel setText: myString], you write myLabel.text = myString,

and instead of myString = [myLabel text],10 you use myString = myLabel.text.

Actually, properties are deeper and more interesting than just a naming

convention, since they allow you to declare the memory and thread-

handling behaviors of the property and optionally have the compiler

provide that behavior for you.

You define a property with a statement in the header file of the following

form:

@property (attributes) proptype propname;

Then in the implementation file, you either provide implementations of

getter and setter methods or let the compiler synthesize them for you:

@synthesize propname;

What’s nice about properties is that you can use the attributes to

provide information about your properties that you couldn’t expose

through instance variable or getter/setter methods alone. The most sig-

nificant attributes address three traits:

• Readabililty: A property can be readwrite (the default) or readonly.

• Memory management: For setters, the default behavior is a simple

assign, which is appropriate for primitive types. For properties that

are objects, you can use retain to send a retain message to the object

being set (ensuring that your object will be an owner of it), while

also releaseing any previous value. The third option is to copy the

object being set as the property, which also makes you an owner.

• Thread handling: By default, the synthesized getter and setter are

thread-safe. Since most iPhone applications don’t use multiple

threads and just do their work as part of UIKit’s main run loop,

you can declare your properties as nonatomic for a thread-unsafe

but higher-performance implementation.

Let’s see how we declare properties for the helloLabel and nameField.

In HelloUserViewController.h, after the sayHello: method declaration (really

anywhere outside the @interface curly-brace block and before the @end),

add declarations to create nonatomic, retaining property declarations

for the two instance variables we’ve already declared.

10. Notice that by convention Cocoa getters don’t actually use get in the method name.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=58

ACCESSING VARIABLES AS PROPERTIES 59

Properties: Old and New

At the time of this writing, there’s a difference in property sup-
port for the iPhone Simulator and on the actual device, a
consequence of the fact that the device runs the “modern”
Objective-C runtime and the simulator doesn’t. The essential
difference is that the modern runtime does not require you
to explicitly back up a property with an instance variable; it’s
enough to just write the @property statement and let Xcode and
the Objective-C runtime do the rest.

However, if you do this, you’ll find your code won’t compile if
your Active SDK is set to Simulator. For this book, we’re mak-
ing everything simulator-friendly by explicitly backing properties
with ivars.

If you want to distinguish a property from the instance vari-
able backing it up, then you can use an = in the @synthesize.
For example, to use the ivar myTheProp for the property theProp,
you’d use @synthesize theProp = myTheProp; in your .m file. Also,
note that you can declare IBOutlet on either the property or the
ivar. We prefer the former.

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.h

@property (nonatomic, retain) UILabel *helloLabel;

@property (nonatomic, retain) UITextField *nameField;

Now to get those properties created, we just need one line in HelloUser-

ViewController.m, right after the @implementation.

Download HelloiPhone/HelloUser/Classes/HelloUserViewController.m

@synthesize helloLabel, nameField;

With this, our class (and others that call us) can refer to these proper-

ties with the dot operator, which is really convenient when you need to

chain them together, such as when another class needs to call helloView-

Controller.nameField.text.

The UIKit classes use properties extensively, as you may have noticed in

the use of a text property in both the UILabel and UITextField classes. And

if you agree that the properties make the code a little more readable—in

addition to expressing your intentions for readability, memory manage-

ment, and threading—then we hope you’ll use them for getters and

setters, as we commonly do throughout the rest of book.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.h
http://media.pragprog.com/titles/amiphd/code/HelloiPhone/HelloUser/Classes/HelloUserViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=59

TAKE-AWAY: STUFF TO REMEMBER 60

3.9 Take-Away: Stuff to Remember

We have covered an extraordinary amount of material in this chapter,

having started with no interactivity at all and ending up with some

sophisticated abilities for managing our class’s members.

Rather than simply summarize, we’d like to wrap this chapter with a

list of what we think are some of the most important things you should

remember—stuff that will come up in more or less every iPhone appli-

cation you write.

• Although other classes and nibs are loaded earlier as part of the

application startup sequence, you usually want to look at your

application delegate’s applicationDidFinishLaunching: and any view

controllers’ initWithCoder: and viewDidLoad as places to add custom

start-up behavior.

• Objective-C instance variables go in the header file, inside the

@interface declaration, always with the type and, if they’re objects,

the pointer (*) character.

• Objective-C method declarations go in the header file, outside the

@interface block, in the following form: - (returntype) methodName:

(parameter1type) parameter1 parameter2Name: (parameter2type)

parameter2... ;. Alternately, you can put a method declaration (or

only its implementation) in the .m file, if you don’t want other

classes to be able to see it.

• Objects are created in code (usually with alloc and init) or with

Interface Builder. Don’t do both for the same object. . . you’ll actu-

ally be creating two objects.

• To work with objects created in Interface Builder, declare instance

variables as IBOutlets and event-handling methods as returning

IBAction. Then wire the connections in the nib file with IB. Be sure

to save the file in IB before you build the project in Xcode.

• To implement a delegate protocol, add the protocol name in angle

braces to your header file’s @interface statement, after the name of

the class you’re subclassing. Then, in the implementation (.m) file,

implement all required methods as well as any others you’re inter-

ested in. Finally, make your object the delegate either by wiring a

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=60

TAKE-AWAY: STUFF TO REMEMBER 61

delegate outlet in IB or by setting a property in code (for example,

textField.delegate = self;).11

• Declare properties with a @property declaration in the header file,

and then use @synthesize in the implementation to have the com-

piler create the getters and setters for you.

• Add to the provided implementation of dealloc to release any in-

stance variables your object may be retaining. That said, your code

should never call dealloc directly; it will be called automatically

when an object is being freed by the Objective-C runtime.

• Finally, remember the fundamental memory rule: you own any

object you obtain by way of a method with alloc, new, or copy

in its name, and you must eventually release (or autorelease) such

objects. You do not own objects obtained through other means and

must not release them, unless you choose to become an owner by

calling retain.

11. We haven’t mentioned self before, but you may have guessed it’s how an object refers

to itself, like self in Ruby or this in Java.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=61

Chapter 4

View Controllers
Each screen in your iPhone application is managed by a view controller

(VC) that is in charge of displaying the view and responding to just

about every action the user can take on that view. Your view controller

is the C in MVC (Model View Controller). It needs to communicate with

both the view and model parts of your application. If you are unfamil-

iar with the MVC design pattern, you can get more information from

the Apple documentation at Cocoa Fundamentals Guide: Cocoa Design

Patterns [App06a].

We will start with a view controller that reacts to a tapped button by

logging a message. In other words, we’ll initially have no model and

just use the view controller to interact with the view. Next we’ll add to

our view controller’s responsibilities by building a Movie model class,

creating an instance of it, and then displaying its data on the screen. In

this phase, you’ll see the view controller as the intermediary between

the model and the view. In the third part of the example, we will add

a second view controller and show you how control is passed between

them.

4.1 Implementing a Button Action

Let’s look in a little more detail at a simple view controller. Create a new

project in Xcode using the View-based Application template. Remember,

you get to New Project from the File menu or hit D-B-N. Name the

project Movie.1 Once Xcode is done creating your new project, open

1. Although this initial example has little to do with movies, we will be using this example

throughout the chapter, and the reason to call it Movie will be clear when we start building

the second view controller.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

IMPLEMENTING A BUTTON ACTION 63

the MovieViewController.xib file in Interface Builder by double-clicking it.

This file should look familiar. Except for the name, it’s the same file we

started with in Section 2.2, Create the Hello iPhone Project, on page 24.

We are going to add a button to this initial view and have that button

invoke an action method on our view controller. The first step is to add

the button to the view. You will find buttons in the Library. To open the

Library, choose Tools > Library from the menu, or press D-B-L.

You should see something like this screenshot:

There are three ways to view the list of items. You can look at just the

icons, which is the way most experienced UIKit developers prefer since

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=63

IMPLEMENTING A BUTTON ACTION 64

it’s smaller and they recognize the icons. You can choose the icons and

a label, which is a little more descriptive. Or you can choose the icon

and description. We recommend starting with the icon and description

because the descriptions will really help you understand what each of

the widgets is and when and how to use them. The previous screenshot

shows the Library open and the pull-down selected.

Choose a Rounded Rect Button, and drag it into the view. Place it near

the bottom, and set its title to Edit by double-clicking in the center of

the button and then typing Edit. You should end up with something that

looks more or less like this:

The button should do something when the user taps it. As you saw

in Section 3.4, Working with Xcode and Interface Builder, on page 40,

there are three steps to making this happen. In Xcode you will declare

a method name in the MovieViewController header file. You will mark it

with the IBAction return type. Then you’ll return to Interface Builder and

connect the button to this method. Finally, you’ll head back to Xcode

to implement the method.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=64

IMPLEMENTING A BUTTON ACTION 65

Open the MovieViewController.h file in Xcode, and add this line to it just

before the @end compiler directive:

Download ViewControllers/Movie01/Classes/MovieViewController.h

- (IBAction)edit;

Save your work in Xcode, and head back to IB to connect the button to

this action. In IB select the button, and open the Connections inspector

(D-2). Drag from the little circle to the right of Touch Up Inside to the

File’s Owner, and then mouse up and select the edit action from the

pop-up window that appears. The button’s Connection inspector should

look like this:

Congratulations, you just made a connection in Interface Builder. We

will be doing a lot of connections like this in Interface Builder. You’ve

just set a target/action pair (for more on target/action, see the sidebar

on the next page). The target is the File’s Owner, and the action is the

edit method. Setting that target/action pair is what causes the button

to invoke the edit method when it’s clicked. We know it can still seem a

bit like magic, but we will pull the curtain back a little bit at a time as

we build more examples and make more connections.

We are done with IB for now, so save your work, quit IB, and switch

back to Xcode. Now we need to implement the method in the MovieView-

Controller.m file. Open the file in Xcode, and add some code between the

@implementation and @end compiler directives that looks like this:

Download ViewControllers/Movie01/Classes/MovieViewController.m

- (IBAction)edit {

NSLog(@"edit method invoked");

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie01/Classes/MovieViewController.h
http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie01/Classes/MovieViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=65

IMPLEMENTING A BUTTON ACTION 66

Target/Action Paradigm

IB makes extensive use of the target/action paradigm to make
it easy for us to connect user interface elements to methods
in our code. The target is the object that the control (that is,
a button) will send a message to. The action is the message
that will be sent. So, we say that the target is sent the action
message when the control is activated.

The UIControl defines this mechanism and allows us to connect
several target/action combinations to handle the Multi-Touch
nature of the iPhone interface using one of three method sig-
natures to respond to events:

• - (IBAction)action

• - (IBAction)action:(id)sender

• - (IBAction)action:(id)sender forEvent:(UIEvent *)event

The first option is what we have chosen for our edit method
because we don’t need any information from the button for
our code to function properly. For other controls (like a slider),
you might want to get the object the user is interacting with
(the sender argument) sent to you so you can use the current
value in your code. Finally, if you need the event, for example,
because you are tracking a Multi-Touch event, you can imple-
ment the third method style to get that extra object.

Whichever approach you take, the target/action paradigm
gives you a great deal of flexibility in how to get controls in the
UI to invoke your code.

This code is invoked when the button is activated because of the con-

nection we made in IB. It logs the message “edit method invoked” to the

console every time the user releases the button.

Let’s test where we are now; save your changes, and then click the Build

and Go button in Xcode to run the app. When you tap the button, you

should see the log message in the console (D-B-R). The view controller

is responding to a user interacting with controls on the screen. When

we get to more complex interactions such as adding and deleting table

view items in Chapter 5, Table Views, on page 86, the basic interaction

will be the same. The user will tap or drag some view on the screen,

and then the view controller will have a method invoked by that action

and will react.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=66

BUILDING A MODEL 67

4.2 Building a Model

We previously touched on the Model View Controller pattern, but we

have not really built a model to speak of. A real model captures the

essence of your application. In iTunes, classes like Song or Podcast and

the actions they support like play form the model. In iPhoto, it’s classes

like Photo or Album. To build a serious application, you need a real

model. The model does not have to be complex, but we do need some-

thing more than a string. We’ll build a Movie class to play the part of

our model. We will then use an instance of our Movie class to hold the

data and modify the existing UI to display the data. The view controller

will be the glue that is connected to both the model and the view.

Let’s start by creating the Movie class. Select the Classes group in

Xcode, and then right-click or C-click the group and select Add > New

File from the pop-up menu. In the dialog box that opens, choose Cocoa

Touch Classes > Objective-C Class. In the “Subclass of” pull-down,

make sure to select NSObject, and then click the Next button.

Name the class Movie, and make sure to check the two checkboxes for

adding the .h file and adding the file to the target.

Now that we have our Model class defined, we will flesh it out by adding

three properties: an NSString named title to hold the title of the movie,

an NSNumber named boxOfficeGross to hold the box-office sales, and an

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=67

BUILDING A MODEL 68

NSString named summary to hold the plot summary text. We’ll declare

three variables between the brackets in our header file that correspond

to these properties and use @property for each so that the compiler will

be able to build the get and set methods for us.

We also want to have a custom init method for our movie so we can

initialize the three properties when we create a new movie. So, add

a method called initWithTitle:boxOfficeGross:summary: to the class as well.

Your header file should look like this:

Download ViewControllers/Movie02/Classes/Movie.h

@interface Movie : NSObject {

NSString *title;

NSNumber *boxOfficeGross;

NSString *summary;

}

- (id)initWithTitle:(NSString *)newTitle

boxOfficeGross:(NSNumber *)newBoxOfficeGross

summary:(NSString *)newSummary;

@property(nonatomic, copy) NSString *title;

@property(nonatomic, copy) NSNumber *boxOfficeGross;

@property(nonatomic, copy) NSString *summary;

@end

Now that we have the interface done, complete the implementation by

adding the @synthesize statements to create the get and set methods for

the properties. We also need to implement the custom init method, and

we’ll need to clean up our memory.

Download ViewControllers/Movie02/Classes/Movie.m

Line 1 @implementation Movie
-

- @synthesize title;
- @synthesize boxOfficeGross;
5 @synthesize summary;
-

- - (id)initWithTitle:(NSString *)newTitle
- boxOfficeGross:(NSNumber *)newBoxOfficeGross
- summary:(NSString *)newSummary {

10 self = [super init];
- if(nil != self) {
- self.title = newTitle;
- self.boxOfficeGross = newBoxOfficeGross;
- self.summary = newSummary;

15 }
- return self;
- }
-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/Movie.h
http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/Movie.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=68

ADDING OUTLETS AND ACTIONS TO THE CONTROLLER 69

- - (void) dealloc {
20 self.title = nil;

- self.boxOfficeGross = nil;
- self.summary = nil;
- [super dealloc];
- }

25

- @end

This implementation has a couple of new concepts. First let’s talk about

the custom init method implementation. We have seen using custom

init methods a couple of times in Chapter 3, iPhone Development Funda-

mentals, on page 35, but this is the first implementation we have built

on our own. The code is not complex, but there are a couple of items we

should talk about. In line 10, we’ve assigned [super init] to self. Assign-

ing self to what the superclass returns from the init method gives the

superclass the opportunity to return a different object. This somewhat

obscure-sounding case shows up semiregularly in some frameworks

(Core Data being the most common). So, it is important to include this

line in your custom init methods. We then set all the properties to the

values passed into our init method. And finally, we return self on the

last line.

The dealloc starting on line 19 takes care of freeing up the memory used

by this object.2 Since the properties are marked as copy, each of them

needs to be released in the dealloc method. We are accomplishing that

by setting the properties to nil. As you learned in Section 3.8, Accessing

Variables as Properties, on page 57, a property that copies or retains

its object value will first release the old value before assigning the new

value. So, in this case we set the property to nil, which first releases the

existing object and then assigns the instance variable to nil.

Fantastic, you have just finished creating your first model class. We

will use an instance of this class to manage the data for our application

through the rest of this chapter. But first, save your work. We need to

update our existing UI to display an instance of Movie.

4.3 Adding Outlets and Actions to the Controller

If you are new to developing with Cocoa, the process we are about to

pursue will feel a little bumpy at first. A typical Cocoa Touch develop-

2. We had our first introduction to memory management in Section 3.7, Managing Appli-

cation Memory, on page 56.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=69

ADDING OUTLETS AND ACTIONS TO THE CONTROLLER 70

ment process requires jumping between IB and Xcode frequently. A big

part of all the jumping back and forth is because of the nature of the

view controller. It has one foot in the interface and one in the code.

Since we edit the interface in IB and the code in Xcode, it is natural

that we jump between the two tools. We promise the bumpy feeling

won’t last long. Soon you will build your intuition, and all the jumping

back and forth will make sense (and you’ll even come to like the fluid

nature of it, promise).

Since we are already in Xcode, let’s get started by adding the new prop-

erties we will need to our view controller. Open the MovieViewController.h

file, and add four properties and the instance variables to back them.

This is similar to what you just did in the Movie class. Here you’ll add

one property for the movie object that will be our model. Add three

outlets, one each for the data in the movie object that we are going to

display. Notice where the word IBOutlet appears for each property.

Download ViewControllers/Movie02/Classes/MovieViewController.h

Line 1 #import <UIKit/UIKit.h>
-

- @class Movie;
-

5 @interface MovieViewController : UIViewController {
- Movie *movie;
- UILabel *titleLabel;
- UILabel *boxOfficeGrossLabel;
- UILabel *summaryLabel;

10 }
-

- @property(nonatomic, retain) Movie *movie;
- @property(nonatomic, retain) IBOutlet UILabel *titleLabel;
- @property(nonatomic, retain) IBOutlet UILabel *boxOfficeGrossLabel;

15 @property(nonatomic, retain) IBOutlet UILabel *summaryLabel;
-

- - (IBAction)edit;
- @end

The @class compiler directive on line 3 is a forward declaration, and it

tells the Objective-C compiler that you know that it can’t find a class

named Movie and that it should not report errors or warnings about

not being able to find it. Using these forward declarations is a common

practice in header files so that we don’t end up with include cycles

(where one header includes another that also includes the first). We use

forward declarations because the compiler provides poor error reporting

on include cycles. We’d rather get into this habit than have to remember

the bad warnings and what they mean.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/MovieViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=70

UPDATING THE UI 71

Before we leave Xcode, let’s add the @synthesize calls and the import to

the implementation file. Open MovieViewController.m, and add the @syn-

thesize statement for each of the properties. We always put these state-

ments at the top of the @implementation block, so we usually do that

first when building a new implementation.

Download ViewControllers/Movie02/Classes/MovieViewController.m

@synthesize titleLabel;

@synthesize boxOfficeGrossLabel;

@synthesize summaryLabel;

@synthesize movie;

Also, for every @class forward declaration you do in the header file, you

almost always have to import the header file for that class in the imple-

mentation file. In this case, that means we have to import Movie.h:

Download ViewControllers/Movie02/Classes/MovieViewController.m

#import "MovieViewController.h"

#import "Movie.h"

Let’s turn our attention to the GUI side of our application, but don’t

forget to save everything before we head over to Interface Builder.

4.4 Updating the UI

Now that we have our header file, let’s go back to Interface Builder

and open MovieViewController.xib. Add three UILabels to our view, arrange

them near the top, and stretch them across the view. Use the blue

alignment lines to help you get them straight. After you place the labels

where you want them, your view should look like the screenshot on the

next page.

Once the labels are placed where you want them, connect the VC’s

outlets to them. We need these connections made so that our view con-

troller knows about the labels and can place the data from the movie

object into them at the appropriate time.

Connect the outlets to their respective labels. You make a connection

to an outlet in one of two ways. First you can Ctrl+drag from the source

of the connection (where the outlet is) to the destination object. When

you lift up on the mouse, the list of valid outlets is displayed, and you

choose the one you want to set by clicking it. That is all there is to it—

once you click the outlet, the connection is made. Second, you can use

the Connections inspector as you saw in Chapter 3, iPhone Development

Fundamentals, on page 35.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/MovieViewController.m
http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/MovieViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=71

UPDATING THE UI 72

Once the connections are complete, select the File’s Owner, and open

the Connections inspector with D-2. Your inspector should look similar

to this:

We’re now ready to take advantage of all of this prep work to display

the information for a specific movie.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=72

IMPLEMENTING THE CONTROLLER 73

4.5 Implementing the Controller

Now we’re ready update the implementation so that the movie’s data is

displayed on the screen. The first thing we will do is to create the movie

object. Let’s override the viewDidLoad method in the MovieViewController

to create a new instance once the view that the MovieViewController con-

trols is loaded. Here is the code:

Download ViewControllers/Movie02/Classes/MovieViewController.m

Line 1 - (void)viewDidLoad {
2 [super viewDidLoad];
3 Movie *newMovie = [[[Movie alloc]
4 initWithTitle:@"Iron Man"
5 boxOfficeGross:[NSNumber numberWithFloat:650000000.00]
6 summary:@"Smart guy makes cool armor"] autorelease];
7 self.movie = newMovie;
8 }

The code is straightforward. Allocate a new instance of Movie, set the

property movie to the new Movie object and then release it. The interest-

ing thing here is why choose viewDidLoad. To understand the reasoning

behind that, we have to talk a bit about the way view controllers work.

Let’s start in the applicationDidFinishLaunching: method on the MovieAp-

pDelegate class. This method is called by the UIApplication object when

it’s finished launching. The app delegate has two outlets that are con-

nected in the MainWindow.xib nib file: window and viewController. The win-

dow property is connected to the main window of our application; the

viewController property is connected to our movie view controller. Here

is the code for applicationDidFinishLaunching::

Download ViewControllers/Movie02/Classes/MovieAppDelegate.m

- (void)applicationDidFinishLaunching:(UIApplication *)application {

[window addSubview:viewController.view];

[window makeKeyAndVisible];

}

The app delegate is asking the window to add the viewController’s view as

a subview. That is a simple enough looking line of code, isn’t it? Well,

behind the scenes, a bunch of very interesting stuff is going on. When

a view controller is asked for its view, the first thing it does is check to

see whether it already has one. If so, it just returns the already loaded

view. If it does not have one, then it calls the loadView method. That

process runs more or less like this:

• Is a nib filename set (typically set in IB but can be set via code)?

• If so, load the nib file passing the view controller in as File’s Owner.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/MovieViewController.m
http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/MovieAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=73

IMPLEMENTING THE CONTROLLER 74

• After the nib file is loaded, assert that the view has been set. If

not, throw an exception and print an error message.

If a nib filename is not set on your view controller, then you need to

build the view manually in the loadView. Thankfully, we can set the nib

filename via IB, and we rarely if ever need to manually code a loadView

method.3

Once the loadView method finishes, the viewDidLoad method is called.

This is a great place for us to do initialization (such as create our Movie

object) because it’s called only when the view is loaded. If because of

memory warnings we release our view and set it to nil, we can also nil

out the model object. Because we know that when the view is needed

again, the whole process, including viewDidLoad, will be invoked again,

and we will have a Movie object.

The next step in implementing our movie view controller is to implement

the viewWillAppear: method. This method is called every time the view is

about to become visible. Keep in mind that a view can become visible

and then be removed from view several times during the normal flow

of an application. For example, consider the Contacts app; the list of

all your contacts is shown each time you finish looking at or editing an

individual contact, and the viewWillAppear: method is called each time.

This method is the ideal place to set the values we want to appear on

the view when it does appear. Here is the code for our view controller:

Download ViewControllers/Movie02/Classes/MovieViewController.m

- (void)viewWillAppear:(BOOL)animated {

[super viewWillAppear:animated];

self.titleLabel.text = self.movie.title;

NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];

[formatter setNumberStyle:NSNumberFormatterCurrencyStyle];

self.boxOfficeGrossLabel.text =

[formatter stringFromNumber:self.movie.boxOfficeGross];

[formatter release];

self.summaryLabel.text = self.movie.summary;

}

Build and Go to run your application and test it. You should see the

title of the movie that you choose appear in the text fields including a

dollar sign in the box-office gross field.

3. If you want to dig into the MovieViewController’s nib setting, open the MainWindow.xib file,
and inspect (D-1) the MovieViewController. There is more detail in Section 3.5, Anatomy of

Your iPhone Application, on page 50.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie02/Classes/MovieViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=74

CREATING THE NEW VIEW CONTROLLER 75

This code we added places the data for the Movie objects into the text

fields. The one new class in this code is the NSNumberFormatter. We use

formatters to convert back and forth between numbers and strings.

Congratulations! You have successfully built a full-fledged view con-

troller and the model that it manages. Next you’ll allow the user to

edit the Movie object in a new view controller. You’ll build another view

controller in Xcode, set up its view in IB, and then wire the two view

controllers together.

4.6 Creating the New View Controller

Let’s now create a second view controller that we will use to manage

the modal view. In Xcode, select the Classes group, Ctrl+click the group,

and choose Add > New File from the pop-up menu. In the wizard that

pops up, choose the “UIViewController subclass” item in the iPhone

OS > Cocoa Touch Classes group. Don’t select the “With XIB for user

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=75

CREATING THE NEW VIEW CONTROLLER 76

interface” checkbox, because we will be creating our interface shortly.

Click Next, and name the class MovieEditorViewController.

We’re imagining a UI with three text fields and one button, so we’ll

need to add the outlets and actions that we will need to interact prop-

erly with the UI to our header file. The text fields will allow the user

to edit the title, box-office gross, and summary, respectively, and the

button will signal the user is done with the edits. So, we need three

ivar/property pairs, one for each of the text fields. We also need a sin-

gle action method for the button to invoke. The last piece of this class

is the instance of the Movie that our user will be editing, so we need

to add an ivar/property pair for that too (don’t forget to add the @class

Movie; forward declaration). The interface for our class should look like

this:

Download ViewControllers/Movie03/Classes/MovieEditorViewController.h

@class Movie;

@interface MovieEditorViewController : UIViewController <UITextFieldDelegate> {

UITextField *titleField;

UITextField *boxOfficeGrossField;

UITextField *summaryField;

Movie *movie;

}

@property(nonatomic, retain) IBOutlet UITextField *titleField;

@property(nonatomic, retain) IBOutlet UITextField *boxOfficeGrossField;

@property(nonatomic, retain) IBOutlet UITextField *summaryField;

@property(nonatomic, retain) Movie *movie;

- (IBAction)done;

@end

Our controller is going to need to respond to keyboard input, so we’ll

add a declaration at the top inside angle brackets for the UITextFieldDel-

egate protocol. That tells the compiler that this class intends to imple-

ment all required methods from that protocol. We first saw protocols

in Chapter 3, iPhone Development Fundamentals, on page 35 when we

discussed the UIApplicationDelegate protocol. The text field delegate pro-

tocol is very similar to the application delegate protocol in that methods

are sent to the delegate during interesting points in the text field’s life

cycle. We will be digging in to the details shortly. Make sure to save the

file so Interface Builder will know about the new outlets and actions

we’ve added.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieEditorViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=76

CREATING THE NEW VIEW CONTROLLER 77

Don’t forget to add the import of Movie.h to the top of the MovieEditorView-

Controller.m file. And just inside the @implementation block, we need to

add a @synthesize statement for each of the properties that were declared

in the MovieEditorViewController.h file.

Now we need to implement the viewWillAppear: method to place the val-

ues from the Movie object into the text fields. We’ll set the text property

on the text fields.

Download ViewControllers/Movie03/Classes/MovieEditorViewController.m

- (void)viewWillAppear:(BOOL)animated {

[super viewWillAppear:animated];

self.titleField.text = self.movie.title;

self.summaryField.text = self.movie.summary;

NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];

[formatter setNumberStyle:NSNumberFormatterCurrencyStyle];

self.boxOfficeGrossField.text =

[formatter stringFromNumber:self.movie.boxOfficeGross];

[formatter release];

}

Notice the way that we convert the boxOfficeGross number to a string

via an NSNumberFormatter. We are doing the same thing we did in the

MovieViewController’s viewWillAppear: implementation.

In the done method, we dismiss the current modal view controller with

a call to the dismissModalViewControllerAnimated:

Download ViewControllers/Movie03/Classes/MovieEditorViewController.m

- (IBAction)done {

[[self parentViewController] dismissModalViewControllerAnimated:YES];

}

Though we have not done so yet, when we build the UI, we will make

our view controller the delegate of all the text fields so we can capture

the input via the UITextFieldDelegate protocol. We are going to go over

that implementation now, but the methods won’t get called until we set

the delegate for each text field in IB.

We need to implement two methods of the UITextFieldDelegate protocol.

The textFieldShouldReturn: method is called by the text field when the

user presses the Return button on the keyboard. This is the perfect

spot for us to resign first responder status for the field (which in turn

will cause the keyboard to animate out) by calling resignFirstResponder. It

is typical to return YES from this method, but if you wanted to do some

validation and keep the text field from resigning the first responder

status, you can return NO. But keep in mind that the return value is

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieEditorViewController.m
http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieEditorViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=77

CREATING THE NEW VIEW CONTROLLER 78

simply advisory; if the user is taking a call, you won’t be able to prevent

the user from leaving the field, so if your application relies on the data

being valid, this can’t be the only place you check it.

Download ViewControllers/Movie03/Classes/MovieEditorViewController.m

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

[textField resignFirstResponder];

return YES;

}

The textFieldDidEndEditing: method is called when the text field resigns its

first responder status.4 This method is a great spot to capture the data

that the user typed into the field. We take the values from the fields and

place those values into the movie object. Here is the code:

Download ViewControllers/Movie03/Classes/MovieEditorViewController.m

- (void)textFieldDidEndEditing:(UITextField *)textField {

if(textField == self.titleField) {

self.movie.title = self.titleField.text;

} else if(textField == self.boxOfficeGrossField) {

NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];

[formatter setNumberStyle:NSNumberFormatterCurrencyStyle];

self.movie.boxOfficeGross =

[formatter numberFromString:self.boxOfficeGrossField.text];

[formatter release];

} else if(textField == self.summaryField) {

self.movie.summary = self.summaryField.text;

}

}

Since this one view controller is playing the part of delegate for each

of the text fields, we need to distinguish which one was typed in so we

know which property of the movie to update.5

Notice also that we are using a currency formatter to convert the data

from the text field to a number for our movie’s boxOfficeGross. This

requires that we put a currency sign in the front of the number for

it to parse properly. In a polished application, we’d want to test for the

leading currency symbol and then choose the proper formatter for what

4. A text field will resign its first responder status because it was told to (as we did

in the previous method) or when it is forced to by the system. The system forces text
fields to resign first responder status when they are taken off-screen. Although in our

example there is no way to send this view off the screen when the keyboard is up, later

in Chapter 5, Table Views, on page 86 you will see how this can happen.
5. As your skill in using the Model View Controller pattern grows, you will likely find

using one controller as the delegate of three text fields to be a little distasteful. We keep
it all in one class here for simplicity’s sake.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieEditorViewController.m
http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieEditorViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=78

BUILDING THE UI 79

the user typed in. We’d also want to ensure that the value we get back

from the formatter is not nil; if it was, we’d want to inform the user the

number was some how invalid. For this app, though, in the interest of

clarity, we are just going to leave it at the currency formatter.

4.7 Building the UI

Now we need to add a new nib file to the project that will contain the

view for our new view controller. Still in Xcode, Ctrl+click the Resources

group, choose Add > New File, click iPhone OS > User Interfaces, and

then choose the View XIB item. Click Next, name the file MovieEditorView-

Controller.xib, and then click Finish. Open MovieEditorViewController.xib in

IB by double-clicking it.

We are going to modify the new nib so that it becomes the user interface

for our MovieEditorViewController. The first step is to change the class of

the File’s Owner. Select this object, and open the Identity inspector with

D-4. Change the Class field to MovieEditorViewController. The inspector

should update with all the outlets and actions that we added to the

header and look like this:

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=79

BUILDING THE UI 80

Now that IB knows about our outlets and actions, we need to create the

UI and make the connections. Open the view by double-clicking it. Add

three text fields and one button. We also changed the background color

just for fun:

Now we have a UI and the controller to manage it. All that remains is

to make the connections. Select the File’s Owner object, and connect

each of the text field outlets to their respective text fields in the UI. Also

connect the File’s Owner’s view outlet to the view.

We like the Ctrl+drag method, but you can also open the Connections

inspector with D-2 and drag from the buttons to the left of each of the

outlets. You also need to connect the button to the done action method.

Don’t forget to connect each of the text field’s delegates up to the File’s

Owner as well.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=80

BUILDING THE UI 81

When we are finished with the connections, this is what our Connec-

tions inspector looks like:

Configuring the Text Field

One of the coolest features of the iPhone is the Multi-Touch keyboard.

With no physical keyboard, you get more screen real estate to use.

Supporting different languages becomes far easier too. Any time you

tap in a text region, the iPhone automatically brings up a keyboard.

Technically what is happening behind the scenes is that the text field

is becoming the first responder. The first responder is the object that is

first in line to get certain types of events (keyboard taps being among

the most important). All text-related controls in Cocoa Touch will bring

up a keyboard whenever they become the first responder.

The Multi-Touch keyboard is a great feature for users but requires dili-

gence on our part to use it correctly. The keyboard that the text field

brings up when tapped is critical to good user experience. We want the

correct keyboard to show up, and we want it to be properly configured

so the capitalization works like the user wants/expects. Whenever you

place a text entry on your UI, make sure to think through what the user

is going to expect so you give them the best possible experience.

Here the text field is configured to capitalize words and take the defaults

for correction, type, and appearance. The Return key is set to Done, so

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=81

BUILDING THE UI 82

the user knows that when she is finished typing, she can simply touch

it to finish editing.

When thinking through what keyboard to show your users, answer

these questions about what the user will be expected to provide:

• Is the text going to have unusual words? Turn off Correction.

• Is the text a formal name? Capitalize each word.

• Is the text a phone number, email address, or URL? Use the cor-

rect keyboard type.

• What does the user expect to do when done—go to a URL, search

on Google, or persist the data? Make sure to choose the correct

Return key title.

Spend the time to make text entry right. Entry will feel more natural,

and users will like your app all the more. If you don’t and just accept

the defaults, you could end up ruining the experience for your users.

Using the placeholder text is a great way to give the user a clue about

what should be entered in the text field. This might be the First Name

field or whatever, but putting what is expected into the placeholder

helps the user keep context. We also specified that the keyboard should

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=82

MAKING THE MOVIEEDITORVIEWCONTROLLER 83

capitalize words because this text is going into a label and the user

probably expects the words to be capitalized. Finally, the Return key is

set to Done, so the user has a clear indication of what to hit to indicate

they are finished.

This last step is optional. I like this app better if the text fields do not

delete the text when editing starts. My suggestion is that you should try

both and see which one you like better. This is another place where it’s

vitally important that we take the time to think through what our user

is going to want and tweak the settings to match that. You can turn

this feature on and off by switching the Clear When Editing Begins

checkbox in the Attributes inspector for the text field.

4.8 Making the MovieEditorViewController

We are almost there. We have both view controllers and the user inter-

face set up to display the movie as well as edit the movie. However, we

have no way of getting to the second view where the user can edit the

movie data. Here are the basic steps we need to follow:

1. Add an outlet to MovieViewController for the instance of MovieEdi-

torViewController we are going to create.

2. Update MovieViewController’s edit method to modally display the

MovieEditorViewController.

3. Create an instance of MovieEditorViewController in MovieViewCon-

troller’s nib file, and make the connection from the outlet.

Adding the outlet is old hat now, so return to MovieViewController.h, and

add an outlet named editingViewController to the MovieEditorViewController.

Make sure to add the forward declaration:

Download ViewControllers/Movie03/Classes/MovieViewController.h

@class Movie;

@class MovieEditorViewController;

@interface MovieViewController : UIViewController {

Movie *movie;

UILabel *titleLabel;

UILabel *boxOfficeGrossLabel;

UILabel *summaryLabel;

MovieEditorViewController *editingViewController;

}

@property(nonatomic, retain) Movie *movie;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=83

THE EDITING VIEW CONTROLLER IN INTERFACE BUILDER 84

@property(nonatomic, retain) IBOutlet UILabel *titleLabel;

@property(nonatomic, retain) IBOutlet UILabel *boxOfficeGrossLabel;

@property(nonatomic, retain) IBOutlet UILabel *summaryLabel;

@property(nonatomic, retain) IBOutlet

MovieEditorViewController *editingViewController;

- (IBAction)edit;

@end

Next we need to update the edit method so it sets the editing view con-

troller’s movie instance and displays the new editing controller instead

of just logging a message. The display is accomplished via the pre-

sentModalViewController:animated: method.6 Also, don’t forget to add the

import statement to the implementation file for the MovieEditorViewCon-

troller.h and the @synthesize statements for each property.

Download ViewControllers/Movie03/Classes/MovieViewController.m

- (IBAction)edit {

self.editingViewController.movie = self.movie;

[self presentModalViewController:self.editingViewController animated:YES];

}

4.9 The Editing View Controller in Interface Builder

Open the MovieViewController.xib file. We need to add a view controller to

this nib file. From the Library (D-B-L), drag a view controller into the

document window.

We need to change the class of this view controller to MovieEditorView-

Controller. Select the new view controller, open the Identity inspector

(D-4), and change Class to MovieEditorViewController. Next we need to set

the nib filename for this view controller, so open the Attributes inspec-

tor with D-1, and type MovieEditorViewController into the NIB Name field.

Configuring our new view controller is complete.

All that remains is to make the connection from the File’s Owner’s edit-

ingViewController outlet to the new view controller. Once this connection

is made, we have completed the application.

6. There is a bug in iPhone OS 2.2.1 (and previous) for modal views that causes the
viewWillAppear: to be called before the view is loaded. To work around this bug, add

[self.editingViewController view] in the edit method before the call to presentModalViewCon-

troller:animated:.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/ViewControllers/Movie03/Classes/MovieViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=84

THE EDITING VIEW CONTROLLER IN INTERFACE BUILDER 85

The View Controller’s View

Recall that when the view controller is asked for its view; if it’s not there,

the view controller checks to see whether its nib file is set. If so, then

the view controller loads that nib file, passing self in as the File’s Owner.

And since we set the view property in our MovieEditorViewController.xib

file, the view gets set. Here’s the basic picture of what happens once

the view is requested but not found:

Class name: MovieViewController

Movie Editor View Controller Instance

Class name: MovieEditorViewController

view

loadNibF
ile:"MovieEdit

orView"
 owner:edit

orVC opt
ions:nil

Now hit Build and Go to see your work in the simulator. Push the edit

button, and the modal view should slide up from the bottom. Select one

of the fields, type in a new value, and hit Done. You should be brought

back to the movie view with the updated text showing in the appropriate

label.

Fantastic! You have just built your very first view controller from

scratch. As we go further and deeper into the rest of the UIKit, you will

be building lots of view controllers. Some will be a bit more complex,

but the underlying basics will always be the same. The view controller

manages a view and helps that view display properly in its context on

the screen. The view controller also interfaces very nicely with nib files,

so we can easily chain together multiple parts of our interface. When

you start building three- and four-level deep navigations into your app,

the particulars will vary, but the basics will remain the same.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=85

Chapter 5

Table Views
Table views are among the most common user interface idioms in

iPhone OS. Many of the default applications use table views extensively,

including Mail, Safari, Phone, iPod, iTunes, and more. In fact, there are

fewer default apps that don’t use tables than those that do. Because of

tables’ utility and convenience and the fact that your user will be thor-

oughly accustomed to tables, it is highly likely that your applications

will want to present some of its interface with table views.

In this chapter, we’ll explore how to present data in a table format by

reusing the Movie class from Chapter 4, View Controllers, on page 62.

In that chapter, we used view controllers to present and edit a single

Movie object; here, we’ll use a table view to show many Movie objects

and navigate to a second view controller that will let us edit an existing

object or create a new one.

5.1 Parts of a Table

On the iPhone, a table view is a one-dimensional, top-to-bottom list

of items, optionally split into multiple sections. The sections actually

make the list a two-dimensional data structure. Each section has a

variable number of items, so a given item in a table is identified by its

section and its row within that section.

In Figure 5.1, on the next page, we can see Interface Builder’s presenta-

tion of table views, with dummy data that provides U.S. state names for

section headers and provides cities for row titles. There are two visual

styles for tables: a “plain” style that allows cells to stretch horizontally

to the table’s bounds and a “grouped” style that uses corner-rounding

and indentation to group the rows of each section. The grouped table

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

PARTS OF A TABLE 87

Figure 5.1: UITableViews in Interface Builder, with “plain” style (left) and

“grouped” style (right)

in the figure shows two sections: one with four rows for the first section

(“California”) and three rows for the second (“New York”).

An iPhone table consists of three things: a view, a data source, and

a delegate. You start with a UITableView class that presents the table

on-screen and handles user interaction, like a tap to select a row or a

swipe to delete an item. The UITableView depends on one or more other

objects to provide its functionality:

• A table view data source is an object that manages the relation-

ship between the visual UITableView and its contents. Methods in

the UITableViewDataSource protocol provide the number of sections

and rows in the table, provide titles for headers and footers, and

generate the views for each cell. The data source also has methods

to handle the insertion, deletion, or reordering of table rows. Most

of these features are optional: the only required methods are table-

View:numberOfRowsInSection: and tableView:cellForRowAtIndexPath:.

• A table view delegate allows the host application a greater level

of control over the table’s visual appearance and behavior. An

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=87

SETTING UP TABLE-BASED NAVIGATION 88

object implementing the UITableViewDelegate protocol is notified

of various user actions like the beginning and end of row selec-

tion or editing. Other methods allow the delegate to provide cus-

tomized views for headers and footers and to specify nondefault

cell heights. The idea of Cocoa delegates was introduced in Sec-

tion 3.6, Customizing Behavior with Delegation, on page 52, and

in the previous chapter’s Section 4.6, Creating the New View Con-

troller, on page 75, we used a UITextFieldDelegate to customize key-

board behavior on a text field.

To use a table in your application, you will create a UITableView, typ-

ically in Interface Builder, and connect it to objects that implement

the data source and delegate protocols. Often, the view controller that

manages the table view will also serve as both the data source and

the delegate. By making the view controller the data source for the

table, you’ll be required to implement tableView:numberOfRowsInSection:

and tableView:cellForRowAtIndexPath: from UITableViewDataSource, and at

a minimum you will usually also implement UITableViewDelegate’s table-

View:didSelectRowAtIndexPath: to handle the user tapping one of the table

rows.

5.2 Setting Up Table-Based Navigation

The UITableView is used as a navigation metaphor throughout the iPhone

OS. In Mail, you use tables to select an account, then a mailbox within

that account, and then a message within that mailbox. For each of

these steps, the data is presented as a table, and selecting a row nav-

igates to a new view, drilling down either to another table or to a view

that shows the contents of one message. To standardize this kind of

behavior across applications, Xcode provides a Navigation-based Appli-

cation project template that uses a table for its first view. We’ll use this

template to learn about tables and navigation in this chapter.

In Xcode, select File > New Project, and choose the Navigation-based

Application template. Make sure the checkbox labeled “Use Core Data

for storage” is not selected.

Name the project MovieTable, and Xcode will set you up with a project

containing two classes (MovieTableAppDelegate and RootViewController),

as well as two nibs (MainWindow.xib and RootViewController.xib).

This is a somewhat more advanced project template than you’ve seen

before, and it helps to understand how the pieces go together. Open

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=88

MODELING TABLE DATA 89

Figure 5.2: Navigation objects in the MainWindow.xib file

MainWindow.xib with Interface Builder, and switch the view mode from

icons to list (the middle button of the view mode control). By expanding

the tree structure, you’ll see the arrangement shown in Figure 5.2. The

nib has a navigation controller, an object that we’ll use in code to nav-

igate forward and backward between views. The navigation controller

has two children: a navigation bar, which you’ll recognize as the bar at

the top of navigation screens (where it usually hosts buttons like Back

or Edit), and the RootViewController, which has a navigation item object.

That’s all well and good for navigating, but where’s the table? If you

inspect the RootViewController, you will see that it gets its view from

RootViewController.xib. Open that nib and look: its default contents are

a single UITableView object. The take-away for now is that a naviga-

tion application has this UINavigationController class that’s responsible

for navigation, which is a parent of the RootViewController, which is the

view controller for the first view the user sees, which is a UITableView.

5.3 Modeling Table Data

Because the RootViewController owns the table view, let’s take a look

at the class. In its implementation file, RootViewController.m, you’ll see

default implementations for some of the table data source and table

delegate methods, three of which are uncommented: numberOfSection-

sInTableView:, tableView:numberOfRowsInSection:, and tableView:cellForRow-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=89

MODELING TABLE DATA 90

AtIndexPath. If you look at RootViewController.xib with Interface Builder,

you’ll find that the table’s dataSource and delegate outlets are connected

to File’s Owner. The net result is that this table is wired up and ready

to run; the table expects the RootViewController to serve as its delegate

and data source, and the class provides the minimum implementa-

tion of those protocols to run the application. The protocols are not

explicitly declared in RootViewController.h, because the controller sub-

classes UITableViewController, whose declaration includes the two proto-

cols. Keep in mind that if you ever use some other view controller with

a table, you’ll have to add <UITableViewDataSource, UITableViewDelegate>

to the @interface in the header file to declare that you implement these

protocols.

The default implementation provides for a table that has one section

with zero rows. It also provides logic for creating cell views in code,

but with zero rows, that code will never be used. So, the first thing we

need to do is to implement the section- and row-count methods in a

nontrivial way. This means we need to develop a model for the table

data; with the RootViewController mediating between the view and this

model, we’ll have implemented the classic Model View Controller design

pattern.

A table model does not have to be anything fancy; it’s not a class unto

itself as it is in other languages. For a one-section table, it’s practical

to just use an NSArray, which contains the objects the table represents.

The array’s length gives you the number of rows, and the contents for

a given cell can be looked up with the array’s objectAtIndex: method.

At the beginning of this chapter, we said that we would reuse the pre-

vious chapter’s Movie class as the data for our table. In Groups & Files,

Ctrl+click or right-click the Classes folder, and choose Add > Existing

Files. Navigate to the previous Movie project,1 select its Classes folder,

use the Command key (D) to select Movie.h and Movie.m, and click the

Add button. In the next dialog box, make sure the checkbox for “Copy

items into destination group’s folder (if needed)” is selected, and click

Add again to copy the files into this project.

Also add #import "Movie.h" to RootViewController.h, since we’ll be using the

Movie class in our view controller.

1. In the book’s downloadable code, for example, this would be ViewControllers/Movie02.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=90

MODELING TABLE DATA 91

Next, since we’re going to be offering an editable list of Movies, we’ll

want to use an array that we can add to and remove from. So, declare

the instance variable NSMutableArray *moviesArray; in the @interface block

of RootViewController.h. This array needs to be initialized, and we’ll want

to provide some data for our table (we’ll allow the user to add their

own data later), so uncomment the provided viewDidLoad method in

RootViewController.m, and add the highlighted code to create one Movie

and add it to the array:

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

moviesArray = [[NSMutableArray alloc] init];

Movie *aMovie = [[Movie alloc] init];

aMovie.title = @"Plaything Anecdote";

aMovie.boxOfficeGross = [NSNumber numberWithInt: 191796233];

aMovie.summary =

@"Did you ever think your dolls were really alive? Well, they are.";

[moviesArray addObject: aMovie];

[aMovie release];

}

Now that our model has some genuine data, we need to update the

UITableViewDataSource methods to get that data to the on-screen UITable-

View. The default numberOfSectionsInTableView: returns 1, which is fine

as is. However, the tableView:numberOfRowsInSection: returns 0, which is

wrong. We want it to return the length of the array:

Download TableViews/MovieTable01/Classes/RootViewController.m

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

return [moviesArray count];

}

That will tell the table view that the one section has one row. As a result,

when the application runs, it’ll call the tableView:cellForRowAtIndexPath:

method to get a UITableViewCell for that one row. The template provides

a default implementation that creates a cell in code; we just have to

customize that cell, immediately after the provided comment // Configure

the cell and before return cell;.

What we need to do is to figure out which member of the array—there’s

only one now, but there will be many later—we want to use for the

cell’s contents. The key is to use the indexPath variable. An NSIndexPath

is an object that specifies a path through a tree structure as a set of

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=91

TABLE CELLS 92

zero-based integer indexes. On iPhone OS, this class is extended with

properties specifically for use with UITableViews: section and row. In other

words, any time you handle tableView:cellForRowAtIndexPath:, the section

and row of the cell being requested are indicated as indexPath.section

and indexPath.row.

So, right before return cell; in the provided implementation, add the fol-

lowing code:

Download TableViews/MovieTable01/Classes/RootViewController.m

Movie *aMovie = [moviesArray objectAtIndex:indexPath.row];

cell.textLabel.text = aMovie.title;

The first gets the member of moviesArray that corresponds to the selected

row, which is the value of indexPath.row. Then we just need to present

the Movie’s title in the cell. The UITableViewCell provides two UILabels as

properties: textLabel and detailTextLabel. For this simple case, we set the

textLabel’s text to the movie title.

That’s all that’s necessary for a basic table. Build and Go. You’ll see the

one-row table shown in Figure 5.3, on the next page.

5.4 Table Cells

Thus far, we’ve provided enough of a data source implementation to get

a minimal table on-screen, but there’s a lot more we can do with this

table, starting with the table cells. After all, while our Movie class has

three member properties, we’re showing only one of them in the table.

Let’s look into getting more use from our cells.

Cell Styles

The provided implementation of tableView:cellForRowAtIndexPath: creates

a UITableViewCell object called cell that we customize before returning

it to the caller. The default cell has three visual properties that can be

used to put our data in the cell: textLabel, detailTextLabel, and imageView.

In this example, we set the text of the textLabel to get the basic, default

appearance. If the Movie class had an NSImage member (like a screen-

shot or DVD box art), then we could set the imageView’s image property

to make the image appear on the left side of the cell.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=92

TABLE CELLS 93

Figure 5.3: A basic UITableView

To make use of the detailTextLabel, we need to choose a different cell

style. The idea of the style is new in iPhone 3.0, and four styles are

provided:

• UITableViewCellStyleDefault: Presents the textLabel single block of

left-aligned black text. The detailTextLabel is absent. This default

is identical in appearance to table cells in iPhone 2.x.

• UITableViewCellStyleSubtitle: Presents a large left-aligned black text-

Label and a second line for a smaller, gray detailTextLabel below it,

similar to the iPod or Music application.

• UITableViewCellStyleValue1: Presents a large left-aligned black textLa-

bel on the left and a slightly smaller right-aligned detailTextLabel

on the right in blue. This layout resembles cells in the Settings

application and is intended only for use in group-style tables.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=93

TABLE CELLS 94

Figure 5.4: UITableViews displaying the four provided UITableViewCell-

Styles, in plain and grouped mode

• UITableViewCellStyleValue2: Presents a small right-aligned blue text-

Label on the left and a small left-aligned black detailTextLabel on the

right, similar to the Contacts application. Again, this button-like

style is appropriate for use only in grouped tables.

In Figure 5.4, we can see these four styles in a modified version of

the sample application. We’ve changed the contents of the cells based

on their style, because some of the layouts are inappropriate for large

strings, particularly UITableViewCellStyleValue2, whose left-side label will

truncate after about ten characters. Since the “value” styles are meant

for a button-like presentation in grouped tables, the screenshot on the

right of the figure puts each cell in its own section, while the left screen-

shot is a one-section table with four rows.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=94

TABLE CELLS 95

Use Styles for Table Cells, Not CGRect

Prior to iPhone SDK 3.0, UITableViewCell’s designated initializer
was initWithFrame:reuseIdentifier:, which took a CGRect (usually
the constant CGRectZero, since it wasn’t actually used) for
the frame argument. The navigation-application template pro-
vided a call to this initializer, as did all other table code. How-
ever, in iPhone SDK 3.0, this initializer is deprecated in favor of
initWithStyle:reuseIdentifier:, which takes one of the style constants
instead of the CGRect. It’s trivially easy to convert old code to
the new standard by just switching to the new call and using
the UITableViewCellStyleDefault style.

The provided styles offer some flexibility in presenting your data in the

space afforded by a list on a small device like the iPhone. If none of

these styles, with or without the optional imageView, suits your needs,

then continue to Section 5.7, Custom Table View Cells, on page 105, in

which we’ll look at how to create custom cell layouts.

Cell Reuse

Along with a style, the initializer for a UITableViewCell takes a reuseIden-

tifier string. Understanding how this object is used is critical to creating

tables that perform as expected. Fortunately, the default implementa-

tion of tableView:cellForRowAtIndexPath: shows us what this property does

and how it is to be used.

A UITableView caches cells for later reuse, which improves performance

by recycling cells rather than repeatedly creating them anew. When a

cell completely scrolls off the top or bottom of the screen, it becomes

available for reuse. So, when you need to create a table cell in table-

View:cellForRowAtIndexPath:, you first try to retrieve an existing cell from

the table’s cache. If it works, you just reset that cell’s contents; if it

fails, presumably because no cached cells are available, only then do

you create a new cell.2

2. This means that dequeuing occurs only when there is enough data for the table to

fill the screen and the user has scrolled far enough for one or more cells to go entirely
off-screen.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=95

EDITING TABLES 96

Here’s the default implementation in tableView:cellForRowAtIndexPath::3

Download TableViews/MovieTable01/Classes/RootViewController.m

Line 1 static NSString *CellIdentifier = @"Cell";
2 UITableViewCell *cell =
3 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
4 if (cell == nil) {
5 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
6 reuseIdentifier:CellIdentifier] autorelease];
7 }

Line 1 creates a cell identifier, a string that indicates the kind of cell

we want. The idea here is that if you use different styles of cells in the

same table (either default styles or layouts of your own creation), you

will need to distinguish them in the table’s cache so you get back the

style of cell you need. In the default case, you use only one style, so any

arbitrary string like "Cell" will suffice. Next, lines 2–3 attempt to dequeue

a cell, that is to say, to retrieve a cell from the table’s cache, passing in

the identifier to indicate what kind of cell is needed. If this fails, then a

new cell is allocated and initialized.

5.5 Editing Tables

So now, we’ve covered how to provide table contents and gain some

control over how the contents of a cell are presented. The next step is

to make the table editable. What this really means is that we want to

make the table serve as an interface for editing the underlying model.

When we delete a row in the table, we want to delete the object from

the model, and when we add an item to the model, we want the table

updated to reflect that.

Let’s start with deletes, which are easier. In fact, the commented-out

code provided by the navigation-application template includes the

basics of what we need to provide deletion. Start with tableView:canEdit-

RowAtIndexPath:. The default implementation (and the default behavior,

if this UITableViewDataSource method is not implemented at all) is to not

permit editing of any row. Uncomment the default implementation, and

change it to return YES;. When you do this, you’ll find that you can swipe

horizontally on table rows to bring up a Delete button.

3. We’ve reformatted the default code to fit the layout of this book.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=96

EDITING TABLES 97

To implement the delete, we need to implement tableView:commitEditing-

Style:forRowAtIndexPath:. The commented-out implementation has an if-

then block for handling cases where the editing style is UITableView-

CellEditingStyleDelete and UITableViewCellEditingStyleInsert. We need to sup-

port the former only. To perform a delete, we need to do two things:

remove the indicated object from the moviesArray model, and then re-

fresh the on-screen UITableView. For the latter, UITableView provides the

method deleteRowsAtIndexPaths:withRowAnimation:, which is exactly what

we need. Add the highlighted line to the default implementation, as

shown here, and delete the else block for UITableViewCellEditingStyleInsert:

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

commitEditingStyle: (UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {

if (editingStyle == UITableViewCellEditingStyleDelete) {

// Delete the row from the data source.

[moviesArray removeObjectAtIndex: indexPath.row];

[tableView deleteRowsAtIndexPaths:

[NSArray arrayWithObject:indexPath]

withRowAnimation:UITableViewRowAnimationFade];

}

}

This gives us swipe-to-delete behavior, but some users don’t even know

it exists. Fortunately, since we’re a navigation app, we have a navigation

bar at the top of the screen that is well suited to hosting an Edit button.

As in other apps, its default behavior when active is to add an “unlock

to delete” button to the left side of every table row that allows editing,

which brings up the right-side Delete button when tapped.

In the viewDidLoad method you uncommented, you might have noticed

the following commented-out code:

Download TableViews/MovieTable01/Classes/RootViewController.m

// Uncomment the following line to display an Edit button in the

// navigation bar for this view controller.

// self.navigationItem.rightBarButtonItem = self.editButtonItem;

You might recall from Section 5.2, Setting Up Table-Based Navigation,

on page 88 that in MainView.xib, the RootViewController came set up with

UINavigationItem as a child element. That represents the blue bar above

the table, typically used for forward-back navigation and for editing

tables. It has two properties for setting buttons in the bar: leftBarBut-

tonItem and rightBarButtonItem. Then, on the right side of this assign-

ment, notice the reference to self.editButtonItem. Every UIViewController

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=97

NAVIGATING WITH TABLES 98

supports this editButtonItem property, which returns a UIBarButtonItem

that calls the view controller’s setEditing:animated: method and toggles

its state between Edit and Done.

The commented-out line is almost what we want, but let’s put the Edit

button on the left, so we can leave the right side for an Add button that

we’ll create later. So, here’s the line you’ll need in viewDidLoad:

Download TableViews/MovieTable01/Classes/RootViewController.m

self.navigationItem.leftBarButtonItem = self.editButtonItem;

Once you Build and Go, you should now be able to tap the Edit button

and bring up the unlock-to-delete button for all the rows. In Figure 5.5,

on the next page, we can see the table in editing mode (with some more

sample data to fill out its rows).

5.6 Navigating with Tables

Our next task is to allow the user to add a table row. In the previous

chapter, we developed a MovieEditorViewController, and that’s perfectly

well suited to entering the fields of a new Movie object or editing an

existing one. And once created, it would be simple enough to add the

new Movie object to the model and update the table.

So, where do we put the editor? In the previous chapter, we used the

UIViewController method presentModalViewController:animated: to slide in

the editor. In this case, we’re going to learn something new: how to

use the navigation objects at our disposal. We created the project as a

navigation-based application in part because it gave us a good starting

point for our table, and navigation also turns out to be a good idiom for

switching between our viewing and editing tasks.

Navigation on the iPhone uses a “drill-down” metaphor that you are

probably familiar with from the Mail, iPod/Music, and Settings appli-

cations. In the SDK, this is managed by a UINavigationController, which

maintains the navigation state as a stack of view controllers. Every time

you drill down, you push a new UIViewController onto the stack. When

you go back, you pop the current view controller off the stack, returning

to the previous view. The navigation is handled in code, independent of

how it’s represented on-screen: whether you navigate by tapping rows

in a table or buttons in the navigation bar, the underlying stack man-

agement is the same.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=98

NAVIGATING WITH TABLES 99

Figure 5.5: Using the default editButtonItem to delete rows from a UITable-

View

Adding the MovieEditorViewController

To try this, let’s get to the MovieEditorViewController by means of the nav-

igation API. In fact, we’ll use it for two purposes: to edit items already

in the table and to create new items.

As with the Movie class, you’ll need to copy the MovieEditorViewCon-

troller.h and MovieEditorViewcontroller.m classes to your project’s Classes

folder and then add those copies to the Xcode project. Also copy over

the MovieEditorViewController.xib (with Add > Existing Files as before) to

the project’s Resources group. In the earlier examples, this editor view

was presented modally and took up the whole screen. In this applica-

tion, it’s part of the navigation, and therefore the navigation bar will

take up some space above the view. Fortunately, Interface Builder lets

us simulate a navigation bar to make sure everything still fits in the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=99

NAVIGATING WITH TABLES 100

view. Open the nib in IB, select the view, and bring up its Property

inspector (D 1). Under Simulated Interface Elements, set Top Bar to

Navigation Bar to see how the view will look as part of the navigation.

In this case, the Done button won’t be pushed off-screen, but you might

want to adjust its position to get it inside IB’s dashed margin.

To bring up the movie editor, our RootViewController needs to push an

instance of the MovieEditorViewController on to the navigation stack. We

could create the view controller in code, but since we only ever need one

instance, it makes sense to create it in Interface Builder. The first step,

then, is to create an IBOutlet in RootViewController.h. Add an instance vari-

able MovieEditorViewController* movieEditor; inside the @interface’s curly-

brace block, and then declare the property as an outlet after the close

brace:

Download TableViews/MovieTable01/Classes/RootViewController.h

@property (nonatomic, retain) IBOutlet MovieEditorViewController *movieEditor;

As usual, you’ll need to @synthesize this property in the .m file. Also,

remember to put #import "MovieEditorViewController.h" in the header.

Now you’re ready to create an instance of MovieEditorViewController in

Interface Builder. Open RootViewController.xib with IB, and drag a UIView-

Controller from the Library into the nib document window. Select this

view controller, and use the Identity inspector (D 4) to set its class to

MovieEditorViewController. The last step is to connect this object to the

outlet you just created. Ctrl+click or right-click File’s Owner (or show its

Connections inspector with D 2), and drag a connection from movieEdi-

tor to the view controller object you just created. We’re done with IB for

now, so save the file.

Editing an Existing Table Item

Let’s start by using the MovieEditorViewController to edit an item in the

table. When the user selects a row, we’ll navigate to the editor and load

the current state of the selected Movie object into the editor.

The first thing we need to do is to react to the selection event. The

UITableViewDelegate gets this event in the delegate method tableView:did-

SelectRowAtIndexPath:. The navigation-application template provides a

commented-out version of this method in RootViewController, though its

sample code creates a new view controller programatically. We don’t

need to do that, since we already have the next view controller. It’s the

movieEditor that we just set up in Interface Builder. So, we just need to

set up that view controller and navigate to it.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=100

NAVIGATING WITH TABLES 101

Declare an instance variable of type Movie* named editingMovie in the

header file. It remembers which Movie object is being edited, so we’ll

know what to update in the table when we navigate to the table. Once

you’ve done that, the steps here are pretty simple. Remember what

movie we’re editing, tell the MovieEditorViewController what movie it’s edit-

ing, and navigate to that view controller with the UINavigationController’s

pushViewController:animated: method.

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

editingMovie = [moviesArray objectAtIndex:indexPath.row];

movieEditor.movie = editingMovie;

[self.navigationController pushViewController:movieEditor animated:YES];

}

What’s interesting about the last step is how we get a reference to the

navigation controller. . . remember, we haven’t defined an ivar or prop-

erty for it; in fact, the navigation controller was created for us in Main-

Window.xib, and we haven’t touched it with IB. The neat trick is the nav-

igationController property defined by the UIViewController class and there-

fore inherited by RootViewController. This property (also callable as an

instance method) looks through the object hierarchy to find a parent or

ancestor object that is a UINavigationController. Thanks to this method,

you never need to explicitly make connections to your navigation con-

troller. Your root view controller and any view controllers it pushes onto

the navigation stack can get to the navigation controller with this prop-

erty, using it to navigate forward or back or to update the on-screen

navigation bar.

This is all we need to do to the movie editor view; now we need a way to

get back from the editor to the root. MovieEditorViewController has a done

method that’s connected in IB to the Done button,4 but its implemen-

tation needs to be updated. Instead of dismissing itself as a modal view

controller, it needs to navigate back to the previous view controller:

Download TableViews/MovieTable01/Classes/MovieEditorViewController.m

- (IBAction)done {

[self.navigationController popViewControllerAnimated:YES];

}

4. If we didn’t already have a Done button in the view, it would be more typical to set up

a Done or Back button in the navigation bar. The navigation in the example in Chapter 8,

File I/O, on page 138 will work like this.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/MovieEditorViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=101

NAVIGATING WITH TABLES 102

As you can see, the MovieEditorViewController also can use the inherited

navigationController property to get the UINavigationController.

This will navigate to and from the movie editor; the only task left to

attend to is to update the table when we return from an edit. The

RootViewController will get the viewWillAppear: callback when we navigate

back to it, so we can use that as a signal to update the table view:

Download TableViews/MovieTable01/Classes/RootViewController.m

- (void)viewWillAppear:(BOOL)animated {

[super viewWillAppear:animated];

// update table view if a movie was edited

if (editingMovie) {

NSIndexPath *updatedPath = [NSIndexPath

indexPathForRow: [moviesArray indexOfObject: editingMovie]

inSection: 0];

NSArray *updatedPaths = [NSArray arrayWithObject:updatedPath];

[self.tableView reloadRowsAtIndexPaths:updatedPaths

withRowAnimation:NO];

editingMovie = nil;

}

}

We gate our update logic with a check to see whether a movie is being

edited, since this method will also be called at other times (at startup,

for example). If we are returning from an edit, we need to identify the

one table row being updated. We can figure this out by getting the array

index that corresponds to editingMovie, constructing an NSIndexPath that

goes to that row in section 0 of the table, and pass the path to the table

view’s reloadRowsAtIndexPaths:withAnimation: method.

Adding an Item to the Table

Another thing we’d like to support is the ability to add new items to the

table. We can actually make this a special case of editing. When the

user taps an Add button, we quietly add an empty Movie to the table

model, insert a table row, and navigate to the editor.

Previously, we used the navigation bar’s leftBarButtonItem for the pro-

vided editButtonItem, so let’s put the Add button on the right side of the

navigation bar. We don’t inherit an Add button from UIViewController like

we did with the Edit button, so we’ll create one ourselves.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=102

NAVIGATING WITH TABLES 103

First, go to RootViewController.h, and set up an IBAction to handle an event

from the button we’re about to create:

Download TableViews/MovieTable01/Classes/RootViewController.h

-(IBAction) handleAddTapped;

Now, since we need to work with the navigation objects that Xcode

created for us, we’ll use Interface Builder to open the MainWindow.xib

file, where they’re defined. Switch the view mode in the nib document

window to list or column view, and double-click the Navigation Con-

troller object. This will bring up a window with the navigation bar at

the top and a view placeholder at the bottom that says it’s loaded from

RootViewController. You’ll notice that the Edit button is absent from the

left side of the navigation bar, because we add it with code at runtime.

Go to the Library, and find the icon for the Bar Button Item. This is

different from the usual Round Rect Button, so make sure the object

you’ve found lists its class as UIBarButtonItem. Drag the bar button to the

right side of the navigation bar, where you’ll find it automatically finds

its way to a highlighted landing spot, making it the navigation bar’s

rightBarButtonItem. Select the bar button, bring up the Identity inspector

(D 1), and change its identifier to Add. This will change its appearance

to a simple plus sign (+).

The next step is to connect this button to the handleAddTapped method.

This is a little different from the connections you’ve made thus far. First,

when you bring up the button’s Connections inspector (D 2), you won’t

see the usual battery of touch events like Touch Up Inside. Instead,

there’s a single Sent Action called selector. This is because the UIBar-

ButtonItem has a different object hierarchy than regular buttons and

doesn’t have UIControl, UIView, and UIResponder as superclasses. Instead,

this object has properties called target and selector; when the bar button

is tapped, the method named by selector is called on the target object.

You could set both of those properties in code; since we’re already here

in Interface Builder, let’s set it up here.

To set the selector and target, we drag the selector action from the Con-

nections inspector to one of the other objects in the nib. This time,

however, we don’t drag it to the File’s Owner. Since this is the MainWin-

dow.xib, the File’s Owner proxy object points to a generic UIApplication.

The handleAddTapped method that we want the button to call is defined

in the RootViewController class, so we drag the connection to the Root

View Controller object in the nib window, as shown in Figure 5.6, on

the next page. When you release the mouse button at the end of the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=103

NAVIGATING WITH TABLES 104

Figure 5.6: Connecting a UIBarButtonItem’s selector to the RootViewCon-

troller

drag, the names of the target’s IBAction methods will appear, and you’ll

select the only one: handleAddTapped.

With the connection made, save in IB and return to Xcode. Now we can

implement the handleAddTapped method that will be called when the

user taps the Add button:

Download TableViews/MovieTable01/Classes/RootViewController.m

-(IBAction) handleAddTapped {

Movie *newMovie = [[Movie alloc] init];

editingMovie = newMovie;

movieEditor.movie = editingMovie;

[self.navigationController pushViewController:movieEditor animated:YES];

// update UITableView (in background) with new member

[moviesArray addObject: newMovie];

NSIndexPath *newMoviePath =

[NSIndexPath indexPathForRow: [moviesArray count]-1 inSection:0];

NSArray *newMoviePaths = [NSArray arrayWithObject:newMoviePath];

[self.tableView insertRowsAtIndexPaths:newMoviePaths withRowAnimation:NO];

[newMovie release];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable01/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=104

CUSTOM TABLE VIEW CELLS 105

This method starts by creating an empty Movie object, setting it as the

editingMovie, and navigating to the MovieEditorViewController, much like

the code to edit an existing Movie did. What’s different is that after nav-

igating, it does cleanup work on the table view (while the table is out

of sight) by adding the new object to the model array and then call-

ing insertRowsAtIndexPaths:withRowAnimation: to update the table to reflect

the new state of the model. The inserted Movie has blank fields, but

when the user returns from the editor, the object will be updated in

viewWillAppear:, just like when an existing item is edited.

Let’s review. We used the navigation-application template to set up an

application with a table view, which we backed with a model (a simple

NSMutableArray) to provide a list of Movie objects. After looking at the

various table cell styles, we added the ability to delete from the table

either with horizontal swipes (by implementing tableView:canEditRowAt-

IndexPath:), or with the Edit button (by adding the default editButtonItem

and implementing tableView:commitEditingStyle:forRowAtIndexPath:). Then

we looked at how to access the UINavigationControl to navigate between

view controllers and used the MovieEditorViewController to edit a Movie

indicated by a selected row in the table and then to edit a new Movie in

response to the tap of an Add bar button.

5.7 Custom Table View Cells

Back in Section 5.4, Cell Styles, on page 92, we looked at the four cell

styles provided by iPhone OS. Although they suit a wide range of uses,

sometimes you might want something else. If your GUI uses a unique

color theme, the default black or blue text on white cells might not suit

you. If you need to populate more than two labels, then none of the

available styles will work for you.

It is possible, with a little work, to custom design your own table cell

in Interface Builder and have your table use this design instead of the

built-in styles. In this section, we’ll use this technique to create a table

that shows all three of the Movie fields.5

5. Because we will change so much in the project to use custom table cells, the book’s
downloadable code examples have split this exercise into a separate project. The previous

material is represented by MovieTable01, and the custom-cell project is MovieTable02.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=105

CUSTOM TABLE VIEW CELLS 106

Designing a Custom Table Cell

Every UITableViewCell has a contentView, so it’s possible to programmat-

ically create subviews and add them to this view; some Apple sample

code does this. The problem is that you then have to customize the loca-

tion, font, size, and other properties of each subview with code, without

a visual editor. The second approach is to create a UITableViewCell in a

nib file, add the subviews visually, and load that nib when the table

needs a new cell. This is what we’ll do.

In Xcode, select the Resources group and use File > New File to create a

new file, choose User Interface from the iPhone OS section, and create

an empty nib file called MovieTableCell.xib. Open this file in Interface

Builder. The document will contain just the usual two proxy objects:

File’s Owner and First Responder. From the Library, drag a table view

cell into the nib window. Double-click to edit the object, which will

open a small window the size of a typical table view cell, with a gray

area designated as the content view.

The content view is really just an IB visual artifact, a placeholder for the

created-at-runtime view that contains all our subviews, so we’ll place

our UI elements directly on top of it. The Movie class has three fields,

so we’ll use three labels to put those fields in a single cell, adjusting

the font, color, sizing, and layout appropriate to the items’ respective

importance. Drag three UILabels from the library into the cell, using

the positioning handles and the Attributes inspector (D 1) to customize

their location, bounds, color, and font. For the samples in the book’s

downloadable example code, here’s what we used:

• Movie Title: Georgia 17-point font, yellow text, left-aligned near the

left side of the cell, toward the top

• Box Office Gross: Helvetica 17-point font, green text, right-aligned

near the right edge

• Summary: Helvetica 10-point font, light blue text, along the entire

bottom of the cell

Our cell design in Interface Builder is shown in Figure 5.7, on the next

page. We used lighter colors because we plan to use a black background

for the table, although this makes the colors harder to see against the

background of the gray Content View placeholder. You’ll also notice that

we’ve put somewhat plausible data in each of the fields to get a sense of

how much space each needs and what they’ll look like with real data.

Save MovieTableCell.xib, then open RootViewController.xib, find the table,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=106

CUSTOM TABLE VIEW CELLS 107

Figure 5.7: Designing a custom UITableViewCell in Interface Builder

and use the Attributes inspector to set its background color to black.

We have to do this because parts of the table cell are transparent and

we might not have enough cells to fill the table, and we want empty

parts of the table to have the same background as populated cells.

Loading and Using a Custom Table Cell

We have a custom table cell, so how do we use it in the table? If you

think about it, we really need many table cells. The default behavior

of the table is to create a new cell in code each time we try to fail to

dequeue a reusable cell from the table’s cache. If we’re going to use the

cell from this nib, then we have to load a new custom cell each time we

would have created a cell with code.

There’s an interesting trick to how we do this. We can manually load the

nib in code and find the cell within the nib. To do this, create an IBOutlet

property in RootViewController.h to hold onto a UITableViewCell loaded from

the nib.

Download TableViews/MovieTable02/Classes/RootViewController.h

@interface RootViewController : UITableViewController {

// ... other ivars omitted here for space

UITableViewCell *nibLoadedCell;

}

@property (nonatomic, retain) IBOutlet MovieEditorViewController *movieEditor;

@property (nonatomic, retain) IBOutlet UITableViewCell *nibLoadedCell;

-(IBAction) handleAddTapped;

@end

Now, go back to editing MovieTableCell.xib in Interface Builder. Select

File’s Owner, bring up its Identity inspector (D 4), and change its class

to RootViewController. Having done this, you should be able to switch to

the Connections inspector (D 2) and connect the nibLoadedCell outlet to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable02/Classes/RootViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=107

CUSTOM TABLE VIEW CELLS 108

The Secret of File’s Owner

The technique of loading a custom table cell from a nib
should also demystify the nature of File’s Owner in Interface
Builder. In IB, File’s Owner is a proxy object that refers to what-
ever object “owns” the nib file. You can set the class of File’s
Owner in order to access that class’ outlets and actions, but
all you’re really doing is making an implicit assertion that some
object of that class will be the one that owns the nib when
it’s loaded. Here, you see the other side of that relationship:
loadNibNamed:owner:options: loads the nib, specifying an owner

object. Any connections to File’s Owner get connected to or
from this object as part of loading the nib.

the cell object in the nib window. While you’re in IB, select the table

cell, bring up its Attributes inspector, and change the identifier (the

first field) to Cell. You may recognize this as the “reuse identifier” string

we used in Section 5.4, Cell Reuse, on page 95.

Now for the surprising part. In RootViewController.m, go to the table-

View:cellForRowAtIndexPath: method, and rewrite the if (cell==nil) block as

follows:

Download TableViews/MovieTable02/Classes/RootViewController.m

Line 1 if (cell == nil) {
2 [[NSBundle mainBundle] loadNibNamed:@"MovieTableCell"
3 owner:self options:NULL];
4 cell = nibLoadedCell;
5 }

This eliminates the programmatic creation of the table cell, but the

means by which cell gets assigned is not necessarily obvious, because

the most important step is implicit. On line 2 is where we load the Movi-

eTableCell nib. This returns an NSArray of the nib contents, which we

could iterate over to find the table cell object. But we don’t have to,

because we declared an outlet from that cell to the nibLoadedCell prop-

erty. The outlets are connected as a consequence of loading the nib,

meaning that when loadNibNamed:owner:options: returns, the nibLoaded-

Cell has a reference to the custom cell loaded from the nib, which we

can then assign to the local variable, cell, on line 4.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=108

SORTING TABLE DATA 109

Assigning Values in a Custom Table Cell

Each time a new cell is needed, loadNibNamed:owner:options: will be

called again, creating a new cell object in memory. So, at the end of

the if, we have a cell (either dequeued from the table or loaded from

the nib) that we need to customize with the values of a Movie from

the model. But with a custom cell, we can no longer use the textLabel or

detailTextLabel properties. Instead, we need a way to access the subviews

we added in Interface Builder.

One option would be to create a custom UITableViewCell subclass, de-

clare and connect outlets in that class, and then cast the cell to that

class when loaded. The only downside is that there are lots more classes

to write, one for every kind of table cell in your application. Here’s a

somewhat more direct technique. Open the cell in Interface Builder,

and select the title label. Open the Attributes inspector, and scroll down

to the field marked Tag. The tag is a simple, unique integer to identify

one view within a view hierarchy. Use the Attributes inspector to set

the title label’s tag to 1, the box office gross label to 2, and the summary

label to 3.

Now, back in tableView:cellForRowAtIndexPath:, you can customize each

label’s text by looking up the label with the cell’s viewWithTag: method.

Download TableViews/MovieTable02/Classes/RootViewController.m

// Configure the cell.

Movie *aMovie = [moviesArray objectAtIndex:indexPath.row];

UILabel *titleLabel = (UILabel*) [cell viewWithTag:1];

titleLabel.text = aMovie.title;

UILabel *boxOfficeLabel = (UILabel*) [cell viewWithTag:2];

boxOfficeLabel.text = [NSString stringWithFormat: @"%d",

[aMovie.boxOfficeGross intValue]];

UILabel *summaryLabel = (UILabel*) [cell viewWithTag:3];

summaryLabel.text = aMovie.summary;

return cell;

And now, we’re ready to go. We have a custom cell design in a nib, along

with new table code to load and populate that cell. Build and Go to see

a table like the one shown in Figure 5.8, on the next page.

5.8 Sorting Table Data

Another common task for developers who use tables is to sort the data

in the table. Fortunately, Cocoa and Objective-C give us some unique

advantages and make this an enviably easy task.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=109

SORTING TABLE DATA 110

Figure 5.8: A UITableView with custom-designed cells

To add sortability, we’ll start by adding a sorting control to our user

interface.6 Open MainWindow.xib in Interface Builder, and double-click

the Navigation Controller object to bring up its view. Drag a segmented

control from the Library to the center of the navigation bar. The UISeg-

mentedControl is a useful control that allows the user to select one of

a small number of preset values. Even though it automatically adjusts

its size for the limited space of the navigation bar, this one won’t have

room for many options, so let’s just use three. Select the segmented

control, and open the Attributes inspector. Set the number of segments

to 3, using the Title field to set the titles of the segments to A-Z, Z-A, and

$ (or whatever monetary symbol makes the most sense for your locale).

6. Once again, we’re making enough changes to merit a separate project in the book’s

downloadable code. The sorting version of the project is MovieTable03.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=110

SORTING TABLE DATA 111

We’ll need to access this segmented control from code, so we’ll need an

outlet to it. In RootViewController.h, declare the instance variable UISeg-

mentedControl* sortControl; and set up a property for it with the usual

@property and @synthesize statements, as with the other properties you’ve

already created. You’ll also need to declare this method to handle the

event when the user taps the sort control:

Download TableViews/MovieTable03/Classes/RootViewController.h

-(IBAction) handleSortChanged;

In IB, still in MainWindow.xib, you should now be able to connect the

Root View Controller object’s sortControl outlet to the segmented control,

as well as connect the segmented control’s Value Changed event to the

Root View Controller’s handleSortChanged method.

We’ll need to sort the array both in response to the user changing the

segmented control and to other causes: adding or editing an item will

require a re-sort, plus we’ll need to sort the array when the application

first starts up. So, let’s plan on writing a sortMoviesArray method, which

we’ll get to in a minute. We can now implement handleSortChanged

pretty trivially:

Download TableViews/MovieTable03/Classes/RootViewController.m

-(IBAction) handleSortChanged {

[self sortMoviesArray];

[self.tableView reloadData];

}

Whenever the sort type changes, we sort the array and then tell the

UITableView to reload all its data. This could be expensive, but a sort

may well change every row of the table, making the update of individual

rows impractical. We also need to add these two lines of code to the

bottom of viewWillAppear: so that we re-sort and update the table when

the application starts up, when an item is edited, and when an item is

added.

How do we perform the sort? It’s actually pretty easy. The sortMoviesAr-

ray method needs to appear in the implementation before any call to it

(or else you can put the method signature in the header file, although

that exposes it publicly). To perform the sort, we’ll rely on the fact that

the NSArray provides a number of methods to return a sorted copy of an

array, and NSMutableArray offers these as methods to sort the mutable

array itself. Some of these take function pointers or Objective-C selec-

tors, allowing you to write a custom sorting function. But the easiest

option is to use sort descriptors.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable03/Classes/RootViewController.h
http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable03/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=111

SORTING TABLE DATA 112

The NSSortDescriptor is a class that describes a sorting criteria, consisting

simply of a key and a BOOL to indicate whether the sort is ascending.

The way this works is to use Key-Value Coding to access the field to sort

by. The key is a string that defines a key path, which is a dot-separated

path of “getable” properties of an object. For each step of the path, the

path segment is retrieved by attempting to access a property, accessor

method, or instance variable with the key name. The sort descriptor

then uses a default selector defined for many Cocoa objects, compare:,

to actually perform the sort.7

Our Movie objects are very simple, having three properties. To sort

alphabetically by the title, we just create a sort descriptor whose key

is title, the name of the property.

With that description in mind, look how simple it is to implement all

three of our sorts:

Download TableViews/MovieTable03/Classes/RootViewController.m

-(void) sortMoviesArray {

NSSortDescriptor *sorter;

switch (sortControl.selectedSegmentIndex) {

case 0: // sort alpha ascending

sorter = [[NSSortDescriptor alloc]

initWithKey:@"title" ascending:YES];

break;

case 1: // sort alpha descending

sorter = [[NSSortDescriptor alloc]

initWithKey:@"title" ascending:NO];

break;

case 2:

default: // sort $$ ascending

sorter = [[NSSortDescriptor alloc]

initWithKey:@"boxOfficeGross" ascending:YES];

break;

}

NSArray *sortDescriptors = [NSArray arrayWithObject: sorter];

[moviesArray sortUsingDescriptors:sortDescriptors];

[sorter release];

}

This implementation sets up a single NSSortDescriptor appropriate to the

selected sort type and puts it into an array for use by NSMutableArray’s

sortUsingDescriptors:. The reason this takes an array is that you could

7. If your properties were custom classes that didn’t respond to compare:, you could

change the sorting selector, but you’ll usually be sorting Cocoa classes like NSString and

NSNumber, which have sensible implementations of compare:.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TableViews/MovieTable03/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=112

SORTING TABLE DATA 113

Figure 5.9: Sorting the table alphabetically by title

provide multiple descriptors to perform secondary sorts; two objects

determined to be equal by the first sort descriptor would then be sorted

by the second descriptor in the array, and so on.

With these changes, our sorting behavior is ready to go. In fact, you

will see it as soon as you launch the application, since viewWillAppear:

makes a call to sortMoviesArray at startup. The new startup view of the

table is shown in Figure 5.9.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=113

Chapter 6

Navigation
In this chapter, we’ll look at how to manage a hierarchy of data with

a navigation controller. It’s important that you keep in mind all you

learned in Chapter 5, Table Views, on page 86 for two reasons—first

because you were introduced to an application built from the navigation

controller template and second because we will be doing most of our

navigation from one table filled with data to another. You don’t have to

use a table view to use a nav controller; it just makes a lot of sense for

us to build on what you know. Let’s get started with an example.

6.1 Navigating Through Mail

The best way to get a feel for what you can do with a navigation con-

troller is to take a look at how Apple’s Mail app on your iPhone works.

At the top of the screen just below the system status bar (where the

carrier is and what network you are connected to, and so on), you will

find the navigation bar. In the Mail app this is the grayish blue bar just

below the white status bar. In the center of the navigation bar you’ll find

the word “Accounts” if you have multiple email accounts or “Mailboxes”

if you don’t. We’ll assume you have only one account. Below this is a

table view of your mailboxes.

Let’s drill down a little bit into a mailbox and pay attention to the nav-

igation bar as we switch to the next view. Select your Inbox. The nav-

igation bar will change in three ways. First, there is a new button on

the left side that links back to the Mailboxes view we just came from.

The title in the center has changed to say “Inbox,” and it contains the

count of unread messages. And lastly, there is a new Edit button on

the right side. If you press it, it puts your table view of messages into

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

THE NAVIGATION CONTROLLER 115

edit mode, adding red delete links to the left side of each table cell. The

Edit button has changed to a Cancel button. Press Cancel to leave the

edit mode.

Select one of your messages. The navigation bar has changed again.

The Back button that said “Mailboxes” on the previous view now says

“Inbox” and has the count of unread messages. In other words, the

Back button displays the title of the view we were just on. Once again,

the title of the current view has changed. This time it tells you the num-

ber of the current message and the count of all messages. On the right

of the navigation bar is a segmented control with one arrow pointing

up and another arrow pointing down, which lets you navigate up and

down your list of messages.

The Title and Back buttons combine to help users understand where

they are in your application’s hierarchy. Adding functional buttons like

the Edit button makes it easier for your users to perform the most

common tasks for that particular view.

6.2 The Navigation Controller

The navigation controller captures all the functionality you need to

manage a hierarchy of data. The cool thing is that by using the nav

controller, applications can get the navigation from general to specific

information, and back, for free.

A nav controller maintains a stack of view controllers. Each view con-

troller represents one node in the hierarchy. As the user drills down

into more detailed information, another view controller that manages

that detailed information is pushed onto the stack. When the user pops

back up from the detailed to the more general information, the current

detailed view controller is popped off the stack, and the view controller

for the more general information becomes the top view controller again.

Here’s a basic diagram of the stack of view controllers for a DVD library

application. In the remainder of this chapter, we are going to build out

this application so we can see how navigation-based applications are

built.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=115

NAVIGATION-BASED APPLICATIONS 116

viewControllers

Navigation
Controller

RootViewController DVDCabinetController
rootViewController

topViewController

This navigation controller has two view controllers in the viewControllers

stack. Each entry is ordered; the one on the left is the most general, and

the one on the right is the most specific. The most general in this case is

the RootViewController, and the most specific is the DVDCabinetController.

6.3 Navigation-Based Applications

Fire up Xcode if it is not already running, and create a new navigation-

based application named DVDCase. Our new project contains a couple

of classes and a couple of nib files. We are going to start by examining

the MainWindow.xib nib file. Open it by double-clicking the file. This nib

file contains the genesis of our application, so let’s look at it in a bit of

detail.

Change the view mode in the nib document window to show the list

mode of objects. You should see something that looks like this:

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=116

NAVIGATION-BASED APPLICATIONS 117

Select and expand the navigation controller as you see in the figure.

Notice there are two objects under the nav controller. The first is the

navigation bar and is responsible for showing the contextual informa-

tion on the top of the screen. The second is the root view controller.

Let’s look at the nav bar first.

If you double-click the navigation controller, you should see a window

that looks like this:

The bar on the top of the window is the navigation bar. This bar is

what holds the contextual information that keeps the user informed

about where they are in the hierarchy of data. The center of the nav bar

displays the title of the currently active view controller. We can set the

title in code or in Interface Builder. On the left side, there is typically a

Back button, unless we are on the root view controller, in which case

the left side is empty. The right side is usually occupied by an action

button; often this button is the Edit button and is used to put the table

view into edit mode.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=117

NAVIGATION-BASED APPLICATIONS 118

The remainder of the window is where the content of the RootViewCon-

troller.xib will go when the application is running. Before heading to the

code, let’s look at this nib file. Open it by clicking the blue link in the

window. Take a look at the view by double-clicking the object named

Table View in the nib document. You should see a picture that looks

like this. Notice that this view has the nav bar at the top to let us see

what it will look like when we run the application.

Notice also that the table view’s dataSource and delegate outlets are set

to the File’s Owner. Setting these two outlets allows the table view to

get its data and react to selections and such. The downloadable code

bundle for RootViewController.m has the tableView:numberOfRowsInSection:

and tableView:cellForRowAtIndexPath: methods implemented, but they are

included here for reference. These methods populate the initial table

view with Home and Work rows. For more information on how that

works, look at Section 5.3, Modeling Table Data, on page 89.

Download Navigation/DVDCase/Classes/RootViewController.m

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

return 2;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=118

NAVIGATION-BASED APPLICATIONS 119

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell =

[tableView dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) {

cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero

reuseIdentifier:CellIdentifier]

autorelease];

}

cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

switch (indexPath.row) {

case 0:

cell.textLabel.text = @"Home";

break;

case 1:

cell.textLabel.text = @"Work";

break;

default:

break;

}

return cell;

}

In this code we are setting the cell’s accessoryType to UITableViewCellAc-

cessoryDisclosureIndicator. This indicates to the user that selecting this

row will cause a new view controller with more detail about the selec-

tion to navigate in.

There are three options for the accessory type. In our example we want

to use the Disclosure Indicator. The other two options are Detail Disclo-

sure Button and Checkmark. The Detail Disclosure Button shows the

blue circle with a chevron in it and should be used to indicate that the

user has two options when clicking the cell. Click in the cell to invoke

an action, and then click the blue chevron and navigate to the detail.

The Checkmark option should be used when the item can be selected,

without navigation. And finally, the indicator we are using in this exam-

ple should be used when clicking the row will take you to the details of

the item represented in the cell.

With these two nib files and the table view data code in place, we have

the makings of a navigational application. Now that we have seen the

configuration of the nib files, let’s look at the code that does navigation.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=119

PUSHING VIEW CONTROLLERS 120

6.4 Pushing View Controllers

Next we need to do the actual navigation. To do that, we need to imple-

ment the tableView:didSelectRowAtIndexPath: and push a new view con-

troller onto the navigation controller’s stack. Here is the code to do that:

Download Navigation/DVDCase/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

if(0 == indexPath.row) {

self.cabinetController.key = @"home";

self.cabinetController.title = @"Home";

} else {

self.cabinetController.key = @"work";

self.cabinetController.title = @"Work";

}

[self.navigationController pushViewController:self.cabinetController

animated:YES];

}

We have not created the cabinetController yet, but we will shortly. This

controller will be responsible for displaying the contents of the cabinet

in another table view.

The conditional setting of the view controller’s key property is required

so that it will know which list of DVDs to display. We will look at the

data layout shortly to understand what is going on there. We are also

conditionally setting the title of the view controller to either Home or

Work.

Apart from getting the cabinetController ready to display the contents

of the cabinet, it takes only a single line of code to get a new view

controller onto the stack. That’s pretty cool—calling the pushViewCon-

troller:animated: does all the hard work of making a view controller’s view

active as well as animating its arrival.

In this method, we use the cabinetController property that needs to be

added to the RootViewController interface along with an instance variable

and a @synthesize statement in the implementation. We will look at this

in more detail in Section 6.5, Customizing the Navigation Bar, on the

next page.

The pushViewController:animated: method is also responsible for manag-

ing the navigation bar. As the new view controller is pushed onto the

stack, the navigation bar is updated with the new view controller’s title,

and the Back button’s title is replaced with the previous view controller’s

title. Since the title of the RootViewController is set to Cases, that is the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=120

CUSTOMIZING THE NAVIGATION BAR 121

title that shows up in the Back button. Here is the code that sets the

title:

Download Navigation/DVDCase/Classes/RootViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

self.title = @"Cases";

}

Next we need to create the cabinetController view controller, but before

we do, let’s talk a bit more about the navigation bar and how it is

customized. It’s not just the title that we can customize.

6.5 Customizing the Navigation Bar

We can control what shows up in the navigation bar via the properties

of your view controllers.

This picture shows how the stack of view controllers sets the titles of

the various pieces of the nav bar. The topViewController’s title is placed in

the center as the title of the nav bar. The title of the view controller just

behind the topViewController in the stack is placed into the Back button.

viewControllers

Navigation
Controller

RootViewController
title = "Cases"

DVDCabinetController
title = "Home"rootViewController

topViewController

back button title
nav bar title

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=121

CUSTOMIZING THE NAVIGATION BAR 122

The title in the center of the navigation bar is set to the title of the

current view controller. The right button is typically left blank, but it is

often set to be an Edit button.

The right button can be replaced with a custom instance of UIBarBut-

tonItem. With a custom instance of the Bar Button Item, you can specify

your own behavior by supplying the target and action. You can even go

so far as to fully replace the view used to draw the button by setting the

customView property.

You have a lot of flexibility in customizing the way the navigation bar

works in your application. In our DVDCase application, we customize

only by setting the title of the view controllers. In a more sophisticated

application, you could fully customize the nav bar. We have not talked

about custom views yet, but we will in Chapter 19, Drawing in Custom

Views, on page 390. Basically, you can replace the UILabel that is used

by default to draw the titles with a view of your own that draws anything

you want into the title area.

To see one example of the way you’d want to use the ability to customize

the nav bar, open the YouTube application, and click the Most Viewed

tab. The title view of the nav bar has been replaced with a segmented

control. In your app, you can use any UIControl or, as we said earlier,

any view, even a custom one of your own design.

Our new view controller will manage the list of DVDs in each cabinet.

So, we need to create a new table view controller and its associated user

interface. To accomplish this task, we need to do the following things:

1. Create a new subclass of UITableViewController.

2. Create a new nib file that will contain the UI for our new table view

controller.

3. Configure the nib file to have a table view, and connect the table

view to our new view controller.

4. Add an outlet to the RootViewController so it knows the new table

view controller.

5. Update RootViewController.xib to set this outlet.

Right-click the Classes group in Xcode, and choose Add > New File.

Choose to make a subclass of UITableViewController (select Cocoa Touch

Classes -> Objective-C class and then UITableViewController from the

pulldown), click Next, and then name your new controller DVDCabinet-

Controller. Now we need to add the new controller outlet to the RootView-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=122

CUSTOMIZING THE NAVIGATION BAR 123

Controller. Here is the updated code in the header. Remember to add the

corresponding import and synthesize to the implementation file.

Download Navigation/DVDCase/Classes/RootViewController.h

@class DVDCabinetController;

@interface RootViewController : UITableViewController {

DVDCabinetController *cabinetController;

}

@property (nonatomic, retain) IBOutlet DVDCabinetController *cabinetController;

@end

Now that we have an outlet, the next thing we need to do is connect

it in IB. Open the RootViewController.xib file, and add a new view con-

troller. Change its class to DVDCabinetController in the Identity inspector

(D-4). Now make the connection from the File’s Owner to the new view

controller by Ctrl+dragging from the File’s Owner to the new view con-

troller, and choose the cabinetController outlet to make the connection.

Set the NIB name (Attributes inspector, D-1) to DVDCabinetController.

Save your work.

Now we need to create the DVDCabinetController.xib nib file. In Xcode,

Ctrl+click the Resources group, and choose Add > New File. Choose the

View XIB template, click Next, and name your new nib file DVDCabinet-

Controller.xib. Open this file so we can change it to be the UI we need.

The initial view placed in this file is a generic UIView, but we need a

table view. So, delete the View object, and replace it with a UITableView.

Next we need to set the class of the File’s Owner object to DVDCabi-

netController. Select the File’s Owner, open the Identity inspector (D-4),

and change the Class. Now we can make the necessary connections.

Ctrl+drag from the File’s Owner’s view outlet to the newly placed Table

View object, and choose the view outlet. Now connect the dataSource

and delegate from the Table View to the File’s Owner. Building any

table view–based UI typically involves these steps: creating a new sub-

class of UITableViewController, creating a new View XIB file, switching the

view for a table view, and setting the data source and delegate.

Now that we have our UI set up, we need to go back and fill in the code

for our DVDCabinetController. For the most part, this table view controller

is like the others we have built. This class is responsible for displaying

the list of DVDs contained in the selected case. To show the data, you

will need to implement the tableView:numberOfRowsInSection: and table-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/RootViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=123

CUSTOMIZING THE NAVIGATION BAR 124

View:cellForRowAtIndexPath: methods, as you have in all the table view

controllers that you have implemented.

To meet its responsibility, this class needs two instance variables: a

marker to know which cabinet was selected and a container to hold the

data for each cabinet. We use an NSString object called key to keep track

of the marker. We use an NSDictionary to keep track of the data. Remem-

ber that we set the key property in the tableView:didSelectRowAtIndexPath:

method on RootViewController when the user selects the Home or Work

row. The data is purely internal, so we don’t need a property for it. Don’t

forget to @synthesize the key property.

Here is the source for DVDCabinetController header file:

Download Navigation/DVDCase/Classes/DVDCabinetController.h

@interface DVDCabinetController : UITableViewController {

NSDictionary *data;

NSString *key;

}

@property(nonatomic, retain) NSString *key;

@end

Here we see the declaration of a dictionary to hold our data. We will

see the initialization of that data in the viewDidLoad method in just a

moment. The second instance variable is of more interest just now. This

key, if you recall from the discussion of RootViewController’s implemen-

tation of tableView:didSelectRowAtIndexPath:, is the way we communicate

which of the cabinets was selected. We are going to see how it’s used

as soon as we look at how our data is arranged. Here is the code for

initializing the data object:

Download Navigation/DVDCase/Classes/DVDCabinetController.m

- (void)viewDidLoad {

[super viewDidLoad];

NSArray *keys = [NSArray arrayWithObjects:@"home", @"work", nil];

NSArray *homeDVDs = [NSArray arrayWithObjects:@"Thomas the Builder", nil];

NSArray *workDVDs = [NSArray arrayWithObjects:@"Intro to Blender", nil];

NSArray *values = [NSArray arrayWithObjects:homeDVDs, workDVDs, nil];

data = [[NSDictionary alloc] initWithObjects:values forKeys:keys];

}

This code is creating a dictionary keyed on the two values we used in

the RootViewController implementation. Although it would be better to

use symbolic constants here for the keys, I wanted the code to be very

clear. So, if you were doing this in a more sophisticated project, make

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/DVDCabinetController.h
http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/DVDCabinetController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=124

CUSTOMIZING THE NAVIGATION BAR 125

sure that you used some kind of constant instead of hard-coding the

value.

Now that we have the data layout in our minds, let’s look at how we

implement the tableView:numberOfRowsInSection: method:

Download Navigation/DVDCase/Classes/DVDCabinetController.m

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

return [[data valueForKey:self.key] count];

}

All we need to do is grab the array for the particular cabinet and return

the count of that array. When the user clicks Home in the UI of the

first table view, the key is set to home so we get the proper array, and

vice versa, when the work key is set. And here is the code for the table-

View:cellForRowAtIndexPath::

Download Navigation/DVDCase/Classes/DVDCabinetController.m

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) {

cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:CellIdentifier]

autorelease];

}

cell.textLabel.text = [[data valueForKey:self.key] objectAtIndex:indexPath.row];

return cell;

}

Again we grab the proper array from the dictionary of data, and we have

our text for the cell.

One last bit of code to make sure our table view is always showing the

correct information. Here is the code for the viewWillAppear: method:

Download Navigation/DVDCase/Classes/DVDCabinetController.m

- (void)viewWillAppear:(BOOL)animated {

[super viewWillAppear:animated];

[self.tableView reloadData];

}

Remember from Section 4.3, Adding Outlets and Actions to the Con-

troller, on page 69 that the viewWillAppear: method gets called each time
Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/DVDCabinetController.m
http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/DVDCabinetController.m
http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/DVDCabinetController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=125

POPPING VIEW CONTROLLERS 126

the view that the controller manages is about to become visible. This

makes the perfect spot for us to reload the data so that when the user

is switching between her home and office cabinets, the list of movies

will get updated. Calling reloadData causes the table view to reload its

entire contents. As we said before, this can be inefficient, but for this

small example, it is no big deal.

This is a very typical pattern used to tie together two view controllers.

The parent VC knows about the child VC through a connection made

in Interface Builder (IB). The parent sets a value on the child VC, which

it uses as a key to find the data it should display. If it turns out that

you need two-way communication (from child to parent), you can make

that connection in IB as well using the File’s Owner.

6.6 Popping View Controllers

Finally, let’s look at how to remove the child view controller when the

user is done. For our example application we are going to just dis-

miss the child view controller. Here is the implementation of the table-

View:didSelectRowAtIndexPath: in our DVDCabinetController class:

Download Navigation/DVDCase/Classes/DVDCabinetController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

[self.navigationController popViewControllerAnimated:YES];

}

Here we call the popViewControllerAnimated: method to dismiss our view

controller. Since the view controllers are arranged in a stack, the nav-

igation controller will replace the DVDCabinetController’s view with the

RootViewController’s view, and the user will be brought back to the top

of the stack. Build and Go to see your work.

If you are building an application with a deep hierarchy and you want

to provide your users with the ability to pop back to the root of the hier-

archy at any time, you can do that by invoking the popToRootViewCon-

trollerAnimated: method. You can also pop to any of the view controllers

in the hierarchy via popToViewController:animated:.

Navigation is a fundamental piece of many iPhone applications because

the data in our lives is so often hierarchical. If you are building an appli-

cation that manages data like that, then you will find the navigation

controller a natural fit.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Navigation/DVDCase/Classes/DVDCabinetController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=126

Chapter 7

Tab Bar Controllers
You’ve used view controllers to help the user get more out of your appli-

cation. The table view and friends help you display data in lists. The

navigation controller helps your users move from generic data to spe-

cific data. In this chapter, we will use the tab controller to organize our

application around areas of functionality.

7.1 When to Use Tabs

The problem as always is to neatly arrange your user interface so that

your users have just what they need when they need it. However, when

you have several different interaction modes or different ways to look

at the same data, the navigation paradigm just does not work. After all,

navigation is supposed to be moving from less specific information to

more specific information with each new view. When your user interface

does not fit into the navigation paradigm, consider the tab controller.

The tab controller is particularly good at organizing or grouping several

different areas of functionality. Each area of functionality has its own

tab bar item and is active only when the user clicks that item. Whenever

your users interact with information in several different ways, a tab

controller can help you organize your user interface to focus on the

task the user is trying to accomplish.

Each view controller gets its own tab along the bottom of the screen,

and when the user taps on the tab, the view controller associated with

that tab becomes active. Contrast this with the navigation controller.

When the user taps on an entry in a table, a new view controller is made

active and is focused on the more detailed information about that item.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

CREATING A TAB BAR CONTROLLER 128

A tab bar controller does not reveal more detailed information when the

user taps on a different tab; instead, it reveals different information.

Consider the clock application, which is a great example of each tab

containing different information and different functionality. As you

click between World Clock and Alarm, you don’t expect to see more

detailed information; you expect completely different data.

The app we build in this chapter will have six different view controllers

that each display our data in different sort orders. You can see a screen-

shot here that uses five U.S. states as our data:

As the user taps on each different tab bar item, the new sorting is dis-

played. Let’s get started building an application using a tab controller.

If you are having trouble with a section, refer to the earlier material to

help bolster that intuition.

7.2 Creating a Tab Bar Controller

The initial example application is going to provide two different ways

to sort our state data. Because we have two ways to look at the data,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=128

CREATING A TAB BAR CONTROLLER 129

the example will have two view controllers. The first view controller will

display the state data sorted by population, and the second will sort the

data by area.

Like the rest of the view controllers you have seen, Xcode has a tem-

plate for tab controller–based applications that will create a bunch of

resources for you. In Xcode, create a new project with the Tab Bar

Application template, and name it States. Then click the Save button.

We can start to understand this new project by looking at the details

of two of the objects created for us by the template. Open the MainWin-

dow.xib file by double-clicking the file in Xcode. The document window

should have five objects in it; the one we will be working with initially

is called Tab Bar Controller. Select the tab bar controller, and inspect

it with the Attributes inspector (D- 1). You should see something like

this:

The Attributes inspector lists the view controllers that the tab con-

troller contains and allows you to edit that list by adding, removing, or

reordering the view controllers. This tab controller has two controllers

that it is managing titled First and Second. Both of these controllers

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=129

VIEW CONTROLLERS IN TAB CONTROLLERS 130

are UIViewControllers (instead of something more specific like a naviga-

tion controller). Soon you are going to replace these two view controllers

with your state data–sorting view controllers.

The next object we look at is the States App Delegate. Open the Con-

nections inspector for this object by selecting it and hitting D- 2 . Notice

that this object has two outlets, tabBarController and window. Recall that

the application delegate gets notification when the application is fin-

ished loading the main nib file and is about to start processing events.

We use that delegate hook to finalize any initialization and to place our

user interface onto the screen. The delegate adds the view defined by

the tabBarController onto the window. Here is the code:

Download TabBarControllers/States/Classes/StatesAppDelegate.m

- (void)applicationDidFinishLaunching:(UIApplication *)application {

[window addSubview:tabBarController.view];

[self createData];

}

This code is straightforward; we just ask the tab controller for its view

and then place that as a subview of the window. You have seen some-

thing similar in each of the view controller examples, but what is inter-

esting here is where the tab controller gets the view to display. Instead

of a stack of controllers like the nav controller, the tab controller has

a list of controllers and an explicit “selected controller.” The view that

the tab controller returns is the view for the selectedController. We also

create the data for our application with a call to the method createData,

which we will talk more about shortly.

Now that we have covered the basics of how a simple tab controller

application works, let’s start customizing it with our particular view

controllers that will sort our data in different ways.

7.3 View Controllers in Tab Controllers

In this example, we need two view controllers—one to present a list of

the five most populous states and the other to present the five largest

states by acres of land. The data for this example is hard-coded in

the application delegate. In a real-world application, you’d build a set

of model classes to represent your data and then store that data in a

database or file (we prefer a database). For this simple example, though,

we will just use NSDictionary objects to hold the data. Here is the code for

the California data extracted from the createData method. The remain-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/StatesAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=130

VIEW CONTROLLERS IN TAB CONTROLLERS 131

der of the data for the other states is created in the same way and added

to the same data array but not shown.1

Download TabBarControllers/States/Classes/StatesAppDelegate.m

NSMutableArray *data = [NSMutableArray array];

[data addObject:[NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:36553215], @"population",

@"California", @"name",

[NSNumber numberWithInt:163770], @"area", nil]];

After you create all the test data, you then need to set the states property

to the array you have just created. The code should look like this:

Download TabBarControllers/States/Classes/StatesAppDelegate.m

self.states = [NSArray arrayWithArray:data];

Don’t forget to add the states instance variable and property to the State-

sAppDelegate interface and synthesize the property inside the imple-

mentation of the StatesAppDelegate class.

We create two methods to retrieve this data, one to return it in popula-

tion order and the second to return it in acre order. The first method is

here:

Download TabBarControllers/States/Classes/StatesAppDelegate.m

- (NSArray *)statesByPopulation {

NSRange range = NSMakeRange(0, 5);

return [self.states subarrayWithRange:range];

}

Since our data is created in population order, there is not much to do

here except to limit the data to the first five states (from the require-

ments). The next method to get the data by acre order is a bit more

interesting:

Download TabBarControllers/States/Classes/StatesAppDelegate.m

- (NSArray *)statesByArea {

NSSortDescriptor *sorter = [[[NSSortDescriptor alloc]

initWithKey:@"area" ascending:NO] autorelease];

NSArray *sorted = [self.states sortedArrayUsingDescriptors:

[NSArray arrayWithObject:sorter]];

NSRange range = NSMakeRange(0, 5);

return [sorted subarrayWithRange:range];

}

1. Grab the code from the downloadable bundle, though, because the order is important.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/StatesAppDelegate.m
http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/StatesAppDelegate.m
http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/StatesAppDelegate.m
http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/StatesAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=131

VIEW CONTROLLERS IN TAB CONTROLLERS 132

In this method, we have to re-sort the data using an NSSortDescriptor.

A sort descriptor lets us specify a property to sort on and whether we

want the results ordered ascending or descending. Then we invoke the

sortedArrayUsingDescriptors: method on our states array and get back an

array that is re-sorted based on the area instead of population. Then

we simply subset the array to get the first five elements.

Now that we have our data, the rest of the work is to get that data

into the respective table views. The two view controllers that we are

going to build have essentially the same code. They differ only by the

method used to get the list of states they display. We need to create

two classes then; we called ours ByPopulationViewController and ByAreaV-

iewController. Select the Classes group in Xcode, Ctrl+click and choose

Add New File > Objective-C Class, and in the “Subclass of” pull-down

choose UITableViewController. Then click Next, set the name to ByPop-

ulationViewController, and click Finish. We need to add three methods

to this class. The first one will get the state data from the application

delegate:

Download TabBarControllers/States/Classes/ByPopulationViewController.m

- (NSArray *)states {

return [(StatesAppDelegate *)[[UIApplication sharedApplication] delegate]

statesByPopulation];

}

This view controller is going to be showing the data sorted by popula-

tion, so it invokes the statesByPopulation method. Please keep in mind

that we are doing this to keep the example focused on tab controllers.

In a more sophisticated example, we’d use something like Core Data

(see Chapter 11, Core Data, on page 212) to manage the data instead of

getting it from the application’s delegate.

Next up we need to provide the proper data to the table view (that we will

create and configure shortly). Recall from Section 5.3, Modeling Table

Data, on page 89 that we need to provide the row count for a section

and then fill the cells for each cell in the section. The code to do that is

here:

Download TabBarControllers/States/Classes/ByPopulationViewController.m

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

return self.states.count;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/ByPopulationViewController.m
http://media.pragprog.com/titles/amiphd/code/TabBarControllers/States/Classes/ByPopulationViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=132

VIEW CONTROLLERS IN TAB CONTROLLERS 133

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];

if(nil == cell) {

cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:CellIdentifier] autorelease];

}

cell.textLabel.text = [[self.states objectAtIndex:indexPath.row]

objectForKey:@"name"];

return cell;

}

The code is straightforward, and we have seen several instances of this

before in Chapter 5, Table Views, on page 86. The only new bit here

is the use of the method objectForKey:, which is just getting the object

from the dictionary using the key.

Next we need to configure this view controller in Interface Builder. If

you don’t still have it open, double-click the MainWindow.xib file in the

Xcode project to fire up IB and load the file. Switch to the list mode on

the document viewer in IB.

In this view, you can see two view controllers that are part of this

tab controller. This view is well suited for manipulating tab controllers

because you can select the view controllers that the tab controller con-

tains and you can manipulate.

For example, select the first view controller, and then hit D-4 to bring

up the Identity inspector. Set the class name to ByPopulationViewCon-

troller, hit D-1 to bring up the Attributes inspector, and change the title

to By Population. Now we have built and configured our “by population”

view controller.

Repeat these steps for the “by area” view controller, remembering to

replace the call to statesByPopulation with a call to statesByArea. Also make

the same adjustments in IB to the second view controller. However, with

this second controller, its view will be loaded out of another nib file

(more for demonstration purposes than out of necessity).

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=133

VIEW CONTROLLERS IN TAB CONTROLLERS 134

When you are done, you should have something like this:

Before we move on to creating the interface for the “by area” view con-

troller, let’s add the table view for the population controller first. In IB

delete the view associated with the ByPopulationViewController class by

selecting the view and hitting Delete . Next click D-B-L to bring up the

Library, and choose Data Views from the top list. Then select a table

view, and place it as a child of the ByPopulationViewController.2 Save your

work. Now let’s move on to making the interface for the ByAreaViewCon-

troller.

In IB, select the second view controller for the tab controller, and then

in the Attributes inspector (D- 1) set the nib filename to ByAreaView.3

Now we need to create the nib file. In Xcode C+click the Resources

group, and choose New File. Choose User Interfaces from the list on

the left of the wizard, then choose View XIB from the list on the right,

and click Next. Then specify the name as ByAreaView, and click Finish.

Open your new nib file, and change the class of the File’s Owner object

to ByAreaViewController. Next we need to do the same thing we did for the

2. Placing the table view as a child of the ByPopulationViewController automatically makes
this table view the view for that controller, so we don’t have to do any connections.
3. The template project creates a nib file called SecondView.xib. We could rename this file
and then reuse it, but instead we are going to ignore it. You can delete it at this point

because the project won’t need it after we create the new nib file.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=134

MANY CONTROLLERS 135

ByPopulationViewController. First delete the existing view, and then add a

table view to the nib file. Once the new table view is added, connect

the ByAreaViewController’s view outlet to the table view. Next you need

to connect the table view’s dataSource and delegate outlets to the File’s

Owner.4 Save your work.

Now your project is very nearly finished. Back in MainWindow.xib, we

need to set the title for both of the view controllers. This title is where

the tab controller gets the title for the buttons. So, select the tab con-

troller, hit D-1, and then double-click each title in the list of view con-

trollers for this tab controller. Change their titles to By Population and

By Area appropriately.

Run the application now, and you should see the first tab button se-

lected and the list of states ordered from largest population at the top

to smaller populations at the bottom. Click the By Area list, and you

should see the five largest states in terms of area.

This application is fairly simple and has only two tabs. In many cases,

though, you might want to have more tabs. The good news is that the

UITabBarController makes it super easy to handle this case. Let’s look at

that next.

7.4 Many Controllers

One of the great things about the tab controller is how much work it

does for us automatically. If you give it more than five controllers, it

automatically puts a button called More into the tab. When the user

clicks the More button, the tab controller displays a navigation con-

troller that lists the remainder of the controllers along with an Edit

button. If the user clicks the Edit button, they are allowed to rearrange

the list of controllers so that their favorites show up in the main bar

and the others are in the navigation controller.

Tab controllers default to doing all this stuff for you. When you add

your list of view controllers (either in Interface Builder or via code), the

tab controller of course knows when there are five or more and thus

when to add this new functionality. The tab controller also allows us to

control much of what it does. First let’s look at controlling which view

controllers are able to be reordered.

4. We have to perform the connections here because we are editing the view in a separate

nib file.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=135

MANY CONTROLLERS 136

The customizableViewControllers property is where the tab controller looks

to see what can be reordered. If a view controller is not in this list, then

the tab controller won’t allow its location in the list to be changed. By

default, all the view controllers the tab controller is managing will be

in this list, so if you don’t want some of them moved around, you will

need to remove them. Let’s look at an example to make these concepts

clearer.

In the previous section, we had only two controllers that displayed a

list of five states in two different orders. In this example, we expand on

these listings to provide six different orders that we can view the states

in: ordered alphabetically by name, ordered by population, or ordered

by area. Each order has an ascending or descending controller for a

total of six. Now, in the real world, you wouldn’t make a UI like this,

but this example provides a minimal addition to the previous example

that will teach you about the tab controller without us getting bogged

down in UI design.

You saw a screenshot of the states application running in the simulator

at the beginning of this chapter. The items along the bottom are in the

order defined in Interface Builder.

The code for all this is very similar to what we saw in the previous

example. One method was added for each of the four additional sorting

controllers, and each of the controllers invokes its respective methods

to get the state data. Here is an example of one of the sorting methods:

Download TabBarControllers/StatesMore/Classes/StatesAppDelegate.m

- (NSArray *)statesAscendingByName {

NSSortDescriptor *sorter = [[[NSSortDescriptor alloc]

initWithKey:@"name" ascending:YES] autorelease];

NSArray *sorted = [self.states sortedArrayUsingDescriptors:

[NSArray arrayWithObject:sorter]];

NSRange range = NSMakeRange(0, 5);

return [sorted subarrayWithRange:range];

}

This code is very similar to what we saw earlier. It is invoked by the

ByNameAscendingViewController controller. The code for that controller is

again very similar to the controllers from the previous example, so we

won’t go into any more detail here.

The interesting part of this is the way the tab bar controller automat-

ically manages the extra controllers that won’t fit onto the tab bar. If

you have more than five controllers, the tab controller places the first

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/TabBarControllers/StatesMore/Classes/StatesAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=136

MANY CONTROLLERS 137

four and replaces whatever would have been in the fifth place with the

More button. Here’s the configuration for our example:

Tab
Controller

View Controllers

Descending Population

Ascending Population

Descending Area

Ascending Area

Descending Name

Ascending Name

viewControllers

Tab Bar

MoreDesc Pop Asc Pop Desc Area Acs Area

The way the tab controller does this magic is by implementing the UITab-

BarDelegate protocol and becoming the delegate of the tab bar. There are

several methods in this protocol, but the big picture is that the tab bar

lets its delegate decide what to do when the More button is pressed.

The tab controller decides to put up a navigation controller with the list

of additional view controllers in it. The cool thing about this, though, is

that the magic is not really magic; you can do the same thing by writ-

ing your own implementation of the UITabBarDelegate, or you could do

something completely different. For example, you could display an icon

for each of the view controllers instead of their titles.

The same basic principles apply for editing the order of the view con-

trollers. The tab bar’s delegate decides what to do, and since the tab

controller is the default delegate, it displays a modal view with the icons

and titles for each of the controllers. But again, you are free to replace

that with whatever you’d like in your implementation.

Congratulations. You have been through all the base view controllers

that come with Cocoa Touch. You now have in your tool belt all the

tools you need to make just about any type of user interface you need

on the iPhone. Next up we will start to see some of the lower-level APIs

to interact with the iPhone’s filesystem.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=137

Chapter 8

File I/O
As an iPhone application developer, you’re entrusted by the user with

the care of their data. As a result, you’ll frequently need to save (or

“persist,” if you must) their data to long-term storage. After all, any

time your application delegate gets the applicationWillTerminate: message,

you may need to quickly save program state before your application

ends, and you’ll also want to be able to restore your state the next

time you come up. Beyond that, your application is also responsible for

maintaining and honoring the user’s preferences. And in some cases,

your app may be well served by keeping its information in a database

for speedy search and retrieval of needed data.

In this chapter, we’ll look at the filesystem. This is the most basic and

fundamental system for long-term data storage. It will often be your

first choice for data storage, but keep in mind there are some other

systems that you may choose instead. Your application may use the

system’s facilities for saving and loading preferences (covered in Chap-

ter 9, Preferences, on page 172), or you might opt for the performance

of a relational database, either via the SQLite3 API (covered in Chap-

ter 10, The SQLite Database, on page 194) or Core Data (covered in

Chapter 11, Core Data, on page 212). Two other APIs facilitate long-

term storage, but they are different because they share data with other

applications: the image APIs (covered in Chapter 20, Drawing Images

and Photos, on page 401) and the Address Book API (covered in Chap-

ter 23, Address Book, on page 443).

iPhone OS sits atop a filesystem that’s more or less identical to what

you’d find on a Mac. Files and directories exist in the same form you’d

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

EXPLORING YOUR FILESYSTEM 139

Figure 8.1: Navigation flow of FilesystemExplorer sample application

expect, with names, hierarchy, POSIX-style attributes, and so on.1 As

you’ll see in this chapter, you have access to the filesystem equivalent to

what you’d have in the Mac version of Cocoa: you can navigate through

the directory hierarchies, read from and write to files, create and delete

directories, get attributes, and more.

The one catch is that you can’t see the whole filesystem, just the con-

tents of your application’s own home directory. This is part of iPhone

OS’s sandbox security model. Your application can do as it pleases

within its own reserved portion of the filesystem (its sandbox) but can-

not access any other part of the filesystem. This means that other appli-

cations’ code and data, the user’s music and videos, the system data,

and everything else outside your home folder is off-limits, and attempts

to read from or write to these parts of the filesystem will fail.

8.1 Exploring Your Filesystem

To explore common file I/O activities, let’s develop an application to

browse the filesystem, starting in your home directory. This Filesystem-

Explorer application will need to support the following tasks:

• List the contents of a directory in a UITableView

• Navigate to items of that directory by showing either:

– Another UITableView of a selected subdirectory’s contents

– An overview of a selected file’s contents

1. One significant difference: the iPhone filesystem is case sensitive, not just case obser-

vant like the Mac.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=139

EXPLORING YOUR FILESYSTEM 140

• Read and display the contents of a file

• Create a new directory with a user-supplied name

• Create a new file with user-supplied name and contents

• Delete a selected file

A preview of the sample application is shown in Figure 8.1, on the

preceding page. As you navigate through directories, you see their con-

tents in table views. When you select a file, you see an overview of the

file, and from there you can read its contents into another view. We’ll

develop a navigation-based application that moves between the follow-

ing view controllers (which have corresponding IB-developed views):

• DirectoryViewController: Shows contents of a directory as a table.

Selecting a row takes you to either another DirectoryViewController

(if selection is a directory) or an overview of a flat file. It also has an

Add button for adding new files and directories and deletes files or

directories with the horizontal swipe gesture.

• FileOverviewViewController: Displays metadata about a file: size,

dates, and so on.

• FileContentsViewController.: Reads contents of a file into a UITextView,

a graphic component for presenting (and optionally editing) multi-

ple lines of scrollable text.

• CreateDirectoryViewController: Displays a UITextField prompt for a new

directory name.

• CreateFileViewController: Offers a text field for a new filename and a

UITextView for its contents.

About Your Application’s Directories

Before we start navigating into files and subdirectories, take a look at

the home directory. This set of directories will exist in every iPhone OS

application you create. Four directories are available to you, though it’s

highly likely you’ll never look into two of them.

• Documents: This is the primary directory for you to store your

user’s flat files. It is empty by default, and you’re free to make

whatever use of it you like.

• Application-Name: This directory is your application bundle, con-

taining nibs, localizations, executable code, and other resources.

You can see FilesystemExplorer showing its own application bundle

in Figure 8.2, on the next page. In all likelihood, you won’t do a

lot of direct file I/O in this directory. Delete a .nib file while your

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=140

EXPLORING YOUR FILESYSTEM 141

Figure 8.2: Displaying the contents of an application’s bundle

app is running in the simulator, and you’re probably heading for

a crash. On the actual device, you won’t even be permitted to try.

On the other hand, when you retrieve images, sounds, and other

resources from your application bundle, the paths will point into

this directory.

• Library: This directory exists solely as a parent to its Preferences

directory. You don’t need to write files to Preferences directly; you’ll

be using the preferences APIs, like NSUserDefaults, instead. Prefer-

ences are discussed in more detail in Chapter 9, Preferences, on

page 172.

• tmp—The “temporary” directory is meant for short-lived, tempo-

rary files that have no long-term relevance. You can use it as

your application’s “scratch pad” if you need to, say, write out a

file incrementally before uploading it over the network. If you use

this directory, you should delete its contents on a regular basis

(such as at startup or shutdown) in order to conserve space. Note

that iTunes’ backup of your device will ignore anything in tmp.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=141

CREATING OUR PROJECT 142

8.2 Creating Our Project

As you might expect from the flow diagram, you should create a new

Xcode project named FilesystemExplorer using the navigation-based appli-

cation template, as introduced in Chapter 6, Navigation, on page 114.

For this application, we will be applying some pretty serious

customization.

Because this is the third time we’ve seen a navigation-based applica-

tion, we hope you’re getting the hang of it. With this chapter, we start

to move away from UIKit and the Xcode tools and more into the rest of

the APIs. So that we can focus on new material, we’ll increasingly take

some things for granted and assume you know the following:

• To create a property, you need a backing instance variable, a

@property declaration in the .h file, and (usually) a @synthesize in

the .m file.

• When you refer to another class, you need to import its .h.

• You connect IBOutlets and IBActions with Interface Builder to wire

your GUI to your code.

• You implement a protocol by putting its name in angle braces (<...>)

as part of your @interface declaration and then implementing its

defined methods. You do this a lot for delegates.

Ideally, you’re starting to think conceptually about the parts of your

app. As you build more apps, you’ll find you worry less about Ctrl+

dragging this to that and more about how you’re expressing relation-

ships between the objects you declare in your code and those that you

create in IB.

Refactoring Your Code

Let’s start with the default table view. The class that’s generated for us

is called RootViewController. In this application, that’s not a very descrip-

tive view controller name. Since we’ll not only start with a given direc-

tory but be able to drill down repeatedly into other directories, this isn’t

so much a “root” view as a “directory” view. This gives us an opportunity

to exercise Xcode’s refactoring abilities as promised.

To refactor something in your code—a class, method, or member—you

just double-click its name in any source file and select Refactor either

from the Edit menu or by right-clicking the name to bring up a con-

textual menu. So, open RootViewController.h, select the RootViewController

class name from the @interface declaration, and select Edit > Refactor.

The refactoring window that comes up lets you type in a new name and

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=142

CREATING OUR PROJECT 143

Figure 8.3: Refactoring the RootViewController class

then preview all the code (and possibly filenames) that will be changed.

In Figure 8.3, we can see what happens when we prepare to refactor

RootViewController into DirectoryViewController.2

Applying this changes the source files (and renames them), but the

RootViewController.xib file that contains the view still has its old name. If

you want to change that too—and you don’t have to, this is just so you’ll

know how—then you have to make changes in a few different places.

You can begin by selecting RootViewController.xib in Resources folder of

the Groups & Files list and selecting Rename from the right-click menu.

That will rename the file, but it will also break your application.

To understand why, double-click MainWindow.xib to launch Interface

Builder. If you open the navigation controller object, you’ll see its view:

a gray navigation bar at the top and a large dash space that says “View:

Loaded from RootViewController.xib.” And this would be bad, because

we just renamed RootViewController.xib, but apparently MainWindow.xib

didn’t get the memo. Fortunately, the fix is pretty simple. In the naviga-

tion controller preview window, click the view, and open the Attributes

inspector (D 1). As you can see in Figure 8.4, on the next page, all you

need to do is reset the nib name to your renamed view controller.

2. Be sure to check your imports too; in updating the book for iPhone 3.0, we found that

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=143

CREATING OUR PROJECT 144

Figure 8.4: Refactoring the MainWindow.xib file to use a different nib for

the first view

Exploring Directories

To show the contents of a directory, your DirectoryViewController will need

an NSArray instance variable called directoryContents, which will just con-

tain the contents of a given directory as NSString paths. Cocoa doesn’t

have any special class to represent files and often just uses NSStrings,

for which there are a variety of path-related instance methods.3 Add

this ivar to DirectoryViewController.h, and then switch to the implemen-

tation file. With the array in place, it’s simple enough to provide the

two needed UITableViewDataSource methods to populate the table that

lists the directory contents. First, the number of rows in the table is

simply the length of the directoryContents array, so replace the pro-

vided tableView:numberOfRowsInSection: with a one-line implementation

that returns the array length:

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

return [directoryContents count];

}

the refactor failed to change #import "RootViewController.h" in FilesystemExplorerAppDelegate.m

to #import "DirectoryViewController.h", and the project wouldn’t build until we fixed that.
3. Files can also be represented as file://-type NSURLs, and there are methods to convert

file references between these string and URL representations.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=144

CREATING OUR PROJECT 145

Similarly, a table cell is constructed with the name of the file, which is

just an indexed array element. Use that to set the cell’s text, as shown

in the highlighted lines added to the default implementation of table-

View:cellForRowAtIndexPath::

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (UITableViewCell *)tableView:(UITableView *)table

cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"DirectoryViewCell";

UITableViewCell *cell =

[table dequeueReusableCellWithIdentifier:

CellIdentifier];

if (cell == nil) {

cell = [[[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:CellIdentifier] autorelease];

}

cell.textLabel.text = (NSString*)

[directoryContents objectAtIndex: indexPath.row];

return cell;

}

But how do we get a chance to load these into the table? At some point,

we have to tell the view controller which directory it’s presenting. One

option is to make the directoryPath a property of the view controller.

Create the instance variable NSString *directoryPath, and then declare it

as a property:

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.h

@property (nonatomic, retain) NSString *directoryPath;

When the property is set, we can load the directory contents into the

array and refresh the table view. But to do this, we have to write our

own implementation of the property getter and setter methods, since

a @synthesized property won’t know to do the extra work of populating

the array. Instead, we implement the property ourselves by providing

the directoryPath and setDirectoryPath: methods. Providing our own imple-

mentation lets us load the directory contents when the path is set and,

while we’re at it, set the navigation title to the current directory’s name.4

4. Since we’re doing nothing interesting in the getter, we could use the usual @synthesize

and have it created for us, and then we’d hand-code just the setDirectoryPath:. We just

thought it was useful here to show both to emphasize that there’s nothing magical going

on in properties.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=145

CREATING OUR PROJECT 146

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

-(NSString*) directoryPath {

return directoryPath;

}

-(void) setDirectoryPath: (NSString*) p {

[p retain];

[directoryPath release];

directoryPath = p;

[self loadDirectoryContents];

// also set title of nav controller with last path element

NSString *pathTitle= [directoryPath lastPathComponent];

self.title = pathTitle;

}

Since this retains the directoryPath, be sure to release it in dealloc, just as

you would do with any other property that uses the retain attribute. The

attributes represent your contract with any code that uses your prop-

erty, and your implementation should match the declared writability,

atomicity, and memory-management attributes.5

Now that we have a means of calling a loadDirectoryContents method,

we need to go ahead and discover all the contents of a given directory

using Cocoa’s file APIs. NSFileManager is the primary class you’ll use to

work with the filesystem. Since there isn’t a “file” class that you call

methods on, you instead get an instance of the manager—a shared

default instance retrieved with the class method defaultManager—and

call methods on that. NSFileManager has a method called directoryCon-

tentsAtPath:, which returns an NSArray of NSStrings representing files or

directories within the given path, so it’s a snap for our DirectoryView-

Controller to hang on to the directory contents (remember that you’ll also

need to provide a header for this method in DirectoryViewController.h):

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (void) loadDirectoryContents {

[directoryContents release];

directoryContents = [[NSFileManager defaultManager]

directoryContentsAtPath: directoryPath];

[directoryContents retain];

}

Since this retains the new directory contents, be sure to add a [directory-

Contents release]; to your dealloc method.

5. Note that property contracts are not enforced by the compiler or the Objective-C run-
time; the @synthesize directive represents the only programmatic use of the attributes.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=146

CREATING OUR PROJECT 147

The first DirectoryViewController has already been created by the tem-

plate as part of MainWindow.xib. So, how do we tell it the first directory-

Path to use? Let’s address this problem when the application starts. In

FilesystemExplorerAppDelegate.h, declare an instance variable called direc-

toryViewController for an IBOutlet to the DirectoryViewController, and then

open MainWindow.xib with IB, examine the FilesystemExplorerAppDelegate’s

connections (with the Connections inspector, D 2), and connect directo-

ryViewController to the DirectoryViewController object that is a child of the

navigation controller (you’ll probably have to put IB in list or columns

mode to find it).

Now that we can see the first DirectoryViewController, let’s give it a start-

ing directoryPath. You can do this with a one-line call in FilesystemExplor-

erAppDelegate’s applicationDidFinishLaunching: method, after it has fin-

ished its work setting up the main application window with makeKey-

AndVisible:

Download FileIO/FilesystemExplorer/Classes/FilesystemExplorerAppDelegate.m

// populate the first view

directoryViewController.directoryPath = NSHomeDirectory();

If you want, you can now build and run the application. It will show you

a four-line table with the contents of your home directory: Documents,

FilesystemExplorer.app, Library, and tmp. You’ll also notice the navigation

title is the home directory name, the long application ID string. Now

let’s start navigating into these directories.

As we can see, we can get the application’s home directory with a sin-

gle call to NSHomeDirectory(). In Mac Cocoa, this method is defined as

returning the path to the user’s home directory, but on the iPhone, it

returns the application’s home directory, which is a directory that con-

tains the application bundle, along with the “helper” directories Docu-

ments, Library, and tmp.

This directory has a long unique identifier string as its name, meaning

that the entire path, when run in the simulator, might be something

such as /Users/cadamson/Library/Application Support/iPhone Simulator/User/

Applications/5C73EBC6-BDB3-46E7-B7EC-203A0BA6417B, where the last path

element is an arbitrary application ID that is regenerated every time

you build your application. Of course, since the iPhone security model

won’t let you navigate any higher than this in the filesystem hierarchy,

the name of the directory or what’s above it is pretty much irrelevant.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FilesystemExplorerAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=147

GETTING FILE ATTRIBUTES 148

It’s worth noting that we won’t always need to use the application direc-

tory returned by NSHomeDirectory(), and we often want a path to one

of its known subdirectories instead, such as Documents. There’s a spe-

cial technique for searching system paths for known special directories,

illustrated when we copy a database file to Documents in Section 10.3,

Copying to the Documents Directory, on page 201.

8.3 Getting File Attributes

The sample application needs to know which directory items are files

and which are directories in order to handle the user tapping on a cell

and knowing whether to take the user to a file view or a directory view.

As it turns out, there are several ways to figure out whether a given

path represents a directory or a file; one of the easiest is to just use

NSFileManager’s fileExistsAtPath:isDirectory: method. The second parameter

is a pointer to a BOOL, and when the method returns, its value is set

to YES if the path represents a directory. So, a typical (and hypothetical)

use looks like this:

BOOL myPathIsDir;

BOOL fileExists = [[NSFileManager defaultManager]

fileExistsAtPath: selectedPath

isDirectory: &myPathIsDir];

NSLog (myPathIsDir ? @"My path is a directory" :

@"My path is a file");

Notice how you pass the address of the BOOL to the method and check

its value after the method call. Yes, it’s very C-like. You have to do this

because the method’s return value is already being used to indicate

whether a file exists at the specified path. For what it’s worth, if you

care only about checking whether something exists at a given path and

don’t care whether it’s a directory or a file, you can simply pass NULL for

isDirectory or, better yet, use the one-argument fileExistsAtPath:.

Now that we can tell a directory from a file, our filesystem explorer GUI

can figure out what to do when the user taps on a row, which calls

the event-handling delegate method tableView:didSelectRowAtIndexPath:.

If the selected item is a directory, then you create another DirectoryView-

Controller with initWithNibName:bundle:, set its directoryPath property, and

push the view controller to the UINavigationController. To come back to

this directory listing, we don’t have to do anything; the user will just

use the Back button provided by the navigation controller.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=148

GETTING FILE ATTRIBUTES 149

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

NSString *selectedFile = (NSString*)

[directoryContents objectAtIndex: indexPath.row];

BOOL isDir;

NSString *selectedPath =

[directoryPath stringByAppendingPathComponent: selectedFile];

if ([[NSFileManager defaultManager]

fileExistsAtPath:selectedPath isDirectory:&isDir] && isDir) {

DirectoryViewController *directoryViewController =

[[DirectoryViewController alloc]

initWithNibName: @"DirectoryViewController"

bundle:nil];

[[self navigationController]

pushViewController:directoryViewController animated:YES];

directoryViewController.directoryPath = selectedPath;

[directoryViewController release];

}

With just this first half of the if in place (closing curly braces as neces-

sary), you can Build and Go to navigate forward and backward through

the directories. For example, you can go to Library and then Preferences

and then use the navigation bar’s Back button to come back.

If the user taps on a row corresponding to a file, we’ll need a new view,

which is managed by a class we’ll call a FileOverviewViewController. Use

New File to create this new view controller, and then import its header

in DirectoryViewController.m. Like the DirectoryViewController, this is a view

controller with a filePath property, whose setter method we implement

ourselves (as we did with the DirectoryViewController) and use as a signal

to update the GUI.

Download FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m

-(NSString*) filePath {

return filePath;

}

-(void) setFilePath: (NSString*) p {

[p retain];

[filePath release];

filePath = p;

[self updateFileOverview];

// also set title of nav controller with last path element

NSString *pathTitle= [filePath lastPathComponent];

self.title = pathTitle;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=149

GETTING FILE ATTRIBUTES 150

Joe Asks. . .

Why Create View Controllers in Code?

Back in Chapter 6, Navigation, on page 114, we created the
second view controller for the DVDCase navigation example in
Interface Builder, but for FilesystemExplorer, we’re suggesting you
create the view controllers programmatically. The difference is
that DVDCase’s navigation is deterministic. It always goes from
the RootViewController to the DVDCabinetController, so we could
create both objects at build time in IB. When we explore the
filesystem, we don’t know the order of view controllers we need.
We could visit one directory after another, putting more and
more DirectoryViewController instances on the navigation stack,
before visiting a file (which would require a FileOverviewViewCon-

troller). Since we have to create the DirectoryViewControllers pro-
gramatically, we think it’s easier in this case to create all the
navigation view controllers programatically, except for the first
one, which Xcode provides automatically as part of the Navi-

gationController in MainWindow.xib.

So, to navigate to the file overview in DirectoryViewController’s tableView:

didSelectRowAtIndexPath:, we create a FileOverviewViewController, push it

to the navigation controller, and set the filePath to make the new con-

troller update its views (which we do last to ensure the view has been

loaded from the nib).

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

else {

FileOverviewViewController *fileOverviewViewController =

[[FileOverviewViewController alloc]

initWithNibName: @"FileOverviewView"

bundle:nil];

[[self navigationController]

pushViewController:fileOverviewViewController animated:YES];

fileOverviewViewController.filePath = selectedPath;

[fileOverviewViewController release];

}

}

To keep things simple, the file overview just shows the file’s name,

size, and last-modified date. In Figure 8.5, on page 152, we see what

this view looks like when viewing the actual FilesystemExplorer binary file

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=150

GETTING FILE ATTRIBUTES 151

inside the application bundle. You may be used to associating your

custom view controllers to IB-created views at this point, but let’s go

through the steps again:

1. Create a new UIViewController subclass, adding IBOutlets and IBAc-

tions in the header file for connections you’ll want to establish in

IB. In this case, we need three UILabel outlets. Remember to back

these with instance variables and to @synthesize them in FileOver-

viewViewController.m.

Download FileIO/FilesystemExplorer/Classes/FileOverviewViewController.h

@property (nonatomic, retain) IBOutlet UILabel *fileNameLabel;

@property (nonatomic, retain) IBOutlet UILabel *fileSizeLabel;

@property (nonatomic, retain) IBOutlet UILabel *fileModifiedLabel;

We also need two methods: one for a method to update the labels

when the property is set and one IBAction to handle a button that

will let the user read the file’s contents.

Download FileIO/FilesystemExplorer/Classes/FileOverviewViewController.h

-(void) updateFileOverview;

-(IBAction) readFileContents;

2. Create a new view nib in Xcode named FileOverviewView.xib, and

open it in IB to build the user interface. Use the Identity inspector

(D 4) to set the File’s Owner to your custom view controller class.

3. Ctrl+drag to connect your class’s outlets to the GUI controls and

events (like any button’s Touch Up Inside event) to your actions.

Also be sure to connect the File’s Owner’s view outlet to the main

View in the IB window, or you’ll crash when you load this nib (this

is something you have to always remember to do when you create

nibs with the View XIB template).

4. Add this custom view controller to your navigation controller with

pushViewController:animated:, which we did earlier in DirectoryView-

Controller’s tableView:didSelectRowAtIndexPath:.

As mentioned earlier, providing your own setter for the filePath property

lets you take extra action when the property is set, such as updating the

labels, which we’ll do by calling an updateFileOverview method. The first

thing we want to do in this method is to create some data formatting

objects so that when we populate the labels, we’ll get more human-

readable number and date formats.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileOverviewViewController.h
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileOverviewViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=151

GETTING FILE ATTRIBUTES 152

Figure 8.5: Displaying file attributes

Download FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m

-(void) updateFileOverview {

if (self.filePath != NULL) {

NSString *fileName = [self.filePath lastPathComponent];

fileNameLabel.text = fileName;

NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];

[dateFormatter setDateStyle:NSDateFormatterMediumStyle];

[dateFormatter setTimeStyle:NSDateFormatterNoStyle];

NSNumberFormatter *numberFormatter =

[[NSNumberFormatter alloc] init];

[numberFormatter setPositiveFormat: @"#,##0.## bytes"];

Now, we once again turn to the NSFileManager class. It provides the

method fileAttributesAtPath:traverseLink:, which returns an NSDictionary of

the file’s attributes as key-value pairs (the traverseLink parameter indi-

cates whether symbolic links should be followed or whether the caller

wants attributes for the link itself; this is largely irrelevant in this app).

The possible key values are described in NSFileManager’s documenta-

tion. For now, the ones we want are NSFileSize and NSFileModificationDate,

so continuing where we left off. . .

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=152

READING DATA FROM FILES 153

Download FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m

NSDictionary *fileAttributes =

[[NSFileManager defaultManager]

fileAttributesAtPath: self.filePath

traverseLink: YES];

NSDate *modificationDate = (NSDate*)

[fileAttributes objectForKey: NSFileModificationDate];

NSNumber *fileSize = (NSNumber*)

[fileAttributes objectForKey: NSFileSize];

fileSizeLabel.text =

[numberFormatter stringFromNumber: fileSize];

fileModifiedLabel.text =

[dateFormatter stringFromDate: modificationDate];

[numberFormatter release];

[dateFormatter release];

}

}

As we can see, although all the keys are NSStrings, the value types

vary by the attribute requested. In this case, the modification date is

an NSDate, while the file size is an NSNumber. The NSFileManager doc-

umentation for each attribute indicates the type of its value. Having

said that, there aren’t actually that many attributes you’ll need on an

iPhone. Many of the attributes are holdovers either from the Mac (for

example, NSFileHFSTypeCode and NSFileHFSTypeCreator) or from ownership

and permissions-oriented attributes from the world of Unix, neither of

which is relevant to a file on an iPhone.6

8.4 Reading Data from Files

The next, and probably most useful, step is to read the contents of a

file. As it turns out, there are a lot of ways to do this, more than is

practical to describe here.

You may have noticed a Read Contents button in Figure 8.5, on the

previous page. Tapping this should navigate to a new view to show

the contents of the file. To show the file’s contents, you’ll need to cre-

ate the class FileContentsViewController. Give it a filePath property, which

the FileOverviewViewController class can set to tell it which file to read.

6. Surprisingly, although the seemingly useful NSFileCreationDate is defined, the attribute

is always NULL on the device and in the simulator as of iPhone SDK 3.0.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=153

READING DATA FROM FILES 154

Now you can implement the readFileContents event handler in FileOver-

viewViewController.m:

Download FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m

- (IBAction) readFileContents {

FileContentsViewController *fileContentsViewController =

[[FileContentsViewController alloc]

initWithNibName: @"FileContentsView"

bundle:nil];

fileContentsViewController.filePath = filePath;

fileContentsViewController.title =

[NSString stringWithFormat: @"%@ contents",

[filePath lastPathComponent]];

[[self navigationController] pushViewController:

fileContentsViewController animated:YES];

[fileContentsViewController release];

}

Create a new nib for the file contents overview, FileContentsView.xib,

which needs just a UITextView of the file’s contents. Declare this out-

let in FileContentsViewController.h, and then look ahead to Figure 8.6, on

page 157. That’s where you’ll design the view in IB, and where you’ll

also connect the outlet and set File’s Owner to FileOverviewViewCon-

troller. Since this view will be part of a navigation, be sure to turn on

the navigation bar “simulated interface element” in the view’s property

inspector.

If you build and run now, you can navigate to files, look at their over-

views, and then tap the Read Contents button to navigate to the con-

tents view, though we haven’t yet populated its members.

Since the text view’s contents are maintained as an NSString, loading the

file into the view can be reduced to a single line of code:7

myString =

[NSString stringWithContentsOfFile: filePath

usedEncoding: NULL

error: NULL];

We can’t really use that here, since the file you want to load might

contain something other than text (most of the files you can explore at

the moment are binaries). In that case, you can use another one-line

call to load the file into an NSData object, an object-oriented wrapper

around a byte buffer.

7. Note that the simpler initWithContentsOfFile: and stringWithContentsOfFile: shown in ear-

lier betas are deprecated in favor of new methods that take or return a text encoding

parameter and that return an error.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileOverviewViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=154

READING DATA FROM FILES 155

NSData *fileData = [NSData dataWithContentsOfFile: filePath];

Of course, this gives you an NSData, while the text area needs a string.

Still, these two methods are convenient options if your file is small

enough to fit into memory, which is often the case. So, keep them in

mind. But what if you have a big file that you don’t necessarily want

to load all at once? What if you want to parse through a file or simply

upload over the network, reading and writing chunks as you go? In

cases like these, it’s appropriate to go the more traditional route of

working with streams.

In the stream metaphor, the bytes of a file are a “stream” of data that

flows in one direction, from the beginning of the file to the end. To read

from a file, you open a stream from a given file and keep reading bytes

until the stream runs out.

The essential class for reading from a file is NSInputStream, a subclass of

NSStream. To read and write from a file, you need to do the following:

1. Open an input stream from the file.

2. Allocate a buffer of memory to hold bytes read from the stream.

3. Repeatedly call read:maxLength: to read the next few bytes from

the stream. The first parameter is the buffer you want the bytes

copied into, and maxLength specifies how many bytes you can han-

dle on each read (typically the size of your buffer). This method will

return the number of bytes read. It may be less than maxlength.

If it’s 0, the end of stream has been reached, and if it’s -1, a read

error has occurred.

4. Do something with the bytes you’ve read into the buffer.

5. Once you reach the end of the stream, close it.

Here’s how FileContentsViewController can use an NSInputStream to read

the contents of a file into a UITextView.8 You call this loadFileContentsInto-

TextView from viewDidLoad, so the file contents are loaded into the text

view before we navigate to it.

8. Code this if you like, but we’re going to provide a preferred alternative in the next

section.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=155

READING DATA FROM FILES 156

Download FileIO/FilesystemExplorer/Classes/FileContentsViewController.m

- (void) loadFileContentsIntoTextView {

// open a stream to filePath

NSInputStream *inputStream = [[NSInputStream alloc]

initWithFileAtPath: filePath];

[inputStream open];

// read and dump to NSTextView

NSInteger maxLength = 128;

uint8_t readBuffer [maxLength];

BOOL endOfStreamReached = NO;

// NOTE: this tight loop will block until stream ends

while (! endOfStreamReached) {

NSInteger bytesRead = [inputStream read: readBuffer

maxLength:maxLength];

if (bytesRead == 0) {

endOfStreamReached = YES;

} else if (bytesRead == -1) {

// TODO - should have an error dialog

endOfStreamReached = YES;

} else {

NSString *readBufferString =

[[NSString alloc]

initWithBytesNoCopy: readBuffer

length: bytesRead

encoding: NSUTF8StringEncoding

freeWhenDone: NO];

[self appendTextToView: readBufferString];

[readBufferString release];

}

} // while ! endOfStreamReached

[inputStream close];

[inputStream release];

}

For convenience, the example code has a method called appendText-

ToView:, which copies an NSString to the end of the text view’s text string.

This way, with each buffer full of data you read, you incrementally fill

in the text view until the stream ends and you’ve displayed the file con-

tents to the user.

Download FileIO/FilesystemExplorer/Classes/FileContentsViewController.m

-(void) appendTextToView: (NSString*) textToAppend

{

fileContentsTextView.text = [NSString stringWithFormat:

@"%@%@", fileContentsTextView.text, textToAppend];

}

As you can see in the stream-reading block, each time a block of bytes

is read into the buffer, it’s converted into an NSString and appended to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileContentsViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileContentsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=156

ASYNCHRONOUS FILE READING 157

Figure 8.6: File contents

the view. The example’s hard-coded use of an NSUTF8StringEncoding is

appropriate for simple text files, but not for binary files.9 In Figure 8.6,

we can see what Info.plist, a binary settings file, looks like when read in

this way.

8.5 Asynchronous File Reading

There’s actually a pretty significant problem with this code. The tight

loop will tie up the main application thread while reading the stream—

meaning the application can’t do any work rendering the GUI, handling

input, or doing anything else until you reach the end of the stream.

As files get bigger and the time to read them gets longer, this becomes

more and more of a problem.

The key problem is that the read:maxLength: method will block until it

has bytes available to read. This is a bigger deal when we’re dealing with

9. Most of the default application contents are binary, so we won’t see many meaningful
contents until we add the ability to create new files.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=157

ASYNCHRONOUS FILE READING 158

network streams and their inherent unreliability, but taking a more

fault-tolerant approach is a good habit to adopt.

An NSStream can be made to work asynchronously. You can register for

intermittent callbacks whenever the stream has bytes available, and if

there aren’t any, then you don’t block. To do this, you send the stream

a delegate (for example, the FileContentsViewController itself) that imple-

ments the stream:handleEvent: method. Then you schedule the stream

to periodically check whether bytes are available and, if so, to call

your delegate method. So, here’s the setup that you call in viewDidLoad

instead of the earlier loadFileContentsIntoTextView:

Download FileIO/FilesystemExplorer/Classes/FileContentsViewController.m

Line 1 - (void) setUpAsynchronousContentLoad {
2 // open a stream to filePath
3 NSInputStream *inputStream =
4 [[NSInputStream alloc] initWithFileAtPath: filePath];
5 [inputStream setDelegate: self];
6 [inputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
7 forMode:NSDefaultRunLoopMode];
8 [inputStream open];
9 [inputStream release];

10 }

The scheduleInRunLoop:forMode: call in line 6 may look like a mystic

incantation, but it’s actually pretty much boilerplate. What this call

indicates is that you want the current thread’s run loop to be the one

that handles checking on the stream—this is absolutely the typical

option—and that you want the run loop to operate in its default mode,

as opposed to one of several esoteric event-processing modes (most of

which are defined for Mac Cocoa and don’t exist on the iPhone). In all

likelihood, you’ll never call this method with options other than these

defaults.

The delegate is required to implement a single stream:handleEvent: meth-

od. The first argument is the stream to read that produced the event,

and the second is an NSStreamEvent indicating the event that occurred.

These events are constants, enumerated in the NSStream class (and

described in its documentation), that indicate the following:

• The opening of a stream

• The availability of a stream for reading or writing

• An error from the stream

• The end of the stream

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileContentsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=158

ASYNCHRONOUS FILE READING 159

So, the method implementation typically involves doing a switch on the

NSStreamEvent and deciding what to do in that case. For the FilesystemEx-

plorer example, all we need to do is the following:

• When bytes are available, read from the stream.

• If an error occurs, display a dialog box, close the stream, and

unschedule the callbacks.

• If the end of stream is reached, close the stream, and unschedule

the callbacks.

Here’s a basic implementation of stream:handleEvent::

Download FileIO/FilesystemExplorer/Classes/FileContentsViewController.m

Line 1 - (void)stream:(NSStream *)theStream handleEvent:(NSStreamEvent)streamEvent {
- NSInputStream *inputStream = (NSInputStream*) theStream;
- switch (streamEvent) {
- case NSStreamEventHasBytesAvailable: {
5 NSInteger maxLength = 128;
- uint8_t readBuffer [maxLength];
- NSInteger bytesRead = [inputStream read: readBuffer
- maxLength:maxLength];
- if (bytesRead > 0) {

10 NSString *bufferString = [[NSString alloc]
- initWithBytesNoCopy: readBuffer
- length: bytesRead
- encoding: NSUTF8StringEncoding
- freeWhenDone: NO];

15 [self appendTextToView: bufferString];
- [bufferString release];
- }
- break;
- } // case: bytes available

20 case NSStreamEventErrorOccurred: {
- // dialog the error
- NSError *error = [theStream streamError];
- if (error != NULL) {
- UIAlertView *errorAlert = [[UIAlertView alloc]

25 initWithTitle: [error localizedDescription]
- message: [error localizedFailureReason]
- delegate:nil
- cancelButtonTitle:@"OK"
- otherButtonTitles:nil];

30 [errorAlert show];
- [errorAlert release];
- }
-

- [inputStream removeFromRunLoop: [NSRunLoop currentRunLoop]
35 forMode:NSDefaultRunLoopMode];

- [theStream close];
- break;
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileContentsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=159

ASYNCHRONOUS FILE READING 160

- case NSStreamEventEndEncountered: {
40 [inputStream removeFromRunLoop: [NSRunLoop currentRunLoop]

- forMode:NSDefaultRunLoopMode];
- [theStream close];
- }
- }

45 }

Lines 4 to 19 handle the “bytes available for reading” event, which is

where we read from the stream. NSStreams read and write bytes as type

uint8_t, so we use a buffer of this type (line 6) and then attempt to

read from the stream into the buffer (line 7). If we succeed in read-

ing any bytes, we use them to create a new string (line 10), using the

NSUTF8StringEncoding, and append this string to the text view.

There’s one significant hazard to watch out for with this approach. By

making the loading asychronous, we’ve decoupled the streaming code

from the state of the GUI. In general, this is a good thing; it’s why the

GUI doesn’t block while loading a big file. But it also means that the

user could navigate back and out of the file contents view before the

stream is done loading. There’s no point letting the stream continue

working if that happens, and it could even lead to a crash.10

So, if the user navigates away from this view, we want to stop the load-

ing process. We can handle this by getting the viewWillDisappear: mes-

sage. When that happens, we’ll want to unschedule the stream from

the run loop and close it, the same things we do in a normal end-of-

stream or error case. But to do any of that, the stream will need to be

an instance variable. So, declare NSInputStream *asyncInputStream in the

header file, and rewrite the setUpAsynchronousContentLoad method:

Download FileIO/FilesystemExplorer/Classes/FileContentsViewController.m

- (void) setUpAsynchronousContentLoad {

[asyncInputStream release];

// open a stream to filePath

asyncInputStream =

[[NSInputStream alloc] initWithFileAtPath: filePath];

[asyncInputStream setDelegate: self];

[asyncInputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];

[asyncInputStream open];

}

10. In earlier versions of this chapter, that’s exactly what happened because of an over-

released object. A reader helped us find this bug by reporting it on the errata page.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileContentsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=160

CREATING AND DELETING FILES AND DIRECTORIES 161

Notice that the stream code is the same; the only difference is how we

manage the instance variable. Now we can stop the stream if the user

hits the Back button and dismisses the view.

Download FileIO/FilesystemExplorer/Classes/FileContentsViewController.m

- (void) viewWillDisappear: (BOOL) animated {

[asyncInputStream removeFromRunLoop:[NSRunLoop mainRunLoop]

forMode:NSDefaultRunLoopMode];

[asyncInputStream close];

[super viewWillDisappear: animated];

}

8.6 Creating and Deleting Files and Directories

Now that we’ve drilled down through directories to files and their con-

tents, let’s look at a few more common file-related tasks. We’ll provide

the user with the ability to create a new directory, to create a new file,

or to delete the selected item from a directory view.

To provide the add actions, we’ll add an Add button to the DirectoryView-

Controller. We can do this in the viewDidLoad method using @selector and

the name of a method to indicate what method will be called when the

button is tapped:

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

UIBarButtonItem *addButton = [[[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

target:self

action:@selector(showAddOptions)] autorelease];

self.navigationItem.rightBarButtonItem = addButton;

}

When the button is tapped, we’ll insert an UIActionSheet, which provides

a modal set of buttons, as shown in Figure 8.7, on the following page.

The sheet is initialized with a title and names for the buttons, includ-

ing a Cancel button that simply dismisses the sheet. There’s also an

optional red button for “destructive” actions, but we don’t need that in

this sheet. The method takes a variable number of arguments for the

“normal” buttons and requires you to provide a final NULL argument to

end the list of button titles.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/FileContentsViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=161

CREATING AND DELETING FILES AND DIRECTORIES 162

Figure 8.7: Displaying a UIActionSheet for file actions

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

-(void) showAddOptions {

NSString *sheetTitle = [[NSString alloc]

initWithFormat: @"Edit \"%@\"",

[directoryPath lastPathComponent]];

UIActionSheet *actionSheet = [[UIActionSheet alloc]

initWithTitle: sheetTitle

delegate: self

cancelButtonTitle: @"Cancel"

destructiveButtonTitle: NULL

otherButtonTitles: @"New File", @"New Directory", NULL];

[actionSheet showInView: self.view];

[sheetTitle release];

[actionSheet release];

}

This requires us to declare that our class implements UIActionSheetDel-

egate and to provide a callback method for when one of the buttons is

tapped.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=162

CREATING AND DELETING FILES AND DIRECTORIES 163

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex {

if (buttonIndex == 0)

[self createNewFile];

else if (buttonIndex == 1)

[self createNewDirectory];

}

Obviously, we’ll need to write two methods, createNewFile and create-

NewDirectory, before this will compile.

Let’s start by creating new directories. Once again, the NSFileManager is

the class you’ll need for basic file-related functionality. First, though,

it’s worth checking ahead of time that you’ll be able to write to the direc-

tory that you want to add to. This is a simple call to isWritableFileAtPath:,

which, if successful, leads us to push to a new CreateDirectoryViewCon-

troller class that we’ll write next.

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (void)createNewDirectory {

BOOL canWrite = [[NSFileManager defaultManager]

isWritableFileAtPath: self.directoryPath];

if (! canWrite) {

NSString *alertMessage = @"Cannot write to this directory";

UIAlertView *cantWriteAlert =

[[UIAlertView alloc] initWithTitle:@"Not permitted:"

message:alertMessage

delegate:nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[cantWriteAlert show];

[cantWriteAlert release];

return;

}

CreateDirectoryViewController *createDirectoryViewController =

[[CreateDirectoryViewController alloc]

initWithNibName: @"CreateDirectoryView"

bundle:nil];

createDirectoryViewController.parentDirectoryPath = directoryPath;

createDirectoryViewController.directoryViewController = self;

createDirectoryViewController.title = @"Create directory";

[[self navigationController]

pushViewController:createDirectoryViewController animated:YES];

[createDirectoryViewController release];

}

We’ll need another view to let the user type in the new directory’s name

(shown in Figure 8.8, on page 165). The CreateDirectoryViewController will

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=163

CREATING AND DELETING FILES AND DIRECTORIES 164

need a property for the parentDirectoryPath and another for the directo-

ryViewController that created it, for reasons we’ll explain shortly. For the

GUI, define an IBOutlet for the directory name field. You may also want

to implement UITextFieldDelegate to dismiss the keyboard (with resign-

FirstResponder) if the user taps Return, though it isn’t really necessary

for such a simple form. Next, use viewDidLoad to set up a Save button

in the navigation bar that calls the createNewDirectory method:

Download FileIO/FilesystemExplorer/Classes/CreateDirectoryViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

UIBarButtonItem *saveButton =

[[UIBarButtonItem alloc]

initWithBarButtonSystemItem: UIBarButtonSystemItemSave

target: self

action: @selector(createNewDirectory)];

self.navigationItem.rightBarButtonItem = saveButton;

[saveButton release];

}

In createNewDirectory, create the directory by building a path string and

using the NSFileManager:

Download FileIO/FilesystemExplorer/Classes/CreateDirectoryViewController.m

- (void) createNewDirectory {

[directoryNameField resignFirstResponder];

NSString *newDirectoryPath =

[parentDirectoryPath stringByAppendingPathComponent:

directoryNameField.text];

[[NSFileManager defaultManager]

createDirectoryAtPath:newDirectoryPath

attributes: nil];

[directoryViewController loadDirectoryContents];

[directoryViewController.tableView reloadData];

[self.navigationController popViewControllerAnimated:YES];

}

The second parameter in createDirectoryAtPath:attributes: is an NSDiction-

ary whose keys are the attribute constants that you saw earlier. A lot

of them are irrelevant on the iPhone, particularly for directories, so it’s

common to just use a NULL dictionary. The last thing we need to do here

is to alert the previous DirectoryViewController (a property in this class)

to reload the directory contents and update its table view before we

navigate back to it.

Once you’ve created some directories, you may well want to remove

them. We can handle this back in DirectoryViewController by catching the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateDirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateDirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=164

CREATING AND DELETING FILES AND DIRECTORIES 165

Figure 8.8: Creating a new directory

“swipe” gesture, via tableView:commitEditingStyle:forRowAtIndexPath:. First,

when we get the delete-swipe, we get the path to delete and make sure

it’s writable.

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {

// handle a delete swipe

if (editingStyle == UITableViewCellEditingStyleDelete) {

NSString *selectedFile = (NSString*)

[directoryContents objectAtIndex: indexPath.row];

NSString *selectedPath =

[directoryPath stringByAppendingPathComponent:

selectedFile];

BOOL canWrite =

[[NSFileManager defaultManager]

isWritableFileAtPath: selectedPath];

if (! canWrite) {

// show a UIAlert saying path isn't writable

If it appears we can delete, then we use NSFileManager, which provides

a simple method for deletion, removeItemAtPath:error:.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=165

CREATING AND DELETING FILES AND DIRECTORIES 166

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

NSError *err = nil;

if (! [[NSFileManager defaultManager] removeItemAtPath: selectedPath error:&err]) {

// show a UIAlert saying cannot delete

Notice that this method does two things to indicate the results of the

attempted deletion. It returns a BOOL that indicates whether the action

succeeded, and if you pass in the address of an NSError object, that object

will be populated with a more descriptive error if the delete action fails.

You can then use this error object to provide feedback to the user.

Assuming the delete succeeds, we then refresh the list of files and

update the table view:

Download FileIO/FilesystemExplorer/Classes/DirectoryViewController.m

NSArray *deletedPaths = [NSArray arrayWithObject: indexPath];

[self loadDirectoryContents];

[self.tableView deleteRowsAtIndexPaths: deletedPaths

withRowAnimation: YES];

}

}

Now let’s turn to our other Add option in the DirectoryViewController,

adding files for which we use another view controller, CreateFileView-

Controller, paired with the view shown in Figure 8.9, on the following

page. This class needs two IBOutlets for the filename UITextView and the

file contents UITextArea. It also needs properties for the DirectoryViewCon-

troller that created it and the parentDirectoryPath in which it will create

new files.

Download FileIO/FilesystemExplorer/Classes/CreateFileViewController.h

@property (nonatomic,retain) IBOutlet UITextField *fileNameField;

@property (nonatomic,retain) IBOutlet UITextView *fileContentsView;

@property (nonatomic,retain) NSString *parentDirectoryPath;

@property (nonatomic,retain) DirectoryViewController *directoryViewController;

Once you’ve created CreateFileViewController, and its corresponding Cre-

ateFileView.xib, you can navigate to it in the createNewFile method called

by DirectoryViewController’s actionSheet:clickedButtonAtIndex:

To copy the data from the text field to a new file, there are two actions

involved: creating the empty file and writing data to it.

As it turns out, there are one-line methods available to dump an entire

NSString or NSData to a given path. Check out NSString’s writeToFile:atomic-

ally:encoding:error: and NSData’s writeToFile:atomically: and writeToFile:op-

tions:error: methods.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/DirectoryViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateFileViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=166

WRITING DATA TO FILES 167

Figure 8.9: Creating a new file

You can also supply an NSData as the contents argument to the NSFileM-

anager class’s createFileAtPath:contents:attributes: method.

However, to ensure that we don’t block the user interface while we write,

we can again use the asynchronous nature of NSStreams.

8.7 Writing Data to Files

The stream metaphor for writing to a file is almost identical to that used

for reading a file:

1. Open a stream to a file.

2. Repeatedly write blocks of data to the stream from a memory

buffer.

3. When you’ve written all your data, close the stream.

The stream-writing subclass of NSStream is NSOutputStream, and its es-

sential method is write:maxLength:. As a subclass of NSStream, we inherit

the scheduleInRunLoop:forMode method used earlier for asychronous,

nonblocking I/O. Let’s see how that works.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=167

WRITING DATA TO FILES 168

First, when we bring up the CreateFileViewController, we want to add a

navigation bar button called Save, which will set up our asynchronous

stream.

Download FileIO/FilesystemExplorer/Classes/CreateFileViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

UIBarButtonItem *saveButton =

[[UIBarButtonItem alloc]

initWithBarButtonSystemItem: UIBarButtonSystemItemSave

target: self

action: @selector(setUpAsynchronousContentSave)];

self.navigationItem.rightBarButtonItem = saveButton;

}

Next, we need to write the setUpAsynchronousContentSave that this but-

ton will call. To coordinate between this method and the callback, we’ll

need three instance variables in the header file: the output stream, a

buffer to write, and a pointer to what part of the buffer we’re writing.

Download FileIO/FilesystemExplorer/Classes/CreateFileViewController.h

NSOutputStream *asyncOutputStream;

NSData *outputData;

NSRange outputRange;

Now we can write setUpAsynchronousContentSave. Its tasks will be to call

NSFileManager’s createFileAtPath: to create a file to write into, to set up

the stream, and to schedule it with the run loop.

Download FileIO/FilesystemExplorer/Classes/CreateFileViewController.m

Line 1 - (void) setUpAsynchronousContentSave {
- [asyncOutputStream release];
- [outputData release];
- outputData = [[fileContentsView.text
5 dataUsingEncoding: NSUTF8StringEncoding] retain];
- outputRange.location = 0;
- NSString *newFilePath = [parentDirectoryPath
- stringByAppendingPathComponent: fileNameField.text];
- [[NSFileManager defaultManager] createFileAtPath:newFilePath

10 contents:nil attributes:nil];
- asyncOutputStream = [[NSOutputStream alloc]
- initToFileAtPath: newFilePath append: NO];
- [asyncOutputStream setDelegate: self];
- [asyncOutputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]

15 forMode:NSDefaultRunLoopMode];
- [asyncOutputStream open];
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateFileViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateFileViewController.h
http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateFileViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=168

WRITING DATA TO FILES 169

On line 4, this converts the text view’s NSString representation into an

NSData block of bytes that we can use with the stream APIs. We also set

up an NSRange to keep track of the next byte of that data that needs

to be written to the stream. After creating the file, we create the stream

(line 11), set the delegate to self so this class gets the callbacks (line 13),

schedule the stream with the run loop (line 14), and open the stream

(line 16).

Because the asynchronous API is inherited from NSStream, the callback

is the same as we saw for the file-reading case: stream:handleEvent:. Of

course, when we’re writing to the stream, we’ll get different events, such

as NSStreamEventHasSpaceAvailable to indicate the stream’s readiness to

accept a write command.

Download FileIO/FilesystemExplorer/Classes/CreateFileViewController.m

Line 1 - (void)stream:(NSStream *)theStream handleEvent:(NSStreamEvent)streamEvent {
- NSOutputStream *outputStream = (NSOutputStream*) theStream;
- BOOL shouldClose = NO;
- switch (streamEvent) {
5 case NSStreamEventHasSpaceAvailable: {
- uint8_t outputBuf [1];
- outputRange.length = 1;
- [outputData getBytes:&outputBuf range:outputRange];
- [outputStream write: outputBuf maxLength: 1];

10 if (++outputRange.location == [outputData length]) {
- shouldClose = YES;
- }
- break;
- }

15 case NSStreamEventErrorOccurred: {
- // dialog the error
- NSError *error = [theStream streamError];
- if (error != NULL) {
- UIAlertView *errorAlert = [[UIAlertView alloc]

20 initWithTitle: [error localizedDescription]
- message: [error localizedFailureReason]
- delegate:nil
- cancelButtonTitle:@"OK"
- otherButtonTitles:nil];

25 [errorAlert show];
- [errorAlert release];
- }
- shouldClose = YES;
- break;

30 }
- case NSStreamEventEndEncountered:
- shouldClose = YES;
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FilesystemExplorer/Classes/CreateFileViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=169

PROPERTY LISTS AND NSCODING 170

- if (shouldClose) {
35 [outputStream removeFromRunLoop: [NSRunLoop currentRunLoop]

- forMode:NSDefaultRunLoopMode];
- [theStream close];
-

- // force update of previous page and dismiss view
40 [directoryViewController loadDirectoryContents];

- [directoryViewController.tableView reloadData];
- [self.navigationController popViewControllerAnimated:YES];
- }
- }

When the stream is ready to accept bytes, line 6 sets up a buffer of type

uint8_t, the type needed for NSOutputStream’s write:maxLength:. We’ve used

a trivial length of one byte to simplify the code (fewer bounds checks).

We copy a byte from the NSData into this buffer on line 8, and we write

that byte to the stream on line 9. If we’ve reached the end of the data

to write, line 10 sets a cleanup flag, which is also used for handling

error and end-of-stream events. When any of these things happen, we

unschedule the stream from the run loop (line 35) and close the stream

(line 37). Finally, we clean up the GUI by making the DirectoryView-

Controller that created this CreateFileViewController reload the directory

contents, refresh its GUI, and then navigate back to the DirectoryView-

Controller (lines 40–42).

With this, our long effort to implement DirectoryViewController’s Add but-

ton is finally complete. You can create directories and files, see them

appear in the directory views’ tables, and tap on the files you create

to read their contents. You may also notice different behavior with the

simulator than on the device. The simulator will let you create files and

directories inside the application bundle, while the actual device will

not. In fact, you shouldn’t plan on writing data anywhere other than

the Documents and tmp folders. But within those folders, you’re free to

set up whatever directory structures and file contents suit you and your

app.

8.8 Property Lists and NSCoding

Having discussed the conveniences for dumping NSString and NSData

objects to disk and writing out the file manually with an NSOutputStream,

you might wonder whether that covers all the ways you might want to

persist your data with flat files. Not entirely. There are two more options

to consider for writing structured data to disk that we’ll consider briefly.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=170

PROPERTY LISTS AND NSCODING 171

You’ve seen .plist files since way back in Section 3.4, Working with Xcode

and Interface Builder, on page 40 when we introduced the Info.plist file

that contains your application’s basic settings. These property lists are

serialized representations of structured application data.11 Cocoa sup-

ports property lists consisting of the following classes:

• NSNumber

• NSString

• NSData

• NSDate

• NSArray

• NSDictionary

Property list structures can be arbitrarily deep, so you could have an

array of dictionaries of string-to-date mappings and save the whole

thing to disk with just two lines of code:

xmlData = [NSPropertyListSerialization dataFromPropertyList: somePlistObject

format:NSPropertyListXMLFormat_v1_0

errorDescription:&error];

[xmlData writeToFile:somePath atomically:YES]

Similarly, you can read this structure back into memory with prop-

ertyListFromData:mutabilityOption:format:errorDescription:.

And if you have objects that don’t consist of the property list types, you

can implement the NSCoding protocol, which allows the various NSCoder

subclasses to persist the object’s state to disk. This kind of approach

might be more typical of enterprise applications, but the classes are

there if you want to use them on iPhone. For more information on this

approach, see Apple’s Archives and Serialization Programming Guide for

Cocoa [App08a]. In fact, we’ll use this technique with the NSCoder sub-

class NSKeyedArchiver to pack name-value pairs into an NSData and send

it over the network in Section 13.7, Network Game Logic, on page 292.

11. In iPhone OS 2.x, the application’s Info.plist was human-readable XML, but in 3.0, the

format has changed.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=171

Chapter 9

Preferences
Your iPhone application will be started and shut down frequently. Any

time the user hits the home key or stops to take an incoming call,

your application will be terminated immediately. Your users will appre-

ciate you leaving things the way they were when they last ran the

application—and that includes saving and restoring their preferences.

There are effectively two approaches for managing preferences on the

iPhone, not technically mutually exclusive, but so different in their

approach and results that they might as well be. It’s very important

to pick one approach and stick to it, because if you don’t, you’ll have

preferences in two totally different places, making yourself and your

user do twice as much work.

We’ll start with an approach that’s more work for you but less for your

user: having your application manage its own preferences and offering

a user interface for the preferences.

9.1 Displaying a Flippable Preference View in Your Application

In a sense, the idea of handling your own preferences should be pretty

straightforward after reading Chapter 8, File I/O, on page 138 and

mastering the various forms of working with the iPhone’s filesystem.

You choose some sort of strategy for writing and reading your data to

and from a file, and there’s your preference-persistence strategy. If you

choose to roll your own like this, it’s particularly appealing to store

your preferences as an NSDictionary of name-value pairs, which you’d

write with writeToFile:atomically: and read with initWithContentOfFile:. One

huge advantage of this approach is that the saved files are property

lists (see Section 8.8, Property Lists and NSCoding, on page 170), so the

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

DISPLAYING A FLIPPABLE PREFERENCE VIEW IN YOUR APPLICATION 173

Figure 9.1: Flipping the main view to show a preferences view

values of your preferences could be NSArrays or embedded NSDictionary

objects, in addition to the simpler property list member types (NSString,

NSDate, NSNumber, or NSData).

In fact, managing preferences within your own application is not a

question of storage so much as it is one of presentation. If you’re going

to manage the user’s preferences, then you’ll need a GUI to let them

configure those preferences. And in the limited space of an iPhone

screen, where does that go?

If you’ve used all the applications included with the phone, you know

the answer: on the “back” of your view. The simpler applications that

come with the iPhone and the iPod touch—Weather and Stocks—have a

small button at the bottom right that brings up a preferences GUI with

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=173

DISPLAYING A FLIPPABLE PREFERENCE VIEW IN YOUR APPLICATION 174

an animated “flip,” as if the settings were located on the back side of

the application’s main view.

The sample application called FlippingPreferableClock illustrates this

technique, as you can see in Figure 9.1, on the previous page. This

application simply shows the current time and displays the name of a

time zone. The time zone used by the clock and the format for showing

the time in 12- or 24-hour format are the preferences exposed by the

sample application. The main view consists simply of these two UILabels,

along with a UIButton to flip to the preferences view.

Xcode provides a template to create this kind of utility application,

which is what we’ll use for this example. When you create a utility

application, Xcode’s sets you up with a large number of classes and

nibs:

• A typical application delegate class, with the MainViewController as

a property.

• A “main view” for the primary application view, the one that comes

up at launch and that presents the main functionality, imple-

mented with a custom MainView class, a MainViewController, and a

MainView.xib nib file. The view contains an “info” button at the bot-

tom right, connected to a showInfo action. This method loads the

FlipsideViewController from a nib, sets the flip-side view controller’s

delegate to the main view controller, sets the new-in-3.0 modal-

TransitionStyle property to set up the “flip” animation, and shows

the flip-side view controller modally.

• A “flip-side view” for the configuration GUI, again comprised of

a custom FlipsideView class, a FlipsideViewController, and a Flipside-

View.xib. The view contains a UINavigationButton with a Done button

that calls a done method. This method gets the delegate (that is,

the main view controller) and calls its flipsideViewControllerDidFinish

to let the main view controller know to update itself in response to

changed settings and to dismiss the flip-side view controller.

• Other typical boilerplate files, such as main.m, which launches the

application.

Without writing any code, you can create a utility application project

called FlippableClock and click Build and Go to try flipping the view with

the Info and Done buttons. Once you’ve tried that, let’s start providing

the functionality.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=174

MANAGING PREFERENCES 175

Caution: Utility Application Changes in iPhone 3.0

The earliest public betas of the iPhone SDK didn’t include code
for flippable applications and expected developers to set up
their own animation. Fortunately, the final 2.0 SDK included a
Utility Application template that used a RootViewController that
mediated between the “main” and “flip-side” view controllers.
Both of these approaches were covered in earlier betas of this
book.

In iPhone SDK 3.0, the UIViewController gained a new property,
modalTransitionStyle, which allows the Utility Application tem-
plate to flip directly between two view controllers via present-

ModalViewController:animated: and dismissModalViewControllerAni-

mated:, without needing the RootViewController class. We cover
this new, simpler approach in this chapter, and you might find
the new transition styles useful any time you need to bring in a
modal view controller.

However, apps using modalTransitionStyle, including any apps
built on the new utility application template, will not compile for
or run on iPhone OS 2.x. We’ve left the old example in the down-
load code as FlippingPreferableClockFor2.0, in case you need it.

9.2 Managing Preferences

We said that the I/O part of managing the preferences would be the

easy part, easier than managing the flipping views, so let’s take care of

that right away. In MainViewController.h, we’ll #define keys for a prefer-

ences dictionary and for some default values, and in the @interface, we’ll

declare an NSMutableDictionary to hold the preference values at runtime

and a path to the preferences file:

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.h

#define TWENTY_FOUR_HOUR_PREF_KEY @"24HourDisplay"

#define TIME_ZONE_PREF_KEY @"TimeZone"

#define DEFAULT_TWENTY_FOUR_HOUR_PREF @"NO"

#define DEFAULT_TIME_ZONE_PREF @"America/Detroit"

@interface MainViewController : UIViewController <FlipsideViewControllerDelegate> {

NSMutableDictionary *clockPrefs;

NSString *prefsFilePath;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=175

MANAGING PREFERENCES 176

And with that, we can find a path to a prefs file in the application bundle

and attempt to load its contents as an NSMutableDictionary, building a

dictionary from the default values if the file doesn’t already exist:

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m

- (void) initPrefsFilePath {

NSString *documentsDirectory =

[NSHomeDirectory() stringByAppendingPathComponent:@"Documents"];

prefsFilePath = [documentsDirectory stringByAppendingPathComponent:

@"flippingprefs.plist"];

[prefsFilePath retain];

}

- (void) loadPrefs {

if (prefsFilePath == nil)

[self initPrefsFilePath];

if ([[NSFileManager defaultManager] fileExistsAtPath: prefsFilePath]) {

clockPrefs = [[NSMutableDictionary alloc]

initWithContentsOfFile: prefsFilePath];

}

else {

clockPrefs = [[NSMutableDictionary alloc] initWithCapacity: 2];

[clockPrefs setObject: DEFAULT_TIME_ZONE_PREF

forKey: TIME_ZONE_PREF_KEY];

[clockPrefs setObject: DEFAULT_TWENTY_FOUR_HOUR_PREF

forKey: TWENTY_FOUR_HOUR_PREF_KEY];

}

NSString *prefTimeZone = [clockPrefs objectForKey: TIME_ZONE_PREF_KEY];

BOOL uses24Hour = [(NSString*)

[clockPrefs objectForKey: TWENTY_FOUR_HOUR_PREF_KEY] boolValue];

[self setClockToTimeZoneName: prefTimeZone uses24Hour: uses24Hour];

}

You’ll notice this ends with a call to a convenience method, setClock-

ToTimeZoneName:uses24Hour:. We’ll call that to update the GUI both at

startup (which means you’ll want to add [self loadPrefs]; to your viewDid-

Load method) and when the flip-side view changes the preferences. Of

course, we haven’t even created the GUI yet, so let’s work on that next.

The template provides .h and .m files for MainView and FlipsideView,

allowing you to do custom rendering of each, but for this example we

need to edit only the view controller and the .xib files. In MainViewCon-

troller.h, create IBOutlets for UILabels called timeLabel and timeZoneLabel.

Double-click MainView.xib (not MainWindow.xib, which is just boilerplate)

to open it in IB. Drag two labels into the view, customize their style and

size as you see fit, and connect them to the outlets you just defined.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=176

MANAGING PREFERENCES 177

Now that we have IBOutlets to the timeLabel and timeZoneLabel, we can

update them with the setClockToTimeZoneName:uses24Hour: method men-

tioned earlier. For this, add the instance variables NSString* timeZone-

Name and NSDateFormatter *clockFormatter to the header file, and code

the method in the implementation file before loadPrefs, which calls it:

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m

-(void) setClockToTimeZoneName: (NSString*) tz uses24Hour: (BOOL) u24h {

[timeZoneName release];

[tz retain];

timeZoneName = tz;

// set time formatter with 24 hour preference and time zone

if (clockFormatter == nil) {

clockFormatter = [[NSDateFormatter alloc] init];

}

// see formats at

// http://unicode.org/reports/tr35/tr35-4.html#Date_Format_Patterns

[clockFormatter setTimeZone: [NSTimeZone timeZoneWithName: tz]];

if (u24h)

[clockFormatter setDateFormat: @"HH:mm:ss"];

else

[clockFormatter setDateFormat: @"h:mm:ss a"];

}

The NSDateFormatter is doing the interesting work here, taking a time

zone name and a formatting string to produce the appropriate text for

the timeLabel.1

The last thing we need to do to display the time is to use the formatter

to help set the value of the timeLabel. Add the following updateClockView

method:

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m

-(void) updateClockView {

if (clockFormatter == NULL) {

timeLabel.text = @"";

timeZoneLabel.text = @"";

return;

}

NSDate *dateNow = [NSDate date];

timeLabel.text = [clockFormatter stringFromDate: dateNow];

timeZoneLabel.text = timeZoneName;

}

1. Note that the NSDateFormatter will pick up some of its behavior from the locale and the

system settings. In particular, if you have set 24 Hour Time in the Settings application,
then the NSDateFormatter will ignore any format string set by your application and will only

produce 24-hour times.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=177

CHANGING AND UPDATING PREFERENCES 178

Call this method from the end of viewDidLoad with [self updateClockView];.

If you build and run your code at this point, you should see the current

time in the default time zone displayed on your screen. Granted, we

haven’t done anything with preferences yet. Let’s go to the flip side,

where we allow the user to configure the preferences.

9.3 Changing and Updating Preferences

For the flip side, your FlipsideViewController.h will need IBOutlet properties

for a UISwitch called twentyFourHourSwitch and a UIPickerView called time-

ZonePicker (don’t forget to synthesize them as well). You’ll also need an

NSArray instance variable called timeZoneNames to populate the picker.

Double-click FlipsideView.xib to edit it in IB, and add the switch and the

picker, wire them to the outlets, and add some appropriate labels.

A picker is similar in many ways to a table, so you also need to con-

nect the picker’s delegate and datasource outlets to File’s Owner. We’ll

use these connections to allow the flip side to populate its picker with

known time zones. In FlipsideViewController.h, add the protocol decla-

ration <UIPickerViewDataSource, UIPickerViewDelegate> to the end of the

@interface statement. Then in the implementation file, you’ll need to get

a list of known time zones from the NSTimeZone class method known-

TimeZoneNames via a loadTimeZoneNames method that you can call from

viewDidLoad.

Download FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m

-(void) loadTimeZoneNames {

if (timeZoneNames)

return;

NSArray *unsortedTimeZoneNames = [NSTimeZone knownTimeZoneNames];

timeZoneNames =

[unsortedTimeZoneNames sortedArrayUsingSelector:

@selector(caseInsensitiveCompare:)];

[timeZoneNames retain];

}

With this array populated, you can implement the needed data source

and delegate methods for the time zone picker:

Download FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m

-(NSInteger) pickerView: (UIPickerView*) pickerView

numberOfRowsInComponent: (NSInteger) component {

return [timeZoneNames count];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=178

CHANGING AND UPDATING PREFERENCES 179

- (NSInteger) numberOfComponentsInPickerView:(UIPickerView *)pickerView {

return 1;

}

- (NSString *)pickerView:(UIPickerView *)pickerView

titleForRow:(NSInteger)row

forComponent:(NSInteger)component {

return (NSString*) [timeZoneNames objectAtIndex: row];

}

Now we have a picker that can show all the known time zones. Of

course, when we navigate to the flip side, we should set the picker

to the main view’s current time zone and set the 24-hour switch to

the state currently being displayed. To do this, make the MainViewCon-

troller’s clockPrefs a property, and let the flip side read it to initialize its

own state. Set this up in FlipsideViewController’s viewDidLoad, after the [self

loadTimeZoneNames]; that you added earlier. You’ll also have to #import

"MainViewController.h", since you’re casting delegate to a MainViewCon-

troller and accessing its clockPrefs property.

Download FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m

[self loadTimeZoneNames];

// init to values from main view

MainViewController *mainVC = (MainViewController*) delegate;

NSString *timeZone =

[mainVC.clockPrefs objectForKey:TIME_ZONE_PREF_KEY];

NSString *twentyFourHourPref =

[mainVC.clockPrefs objectForKey:TWENTY_FOUR_HOUR_PREF_KEY];

[timeZonePicker

selectRow: [timeZoneNames indexOfObject:timeZone]

inComponent: 0 animated:NO];

twentyFourHourSwitch.on = [twentyFourHourPref boolValue];

To review, the user starts up, and the time zone and 24-hour settings,

which are instance variables in MainViewController, are loaded from the

filesystem or set to defaults. When they navigate to the flip-side view,

the current values are used for the initial state of the time-zone picker

and 24-hour switch. Now let’s suppose the user changes one or both of

these. When he or she taps Done, the new values need to be communi-

cated to the MainViewController. Where should we do that?

The template provides the FlipsideViewController with a done method,

which calls the MainViewController’s flipsideViewControllerDidFinish:. So, we

could write our update code in either class. That leads to an interest-

ing design decision: should the MainViewController make its time zone

and 24-hour values settable by the flip side (or, for that matter, any

code), or should we pull values from the flip side into the main? In the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=179

CHANGING AND UPDATING PREFERENCES 180

interest of minimizing what we expose, we’ll use the latter approach

and have MainViewController’s flipsideViewControllerDidFinish: fetch the val-

ues from the flip side when it’s called.

Still, instead of exposing the switch and picker views, let’s declare two

“getter” methods in FlipsideViewController.h, called selectedTimeZone and

uses24Hour (using the following signatures), and implement them in Flip-

sideViewController.h.

Download FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m

-(NSString*) selectedTimeZone {

return [timeZoneNames objectAtIndex:

[timeZonePicker selectedRowInComponent: 0]];

}

-(BOOL) uses24Hour {

return twentyFourHourSwitch.on;

}

Now we can have the MainViewController update its display by retrieving

the selected values from the flip side, updating the time and time-zone

labels in the main view, and saving the updated preferences to disk.

By default, flipsideViewControllerDidFinish: contains a single line to dismiss

the flip-side view controller. We’ll do our work right before that.

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m

- (void)flipsideViewControllerDidFinish:

(FlipsideViewController *)controller {

timeZoneName = [controller selectedTimeZone];

BOOL uses24Hour = [controller uses24Hour];

NSString *selected24HourDisplayS = uses24Hour ? @"YES" : @"NO";

[clockPrefs setObject: timeZoneName forKey: TIME_ZONE_PREF_KEY];

[clockPrefs setObject: selected24HourDisplayS

forKey: TWENTY_FOUR_HOUR_PREF_KEY];

// save prefs to documents folder

[self savePrefs];

// update display to changed prefs

[self setClockToTimeZoneName: timeZoneName uses24Hour: uses24Hour];

[self updateClockView];

// from template

[self dismissModalViewControllerAnimated:YES];

}

This method uses the selectedTimeZone and uses24Hour methods we

wrote for the FlipsideViewController and puts their values into the clock-

Prefs. Then, before updating the clock’s time zone and performing the

flip, it calls a savePrefs method to actually save the preferences to the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=180

SIDE TRIP: UPDATING THE CLOCK LABEL EVERY SECOND 181

filesystem. Since the preferences are stored in an NSDictionary, we can

use a one-line call to save them as a plist.

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m

- (void) savePrefs {

[clockPrefs writeToFile: prefsFilePath atomically: YES];

}

And with that, our locally managed preference settings make a round-

trip: from the file into the MainViewController where they’re used to for-

mat the timeLabel and timeZoneLabel. . . from there to the FlipsideView-

Controller where they set the initial state of the picker and switch in the

flip-side view. . . then back to the MainViewController, where they’re used

to update the display and are saved back to the filesystem.

Granted, by using an easy-to-save NSDictionary, we didn’t have to do

much work to save or load the preferences and spent most of our time

working with the unique arrangement of the flippable utility applica-

tion. If you wanted to use some other scheme for persisting your pref-

erences, like your own file format, the NSUserDefaults (see Section 9.6,

A Hybrid Approach, on page 192), or even a database (see Chapter 10,

The SQLite Database, on page 194), then the only difference would be

in your implementations of savePrefs and loadPrefs.

9.4 Side Trip: Updating the Clock Label Every Second

It’s not necessarily germane to the discussion of preferences, but the

technique for keeping the clock label constantly updated is a good

one to know. The trick is to create an NSTimer—an object that makes

repeated, scheduled calls to a given method—to periodically regenerate

and redisplay the clock label’s content.

You begin by creating a method that will be called periodically. We’ve

already done that, because we can just repeatedly call updateClockView.

Next, you create an NSTimer to call that method at some given frequency

(in seconds). Declare the instance variable clockViewUpdateTimer in Main-

ViewController.h, and then add a startClock method to the implementation

file, before viewDidLoad, which will need to call it.

Download FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m

-(void) startClock {

// since timer's first callback will occur after interval,

// do one up-front refresh

[self updateClockView];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/FlippingPreferableClockFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=181

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 182

// now set up timer to repeatedly call updateClockView

clockViewUpdateTimer = [NSTimer

scheduledTimerWithTimeInterval:0.2

target:self

selector:@selector (updateClockView)

userInfo:NULL

repeats:YES];

}

This makes an immediate call to update the labels and then sets up

an NSTimer to repeatedly do the same thing. The class method sched-

uledTimerWithTimeInterval:target:selector:userInfo:repeats: is a mouthful but

lets us spell out everything we need for periodic callbacks: how often

to call back, what method is to be called (a combination of the target

object and the selector method signature), an object to pass to the call-

back (we don’t need one), and whether the NSTimer should keep making

this callback or stop after the first call. Notice how you can refer to a

method by means of the @selector keyword, which gives you the selector

type needed for the selector parameter.

Once you’ve added this method, replace [self updateClockView]; in view-

DidLoad with a call to start the clock: [self startClock];. This will update

the view right away and then begin the regular updates. Build and run

the app again, and you should see the clock update every second by

changing its display as you change its preferences on the flip side.

9.5 Using the System Settings Application for Preferences

The second option for handling preferences is to not manage them in

your own application at all. Instead, you let the iPhone OS’s Settings

application manage the preferences for you.

With this approach, all you do is provide a bundle file that describes

your user-configurable preferences: their types, possible values, user-

readable strings, and so on. The Settings application provides a GUI for

this, and you simply read in the values in your application. In Fig-

ure 9.2, on the following page, we can see the Settings application

offering the two preferences for the clock application, as exposed by

a settings bundle.

We’ll apply this approach in a rewrite of the clock application. In Xcode,

create a view-based application project called BundlePreferableClock.

Again, this application will show a constantly updating clock, allow-

ing the user to set a 12/24-hour display preference and to choose the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=182

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 183

Figure 9.2: Preferences as exposed by Settings.bundle to the Settings

application

time zone to display. Since our application won’t be responsible for pre-

senting a preferences GUI, it won’t need to flip and will instead have

just a single main view.

For this application, we’ll start the preferences data and build the user

interface only at the end.

Let’s begin by providing a 29x29 icon in PNG format for the Settings

application to display in its table of configurable applications. This file

must be named Icon-Settings.png; if it isn’t found, iPhone OS will scale

your app’s main icon (Icon.png) and use it instead. Ctrl+click (or right-

click) the Resources group, choose Add > Existing Files, and choose

Icon-Settings.png, being sure to select “Copy item into destination group’s

folder (if needed)” in the second dialog box. In the book’s downloadable

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=183

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 184

Figure 9.3: Creating a new settings bundle

sample code, we’ve put a blue tint on the background of our icon to

distinguish it from the main application icon.

Creating a Settings.bundle File

Next, we need to specify what settings the System Preferences applica-

tion will manage. Begin by selecting the top-level project icon in Xcode’s

Groups & Files panel, and use the New File menu item. In the New File

window, choose the Settings Bundle template, as shown in Figure 9.3.

This adds Settings.bundle, which looks like a little white construction

toy block, to your Groups & Files display. You’ll notice it has a disclo-

sure triangle, because it’s actually a folder that contains two items by

default: a Root.plist file and an en.lproj localization folder. These are the

minimal contents for a settings bundle.

Take a look at Root.plist by double-clicking it, which brings up an edi-

tor like that shown in Figure 9.4, on the following page. The starter

entries provide a “Strings Table” reference for finding localizations. and

an array called PreferenceSpecifiers, with four entries. These four are

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=184

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 185

Figure 9.4: Initial contents of settings bundle’s Root.plist

examples that you can inspect to get the hang of the preference bundle

format but that you’ll want to delete in favor of your own preferences.

Each element of the PreferenceSpecifiers array is a dictionary of name-

value pairs that specify one preference. The contents of the directory

vary somewhat by type of preference, but most of them contain the

following keys:

• Type: One of several constants indicating the type of the preference

and therefore how the user configures it: a switch for boolean val-

ues, a text field for strings, and so on

• Key: The string that the application will use as a key to read the

preference at runtime

• DefaultValue: The value that should be presented by default

Beyond these, other key-value pairs depend on the type of preference

being offered. The available types are as follows:

• PSTextFieldSpecifier displays an editable text field with an optional

title.

• PSTitleValueSpecifier shows a noneditable title for read-only prefer-

ence values.

• PSToggleSwitchSpecifier presents an on/off switch for boolean pref-

erences.

• PSSliderSpecifier uses a slider control for a preference whose value

is a number between a set minimum and maximum.

• PSMultiValueSpecifier shows a table of possible values, from which

the user can select one item.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=185

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 186

Joe Asks. . .

When Do I Use a Flip, and When Do I Use a Bundle?

For obvious reasons, the two preferences paradigms in this
chapter should be considered mutually exclusive. Having some
of your preferences in a flippable view while others are man-
aged by the Settings application would mean twice as much
work for you and your user. So, which approach is right for you?

The precedent set by Apple’s default apps suggests that only
the simplest apps manage their own preferences. There’s a
good reason for this. With so little screen space—five buttons at
the bottom, maybe two at the top—apps like Mail and Safari
just can’t afford the room for a preferences button.

Furthermore, it seems like the simple apps tend to merit more
frequent preference changes. If you travel, you’ll set and reset
your Weather cities frequently, but are you ever going to mess
with your Safari settings?

Putting preferences in a completely different place might seem
strange at first, but users will be used to it by the time they run
your app, so unless your app is really simple or perhaps is a
game with its own distinctive GUI, you probably want your pref-
erences in a bundle.

• PSGroupSpecifier groups other preferences entries together under a

common title.

• PSChildPaneSpecifier offers a link to a child page of preferences,

which is defined in a separate .plist file.

So, setting up a preferences bundle for the clock will require just two

entries in the PreferenceSpecifiers array: one of type PSToggleSwitchSpec-

ifier to present the 12/24-hour preference and one of type PSMultiVal-

ueSpecifier to choose a time zone. We can start with the toggle switch.

Delete the four default array items by right-clicking them and choosing

the Cut menu item. Now click the PreferenceSpecifiers array, and notice

that a button pops up on the far right side of the row. This is the Add

button and will create a new table row. Click it to create a new row, and

then set the type of that row to Dictionary. You can now click this row

to add values to the dictionary. To specify the 12/24-hour preference,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=186

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 187

Figure 9.5: Creating a boolean preference

you’ll need to add the following key-value pairs to the dictionary, also

shown in Figure 9.5.

• Type: The string PSToggleSwitchSpecifier

• Title: A short user-readable string, like “Display 24 hour”

• Key: A string, like “24HourDisplay,” for your application to use as

a dictionary key for finding this preference value

• DefaultValue: A boolean default value

• TrueValue: The string to be provided to your application when the

user has switched this preference on

• FalseValue: The string to be provided to your application when the

user has switched this preference off

Providing the time zones is potentially more burdensome. The time

zones provided to the picker in the FlippingPreferableClock (in the earlier

Section 9.1, Displaying a Flippable Preference View in Your Application,

on page 172) came from NSTimeZone’s knownTimeZoneNames, which gen-

erates several hundred time zone strings. As you might imagine, using

Xcode’s point-and-click interface to create all those table cells and enter

all those strings would be really burdensome.

Fortunately, the property list GUI is not the only way to edit .plist files.

If you Ctrl+click or right-click Root.plist, you’ll see that the Open As sub-

menu gives you four options: XML Property List, Text Property List,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=187

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 188

Figure 9.6: Editing Root.plist as source

Source Code File, and Plain Text File. Use either of the last two to open

a textual view of the property list, as shown in Figure 9.6, which will be

much more amenable to pasting and quickly reformatting large blocks

of text, like the time zone names.

At the top of the file, we can see the XML representation of the 12/24-

hour clock preference identifier. Now we need to add one for the time

zone names. This will be a specifier of type PSMultiValueSpecifier, which

takes two arrays, one called Titles and the other Values, to define the pref-

erences as the user sees them and the values provided to the

application.2

2. Yes, there is a maintenance hazard keeping the arrays in sync with each other. We
don’t know why they didn’t use an array of title-value dictionaries.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=188

USING THE SYSTEM SETTINGS APPLICATION FOR PREFERENCES 189

So, enter the following XML as a new dict child of the PreferenceSpecifiers

array:3

<dict>

<key>Type</key>

<string>PSMultiValueSpecifier</string>

<key>Title</key>

<string>Time Zone</string>

<key>Key</key>

<string>TimeZone</string>

<key>DefaultValue</key>

<string>America/Detroit</string>

<key>Titles</key>

<array>

<string>Chicago</string>

<string>Detroit</string>

<string>Vancouver</string>

</array>

<key>Values</key>

<array>

<string>America/Chicago</string>

<string>America/Detroit</string>

<string>America/Vancouver</string>

</array>

</dict>

With the bundle created, you can now view and edit your preferences

through the Settings application, just as soon as you install the app

to the simulator or device with a Build and Go (yes, even though your

application doesn’t yet do anything).

To try it, run the example program and quit out of it with the home but-

ton. Launch the Settings application, and you should see your applica-

tion with the name you provided in the bundle and the Icon-Settings.png

like in Figure 9.7, on the following page.

Even without writing any code in your application, the preferences GUI

is done. . . a significant win when compared to having to develop your

own GUI and persistence scheme, as we did in the first half of the

chapter. What’s left now is for the application to actually read in and

use the preferences.

3. The downloadable sample code uses many more cities. We show just a few here to

keep the book’s code more readable.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=189

LOADING PREFERENCES CONFIGURED IN THE SETTINGS APPLICATION 190

Figure 9.7: Settings application displaying configurable applications

9.6 Loading Preferences Configured in the Settings Application

Having set up the bundle, reading preferences in your application is

quite simple. You’ll want to start by defining both the keys for your

preferences (which of course must match the keys you defined in the

preference specifiers in Root.plist) and the default values:

Download FileIO/BundlePrefereableClock/Classes/BundlePrefereableClockViewController.m

NSString *TwentyFourHourPrefKey = @"24HourDisplay";

NSString *TimeZonePrefKey = @"TimeZone";

NSString *DefaultTimeZonePref = @"America/Detroit";

Next, to read in the settings, you get an NSUserDefaults object by means of

the class method standardUserDefaults. The NSUserDefaults lets you retrieve

preferences as strings, dictionaries, BOOLs, and so on, by means of

methods named stringForKey:, dictionaryForKey, boolForKey, and so on. De-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/BundlePrefereableClock/Classes/BundlePrefereableClockViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=190

LOADING PREFERENCES CONFIGURED IN THE SETTINGS APPLICATION 191

fine the instance variables BOOL show24Hour and NSString *timeZoneName

in BundlePreferableClockViewController.h, and then add the following

method to the .m file to read the preferences into these ivars:

Download FileIO/BundlePrefereableClock/Classes/BundlePrefereableClockViewController.m

- (void) loadPrefs {

// set app defaults

timeZoneName = DefaultTimeZonePref;

// read user prefs

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

NSString *userTimeZone = [defaults stringForKey:TimeZonePrefKey];

if (userTimeZone != NULL)

timeZoneName = userTimeZone;

[userTimeZone release];

show24Hour = [defaults boolForKey:TwentyFourHourPrefKey];

}

As you can see, once the NSUserDefaults object is loaded, it’s pretty sim-

ple to pull out the preferences values one by one, though you could

also get the entire set of preferences in a single call with the method

dictionaryRepresentation. It’s also worth noting that the stringForKey: may

return NULL if the user hasn’t set that preference, which is why you

want to always be able to fall back on the defaults in your code.

You’ll call loadPrefs in viewDidLoad, so the preferences will be read in

when the view comes up.

Speaking of the view, we still haven’t built the clock GUI that uses these

preferences. As with the first clock application, you’ll need to create

labels in IB for the time and the time zone name connected to IBOut-

lets called timeLabel and timeZoneLabel. Also declare an NSTimer *clock-

ViewUpdateTimer instance variable for the label-updating timer, and an

NSDateFormatter *clockFormatter to format it.

Download FileIO/BundlePrefereableClock/Classes/BundlePrefereableClockViewController.m

-(void) setClockFormatter {

if (clockFormatter == nil) {

clockFormatter = [[NSDateFormatter alloc] init];

}

if (show24Hour)

[clockFormatter setDateFormat: @"H:mm:ss"];

else

[clockFormatter setDateFormat: @"h:mm:ss a"];

// also update time zone

[clockFormatter setTimeZone: [NSTimeZone timeZoneWithName: timeZoneName]];

}

-(void) updateClockView {

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/FileIO/BundlePrefereableClock/Classes/BundlePrefereableClockViewController.m
http://media.pragprog.com/titles/amiphd/code/FileIO/BundlePrefereableClock/Classes/BundlePrefereableClockViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=191

LOADING PREFERENCES CONFIGURED IN THE SETTINGS APPLICATION 192

NSDate *dateNow = [NSDate date];

timeLabel.text = [clockFormatter stringFromDate: dateNow];

timeZoneLabel.text = timeZoneName;

}

-(void) startClock {

[self updateClockView];

if (!clockViewUpdateTimer) {

clockViewUpdateTimer = [NSTimer scheduledTimerWithTimeInterval:0.2

target:self

selector:@selector (updateClockView)

userInfo:NULL

repeats:YES];

}

}

- (void)viewDidLoad {

[super viewDidLoad];

[self loadPrefs];

[self setClockFormatter];

[self startClock];

}

Click the application’s title or icon, and you’ll be taken to the first page

of its settings, as shown in Figure 9.2, on page 183.

Try changing the settings in this interface, and then go back and rerun

the BundlePreferableClock in the simulator or on the device. You should

see your preferences honored in the display. One important thing to

keep in mind is that when you do a Build and Go in Xcode, the new

settings bundle will be copied over to the simulator or device, eliminat-

ing the preferences you had set before. So, when you test your prefer-

ence handling, you’ll want to be sure that you stay in the simulator and

don’t go back to Xcode until you’ve tested everything.

A Hybrid Approach

In the first section of this chapter, we didn’t spend a lot of time on the

idea of how to store your properties, noting that it’s easy enough to just

store .plists in your application’s Documents directory, in whatever file

format suits you. But even if you want to provide your own preferences

GUI, through a flippable interface or perhaps some other presentation,

you don’t have to work exclusively with the file APIs.

Take a look at the documentation for the NSUserDefaults that we use

to load the preferences set in the system Settings application. Along

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=192

LOADING PREFERENCES CONFIGURED IN THE SETTINGS APPLICATION 193

with the preference “getters” like boolForKey, integerForKey, and string-

ForKey:, there are corresponding “setter” methods (setBool:forKey:, setInte-

ger:forKey:) and a catchall setObject:forKey: that works with any of the

property list types.

What this means is that if you choose to provide your own preferences

GUI, you have a choice: manage the files yourself if that makes more

sense for your data, or use the main preferences database by using

NSUserDefaults to both read and write the properties.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=193

Chapter 10

The SQLite Database
Have you written database code before? If you have, let us guess: it ran

on the server, it was part of some business application, and the license

for the database cost more than your house. Any hands up for that

one?

Let’s consider another vision: a powerful database. . . in your pocket. . .

for whatever apps you care to use it for. . . for free. That’s what you get

with the iPhone’s built-in SQLite database.

And for readers who haven’t used a database in an application before,

you’re in luck, because the power afforded by a relational database

often makes managing your application faster and more reliable than

you could ever achieve with flat files. Consider the iPod application, for

example. If you relied on the metadata inside the MP3 and AAC files,

then finding and playing a given song by its title, or all the songs by an

artist, would become a woefully expensive operation as you opened and

read thousands of files. With a database, it’s a matter of composing

sensible queries like select * from music where artist like "%Zappa%"1 and

getting results in a fraction of a second.

The iPhone OS includes the SQLite database, a simple, lightweight,

database that bills itself as “the most widely deployed SQL database

engine in the world.” You can learn more about SQLite at its home page

at http://sqlite.org.

In this section, we’ll learn the techniques for building and using SQLite

databases in your application.

1. As always, our relative tastes in music may vary.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://sqlite.org

CREATING YOUR DATABASE 195

Joe Asks. . .

Should I Be Using Core Data Instead?

Maybe you should. Take a look at this chapter and Chapter 11,
Core Data, on page 212, and you’ll immediately realize they’re
radically different. Directly using the SQLite API is low-level,
manipulating database tables directly. Sometimes that’s good
for straightforward persistence, but it starts to get tricky when
you have to model complex relationships, like one-to-many
and many-to-many. Core Data lets you work at the object level,
which makes life easier when each object is related to sev-
eral others (which in turn may have their own object relation-
ships) and you need to maintain those relationships. Core Data
is also designed to present its managed objects in a UITableView,
whereas apps that use the database directly will have to pro-
vide their own table data models (as this chapter’s example
does).

If you are porting existing SQL code or you already have SQL
expertise on your team, you may prefer to work with SQLite.
That said, in bringing Core Data to the phone, Apple has made
it clear that it is the preferred framework for persisting data on
the device or desktop.

10.1 Creating Your Database

Conveniently, your Mac also has SQLite, version 3, as revealed by a

simple which on the command line:

⇐ Yuna:~ cadamson$ which sqlite3
⇒ /usr/bin/sqlite3

We’ll use the sqlite3 to create a database that you can then distribute

with your application.

For this section’s example, we’ll build a database-backed “shopping list”

that allows the user to add new items and list those that have already

been entered.

Before we create the iPhone application itself, let’s build the database

format and seed it with some data. Like most databases, SQLite works

with Structured Query Language (SQL). This is a widely supported

standard for expressing database commands as human-readable com-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=195

CREATING YOUR DATABASE 196

mand strings, with the added benefit that it’s a simple matter to create

SQL commands in code at runtime. Like most databases, SQLite has an

interactive mode that allows you to enter SQL commands and execute

them immediately. So, open Terminal (or xterm or whatever), and cd to

the DatabaseShoppingList directory. A shopping.db database file already

exists; delete or rename it so you can create a new one from scratch.

Now, begin your SQLite session by calling the sqlite3 command, along

with a database file:

⇐ Yuna:DatabaseShoppingList cadamson$ sqlite3 shopping.db

⇒ SQLite version 3.4.0

Enter ".help" for instructions

sqlite>

This opens the shopping.db file (if it doesn’t exist, the file will be cre-

ated once you write some data to it). Now you can immediately begin

entering SQL commands. Since there’s no data in the empty database,

we’ll begin by creating a table for the shopping list, where each row will

contain an item name, its price, a group code, and the date the item

was added. All it takes is a create table command, followed by a go.2

⇐ sqlite> create table shoppinglist (key integer primary key,

⇐ ...> item text,
⇐ ...> price double,

⇐ ...> groupid integer,

⇐ ...> dateadded date);

⇐ sqlite> go

This creates the structure of the shoppinglist table, but it doesn’t yet have

any contents. Add an item with a SQL insert command, like this:

⇐ sqlite> insert into "shoppinglist" (item, price, groupid, dateadded)

⇐ ...> values ("iPhone 3G", "199", 1, DATETIME('NOW'));
⇐ sqlite> go

Now you can do a SQL query to see the item you’ve added:

⇐ sqlite> select * from shoppinglist

⇐ ...> go

⇒ 1|iPhone 3G|199.0|1|2008-06-28 12:35:24

Having done that, you can seed more data for the application with a

script file that we’ve included with the downloadable sample code. Quit

sqlite3 with the .quit command to return to the command line. Delete

2. Note that the ...> in the output listing is an indentation inserted by sqlite3 where we’ve

hit the Return key while entering the command. Since the semicolon, and not the Return
key, completes the command, you can break lines as you please.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=196

CREATING YOUR DATABASE 197

the shopping.db file with rm shopping.db. The download contains a script

called make-table-script to insert more items into the shopping list. You

can run this script by providing it as input to the sqlite3 command:

⇐ Yuna:DatabaseShoppingList cadamson$ sqlite3 shopping.db < make-table-script

Now, go back into SQLite’s interactive mode to examine the data that’s

been created:

⇐ Yuna:DatabaseShoppingList cadamson$ sqlite3 shopping.db

⇒ SQLite version 3.4.0

Enter ".help" for instructions
⇐ sqlite> select * from shoppinglist

⇐ ...> go

⇒ 1|Pop Zero 12-pack|3.99|0|2008-06-28 12:42:23

2|Mac Pro|2499.99|1|2008-06-28 12:42:23

3|iPhone 3G|199.0|1|2008-06-28 12:42:23

4|Potato chips|2.49|0|2008-06-28 12:42:23

5|Frozen pizza|3.75|0|2008-06-28 12:42:23

6|Final Cut keyboard|169.95|1|2008-06-28 12:42:23

7|Mints|0.98|0|2008-06-28 12:42:23

8|ADC select membership|500.0|1|2008-06-28 12:42:23

9|iPhone individual membership|99.0|1|2008-06-28 12:42:23

sqlite>

For purposes of the example, we tried to provide the kinds of things

that geeks would typically shop for. That’s why there are only two group

codes: 0 represents groceries, and 1 represents tech. After all, when you

have munchies and gear, what else do you really need? 3

If you haven’t done a lot of database work, you might wonder about

this key field we’ve created and marked as a primary key, without ever

actually populating. It is a common practice in database programming

to give each row a unique ID, often created by the database itself, in

order to make unambiguous references to the row later. For example

if you had multiple entries for “Frozen pizza,” all effectively identical,

and wanted to update or delete one, you’d want a unique ID to tell the

database what to delete (for example, delete from shoppinglist where key=5).

It’s also crucial if you later want to combine rows from multiple tables,

for example, if you wanted to have a second table that listed a variable

number of stores where you might buy items from the shopping list. In

such a case, each row of the itemsatstores table would refer to the id of a

row in the shoppinglist table.

3. Actually, we considered having a third group for action figures but figured it would be
too much of a hassle coming up with authentic-sounding superhero and RPG character

names that wouldn’t get us sued by the trademark police.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=197

CREATING THE SAMPLE APPLICATION 198

10.2 Creating the Sample Application

To exercise some database code, our iPhone application will support

two functions: adding to the shopping list and viewing its contents. We’ll

do this with a tab bar application, with one tab each (and therefore one

view controller each) for the adding and viewing functions. In Xcode,

create a new tab bar application, which we’ll call DatabaseShoppingList.

By default, the app has two tabs, which is just what we need, though

we’ve chosen to use the Refactor command to rename FirstViewController

to AddItemViewController.

By default, the MainWindow.xib has two view controllers to handle the

two tabs, which is what we want, though they’re named First and Sec-

ond by default. Find the Selected First View Controller in Interface

Builder (you’ll have to change IB’s view mode to list or column to see

it), expand it to get to its Tab Bar Item, bring up the Identity inspec-

tor, and change its Title to Add Item. Similarly, change the second view

controller’s tab bar item’s Title to List by Price. We also added small

PNG icons to the downloadable example at this point.

MainWindow.xib includes a view for the first tab by default, and rather

than create a separate nib, it’s fine to just customize this. Delete any

current contents and add text fields for an item name and price, a

picker for the item type, an Add Item button, and a label at the bottom

that we’ll use to confirm each add.

You’ll then need to edit AddItemViewController.h to add outlets for the text

fields, picker, and label, and you’ll need to provide an action to handle

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=198

CREATING THE SAMPLE APPLICATION 199

the button click. Also, implement the picker delegate and data source

methods, as well as UITextFieldDelegate, so you can dismiss the keyboard

when the user clicks Return. Then connect these outlets and headers

from the GUI components to the AddItemViewController. Also connect

the text fields’ delegates to this view controller, as well as the picker’s

delegate and dataSource.

Download SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.h

@interface AddItemViewController : UIViewController <UIPickerViewDelegate,

UIPickerViewDataSource, UITextFieldDelegate> {

UITextField *itemNameField;

UITextField *priceField;

UIPickerView *groupPicker;

UILabel *statusLabel;

}

- (IBAction) addShoppingListItem: (id) sender;

@property (nonatomic, retain) IBOutlet UITextField *itemNameField;

@property (nonatomic, retain) IBOutlet UITextField *priceField;

@property (nonatomic, retain) IBOutlet UIPickerView *groupPicker;

@property (nonatomic, retain) IBOutlet UILabel *statusLabel;

@end

The picker’s delegate and data source methods have nothing to do

with the database and can be written now. numberOfComponentsInPick-

erView: always returns 1, pickerView:numberOfRowsInComponent: returns

2, and pickerView:titleForRow:forComponent: returns the string Groceries if

the row is 0 or Tech if it’s 1.

The second view is just a table, so it’s easier to set up. In Xcode, use

File > New File to create a new UITableViewController subclass, called List-

ByPriceViewController. If you like, you can rename the SecondView.xib file

to ListByPriceView.xib. Either way, edit this file in IB, and delete the default

view object, replacing it with a table view. Be sure to check the File’s

Owner object’s outlets, reconnecting its view outlet to the table view.

Over in MainWindow.xib, select the second view controller, and use the

Identity inspector to change its class to ListByPriceViewController. If you

renamed the corresponding nib, you’ll also need to use the Attributes

inspector to change the nib file from the no longer existent MainWin-

dow.xib to ListByPriceView.xib.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=199

PUTTING YOUR DATABASE ON THE DEVICE 200

We now have the basic outline of the app, so let’s integrate the database

functionality. If you want to skip setting up the GUI and go straight to

the database stuff, we’ve put just the previous GUI setup in the down-

loadable code bundle as DatabaseShoppingListStarter, while the finished

project is DatabaseShoppingListComplete.

10.3 Putting Your Database on the Device

You have a database file and the basics of an application. Now you’re

ready to access the contents of the database from your code. To do

this, you’ll be using SQLite’s C API, which is not included by default

in Xcode projects. That means you’ll need to do two things with any

iPhone application that uses SQLite:

1. First, add libsqlite3.dylib to the Xcode project. In Groups & Files,

expand the Targets item, select DatabaseShoppingList, and bring up

its Inspector with D I or the toolbar Info button. Click General, and

look at the bottom half of the window: you’ll see the frameworks

currently linked into the project. Click the + button to add a new

framework, and choose libsqlite3.dylib from the sheet. You’ll notice

we’ve already done this for the project in the downloadable sample

code.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=200

PUTTING YOUR DATABASE ON THE DEVICE 201

2. In any class that uses the SQLite API, you’ll need to include the

header file:

#include <sqlite3.h>

You’ll also need to copy your database files to the application bundle.

You can do this by dragging them from the Finder into the Resources

folder in your Xcode project or by Ctrl+clicking the Resources directory

and choosing Add > Existing File.

While your database will be in the application bundle, this isn’t the

file you’ll be writing new records to. The reason is simple. You don’t

have write access to your application’s own bundle. Instead, you should

copy the database file to another folder—almost certainly the Documents

folder—and then work with that file.

Copying to the Documents Directory

So, before using any SQLite functions, copy the database file to a known

location (which the DatabaseShoppingListAppDelegate class will refer to

with an NSString property called dbFilePath). In the example code, this is a

file in the Documents directory whose name is indicated by the constant

value DATABASE_FILE_NAME. To set this path when the application starts

up, we begin by locating the Documents directory.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=201

PUTTING YOUR DATABASE ON THE DEVICE 202

Joe Asks. . .

Do I Have to Create My Database on the Desktop First?

Technically, no. As you’ll see in the next few sections, the SQL
statements you create in code are no different from those used
with the sqlite3 interactive command-line application, so you
could do everything at runtime with the programmatic API,
including the CREATE TABLE command. When you do this, the ini-
tial call to sqlite3_open() will create the database file if it doesn’t
exist already, just as the command-line sqlite3 does.

There might be highly dynamic cases where this is a useful
approach, but you’ll often find it’s more convenient and per-
formant to create your database at development time and
include it as part of your application bundle, making a copy
to hold the user’s data. This approach also lets you revert to the
original database easily. Just recopy the original database file
from the bundle.

Download SQLite/DatabaseShoppingListComplete/Classes/DatabaseShoppingListAppDelegate.m

NSArray *searchPaths =

NSSearchPathForDirectoriesInDomains

(NSDocumentDirectory, NSUserDomainMask, YES);

NSString *documentFolderPath = [searchPaths objectAtIndex: 0];

dbFilePath = [documentFolderPath stringByAppendingPathComponent:

DATABASE_FILE_NAME];

You’ll notice this is a different approach than the NSHomeDirectory()

function that was shown earlier (in Section 8.2, Exploring Directories, on

page 144) for finding the application’s home directory. This code shown

here—Apple’s preferred technique for finding the Documents folder—

searches known paths for predefined items of interest. In this case,

you indicate your interest in the Documents folder by passing the con-

stant NSDocumentDirectory and then pulling out the first path from the

returned array.

Next, it’s a pretty simple matter to find the database file in the applica-

tion bundle and have NSFileManager copy it to the Documents directory.

In this example, the constants DATABASE_RESOURCE_NAME and DATABASE_

RESOURCE_TYPE are just NSStrings for the database filename and exten-

sion: database and db, respectively.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/DatabaseShoppingListAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=202

USING YOUR DATABASE ON THE DEVICE 203

Download SQLite/DatabaseShoppingListComplete/Classes/DatabaseShoppingListAppDelegate.m

if (! [[NSFileManager defaultManager] fileExistsAtPath: dbFilePath]) {

// didn't find db, need to copy

NSString *backupDbPath = [[NSBundle mainBundle]

pathForResource:DATABASE_RESOURCE_NAME

ofType:DATABASE_RESOURCE_TYPE];

if (backupDbPath == nil) {

// couldn't find backup db to copy, bail

return NO;

} else {

BOOL copiedBackupDb = [[NSFileManager defaultManager]

copyItemAtPath:backupDbPath

toPath:dbFilePath

error:nil];

if (! copiedBackupDb) {

// copying backup db failed, bail

return NO;

}

}

}

return YES;

10.4 Using Your Database on the Device

With the database file now copied to your application’s Documents direc-

tory, you’re now ready to start making calls on it via the SQLite C API.

The entire API is quite small, and you’ll typically follow a consistent

pattern of function calls when using it:

1. sqlite3_open()—to prepare the database for use.

2. sqlite3_prepare()—to set up a prepared SQL statement.4

3. sqlite3_step()—to execute the statement, which either writes to the

database (in the case of writes, deletes, and updates) or prepares

one row of a result set for reading.

4. sqlite3_column_NNN()—to retrieve typed data from the current re-

sult set, where NNN indicates a data type, such as bytes(), int(),

text(), and so on.

5. sqlite3_finalize()—to free resources allocated for use by the

database.5

6. sqlite3_close()—to close the database.

4. Technically, sqlite3_prepare_v2() is preferred for all new SQLite development.
5. One of our tech reviewers reminded us that unfinalized statements can result in data

loss or corruption, so if you keep a statement around in memory, you might need to
finalize it in applicationWillTerminate.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/DatabaseShoppingListAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=203

USING YOUR DATABASE ON THE DEVICE 204

Inserting Values into the Database

So, let’s consider the needs of the sample application. It needs to list the

items currently in the database—which it can do by querying the shop-

pinglist table for all its contents and building a GUI from the results—

and to allow the user to add new items. We can start with the “add

items” functionality, because it’s a little easier.

When the user taps the Add Item button, the addShoppingListItem: meth-

od begins by sanity-checking the item and price fields. If this succeeds,

then we can get the dbFilePath property from the app delegate and use

it to open the database with sqlite3_open().

Download SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m

if (([itemNameField.text length] == 0) ||

([priceField.text length] == 0) ||

([priceField.text doubleValue] == 0.0))

return;

sqlite3 *db;

int dbrc; // database return code

DatabaseShoppingListAppDelegate *appDelegate = (DatabaseShoppingListAppDelegate*)

[UIApplication sharedApplication].delegate;

const char* dbFilePathUTF8 = [appDelegate.dbFilePath UTF8String];

dbrc = sqlite3_open (dbFilePathUTF8, &db);

if (dbrc) {

NSLog (@"couldn't open db:");

return;

}

As a procedural C API, using SQLite means you’ll be working with

habits different from what you’re used to from Cocoa and Objective-

C. Specifically, you don’t get to work with objects per se, and instead

you’ll need to create structures that you’ll pass into various function

calls. You can see that here with db, a pointer to an sqlite3 structure.

Rather than allocing it, you call the sqlite3_open() function and pass

in an address where you’d like to receive a pointer to a newly created

sqlite3 struct.

You might also notice that as a C API, you have to pass in the database

path as a pointer to a C string: a const char*, terminated by a nul char-

acter. Fortunately, NSString’s UTF8String method returns exactly what we

need here and autoreleases it as an added benefit. Also note that all

SQLite functions return a “result code” value, whose values are con-

stants defined in sqlite3.h. In most cases, 0, the value for the constant

SQLITE_OK, indicates success, and nonzero results indicate errors or

other exceptional conditions.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=204

USING YOUR DATABASE ON THE DEVICE 205

With the database now open, you are ready to construct an INSERT state-

ment to add your row of data. Here’s how the shopping list application

does it: 6

Download SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m

sqlite3_stmt *dbps; // database prepared statement

NSString *insertStatementNS = [NSString stringWithFormat:

@"insert into \"shoppinglist\"\

(item, price, groupid, dateadded)\

values (\"%@\", %@, %d, DATETIME('NOW'))",

itemNameField.text,

priceField.text,

[groupPicker selectedRowInComponent: 0]];

const char *insertStatement = [insertStatementNS UTF8String];

dbrc = sqlite3_prepare_v2 (db, insertStatement, -1, &dbps, NULL);

dbrc = sqlite3_step (dbps);

In this block, we begin by reserving a pointer to a prepared statement

struct, that is, a sqlite3_stmt, and then assembling a SQL INSERT statement

by filling in values for a format string with the content of the UITextFields

and the selected row of the group picker. The resulting string will be an

INSERT statement just like those you used earlier in the command-line

interactive mode. You then use the sqlite3_prepare_v2() function to create

a prepared statement from the C-friendly null-terminated version of

this string, passing -1 as the string length to tell SQLite to figure out the

length by finding the null terminator (which spares us from having to

account for the possibility of multibyte characters in the UTF-8 string).

To actually execute the insert, you call sqlite3_step(). If this method

returns SQLITE_DONE, your row has been added to the database.

With the statement having served its purpose, you should now clean

up and release any resources it has allocated. You can reuse the sqlite3

struct to create more prepared statements, but in the sample code, I’ve

chosen to just always clean up and close everything after each insert.

6. The backslash characters at the end of each line in the insertStatementNS string are not

necessarily part of the syntax; they’re line-wrap characters needed only for formatting the
string for the book’s code example. You don’t have to break your strings like this, though

it can make your code more readable to do so.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=205

USING YOUR DATABASE ON THE DEVICE 206

Download SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m

// done with the db. finalize the statement and close

sqlite3_finalize (dbps);

sqlite3_close(db);

One final task to attend to in AddItemViewController is to dismiss the

virtual keyboard when the user taps Return, which we have do to make

sure the user can see and tap the Add Item button. We already set both

text fields’ delegates to the view controller, so we just need a boilerplate

method to resign the first responder:

Download SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

[textField resignFirstResponder];

return YES;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m
http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/AddItemViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=206

USING YOUR DATABASE ON THE DEVICE 207

Care and Feeding of SQL

The SQL statements we’re using in this example are unrealisti-
cally simple, so we can focus on the SQLite API. In particular,
we’re not doing anything to clean up the input, such as escap-
ing quotes or ensuring that the user input isn’t trying to perform
its own nefarious SQL (a so-called SQL injection attack).

It’s not that we don’t think such techniques aren’t important—
we do—it’s just that offering a proper introduction to SQL is way
beyond our scope. There are tens of thousands of books on
SQL. (Literally. We counted.) If you’re at all serious about using
the iPhone’s database, then either you’ve already read at least
one or you’re going to want to do so.

Reading Values from the Database

Having inserted a row into the database, reading rows turns out to be a

nearly identical process. The biggest difference in doing a query, other

than the content of the prepared statement, is that after you do the

sqlite3_step(), you iterate over the results to pull out the values returned

by your query.

In the DatabaseShoppingList example, the entire contents of the shop-

pinglist table can be read into memory each time the view controller for

the shopping list gets the viewWillAppear: message. A loadDataFromDb

method queries the database and caches the results for use as the data

source of a UITableView, the table view that we set up as the only view

in the second nib. Specifically, loadDataFromDb creates an NSArray of

NSDictionaries, where each dictionary is one row of the database table,

with its fields (item name, kind, and price) maintained as name/value

pairs. This way, we can implement the tableView:numberOfRowsInSection:

to just return the length of the array.

Opening the database and preparing a statement, with sqlite3_open()

and sqlite3_prepare_v2(), work exactly as they did earlier, with the obvi-

ous exception of the content of the SQL string:

Download SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m

NSString *queryStatementNS =

@"select key, item, price, groupid, dateadded\

from shoppinglist order by price";

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=207

USING YOUR DATABASE ON THE DEVICE 208

Notice how this query indicates the fields we want the query to return.

The result set will contain only these fields, in this order. The order

becomes important soon when you indicate which columns you want

to retrieve.

Next, repeatedly call sqlite3_step(), checking to see whether the return

code is SQLITE_ROW. If so, a row of result data is ready for you to retrieve

with SQLite’s “column” functions, as defined in sqlite3.h:

const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);

int sqlite3_column_bytes(sqlite3_stmt*, int iCol);

int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);

double sqlite3_column_double(sqlite3_stmt*, int iCol);

int sqlite3_column_int(sqlite3_stmt*, int iCol);

sqlite_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);

const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);

const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);

int sqlite3_column_type(sqlite3_stmt*, int iCol);

sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

As you can see, functions are available for returning BLOBs (binary

large objects, which are returned as untyped pointers), bytes, doubles,

ints, strings (as pointers to null-terminated UTF-8 strings7), along with

metadata functions for getting the names and types of columns. Each

function takes as parameters the statement that you executed with

sqlite3_step(), as well as a column index, which refers to the order you

specified in your SQL SELECT statement (and not necessarily the order

of the columns in the actual database table).

So, here’s how we can iterate over the query results, converting from

SQLite’s C-friendly representations into Cocoa objects, which we then

put into an NSDictionary for use later by the table.

Download SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m

while ((dbrc = sqlite3_step (dbps)) == SQLITE_ROW) {

int primaryKeyValueI = sqlite3_column_int(dbps, 0);

NSNumber *primaryKeyValue = [[NSNumber alloc]

initWithInt: primaryKeyValueI];

NSString *itemValue = [[NSString alloc]

initWithUTF8String: (char*) sqlite3_column_text (dbps, 1)];

double priceValueD = sqlite3_column_double (dbps, 2);

NSNumber *priceValue = [[NSNumber alloc]

initWithDouble: priceValueD];

int groupValueI = sqlite3_column_int(dbps, 3);

NSNumber *groupValue = [[NSNumber alloc]

initWithInt: groupValueI];

7. As of SQLite 3, the database can handle UTF-16 text encodings too.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=208

USING YOUR DATABASE ON THE DEVICE 209

NSString *dateValueS = [[NSString alloc]

initWithUTF8String: (char*) sqlite3_column_text (dbps, 4)];

NSDate *dateValue = [dateFormatter dateFromString: dateValueS];

NSMutableDictionary *rowDict =

[[NSMutableDictionary alloc] initWithCapacity: 5];

[rowDict setObject: primaryKeyValue forKey: PRIMARY_ID_KEY];

[rowDict setObject: itemValue forKey: ITEM_KEY];

[rowDict setObject: priceValue forKey: PRICE_KEY];

[rowDict setObject: groupValue forKey: GROUP_ID_KEY];

[rowDict setObject: dateValue forKey: DATE_ADDED_KEY];

[shoppingListItems addObject: rowDict];

// release our interest in all the value items

[dateValueS release];

[primaryKeyValue release];

[itemValue release];

[priceValue release];

[groupValue release];

[rowDict release];

}

One thing worth noting is the handling of dates. You might have noticed

in the previous code that there’s no C function to retrieve a date. You

might think that you could get a numeric value, say, one that repre-

sents the number of milliseconds since a certain “epoch” date, but it

doesn’t work that way (instead, you just get back the year of the date

value). What works is to get a string representation of the date and to

then parse that with NSDateFormatter. You just have to keep in mind

that SQLite date values don’t maintain a time zone, and if you use

the database’s own date commands—like we did in make-table-script by

using the DATETIME(’NOW’) statement—then those times are assumed to

be in UTC. Actually, that makes for a pretty good system for consistent

timekeeping: always convert times to UTC before you insert, assume all

times retrieved from the database are in UTC, and convert to the local

time zone as necessary.

So, in the previous code, we use an NSDateFormatter to convert the

database’s string representation into an NSDate. This formatter is ini-

tialized in initWithNibName:bundle:.

Download SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m

dateFormatter = [[NSDateFormatter alloc] init];

[dateFormatter setTimeZone: [NSTimeZone timeZoneWithAbbreviation:@"UTC"]];

[dateFormatter setDateFormat: @"yyyy-MM-dd HH:mm:ss"];

We then create a formatter, set its time zone to UTC, and provide the

date string format returned by the database, in Locale Data Markup

Language (LDML) format (aka Unicode Technical Standard 35 [Uni04]).

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=209

USING YOUR DATABASE ON THE DEVICE 210

Assuming that loadDataFromDb (called from viewWillAppear:) has created

the instance variable shoppingListItems array, the tableView:cellForRowAtIn-

dexPath: method can grab an index from this table by its index, cast it to

an NSDictionary, and use the name/value pairs to populate a table cell.

With multiple items of interest in each cell, this is an ideal time to use

custom IB-designed table cells, as introduced in Section 5.7, Custom

Table View Cells, on page 105. For the example we’ve included in the

downloadable code, we’ve provided fields for the item name, price, and

group; you can of course lay out your cells differently and use some or

all of the fields retrieved from the database.

Once a cell has either been dequeued from the table or been loaded

from the nib, setting its values is just a matter of reading from the

array of dictionaries created earlier by loadDataFromDb.

Download SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m

UILabel *itemLabel = (UILabel*) [myCell viewWithTag:1];

UILabel *groupLabel = (UILabel*) [myCell viewWithTag:2];

UILabel *priceLabel = (UILabel*) [myCell viewWithTag:3];

NSDictionary *rowVals =

(NSDictionary*) [shoppingListItems objectAtIndex: indexPath.row];

NSString *itemName = (NSString*) [rowVals objectForKey: ITEM_KEY];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/SQLite/DatabaseShoppingListComplete/Classes/ListByPriceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=210

USING YOUR DATABASE ON THE DEVICE 211

itemLabel.text = itemName;

int groupid = [(NSNumber*) [rowVals objectForKey: GROUP_ID_KEY] intValue];

groupLabel.text = GROUP_NAMES [groupid];

NSNumber *price = (NSNumber*) [rowVals objectForKey: PRICE_KEY];

priceLabel.text = [priceFormatter stringFromNumber: price];

This is a fairly simple example of what you can do with the iPhone’s

SQLite 3 database. SQLite 3 is a powerful database, offering triggers,

JOINs (including some OUTER JOINs), and much of the SQL-92 standard.

In fact, SQLite’s web page says it’s easier to list the SQL-92 features it

doesn’t implement (check out SQL Features That SQLite Does Not Imple-

ment [Hip09] for details) than to list all those that it does. So, if your

persistence needs include a database, the iPhone’s built-in support will

probably be all you need.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=211

Chapter 11

Core Data
We hope you have been convinced by Chapter 10, The SQLite Database,

on page 194 that you want to use a database. However, if you are one

of the majority developers for whom SQL is just not that exciting, then

you are in luck. Core Data provides a wonderfully easy-to-use wrapper

around SQL that lets us Objective-C developers spend our time think-

ing in objects instead of queries.

Don’t get us wrong—SQL is a great language and has a ton of power.

But it has a totally different conceptual model than objects, and it can

be a pain in the neck to manually switch your thinking back and fourth.

That is where Core Data shines; it provides all the power of the database

and none of the hassles of the conceptual switching. You can use Core

Data and never even know or care that the data is going into a relational

database. That’s the beauty of the framework.1

In this chapter, we’ll look at how to use Core Data to create and use the

persistent data in an application. Please grab the CoreData/Conference

project from the download code bundle. The chapter leaves out some

of the detail of things that we have covered extensively in the previ-

ous chapters, and it might help to have the completed code to compare

your code to as you work through the example. Much of the code you

will need to make this app work is intentionally left out of the discus-

sion because we have covered the concepts in previous chapters. Topics

like creating new view controllers and their associated nib files are not

covered at all. Let’s get started with a look at the application we are

going to build.

1. Of course, understanding SQL and relational databases can help when debugging,
but that knowledge is not required to use and understand Core Data.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

THE CONFERENCE APPLICATION 213

11.1 The Conference Application

To help us explore the Core Data APIs, we’ll build an application called

Conference. This application will help users manage which sessions

they want to attend at a conference. For each track in the conference,

we will display a list of sessions in that track. Users then select the

sessions they want to attend.

The Conference application has four screens. Let’s look at each one in

turn. The opening screen displays a list of tracks. The user can add

and delete tracks, and when the Edit button is pushed, selecting a

track takes you to the editing screen for the track information. Here is

the app in edit mode with three tracks added:

The list of tracks displayed here comes from Core Data. All the Track

objects are fetched from persistent storage, and that list becomes the

underlying data model for this table. We will talk a lot more about the

classes that Core Data provides to make this job easier in Section 11.5,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=213

THE CONFERENCE APPLICATION 214

Track Table View, on page 228 where we discuss the RootViewController

that backs this table view.

Tracks can be added to the list by tapping on the + button in the top-

right side. When that button is clicked, we will call on Core Data to

make the new object and place it into the managed object context so it

can be persisted.2 Clicking any of the red – buttons on one of the rows

will allow the user to delete the object. After the changes are made, as

you’d expect, we save them by asking Core Data to persist the changes.

The next screen allows the user to edit the track’s name and abstract.

This screenshot shows the IT track selected:

As the text of the name or abstract for a track is edited, the track’s

properties are updated. These changes too are registered, but we don’t

have to code that. Core Data is watching our objects and makes note

2. We are going to go over the managed object context in detail in the next section.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=214

THE CONFERENCE APPLICATION 215

of any changes. When the user finishes here, the changes are persisted

again.

When the track list is not in editing mode, selecting a track takes the

user to the list of sessions for that track. Here is a screenshot of the list

of sessions for the iPhone track:

Pressing the + button, as you’d expect, creates a new Session. We use

Core Data to create the new object and persist it to the database.

And finally, selecting a particular session takes you to the editing

screen for that session. A screenshot of that interface is shown on the

next page.

When the user is finished making changes to the session information,

the text is placed back on the session object, and as you’d expect,

Core Data makes note of the changes since it’s watching the session

object. In fact, Core Data is watching all objects that are managed by

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=215

THE CORE DATA STACK 216

it. Changes we make to any object that we get from Core Data are cat-

alogued so they can be persisted.

As you can see from the application’s description, we are going to be

making heavy use of Core Data to provide the functionality of our Con-

ference application. We have not talked in much detail yet about how

Core Data provides all its functionality or how we get it set up to do so,

so the next section is going to explain how to get Core Data set up and

a bit of how it works.

11.2 The Core Data Stack

Let’s get started by creating the new project. Our data model is list

oriented and hierarchical, so we want to start with the navigation-based

application template. Call it Conference, and don’t forget to select the

box that says “Use Core Data for storage.”

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=216

THE CORE DATA STACK 217

A lot of what is created by the template is old hat by now. The familiar

app delegate and root view controller classes and the associated nib

files are familiar. We have seen most of this stuff several times now, and

we know what it is. However, when we start to dig into what we’ve made

by instantiating this template with “Use Core Data for storage” enabled,

we start to see some subtle differences. Before we dig into implementing

our application, let’s take a look at the application delegate and see

what has been added to our familiar template.

For starters, the app delegate class (ConferenceAppDelegate) has quite

a bit more to it than we have seen in the past. While we have typically

seen a window and viewController of one sort or another in this class,

several new properties are related to Core Data now. Here is the header

file:

Download CoreData/Conference01/Classes/ConferenceAppDelegate.h

Line 1 @interface ConferenceAppDelegate : NSObject <UIApplicationDelegate> {
- NSManagedObjectModel *managedObjectModel;
- NSManagedObjectContext *managedObjectContext;
- NSPersistentStoreCoordinator *persistentStoreCoordinator;
5

- UIWindow *window;
- UINavigationController *navigationController;
- }
-

10 @property (nonatomic, retain, readonly)
- NSManagedObjectModel *managedObjectModel;
- @property (nonatomic, retain, readonly)
- NSManagedObjectContext *managedObjectContext;
- @property (nonatomic, retain, readonly)

15 NSPersistentStoreCoordinator *persistentStoreCoordinator;
- @property (nonatomic, readonly) NSString *applicationDocumentsDirectory;
-

- @property (nonatomic, retain) IBOutlet UIWindow *window;
- @property (nonatomic, retain) IBOutlet

20 UINavigationController *navigationController;
-

- - (IBAction)saveAction:sender;
-

- @end

This set of four new properties work together in what is called the Core

Data stack. This stack of objects is the basis of how Core Data works.

These are the objects that give Core Data its really cool feature set. The

four objects that make up this stack are the persistent object store,

the persistent store coordinator, the managed object context, and the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference01/Classes/ConferenceAppDelegate.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=217

THE CORE DATA STACK 218

managed object model. Here is a diagram depicting the four objects and

their relationships. A discussion of each object follows.

Managed
Object
Context

Persistence
Store

Coordinator
Managed

Object Model

Core Data
Managed

File

Persistent
Object
Store

row data turned
into objects

like the schema
for our database

database file

database
connection

scratch pad

The persistent object store (or POS for short) performs all the lowest-

level translation of object-speak to data as well as managing the open-

ing and closing the underlying file. It is created, managed, and heavily

used by the persistent store coordinator. Consider the SQLite POS as

an example; objects go into the POS, SQL comes out and is pushed

through the SQLite API, and a change to the database file results. When

objects are needed, a request comes in from the persistent store coor-

dinator and is translated by the POS to SQL queries. The SQL is then

sent through the SQLite API, and the returned records are used by the

persistent store coordinator to produce objects.

Core Data ships with three POS implementations: SQLite, binary, and

memory. I recommend always using the SQLite implementation be-

cause it’s the easiest to debug and see what is actually persisting. The

binary implementation is good for putting really small data sets into if

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=218

BUILDING THE CORE DATA STACK 219

you don’t want the performance overhead of SQL and your data is very

simple. The memory implementation is good for temporary data that

does not need to persist beyond the POS.

The persistent store coordinator (or PSC for short) provides a generalized

cover over the persistent object store. In the most general case, you can

have multiple object stores, but on the iPhone you rarely will. Where

the persistent object store is specific to a particular store, the persistent

store coordinator is more general. The persistent store coordinator uses

the managed object model to help it understand the form and layout of

the objects that are being persisted to the stores.

The managed object model (or MOM for short) contains the description,

or the metadata, of your model. It is where you describe the entities3

and their properties that make up the model of your application. In

Conference, we are going to have two entities, Session and Track.

The last object in the stack, and the one we will be interacting with

the most, is the managed object context (or MOC for short). The MOC

is used as a scratch pad. Objects are pulled through the stack into the

MOC and then kept there while we change them. All inserts, deletes,

and updates to the set of objects in the MOC are held until we tell

the MOC to save. At that point, the MOC’s list of changes is pushed

down through the stack, at each step translated closer to the eventual

language of the POS where it eventually becomes native (that is, SQL

statements for the SQLite POS) and sent to the persistent storage.

This stack of objects is created for us by the app delegate. All the code

to build out the stack is generated for us when we check that little “Use

Core Data for storage” checkbox. Let’s go look at how these objects are

created for us.

11.3 Building the Core Data Stack

You probably noticed that each of the Core Data–related properties is

read-only in the ConferenceAppDelegate header file. That is because

each of them is actually derived (or built when asked for). Instead of

relying on some outside object to create and set these objects, the app

3. An entity is something that is modeled, like the Session in our example. An entity

captures features of the modeled thing, such as its attributes and relationships to other

entities.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=219

BUILDING THE CORE DATA STACK 220

delegate creates them. Let’s look at the implementation provided by the

template and see how the stack is created.

Let’s start on the bottom of the stack with the persistent store coordi-

nator and persistent object store. Here is the code:

Download CoreData/Conference01/Classes/ConferenceAppDelegate.m

Line 1 - (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
- if (persistentStoreCoordinator != nil) {
- return persistentStoreCoordinator;
- }
5

- NSURL *storeUrl = [NSURL fileURLWithPath:
- [[self applicationDocumentsDirectory]
- stringByAppendingPathComponent: @"Conference.sqlite"]];
-

10 NSError *error = nil;
- persistentStoreCoordinator =
- [[NSPersistentStoreCoordinator alloc]
- initWithManagedObjectModel: [self managedObjectModel]];
- if (![persistentStoreCoordinator

15 addPersistentStoreWithType:NSSQLiteStoreType
- configuration:nil
- URL:storeUrl
- options:nil
- error:&error]) {

20 // Handle error
- }
-

- return persistentStoreCoordinator;
- }

Three things are happening in this method. First we grab the docu-

ments directory and add Conference.sqlite to the end; we use that path

to create a URL for our database file. Next we create an instance of

NSPersistentStoreCoordinator with the managed object model on line 11.

And finally we configure a new persistent object store starting on line

14. The persistent object store uses the SQLite type and stores the

database in the file specified by storeURL. The last argument is a pointer

to an error; if something goes wrong, then error will be set to an instance

of NSError that contains detailed information about what went wrong.

The applicationDocumentsDirectory property is used to find the applica-

tion’s Documents directory. It is calculated every time the get method

is called. For more information, see Section 10.3, Copying to the Docu-

ments Directory, on page 201.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference01/Classes/ConferenceAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=220

BUILDING THE CORE DATA STACK 221

With these few lines of code, we have the Core Data stack connected

to a SQLite database file. Let’s look at how we load the managed object

model next. Here is the code:

Download CoreData/Conference01/Classes/ConferenceAppDelegate.m

- (NSManagedObjectModel *)managedObjectModel {

if (managedObjectModel != nil) {

return managedObjectModel;

}

managedObjectModel = [[NSManagedObjectModel mergedModelFromBundles:nil]

retain];

return managedObjectModel;

}

In this code, we use the mergedModelFromBundles: to grab all the model

files that are in our application’s bundle and merge them into one MOM.

This class method looks through the whole application bundle looking

for model files, and each one is loaded and merged into the overall

MOM. In practice, though, most iPhone applications will have only one

model.

The last piece of the stack is the managed object context. Here is the

code to create the MOC:

Download CoreData/Conference01/Classes/ConferenceAppDelegate.m

- (NSManagedObjectContext *) managedObjectContext {

if (managedObjectContext != nil) {

return managedObjectContext;

}

NSPersistentStoreCoordinator *coordinator =

[self persistentStoreCoordinator];

if (coordinator != nil) {

managedObjectContext = [[NSManagedObjectContext alloc] init];

[managedObjectContext setPersistentStoreCoordinator: coordinator];

}

return managedObjectContext;

}

This code does two things: it grabs the persistent store coordinator and

then uses that to configure the managed object context.

Now that we have seen how the Core Data stack is created and we have

talked about how it is used, we can start to dig into how we are going

to use Core Data in Conference. We will start by modeling the classes

that make up our model.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference01/Classes/ConferenceAppDelegate.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference01/Classes/ConferenceAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=221

MODELING 222

11.4 Modeling

Now that we have seen the way the template has set up Core Data

for us, let’s start fleshing out our application by building our managed

object model.

The managed object model is a central part of how Core Data interacts

with your model. Core Data uses the entity when it translates between

the world of Objective-C and the world of SQLite. The model is similar to

the schema of your database with a little bit of extra information about

how to translate from Objective-C to SQL and back. Roughly speaking,

each entity corresponds to a table in the database, and each attribute

corresponds to a column in that table. On the Objective-C side, each

entity corresponds to a class, and each attribute corresponds to a prop-

erty on that class. There is, of course, a ton of detail behind how a MOM

is used to map objects into rows, and vice versa, but you don’t have to

fully understand all that thanks to the great tools available in Xcode.

Let’s take a quick look at the UI. Double-click Conference.xcdatamodel

in Xcode. You should see something that looks more or less like this

screenshot:

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=222

MODELING 223

We are going to modify this template data model so it captures our Track

and Session entities. Roughly speaking, we need to accomplish these

tasks:

• Change the template-provided Event entity to the Track entity.

• Add the name and trackAbstract attributes and the sessions relation-

ship to the Track entity.

• Create the Session entity.

• Add the name, sessionAbstract, and sessionID attributes and the track

relationship to the Session entity.

• Generate the Track and Session classes and add them to the project.

With these two entities and the relationship between the modeled, Core

Data will have the information it needs to make them persistent.

Start by renaming the Event entity to Track. Select the entity; then in the

Entity Attributes inspector, change the name from Event to Track. Also,

change the class name from NSManagedObject to Track. Track has two

attributes, name and trackAbstract. Both of them are strings with no

constraints (length, regex, and so on). Add them by selecting the + but-

ton under the properties list (the list to the right of the entity list) and

choosing Add Attribute. When you have added them, you should have

something that looks roughly like this:

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=223

MODELING 224

Make sure you turn off Optional for each of the attributes. Although

this is not necessary, it will help make sure that no bogus data makes

it into our database. As you have probably noticed, there are lots of

other ways we can customize the constraints that Core Data will place

on our attributes. For example, if we were to provide a regular expres-

sion (also known as a regex) in the Attributes inspector, Core Data

would ensure that whatever value was placed in that attribute matches

the regex before it saved the value. If the value fails any of the con-

straints, a validation error is raised. We can use the error to create a

user visible/understandable message to show so the user knows what

to fix. We are not going to take the time to go into detail on that, but the

Core Data documentation [App09b] has more information on presenting

errors to your users.

Now that we have the Track entity, we need to create the Session entity.

Under the list of entities (where Track currently shows up on the top-

left side), click the + button. Rename the new entity to Session, change

its class name to Session, and add three string attributes: sessionID,

name, and sessionAbstract. Again, all the Session attributes should have

no constraints, and the Optional switch should be turned off. When

you are done, you should have something that looks like this:

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=224

MODELING 225

Now that we have the two entities set up, we need to create the relation-

ship between them. Select the Track entity, and click the + button under

the property list (top-left side). Choose Add Relationship, and name the

new relationship sessions. Make the relationship’s destination the Session

entity, choose the to-many checkbox, and make sure the delete rule

is Cascade. Next we need to add the inverse relationship to the Session

entity. Select the Session entity, add a relationship, name it track, set its

destination to Track, and choose its inverse to be sessions. Set the delete

rule on the new relationship to Nullify, and turn Optional off. When you

are done, the model should look something like this:

Our next step is to generate the classes that will be used to represent

this model in our application. In Xcode, add a new group called Model

Classes, and select it. Go back to the model, select all the entities with

D-a, and then choose File > New File from the menu. Select the Man-

aged Object Class from the dialog box that pops up, as in the next

screenshot.4

4. If you don’t have the model editor as the front window when you select the File > New

File menu item, you won’t see the Managed Object Class option in the New File Wizard.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=225

MODELING 226

Click Next on the next page of the wizard. You don’t need to change

anything here, but make sure the Conference target is selected. On the

final page of the wizard, make sure the checkbox next to Session and

Track is selected so that the generator uses both our entities when it

makes the classes. The page should look like this:

After you click the Finish button, you should have a header and imple-

mentation file for both the Track and Session classes.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=226

MODELING 227

Let’s take a look at the code the generator made for us. Here is the

header file for the Session class:

Download CoreData/Conference02/ModelClasses/Session.h

@class Track;

@interface Session : NSManagedObject {

}

@property (nonatomic, retain) NSString * sessionID;

@property (nonatomic, retain) NSString * name;

@property (nonatomic, retain) NSString * sessionAbstract;

@property (nonatomic, retain) Track * track;

@end

Not much that is unexpected here. The generator created a property for

each of the attributes and relationships in the model, all of them set to

retain their object values. Next let’s look at the implementation. Here is

the code from the .m file:

Download CoreData/Conference02/ModelClasses/Session.m

@implementation Session

@dynamic sessionID;

@dynamic name;

@dynamic sessionAbstract;

@dynamic track;

@end

This file has very little substance too. The new and interesting piece

is the use of @dynamic for the properties. This declaration says to the

compiler that the properties will have get/set method pairs provided for

them at runtime, so the compiler does not need to provide them. Core

Data provides these methods for us, so we don’t have to worry about

them.

Let’s look at the Track class next. Here is the header file:

Download CoreData/Conference02/ModelClasses/Track.h

Line 1 @class Session;
-

- @interface Track : NSManagedObject {
- }
5

- @property (nonatomic, retain) NSString * trackAbstract;
- @property (nonatomic, retain) NSString * name;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Session.h
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Session.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Track.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=227

TRACK TABLE VIEW 228

- @property (nonatomic, retain) NSSet* sessions;
-

10 @end
-

- @interface Track (CoreDataGeneratedAccessors)
- - (void)addSessionsObject:(Session *)value;
- - (void)removeSessionsObject:(Session *)value;

15 - (void)addSessions:(NSSet *)value;
- - (void)removeSessions:(NSSet *)value;
- @end

The top half is probably what you expected, which is a property for every

attribute and relationship in the entity. The CoreDataGeneratedAcces-

sors category might be new, however, so let’s look at it in a bit more

detail. An Objective-C category is a way for us to add methods to an

object. On line 12, the CoreDataGeneratedAccessors category is declared

for the Track class. All the methods declared in this category (until the

@end) become part of the interface. Now let’s look at the implementa-

tion:

Download CoreData/Conference02/ModelClasses/Track.m

@implementation Track

@dynamic trackAbstract;

@dynamic name;

@dynamic sessions;

@end

Not much here. . . the methods that are declared in the CoreDataGener-

atedAccessors category are generated by Core Data at runtime (thus the

name of the category). We need only the category in the header file so

that we can call the methods without a compiler warning. This little bit

of Objective-C magic is brought to you by Key-Value Coding (KVC). The

Apple Key-Value Coding [App08e] documentation has a bunch of the

detail. For now, though, you can ignore the detail and just know that

you can call addSessionsObject: on any instance of Track.

Now that we have our model in place, Core Data will be able to persist

it. Let’s look at the code needed to make the Track table view work.

11.5 Track Table View

The good thing is you already know how table views work. They ask

their data source for the number of sections, for the number of rows

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/ModelClasses/Track.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=228

TRACK TABLE VIEW 229

in each section, and then for the cell in a particular location. That

part of what we are about to look at is well understood now. The

new piece of this is the adaptor that sits between Core Data and the

table view data source API. The class that provides that adaptation is

NSFetchedResultsController (or FRC for short). Let’s look at how it’s used

in the RootViewController. After we look at how we use it, we will look at

the code we used to create it.

Let’s start with the basic data source methods. The first is numberOfSec-

tionsInTableView:, and as you know, this method is supposed to return to

the table view the number of sections in the displayed data. To do that,

we simply ask the fetched results controller like this:

Download CoreData/Conference02/Classes/RootViewController.m

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

return [[fetchedResultsController sections] count];

}

The fetched results controller knows how many sections are in the data

that it’s managing, so it is easy for it to return that. The next impor-

tant method in the data source is the tableView:numberOfRowsInSection:

method. This method returns the row count for the particular section.

Again, the fetched results controller knows this information, so we can

simply ask it. The code looks like this:

Download CoreData/Conference02/Classes/RootViewController.m

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

return [[[fetchedResultsController sections] objectAtIndex:section]

numberOfObjects];

}

The tableView:cellForRowAtIndexPath: method is called to get the cell con-

figured and ready to display. And again, the fetched results controller

comes to our aid with the objectAtIndexPath: method. Here is the code:

Download CoreData/Conference02/Classes/RootViewController.m

Line 1 - (void)configureCell:(UITableViewCell *)cell withTrack:(Track *)track {
- cell.textLabel.text = track.name;
- cell.detailTextLabel.text = track.trackAbstract;
- }
5

- - (UITableViewCell *)tableView:(UITableView *)tableView
- cellForRowAtIndexPath:(NSIndexPath *)indexPath {
- static NSString *CellIdentifier = @"Cell";
-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=229

TRACK TABLE VIEW 230

10 UITableViewCell *cell =
- [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
- if (cell == nil) {
- cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleSubtitle
- reuseIdentifier:CellIdentifier] autorelease];

15 }
-

- Track *track = [fetchedResultsController objectAtIndexPath:indexPath];
- [self configureCell:cell withTrack:track];
-

20 return cell;
- }

The first method in this code block does the cell configuration by setting

the textLabel’s text to the name of the track and setting the detailTextLa-

bel’s text to the trackAbstract. The cell configuration was pulled out into

a separate method because we need to call it from two places. The first

one is the tableView:cellForRowAtIndexPath:, and the second we will look

at shortly.

Since the FRC knows the data model, it can easily tell us the object we

need. The code for tableView:cellForRowAtIndexPath: is boilerplate until we

get to line 17. Here is where the FRC comes through for us again. We

simply ask for the object at the index path, and it returns it. As you can

see, the FRC makes populating a table view with Core Data a breeze.

Now let’s look at how we created the FRC and talk about some of the

additional functionality that we can use from the FRC.

The fetched results controller, as we said earlier, is an adaptor to make

fetching and displaying data from Core Data in a UITableView easier.

To do that, the FRC uses a bunch of other objects to make it able to

perform its duties. Here is a diagram showing the pieces:

NSFetchedResultsController

NSFetchRequest

NSManagedObjectContext

NSSortDescriptor

NSPredicate

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=230

TRACK TABLE VIEW 231

The fetched results controller uses the fetch request and the managed

object context to get the data. The fetch request can optionally con-

tain a sort descriptor or predicate. The sort order will, as you probably

expected, cause the results of the fetch to be sorted. The predicate will

limit the number of objects that come back from the fetch. We don’t

have space to go into detail, but you can see Core Data: Apple’s API for

Persisting Data Under Mac OS X [Zar09].

In addition to making it really easy to populate the table view, the FRC

also manages memory very aggressively. It will ensure that only the

objects that are actually needed are kept in memory and will flush out

the others whenever a memory warning happens.

Here is the code used to create the FRC for the track table view:

Download CoreData/Conference02/Classes/RootViewController.m

Line 1 - (NSFetchedResultsController *)fetchedResultsController {
- if (fetchedResultsController != nil) {
- return fetchedResultsController;
- }
5

- NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
- NSEntityDescription *entity =
- [NSEntityDescription entityForName:@"Track"
- inManagedObjectContext:managedObjectContext];

10 [fetchRequest setEntity:entity];
-

- NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
- initWithKey:@"name" ascending:YES];
- [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

15

- NSFetchedResultsController *aFetchedResultsController =
- [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest
- managedObjectContext:managedObjectContext
- sectionNameKeyPath:nil

20 cacheName:@"Root"];
- aFetchedResultsController.delegate = self;
- self.fetchedResultsController = aFetchedResultsController;
-

- [aFetchedResultsController release];
25 [fetchRequest release];

- [sortDescriptor release];
-

- return fetchedResultsController;
- }

The code does three things: create the fetch request, add a sort descrip-

tor to that fetch request, and then create the fetched results controller

object. The fetch request has a lot of features that allow us to optimize

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=231

TRACK TABLE VIEW 232

the way the fetch happens. For this simple example, it won’t matter, but

for big data sets, it’s a good idea to dig into the detail (Core Data [Zar09]

or Core Data Documentation [App09b] are both good references).

Next is creating the sort order; here we are saying that we want the

track objects to be ordered ascending on the name property. Sorting is

important for our users. If we don’t impose a sort ordering in the FRC’s

fetch request, then each time we go back to the database, the order

might be different.5

We create the FRC using the fetch request object we just built and the

managed object context that we got from the app delegate. (We did not

show that code, but it’s in the applicationDidFinishLaunching: method on

the ConferenceAppDelegate from the downloaded code.) We use nil for

the section key because we don’t want any sections. In applications

that need a section, you’d specify the name of a property here that the

FRC would use to determine which section the object belongs in.

The FRC manages sections for our table view; all we need do is spec-

ify a key path. This is yet another “magic” use of Key-Value Coding.

Again, the Apple Key-Value Coding [App08e] documentation is the place

to go for the details. The fetched results controller uses the key path

to get the set of values that make up the section names. For each

fetched object, the FRC calls valueForKeyPath:. These values are then

made unique and become the name for each section. When using this

feature, we find it easier to debug if we’ve placed the table view in

the Grouped style or implemented the tableView:titleForHeaderInSection:

method6 so the sections are obvious.

We also set the cache name for our fetched results controller to Root.

The FRC caches a bunch of information about the sections under this

name. At startup, if there is a cache with this name, the FRC looks to

make sure it can use it and, if so, loads that instead of recomputing the

section information.

We set our RootViewController to be the delegate of the fetched results

controller on line 21. Being the delegate becomes important in the next

section where we look at adding new tracks.

5. Databases store their data in sets, which are unordered.
6. Get the section information from the FRC by calling [frc.sections objectAtIndex:section],

and then get the title from the section information’s name property.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=232

FETCHING THE TRACKS 233

Apart from formatting and changing the name of the entity, this code

is what we got from the template.

11.6 Fetching the Tracks

The fetched results controller has done a great job making it really easy

for us to display the data in our table view. Now let’s look at how the

FRC gets the data in the first place.

Since we want the tracks to show up at launch time, we place the code

to fetch them in the viewDidLoad method. Here is the code:

Download CoreData/Conference02/Classes/RootViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

// Set up the edit and add buttons.

self.navigationItem.leftBarButtonItem = self.editButtonItem;

UIBarButtonItem *addButton = [[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

target:self

action:@selector(insertTrack)];

self.navigationItem.rightBarButtonItem = addButton;

[addButton release];

NSError *error = nil;

if (![self.fetchedResultsController performFetch:&error]) {

// handle the error...

}

self.title = @"Tracks";

}

After setting up the buttons, we send performFetch: to the fetched results

controller. The FRC then fetches the objects from the database accord-

ing to the fetch request. Behind the scenes it also sets up all the data

structures it needs to provide the section count and other stuff that

makes the FRC good at providing the data to a table view.

11.7 Change the Tracks

Now that we have seen how the fetched results controller helps us get

the data into the table view, let’s look at what happens as we change

that data. The FRC helps us keep the table view in sync with the

changes through delegation. Before we dive into how that works, let’s

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=233

CHANGE THE TRACKS 234

look at the insertTrack method to see how we add new objects. Here is

the code:

Download CoreData/Conference02/Classes/RootViewController.m

- (void)insertTrack {

self.firstInsert = [self.fetchedResultsController.sections count] == 0;

NSManagedObjectContext *context =

[self.fetchedResultsController managedObjectContext];

NSEntityDescription *entity =

[self.fetchedResultsController.fetchRequest entity];

Track *track =

[NSEntityDescription insertNewObjectForEntityForName:[entity name]

inManagedObjectContext:context];

[track setValue:@"Track" forKey:@"name"];

[track setValue:@"This is a great track" forKey:@"trackAbstract"];

NSError *error = nil;

if (![context save:&error]) {

// Handle the error...

}

}

The first thing we do in this method is check to see whether this is the

first insert. We use that property later in the FRC delegate methods.

Next we create a new track object. Since we are managing our objects

with Core Data, we need to create them via Core Data methods. The

implementation of insertNewObjectForEntityForName:inManagedObjectCon-

text: ensures that the proper Core Data–related initialization happens.

Next we use the KVC method setValue:forKey: to set the name and trackAb-

stract properties. Although we could have used the property set methods

(that is, track.name = @"Track";), it is very common to see Core Data code

use the KVC approach.

Lastly, we ask the context to save the changes by calling the save:

method. We ignore the error, which as you’d expect is bad practice in

a production application. NSError is a general class that can contain lots

of data; it is difficult to describe a general approach to handling them.

However, some errors can be recovered from and some cannot. If there

is something wrong with the database file and it can’t be opened, then

there is little you or your user can do to recover. If, however, the error

is simple, like the object has been changed in another managed object

context, you can present a UIAlertView to the user asking whether they

want to revert or overwrite. During the early phase of development,

we typically log the errors to the console with NSLog. Then as part of

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=234

CHANGE THE TRACKS 235

“finishing up” the application, we take a long look at where we’re log-

ging errors and decide which (if any) types of errors we want to present

to the user. The bottom line is that error handling is very application

specific, and you should think about how you want to handle the errors

in your application.

Now that we’ve seen how we add tracks, let’s look at deleting them.

Being a pro at table views by now, you know that we implement the

tableView:commitEditingStyle:forRowAtIndexPath: method to commit the

edits that users indicate (via the red Delete button, for example). Here

is the code for the method:

Download CoreData/Conference02/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {

if (editingStyle == UITableViewCellEditingStyleDelete) {

NSManagedObjectContext *context =

[fetchedResultsController managedObjectContext];

Track *track = [fetchedResultsController objectAtIndexPath:indexPath];

[context deleteObject:track];

// Save the context.

NSError *error;

if (![context save:&error]) {

// Handle the error...

}

}

}

In this method, we are grabbing the selected track and then telling the

context to delete the object by calling the deleteObject: method. Then

we ask the context to save the changes with the save: method.

You might have noticed in both the insert and delete case here that we

are not updating the table view. That is because the FRC tells us when

a change has been processed by calling one of its delegate methods.

Let’s look at those next.

Being the delegate of the fetched results controller ensures that we get

notification as changes are made to the persistent state of our data.

There are four delegate methods in the NSFetchedResultsControllerDele-

gate protocol. The controllerWillChangeContent: method lets the delegate

know that the FRC is about to change the data. This is a great place to

let the table view know that you are about to start tweaking its set of

rows and sections by calling beginUpdates. When the changes are fin-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=235

CHANGE THE TRACKS 236

ished being processed, the FRC sends the controllerDidChangeContent:

to its delegate. This is the spot you want to tell the table view that you

are done making changes by calling endUpdates.

During the process of persisting the changes, the FRC sends the con-

troller:didChangeObject:atIndexPath:forChangeType:newIndexPath: for every

changed object. Here is our implementation:

Download CoreData/Conference02/Classes/RootViewController.m

- (void)controller:(NSFetchedResultsController *)controller

didChangeObject:(id)anObject

atIndexPath:(NSIndexPath *)indexPath

forChangeType:(NSFetchedResultsChangeType)type

newIndexPath:(NSIndexPath *)newIndexPath {

if(NSFetchedResultsChangeUpdate == type) {

[self configureCell:[self.tableView cellForRowAtIndexPath:indexPath]

withTrack:anObject];

} else if(NSFetchedResultsChangeMove == type) {

[self.tableView reloadSections:[NSIndexSet indexSetWithIndex:0]

withRowAnimation:UITableViewRowAnimationFade];

} else if(NSFetchedResultsChangeInsert == type) {

if(!self.firstInsert) {

[self.tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:newIndexPath]

withRowAnimation:UITableViewRowAnimationRight];

} else {

[self.tableView insertSections:[[NSIndexSet alloc] initWithIndex:0]

withRowAnimation:UITableViewRowAnimationRight];

}

} else if(NSFetchedResultsChangeDelete == type) {

NSInteger sectionCount = [[fetchedResultsController sections] count];

if(0 == sectionCount) {

NSIndexSet *indexes = [NSIndexSet indexSetWithIndex:indexPath.section];

[self.tableView deleteSections:indexes

withRowAnimation:UITableViewRowAnimationFade];

} else {

[self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]

withRowAnimation:UITableViewRowAnimationFade];

}

}

}

In this method, we update the table view depending on what type of

change happened. For updates, we call the configureCell:withTrack: meth-

od that we discussed earlier. For moves, we update the whole section.

We update the whole section because the sort order of the items in

the track list is based on an editable field (the name property). When

that value is changed, it is more efficient to just update the whole sec-

tion than it is to update the individual cells. For inserts, we have to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=236

NAVIGATION 237

distinguish between the first insert and subsequent inserts. Since the

application starts with no data at all, the table view is told there are

zero sections when it first asks numberOfSectionsInTableView:. When we

insert the first row, we are inserting a section as well. Telling the table

view to insert a row into a nonexistent section causes the table view to

become confused. Finally, on a delete, we tell the table view which rows

are being deleted unless we are on the final object. When deleting the

final object, we need to tell the table view to delete the section, or it gets

confused similarly to the insert issue.

For the typical use case of our users making changes in an “editing

view,” this is the perfect place to update the table view. However, keep

in mind that you almost certainly don’t want to update the table view

in this method if you are importing large numbers of objects in a back-

ground thread. If you have a “batch update” use case, just reload the

table view in the controllerDidChangeContent: instead.

We are almost done with our overview of Core Data. We have seen the

following:

• How Core Data’s stack of objects work together to provide us with

data and to push our changes back into the persistent store

• How to use Core Data objects to set up an NSFetchedResultsController

• How to use an NSFetchedResultsController to populate and keep a

table view up-to-date

The last remaining piece of dealing with table views that we have not

looked at yet is how Core Data can help us with navigating into the

detail of our objects.

11.8 Navigation

Navigation from a table view is intended to take us from a general set

of data to a more specific set of data. In our case, there are two forms

of specific data. One is the list of sessions that make up our track; the

other is the data about the track itself. Recall that we want to navigate

to the list of sessions when a track is selected, but if the table view

is in editing mode, we want to navigate to a screen that lets the user

manipulate the name and trackAbstract properties.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=237

NAVIGATION 238

Here is the code to accomplish that:

Download CoreData/Conference02/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

Track *track = [[self fetchedResultsController] objectAtIndexPath:indexPath];

if(YES == self.editing) {

self.trackEditingVC.selectedTrack = track;

[self.navigationController pushViewController:self.trackEditingVC animated:YES];

} else {

self.sessionsVC.selectedTrack = track;

self.sessionsVC.title = track.name;

[self.navigationController pushViewController:self.sessionsVC animated:YES];

}

}

As you’d expect, we have a view controller for each of the possible des-

tinations. When we are in editing mode, we push the trackEditingVC

onto the navigation stack. While the trackEditingVC is active, it will need

access to the currently selected track, so we set its selectedTrack prop-

erty before pushing it onto the stack.

When we are not in editing mode, we push the sessionsVC. The sessionsVC

also needs to know the selected track, so we set its selectedTrack prop-

erty as well. We also set the title to the track’s name.

Since the mechanics of navigation were covered in detail previously, we

are not going to go into any of the detail here. Instead, we are going to

cherry-pick some interesting methods from these other view controllers

to highlight how we use the managed objects (instances of Track and

Session) and Core Data to implement the functionality.

First let’s look at the TrackEditingViewController. When the user is done

editing the trackAbstract’s text view, we get the textViewDidEndEditing: del-

egate method called (because the view controller is the text view’s dele-

gate). Here is the code:

Download CoreData/Conference02/Classes/TrackEditingViewController.m

- (void)textViewDidEndEditing:(UITextView *)textView {

self.selectedTrack.trackAbstract = textView.text;

}

Notice the simplicity of what we are doing here. All we do is change

the property value. Core Data takes care of the rest. From this one line

of code, Core Data knows that the track object has changed, and it

knows that a save needs to happen and can take care of making that

save happen with a single simple method invocation. Not only does

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/TrackEditingViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=238

NAVIGATION 239

this work for really simple stuff like string values, but it also works for

relationships, as we will see in a minute with the SessionsViewController.

When the user is done making changes, she hits the Done button on

the top-left side. That button invokes the done method. The code is

here:

Download CoreData/Conference02/Classes/TrackEditingViewController.m

- (void)done {

[self.abstractText resignFirstResponder];

[self.nameField resignFirstResponder];

[self.navigationController popViewControllerAnimated:YES];

}

Telling the two text input objects to resignFirstResponder makes sure that

the values typed into them are pushed into the selectedTrack object.

Then we tell the navigationController to pop the top view controller (which

is this TrackEditingViewController object). As the view controller is relin-

quishing control and removing its view from the stack of views, it will

eventually get the viewWillDisappear:. We choose to put the save in this

notification method. Here is the code:

Download CoreData/Conference02/Classes/TrackEditingViewController.m

- (void)viewWillDisappear:(BOOL)animated {

[super viewWillDisappear:animated];

NSError *error = nil;

if (![self.selectedTrack.managedObjectContext save:&error]) {

// Handle the error...

}

}

It’s starting to look familiar by now, right? Call the save: method, and

all the changes get pushed down to the database. Notice that we get

the managedObjectContext from the selectedTrack. All managed objects

know which managed object context they belong to, which makes sav-

ing them super easy.

Now that we have seen the editing view controller, let’s look at the

SessionsViewController for some more interesting code that will help you

understand how to use Core Data to edit the detailed objects in your

model. Recall that as the sessionsVC is pushed onto the navigation stack

in the RootViewController’s implementation of tableView:didSelectRowAtIn-

dexPath:, its selectedTrack property is set. Here is the code for the set

method:

Download CoreData/Conference02/Classes/SessionsViewController.m

- (void)setSelectedTrack:(Track *)track {

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/TrackEditingViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/TrackEditingViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/SessionsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=239

NAVIGATION 240

if(track != _selectedTrack) {

[_selectedTrack release];

_selectedTrack = [track retain];

self.fetchedResultsController = nil;

[self.tableView reloadData];

}

}

This is more or less a run-of-the-mill set method until we get to setting

the fetchedResultsController property to nil. To understand why that is

necessary, let’s look at the implementation of the get method for the

fetchedResultsController property:

Download CoreData/Conference02/Classes/SessionsViewController.m

Line 1 - (NSFetchedResultsController *)fetchedResultsController {
- if (nil == _fetchedResultsController) {
- NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
- NSManagedObjectContext *context = self.selectedTrack.managedObjectContext;
5 NSEntityDescription *entity =
- [NSEntityDescription entityForName:@"Session"
- inManagedObjectContext:context];
- [fetchRequest setEntity:entity];
-

10 NSPredicate *pred = [NSPredicate predicateWithFormat:@"track = %@",
- self.selectedTrack];
- [fetchRequest setPredicate:pred];
-

- NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
15 initWithKey:@"name" ascending:YES];

- [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];
-

- NSFetchedResultsController *aFetchedResultsController =
- [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest

20 managedObjectContext:context
- sectionNameKeyPath:nil
- cacheName:@"Sessions"];
- aFetchedResultsController.delegate = self;
- self.fetchedResultsController = aFetchedResultsController;

25 NSError *error = nil;
- if (![self.fetchedResultsController performFetch:&error]) {
- // handle the error...
- }
- [aFetchedResultsController release];

30 [fetchRequest release];
- [sortDescriptor release];
- }
- return _fetchedResultsController;
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/SessionsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=240

NAVIGATION 241

Most of this code looks the same as the method we reviewed in detail

from the RootViewController with the exception of the entity name and

the predicate its the same code. On line 11 is where we do something

that might be a bit unexpected. Here we are creating an NSPredicate that

restricts the list of Session objects to being just the ones associated with

the selectedTrack. In this way, we are able to use all the convenience

of the fetched results controller and have its content restricted to the

proper list of sessions. We can also manage updating the table view in

the same way we updated the RootViewController’s table view, namely,

via the NSFetchedResultsControllerDelegate methods.

Just as creating the fetched results controller is largely the same except

for small tweaks, adding sessions and removing sessions are very sim-

ilar to adding and removing tracks. Let’s first look at the code for delet-

ing. Here is the implementation of the tableView:commitEditingStyle:for-

RowAtIndexPath: from the SessionsViewController:

Download CoreData/Conference02/Classes/SessionsViewController.m

Line 1 - (void)tableView:(UITableView *)tableView
- commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
- forRowAtIndexPath:(NSIndexPath *)indexPath {
-

5 if (editingStyle == UITableViewCellEditingStyleDelete) {
- Session *session = [self.fetchedResultsController objectAtIndexPath:indexPath];
- [self.selectedTrack removeSessionsObject:session];
- NSManagedObjectContext *context = self.selectedTrack.managedObjectContext;
- [context deleteObject:session];

10 // Save the context.
- NSError *error;
- if (![context save:&error]) {
- // Handle the error...
- }

15 }
- }

Notice that except for the difference in type (track vs. session), this code

is the same as the code from RootViewController. The only real difference

is on line 7. In addition to removing the session from the managed

object context, we also remove it from the track’s session list.

Now let’s look at the inserting of new sessions. Here is the code:

Download CoreData/Conference02/Classes/SessionsViewController.m

Line 1 - (void)insertSession {
- self.firstInsert = [self.fetchedResultsController.sections count] == 0;
- NSString *nextId = [self nextSessionIdentifier];
- // Create a new instance of the entity managed by the
5 // fetched results controller.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/SessionsViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/SessionsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=241

NAVIGATION 242

- NSManagedObjectContext *context = self.selectedTrack.managedObjectContext;
- Session *session =
- [NSEntityDescription insertNewObjectForEntityForName:@"Session"
- inManagedObjectContext:context];

10

- // If appropriate, configure the new managed object.
- [session setValue:@"Session" forKey:@"name"];
- [session setValue:@"This is a great session" forKey:@"sessionAbstract"];
- [session setValue:nextId forKey:@"sessionID"];

15

- [self.selectedTrack addSessionsObject:session];
-

- // Save the context.
- NSError *error = nil;

20 if (![context save:&error]) {
- // Handle the error...
- }
- }

There are two pieces of this code that differ from the code to insert a

track that we looked at earlier. The first is on line 16 where we add the

newly created session to the selectedTrack. Notice the use of the addSes-

sionsObject: method. Recall that this method is added automatically by

Core Data to our Track class. So, even though we don’t provide an imple-

mentation, we can call the method without error or warning.

The next interesting line in this method is on line 3. The Session has

a unique session identifier, and we use this method to calculate the

unique ID by incrementing the largest value in the database by one.

Let’s look at that code:

Download CoreData/Conference02/Classes/SessionsViewController.m

- (NSString *)nextSessionIdentifier {

NSString *nextId = @"Session01";

NSManagedObjectContext *ctx = self.selectedTrack.managedObjectContext;

NSEntityDescription *entity = [NSEntityDescription entityForName:@"Session"

inManagedObjectContext:ctx];

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setEntity:entity];

NSString *predFormat = @"sessionID = max(sessionID)";

NSPredicate *pred = [NSPredicate predicateWithFormat:predFormat];

[fetchRequest setPredicate:pred];

NSError *error = nil;

NSArray *values = [ctx executeFetchRequest:fetchRequest error:&error];

if(0 != [values count]) {

Session *session = [values objectAtIndex:0];

NSString *maxId = [session valueForKey:@"sessionID"];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreData/Conference02/Classes/SessionsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=242

NAVIGATION 243

NSString *number = [maxId stringByTrimmingCharactersInSet:

[NSCharacterSet letterCharacterSet]];

NSString *name = [maxId stringByTrimmingCharactersInSet:

[NSCharacterSet decimalDigitCharacterSet]];

NSNumberFormatter *formatter =

[[[NSNumberFormatter alloc] init] autorelease];

NSNumber *value = [formatter numberFromString:number];

nextId = [NSString stringWithFormat:@"%@%02d", name, [value intValue] + 1];

}

return nextId;

}

In this method we do three things: first create a fetch request, second

use the fetch request to get the session with the maximum sessionID,

and third parse the sessionID to get the integer value from the end so

we can increment it. The interesting part of this method is the fact

that we can use aggregate functions in our predicates. Predicates are

a very powerful tool that we have to limit what we get back from the

database to exactly what we want. The Apple Predicate Programming

Guide [App08g] documentation has a lot of detail on predicates.

As you can probably see now, Core Data is a powerful framework that

allows us to easily get at data in a database by doing some simple mod-

eling and then using that model. We have only just begun to scratch

the surface of what is possible.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=243

Chapter 12

Connecting to the Internet
One of the most revolutionary aspects of the iPhone is the effect it has

had on mobile Internet use. Before the iPhone, browsing the Web or per-

forming other network-based tasks was so unappealing that few users

bothered to try it, and fewer still stuck with it. So, it was a shock in

February 2008 when Google’s head of mobile operations told a confer-

ence that Google was seeing 50 times more searches from iPhone OS

devices than from any other mobile browser.1 In March, measurement

firm M:Metrics said that its studies showed that 84.8 percent of iPhone

users said they accessed news and information with their phones, as

compared to 13.1 percent of the overall mobile phone market and 58.2

percent of smart-phone owners.2

So, you don’t need us to tell you that using the network is critical to

your users. For many iPhone applications, the network provides the

value of the application. In this chapter, you’ll learn how to use the most

important network features of the iPhone: loading web pages, reading

and writing network streams, and parsing the data provided by web

services.

12.1 Building a Browser in Ten Minutes with UIWebView

Perhaps the most typical network task performed by many network

applications is to load a web page. You may not plan to compete with

the excellent Safari web browser that comes with the iPhone—in fact,

you probably shouldn’t—but you may have a network component to

your application that’s easiest to just bring up in a web view.

1. Google Homes in on Revenues from Phones [PT08]
2. IPhone Users Love That Mobile Web [Sto08]

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

BUILDING A BROWSER IN TEN MINUTES WITH UIWEBVIEW 245

If this is what you need, you’re in luck, because the functionality of

Safari’s WebKit engine is available to you in the form of the UIWebView.

This particular component is so easy to use and so capable that to

start this chapter, we’ll write a basic browser, capable of handling real-

world web pages, in ten minutes. In fact, we’ve even called the sample

project TenMinuteBrowser, which you’ll find in the sample code’s NetworkIO

directory.

So, set your clock, and here we go!

Setting Up the Project

Start a new Xcode project, using the View-based Application template.

Call it TenMinuteBrowser. This will create header and implementation files

for TenMinuteBrowserAppDelegate and TenMinuteBrowserViewController. You

won’t need to touch the app delegate at all.

Our browser will just have a URL field and a large view of the page

content. So, go into the TenMinuteBrowserViewController, and add IBOutlets

for urlField (a UITextField) and webView (a UIWebView). Since we’re going to

be managing a text field and will want to dismiss the keyboard, add

the UITextFieldDelegate protocol declaration too. Finally, add an instance

method to handle the clicking of the Go button, say, handleGoTapped.

Your @interface should look like the following:

Download NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.h

@interface TenMinuteBrowserViewController : UIViewController

<UITextFieldDelegate> {

IBOutlet UITextField *urlField;

IBOutlet UIWebView *webView;

}

-(IBAction) handleGoTapped;

@end

Building the Browser GUI in IB

OK, one minute down, and we’re ready to go to Interface Builder.

Double-click TenMinuteBrowserViewController.xib to launch IB. The nib al-

ready has its File’s Owner set to your view controller class, with a single

View wired up and ready to configure. Double-click to open the view,

and add three objects to it:

• A UITextField across most of the top, for the URL

• A UIButton with the text Go

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=245

BUILDING A BROWSER IN TEN MINUTES WITH UIWEBVIEW 246

Figure 12.1: View for a simple browser in Interface Builder

• And a UIWebView filling most of the view below the text field and

the Go button

If you’re cruising along, you can customize the text field with your

favorite website’s URL or set the view’s background color. At any rate,

the result should look more or less like Figure 12.1.

How are you doing? Four minutes in maybe? Not to worry, we’ll make

it. The next thing we need to do is to wire up the GUI components to

the outlets and actions. Ctrl+click the File’s Owner to open its list of

outlets and received actions.

• Connect the urlField outlet to the text field.

• Connect the webView outlet to the UIWebView.

• Connect the handleGoTapped action to the Go button, selecting the

Touch Up Inside event.

• Finally, Ctrl+click the text field to expose its outlets, and connect

its Delegate to File’s Owner.

Save up and quit Interface Builder.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=246

BUILDING A BROWSER IN TEN MINUTES WITH UIWEBVIEW 247

Implementing the Browser

Check the clock. Are we going to make it in less than ten minutes?

Don’t worry, we don’t have far to go. Back in Xcode, open TenMinute-

BrowserViewController.m. We’ll need to write a method to get the URL from

the text field and have the web view load that site; this method will be

called when the user clicks the Go button or when they hit Return on

the pop-up keyboard.

If you care to check the UIWebView documentation—later, since we’re on

the clock—you’ll see that it has a simple loadRequest: method that takes

one argument, an NSURLRequest. So, all you need to load the web page is

to get an object of that class...which you can get from an NSURL...which

you can create from an NSString...which is what the text property of the

text field is. So, loading the web page is just going to take a few lines:

Download NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m

-(void) loadURL {

NSURL *url = [[NSURL alloc] initWithString: urlField.text];

NSURLRequest *request = [[NSURLRequest alloc] initWithURL: url];

[webView loadRequest: request];

[request release];

[url release];

}

Now all you have to do is call this method when the Go button is tapped,

remembering to also dismiss the keyboard:

Download NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m

-(IBAction) handleGoTapped {

[urlField resignFirstResponder];

[self loadURL];

}

And you can use the text field’s textFieldShouldReturn: method to handle

the user hitting the keyboard’s Return button instead of the Go button:

Download NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

if (textField == urlField) {

[self handleGoTapped];

}

return YES;

}

Still under ten minutes? Good thing, because you’re done. Click Build

and Go to run your app in the simulator. Type in a fully formed URL (in

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=247

BUILDING A BROWSER IN TEN MINUTES WITH UIWEBVIEW 248

Figure 12.2: Rendering a website with UIWebView

other words, with the http://), click Go, and the results should look like

Figure 12.2.

Got Five More Minutes?

As you can see, all the substantial work in this application is done

by the UIWebView. Once you’ve loaded the page, this view—backed by

the WebKit engine for rendering HTML, interpreting JavaScript, and

handling the network communication—does all the work for handling

your web interactions, including submitting forms, navigating to new

pages, running client-side browser apps, and so on.

If you can spare a few more minutes, it’s pretty trivial to build this

out into a full-featured browser. The most obvious thing lacking from

the example is the usual forward and back buttons. These are trivial

to implement with the UIWebView’s goForward and goBack methods. You

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=248

READING DATA FROM THE NETWORK 249

could also add a “busy” indicator to indicate when the view is loading

a page by providing a delegate that implements the UIWebViewDelegate

protocol, which provides the callbacks webViewDidStartLoad:, webView-

DidFinishLoad:, and webView:didFailLoadWithError:.

Another thing you might want to do is support rotation so you can use

the browser in landscape mode. The UIWebView works like any other

UIView in this regard: first, override shouldAutorotateToInterfaceOrientation:

to accept landscape orientations. Then open the view with Interface

Builder, select the web view, and turn on the horizontal and vertical

springs with the Size inspector.

Even if you’re not planning on developing a browser, the UIWebView

has other compelling uses. Although UIKit doesn’t provide a styled text

component for iPhone apps, you can style HTML to your heart’s content

with CSS and put that styled HTML into a UIWebView. In fact, this is an

excellent way to provide an About screen for your application, because

you can provide links to your application’s home page, emails for tech

support, or even dialable phone number links, all by just authoring

HTML.

To do this, instead of loading a page from the Web, you can include

your HTML, CSS, and images in the application bundle and then find

them inside the bundle. In the example project, we’ve implemented this

by pulling up a aboutbook.html page from inside the bundle if the URL

starts with the string about:. Making a URL from a path in the bundle

is just a matter of converting the path string to an NSURL.

Download NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m

NSString *aboutPath =

[[NSBundle mainBundle] pathForResource:@"aboutbook"

ofType:@"html"];

url = [[NSURL alloc] initFileURLWithPath: aboutPath];

Create an NSURLRequest from this, just like before, and load it in the

UIWebView, and you’ll see your local file rendered in the web view, as

shown in Figure 12.3, on the following page.

12.2 Reading Data from the Network

Of course, not everything on the Internet is a web page. Heck, not every-

thing on port 80 is a web page. You might want to use it for exchanging

data with a web service or tuning in to web radio. Many applications

will have their own reasons for connecting to the network and using

the data for their own application-specific purposes. Fortunately, if you

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/TenMinuteBrowser/Classes/TenMinuteBrowserViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=249

READING DATA FROM THE NETWORK 250

Figure 12.3: Showing a local About page with UIWebView

want to open a URL and retrieve its data, Cocoa’s URL Loading System

makes the process exceptionally simple.

The URL Loading System is a set of classes that let you work with

four essential URL protocols: http://, https://, ftp://, and file://. By way of

example, let’s explore what it takes to read in the source of a web page

(or, technically, the content of any supported URL) and display it to

the user. An example project, SimpleCocoaURLReader, is provided in the

sample code in code/NetworkIO/. It offers the user a layout much like the

simple browser in Section 12.1, Building a Browser in Ten Minutes with

UIWebView, on page 244, except that instead of a UIWebView, the raw

source is displayed in a simple UITextView. You can see the completed

example running and showing the source of the Pragmatic Programmer

home page, http://www.pragprog.com/, in Figure 12.4, on the following

page.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://www.pragprog.com/
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=250

READING DATA FROM THE NETWORK 251

Figure 12.4: Displaying the source of a website loaded via URL Loading

System

As you would expect, the UI particulars of this app are identical to the

WebKit demo. Clicking the Load button or pressing Return at the end of

the text field calls a loadURL method that’s responsible for retrieving the

content from the URL specified in the text field. However, in the browser

example, calling loadRequest: was the end of the story. Here, handling

the request is just the beginning.

In the URL Loading System, you take the NSURLRequest and create an

NSURLConnection from it. The request specifies what you want and how

you want it; its methods return the URL, whether the HTTP method

is GET or POST, the data you want to submit via a POST, and so

on.3 A corresponding NSURLResponse, representing the server’s reply, is

3. These properties are read-only. Use NSMutableURLRequest if you need to set them to

nondefault values.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=251

READING DATA FROM THE NETWORK 252

automatically generated later. By contrast, with these two objects, the

NSURLConnection represents the action of connecting to the server with

the request and getting the response. And, by design, you are meant to

interact with this connection in a highly asynchronous way, as you’ll

soon see.

Download NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m

NSURLRequest *request = [[NSURLRequest alloc] initWithURL: url];

NSURLConnection *connection = [[NSURLConnection alloc]

initWithRequest:request

delegate:self];

[connection release];

[request release];

Yes, that’s right—you create an NSURLConnection and immediately re-

lease it, because you’ll never need it again. What the heck is going on

here?

The connection is set up with a delegate, in this case self, so your object

will get a wake-up call when there’s something you need to handle.

In the URL Loading System, you’re notified of everything interesting—

the opening or closing of the connection, the receipt of more content,

errors, authentication challenges—in the form of callbacks to a delegate

object’s various methods. These methods are described in NSURLConnec-

tion’s documentation; the most basic callbacks are as follows:

• connection:didReceiveResponse: indicates that enough data has

been received to compose an NSURLResponse object.

• connection:didReceiveData: provides an NSData wrapper around the

most recent block of bytes retrieved from the connection.

• connectionDidFinishLoading: signals that the download has com-

pleted normally.

• connection:didFailWithError: indicates that the download failed, sup-

plying an NSError to explain the failure.

To provide a display of the URL’s source, the implementation of these

callbacks is pretty simple. When you create the connection, you clear

the UITextView and start spinning a UIActivityIndicatorView with the startAn-

imating method. When you receive a response, you do...nothing, though

you’re welcome to inspect the NSURLResponse object if it has data that

interests you (for example, instead of the example’s spinning activity

indicator, you could use a UIProgressView, set its maximum value from

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=252

READING DATA FROM THE NETWORK 253

Joe Asks. . .

What If I Need to Use Something Other Than HTTP or FTP?

We’ve given the URL Loading System a lot of space because
it’s one of those 80-20 (or 90-10) situations. The overwhelm-
ing majority of application network traffic is going to be HTTP
on port 80. Since port 80 is almost never blocked by prox-
ies or firewalls, engineers have spent the last decade or two
putting all sorts of functionality on it, from remote procedure
calls to streaming audio. It makes you wonder whether the port-
blocking network admins would have been better off leaving
more ports open so that different services would operate on
distinct ports, instead of overloading the meaning of port 80.
But we digress....

If you need to implement a non-HTTP, non-FTP protocol, you’re
basically proposing classic socket programming: open input
and/or output streams to some host on some port, and start
reading and writing data in some defined or de facto proto-
col. Cocoa on the iPhone doesn’t help for this. On the Mac,
there’s an NSHost class, which you pass to NSStream’s getStream-

sToHost:port:inputStream:outputStream: method, but those aren’t
part of the public iPhone API and therefore should not be used.

Instead, you need to use Core Foundation and the CFNetwork
framework, which provides network abstractions that you call
with procedural C functions. Although it has some higher-level
support for HTTP and FTP, if you want to get really down and dirty,
you’ll use socket APIs directly. To wit, the functionality of that
missing Cocoa method is provided by the CFNetwork function
CFStreamCreatePairWithSocketToHost().

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=253

READING DATA FROM THE NETWORK 254

the response’s expectedContentLength, count bytes as you receive data,

and update the progress bar each time).

The event you probably care most about is receiving data. The delegate’s

connection:didReceiveData: method will be called repeatedly with new

data, until the end of the stream is reached. Whatever you care to do

with the data as it downloads, you do it here.

Download NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m

- (void)connection:(NSURLConnection *)connection

didReceiveData:(NSData *)data {

NSLog (@"connectionDidReceiveData");

NSString *newText = [[NSString alloc]

initWithData:data

encoding:NSUTF8StringEncoding];

if (newText != NULL) {

[self appendTextToView:newText];

[newText release];

}

}

The example code’s implementation is pretty trivial; it makes an NSString

from the NSData and appends it to the UITextView. Obviously, your needs

might be different. For example, if you needed to keep the entire con-

tents of the URL in memory, you could create an NSMutableData object

to which you would then append each received NSData object. You could

also implement file downloading by opening an output stream to a file,

as shown in Section 8.7, Writing Data to Files, on page 167, and writing

each received block of data to it.4

The other two methods you’ll need to handle in pretty much any case

are the “end” and “error” events. You don’t have to explicitly close or

release any connection-related resources with the URL Loading System,

so you may have only UI-related tasks to attend to, such as disabling

an activity indicator or providing an error message if the connection

reports an error.

Download NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m

- (void) connectionDidFinishLoading: (NSURLConnection*) connection {

[activityIndicator stopAnimating];

}

4. Cocoa for Mac OS X has an NSURLDownload class for this purpose, but it is not present
on iPhone OS.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=254

HTTP AUTHENTICATION 255

-(void) connection:(NSURLConnection *)connection

didFailWithError: (NSError *)error {

UIAlertView *errorAlert = [[UIAlertView alloc]

initWithTitle: [error localizedDescription]

message: [error localizedFailureReason]

delegate:nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[errorAlert show];

[errorAlert release];

[activityIndicator stopAnimating];

}

And that, remarkably enough, is it. No baby-sitting of a connection, no

resources to carefully release in every end and error state, none of the

nagging details that you might have dealt with in other network stream-

ing APIs. Plus, the URL Loading System is asynchronous by design:

while other APIs make it natural to block the UI in a tight “read bytes

until done” loop, this API encourages you to work in a more resilient

event-driven mind-set.5

12.3 HTTP Authentication

One thing our asynchronous reader can’t do for us yet is to read a URL

that’s password-protected. Requests for content in an authentication

realm are typically going to get back an HTTP response status of 401

(Unauthorized) and user-readable boilerplate text explaining the rejec-

tion of the request. Fortunately, the URL Loading System makes it very

easy to deal with HTTP authentication challenges.

Setting Up a Password-Protected Website

First, though, you’ll want to set up an authentication realm of your

own to test against. There’s no way to know whether your authen-

tication code is working unless you test it against a real password-

protected website. Fortunately, your Mac already has the industry-

standard Apache web server, so you can use that for your testing.

Go to the System Preferences on your Mac, select Sharing, and turn on

Web Sharing if it’s not already enabled, as shown in Figure 12.5, on the

following page.

5. Actually, you can force NSURLConnection to operate in a blocking mode by calling

sendSynchronousRequest:returningResponse:error:, if you really think you need to do so. Given

the high latency and the failure potential of wireless connections, we’d rather you didn’t.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=255

HTTP AUTHENTICATION 256

Figure 12.5: Enabling Web Sharing in System Preferences

This starts up your Apache web server. Make note of your computer’s

address, since that’s what you’ll be using later from your iPhone or the

simulator.

Next, you’ll need to edit some of the Apache configuration files manu-

ally. On Mac OS X, the Apache-related files are stored in different parts

of the filesystem. We’ll start by creating a directory in the web root—the

folder that is presented as the top level of your website—which will then

be password-protected by setting up a configuration file.

By default, your Apache web root is /Library/WebServer/Documents. So,

in the Finder, go to the top level of your boot drive or partition, and

navigate to that directory. Create a folder, and give it a simple name

like iphone.6 Now, with your text editor of choice, create a simple web

page in this directory. Ours has just a bit of text and a screenshot from

an earlier chapter:

<html><head><title>OK!</title></head>

<body>

<h1>You're In!</h1>

</body>

</html>

6. You may need to be an administrator on your Mac to create and edit files in this

directory.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=256

HTTP AUTHENTICATION 257

The next step is to lock down this directory with Apache authentica-

tion. To do this, you need to edit files in /etc/apache2/, which is not

visible from the Finder. So, using Terminal, change the directory with

cd /etc/apache2. The contents of this directory are the Apache config-

uration, specifically httpd.conf and everything it imports. To edit these

files, you’ll need root access and a text editor you can launch from the

command line, such as vi, emacs, or the command-line launchers for

popular Mac text editors like mate for TextMate or bbedit for BBEdit.

First, edit the httpd.conf file:7

⇒ Yuna:apache2 cadamson$ sudo emacs httpd.conf

Password:

You could set up the authentication directory right here in the master

httpd.conf file, but that’s somewhat bad form, because it creates an

administration hassle once you can’t tell what parts of the file came

with Mac OS X and what parts you added. Instead, jump to the end of

the file, and just insert a directive to include all configuration files in

the users directory.

Add a vhost to authenticate the iphone directory for testing

Include /etc/apache2/users/*.conf

Now you’re ready to set up your password-protected directory. Change

to the users directory and edit a new file, with any name you like, pro-

vided it ends in .conf so the <Include> from the master configuration

file will pick it up. iphone-test-dir.conf would be a good choice. In this

file, you’ll use Apache’s <Directory> directive to declare that your iphone

directory needs special handling; specifically, it needs password pro-

tection. The directive is detailed in Apache’s Authentication, Authoriza-

tion and Access Control [Apa09] documentation, but a simple example

shouldn’t be hard to follow:

#

Basic user/pass authentication for iphone directory

#

<Directory "/Library/WebServer/Documents/iphone">

AuthType Basic

AuthName "Authenticate or die"

AuthUserFile /etc/apache2/iphonedirpasswd

Require user chris

</Directory>

7. For vi and emacs, you’ll want to launch the editor with sudo so you have write access.

With BBEdit and TextMate, you don’t need to; you’ll be challenged for an administrator
password the first time you try to save the file.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=257

HTTP AUTHENTICATION 258

This directive does the following:

• Indicates that the directory in question is /Library/WebServer/Docu-

ments/iphone.

• Chooses Apache’s “basic” username/password authentication

module.

• Provides a user-readable name for the authentication realm: “Au-

thenticate or die.”

• Defines the password file that will store usernames and passwords

for this realm.

• Lists the usernames that will be allowed to authenticate, in this

case chris. You can use multiple users or create groups, but for

your own testing, one user should be plenty.

The authentication directive tells Apache to look in the file /etc/apache2

/iphonedirpasswd for usernames and passwords, so you’ll obviously need

to set that up. You create Apache user with the htpasswd command,

which you’ll need to run as root.
⇒ Yuna:apache2 cadamson$ sudo htpasswd -c /etc/apache2/iphonedirpasswd chris

Password:

New password:

Re-type new password:

Adding password for user chris

Yuna:apache2 cadamson$

The command shown here instructs htpasswd to create the specified

file (via the -c option) and provides the username we want to cre-

ate. Somewhat confusingly, the first “Password:” prompt is actually the

shell challenging you for your administrator password in order to sudo

the command, that is, to run as root. The “New password” that you’re

prompted for twice is the Apache user password you want to create.

Since you’ll be typing this on an iPhone keyboard, you may want to

keep it simple: perhaps test instead of ph33rth3l337hax0rd00d.

With your password file created and Apache configured to use it, it’s

now time to test with your desktop browser. Restart Apache with sudo

apachectl restart, and then navigate to the password-protected directory

by appending its name to your web address, as shown in Sharing Pref-

erences. In our case, that was http://192.168.0.108/iphone/, though your

IP address will probably be different. If you’ve configured everything

correctly, your web browser should pop up a username and password

challenge dialog box. If it doesn’t seem to work, check the Apache logs

in /var/log/apache2/ to see whether any errors were reported when you

restarted Apache.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://192.168.0.108/iphone/
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=258

HTTP AUTHENTICATION 259

Handling HTTP Authentication

Now that you have a password-protected site to test against, you can

add HTTP authentication support to your application.

In the URL Loading System, HTTP authentication is signaled by the

delegate callback method connection:didReceiveAuthenticationChallenge:,

which provides an NSURLAuthenticationChallenge object. This object rep-

resents the state of the challenge-response dialogue between your client

and the server. For example, you can use the protectionSpace method to

get the “realm” on the server that requires authentication, or you can

use the previousFailureCount method to find out whether the response is

from a failed attempt to supply a username and password.

Perhaps most importantly, the sender method returns an object imple-

menting the NSURLAuthenticationChallengeSender protocol. Since this ob-

ject represents the sender of the challenge, it’s what you’ll interact

with to answer the authentication challenge. Your options are to either

answer the challenge by providing credentials like a username and

password (useCredential:forAuthenticationChallenge:), try to proceed with-

out providing credentials (continueWithoutCredentialForAuthenticationChal-

lenge:), or give up and abort the request (cancelAuthenticationChallenge:).

Let’s try it in practice. In the example code, we implement connec-

tion:didReceiveAuthenticationChallenge: by looking at the previous failure

count:

Download NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m

Line 1 - (void)connection:(NSURLConnection *)connection
- didReceiveAuthenticationChallenge:
- (NSURLAuthenticationChallenge *)challenge {
- if ([challenge previousFailureCount] != 0) {
5 // if previous failure count > 0, then user/pass was rejected
- NSString *alertMessage = @"Invalid username or password";
- UIAlertView *authenticationAlert =
- [[UIAlertView alloc] initWithTitle:@"Authentication failed"
- message:alertMessage

10 delegate:nil
- cancelButtonTitle:@"OK"
- otherButtonTitles:nil];
- [authenticationAlert show];
- [authenticationAlert release];

15 [alertMessage release];
- [activityIndicator stopAnimating];
- } else {
- // show and block for authentication challenge

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=259

HTTP AUTHENTICATION 260

- AuthenticationChallengeViewController *challengeController =
20 [[AuthenticationChallengeViewController alloc]

- initWithNibName:@"AuthenticationChallengeView"
- bundle:[NSBundle mainBundle]
- loader: self
- challenge: challenge];

25 [self presentModalViewController:challengeController
- animated:YES];
- [challengeController release];
- }
- }

If the failure count is nonzero (line 4), then we got here as a result of a

failed username/password response, so we show the user an error alert

(lines 6–15). However, if this is a new challenge, we’ll show a password

challenge view in a modal (that is, blocking) pop-up (lines 19–26).

This AuthenticationChallengeViewController offers a simple view, shown in

Figure 12.6, on the next page with username and password fields. Its

two actions send control back to the view controller that spawned it,

either calling a “cancel” method or providing the username and pass-

word to an “OK” method.

Both methods dismiss the modal username/password view controller

and retrieve the NSURLAuthenticationChallengeSender from the challenge.

The difference is that the cancel method sends it the cancelAuthentica-

tionChallenge: message, while the “OK” method creates an NSURLCreden-

tial object from the username and password and sends it as a response

to the challenge:

Download NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m

- (void) handleAuthenticationOKForChallenge:

(NSURLAuthenticationChallenge *) aChallenge

withUser: (NSString*) username

password: (NSString*) password {

// try to reply to challenge

NSURLCredential *credential = [[NSURLCredential alloc]

initWithUser:username

password:password

persistence:NSURLCredentialPersistenceForSession];

[[aChallenge sender] useCredential:credential

forAuthenticationChallenge:aChallenge];

[credential release];

[self dismissModalViewControllerAnimated:YES];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleCocoaURLReader/Classes/URLLoaderViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=260

HTTP AUTHENTICATION 261

Figure 12.6: GUI to provide username and password

Notice that the NSURLCredential initializer takes a persistence argument.

This can be one of three NSURLCredentialPersistence constants: NSURL-

CredentialPersistenceNone for credentials that are immediately forgotten,

NSURLCredentialPersistenceForSession for credentials that are stored for the

duration of the current session, and NSURLCredentialPersistencePermanent

for credentials stored permanently in the user’s keychain. The actual

behavior seems to vary between the simulator and the device; trying

out each persistence mode on the device, “permanent” credentials sur-

vive application restarts (and even the removal and reinstallation of the

application), while the others don’t.

At this point, you’re done, whether or not the username and password

are accepted. If they are, you’ll start getting calls to connection:didRe-

ceiveData: with the contents of the URL you’ve now gained access to.

If they were wrong, you’ll get another call to connection:didReceiveAu-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=261

PARSING XML FROM WEB SERVICES 262

thenticationChallenge:, and this time the NSURLAuthenticationChallenge’s

previousFailureCount will be nonzero, indicating that the challenge has

been issued anew in response to an incorrect username/password

combination.

12.4 Parsing XML from Web Services

Now let’s stop for a moment and think about what you’re going to do

with the data you get from the network. Our example of just showing

downloaded HTML in a text view is easy to program but not particu-

larly practical. Eventually, you’re probably going to want to parse the

downloaded data.

In many cases, a service is exposed via some kind of network API, which

specifies what a client sends (and how) and what the service sends in

response. Broadly speaking, web APIs that use HTTP can be referred to

as web services.8 And, more often than not, the data returned by the

service is XML.

Let’s take a concrete example. Twitter has a very open, easy-to-use

public API detailed on its developer wiki at http://apiwiki.twitter.com/. Its

REST API can even be used from a browser. For example, the “public

timeline” that shows the most recent updates from all users is available

as http://twitter.com/statuses/public_timeline.format, where format is one of

xml, json, rss, and atom. Thus, to get a plain XML view of the timeline, you

just need to load the URL http://twitter.com/statuses/public_timeline.xml. In

fact, you can use this URL in the SimpleCocoaURLLoader example and

see the raw XML reply in the text view. Here’s a fragment of the returned

XML, edited to show the structure and some of the most interesting

fields:

<?xml version="1.0" encoding="UTF-8"?>

<statuses type="array">

<status>

<created_at>Sun Apr 19 17:02:43 +0000 2009</created_at>

<id>1559022041</id>

<text>Wife and kids shopping. Must write and finish webservices

section this afternoon.</text>

<source>web</source>

[...]

8. Although some definitions limit web services to only those that adhere to specific
standards, like SOAP, the term is increasingly used for any HTTP-based machine-to-

machine service.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://apiwiki.twitter.com/
http://twitter.com/statuses/public_timeline.xml
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=262

PARSING XML FROM WEB SERVICES 263

<user>

<id>12604932</id>

<name>Chris Adamson</name>

<screen_name>invalidname</screen_name>

<location>Grand Rapids, MI</location>

<description>I write, edit, and code stuff. I also raise

children and sometimes clean things</description>

[...]

</user>

</status>

[...]

</statuses>

Now let’s take the next step and parse out the useful information. We’ll

just retrieve the names of the users and the text of their statuses, com-

monly known as tweets.

Start a new view-based project, SimpleTwitterClient, and use IB to edit

SimpleTwitterClientViewController.xib to offer a large text view, an “Update

tweets” button, and an activity indicator, as shown in Figure 12.7, on

the following page. Then in the header file, declare IBOutlet properties for

activityIndicator and tweetsView, and declare an event-handling IBAction

method for the button, updateTweets. Connect the two outlets and the

button’s Touch Up Inside event as appropriate.

Loading the Twitter Data

To implement the updateTweets method, we need to do two things: get

the XML data from the Twitter web service and parse out the parts of

it that interest us. You already know how to do the first part: create

an NSURLRequest, create an NSURLConnection with it, and write the del-

egate methods to handle the life-cycle events of receiving the data and

handling errors. Many of the Twitter APIs require HTTP authentication,

so if you wanted to support those features, then you’d also implement

callbacks like connection:didReceiveAuthenticationChallenge:.

But what do we want to do with the data? Let’s look ahead to what

parsing it will require. The NSXMLParser class has two initializer meth-

ods: initWithContentsOfURL: and initWithData:. There are two good reasons

not to use the former: it may block the GUI while downloading all the

data, and it can’t handle the HTTP authentication challenge issued by

some of the Twitter APIs. So, we’ll plan on using initWithData:, which

means we can just collect all the downloaded XML into an NSMutable-

Data and hand that to the parser when we’re done downloading.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=263

PARSING XML FROM WEB SERVICES 264

Figure 12.7: Editing SimpleTwitterClientViewController.xib view in IB

So, define NSMutableData *tweetsData in the header file. Now let’s imple-

ment the updateTweets method to allocate tweetsData and start loading

from the URL.

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

-(IBAction) updateTweets {

tweetsView.text = @"";

[tweetsData release];

tweetsData = [[NSMutableData alloc] init];

NSURL *url = [NSURL URLWithString:

@"http://twitter.com/statuses/public_timeline.xml"];

NSURLRequest *request = [[NSURLRequest alloc] initWithURL: url];

NSURLConnection *connection = [[NSURLConnection alloc]

initWithRequest:request

delegate:self];

[connection release];

[request release];

[activityIndicator startAnimating];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=264

PARSING XML FROM WEB SERVICES 265

Once the request is initialized, the URL Loading System will start call-

ing our delegate callback methods, likely starting with connection:didRe-

ceiveResponse:, followed by a series of connection:didReceiveData: dele-

gate callbacks that provide the XML data. All we need to do is to stuff

each new block of data into tweetsData.

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {

[tweetsData appendData: data];

}

Finally, when the URL Loading System reaches the end of the stream,

it calls back to connection:didFinishLoading:. We can stop spinning the

activityIndicator and call a yet-to-be-written parseTweets method.

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void) connectionDidFinishLoading: (NSURLConnection*) connection {

[activityIndicator stopAnimating];

[self startParsingTweets];

}

Parsing the Twitter Data

Now we have all the XML in an NSData object. To parse it, we’ll use an

NSXMLParser. There are two broad classes of XML parsing approaches. A

DOM parser creates a tree-structured model in memory, in which each

node of the tree maps to an element of the XML markup. When you

need the deep structure of the tree, this can be helpful. But often, you

don’t. Moreover, DOM parsers often make you wait until the whole tree

is parsed before you can do anything with the data. The alternative

approach is the event-driven parser, in which the parser notifies inter-

ested parties as it parses each XML tag and lets the listeners decide

what, if anything, to do. This is potentially lighter and allows your code

to do useful work during the parse, perhaps displaying incomplete but

useful data before the parse is completed.

The NSXMLParser follows this event-driven approach. If you look at its

documentation, you’ll see a very familiar pattern. After creating the par-

ser, you set a delegate,9 and then you receive various callback methods

as the XML is parsed: parserDidStartDocument:, parser:foundCharacters:,

parser:didStartElement:namespaceURI:qualifiedName:attributes:, and so on.

9. NSXMLParser uses an informal delegate protocol, meaning there’s just a list of callback
methods in the documentation and not a defined protocol that your class needs to declare

that it implements.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=265

PARSING XML FROM WEB SERVICES 266

statuses

status

created_at user

. . .

. . .

id name screen_name

textid

. . .description

Figure 12.8: Diagram of XML response received from Twitter web ser-

vice API

This is the same asynchronous pattern you saw in Section 12.2, Read-

ing Data from the Network, on page 249, and earlier still in Section 8.5,

Asynchronous File Reading, on page 157.

Now that you know how you’re going to be called, it’s time to think

about the data that will be coming back to you in those callbacks. Let’s

take another look at the XML response we get from the Twitter API. An

overall view of the response as a tree structure is shown in Figure 12.8.

The Twitter timeline APIs send back XML with a single <statuses> ele-

ment, which contains a number of status children. Each of these is

one tweet, with elements providing a timestamp, unique ID, and other

metadata for the tweet, as well as a <text> element with the tweet text

itself. The <status> also contains a <user> element that describes the user

who posted the tweet. This element has child elements that describe the

user: their <name>,<screen_name>, <location>, and so on.

There’s a nested tree structure here, but we don’t necessarily have

to concern ourselves with it. Within each <status>, our simple name-

and-message-only example can limit itself to processing the <text> and

<name> tags and ignore the rest. For now, let’s limit ourselves to that

approach.

We’ll begin by creating an NSXMLParser with the downloaded tweetData

and have it immediately start parsing.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=266

PARSING XML FROM WEB SERVICES 267

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void) startParsingTweets {

NSXMLParser *tweetParser = [[NSXMLParser alloc] initWithData:tweetsData];

tweetParser.delegate = self;

[tweetParser parse];

[tweetParser release];

}

This will immediately start calling the parsing callback methods, if they

exist. So, we need to figure out what each of these methods should do.

Ultimately, we’re building a big string of name-message pairs to put in

the text view, so we’ll need an NSMutableString that we can repeatedly

append to as we get each tweet parsed. To build each tweet, we need to

watch for status elements, and once one of those has begun, watch for

name and text elements, which can be stored as name-value pairs in an

NSMutableDictionary until the status element ends and we add the tweet

to the tweetsString. Within each of those elements, we just need the text,

but there’s a catch: parser:foundCharacters: isn’t guaranteed to provide

all a tag’s text in one callback. In fact, it rarely does. So, we want an

NSMutableString to hold an element’s text as it’s built up with repeated

callbacks.

Given all that, you’ll need to define the following instance variables in

the header file:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.h

NSMutableString *tweetsString;

NSMutableDictionary *currentTweetDict;

NSString *currentElementName;

NSMutableString *currentText;

Now we’re ready. First, we handle the parser:didStartDocument: message.

When we get this callback, we can allocate the tweetsString:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void)parserDidStartDocument:(NSXMLParser *)parser {

[tweetsString release];

tweetsString = [[NSMutableString alloc]

initWithCapacity: (20 * (140 + 20))];

currentElementName = nil;

currentText = nil;

}

Since tweets can be only 140 characters long and the Twitter web ser-

vice API states that only 20 tweets are provided per call, we can actually

make a decent guess as to how big a string we’ll need. Add another 20

characters for a typical username and whitespace, and we can allocate

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.h
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=267

PARSING XML FROM WEB SERVICES 268

our NSMutableString with enough room for twenty 160-character items

before it has to resize itself.

Once the document starts, we need to start handling element pars-

ing callbacks. We’ll get parser:didStartElement: callbacks for every sin-

gle element, in a classic tree-parsing order: first statuses, then its first

status child, then status’s first child (perhaps created_at), and so on,

until we finally get an element with no children. We’ll get one or more

parser:foundCharacters: callbacks for its text and then parser:didEndEl-

ement:. The parser then returns to its parent and either finds another

child element to begin or the parent’s text, and so on.

We don’t want to handle every element. In fact, there are only three we

care about: status, name, and text. The first of these is special, because

it tells us to start watching for its children. The others are the ones we’ll

put in the currentTweetDict. To watch for these, let’s add NSSet *interest-

ingTags to the header file. Here’s how we’ll set that up. First, #define the

elements you’re interested in:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

#define INTERESTING_TAG_NAMES @"text", @"name", nil

Then, the first chance you get (viewDidLoad, for example), initialize the

NSSet with these values. Notice that initWithObjects: takes a variable-

length list of objects, terminated by nil. We could put that list here, but

using the #define at the top of the file is more findable and readable:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void) viewDidLoad {

[super viewDidLoad];

interestingTags = [[NSSet alloc] initWithObjects: INTERESTING_TAG_NAMES];

}

Now we’re ready to handle the elements we’re interested in, as the

parser discovers them. We begin an element with the callback parser:did-

StartElement:namespaceURI:qualifiedName:attributes::

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

Line 1 - (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
- namespaceURI:(NSString *)namespaceURI
- qualifiedName:(NSString *)qualifiedName
- attributes:(NSDictionary *)attributeDict {
5 if ([elementName isEqualToString:@"status"]) {
- [currentTweetDict release];
- currentTweetDict = [[NSMutableDictionary alloc]
- initWithCapacity: [interestingTags count]];
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=268

PARSING XML FROM WEB SERVICES 269

10 else if ([interestingTags containsObject: elementName]) {
- currentElementName = elementName;
- currentText = [[NSMutableString alloc] init];
- }
- }

This implementation does two things. If the element is status, then it

represents the beginning of a new tweet and therefore sets up an NSMu-

tableDictionary to hold name-value pairs of any interesting child ele-

ments. Otherwise, if the element is one of the “interesting tags,” mean-

ing name or text, then we hold on to the name of the current element

and set up an NSMutableString to hold its value. Notice in the else if on

line 10 how NSSet’s containsObject: makes it easy to look through the set

of interesting tag names. That’s why we set it up earlier.

The next message we expect from the parser is one or more callbacks

with text from an element:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {

[currentText appendString:string];

}

This takes the characters and appends them to the currentText string,

where we build up the value of a name-value pair. The callback doesn’t

tell you which element the text is part of, because you should already

know that from a previous “start element” call. Notice, though, that

we don’t check to see that the current element is “interesting” before

appending the text. This is a sneaky little optimization: if we allocate

a currentText only for interesting elements and nil it when we end any

element, then this append message will go nowhere when it’s called

inside noninteresting elements.

So, we have a plan to handle the beginning of an element and the text

within a pair of tags we care about. Now let’s look at what we do when

the parser finds the end of the element:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName

namespaceURI:(NSString *)namespaceURI

qualifiedName:(NSString *)qName {

if ([elementName isEqualToString:currentElementName]) {

[currentTweetDict setValue: currentText forKey: currentElementName];

} else if ([elementName isEqualToString:@"status"]) {

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=269

PARSING XML FROM WEB SERVICES 270

[tweetsString appendFormat:@"%@: %@\n\n",

[currentTweetDict valueForKey:@"name"],

[currentTweetDict valueForKey:@"text"]];

}

[currentText release];

currentText = nil;

}

We want to do two things when an element ends. If it’s one of the “inter-

esting” tags, then we know that there is no more text for this element,

and we can store the name-value pair using the currentElementName and

the accumulated currentText. On the other hand, if it’s a status element

that has ended, then we’ve parsed all the metadata for one tweet, and

we can use its values. For this simple example, all we do is to append

the tweet’s username and message to the mutable tweetsString. We also

need to release and nil out any currentText object that we may have allo-

cated in parser:didStartElement:.

When all the parsing wraps up, we’ll get the parserDidEndDocument: call-

back. When this happens, all we need to do is to replace the text view’s

contents with the accumulated tweetsString:

Download NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m

- (void)parserDidEndDocument:(NSXMLParser *)parser {

tweetsView.text = tweetsString;

}

And that’s all the work we need to do to parse Twitter’s public timeline.

Build and Go to run the app, and click the update button. The result is

shown in Figure 12.9, on page 272.

More XML Parsing Options

This is intentionally a pretty simple example, and a few extensions

should be obvious. First, if you want to use most of the Twitter web

service API—such as the services for getting a user’s “friends timeline”

or posting their own tweets—then you’ll need to use HTTP authentica-

tion, as described in Section 12.3, HTTP Authentication, on page 255.

It’s also possible you’ll want to pursue a deeper and more sophisticated

parse. For example, it might be useful to do more of a DOM-style parse

and maintain the parent-child relationships of the source XML. This

is made surprisingly easy by Objective-C delegation. To build out the

tree structure, you create an element class that does its own parsing,

meaning that it is this element class that implements the NSXMLParser’s

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/SimpleTwitterClient/Classes/SimpleTwitterClientViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=270

PARSING XML FROM WEB SERVICES 271

Arranging Code with #pragma mark

If you have a single class that implements multiple protocols, as
well as overriding inherited methods from its superclasses, it can
get disorganized quickly. One tool for keeping your sets of meth-
ods straight is the #pragma mark directive. Any text after the
#pragma mark becomes a menu item in the method/function
list menu in Xcode’s editor. Here’s a sample usage:

#pragma mark NSURLConnection callbacks

We’ve put a few of these in SimpleTwitterClientViewController.m to
help organize the methods, and here’s the resulting menu:

Notice how we also got a “TODO” menu item. Any one-line
comments of the form // TODO: text also get added to this menu.
For clarity, you can also use a single hyphen character as the
#pragma mark text to create a simple separator line in the menu.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=271

PARSING XML FROM WEB SERVICES 272

Figure 12.9: Viewing Twitter’s public timeline with NSXMLParser

informal delegate protocol. You create a root element and make it the

parser’s delegate. The element then handles the various callbacks, and

when it gets the callback for a new element in the XML, it creates a new

element object and makes this new element the parser’s delegate. Con-

versely, when the parser finds the end of an XML element, the element

object returns the delegate to its parent. The root element ultimately

gets the parserDidEndDocument: callback, and at that point, it’s the par-

ent to a tree of objects representing the contents of the source XML.

For full details of this recursive approach, see Apple’sEvent-Driven XML

Programming Guide for Cocoa [App08b].

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=272

SENDING MAIL FROM YOUR APPLICATION 273

One other option to consider is a pair of projects at Google Code.

TouchXML is a lightweight replacement for Mac OS X’s XML support,

which contains a number of classes not available on iPhone OS. Based

on the open source libxml2 library, it supports parsing from an NSData

or NSString, offers basic XPath support and a set of navigation-style

methods to retrieve siblings, children, and so on. Another project,

TouchJSON, is a parser and generator for the JSON format used by

some web services. Both projects are part of Google’s collection of

iPhone OS open source projects, Touch Code, at http://code.google.com/

p/touchcode/.

12.5 Sending Mail from Your Application

Thus far, we’ve covered some of the most typical uses of the network:

browsing the Web, downloading data from web servers, and process-

ing web service data. One final very common activity we’ll consider in

this chapter is using email. Every iPhone and iPod touch already has a

capable email application, and in iPhone OS 3.0, developers gain access

to its standard UI for sending email.

The optional MessageUI framework contains only one class and one

delegate protocol. Our example will be correspondingly simple. Create a

view-based application called InAppMailer. Add the MessageUI.framework

to the project, add #import <MessageUI/MessageUI.h> in InAppMailerView-

Controller.h, and then add the protocol <MFMailComposeViewControllerDel-

egate> to the @interface declaration. While in this header file, declare

an IBOutlet to a UITextView called mailHistoryView, make it a @property, and

declare an IBAction called composeMailTapped.

The GUI will be trivial: open InAppMailerViewController.xib, and add a text

view (connected to the mailHistoryView outlet of File’s Owner) and a but-

ton titled “Compose mail” whose Touch Up Inside event is connected

to File’s Owner’s composeMailTapped action. You now have a button to

bring up the mail composer view and a text view to output the results.

To create an email message, you create an instance of the MFMailCom-

poseViewController, which manages a view that looks like the “new mail”

view of the Mail application (see Figure 12.10, on the following page).

This view controller handles all the events when the mail-composer

view is showing, such as displaying the keyboard when the user is in

an editable field or bringing up a picker when the user clicks the From

line to select one of his or her accounts.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://code.google.com/p/touchcode/
http://code.google.com/p/touchcode/
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=273

SENDING MAIL FROM YOUR APPLICATION 274

Figure 12.10: Composing mail

Typically, you create the MFMailComposeViewController in code and dis-

play it modally. So, that’s what we’ll do when a user taps the button:

Download NetworkIO/InAppMailer/Classes/InAppMailerViewController.m

-(IBAction) composeMailTapped {

if (! [MFMailComposeViewController canSendMail]) {

UIAlertView *cantMailAlert = [[UIAlertView alloc]

initWithTitle:@"Can't mail"

message:@"This device is not able to send e-mail"

delegate:NULL

cancelButtonTitle:@"OK"

otherButtonTitles:NULL];

[cantMailAlert show];

[cantMailAlert release];

return;

}

MFMailComposeViewController *mailController =

[[[MFMailComposeViewController alloc] init] autorelease];

[mailController setMessageBody:@"My app can send mail" isHTML:NO];

mailController.mailComposeDelegate = self;

[self presentModalViewController:mailController animated:YES];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/InAppMailer/Classes/InAppMailerViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=274

SENDING MAIL FROM YOUR APPLICATION 275

The first thing you do here is to call the class method canSendMail so

you can see whether the device is even configured for sending mail; this

example shows an error alert and performs an early return if it is not.

If the device can send mail, you create an instance of MFMailCompose-

ViewController and, optionally, prepopulate various fields of the message.

You can set the subject, recipients, CC and BCC recipients, and mes-

sage body (as plain-text or HTML), as well as add attachments. In this

example, we use setMessageBody:isHTML: to prepopulate the body with

the string My app can send mail. Note that since you will be displaying

the mail composition view, the user will be able to change or delete any

field you populate—the class does not allow you to force the user to

send anything without their awareness and intent. The controller also

has a mailComposeDelegate property that you should set in order to be

notified when the user finishes working with the mail composer. With

any fields prepopulated and the delegate set, you can slide in the mail

composing view with presentModalViewController.

The MFMailComposeViewControllerDelegate protocol defines a single call-

back method: mailComposeController:didFinishWithResult:error:. This indi-

cates that the user has finished with the mail composer. The second

parameter provides one of four MFMailComposeResult enumerated val-

ues: MFMailComposeResultSent if the user composed and sent a message,

MFMailComposeResultSaved if he or she tapped Cancel and opted to save

the message to the Drafts folder in the Mail app, MFMailComposeResult-

Cancelled if the user canceled and didn’t save, and MFMailComposeRe-

sultFailed. You can get more detail about the failure case by retrieving

the error parameter.

In our example app, let’s just log the result and time to the text view:

Download NetworkIO/InAppMailer/Classes/InAppMailerViewController.m

- (void)mailComposeController:(MFMailComposeViewController*)controller

didFinishWithResult:(MFMailComposeResult)result

error:(NSError*)error {

if (error) {

UIAlertView *cantMailAlert = [[UIAlertView alloc]

initWithTitle:@"Mail error"

message: [error localizedDescription]

delegate:NULL

cancelButtonTitle:@"OK"

otherButtonTitles:NULL];

[cantMailAlert show];

[cantMailAlert release];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/InAppMailer/Classes/InAppMailerViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=275

SENDING MAIL FROM YOUR APPLICATION 276

NSString *resultString;

switch (result) {

case MFMailComposeResultSent:

resultString = @"Sent mail"; break;

case MFMailComposeResultSaved:

resultString = @"Saved mail"; break;

case MFMailComposeResultCancelled:

resultString = @"Cancelled mail"; break;

case MFMailComposeResultFailed:

resultString = @"Mail failed"; break;

}

mailHistoryView.text = [NSString stringWithFormat:

@"%@%@ at %@\n", mailHistoryView.text,

resultString, [NSDate date]];

[controller dismissModalViewControllerAnimated:YES];

[controller release];

}

When we get this callback, the MFMailComposeViewController is done

with its work, so we call dismissModalViewControllerAnimated to slide it

off-screen and then release it.

There are a couple of things you might want to do with the completed

email but discover you can’t. The fields of the email are exposed only

via the setter methods we saw earlier, so you cannot programmati-

cally look at the finished controller and pick out the addressee, email

body, or other contents of the composed message. You’ll also notice

that you can’t programmatically send or save the message. The Mes-

sageUI framework is designed to leave the user in control, and letting

apps send unseen email on the user’s behalf or access the contents of

a message is presumably a privacy concern.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=276

Chapter 13

Peer-to-Peer Networking
iPhones and iPod touches are everywhere, each with several wireless

connectivity options. In this chapter, we’ll look at how applications

on iPhones can discover the services they need and connect to other

nearby iPhones or laptops using wifi or Bluetooth. First we’ll look at

the service discovery protocol described by Bonjour, and then we’ll look

at the new Game Kit framework added in iPhone 3.0. Game Kit offers

two important new communications technologies for developers: Blue-

tooth wireless communication and voice chat.

13.1 Using Ad Hoc Network Services with Bonjour

In Chapter 12, Connecting to the Internet, on page 244, we connected to

URLs that either are implicit in the nature of an application (for exam-

ple, one that uses a public web service) or are entered manually by

the user into the device. But there are cases in which the user really

shouldn’t need to know or care about the network details about what

they’re connecting to. Particularly in LAN-based applications such as

finding peers for a chat application or printing documents to a printer,

the user is interested only in the functionality of something on the net-

work; they care about what it does, not where it is.

With the iPhone OS, the case for Bonjour-enabled networking may be

even stronger. iPhones and iPod touches will always be entering and

exiting local networks, and rather than expecting users to enter new

hostnames or addresses on these networks, it’s far more appropriate to

let the devices dynamically discover the services they’ll need.

This service-oriented mind-set is the philosophy of Bonjour. In Bonjour,

the user is often unaware of hostnames, ports, or paths. Instead, Bon-

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

USING AD HOC NETWORK SERVICES WITH BONJOUR 278

jour applications expose network services: printers, chat peers, iTunes

music collections, and so on.

To explore how this works, we’ll rely upon the fact that your Mac can

Bonjour-enable its Apache web server. We’ll use this ability to let the

phone browse sites on the LAN without ever typing in an address.

Bonjour-Enabling Apache

First, though, we’ll need to explicitly enable Bonjour-browsing of your

Apache websites. In Mac OS X 10.5 (Leopard), Bonjour is disabled by

default in your Apache configurations, so you may need to turn it on,

unless you upgraded from previous versions of Mac OS X where it

was enabled by default. Look at the file /etc/apache2/other/bonjour.conf.

Leopard’s default file, which does not allow Bonjour discovery of your

Mac’s websites, looks like this:

<IfModule bonjour_module>

RegisterUserSite customized-users

</IfModule>

We can edit this file to expose the computer’s “main” web directory,

individual user directories, or both. To expose the main website (that

is, http://localhost/), add the directive <RegisterDefaultSite>. You can

expose user directories (for example, http://localhost/~cadamson) with

<RegisterUserSite> directives, providing either a username or the value

all-users. To expose both the main site and all user websites, your bon-

jour.conf will look like this:

<IfModule bonjour_module>

RegisterUserSite customized-users

RegisterDefaultSite

RegisterUserSite all-users

</IfModule>

Restart Apache either by deselecting and reselecting the Web Shar-

ing entry in System Preferences’ Sharing pane or by performing a sudo

apachectl restart on the command line.

To ensure your sites are visible via Bonjour, launch Safari, and click

the Bookmarks button. You’ll notice that among the collections, there’s

an entry for Bonjour. Click this, and you should see your computer

name and all the users for whom you’ve enabled Bonjour web sharing,

as shown in Figure 13.1, on the following page.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://localhost/
http://localhost/~cadamson
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=278

BONJOUR SERVICE DISCOVERY 279

Figure 13.1: Browsing Bonjour-enabled Apache web shares with Safari

Assuming you can see your main site (your computer’s name as defined

in the Sharing preferences, Agrias in this example) and whatever users

you’ve enabled, you’re ready to browse Bonjour with the iPhone.

13.2 Bonjour Service Discovery

To find services of interest with Bonjour, the iPhone OS provides Cocoa

and Core Foundation APIs, NSNetServices, and CFNetServices. The

Cocoa one, which we’ll focus on here, is highly dynamic and fairly easy

to use, isolating you from many of the low-level networking details of

Bonjour. In fact, to begin browsing for a service, all you need to do is

create an NSNetServiceBrowser (which we assign to an instance variable

called bonjourBrowser) and provide it with the domain you’re searching

in (a blank string if you’re just browsing the LAN), a service “type,” and

a delegate to handle callbacks from the service discovery process.

Download NetworkIO/BonjourWebBrowser/Classes/RootViewController.m

Line 1 -(void) startSearchingForWebServers {
2 bonjourBrowser = [[NSNetServiceBrowser alloc] init];
3 [bonjourBrowser setDelegate: self];
4 [bonjourBrowser searchForServicesOfType:@"_http._tcp" inDomain:@""];
5 }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/BonjourWebBrowser/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=279

BONJOUR SERVICE DISCOVERY 280

The only line here that isn’t self-explanatory is line 4, using the arbi-

trary string "_http._tcp" to define the service to search for. This string

consists of two parts: a string to define the semantics of the service

(here, _http) and a transport mechanism (_tcp), separated by periods.

Well-known service types are documented on the website at http://www.

dns-sd.org/ServiceTypes.html, which as of this writing contains more than

400 Bonjour types, including daap for iTunes’ Digital Audio Access Pro-

tocol, ipp for Internet Printing Protocol, nfs for the old Network File Sys-

tem, and many more. Within this list, you’ll find http, with the following

description:

World Wide Web HTML-over-HTTP

Tim Berners-Lee <timbl at W3.org>

Protocol description: RFC 2616

Defined TXT keys: u=<username> p=<password> path=<path to document>

(see txtrecords.html#http)

NOTE: The meaning of this service type, though called just "http", actually

denotes something more precise than just "any data transported using HTTP".

The DNS-SD service type "http" should only be used to advertise content that:

* is served over HTTP,

* can be displayed by "typical" web browser client software, and

* is intented primarily to be viewed by a human user.

...

In other words, http is the service type that you would expect a typical

web server to advertise via Bonjour to web browsers and what we’ll

search for to find the websites exposed by Apache.

Once you call searchForServicesOfType:inDomain: on the NSNetServiceBrow-

ser, your delegate will start getting callbacks informing it of the state

of the search. If your search fails, perhaps because you’ve used an

invalid service type (notice how you have to precede the type name and

protocol with underscore characters—and don’t forget the . that sep-

arates them), you’ll immediately receive the failure callback netService-

Browser:didNotSearch:. However, if the search begins successfully, you’ll

get the callback netServiceBrowserWillSearch:, which you might use to

indicate to the user that a long-running search is underway (for exam-

ple, by spinning an activity indicator).

Each time a matching service is discovered, you’ll get the callback net-

ServiceBrowser:didFindService:moreComing:, whose arguments are an NS-

NetService describing the matching service and a BOOL indicating

whether the net service browser is waiting for additional services. Typi-

cally, a delegate will use this callback to assemble a list of available ser-

vices. In the example application we’ve provided, NetworkIO/BonjourWeb-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://www.dns-sd.org/ServiceTypes.html
http://www.dns-sd.org/ServiceTypes.html
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=280

BONJOUR SERVICE DISCOVERY 281

Figure 13.2: Browsing Bonjour-enabled Apache web shares with NSNet-

ServiceBrowser

Browser, matching services are used to build a UITableView list of avail-

able services, as shown in Figure 13.2. Along with users’ home pages

on your LAN, you might discover other devices; Sciezka in this figure is

a Bonjour-discoverable laser printer with a web-based configuration.

But what if a service goes away? In this case, you’ll receive the call-

back netServiceBrowser:didRemoveService:moreComing:, which works just

like the didFindService version, except that it indicates the disappear-

ance of a service. In the example code, we handle this case by removing

the given service from the list; you can try it by running the example,

going to Sharing in the System Preferences, and turning off Web Shar-

ing. Once you do, all the discovered web services will disappear from

the list in the simulator or on the device.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=281

BONJOUR SERVICE DISCOVERY 282

So, once you have a service, what do you do with it? Just finding the

service record, as we’ve done here, isn’t necessarily enough to use the

service. There’s a separate resolution step that provides complete details

about the service, filling in the NSNetService’s host, port, and other fields

that are uninitialized when you first discover the service.

The example code takes a look at the service in viewDidLoad: to see

whether it has already been resolved from an earlier call. You can tell by

looking to see whether the service’s hostName or port return meaningful

values. If they don’t, then you need to kick off resolution.

Download NetworkIO/BonjourWebBrowser/Classes/WebPageViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

// start resolution if necessary, otherwise just get the path and show

// page. see http://developer.apple.com/qa/qa2004/qa1389.html for more

// on why this is necessary

if ([netService hostName] != nil) {

[self loadPageFromService];

} else {

[resolutionActivityIndicator startAnimating];

[netService setDelegate: self];

[netService resolveWithTimeout: RESOLUTION_TIMEOUT];

}

}

As with service discovery, the Cocoa API makes service resolution a

highly dynamic process. You begin resolution by setting a delegate on

the service and calling resolveWithTimeout:, which takes as its argument

an NSTimeInterval in seconds. After this, your code just handles callbacks

as the resolution proceeds.

If resolution fails, you’ll get the netService:didNotResolve: callback. How-

ever, if it succeeds, you’ll get netServiceDidResolveAddress:, at which point

the NSNetService object will have all the details you need to communi-

cate with the service: a host, a port, and a collection of service-specific

name-value pairs in the TXT record.

Once you’ve resolved the service, you can get its host, port, and other

metadata. The example code uses the resolved service to build a URL,

create an NSURLRequest from that, and load it into a UIWebView, as intro-

duced in Section 12.1, Building a Browser in Ten Minutes with UIWeb-

View, on page 244.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/BonjourWebBrowser/Classes/WebPageViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=282

BONJOUR SERVICE DISCOVERY 283

Download NetworkIO/BonjourWebBrowser/Classes/WebPageViewController.m

Line 1 -(void) loadPageFromService {
- // get path from the TXT record
- NSDictionary *txtRecordDictionary =
- [NSNetService dictionaryFromTXTRecordData:
5 [netService TXTRecordData]];
- NSData *pathData =
- (NSData*) [txtRecordDictionary objectForKey: @"path"];
- NSString *path = [[NSString alloc] initWithData: pathData
- encoding:NSUTF8StringEncoding];

10

- // see http://www.dns-sd.org/txtrecords.html#http for the rules
- // on getting url from service data
-

- // build URL from host, port, and path
15 NSString *urlString = [[NSString alloc]

- initWithFormat: @"http://%@:%d/%@",
- [netService hostName],
- [netService port],
- path];

20 NSURL *url = [[NSURL alloc] initWithString: urlString];
- urlLabel.text = urlString;
- self.title = [netService name];
- NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url];
- [webView loadRequest: request];

25 // stop activity indictator; could also do this when web view either
- // completes or errors, by providing UIWebView delegate
- [resolutionActivityIndicator stopAnimating];
-

- [request release];
30 [url release];

- [urlString release];
- [path release];
- // pathData and txtRecordDictionary don't get released, because
- // they were merely "gotten" and not retained

35 }

It may be helpful to think back to what we will need to get from the

NSNetService in order to load the web page. To create a URL, we need

a host, port, and path. The host and port are easy, because they can

be retrieved with the methods hostName and port. The path is trick-

ier. For the machine’s main web page, the path may be an empty

string, whereas for the user pages, it’ll be something like ~cadamson.

As defined by the http service type, the TXT record stores the path in a

name-value pair, keyed with the string path. So, our example code can

put together a suitable URL by pulling these items out of the resolved

NSNetService. Lines 3 through 9 get the path as a block of bytes and

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/BonjourWebBrowser/Classes/WebPageViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=283

BONJOUR SERVICE DISCOVERY 284

Figure 13.3: Viewing a web page discovered via Bonjour

convert them to an NSString. With this done, lines 15 through 20 cre-

ate a URL, from which you can create an NSURLRequest and hand that

off to a UIWebView. The discovered and rendered web page is shown in

Figure 13.3.1

Probably the most important thing to note in this example is that once

Bonjour has found and resolved the service, its job is done. In this

example, the actual use of the service (loading the web page) is entirely

done by the UIWebView. In some other application, you would set up

your own connection to the service. If the service is defined as using

HTTP, you could use the URL Loading System as described in Sec-

tion 12.2, Reading Data from the Network, on page 249. If it’s some cus-

1. We added the “(cadamson)” to /Users/cadamson/Sites/index.html to make sure we had

found the right page. Your personal site may look different.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=284

GAME KIT OVERVIEW 285

tom protocol, then you would need to open a socket connection, given

the host and port in the resolved service, and perhaps some protocol-

specific metadata provided by the TXT record. But at any rate, once

Bonjour resolves a service, you’re back in the realm of plain old net-

work I/O.

This example has considered only the client side of Bonjour, under the

presumption that small mobile devices are more likely to be clients than

servers. However, the entire Bonjour stack is present in iPhone OS, so

you can use your iPhone as a server, announcing it to clients with Bon-

jour’s publication APIs. Having said that, if what you want to connect

to is another iPhone OS device, then you could use the Bonjour-based

Game Kit framework, introduced in the next section, to operate as a

server or peer.

Your Cocoa code that uses the NSNetServices APIs can also be com-

piled and run on Mac OS X, so you can share code between the two

platforms. Apple also provides Bonjour implementations for Windows

and Linux and even offers a Java API, so you have a lot of choices if you

want to use those platforms to provide services that your iPhone apps

can use. To learn more about Bonjour, the creator of Zeroconf and the

editor of the book you’re reading have published the final word on the

subject, Zero Configuration Networking, The Definitive Guide (O’Reilly),

which covers Bonjour from the highest to the lowest level of the stan-

dard and its APIs.

13.3 Game Kit Overview

Many applications could benefit from the iPhone’s ad hoc Bluetooth

networking; just imagine being able to exchange business e-cards or

documents even when you’re not on a local wifi network. Moreover,

the voice chat features introduced in iPhone OS 3.0 work on any kind

of network, not just the short-range Bluetooth, and can therefore be

useful in a wide range of communication apps. Despite the name, Game

Kit’s features are useful to many kinds of applications, not just games.

Game Kit is provided by the optional framework GameKit.framework,

which consists of just three classes (GKPeerPickerController, GKSession,

and GKVoiceChatService), along with three formal protocols (GKPeer-

PickerControllerDelegate, GKSessionDelegate, and GKVoiceChatClient).

It’s important to realize that the Bluetooth networking and voice chat

features provided by Game Kit are entirely independent. The voice chat

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=285

SETTING UP A BLUETOOTH-NETWORKED GAME 286

You May Need Two Devices!

As of this writing, the iPhone family has a mixed level of sup-
port for Game Kit networking. The original iPhone’s Bluetooth
does not work with Game Kit, and the first-generation iPod
touch doesn’t even have Bluetooth. That leaves the iPhone 3G,
the 3GS, and the second-generation iPod touch as the only
devices that can use this framework’s networking classes.

Unfortunately, the simulator in the iPhone 3.0 SDK does not sup-
port Game Kit networking over Bluetooth, even on Macs with
Bluetooth. Instead, it runs the Game Kit protocol over the com-
puter’s internet connection, either wifi or Ethernet. This means
that for the time being you either need two supported devices
to test and run Game Kit networking code or need two Macs
running the simulator, since the nature of networking is to have
multiple participants.∗

∗. In fact, this chapter’s sample code was developed in the iPhone Lab at
WWDC 2009, because it was the only way we could wrangle two Game Kit–
capable devices.

can be run over any network connection, perhaps the Bluetooth con-

nection provided by Game Kit, or over a wireless connection written

with one of the lower-level networking APIs, such as CFNetwork or

even BSD sockets. You could even support both kinds of networking

in a single application.

Also, although Game Kit’s networking feature uses Bonjour to adver-

tise, discover, and resolve services over Bluetooth, it does not directly

use the Bonjour APIs, as covered in Section 13.1, Using Ad Hoc Net-

work Services with Bonjour, on page 277. Instead, a GKSession class

wraps both the service discovery and the sending and receiving of data

via Bluetooth. Still, a little bit of Bonjour remains evident: when adver-

tising your service, you still use the same kind of service ID string that

regular Bonjour uses.

13.4 Setting Up a Bluetooth-Networked Game

Let’s begin by focusing on these Bluetooth networking classes. In the

next few sections, we’ll build a peer-to-peer game that connects and

communicates via Bluetooth. The game is pathologically simple, but

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=286

SETTING UP A BLUETOOTH-NETWORKED GAME 287

Figure 13.4: View for P2PTapWarViewController in Interface Builder

even at this level, we’ll start to see some of the concerns that come up

when developing a networked game.

Our game is called P2PTapWar, and the concept is really simple: once two

players are connected, each needs to tap a box on the screen as quickly

as possible. Each tap counts as one point and will be communicated to

the opponent over the air. The first player to 50 taps wins.

This example uses the single-view application template. The only class

we’ll be working with is P2PTapWarViewController. The view for this class,

as defined in P2PTapWarViewController.xib, is shown in Figure 13.4. It con-

tains a navigation bar that’s used only for presenting a title and a Find

Bar Button Item (we don’t actually use navigation in this application),

a few labels for the scores, and a big gray box that our users will be

frantically tapping.

To get started, you’ll need to go to P2PTapWarViewController.h and set up

IBOutlet properties for the UILabels playerTapCountLabel and opponentTap-

CountLabel, as well as the UIBarButtonItemstartQuitButton. You’ll also need

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=287

SETTING UP A PEER PICKER 288

to define two IBActions: handleStartQuitTapped and handleTapViewTapped.

With these declarations made, you can open P2PTapWarViewController.xib

in Interface Builder and connect the outlets. For the actions, you need

to show the Connections inspector (D 2) for the Bar Button Item and

connect its selector to the File’s Owner’s handleStartQuitTapped method.

For the tap view, there are no actions at first, because UIViews don’t

accept user input and therefore don’t generate actions. Use the Iden-

tity inspector (D 4) to change its class to UIControl, and then connect the

Touch Down event to the File’s Owner object’s handleTapViewTapped.

13.5 Setting Up a Peer Picker

Game Kit’s networking classes provide two things: an abstraction of a

Bluetooth wireless session and a peer picker user interface for finding

and connecting to other devices over Bluetooth. Since the picker will

help us find a peer and set up a session, let’s start there and reveal the

session-related details as we go along.

The peer picker is controlled with the class GKPeerPickerController and is

quite minimal: it has instance methods to show and dismiss the picker,

a property to define which kinds of connections to offer (Bluetooth or

otherwise), and a delegate. To show the picker when the Find button is

tapped, here’s all we need to do:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(IBAction) handleStartQuitTapped {

if (! opponentID) {

actingAsHost = YES;

GKPeerPickerController *peerPickerController =

[[GKPeerPickerController alloc] init];

peerPickerController.delegate = self;

peerPickerController.connectionTypesMask =

GKPeerPickerConnectionTypeNearby;

[peerPickerController show];

}

}

This method shows the picker only if opponentID, an NSString instance

variable you’ll need to define in the header file, is non-nil. Peers in Game

Kit are identified by peerID strings, and since we need only one for this

game, we can use the presence or absence of this ivar as a flag for

whether we’ve already found an opponent.

Assuming we don’t have an opponent, we set an actingAsHost flag vari-

able (to be explained shortly) to a temporary value and then allocate

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=288

PROVIDING A PEER PICKER DELEGATE 289

the GKPeerPickerController. The picker needs a delegate to call back with

connection updates, which can be this view controller itself, provided

we declare in the header file that we implement the GKPeerPickerCon-

trollerDelegate protocol. We’ll be implementing its various methods in a

moment.

The next step is to indicate which kinds of connections the peer picker

should offer, via the connectionsTypeMask property, which takes a bit

field of possible values. Game Kit defines two: GKPeerPickerConnection-

TypeNearby represents a Bluetooth connection, while GKPeerPickerCon-

nectionTypeOnline is any other kind of wireless connection. If you com-

bine these values with the | operator, the first step of the picker will

be to give the user a choice between the two types of connections.

However, Game Kit offers only a Bluetooth API, so if the user chooses

Online, the picker will dismiss, and your delegate will get a callback to

peerPickerController:didSelectConnectionType:. This would be your signal

to start setting up your own network connection, presumably with one

of the low-level networking APIs like CFNetwork or BSD sockets. For

this example, we offer only the Nearby connection, so the user will go

directly to a GUI that shows Bluetooth peers. Finally, with the object

all set up, we call the show method to display the picker, as shown in

Figure 13.5, on the next page, with a single discovered peer.

13.6 Providing a Peer Picker Delegate

Most of our application’s interaction with a peer picker is in your imple-

mentation of the GKPeerPickerControllerDelegate protocol. The delegate is

responsible for providing a session object to the picker and responding

when a peer connects. It also can opt to react when the picker is can-

celed without choosing a peer. If you use GKPeerPickerConnectionTypeOn-

line to make the picker offer non-Bluetooth connections, you would be

notified of that choice in a callback to peerPickerController:didSelectCon-

nectionType:, at which point you would need to set up that connection.

For our Bluetooth-only application, the most important thing for our

delegate to do is to implement the peerPickerController:sessionForConnec-

tionType: method. This is called when the picker starts up and needs

to fetch a GKSession object. The session object is what implements the

Bluetooth connection between multiple devices. We need one session

to connect to an opponent, so we declare the gkSession as an instance

variable in P2PTapWarViewController.h and lazily instantiate it the first

time it’s needed, that is, when the picker asks for it.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=289

PROVIDING A PEER PICKER DELEGATE 290

Figure 13.5: GKPeerPickerController showing Bluetooth peers

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(GKSession*) peerPickerController: (GKPeerPickerController*) controller

sessionForConnectionType: (GKPeerPickerConnectionType) type {

if (!gkSession) {

gkSession = [[GKSession alloc]

initWithSessionID:AMIPHD_P2P_SESSION_ID

displayName:nil

sessionMode:GKSessionModePeer];

gkSession.delegate = self;

}

return gkSession;

}

peerPickerController:sessionForConnectionType: passes in the picker that is

requesting the session, along with one of the type constants (which we

can assume to be GKPeerPickerConnectionTypeNearby, the only type we

configured the picker to use). The GKSession object has a single desig-

nated initializer taking three parameters, each of which merits careful

consideration:

• initWithSessionID: The sessionID is an NSString that uniquely identifies

the protocol that your application uses to communicate. By using

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=290

PROVIDING A PEER PICKER DELEGATE 291

unique IDs, an application can avoid connecting to a device that

might be using Game Kit to provide a completely different (and

incompatible) communication protocol. Apple recommends that

you use a Bonjour service ID, the same kind of 14-character ID

we saw introduced in Section 13.2, Bonjour Service Discovery, on

page 279. If you’re going to be defining your own communication

protocols, as we will here, you should choose a Bonjour service

ID and register it with the Bonjour service registry at http://dns-sd.

org/. For this example, we have registered the service ID amiphd-

p2p2 and #define’d it in the header file as AMIPHD_P2P_SESSION_ID.

On the other hand, if you provide nil for this argument, a service

ID is generated from your application’s bundle identifier.

• displayName: This is the name presented to peers. It is meant as a

displayable, human-readable string, so if you were writing a game

that let the user choose a name, you would use that here. If you

send nil for this argument, as we do here, the device’s name is

used.

• sessionMode: There are three session modes you can declare. A

server uses GKSessionModeServer to indicate that it advertises itself

on the network but does not search for other services. Clients use

GKSessionModeClient to indicate that their session will search for

services but not provide them. And a peer, set up with GKSession-

ModePeer, acts as both a server and a client, advertising itself as

a service and searching for others. Peering is the most typical use

of Game Kit’s networking API and is what we use here.

The other thing we do when we set up the GKSession is to provide a del-

egate, which will be asynchronously updated with events from the ses-

sion, such as the connection and disconnection of peers. Since we want

the view controller to serve as the delegate, we need to add GKSessionDel-

egate to the list of implemented protocols in the header file’s @interface

declaration.

Once we provide a session, presumably one with a useful delegate,

there’s almost nothing else the picker delegate needs to do. The picker

is really responsible only for setting up a connection, whereas all the

networking happens in the GKSession and its delegate. In fact, the only

thing left to do for the picker delegate is to call [picker dismiss]; to get rid

of the picker’s UI, in peerPickerController:didConnectPeer:toSession:. The

2. This string is based on this book’s internal code name and is not otherwise

meaningful.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://dns-sd.org/
http://dns-sd.org/
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=291

NETWORK GAME LOGIC 292

picker will dismiss itself if canceled, although you can implement peer-

PickerControllerDidCancel: if you want to be notified of that event.

13.7 Network Game Logic

The next step is to start working with the GKSession to send data to a

peer and to use the GKSessionDelegate to handle the connection, discon-

nection, and receipt of data from the peer. But before we do that, we

need to ask ourselves an important question: just how are we going to

use the connection to communicate game data?

Well, part of the answer is easy enough: the GKSession class has two

methods for sending data, sendData:toPeers:withDataMode:error: and

sendDataToAllPeers:withDataMode:error:. But just what are we going to

send?

There are actually interesting problems involved in maintaining the

state of a game across a network connection. If each peer has a model

of the game’s state, how do you keep them in sync? How much time

and bandwidth will that require? What happens if you don’t?

Our game seems to have a simple requirement: keep track of how many

times each player has tapped their box. But there’s more to it than

that. We also have to coordinate the start of the game; you couldn’t

have one player choose an opponent and start tapping while the peer is

still deciding whether to even accept the connection. And you need to

coordinate the end of the game; if one player wins, the other needs to

be told to stop.

All of this has implications for our network protocol. We are sending

different kinds of messages, and the protocol should be robust enough

to handle this. It might be helpful to design a protocol that can be

extended with new kinds of messages in the future.

We’ve chosen a flexible, if inefficient, approach for our simple game.

Every message will be a set of key-value pairs, packed into an NSData

object by an NSKeyedArchiver, as introduced in Section 8.8, Property

Lists and NSCoding, on page 170. We’ll define a set of message keys

in the header file, and peers that receive messages will look for these

keys.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.h

#define START_GAME_KEY @"startgame"

#define END_GAME_KEY @"endgame"

#define TAP_COUNT_KEY @"taps"

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=292

NETWORK GAME LOGIC 293

In this simple version, one side will use START_GAME_KEY in a message

to start the game. Whenever either peer gets a tap event, it will send

TAP_COUNT_KEY with its current tap count as the value, and if it has

reached the number of taps needed to win, it can include END_GAME_KEY

to notify the other side that the game is over.

If you decided you wanted to use a timer rather than a maximum

number of taps, you could add another message key for sending time

updates. For such a case, you would want to designate one peer whose

time value is considered canonical by any other peers and send out

updates of the “official” game time; if each peer had its own timer,

there’s a chance that their respective clocks could be just enough off to

cause a problem with the consistency of the game’s state.

One other consideration with sending data over the wire has to do with

what Game Kit calls the data mode. Messages can be sent in a “reliable”

or “unreliable” fashion. Unreliable messages are sent once and neither

checked for success nor retried; reliable messages are repeatedly sent

until they get through. Experienced network developers will recognize

this as the difference between UDP and TCP.

Since we want to maintain state across the network, you might think

we should send a reliable message for each tap. But the nature of this

game is that we can afford lossiness, in the interest of performance.

Rather than sending a message that just says “opponent tapped,” we

can send a message with the total tap count. If this doesn’t get through,

it probably doesn’t matter, because we’ll be sending another message a

fraction of a second later, when the player taps again, which has all the

data the other side needs (that is, the tap count).

In more complex games, this strategy of tolerating network lossiness

sometimes implies the use of dead reckoning, the estimation of game

state given the current state. If your app is modeling moving objects

and misses an expected update from a network peer, you can continue

moving those objects according to your game physics and then make a

correction when you do get updated network data.

As a general strategy, see what you can send unreliably, and then

use reliable transmissions for things that really count. For example,

although we can tolerate a missed tap count update, we don’t want to

risk missing messages that start or end the game, so these should be

sent reliably.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=293

COMMUNICATING VIA THE GKSESSION 294

13.8 Communicating via the GKSession

Having mapped out a strategy for sending game data across Bluetooth,

we can now implement our protocol with Game Kit’s communication

methods. We’ll want to be able to handle state changes from peers (i.e.,

when the opponent connects or disconnects), send data to the oppo-

nent, and receive data from the opponent.

Sending Data

We need to send data to a peer every time the tap view is tapped, so

let’s go ahead and implement our handleTapViewTapped event handler:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(IBAction) handleTapViewTapped {

playerTapCount++;

[self updateTapCountLabels];

// did we just win?

BOOL playerWins = playerTapCount >= WINNING_TAP_COUNT;

// send tap count to peer

NSMutableData *message = [[NSMutableData alloc] init];

NSKeyedArchiver *archiver =

[[NSKeyedArchiver alloc] initForWritingWithMutableData:message];

[archiver encodeInt:playerTapCount forKey: TAP_COUNT_KEY];

if (playerWins)

[archiver encodeBool:YES forKey:END_GAME_KEY];

[archiver finishEncoding];

GKSendDataMode sendMode =

playerWins ? GKSendDataReliable : GKSendDataUnreliable;

[gkSession sendDataToAllPeers: message withDataMode:sendMode error:NULL];

[archiver release];

[message release];

// also end game locally

if (playerWins)

[self endGame];

}

This obviously calls a few internal game methods that we haven’t writ-

ten yet, starting with the call to update the score locally with update-

TapCountLabels. The critical part of the method is after this, however:

an NSKeyedArchiver is created to pack an NSMutableData with key-value

pairs for our message. The updated tap count is added to the message,

and if it equals the tap count needed to win the game, the END_GAME_

KEY is added as well. We then call GKSession’s sendDataToAllPeers:withData-

Mode:error: method in reliable mode if it includes the END_GAME_KEY,

unreliably otherwise. Finally, there’s a little more local logic to end the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=294

COMMUNICATING VIA THE GKSESSION 295

game locally if necessary, with yet-to-be-written endHostedGame and

endJoinedGame methods.

That takes care of the sending, but there’s clearly quite a bit we haven’t

accounted for, including the receipt of messages and the game startup.

These tasks aren’t initiated by our application but are instead per-

formed by the delegate methods, which handle asynchronous events

from the session.

Handling State Changes

Let’s start with session:didReceiveConnectionRequestFromPeer:, which is

called when one party receives a request from another to connect. When

the GKSession is connected via the peer picker, this callback is received

only by the player who was asked to join the game, not by the one who

chose the opponent in the picker. This gives us a chance to make the

requesting player the host, a designation we use so that only one party

actually starts the game.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

- (void)session:(GKSession *)session

didReceiveConnectionRequestFromPeer:(NSString *)peerID {

actingAsHost = NO;

}

Assuming that this player accepts the request, each side’s delegates

will get a callback to session:peer:didChangeState:, with the state GKPeer-

StateConnected. A number of other states can be reported this way, but

for now, let’s just implement some logic to set up the game when a peer

connects:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

- (void)session:(GKSession *)session peer:(NSString *)peerID

didChangeState:(GKPeerConnectionState)state {

switch (state)

{

case GKPeerStateConnected:

[session setDataReceiveHandler: self withContext: nil];

opponentID = peerID;

actingAsHost ? [self hostGame] : [self joinGame];

break;

}

}

When a connection is received, the first thing this method does is to

call setDataReceiveHandler:withContext: on the GKSession. This is critical,

because it gives the session an object that is capable of receiving data

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=295

COMMUNICATING VIA THE GKSESSION 296

over the network. The handler object is not specified with a formal pro-

tocol but must implement a callback method with the following signa-

ture:

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer

inSession: (GKSession *)session context:(void *)context;

setDataReceiveHandler:context: also takes a context that is passed back to

the receiveData:fromPeer:inSession:context method. As a void*, this context

reference can be any kind of pointer, including all Objective-C objects.

We don’t need a context object for this game, so we set it to nil.

Next, our state-change handler remembers the peer ID of the opponent

as the instance variable opponentID and either starts or joins the game

based on whether this player is the host. Both of these methods need

to update the local state and GUIs, but only the host needs to send a

“start game” message over the connection. Here are the hostGame and

joinGame methods, along with the initGame and updateTapCountLabels

convenience methods they both call:

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(void) updateTapCountLabels {

playerTapCountLabel.text =

[NSString stringWithFormat:@"%d", playerTapCount];

opponentTapCountLabel.text =

[NSString stringWithFormat:@"%d", opponentTapCount];

}

-(void) initGame {

playerTapCount = 0;

opponentTapCount = 0;

}

-(void) hostGame {

[self initGame];

NSMutableData *message = [[NSMutableData alloc] init];

NSKeyedArchiver *archiver = [[NSKeyedArchiver alloc]

initForWritingWithMutableData:message];

[archiver encodeBool:YES forKey:START_GAME_KEY];

[archiver finishEncoding];

NSError *sendErr = nil;

[gkSession sendDataToAllPeers: message

withDataMode:GKSendDataReliable error:&sendErr];

if (sendErr)

NSLog (@"send greeting failed: %@", sendErr);

// change state of startQuitButton

startQuitButton.title = @"Quit";

[message release];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=296

COMMUNICATING VIA THE GKSESSION 297

[archiver release];

[self updateTapCountLabels];

}

-(void) joinGame {

[self initGame];

startQuitButton.title = @"Quit";

[self updateTapCountLabels];

}

In startGame, you can again see how we use an NSKeyedArchiver to build

a message in an NSMutableData, which as a subclass of NSData is appro-

priate for use with the GKSession’s sendDataToAllPeers:withDataMode:error:

method.

Receiving Data

Now that we’ve handled state changes from opponents,3 the last re-

maining task is to deal with the data we receive from a peer. We created

the outgoing data with an NSKeyedArchiver, so to unpack it on the receiv-

ing end, we’ll use an NSKeyedUnarchiver.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

- (void) receiveData: (NSData*) data fromPeer: (NSString*) peerID

inSession: (GKSession*) session context: (void*) context {

NSKeyedUnarchiver *unarchiver =

[[NSKeyedUnarchiver alloc] initForReadingWithData:data];

if ([unarchiver containsValueForKey:TAP_COUNT_KEY]) {

opponentTapCount = [unarchiver decodeIntForKey:TAP_COUNT_KEY];

[self updateTapCountLabels];

}

if ([unarchiver containsValueForKey:END_GAME_KEY]) {

[self endGame];

}

if ([unarchiver containsValueForKey:START_GAME_KEY]) {

[self joinGame];

}

[unarchiver release];

}

As you can see, the unarchiver gets the data received by the GKSes-

sion and looks for some of the known keys. If it sees TAP_COUNT_KEY, it

unpacks the value and updates the score display, whereas if END_GAME

_KEY appears, it calls a method to end the game, cleans up the local

3. Actually, a fully robust app would want to handle some of the other state changes,
such as gracefully dealing with a peer that has disconnected.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=297

VOICE CHAT 298

state, disconnects all peers from the GKSession, and calls a convenience

method to show a victory or defeat alert, both of which are shown in

Figure 13.6, on the following page.

Download NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m

-(void) showEndGameAlert {

BOOL playerWins = playerTapCount > opponentTapCount;

UIAlertView *endGameAlert = [[UIAlertView alloc]

initWithTitle: playerWins ? @"Victory!" : @"Defeat!"

message: playerWins ? @"Your thumbs have emerged supreme!":

@"Your thumbs have been laid low"

delegate:nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[endGameAlert show];

[endGameAlert release];

}

-(void) endGame {

opponentID = nil;

startQuitButton.title = @"Find";

[gkSession disconnectFromAllPeers];

[self showEndGameAlert];

}

That’s everything you need to build and deploy this peer-to-peer Blue-

tooth game. To review, we used a GKPeerPickerController to present the

user with a GUI to select an opponent. We provided the picker with

a GKSession to handle the local Bluetooth networking and added del-

egate methods so this session could pass along asynchronous events

like peers connecting. On the GKPeerStateConnected event, we set up

the game, using the session to send data to the peer and providing

the session with a “data receive handler” that could process incoming

messages from the peer.

13.9 Voice Chat

Along with Bluetooth local networking, the other feature provided by

Game Kit is peer-to-peer chat. As mentioned earlier, these two features

are completely independent: you can use the voice chat with the Blue-

tooth network we set up in the previous sections or over a wifi connec-

tion that you’ve set up. Let’s look in general terms at how voice chat

works.

Voice chat uses just two classes. The GKVoiceChatService represents a

single, shared access point to voice chat functionality. You get a refer-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/NetworkIO/P2PTapWar/Classes/P2PTapWarViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=298

VOICE CHAT 299

Figure 13.6: End-of-game alerts for peers in a Game Kit–networked

game

ence to this singleton with the class method defaultVoiceChatService.

With it, you can initiate a voice chat via startVoiceChatWithParticipan-

tID:error, which takes a participantID string uniquely identifying the party

to chat with.

You might wonder who is going to map this string to a actual remote

peer to chat with. The answer is, you do. You need to provide the ser-

vice with an object implementing the GKVoiceChatClient protocol. This

object provides the network connection used by the GKVoiceChatSer-

vice and determines how a message to a given participantID is actu-

ally routed and delivered. Similarly, when it receives voice data over its

network connection, it calls the service’s receivedData:fromParticipantID:

or receivedRealTimeData:fromParticipantID: to deliver the voice data to the

voice chat service so that the received data can be decoded and played

out to the speaker or headphones.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=299

VOICE CHAT 300

If you wanted to overlay voice chat atop P2PTapWar, you could do so

in a fairly straightforward way. By treating the voice chat participantID

as equivalent to the Bluetooth network’s peerID, it would be straight-

forward for your GKVoiceChatClient to implement voiceChatService:send-

Data:toParticipantID: by calling the GKSession’s sendData:toPeers:withData-

Mode:error: method. The only potential tricky part is that your protocol

has to be able to distinguish between voice data and other game data,

but this would be easy enough to handle in our app by adding a new key

(say, VOICE_CHAT_DATA) to our set of possible message contents. On the

receiving end, the NSData containing the voice data would be unpacked

by the data handler and forwarded to that device’s GKVoiceChatService.

A few details regarding the voice chat service have more to do with the

processing of audio than with networking, which we’ll note briefly here.

The GKVoiceChatService has a level metering API, so you can provide

visual feedback to your user of the respective power levels of both the

local and remote speakers. The methods for level-metering are highly

analogous to those provided by the AV Foundation framework (cov-

ered in Chapter 16, Playing and Recording Audio, on page 334) and

the Music Player APIs in the Media Player framework (covered in Chap-

ter 15, iPod Library Access, on page 310), so once you’ve worked with

those, adding level metering to your voice chat will be straightforward.

One other important consideration for voice chat is that all media apps

on iPhone OS are expected to communicate their needs and intents

to the audio system in advance. The APIs to do this are covered in

Section 16.7, Interacting with Audio Sessions, on page 360, and in the

context of supporting voice chat, there are two primary concerns. First,

you need to declare that your application will play and capture audio

simultaneously so the system will silence background audio (for exam-

ple, from the iPod application) and reserve the audio input for your

application. You do this by telling the audio session that your appli-

cation wants to use the category AVAudioSessionCategoryPlayAndRecord.

You also will want to use the audio session to verify that audio input is

even available: while iPhones always have a microphone available, later

iPod touches can capture only if a suitable microphone is attached.

You’ll see how to perform both of these tasks in the later media

chapters.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=300

Chapter 14

Video Playback
The iPhone is a great media device. Its wide, bright, high-resolution

screen is surprisingly comfortable for watching your own in-flight mo-

vies, and its support for audio is surprisingly deep. Not only does the

iPhone play the most popular audio formats, it also includes excep-

tional support for working with audio at a number of levels, from simple

playback to low-level processing of raw audio samples.

We’ll begin our survey of iPhone OS media with video. This is actually

a little atypical, because audio is usually simpler than video, so you’ll

often learn about a platform’s audio capabilities before you dig into

video. But in the case of the iPhone, the video playback API is extremely

simple, and it turns out that playing a video is one of the easiest things

you can do with the SDK.

14.1 Video Playback with MPMoviePlayerController

The iPhone SDK’s video API is very simple, but unfortunately, it’s also

simplistic. You really don’t get to do anything with video but play it

back. On an iPhone 3GS, you can also record video into the picture

library (see Section 20.4, Capturing Video, on page 410). But beyond

that, you really can’t do much else with video.

The video playback API is largely contained in a single class, MPMovie-

PlayerController, an object whose capabilities let you do the following:

• Load a video from a URL

• Play and pause the video programmatically

• Maintain properties to represent the movie’s background color,

user control behavior, and scaling mode (whether the movie is

stretched or cropped to fill some or all of the screen)

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

VIDEO PLAYBACK WITH MPMOVIEPLAYERCONTROLLER 302

• Produce notifications that allow interested code to be alerted to

state changes in the playback

Let’s see what is available by way of a short example. In Xcode, create

a new view-based application called SimpleVideoPlayer.

The MediaPlayer framework is not included by default by the Xcode tem-

plates. You’ll need to add it to your project. In Xcode’s Groups & Files

list, expand Targets, and choose the SimpleVideoPlayer application icon.

Bring up its Inspector with the Info toolbar button or D I, and select

the General tab. The bottom of this pane shows the currently linked

frameworks, with a + button below it to add new frameworks, like Medi-

aPlayer.framework.1

You’ll also need to #import <MediaPlayer/MediaPlayer.h> in your SimpleV-

ideoPlayerViewController.h header file.

Building the GUI

Our GUI is going to be surprisingly simple. We’ll provide a Play button

to kick off playback and a text field to log events.

1. You can also add frameworks by right-clicking the Frameworks folder in Groups &

Files and choosing Add > Existing Frameworks.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=302

VIDEO PLAYBACK WITH MPMOVIEPLAYERCONTROLLER 303

Open SimpleVideoPlayerViewController.xib in IB, and build a GUI that looks

like the following:

Where are we going to display our movie? We don’t need to worry about

providing a view to contain the movie. Once the user starts playing a

movie with the MPMoviePlayerController, the controller takes over your

screen, autorotating to a landscape orientation if necessary, and plays

the video. There’s no view object to embed in a view and wire up in IB,

because video playback is an all-or-nothing proposition on the iPhone.

So, the GUI we provide will need only to handle the tap on the Play

button and write messages out to the text field. Therefore, we need one

outlet and one action. While you’re in SimpleVideoPlayerViewController.h,

go ahead and add an instance variable for the MPVideoController. The

header should look like this:

Download MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.h

@interface SimpleVideoPlayerViewController : UIViewController {

MPMoviePlayerController *moviePlayer;

UITextView *logView;

}

- (IBAction) playVideo;

@property (retain, nonatomic) IBOutlet UITextView *logView;

@end

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=303

VIDEO PLAYBACK WITH MPMOVIEPLAYERCONTROLLER 304

With the outlet and action defined, you should be able to use IB to

connect the text field to the logView outlet on File’s Owner and connect

the button’s Touch Up Inside event to the playVideo: action. Do so, save

the nib, and quit IB. Don’t forget to @synthesize the logView property in

the implementation file too.

Selecting the Movie

Now that we’ve set up the GUI, all we need to do is to provide a video and

create the controller. MPMoviePlayerController has a single designated ini-

tializer, initWitContenthURL:. This can take either a file://-style URL refer-

ring to a file somewhere in the application’s filesystem sandbox or a

network URL (presumably an http:// URL, like http://www.subfurther.com/

video/running-start-iphone.m4v, a copy of the movie used for this chapter’s

screenshots). The downloadable sample assumes you’ll drop a single

MPEG-4 file2 called movie.m4v into your project file to add it to the appli-

cation bundle by dragging it to the Resources folder in your project’s

Groups & Files. Given that, creating the MPMoviePlayerController in the

viewDidLoad method is pretty much trivial:

Download MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m

NSString *videoPath = [[NSBundle mainBundle]

pathForResource:@"movie" ofType:@"m4v"];

if (videoPath == NULL)

return;

NSURL *videoURL = [NSURL fileURLWithPath: videoPath];

moviePlayer = [[MPMoviePlayerController alloc] initWithContentURL:videoURL];

With the controller created and assigned to the property moviePlayer, the

implementation of playVideo is a one-liner: [moviePlayer play]; Build and

Go, and then tap the Play button to see your video in the simulator.3

2. See Section 14.3, Supported Media Formats, on page 307 for information on supported
formats.
3. There is a bug in iPhone SDK 2.2 where playing video in the simulator will fail with an
error if you have paired a Bluetooth device to your Mac. Remove your Bluetooth devices

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://www.subfurther.com/video/running-start-iphone.m4v
http://www.subfurther.com/video/running-start-iphone.m4v
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=304

RECEIVING NOTIFICATIONS FROM THE MOVIE PLAYER 305

Streaming Support in iPhone OS 3.0

In iPhone OS 3.0, your URL can also point to an HTTP Live Stream-
ing URL, a new format created by Apple and submitted to the
Internet Engineering Task Force as a proposed standard.∗ In
this format, the server splits up a large media file or live source
into smaller segments that can be sent to clients over HTTP. See
Apple’s HTTP Live Streaming Overview [App09a] for a descrip-
tion of the format and some sample URLs.

Most of the work in HTTP live streaming is done on the server;
an iPhone client simply needs to provide the URL to the
MPMoviePlayerController. It turns out this also supports Shoutcast-
style MP3-over-HTTP audio streams, but since the MPMoviePlayer-

Controller takes over your whole screen, the audio-only Shout-
cast stream turns your display into a big gray QuickTime
logo. . . not an ideal user experience!

∗. HTTP Live Streaming (Internet-Draft) [Pan09]

The MPMoviePlayerController has a handful of properties you can set or

get. The scalingMode allows you to determine whether video that doesn’t

match the iPhone screen size should be scaled to fill one dimension

(MPMovieScalingModeAspectFit), both dimensions with possible cropping

(MPMovieScalingModeAspectFill), both dimensions with a possible modi-

fication of the aspect ratio (MPMovieScalingModeFill), or not scaled at all

(MPMovieScalingModeNone). The other interesting property is movieCon-

trolMode, which governs the controls that will be presented when you

tap on the screen during playback: a full set of timeline and volume con-

trols (MPMovieControlModeDefault), volume controls only (MPMovieCon-

trolModeVolumeOnly), or no controls at all (MPMovieControlModeHidden).

14.2 Receiving Notifications from the Movie Player

The MPMoviePlayerController provides notifications of state changes and

other events during playback. By handing these notifications, a player

app could present a “loading” indicator until the movie was ready to

play and then bring up a Play button. Or you could have a noninter-

active “cut scene” movie in a game that would then return to the game

when the movie finished playing.

in System Preferences, or build and run on the device, to get this example working.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=305

RECEIVING NOTIFICATIONS FROM THE MOVIE PLAYER 306

Currently, three notifications are defined:

• MPMoviePlayerContentPreloadDidFinishNotification indicates that pre-

loading has finished and the controller is ready to play the movie,

or an error has occurred.

• MPMoviePlayerPlaybackDidFinishNotification notifies listeners that

playback has finished.

• MPMoviePlayerScalingModeDidChangeNotification indicates that the

user has used the fill control to change the movie’s scaling mode.

To get one of these notifications, you use the NSNotification API, provid-

ing the NSNotificationCenter’s default instance with the name of the noti-

fication you want to receive, and a selector (that is, a method name) to

receive callbacks when the notification is sent out. So, in viewDidLoad,

you can register for a “playback finished” notification with a one-line

call:

Download MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m

[[NSNotificationCenter defaultCenter] addObserver:self

selector: @selector (playbackFinished:)

name:@"MPMoviePlayerPlaybackDidFinishNotification"

object:nil];

To log messages to the text view, we can create a simple method to reset

the text view to its current text, the date, and a log message:

Download MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m

- (void) appendTextToLogView: (NSString*) text {

logView.text = [NSString stringWithFormat: @"%@%@: %@\n",

logView.text, [NSDate date], text];

}

Then, when the notification calls back to the playbackFinished method,

it just logs the string Finished to this method:

Download MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m

- (void) playbackFinished: (NSNotification*) notification {

[self appendTextToLogView:@"Finished"];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SimpleVideoPlayer/Classes/SimpleVideoPlayerViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=306

SUPPORTED MEDIA FORMATS 307

With a similar log message added to playVideo, the main view looks like

this after you’ve finished playing a video:

14.3 Supported Media Formats

When you play back audio or video, you need to know the media for-

mats the iPhone can and can’t play and how to produce media that will

work on the device.4

There’s a big difference between audio/video container formats and the

contents inside them. Some formats, like QuickTime .mov files, allow

almost any kind of audio or video codec: an H.264 video track with

MP3 audio inside a .mov is perfectly legal (and will play on the iPhone).

Other formats are locked to their contents, like .mp3s, which contain

only MP3 audio data.

4. The available formats are described on the consumer-facing iPhone support pages
such as http://www.apple.com/iphone/specs.html, but they’re worth summarizing briefly.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://www.apple.com/iphone/specs.html
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=307

SUPPORTED MEDIA FORMATS 308

Here’s a summary of the the most significant media containers and

contents that are supported on the iPhone:

Audio Format Contents

.aif PCM (big-endian integer samples). AIFC

format (also .aif) can also handle IMA4, µ-

law, A-law, and others.

.wav PCM (little-endian integer samples), µ-

law, A-law.

.aac, .m4a, .mp4, .3gp, .3g2 AAC.

.mp3 MPEG-1 Layer 3 (“MP3”).

.caf All of the previous, plus Internet Low-

Bitrate Codec (iLBC), Apple Lossless

(ALAC), IMA4, Adaptive Multi-Rate (AMR),

and others.

A/V Format Contents

.mp4, .m4v, .3gp, .3g2 MPEG-4 Part 2 Simple video, H.264 Base-

line Profile video. AAC audio.

.mov Any of the previous video codecs. Any of

the previous audio codecs.

Of the containers, the Core Audio File (.caf) format may be the least

well known but is the most flexible. Like a QuickTime movie (.mov), it

is content-agnostic and therefore can contain any audio codec. It also

maintains time-to-sample tables that make skipping around a file faster

than in purely stream-based formats like .mp3. In fact, Apple generally

recommends using CAF for packaging your application sounds.

Some of the supported codecs have specific limitations on bitrate, op-

tions, size, or other parameters, so we encourage you to take a look

at the iPhone Application Programming Guide [App09c] for specific guid-

ance. For the audio formats, you can convert between the many formats

and codecs supported by Core Audio with the command-line utility

/usr/bin/afconvert. In fact, its help message displays the supported for-

mats and contents; just type the following command into Terminal.app

or xterm:

⇐ afconvert --help

⇒ Usage:

afconvert [option...] input_file [output_file]

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=308

SUPPORTED MEDIA FORMATS 309

Options: (may appear before or after arguments)

{ -f | --file } file_format:

'3gpp' = 3GP Audio (.3gp)

data_formats: 'aac ' 'samr'

'3gp2' = 3GPP2 Audio (.3g2)

data_formats: 'aac ' 'samr'

. . .

If you’re already a seasoned compressionist, you can tune your output

to these specs, but for the average developer, there are a lot of details

to get wrong. One option to consider is to use QuickTime’s Movie to

iPhone exporter, which creates an iPhone-compatible movie with no

compression options whatsoever. Many users think you have to pur-

chase QuickTime Pro to access QuickTime’s export functionality, but

it turns out that QuickTime Pro unlocks export features only in the

QuickTime browser plug-in and the QuickTime Player application. You

can use its exporter in other applications, such as Final Cut Express

and Final Cut Pro (via the menu item Export > Using QuickTime Con-

version) or iMovie (add your video to a new project, and then choose

Share > Export Using QuickTime), without buying QuickTime Pro. In

these applications, the QuickTime export dialog box will offer a pop-up

menu with a choice of export formats, one of which will be iPhone:5

If you’re a QuickTime or QTKit developer, you can also do this export in

a Mac application of your own with the iPhone Export Component. See

Apple’s Technical Note TN2188: Exporting Movies for iPod, Apple TV and

iPhone [App09d] for all the specifics.

5. Actually, there will be two. The Movie to iPhone (Cellular) exporter creates a smaller,

lower-bandwidth file for distribution over the slower EDGE network.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=309

Chapter 15

iPod Library Access
Chances are, by the time a user downloads and installs your applica-

tion, they’ve already used iTunes to put their favorite music, podcasts,

movies, and other media on their iPhone or iPod touch. In earlier ver-

sions of the iPhone OS, this media was completely off-limits to your

application. Now, starting with iPhone SDK 3.0, your application has

some access to the user’s music library. This means your application

can play the user’s favorite music, examine the contents of their library,

and even control the background iPod player.

In this chapter, we’ll look at the new features provided by the Media

Player framework. We’ll interact with the iPod application while it plays,

and then we’ll search through the user’s music library to find and play

their songs, podcasts, and audiobooks.

15.1 Monitoring iPod Playback

Let’s say you want to interact with the iPod player by monitoring what

the user is playing. That’s where we’ll start our look at the Media

Player framework. The native media player is special: it can run in the

background, unlike applications written with the public SDK. This is

why you can start playing audio within the iPod application and then

quit the application or even lock the screen while the audio continues

playing.

Creating the Music GUI

For a sample, let’s create a flippable utility application whose front side

shows the current item from the iPod application and provides a few

simple controls. Later in this chapter, we’ll use the flip side to create a

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

MONITORING IPOD PLAYBACK 311

The iPod Application

The iPhone and iPod touch use different names for their media
player applications. On the iPhone, there is a single iPod appli-
cation, which allows you to browse and play both audio and
video. On the iPod touch, there are separate Music and Videos
applications. Despite this seeming difference, the functional-
ity from the developer’s point of view is the same: the object
returned by [MPMusicPlayerController iPodMusicPlayer] is function-
ally the same on both platforms. So, when we refer to “the iPod
application,” we mean the native media player, regardless of
how it’s presented to the end user.

user interface to pick items from the library to play. Note that the sim-

ulator doesn’t have a music player application, so to run this example,

you will have to build for and install to an actual device.

Create a utility application with Xcode, called MusicLibraryClient. This will

set up view controller classes for the main view and flip side, along with

custom view classes that we won’t need to customize further.

Open the MainView.xib file in IB (not MainWindow.xib), and lay out the

GUI elements shown in Figure 15.1, on the following page. These com-

ponents are as follows:

• A label for the current playback time, in a very large font size (we

used 48-point Trebuchet).

• A Play/Pause button. Text is OK; in the downloadable example,

we’ve provided a button that uses a PlayButton.png for the normal-

state image and a PauseButton.png for the selected state.

• A slider for moving back and forward through the song. This action

is commonly called scrubbing. The slider’s value will represent the

current time within the audio, in seconds, since that’s the format

the Media Player library uses for its current time and duration

properties. Add small labels at both ends of the slider for the start

time (always 0:00) and the song’s duration.

• A UIImageView for the item’s artwork. Since some iPod library items

are likely not to have cover art, it helps to have an “empty art”

image to fall back on, shown here as the initial image for the view.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=311

MONITORING IPOD PLAYBACK 312

Figure 15.1: Layout for MusicLibraryClient’s main view

• Labels for the song title, artist, and album. These will have slightly

different meanings for podcasts and audiobooks: episode/artist/

podcast and title/author/book, respectively.

• The “info” button to switch to the flip-side view is provided for you

and is already wired up.

You’ll then need to declare IBOutlets to the components whose values

will change at runtime. Declare the following instance variables, make

them properties with @property and @synthesize, and wire them up as

usual:

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.h

UILabel *currentTimeLabel;

UISlider *currentTimeSlider;

UIButton *playPauseButton;

UILabel *currentItemDurationLabel;

UILabel *currentItemTitleLabel;

UILabel *currentItemArtistLabel;

UILabel *currentItemAlbumLabel;

UIImageView *currentItemArtworkView;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=312

MONITORING IPOD PLAYBACK 313

Since we’ll be using a nonstandard framework, we need to add it to our

project. In the project view, add MediaPlayer.framework to the Frame-

works folder, and add #import <MediaPlayer/MediaPlayer.h> to MainView-

Controller.h.

Getting the Current Playback Status

To populate these various fields, we obtain a controller object that man-

ages the background application. This class is called MPMusicPlayerCon-

troller and can create two kinds of instances. The iPod Music Player is

an object that interacts with the system’s media player, allowing you

to get information about what’s currently playing; to start, pause, and

stop playback; and to provide a new queue of items to play. The other

kind of player is the application music player. This has the same func-

tionality as the iPod player but is completely independent of it: using

this object doesn’t affect the system media player state. You’d use this

player if you wanted to get audio from the user’s iPod library and play

it in your own application, such as for background music in a game. If

you use the application player, the iPod player may coexist with it; this

probably isn’t desirable, since you’d potentially have two songs playing

at once. You could get the iPod player object and stop it, but it’s better

to use the techniques described in Section 16.7, Interacting with Audio

Sessions, on page 360 to tell the system how you want to mix with

system audio of all types.

You get the player of your choice with a class method, either iPodMusic-

Player or applicationMusicPlayer. Once you have the player, you can use a

number of properties to manage the playback mode or state; the most-

useful ones are the self-explanatory currentPlaybackTime, volume, repeat-

Mode, and shuffleMode. There’s also a read-only playbackState whose

various MPMusicPlaybackState enumerated values can be used for set-

ting the state of our Play/Pause button:

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

- (void) updatePlayState {

MPMusicPlayerController *iPodController =

[MPMusicPlayerController iPodMusicPlayer];

playPauseButton.selected =

(iPodController.playbackState == MPMusicPlaybackStatePlaying);

}

We also want information about the item that’s playing. The nowPlayin-

gItem provides an MPMediaItem that describes what’s currently playing,

paused, or queued to play. The MPMediaItem represents one playable

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=313

MONITORING IPOD PLAYBACK 314

item: a song, a podcast episode, a section of an audiobook, and so

on. It has only two public methods, but one of them, valueForProperty:,

provides us with everything we need to know about the currently play-

ing item (and later, with items found in the media library). There is an

extensive set of defined keys for retrieving metadata properties, in three

general groups:1

• General media item property keys: Traits common to any media

item: MPMediaItemPropertyTitle, MPMediaItemPropertyArtist, MPMedia-

ItemPropertyPlaybackDuration, and far more than are practical to list

here.

• Podcast item property keys: Metadata items unique to podcasts.

The only such key currently defined is MPMediaItemPropertyPod-

castTitle.

• User-defined property keys: Properties that relate to the use of the

media more than its intrinsic traits: MPMediaItemPropertyPlayCount,

MPMediaItemPropertyLastPlayedDate, and so on.

Retrieving the properties of the currently playing item will allow us to

populate most of the labels we set up and to set the cover art for the

UIImageView. For the latter, we should have a fallback in case the user

hasn’t set the album art in iTunes. Assuming you’ve put an empty

album PNG in your project’s resources, declare an instance variable

UIImage *emptyAlbumImage; in the header, #define a EMPTY_ALBUM_FILE_

NAME, and set up the UIImage early in your viewDidLoad.

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

emptyAlbumImage = [[UIImage alloc] initWithContentsOfFile:

[[NSBundle mainBundle]

pathForResource:EMPTY_ALBUM_FILE_NAME ofType:@"png"]];

With that set up, we can write a updateCurrentiPodItemMetadata method

to get the now-playing item and populate most of the UI components

with its various properties, or we can blank them out if no item is cur-

rently playing.

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

Line 1 - (void) updateCurrentiPodItemMetadata {
- MPMusicPlayerController *iPodController =
- [MPMusicPlayerController iPodMusicPlayer];

1. See the MPMediaItem documentation for a complete list and the data types returned

for each property.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=314

MONITORING IPOD PLAYBACK 315

- MPMediaItem *nowPlayingItem= [iPodController nowPlayingItem];
5 if (nowPlayingItem == nil) {
- currentTimeSlider.maximumValue = 1.0;
- currentTimeSlider.value = 0;
- currentItemDurationLabel.text = @"00:00";
- currentItemTitleLabel.text = @"(nothing playing)";

10 currentItemArtistLabel.text = nil;
- currentItemAlbumLabel.text = nil;
- currentItemArtworkView.image = emptyAlbumImage;
- } else {
- NSNumber *durationNumber = [nowPlayingItem

15 valueForProperty:MPMediaItemPropertyPlaybackDuration];
- currentTimeSlider.maximumValue = [durationNumber floatValue];
- currentItemTitleLabel.text = [nowPlayingItem
- valueForProperty:MPMediaItemPropertyTitle];
- currentItemArtistLabel.text = [nowPlayingItem

20 valueForProperty:MPMediaItemPropertyArtist];
- currentItemAlbumLabel.text = [nowPlayingItem
- valueForProperty:MPMediaItemPropertyAlbumTitle];
- MPMediaItemArtwork *coverArt = [nowPlayingItem
- valueForProperty:MPMediaItemPropertyArtwork];

25 if (coverArt)
- currentItemArtworkView.image = [coverArt
- imageWithSize: currentItemArtworkView.frame.size];
- else
- currentItemArtworkView.image = emptyAlbumImage;

30

- }
- }

Many of these property values are NSStrings, which makes it easy to set

them as the text of the labels in our GUI. One exception is the dura-

tion property (line 14), which is an NSNumber representing the playback

duration in seconds as an NSTimeInterval (that is, a double). Also notice

the retrieval of the “item art,” typically album cover art or a podcast

logo,2 on line 23. This property value is an MPMediaItemArtwork object,

from which you can get a scaled UIImage via imageWithSize:. For this

example, we’ll request an image exactly the size of the UIImageView. If

the property is nil, we’ll just use our emptyAlbumArt instead.

Working with Time Properties

One label we haven’t updated is the current time display. It’s easy

enough to get the current time from the MPMusicPlayerController’s cur-

2. This property does not support “enhanced podcasts,” which update the artwork as

the episode plays; you’ll always get the same episode-specific artwork regardless of the
current playback position.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=315

MONITORING IPOD PLAYBACK 316

rentPlaybackTime method. This returns the number of seconds elapsed

since the beginning of the track, as an NSTimeInterval (that is, a double).

The trick is how we present it to the user, who wouldn’t be well served

by a big floating-point number.

With a little bit of string-formatting voodoo, we can get an NSString to

show the time, padded to a specific number of digits, so that seconds

less than 10 will get a leading 0. Provide a formatted value for the dura-

tion label by adding the following line to the updateCurrentiPodItemMeta-

data method, in the else block:

currentItemDurationLabel.text = [NSString stringWithFormat: @"%02d:%02d",

[durationNumber intValue] / 60,

[durationNumber intValue] % 60];

More important, you can now update the current time display by getting

the currentPlaybackTime property from the MPMusicPlayerController:

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

- (void) updateCurrentiPodItemTime {

MPMusicPlayerController *iPodController =

[MPMusicPlayerController iPodMusicPlayer];

MPMediaItem *nowPlayingItem= [iPodController nowPlayingItem];

if (nowPlayingItem == nil) {

currentTimeLabel.text = @"00:00";

} else {

double currentTime = iPodController.currentPlaybackTime;

currentTimeLabel.text = [NSString stringWithFormat: @"%02d:%02d",

(int) currentTime/60,

(int) currentTime%60];

currentTimeSlider.value = (float) currentTime;

}

}

Of course, if the music is playing when that method is called, it will be

accurate only for an instant. We need to constantly update it. Much like

we did for the clocks in Chapter 9, Preferences, on page 172, we can use

an NSTimer to repeatedly call updateCurrentiPodItemTime (for a reminder

on how this works, flip back to Section 9.4, Side Trip: Updating the

Clock Label Every Second, on page 181). Declare NSTimer *currentTimeUp-

dateTimer; in the .h, and set it up in the .m’s viewDidLoad.

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

// create timer to update clock

currentTimeUpdateTimer = [NSTimer scheduledTimerWithTimeInterval:0.1

target:self selector:@selector(updateCurrentiPodItemTime)

userInfo:NULL repeats:YES];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=316

MONITORING IPOD PLAYBACK 317

Figure 15.2: Viewing the currently playing iPod item

The last thing to do in viewDidLoad is to do a one-time call to our

three GUI-updating methods so that when the view loads, it will get

the playback state, current time, and current item metadata from the

iPod application:

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

[self updatePlayState];

[self updateCurrentiPodItemMetadata];

[self updateCurrentiPodItemTime];

And now we have everything we need to display what’s going on in the

system music player. Launch iPod (or Music), and start playing some

music, a podcast, or an audiobook. Then, while it’s still playing, build

and run your application on the device. When it comes up, you’ll see

the current item in the main view, as shown in Figure 15.2. Note that

although we have yet to take control of the playback from our own

application, you can do so with the headset clicker provided with the

iPhone: click once to pause, again to resume.

Getting Notifications from the Player

Right now, the only metadata component that’s being repeatedly up-

dated is the current time label, serviced by the NSTimer that we set up. If

your song ends and the media player moves on to the next one, most of

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=317

MONITORING IPOD PLAYBACK 318

the display will be wrong. The same will happen if you skip to the next

song by double-clicking your headset clicker or going back by triple-

clicking it.

Fortunately, there’s a systemwide service for notifying applications of

asynchronous events, the notification center. Applications can send

notifications to the notification center, which are then sent to all regis-

tered observers. The MPMusicPlayerController provides two notifications,

which are identified by NSString constants:

• MPMusicPlayerControllerPlaybackStateDidChangeNotification indicates

that the current playback state (playing, paused, stopped, skip-

ping forward, and so on) has changed.

• MPMusicPlayerControllerNowPlayingItemDidChangeNotification notifies

observers that the current item has changed, either as a result

of the user skipping forward or back or as one item ending and

the next in the queue beginning.

For the first of these, we can simply call our updatePlayState method to

update the Play/Pause button state. For the latter, we’ll want to update

all the metadata components.

You add an observer for a given notification by getting the default in-

stance of the NSNotificationCenter and calling addObserver:selector:name:

object:. The parameters to this method are the object that will receive

callbacks, a method selector, the notification name, and an optional

“sender” argument that restricts notifications to be only those sent by

a specific object. We’ll set up the observers in viewDidLoad.

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

[[NSNotificationCenter defaultCenter] addObserver:self

selector: @selector (playbackStateChanged:)

name:@"MPMusicPlayerControllerPlaybackStateDidChangeNotification"

object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

selector: @selector (nowPlayingItemChanged:)

name:@"MPMusicPlayerControllerNowPlayingItemDidChangeNotification"

object:nil];

[[MPMusicPlayerController iPodMusicPlayer] beginGeneratingPlaybackNotifications];

Now we have to write the callback methods that handle the notifica-

tions. These methods need to take an NSNotification argument, which

provides the name of the notification, the sending object, and (for some

notifications) a “user info” dictionary of additional information. In this

case, we don’t need any of that; we can just call our update methods.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=318

CONTROLLING IPOD PLAYBACK 319

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

-(void) playbackStateChanged: (NSNotification*) notification {

[self updatePlayState];

}

-(void) nowPlayingItemChanged: (NSNotification*) notification {

[self updatePlayState];

[self updateCurrentiPodItemMetadata];

[self updateCurrentiPodItemTime];

}

With this addition, you can now skip forward and back by double- or

triple-clicking your headset clicker, and you’ll see the metadata change

in the main view. It’s more impressive if you do this with a playlist with

songs from different albums, such as a Genius playlist. Try it.

15.2 Controlling iPod Playback

You don’t just have to be a passive client to the iPod application. The

MPMusicPlayerController provides a number of methods to affect play-

back: play, pause, stop, skipToNextItem, skipToBeginning, and so on. Some

of the playback mode properties are also writable, such as repeatMode,

shuffleMode, and currentPlaybackTime.

This makes implementing our Play/Pause button very simple. Declare

handlePlayPauseTapped as an IBAction, connect the Play/Pause button to

it, and implement it like so:

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

- (IBAction) handlePlayPauseTapped {

MPMusicPlayerController *iPodController =

[MPMusicPlayerController iPodMusicPlayer];

if (iPodController.playbackState == MPMusicPlaybackStatePlaying) {

[iPodController pause];

} else {

[iPodController play];

}

}

Notice that this handler doesn’t update the selected state of the button.

It doesn’t need to do so. When the iPod application starts playing, it will

send a notification of the state change, which will be received by the

observer registered in the previous section, which updates the button

status as necessary.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=319

CONTROLLING IPOD PLAYBACK 320

Setting the iPod Player’s Current Time

We can also set the current time within the playing track and thereby

get a nice “scrubbing” behavior; instead of imprecise and slow “rewind”

and “fast-forward” buttons (which you could certainly implement with

MPMusicPlayerController’s beginSeekingForward, beginSeekingBackward, and

endSeeking methods), we’ll let the user drag the slider and set the cur-

rent time as they do.

The only thing we have to be careful of is the fact that the slider’s value

is already being updated with every call to updateCurrentiPodItemTime,

which is being called several times a second by the NSTimer. So, we need

to stop doing that while the user is performing a scrub gesture.

Start by defining the instance variable BOOL userIsScrubbing; in the

header file, and set its value to NO in viewDidLoad. We can set this flag

value when the user initiates a touch gesture on the slider and when he

or she ends it. So, declare two IBActions to manage userIsScrubbing, and

implement them:

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

-(IBAction) handleScrubberTouchDown {

userIsScrubbing = YES;

}

-(IBAction) handleScrubberTouchUp {

userIsScrubbing = NO;

}

Next, in IB, connect the Touch Down event to handleScrubberTouchDown,

and connect both Touch Up Inside and Touch Up Outside to handle-

ScrubberTouchUp. Finally, rewrite the last line of updateCurrentiPodItem-

Time to not update the slider if the user is scrubbing:

if (! userIsScrubbing)

currentTimeSlider.value = (float) currentTime;

Now we’re not going to be fighting over the slider, because the timer tries

to set it to one value and the user to another. The final step is to tell the

MPMusicPlayerController to reset the current time in response to a drag

gesture. Fortunately, the slider also generates a Value Changed event

as the user slides. Declare - (IBAction) handleScrub; in the header file,

and in IB connect the Value Changed event to it. The implementation

is easy: just reset the player’s currentPlaybackTime property to the value

of the slider.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=320

USING THE IPOD LIBRARY 321

Download MediaLibrary/MusicLibraryClient/Classes/MainViewController.m

-(IBAction) handleScrub {

MPMusicPlayerController *iPodController =

[MPMusicPlayerController iPodMusicPlayer];

iPodController.currentPlaybackTime = currentTimeSlider.value;

}

With this task completed, you should now be able to scrub backward

and forward within songs, even while they’re playing.3 The slider sends

out continuous Value Changed events throughout the drag gesture, so

you’ll hear immediate results and see the current time update as you

scrub back and forth.

15.3 Using the iPod Library

Thus far, we have depended on the user already playing music in the

iPod or Music application for us to have a currently playing song to work

with. We can also take control of the player by sending it new songs to

play, but to do that, we need to use the Media Player framework to

discover just what’s available in the user’s media library.

The Media Player framework offers two means of identifying items in

the user’s media library, which are represented as MPMediaItems (just

like the now-playing item returned by the MPMusicPlayerController is):

• The MPMediaQuery class allows you to search for items in the

library by various criteria, such as kind (song, podcast episode,

audiobook), item title, artist, album title, and so on.

• The MPMediaPickerController class manages a GUI that allows you

to browse through the media library. Depending on the mode you

choose (albums, artists, podcasts, and so on), the presentation

may be almost identical to what you see in the iPod or Music appli-

cation.

To examine and exercise these APIs, we’ll use the flip side of the MusicLi-

braryClient to find songs to play and then send those to the native music

player application when the user dismisses the flip-side view with the

Done button.

3. At least in the 3.0 betas, scrubbing the iPod player is somewhat “jumpier” than scrub-

bing through a local file with the AVAudioPlayer, as we’ll do in Section 16.6, Playing Audio

with the AVFramework, on page 355.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=321

USING THE IPOD LIBRARY 322

Limits of the Media Player Framework

Although there’s a lot of great functionality in the Media Player
framework, there are significant limits to what you can find in
the library and what you can do with it. Here are a few of the
big ones:

• No access to video: Video items such as movies, TV shows,
and video podcasts cannot be discovered with the query
API or the picker and can never be a currently playing
item from your application’s point of view, since the iPod
application stops playing such items when it quits.

• No access to audio data: The MPMediaItem does not let
you access the audio files themselves, their compressed
data, or their decoded audio streams.

• No write access: You can’t edit, delete, or write new audio
metadata from your application.

• No access to arbitrary metadata: Metadata standards
like ID3 for MP3 files and user data atoms in AAC allow for
any kind of user-defined metadata, but the Media Player
framework provides just a standard set of common prop-
erty names.

Designing the Flip Side

The MPMusicPlayerController, whether it represents the system’s media

player ([MPMusicPlayerController iPodMusicPlayer];) or one allocated for your

own application ([MPMusicPlayerController applicationMusicPlayer];), accepts

new audio for playback in the form of a queue. You can send the player

an MPMediaItemCollection that you get from a query or build yourself

or an MPMediaQuery to perform and play the results of. So, for our flip

side, let’s develop a GUI that lets the user build a queue by performing

one or more queries. The user will select results from those queries,

which will be used to build up an array of selected items. These items

will be displayed on-screen as a UITable. Finally, when the user clicks

Done, we’ll send the items to the native iPod player; when we return

to the main view, we should see the first of the user’s selections start

playing.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=322

USING THE IPOD LIBRARY 323

Figure 15.3: Querying the iPod Library with a UISearchDisplayController

The utility application project template has already provided us with

a rudimentary flip side, consisting of the classes FlipsideView and Flip-

sideViewController and a FlipsideView.xib file. The flipping functionality is

already wired up, so all we need to do to get started is to build our

GUI. Open FlipsideView.xib in Interface Builder, and you’ll see the default

elements: a navigation bar with a Done button and a navigation item

called Title. Here’s what we’ll add:

• A segmented control right below the navigation bar, with three

segments: Title, Artist, and Album.

• Below that, a search bar and search display controller. This is

a new and remarkable addition to IB’s library in iPhone OS 3.0.

Previously, you could add a search bar but were responsible for

wiring all its behavior yourself. This new feature adds not just a

UISearchBar to your view but also creates a UISearchDisplayController,

to which the search bar is prewired. When the search bar gets user

input, it slides in a search results table over the current view, at

the same time as it brings in the keyboard. In Figure 15.3, we

can see what this will look like in our finished example, with the

search results table and keyboard covering the rest of the view.4

4. Note that for this screenshot, we’ve implemented a search-on-keystroke behavior,

while the final app won’t actually search until the user taps Search.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=323

USING THE IPOD LIBRARY 324

• Fill the rest of the flip-side view with a UITable for the queue of

songs that the user will be creating.

As usual, we have some IBOutlets to declare. Add the following instance

variables to FlipsideViewController.h, and then declare them as properties

with @property and @synthesize:

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.h

UISegmentedControl *searchTypeControl;

UISearchDisplayController *searchController;

UITableView *queueTable;

We’ll also have to declare that you handle three protocols: delegates for

the table and search bar, as well as the data source for the table:

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.h

@interface FlipsideViewController : UIViewController <UITableViewDataSource,

UITableViewDelegate, UISearchBarDelegate> {

In IB, connect the outlets from File’s Owner to the appropriate items

in the nib. You’ll also want to connect the table’s delegate and data-

Source to File’s Owner. Notice, by the way, that the UISearchDisplayCon-

troller has already made four connections of its own to File’s Owner:

delegate, searchContentsController, searchResultsDataSource, and searchRe-

sultsDelegate. Obviously, we’ll have some work to do to service those

roles, but at least the connections are prewired.

Finally, change the navigation bar’s title to New Queue. When you’re

done laying out the GUI, it should look like Figure 15.4, on the next

page.

Implementing Media Library Search

Our search GUI should let the user type some text into the search bar;

query the media library for songs, artists, or albums with that text in

the relevant metadata property; and populate the search controller’s

slide-in table with the results. When the user picks a song, we’ll add

that to a queue of songs to eventually send to the media player applica-

tion. We’re going to need to declare two arrays as instance variables: an

array to hold the most recent set of search results and a mutable array

that the user can add selections to.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.h

NSArray *searchResults;

NSMutableArray *newPlaybackQueue;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.h
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.h
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=324

USING THE IPOD LIBRARY 325

Figure 15.4: Laying out a GUI for building media queues

We’ll also clear out the queue every time the flip-side view comes up,

since any previous queue will have already been sent to the system

media player. You can do this in viewDidLoad.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

[newPlaybackQueue release];

newPlaybackQueue = [[NSMutableArray alloc] init];

These arrays will be used by the data sources of both tables. In fact, we

have a rather interesting situation in that our view controller is set to be

the delegate and data source for two tables: the slide-in search results

table provided by the UISearchDisplayController and the queue table we

added to the view ourselves. But it won’t be a problem, as you’ll see.

To provide the search, we need to implement some of the delegate

methods declared by the UISearchBarDelegate protocol. You can choose

to search on every keystroke by implementing searchBar:textDidChange:

or only when the search button is pressed, with searchBarSearchBut-

tonClicked:. In writing this chapter, we found the search performance

sluggish with just 500 songs in the library of a first-gen iPhone, so we

recommend waiting for the search button before doing the query. You’ll

also want to handle the delegate method called when the user cancels

the search.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=325

USING THE IPOD LIBRARY 326

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {

[self updateSearchResults];

[searchController.searchResultsTableView reloadData];

}

- (void) searchBarCancelButtonClicked: (UISearchBar *) searchBar {

searchResults = nil;

}

Obviously, this is a simple implementation of searchBarSearchButton-

Clicked:, because it defers the query work to a yet-to-be-written update-

SearchResults method. The reason you want to put the query in its own

method is that you’ll want to requery if the user taps the segmented

control to change the query type.

So, let’s look at how we’re going to perform the query. The Media Player

framework provides an MPMediaQuery class to handle querying the

media library. It comes with several “canned” queries exposed as class

methods, such as songsQuery and podcastsQuery, which return all items

of a given type.

Using one of these queries or starting with an empty query, you can add

filter predicates to narrow down the results to those matching a certain

criteria. Most of the typically user-visible properties, such as song titles

and artist names, can be used in this way as search criteria. (Check

the MPMediaItem documentation to see which properties are marked as

filterable.)

To search the media library, we’ll start with an MPMediaQuery for all

the songs and then filter this down to just those that contain the text

in the search bar, in either the song title, artist name, or album name.

We can do this by switching on the value of the segmented control and

building an MPMediaPropertyPredicate to add to the query. With the pred-

icate added, we can retrieve the matching items as an NSArray from the

query’s items property.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (void) updateSearchResults {

NSString *searchText = searchController.searchBar.text;

MPMediaQuery *query = [MPMediaQuery songsQuery];

switch (searchTypeControl.selectedSegmentIndex) {

case 0: {

MPMediaPropertyPredicate *titlePredicate =

[MPMediaPropertyPredicate predicateWithValue:searchText

forProperty:MPMediaItemPropertyTitle

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=326

USING THE IPOD LIBRARY 327

comparisonType: MPMediaPredicateComparisonContains];

[query addFilterPredicate:titlePredicate];

break;

}

case 1: {

MPMediaPropertyPredicate *artistPredicate =

[MPMediaPropertyPredicate predicateWithValue:searchText

forProperty:MPMediaItemPropertyArtist

comparisonType: MPMediaPredicateComparisonContains];

[query addFilterPredicate:artistPredicate];

break;

}

case 2: {

MPMediaPropertyPredicate *albumPredicate =

[MPMediaPropertyPredicate predicateWithValue:searchText

forProperty:MPMediaItemPropertyAlbumTitle

comparisonType: MPMediaPredicateComparisonContains];

[query addFilterPredicate:albumPredicate];

break;

}

default: {

// unknown segment type - just return everything

query = [MPMediaQuery songsQuery];

}

}

[searchResults release];

searchResults = query.items;

[searchResults retain];

}

As you can see, you create an MPMediaPropertyPredicate with class meth-

ods that take a value to filter on, which property it applies to, and

an optional comparisonType that can be either MPMediaPredicateCom-

parisonEqualTo or MPMediaPredicateComparisonContains. Textual compar-

isons are case insensitive, and there is no public way to make them

case sensitive.

Note that the results come back unsorted. You could get a sorted array

with NSArray’s various sorting methods or set the query’s groupingType

property and then retrieve the collections property, which returns re-

sults as an array of MPMediaItemCollections, grouped by the specified

grouping type. To keep things simple in this example, we’ll just leave

the individual results unsorted.

So, our updateSearchResults method populates searchResults with an array

of MPMediaItems matching the string tapped into the search bar. We

also want to reperform this search if the user changes the search

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=327

USING THE IPOD LIBRARY 328

type by tapping the segmented control after doing a search (in other

words, changing from searching for songs with a given term to artists

or albums with that term). This is easy: declare - (IBAction) searchType-

Changed; in FlipsideViewController.h, connect the segmented control’s

Value Changed event to this action, and write an implementation that

just calls our updateSearchResults and refreshes the search controller’s

table.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (IBAction) searchTypeChanged {

[self updateSearchResults];

if (searchController.active == YES) {

[searchController.searchResultsTableView reloadData];

}

}

Implementing the Search Result and Media Queue Tables

We’ve now performed the search, but the results are just sitting in the

searchResults array. We need to implement the UITableViewDelegate and

UITableDataSource methods to present them to the user.

As mentioned, the FlipsideViewController is wired up as the delegate to

two different tables: the slide-in table owned by the UISearchDisplayCon-

troller for search results and our own table that we want to use for the

queue that the user builds by selecting search results. So, our delegate

methods will have to pay attention to which table is calling them.

Let’s start with the delegate method tableView:didSelectRowAtIndexPath:.

When a user taps an item in the search results table, we want to get the

selected MPMediaItem and put it in the newPlaybackQueue array. Then

we update the queue table and dismiss the search GUI.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

if (tableView != queueTable) {

// add item from search results to queue

[newPlaybackQueue addObject:

[searchResults objectAtIndex:indexPath.row]];

[queueTable reloadData];

[tableView deselectRowAtIndexPath:indexPath animated:NO];

[searchController setActive:NO animated:YES];

searchResults = nil;

} else {

[tableView deselectRowAtIndexPath:indexPath animated:NO];

}

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=328

USING THE IPOD LIBRARY 329

Notice that selecting a row in the queue table does nothing.

That covers the most important action: getting a selected search result

into the new playback queue array. Now we just have to provide the

other essential table methods, providing the number of sections and

size of the tables.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

return 1;

}

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {

if (tableView == queueTable) {

return [newPlaybackQueue count];

} else {

return [searchResults count];

}

}

Using a similar strategy, we could also provide a section header for the

queue table to show the number of items the user has added.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (NSString *)tableView:(UITableView *)tableView

titleForHeaderInSection:(NSInteger)section {

if (tableView == queueTable) {

return [NSString stringWithFormat:

@"Queue (%d songs)", [newPlaybackQueue count]];

} else {

return nil;

}

}

Finally, we need to provide cells. The boilerplate implementation pro-

vided by Xcode for other table implementations (such as those shown

in Section 5.4, Cell Styles, on page 92) will do fine. Just change the

style to UITableViewCellStyleSubtitle, and then set textLabel and detailText-

Label to property values retrieved from an MPMediaItem retrieved from

the appropriate array (newPlaybackQueue for the queueTable, searchRe-

sults for the search display controller’s table).

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";

UITableViewCell *cell =

[tableView dequeueReusableCellWithIdentifier:CellIdentifier];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=329

USING THE IPOD LIBRARY 330

Figure 15.5: Building a playback queue of MPMediaItems

if (cell == nil) {

cell = [[[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleSubtitle

reuseIdentifier:CellIdentifier] autorelease];

}

// Configure the cell

MPMediaItem *anItem = nil;

if (tableView == queueTable) {

anItem = [newPlaybackQueue objectAtIndex:indexPath.row];

} else {

anItem = [searchResults objectAtIndex:indexPath.row];

}

cell.textLabel.text =

[anItem valueForProperty:MPMediaItemPropertyTitle];

cell.detailTextLabel.text =

[anItem valueForProperty:MPMediaItemPropertyArtist];

return cell;

}

With these table methods implemented, you can now select search

results and build a queue, as shown in Figure 15.5.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=330

BROWSING THE IPOD LIBRARY 331

Playing a Queue

The final step is to take the queue of songs selected by the user and

send them to the native media player application. The utility application

template has already wired the navigation bar’s Done button to a done

method that flips back to the main view, so we can add code in that

method to set up the playback queue and then flip.

As we discussed before we even started building the flip-side GUI, the

MPMusicPlayerController has several methods that accept a queue of items

to play. Since we’ve already assembled the items we want to play,

we’ll call setQueueWithItemCollection:, providing an MPMediaItemCollec-

tion built from our array.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (IBAction)done {

if ([newPlaybackQueue count]) {

MPMusicPlayerController *iPodController =

[MPMusicPlayerController iPodMusicPlayer];

[iPodController stop];

MPMediaItemCollection *queueCollection =

[MPMediaItemCollection collectionWithItems:

newPlaybackQueue];

[iPodController setQueueWithItemCollection: queueCollection];

[iPodController play];

}

// provided by xcode template to flip back

[self.delegate flipsideViewControllerDidFinish:self];

}

15.4 Browsing the iPod Library

In the previous section, we provided our own search GUI for searching

for items to add to the playback queue. Along with MPMediaQuery, the

Media Player framework gives us another means of finding items from

the media library: MPMediaPickerController.

This picker is a UIViewController whose view is, depending on how you

configure it, almost identical to the native iPod or Music applications.

You initialize it with a bit field of MPMediaTypes to display. For example,

to create a browse GUI to show only podcasts and audiobooks, you’d

create the picker like this:

MPMediaPickerController *pickerController =

[[MPMediaPickerController alloc]

initWithMediaTypes: MPMediaTypePodcast | MPMediaTypeAudioBook];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=331

BROWSING THE IPOD LIBRARY 332

This creates a tabbed GUI with two tabs, one each for podcasts and

audiobooks, each highly similar to the native application. The biggest

difference comes from whether you choose to have the picker allow

multiple selections; with this option set to YES, the items will have +

characters to allow the user to add them to the picker’s own queue of

selections.

Let’s add a browse option to our flip-side GUI. Add a tab bar button to

the right side of the navigation item, and give it the title Browse. Declare

- (IBAction) handleBrowseTapped; in FlipsideViewController.h, and implement

it as follows:

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (IBAction) handleBrowseTapped {

MPMediaPickerController *pickerController =

[[MPMediaPickerController alloc]

initWithMediaTypes: MPMediaTypeMusic];

pickerController.prompt = @"Add songs to queue";

pickerController.allowsPickingMultipleItems = YES;

pickerController.delegate = self;

[self presentModalViewController:pickerController animated:YES];

[pickerController release];

}

We start by creating the MPMediaPickerController and initializing it to

show the music in the user’s library. Along with setting properties for a

user-readable prompt and whether to allow multiple selections, we pro-

vide a delegate implementing the MPMediaPickerControllerDelegate proto-

col. Since we want that to be the FlipsideViewController itself, be sure to

go over to the header file and add MPMediaPickerControllerDelegate to the

list of implemented protocols. With the delegate set, we can show the

picker controller in a modal view, which slides in from the bottom, as

shown in Figure 15.6, on the following page.

When the user taps Done or Cancel (which may not be present, depend-

ing on the controller’s media types and multiple-selection properties),

the MPMediaPickerController calls the delegate method mediaPicker:didPick-

MediaItems: or mediaPickerDidCancel:, as appropriate. For our purposes,

all that’s necessary is to add any selected items to the newPlayback-

Queue and to dismiss the modal view controller.

Download MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker

didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {

[self dismissModalViewControllerAnimated:YES];

[newPlaybackQueue addObjectsFromArray:mediaItemCollection.items];

[queueTable reloadData];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaLibrary/MusicLibraryClient/Classes/FlipsideViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=332

BROWSING THE IPOD LIBRARY 333

Figure 15.6: Browsing the media library with MPMediaPickerController

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker {

[self dismissModalViewControllerAnimated:YES];

}

So with that, you’ve given your user the same level of playback con-

trol they enjoy in the iPod application: the user can browse the music

library, search it, pick one or more items to play, and play them, com-

plete with metadata display and scrubbing. What you do with this is

up to you. Rather than just offering a differently styled player, consider

the possibilities of playing the user’s favorite music (perhaps based on

properties such as MPMediaItemPropertyPlayCount or MPMediaItemProp-

ertyRating) as background music in your application. Build a social

application that analyzes their library and compares it to other users’

libraries.5 Combine music library analysis with the location API to help

them find nearby record stores and concert venues with music they’d

enjoy. Or you can be cute and unlock features in your application based

on whether the user has artists and songs you like.

5. With their permission, of course, because sharing the user’s data has serious privacy

implications.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=333

Chapter 16

Playing and Recording Audio
Although support for video is pretty simplistic in iPhone 3.0, the depth

of the audio APIs is remarkably extensive. The Core Audio framework

provides multiple layers of abstraction, from a high-level Objective-C

API that makes it exceedingly simple to set up a basic audio recorder or

player that works with files in your Documents directory to low-level C

APIs for streaming audio that allow you to work with raw audio samples

directly.

That said, the “80-20 rule” applies: a large percentage of developers

will use a small, critical subset of this framework. For the bulk of this

chapter, we’ll focus on the high-level Objective-C classes provided for

the most common tasks: recording and playing local files.

16.1 Creating an AVAudioRecorder

Prior to iPhone SDK 3.0, developers who wanted to record audio needed

to work with the Audio Queue Services API (described later in Sec-

tion 17.3, Audio Queue Services, on page 373), a procedural C API that

uses a streaming metaphor. You’d get callbacks with newly captured

audio samples and have to write them to a file with another C API for

writing audio files. Lots of people complained that this was too much

work for a simple task.

In response, iPhone SDK 3.0 provides a much easier-to-use option in

the form of the AVAudioRecorder class, part of the AVFoundation frame-

work. This class allows you to create a recorder object with a destina-

tion URL and some settings to define the format you want to record

into and then just start recording audio data into the file with self-

explanatory methods like record, pause, and stop. Of course, nothing is

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

CREATING AN AVAUDIORECORDER 335

ever that easy with audio, as we’ll see when we consider the options for

compressed audio and how few combinations of settings are actually

valid, but for many people, this is going to be much more productive.

Setting Up the Sample Application

To exercise AVFoundation’s recording and playback features, we’ll build a

sample application that can record from whatever audio input is avail-

able (the phone’s mic or the headset mic) into files and that can then

play back the recorded files. We’ll give the user a wide variety of options

in terms of recording formats, which will help us explore the ins and

outs of audio formats.

The sample app we’ve prepared is one of the most ornate in the book.

We’ll describe the major elements of it, but since we don’t want to take

the focus off audio for the sake of a four-page trip into Interface Builder,

this is one case in which you’d really be best served by looking in the

downloadable sample code, where we’ve provided AudioRecorderPlayer-

Starter as a stub project with the GUI built out and wired up. If you’re

determined to work through building it from scratch, then assume that

any #imports, properties, helper methods, IBActions, and IBOutlets that

we haven’t explicitly explained are things we expect you can handle on

your own.

For our sample, we’ll set up a tab-based application, AudioRecorder-

Player, with two tabs: one for recording and one for playing back the

recorded files. This means we’ll eventually be writing two view con-

trollers, RecordViewController and PlayViewController, and setting these

as the classes for the two view controller objects created for you in

MainView.xib. The tab bar template defaults to putting your first view

in MainView.xib; in the download, you’ll find we’ve chosen to create a

RecordView.xib for the first view and to have the first tab’s view con-

troller load its view from this nib. We’ve also used the refactoring tool

to change the FirstViewController to RecordViewController.

In Figure 16.1, on the following page, we can see what we’ve set up for

the main view in RecordView.xib. The key elements are a filenameField to

enter a file to record into, a UISegmentedControlformatSegments that offers

a choice between PCM and Encoded formats, a formatButton to bring up

format-details modal views, a currentTimeLabel, a disabled recordPause-

Button, and a stopButton. Below these are two wide and short views for

the leftLevelMeter and rightLevelMeter, which will be implemented with a

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=335

CREATING AN AVAUDIORECORDER 336

Figure 16.1: Layout for AudioRecorderPlayer’s first tab

custom class later. Of course, all of these will need to be declared as

IBOutlets and connected in Interface Builder.

The AVAudioRecorder class is in the optional AVFoundation framework, so

remember to add that to your project’s Frameworks folder and do an

#import <AVFoundation/AVFoundation.h>; in your header file. The class has

only one viable initializer method, initWithURL:settings:error:, which takes a

file to write to (as an NSURL), an NSDictionary of format settings, and a

pointer to an NSError to report any error that prevented the recorder

object from being created. We’ll need both a location to write to and the

settings values in order to create the recorder object. We could either

create the recorder when the user taps the record button or record it

any time the file location or settings change. Let’s opt for the latter

approach: if we get an error setting up the recorder (say, from invalid

format settings), we’ll be able to “fail early” and let the user know before

they even attempt to record. So, any time the text field ends editing or

the format changes, we’ll call a createAVAudioRecorder to set up a new

audioRecorder object, our instance of AVAudioRecorder.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=336

CREATING AN AVAUDIORECORDER 337

Let’s start with the text field. Set its delegate to the RecordViewCon-

troller, and provide the usual textFieldShouldReturn implementation that

dismisses the virtual keyboard with [textField resignFirstResponder];. The

other thing we should do is to call createAVAudioRecorder when the user

is done editing. More than that, we could make some effort to validate

the field. There are a lot of restrictions on audio file formats, some-

thing we’ll discuss in Section 16.2, Uncompressed Audio Formats, on

the next page and Section 16.3, Encoded Audio Formats, on page 342.

For example, uncompressed PCM audio in a .wav file must be little-

endian, while the same data in an .aif file has to be big-endian. And the

only legal content in an .mp3 file is MPEG-1 Layer 3 data. We’ll save

ourselves a lot of headaches by defaulting to the Core Audio Format

(.caf) format, which is content-agnostic. Anything Core Audio can play

can be stored in a .caf file. For this and other reasons, it’s the recom-

mended format for iPhone audio, and we’ll honor that by defaulting to

.caf if no file extension is provided.

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

- (void)textFieldDidEndEditing:(UITextField *)textField {

[textField resignFirstResponder];

// verify that there's a legitimate filename extension

if ([[textField.text pathExtension] length] == 0)

textField.text =

[NSString stringWithFormat: @"%@.caf", textField.text];

[self createAVAudioRecorder];

}

To get the NSURL needed to create the AVAudioRecorder, we’ll need the

path to the Documents directory. Here’s a utility method that lazily

instantiates a _documentsPath variable the first time it’s needed:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

- (NSString*) documentsPath {

if (! _documentsPath) {

NSArray *searchPaths =

NSSearchPathForDirectoriesInDomains

(NSDocumentDirectory, NSUserDomainMask, YES);

_documentsPath = [searchPaths objectAtIndex: 0];

[_documentsPath retain];

}

return _documentsPath;

}

By using that, we can begin to write our createAVAudioRecorder method

by creating an NSURL that represents the given filename in the Docu-

ments directory.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=337

UNCOMPRESSED AUDIO FORMATS 338

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

- (NSError*) createAVAudioRecorder {

[audioRecorder release];

audioRecorder = nil;

NSString *destinationString = [[self documentsPath]

stringByAppendingPathComponent:filenameField.text];

NSURL *destinationURL = [NSURL fileURLWithPath: destinationString];

Now let’s look at the second argument to AVAudioRecorder’s initWith-

URL:settings:error:, which is settings. The documentation describes this as

an NSDictionary of key-value pairs, with four general sets of keys: gen-

eral audio format settings, linear PCM settings, encoder settings, and

sample rate conversion settings.

16.2 Uncompressed Audio Formats

We’ll start with linear pulse code modulation (PCM). This is what we

usually mean when we talk about “uncompressed audio.” To really

understand it, it helps to step back and think about how digital audio

works. Sound is oscillating waves of pressure moving through some

medium, within a range of frequencies that humans can perceive. When

you speak, your larynx creates waves of sound that move through the

air and vibrate someone else’s eardrum, which is how they hear it.

Analog sound systems, like the original radio, telephone, and records,

transmit sound by representing these sound waves as electrical signals.

A microphone’s vibration is transmitted as an electrical signal over a

wire, which vibrates a speaker to reproduce the sound. With digital

audio, we represent a sound wave by sampling the amplitude of signal

thousands of times a second and assessing the signal strength at that

instant as a numeric value. Pulse code modulation is the term we use

for representing a sound wave as a set of sample values, with linear

PCM meaning that the sample values are directly proportional to the

signal amplitude (as opposed to having some other relationship, like

logarithmic). For example, what we generally think of as “CD quality”

audio is 44,100 samples a second,1 stored in 16-bit values.

1. 44,100 is not a magic number. The Nyquist-Shannon sampling theorem tells us that

we can reproduce frequencies by sampling at double the rate of the highest frequency we

need to reproduce. Since human hearing generally tops out around 20,000Hz, we need
to sample at double that rate.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=338

UNCOMPRESSED AUDIO FORMATS 339

Linear PCM has the benefits of being universal—every digital audio sys-

tem is based on it—and of being the highest possible quality. If you’re

creating and editing audio, you’ll want to work with PCM throughout

your workflow and convert to a compressed format only at the end.

After all, PCM sounds great, but the data gets really big.

For our recording application, let’s start with supporting recording into

PCM. In the GUI, we have a segmented control to switch between PCM

and Encoded, along with a Format button. The idea here is that with so

many settings for each kind of audio, we’ll need to bring up a whole new

view to let the user configure their recording in that format. We’ll create

separate views for each kind of format, with separate view controllers:

PCMSettingsViewController and EncodingSettingsViewController. Create these

empty classes, give the RecordViewController an IBOutlet for each, and

then go into RecordView.xib and drag two view controller objects into the

nib document, using the Identity inspector to change their classes to

the new classes you created. Then you should be able to connect the

outlets to these new VC objects. Also, be sure to create nib files for their

views—PCMSettingsView.xib and EncodingSettingsView.xib—and use the

Properties inspector to point each view controller to its view nib.

So, the first order of business is to bring up the appropriate configura-

tion view when the user taps Format. This is a pretty simple job for an

event handler wired up to that button:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

-(IBAction) handleFormatButtonTapped {

if (formatSegments.selectedSegmentIndex == 0) {

[self presentModalViewController:pcmSettingsViewController

animated:YES];

} else {

[self presentModalViewController:encodingSettingsViewController

animated:YES];

}

}

When the user has selected PCM and taps the Format button, they’ll

navigate to the pcmSettingsViewController, which slides in the PCM con-

figuration view that is defined in PCMSettingsView.xib and that looks more

or less like Figure 16.2, on the next page.

The five fields in this view come from the settings defined in the AVAu-

dioRecorder documentation. The first two come from the General set-

tings: sample rate and the number of channels (which we’ll handle by

providing an on/off “stereo” switch). The keys for these settings are

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=339

UNCOMPRESSED AUDIO FORMATS 340

Figure 16.2: Layout for the PCM settings view

AVSampleRateKey and AVNumberOfChannelsKey. Supporting stereo is a

nice touch, though it’s worth noting that the default input devices—the

phone mic and the headset mic—are mono.

The next three settings are unique to PCM. For sample bit depth, the

AVLinearPCMBitDepthKey has four legal values: 8, 16, 24, or 32. 16 is a

good choice for a default, because that’s what’s used internally in Core

Audio’s “canonical” audio format. The next switch is used for the AVLin-

earPCMIsBigEndianKey, which affects how values larger than 8 bits are

interpreted. As mentioned earlier, WAV files can be little-endian only,

AIFFs can only be big-endian, and CAFs can be either. A more elabo-

rate application might want to preset this switch based on the current

file type. Finally, there’s a switch to set AVLinearPCMIsFloatKey, signaling

whether the samples are integers or floating-point values. Integer PCM

is more common and is the canonical format on iPhone OS.

Provide properties for the five UI controls in the PCM settings view con-

troller: sampleRateField, stereoSwitch, sampleDepthField, bigEndianSwitch,

and floatingSamplesSwitch. You’ll also want to have an IBOutlet property

to hold on to the RecordViewController, a connection you can make in IB.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=340

UNCOMPRESSED AUDIO FORMATS 341

The reason for this is that when the user taps the Done button,2 you

need to tell the RecordViewController to try to create an AVAudioRecorder

based on the changed values in this modal view controller.

Download MediaPlayback/AudioRecorderPlayer/Classes/PCMSettingsViewController.m

-(IBAction) handleDoneTapped {

[self dismissModalViewControllerAnimated:YES];

[recController createAVAudioRecorder];

}

Back in RecordViewController, we can continue the implementation of

createAVAudioRecorder, using the values from this PCMSettingsViewCon-

troller:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

Line 1 NSMutableDictionary *recordSettings =
- [[NSMutableDictionary alloc] initWithCapacity:10];
- if (formatSegments.selectedSegmentIndex == 0) {
- // force pcm settings view to load so its fields can be read
5 pcmSettingsViewController.view;
- [recordSettings setObject:
- [NSNumber numberWithInt: kAudioFormatLinearPCM] forKey: AVFormatIDKey];
- float sampleRate =
- [pcmSettingsViewController.sampleRateField.text floatValue];

10 [recordSettings setObject:
- [NSNumber numberWithFloat:sampleRate] forKey: AVSampleRateKey];
- [recordSettings setObject:
- [NSNumber numberWithInt:
- (pcmSettingsViewController.stereoSwitch.on ? 2 : 1)]

15 forKey:AVNumberOfChannelsKey];
- int bitDepth =
- [pcmSettingsViewController.sampleDepthField.text intValue];
- [recordSettings setObject:
- [NSNumber numberWithInt:bitDepth] forKey:AVLinearPCMBitDepthKey];

20 [recordSettings setObject:
- [NSNumber numberWithBool:
- pcmSettingsViewController.bigEndianSwitch.on]
- forKey:AVLinearPCMIsBigEndianKey];
- [recordSettings setObject:

25 [NSNumber numberWithBool:
- pcmSettingsViewController.floatingSamplesSwitch.on]
- forKey:AVLinearPCMIsFloatKey];
- }

2. If you use a navigation bar and a tab bar button, as we’ve done here, you’ll get a selec-

tor action in IB’s Connections inspector. Ctrl+drag this to the File’s Owner’s handleDone-

Tapped method, and the connection will change from “selector” to “handleDoneTapped.”

This is analogous to the default flip-side view provided by Xcode’s utility application
template.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/PCMSettingsViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=341

ENCODED AUDIO FORMATS 342

Before looking at the key-value pairs, notice line 5. This handles a

sneaky problem with nib loading: we want to get values from the PCM

settings view, perhaps the default values set in IB if they haven’t been

changed. But if the user has never brought up the settings view (for

example, we’re calling createAVAudioRecorder because the user has set

only the filename), then all the properties will be unassigned, because

the view won’t have even been loaded. So, line 5 references the view,

forcing it to load and connecting the properties.

Next we provide a key-value pair to provide the format setting. Obvi-

ously in this case, the format is PCM, and we use the constant kAudio-

FormatLinearPCM, defined in the file CoreAudioTypes.h and wrapped by an

NSNumber object, as the value for the AVFormatIDKey.

Although the rest of this if block is a lot of code, it’s mostly involved

with converting the types used by the UI widgets into the NSNumbers

expected for values in the NSDictionary used for the settings argument.

For example, based on whether the stereoSwitch is on, we set the AVNum-

berOfChannelsKey to 1 or 2. You can look up more information on the

legal values of each key in the AVAudioSettings.h header file that defines

the settings keys. For text fields with numeric contents, we convert the

text to an int or float and wrap them with an NSNumber, and the UISwitch

values are converted to NSNumbers via numberWithBool:.

16.3 Encoded Audio Formats

We’ve handled recorder settings for PCM; now we need to consider

encoded formats. These are the various forms of audio compression

that allow us to get audio files down to a size that’s more appropriate

for sending over networks or storing on small devices. . . with the trade-

off that most encoded formats are “lossy,” meaning that the decoded

audio is not technically identical to the original source. Many formats

are defined in CoreAudioTypes.h, but not all are supported on the iPhone,

and not all are available for recording. Apple has said the following for-

mats are available for use with the AVAudioRecorder:

• Linear PCM (kAudioFormatLinearPCM): As shown in the previous

section.

• AAC (kAudioFormatMPEG4AAC): The MPEG-4 Audio codec popular-

ized by iTunes and the iPod. As of this writing, only the second-

generation iPod touch and the iPhone 3GS can record into this

format.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=342

ENCODED AUDIO FORMATS 343

• ALAC (kAudioFormatAppleLossless): An encoder introduced in iTunes

4.5 that shrinks files by about 50 percent while exactly reproduc-

ing the source audio.

• IMA4 (kAudioFormatAppleIMA4): Also known as ADPCM in the Win-

dows world; this is a simple and not very CPU-intensive 4:1 com-

pression for 16-bit audio.

• u-law and a-law (kAudioFormatULaw and kAudioFormatALaw): Very

old codecs originally developed for telephony.

• Internet Low-Bitrate Codec (kAudioFormatiLBC): A codec designed

for Voice over IP, streaming audio, and other network audio tasks.

Among iLBC’s appealing traits is that it handles dropped frames

better than many other audio codecs, making it well suited for

unreliable transmission protocols like UDP.

For our example, we have a second view controller, EncodingSettingsView-

Controller, that we’ll use to manage a view that lets the user choose one

of these formats and adjust encoding settings. Note that it’s beyond the

scope of this chapter to enforce the limitations of each format; for exam-

ple, many of these have a fixed set of valid encoding bitrates. When you

use these encoding formats in your own applications, you’ll want to

study the details of your chosen format(s) and what you’re allowed to

do with them.

The Interface Builder layout for the EncodingSettingsView.xib file is shown

in Figure 16.3, on the following page. The first component is a seg-

mented view offering a choice of several of the supported formats. These

map to an enum in our EncodingSettingsViewController.h that lists the for-

mats in the segmented control:

Download MediaPlayback/AudioRecorderPlayer/Classes/EncodingSettingsViewController.h

enum ENCODED_FORMAT_SEGMENT_VALUES {

ENCODED_FORMAT_AAC = 0,

ENCODED_FORMAT_ALAC,

ENCODED_FORMAT_IMA4,

ENCODED_FORMAT_ILBC,

ENCODED_FORMAT_ULAW

};

After this, the sample rate and stereo fields are the same as in the

PCM settings; in fact, you can drag and drop the fields from that view

to this one. The last three settings are for keys that are used only by

encoded formats. The AVEncoderBitRateKey defines the encoded bitrate

in hertz. You’ve probably used this in iTunes when you decide whether

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/EncodingSettingsViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=343

ENCODED AUDIO FORMATS 344

Figure 16.3: Layout for the Encoding Settings view

to rip your CDs at 128Kbps, 160, 192, or higher. Next, the AVEncoder-

BitDepthHintKey is a value from 8 to 32, analogous to PCM’s AVLinearPCM-

BitDepthKey. Finally, there’s an AVEncoderAudioQualityKey that takes one

of five values enumerated in AVAudioSettings.h.

Declare properties for each of these fields and one for the RecordView-

Controller, as before, with the Done button again wired up to dismiss

the modal view controller, and call recController createAVAudioRecorder];.

Back in RecordViewController.m, we continue with the else block that cre-

ates an NSDictionary for the recorder settings in this case, the case of

using an encoded format:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

else {

// force pcm settings view to load so its fields can be read

encodingSettingsViewController.view;

NSNumber *formatObject;

switch ([encodingSettingsViewController.formatSegments

selectedSegmentIndex]) {

case (ENCODED_FORMAT_AAC):

formatObject =

[NSNumber numberWithInt: kAudioFormatMPEG4AAC];

break;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=344

ENCODED AUDIO FORMATS 345

case (ENCODED_FORMAT_ALAC):

formatObject =

[NSNumber numberWithInt: kAudioFormatAppleLossless];

break;

case (ENCODED_FORMAT_IMA4):

formatObject =

[NSNumber numberWithInt: kAudioFormatAppleIMA4];

break;

case (ENCODED_FORMAT_ILBC):

formatObject =

[NSNumber numberWithInt: kAudioFormatiLBC];

break;

case (ENCODED_FORMAT_ULAW):

formatObject =

[NSNumber numberWithInt: kAudioFormatULaw];

break;

default:

formatObject =

[NSNumber numberWithInt: kAudioFormatLinearPCM];

}

[recordSettings setObject:formatObject forKey: AVFormatIDKey];

float sampleRate =

[encodingSettingsViewController.sampleRateField.text floatValue];

[recordSettings setObject: [NSNumber numberWithFloat:sampleRate]

forKey: AVSampleRateKey];

[recordSettings setObject:

[NSNumber numberWithInt:

(encodingSettingsViewController.stereoSwitch.on ? 2 : 1)]

forKey:AVNumberOfChannelsKey];

int encoderBitrate =

[encodingSettingsViewController.encoderBitrateField.text intValue];

[recordSettings setObject:[NSNumber numberWithInt:encoderBitrate]

forKey:AVEncoderBitRateKey];

int bitDepthHint =

[encodingSettingsViewController.encoderBitHint.text intValue];

[recordSettings setObject:

[NSNumber numberWithInt:bitDepthHint]

forKey:AVEncoderBitDepthHintKey];

int encoderQuality;

switch ([encodingSettingsViewController.qualitySegments

selectedSegmentIndex]) {

case (0) : encoderQuality = AVAudioQualityMin; break;

case (1) : encoderQuality = AVAudioQualityLow; break;

case (2) : encoderQuality = AVAudioQualityMedium; break;

case (3) : encoderQuality = AVAudioQualityHigh; break;

case (4) : encoderQuality = AVAudioQualityMax; break;

}

[recordSettings setObject:

[NSNumber numberWithInt: encoderQuality]

forKey: AVEncoderAudioQualityKey];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=345

USING THE AVAUDIORECORDER 346

This is a lot of code, but again, there’s not that much happening. It

gets the selected value from the format UISegmentedControl and fetches

the constant for that format, wrapping it in an NSNumber. The handling

of the sample rate and number of channels is copied directly from the

PCMSettingsViewController shown earlier, and the other settings are han-

dled analogously, with numeric strings converted to NSNumbers.

16.4 Using the AVAudioRecorder

Now that we have a place to record the audio data and the format to

record in, we’re ready to create the AVAudioRecorder. The final parameter

to its initWithURL:settings:error: initializer is a pointer to an NSError, which it

will populate with an error object if the recorder object can’t be initial-

ized with the provided URL and settings dictionary. We’ll use this error

object to create an alert to the user if initialization fails.

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

NSError *recorderSetupError = nil;

audioRecorder = [[AVAudioRecorder alloc] initWithURL:destinationURL

settings:recordSettings error:&recorderSetupError];

[recordSettings release];

if (recorderSetupError) {

UIAlertView *cantRecordAlert =

[[UIAlertView alloc] initWithTitle: @"Can't record"

message: [recorderSetupError localizedDescription]

delegate: nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[cantRecordAlert show];

[cantRecordAlert release];

return recorderSetupError;

}

[audioRecorder prepareToRecord];

recordPauseButton.enabled = YES;

audioRecorder.delegate = self;

After all the setup work, it takes just a one-line alloc and initWithURL:set-

tings:error: to create the recorder object. Assuming it succeeds, we can

call prepareToRecord to allocate needed resources for recording; this will

eliminate a pause if those tasks need to be performed upon calling

record. We also set the view controller as the recorder’s delegate, which

means we’ll get activity callbacks from the recorder, as described by the

AVAudioRecorderDelegate protocol. On the other hand, if recorderSetupEr-

ror is non-nil, then we show a UIAlertView and bail.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=346

USING THE AVAUDIORECORDER 347

Joe Asks. . .

What the Heck Does 1718449215 Mean?

More than perhaps any other framework on the iPhone, Core
Audio relies on the use of four-character codes (4cc’s) for data
identifiers and response codes. If you get an error back when
creating the AVAudioRecorder, it’s likely that you’ll find that the
error’s domain is NSOSStatusErrorDomain and the code is a 4-byte
int like 1718449215. These values are actually created as four-
char C strings, as you can see by exploring Core Audio’s header
files.

There are several techniques to convert the value back to a
readable string. The string substitution sequence %s treats its
argument as a null-terminated char*, so you can log error codes
like this:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

int errorCode = CFSwapInt32HostToBig ([recorderSetupError code]);
NSLog(@"Error: %@ [%4.4s])",
[recorderSetupError localizedDescription], (char*)&errorCode);

This prints the NSError’s localized error message and a string rep-
resentation of the 4cc, which it gets by dealing with endianness
(the 4cc’s are all big-endian), and setting the C string’s format
to be exactly four characters. The output looks like this:

⇒ Error: Operation could not be completed. (OSStatus
error 1718449215.) [fmt?])

Another technique to get 4cc’s is to use the Calculator appli-
cation. Switch to programmer view (D 3), click the Decimal and
ASCII buttons, and paste in your return code number.

So, what is fmt? Now that you have some text, you can search
Core Audio’s header files and find it in AudioFile.h, where it’s the
value of the kAudioFileUnsupportedDataFormatError constant.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=347

USING THE AVAUDIORECORDER 348

Assuming the AVAudioRecorder has been created successfully, using it

is very straightforward. Its three essential methods are record, pause,

and stop. The difference between the latter two is that pause indicates

that you intend to resume recording into the file with a subsequent

call to record, while stop finishes the recording session, writing the data

out to the file and closing it. Another call to record after a stop would

actually overwrite the file. With those rules in mind, it’s pretty easy to

write record/pause/stop utility methods:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

-(void) startRecording {

[audioRecorder record];

recordPauseButton.selected = YES;

formatButton.enabled = NO;

}

-(void) pauseRecording {

[audioRecorder pause];

recordPauseButton.selected = NO;

}

-(void) stopRecording {

[audioRecorder stop];

}

Then you call these utility methods from event handlers on the buttons:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

-(IBAction) handleRecordPauseTapped {

NSLog (@"handleRecordPauseTapped");

if (audioRecorder.recording) {

[self pauseRecording];

} else {

[self startRecording];

}

}

-(IBAction) handleStopTapped {

NSLog (@"handleStopTapped");

if (audioRecorder.recording) {

[self stopRecording];

}

}

One other thing to deal with is the delegate callbacks from the AVAu-

dioRecorder. Two of these deal with the end of the recording session,

either normally or abnormally. We can use this message to reset the

GUI for the next recording.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=348

USING THE AVAUDIORECORDER 349

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

- (void)audioRecorderDidFinishRecording:(AVAudioRecorder *)recorder

successfully:(BOOL)flag {

NSLog (@"audioRecorderDidFinishRecording:successfully:");

recordPauseButton.selected = NO;

recordPauseButton.enabled = NO;

formatButton.enabled = YES;

[audioRecorder release];

audioRecorder = nil;

filenameField.text = @"";

}

- (void)audioRecorderEncodeErrorDidOccur:(AVAudioRecorder *)recorder

error:(NSError *)error {

recordPauseButton.selected = NO;

recordPauseButton.enabled = NO;

[audioRecorder release];

audioRecorder = nil;

filenameField.text = @"";

}

The other two delegate methods don’t require specific handling for our

application but are well worth knowing about. audioRecorderBeginInter-

ruption: signals that the application is being interrupted, typically by

an alarm or by an incoming phone call. In either case, the user may

switch to another application as a response to the interruption, such

as answering the call:

If the user takes the call, your application delegate will get a call to appli-

cationWillTerminate: and will end shortly thereafter. However, if the user

declines the call, the recorder’s delegate will get the audioRecorderEndIn-

terruption: callback, and your application will continue running.
Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=349

MONITORING RECORDING LEVELS 350

The only thing our application would really need to do in the case of an

interruption is to pause the recording, and as it turns out, the AVAu-

dioRecorder automatically pauses when interrupted anyway.3

16.5 Monitoring Recording Levels

In the example, we’ve provided two features to provide feedback to the

user while he or she is recording. The first is a current time label. This is

identical to the time display for the music library player in Section 15.1,

Working with Time Properties, on page 315. In short, you create an

NSTimer to periodically call an update method, in which you get the cur-

rentTime property (an NSTimeInterval) from the AVAudioRecorder object and

use a formatted string to create an MM:SS-style string that you can then

set as the label’s text. Adding this feature to the recorder is simply a

matter of cutting and pasting from the earlier project and changing the

iPodController reference to audioRecorder. For good measure, you might

want to check whether the audioRecorder is nil, meaning we failed to

create it, and blank out the currentTimeLabel in that case.

Another interesting thing we can do to provide feedback is to get power

levels from the recorder object. A set of methods in AVAudioRecorder

allows us to do just that. It actually provides two level-metering values:

the average power level is what we usually think of as the instanta-

neous loudness or softness of the channel, and the peak power level is

the greatest power level recorded over the most recent period (usually

about a second). You’ve probably seen both of these on audio displays:

average power is the “jumpy” value that goes up and down with the

loudness of the speaker’s voice, while the peak power is a value that’s

almost always greater than the average power, representing the loudest

instant in the last second or so.

In fact, we’ll create just such a level meter for our recorder. You’ll need

to create a new UIView subclass, called LevelMeterView. In IB, use the

Identity inspector to change the class of the two short and wide views

(next to the “L” and “R” labels) to this new class.

As shown in Chapter 19, Drawing in Custom Views, on page 390, we’ll

use custom drawing to render these level meters. To keep it simple,

we’ll just draw a white bar whose width is proportional to the average

power and a two-pixel-wide red line for the peak power. Your headers for

3. Actually, as of iPhone SDK 3.0, the recorder stops instead of pausing, despite what
the documentation says.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=350

MONITORING RECORDING LEVELS 351

this class will need instance variables for the average and peak power

levels, as well as CGRects to represent the areas we’ll draw in. The only

method we need is one to set the levels for a given instant.

Download MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.h

@interface LevelMeterView : UIView {

float power;

float peak;

CGColorRef levelColor;

CGColorRef peakColor;

CGRect levelRect;

CGRect peakRect;

}

- (void) setPower: (float) pow peak: (float) pk;

@end

We’ll start in the view controller, with the code to call the view’s set-

Power:peak:, and then go back to handle the drawing. After creating the

AVAudioRecorder, use its settings property to determine whether it’s set

to record in stereo or mono. If there’s only one channel, we’ll disable

the view for the right channel and just use left as our mono view. We

also tell the recorder at this point that we want to use level monitoring

by setting the meteringEnabled property.

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

audioRecorder.meteringEnabled = YES;

if ([[audioRecorder.settings

objectForKey:AVNumberOfChannelsKey] intValue] > 1) {

leftLevelLabel = @"L";

rightLevelLabel.hidden = NO;

rightLevelMeter.hidden = NO;

} else {

leftLevelLabel = @"M";

rightLevelLabel.hidden = YES;

rightLevelMeter.hidden = YES;

}

Now, in our updateAudioDisplay method, repeatedly called by the timer

to update the current time label, we’ll add some code to get the lev-

els from the recorder and set them on our custom views. You get the

levels with the instance methods averagePowerForChannel: and peakPow-

erForChannel:, but before calling them, you need to call updateMeters to

refresh the average and peak values across all channels.

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

[audioRecorder updateMeters];

[leftLevelMeter setPower: [audioRecorder averagePowerForChannel:0]

peak: [audioRecorder peakPowerForChannel: 0]];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.h
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=351

MONITORING RECORDING LEVELS 352

if (! rightLevelMeter.hidden) {

[rightLevelMeter setPower: [audioRecorder averagePowerForChannel:1]

peak: [audioRecorder peakPowerForChannel: 1]];

}

But what are the values? We’ll need to understand that to draw an

appropriate level view. You might expect them to range from 0.0 to 1.0,

like the values of the MPMusicPlayerController’s volume property, but if you

were to NSLog() the values, you’d find they range from -160.0 for silence

to 0.0 for maximum power. Moreover, the scale clearly isn’t linear; if

there’s any sound at all, you’ll quickly find the values ranging from,

say, -30.0 to 0.0.

What’s happening is that the power levels returned by the AVAudioRe-

corder are in decibels. The decibel is a logarithmic unit of measure-

ment relative relative to a reference level. Since decibels use base-10,

a difference of 10 decibels is an order of magnitude difference in terms

of power. It doesn’t sound ten times louder, because human hearing

is logarithmic in nature, which is why decibels are a good system for

representing power levels.

For the sake of displaying a graphic level, though, we want to convert

from a logarithmic scale to a linear one, so the visual change with the

level meter will seem appropriate to the change we’re hearing. We can

convert from the logarithmic -160.0 to 0.0 scale to a linear 0.0 to 1.0 scale

with the formula widthPercentage = 10
0.5∗level. We can then multiply that

float by the width of the view to figure out how wide the level bar should

be, with 0.0 creating an empty bar, 1.0 creating a full one, and values in

between being proportionally wide.

So, start by initializing the drawing colors and the constant parts of

the drawing rectangles. A good place to do this is in LevelMeterView’s

initWithCoder:, called when the view is loaded from the nib:

Download MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.m

- (id) initWithCoder: (NSCoder*) decoder {

if (self = [super initWithCoder: decoder]) {

// Iniitialization code

levelColor = [UIColor whiteColor].CGColor;

levelRect.origin.x=0;

levelRect.origin.y=0;

peakColor = [UIColor redColor].CGColor;

peakRect.size.width=2;

peakRect.origin.y = 0;

}

return self;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=352

MONITORING RECORDING LEVELS 353

Next, implement the setPower:peak: method that the updater calls. All

you need to do here is to remember the levels and request a redraw.

Download MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.m

-(void) setPower: (float) pow peak: (float) pk {

power = pow;

peak = pk;

// request redraw

[self setNeedsDisplay];

}

The call to setNeedsDisplay will result in a call to drawRect: at some point,

and that’s where we do our custom rendering. We just need to erase the

current view, calculate the dimensions of levelRect and fill it, and then

do the same for peakRect.

Download MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.m

Line 1 - (void)drawRect:(CGRect)rect {
- // Drawing code
- CGContextRef context = UIGraphicsGetCurrentContext();
-

5 // erase view
- CGColorRef undrawColor = self.backgroundColor.CGColor;
- CGContextSetFillColorWithColor (context, undrawColor);
- CGContextFillRect (context, rect);
-

10 // figure out how far to draw
- levelRect.size.height = rect.size.height;
- levelRect.size.width = pow (10, (0.05 * power)) * rect.size.width;
-

- // fill with color
15 CGContextSetFillColorWithColor(context, levelColor);

- CGContextFillRect(context, levelRect);
-

- // draw peak as 2-pixel wide bar
- CGContextSetFillColorWithColor(context, peakColor);

20 peakRect.size.height = rect.size.height;
- peakRect.origin.x = pow (10, (0.05 * peak)) * rect.size.width;
- if (peakRect.origin.x >= (rect.size.width - 2))
- peakRect.origin.x = rect.size.width - 2;
- CGContextFillRect(context, peakRect);

25 }

The crucial parts of this code are the calculations based on the power

levels. On line 12, we calculate a percentage width for the average power

level, multiply that by the view’s width, and make that the width of the

levelRect, which we then fill with a white color. For the peak indicator,

we use a similar calculation on line 21, though in this case we use the

calculated value as the x value for the left side of peakRect, whose width

is always 2.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/LevelMeterView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=353

MONITORING RECORDING LEVELS 354

Figure 16.4: Recording audio with AudioRecorderPlayer

So, with the level meters set up, you can try recording with the appli-

cation. As you record, watch the level meters move in response to the

loudness of your voice in the mic. Note that most input devices are

mono, so you may see levels only on the left channel, as is the case in

Figure 16.4.

On the simulator,4 you’ll be able to find your recorded files in ~/Library/

Application Support/iPhone Simulator/User/Applications/; sort by date to fig-

ure out which of the folders (named as arbitrary application ID hex

codes) is your application, and then look in its Documents folder. Or

4. Note that on the simulator, the AVAudioRecorder seems to not work with FireWire input

devices, like the old external iSight. Use the Sound system preference to set your audio

input to a built-in mic or a USB device.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=354

PLAYING AUDIO WITH THE AVFRAMEWORK 355

you can press on to the next section, in which we’ll add a player tab to

play our recorded files.

16.6 Playing Audio with the AVFramework

The AVFoundation framework also provides a convenient Objective-C

class for playing audio, AVAudioPlayer. In fact, this class was introduced

in iPhone OS 2.2, so it’s more backward compatible than the 3.0-only

AVAudioRecorder.

Take a look at its documentation, and you’ll find it’s very similar to

the AVAudioRecorder. It has simple play, pause, and stop methods for

playback control, as well as duration, numberOfChannels, and currentTime

properties, the last of which is writable, meaning you can use it to

jump around a file (just like the MPMusicPlayerController’s currentPlayback-

Time, shown in Section 15.2, Setting the iPod Player’s Current Time, on

page 320). It even has a level-metering API identical to the one supplied

by the AVAudioRecorder.

Building a player for our recorded files will largely be a matter of bor-

rowing from the recorder tab and the music library player’s code. Since

the AudioRecorderPlayer stores all its recordings in the Documents direc-

tory, let’s have our player let the user pick a file from that directory and

play it, with a current time display, scrubbing, and level meters. . . all

of which you’ve already seen.

Create a PlayViewController class (with New File and the UIViewController

template, of course) and a PlayView.xib file for its GUI. Open MainWin-

dow.xib in IB, and find the tab bar controller’s second tab controller; use

its Attributes inspector to set its NIB Name to PlayView and the Identity

Inspector to set its class to PlayViewController. Now the tab knows to use

your new view controller and connect it to your new view.

Next, you can open the PlayView.xib file in IB to lay out the playback GUI.

Once you set File’s Owner’s class to PlayViewController, add components

from the library to the view to get the interface shown in Figure 16.5,

on the next page.

The UIPickerView is somewhat overwhelming, but it does have the advan-

tage of being very easy to code. It’s also worth noting that Interface

Builder lets you drag and drop between nibs: in this screenshot, we’ve

dragged the level meters and their labels from the RecordView.xib file

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=355

PLAYING AUDIO WITH THE AVFRAMEWORK 356

Figure 16.5: Layout for AudioRecorderPlayer’s second tab

directly into this view, maintaining the level meters’ identity as Level-

MeterViews (note that they also have transparent backgrounds, which

is why we’ve selected the left meter for the sake of this screenshot,

because they’d otherwise be invisible).

You’ll need to set up IBOutlets for filePicker, playPauseButton, stopButton,

currentTimeLabel, currentTimeSlider, durationLabel, leftLevelMeter, rightLevel-

Label, rightLevelMeter, and volumeSlider. Remember to also connect the

picker’s dataSource and delegate connections to File’s Owner.

Let’s start by handling the file-selection picker. You’ll need to edit the

header file to declare that you implement the UIPickerViewDelegate and

UIPickerViewDataSource methods, which will be backed up with an NSAr-

ray* filenames that you can populate in viewDidLoad, where we’ll also

populate a _documentsPath instance variable.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=356

PLAYING AUDIO WITH THE AVFRAMEWORK 357

Download MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m

[_documentsPath release];

NSArray *searchPaths =

NSSearchPathForDirectoriesInDomains

(NSDocumentDirectory, NSUserDomainMask, YES);

_documentsPath = [searchPaths objectAtIndex: 0];

[_documentsPath retain];

[filenames release];

filenames = [[NSFileManager defaultManager] directoryContentsAtPath:_documentsPath];

[filenames retain];

With the array of filenames, we can easily implement the picker’s data

source and delegate:

Download MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m

#pragma mark UIPickerViewDataSource methods

-(NSInteger) pickerView: (UIPickerView*) pickerView

numberOfRowsInComponent: (NSInteger) component {

return [filenames count];

}

- (NSInteger) numberOfComponentsInPickerView:(UIPickerView *)pickerView {

return 1;

}

#pragma mark UIPickerViewDelegate methods

- (NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row

forComponent:(NSInteger)component {

return [filenames objectAtIndex:row];

}

Now, every time the user selects a different file, we’ll try to create a new

AVAudioFilePlayer object with the file, which we’ll do in a yet-to-be-written

createAVAudioPlayer helper method:

Download MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row

inComponent:(NSInteger)component {

// stop if playing

[audioPlayer stop];

playPauseButton.selected = NO;

[self createAVAudioPlayer];

}

To create an AVAudioPlayer, we have two options. There is an initWith-

Data:error: method that takes an NSData object referring to some kind

of audio data in memory. That might be useful if you’ve downloaded

some audio into an in-memory buffer. What’s more useful to us now is

the initializer method initWithContentsOfURL:error:. It’s important to note

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=357

PLAYING AUDIO WITH THE AVFRAMEWORK 358

that while this method takes an NSURL, it can load audio data only from

file://-style URLs; the AVAudioPlayer does not play RTSP streaming audio,

Shoutcast-style http streams, or any other form of network audio. If you

want to build a streaming audio player, you’ll need to use the frame-

works introduced in Section 17.3, A Core Audio Overview, on page 372.

Here’s the complete implementation of createAVAudioPlayer:

Download MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m

Line 1 - (NSError*) createAVAudioPlayer {
- [audioPlayer release];
- audioPlayer = nil;
- currentTimeSlider.value = 0;
5

- NSString *filename = [filenames objectAtIndex:
- [filePicker selectedRowInComponent:0]];
- NSString *playbackPath =
- [_documentsPath stringByAppendingPathComponent: filename];

10 NSURL *playbackURL = [NSURL fileURLWithPath: playbackPath];
- NSError *playerSetupError = nil;
- audioPlayer = [[AVAudioPlayer alloc]
- initWithContentsOfURL:playbackURL error:&playerSetupError];
-

15 if (playerSetupError) {
- NSString *errorTitle =
- [NSString stringWithFormat:@"Cannot Play %@:", filename];
- UIAlertView *cantPlayAlert =
- [[UIAlertView alloc] initWithTitle: errorTitle

20 message: [playerSetupError localizedDescription]
- delegate:nil
- cancelButtonTitle:@"OK"
- otherButtonTitles:nil];
- [cantPlayAlert show];

25 [cantPlayAlert release];
- audioPlayer = nil;
- durationLabel.text = @"--:--";
- return playerSetupError;
- }

30

- audioPlayer.delegate = self;
- audioPlayer.meteringEnabled = YES;
- audioPlayer.volume = volumeSlider.value;
- currentTimeSlider.maximumValue = audioPlayer.duration;

35 durationLabel.text = [NSString stringWithFormat: @"%02d:%02d",
- (int) audioPlayer.duration/60,
- (int) audioPlayer.duration%60];
- return playerSetupError;
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/PlayViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=358

PLAYING AUDIO WITH THE AVFRAMEWORK 359

The method appends the current filename to the _documentsPath, con-

verts that path to an NSURL, and creates the AVAudioPlayer on lines 12–

13, displaying an alert if there’s an error.5

As you can see, we have a few tasks at the end related to the current

time slider and level metering. Building out the play view from this point

is entirely a matter of doing things that you’ve already done before:

• The current time display is updated with an NSTimer that repeat-

edly calls an updateAudioDisplay method to update the currentTime-

Label with the player’s currentTime property, reformatted to an MM:

SS-style string. You saw this in the recorder tab, the music library

chapter, and the clock in Chapter 9, Preferences, on page 172.

• The updateAudioDisplay can also update the currentTimeSlider. You

made a slider like this draggable in Section 15.1, Working with

Time Properties, on page 315, and the same approach works here:

repeatedly update its value from the player’s currentTime property,

and set that property when you get a Value Changed event from

the slider (you’ll also want to use a isScrubbing value to tell update-

AudioDisplay to not automatically update the slider’s value if you’ve

received a Touch Down event, just like in the iPod player example).

• As mentioned earlier, the level meters work exactly as they do for

the recording tab, described in Section 16.5, Monitoring Recording

Levels, on page 350. The level-metering API in the AVAudioPlayer is

identical to that in AVAudioRecorder.

• The AVAudioPlayerDelegate defines methods that are largely the

same as those in AVAudioRecorderDelegate: audioPlayerDidFinishPlay-

ing:successfully: and audioPlayerDecodeErrorDidOccur:error: can be

used to update the GUI when playback ends either normally or

because of an error, while audioPlayerBeginInterruption: and audio-

PlayerEndInterruption: notify you of interruptions from incoming calls

or other system events that lead the user to terminate your

application.

By applying the techniques learned earlier, copying and tweaking code

as necessary, you can finish out the PlayViewController with little trouble,

or just check out the downloadable example code.

5. You’ll often get an error when you switch to this tab on the simulator, because the

first file the picker lands on will be the nonaudio .DS_Store file. You could improve this app
by filtering the filenames array to include only files with extensions appropriate to audio

files, like .caf and .aif.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=359

INTERACTING WITH AUDIO SESSIONS 360

16.7 Interacting with Audio Sessions

One other task is required for any application that uses audio: setting

up an audio session. This is an object that represents how your appli-

cation will interact with the rest of the audio system.

It’s important that you declare an audio category, which describes how

your application uses audio and how it will (or will not) interact with

other audio on the system. For example, silent applications shouldn’t

mind if the user has music playing in the background from the iPod

application. But a game with its own soundtrack, a music-making app-

lication, a net radio client, and other sorts of applications would want

to make sure that their sound is the only thing the user hears. And in

other cases, it may be desirable to mix your application’s audio with

that from the iPod application.

The AVAudioSession offers an Objective-C class for working with the

audio session, and we’ll start with the setCategory:error: method. This is

how you declare your audio intentions to the system, and the method

should be called early in your application’s life cycle. For our appli-

cation, it’s easy enough to call it in AudioRecorderPlayerAppDelegate’s

applicationDidFinishLaunching method.

Download MediaPlayback/AudioRecorderPlayer/Classes/AudioRecorderPlayerAppDelegate.m

AVAudioSession *audioSession = [AVAudioSession sharedInstance];

NSError *audioSessionError = nil;

[audioSession setCategory: AVAudioSessionCategoryPlayAndRecord

error: &audioSessionError];

if (audioSessionError)

NSLog (@"Error setting audio category: %@",

[audioSessionError localizedDescription]);

The only way to get a AVAudioSession object is via the class method

sharedInstance. Using this object, we declare our category to be AVAu-

dioSessionCategoryPlayAndRecord, which means the application both

plays and records audio. This has the effect of silencing the iPod or

other background audio, as well as reserving the audio input hardware

for our application’s use.

Five categories are defined in AVAudioSession, each representing a cer-

tain class of audio application behavior and with defined effects on the

iPhone’s audio system in terms of access to audio input or output hard-

ware, mixing with the iPod or other background audio, and whether the

ring/silent switch is obeyed.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/AudioRecorderPlayerAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=360

INTERACTING WITH AUDIO SESSIONS 361

Here’s an overview:

AVAudioSessionCategoryAmbient

AVAudioSessionCategorySoloAmbient

AVAudioSessionCategoryPlayback

AVAudioSessionCategoryRecord

AVAudioSessionCategoryPlayAndRecord

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

No

No

Yes

Yes

No

No

No

G
e
ts

 I
n
p
u
t

H
a
rd

w
a
re

G
e
ts

 O
u
tp

u
t

H
a
rd

w
a
re

M
ix

e
s

w
it

h
 i
P
o
d

O
b
e
y
s

R
in

g
/
S
il
e
n
t

C
a
te

g
o
ry

With the category declared, you set the audio session “active” to acquire

the audio input and/or output hardware, potentially silencing any sys-

tem audio in the background:

Download MediaPlayback/AudioRecorderPlayer/Classes/AudioRecorderPlayerAppDelegate.m

[audioSession setActive:YES error:&audioSessionError];

The AVAudioSession can also be used to inspect the current audio system.

You can get the hardware’s sampling rate and I/O buffer duration and

set preferred values for these.6 You can also inspect the number of

channels on the input and output hardware and whether audio input

is available.

This last point is an important one for applications that hope to record

audio, since not all iPhone OS devices are capable of recording audio.

All iPhones always have an input device: the headset mic, the phone

mic, or possibly some other input device. On the other hand, the first-

generation iPod touch does not support audio input of any kind. And on

the second-generation iPod touch, audio input is available only if the

user has plugged in an appropriate device, like the standard iPhone

headset with the clicker. Since the availability of input depends not on

model but by what the user has attached to it, a robust application will

use the AVAudioSession to check for audio input hardware at runtime.

6. It’s a little strange to see the I/O buffer information exposed by the high-level AVFoun-

dation, since it’s only in using the low-level Core Audio APIs that you’d have low enough

audio software latency to care about hardware latency.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/AudioRecorderPlayerAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=361

INTERACTING WITH AUDIO SESSIONS 362

For example, you can add an alertIfNoAudioInput method to RecordView-

Controller and call it when the record button is tapped:

Download MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m

-(BOOL) alertIfNoAudioInput {

AVAudioSession *session = [AVAudioSession sharedInstance];

BOOL audioHWAvailable = session.inputIsAvailable;

if (! audioHWAvailable) {

UIAlertView *cantRecordAlert =

[[UIAlertView alloc] initWithTitle: @"Can't record"

message: @"No audio input hardware is available"

delegate: nil

cancelButtonTitle:@"OK"

otherButtonTitles:nil];

[cantRecordAlert show];

[cantRecordAlert release];

}

return audioHWAvailable;

}

So, with a high-level API for recording and playing audio in a variety

of formats, iPhone OS 3.0’s AVFoundation framework gives you a lot of

capability in a pretty straightforward Objective-C API, one that isolates

the developer from a lot of the intricacies and challenges of working

with audio.

On the other hand, those details are what some developers are inter-

ested in working with. Although AVFoundation makes audio simple for

the developer who wants to play flat files, it hides the harder issues of

streaming, mixing, and processing. There are lower-level frameworks

that let you work at that level if you choose, and in the next chapter,

we’ll take a look at how they work.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/AudioRecorderPlayer/Classes/RecordViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=362

Chapter 17

Core Audio
In Chapter 16, Playing and Recording Audio, on page 334, we learned

how to use the Objective-C AVFoundation framework to record and play

audio files in a variety of compressed and uncompressed formats. That

framework is designed to provide an easy-to-use API for developers with

fairly basic audio needs—the developer who doesn’t want to mess with

details and says, “I just want to play this MP3 file!” In the process,

it trades capability for simplicity. To keep things easy, AVFoundation

doesn’t allow you to do any of the following:

• Play audio from the network.

• Mix multiple sounds.

• Access the audio data, either in encoded or decoded form.

• Access audio metadata, other than duration and number of chan-

nels. In fact, the AVAudioPlayer does not expose the format of the

audio it’s playing.

• Do anything with recorded audio other than saving it to a file.

You’ve probably seen iPhone applications that do all of these things,

so clearly they’re all possible. The key is that they’re using lower-level

APIs, which (unlike AVFoundation) have been available in the iPhone

SDK since its original introduction to the public. The various audio

APIs on the iPhone are all part of Core Audio, a comprehensive, stream-

based infrastructure for digital audio. Core Audio consists of a number

of interrelated APIs, which range from the low-level processing of small

buffers of audio samples all the way up to the high-level audio player

and recorder classes in AVFramework. By choosing to move to one of

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

USING THE PROCEDURAL-C APIS 364

several lower levels of abstraction, you can access more functionality

for your audio application.

However, to do so, we’re going to have to leave Objective-C behind. . . .

17.1 Using the Procedural-C APIs

As introduced way back in Section 3.1, The iPhone Software Architec-

ture, on page 36, most of the media support in iPhone OS is in the Core

Media layer, which exists at a lower level of abstraction than Cocoa

Touch. Once you go down to Core Media or the other lower levels of the

stack, you find that the APIs are C functions, not Objective-C classes.

That means we’ll be using C not only for audio but also for several other

APIs in the Core Services and Core Media layers, including Quartz/Core

Graphics and Address Book. We’ve already called into these layers a few

times, such as when we called Core Foundation’s NSLog() function.

Apple commonly refers to C as Procedural C, to distinguish it from

Objective-C, and has employed a number of design patterns and pro-

gramming conventions throughout its APIs to provide an OO-like expe-

rience when using procedural C. You’ll want to make sure you under-

stand these before you start digging into the Core APIs, because the

concepts are fundamental to using the APIs correctly.

Opaque Types and Objects

While the Core APIs offer objects, there’s still no such thing as a class

in C. Instead, Core Foundation defines opaque types, which are similar

to classes in that they hide an implementation from you but lack some

of the other traits of OO classes, like polymorphism. For example, the

CFString opaque type represents a string of Unicode characters, just like

an NSString does in Cocoa. The internal data structures of the CFString

are completely unavailable to you; in fact, your code will only ever deal

with references to this type, defined (and documented) as the pointer

CFStringRef.

To simulate the idea of calling a method on an object but within pro-

cedural C’s functional idiom, the Core Foundation APIs use a naming

convention. Functions that operate on an object begin with the object’s

opaque type and take the object as their first argument. For example,

you would get the length of a CFStringRef named myCFString like this:

length = CFStringGetLength (myCFString);

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=364

USING THE PROCEDURAL-C APIS 365

Similarly, functions that take parameters put those parameters after

the object, as in this example of getting the Unicode character at index

3 (that is, the fourth character) of the string:

fourthUniChar = CFStringGetCharacterAtIndex (myCFString, 3);

The CFStringRef is immutable, just like NSString. As you might’ve guessed,

there is another opaque type, CFMutableStringRef, that allows you to

change the string’s contents.

As you may have noticed already, there’s a high degree of correla-

tion between some of the opaque types in Core Foundation and their

Objective-C equivalents in Cocoa’s Foundation framework. It’s so high,

in fact, that in some cases, a Cocoa object and a Core Foundation

object are the same thing. The documentation for some of the key Cocoa

classes indicates that they’re toll-free bridged to Core Foundation equiv-

alents, and vice versa. What this means is that you can cast between

Cocoa and Core Foundation references, at zero cost. If you wanted to

use myCFString with a Cocoa method, you’d just cast it like this:

NSString *myNSString = (NSString*) myCFString;

Similarly, you can use your NSStrings with Core Foundation functions

by just casting in the other direction:

CFStringRef myCFString = (CFStringRef) myNSString;

You have to be careful, though, because similar names are no promise

that two types can be toll-free bridged. For example, NSBundle is not toll-

free bridged to the similar-sounding CFBundleRef; therefore, you can’t

cast between them. Your best source of information is Xcode’s docu-

mentation viewer, because the overview for a class or opaque type will

typically indicate whether it’s toll-free bridged to an equivalent.1

Memory Management in Core Foundation

When working with Core Foundation objects, you employ a system of

memory management that’s much more like Cocoa than the malloc()

and free() scheme of traditional C programming.

In Cocoa, you create objects with the alloc method. In Core Foundation,

the functions that create objects take a reference to an allocator object

that allocates and deallocates memory for objects. Although you can

1. Apple’s Carbon-Cocoa Integration Guide [App07a] also lists all the toll-free bridgeable
relationships, in the “Interchangeable Data Types” section. It’s obviously meant for the

Mac, but all the classes and opaque types listed there exist in iPhone OS as well.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=365

PLAYING SYSTEM SOUNDS 366

customize this behavior, you will probably never want to—just pass

NULL or kCFAllocatorDefault to object-creating functions to get the default

allocator.

The allocator is associated with the object throughout its lifetime, relo-

cating it in memory if necessary and freeing its memory when the object

is no longer needed. It does this via a reference-counting scheme that is

nearly identical to Cocoa’s. We hope that, throughout this book, you’ve

kept in mind the fundamental rule about memory management intro-

duced in Section 3.7, Managing Application Memory, on page 56: you

own any object you obtain by way of a method with alloc, new, or copy

in its name, and you must eventually release it; conversely, you don’t

own objects obtained through other means and must not release them,

unless you become an owner by means of retain.

The rules for Core Foundation are highly analogous:

• You own any object you create by means of a function with Create

or Copy in its name, and you must eventually CFRelease() any such

object.

• You don’t own any object you obtain by other means (notably,

functions with Get in their names), and you must not CFRelease()

them.

• If you need to hold on to an object reference and ensure it is not

freed, become an owner by calling CFRetain(). As an owner, you

must eventually call CFRelease() on the object.

17.2 Playing System Sounds

With these concepts in mind, let’s take on the simplest of the C-based

audio APIs, System Sound Services.

This API is provided for playing simple, in-memory sounds of 30 sec-

onds or less and is meant for user interface sounds, such as key clicks

or event alert beeps, or discrete action sounds in simple games, such

as the tap of a Go stone being placed on the board. System Sound

Services is not appropriate for more sophisticated or immersive uses

of audio: the API can’t play longer sounds and offers no control over

volume, stereo positioning, or a means of stopping a sound that has

started playing. Also, system sounds cannot be compressed. You need

to use linear PCM or IMA/ADPCM in an .aif, .wav, or .caf container.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=366

PLAYING SYSTEM SOUNDS 367

We’ll exercise this API by creating a view-based application, System-

SoundsDemo. You’ll need to create some short sounds for this example.2

For the downloadable sample application, we used the Mac’s speech

synthesizer to speak the numbers 1–9 with different voices and saved

each of these as CAF files named 1.caf through 9.caf, adding all of them

to the project’s Resources group.3

To use the System Sound Services API, add AudioToolbox.framework to

the project’s Resources group, and add the header #import <AudioTool-

box/AudioToolbox.h> to SystemSoundsDemoViewController.h.

For the user interface, we’ll need just a single table and a label. The

table will let the user tap to play sounds, and the label will be used

to show status. Start by editing SystemSoundsDemoViewController.h to ap-

pend <UITableViewDataSource, UITableViewDelegate> to the @interface dec-

laration, and add IBOutlet UILabel* statusLabel; inside the @interface block.

Also declare the label as a @property, and @synthesize the property in the

.m implementation file. Now, open SystemSoundsDemoViewController.xib in

Interface Builder, and add the table and label to the view. After laying

them out, wire the table’s dataSource and delegate outlets to the File’s

Owner, and connect the label to the statusLabel outlet.

Assuming you use nine sounds like we did for the sample, it’s simple

enough to implement the table data source methods by providing some

constants at the top of the @implementation block:

Download MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m

NSString *soundNames[] = {

@"Vibrate", @"One", @"Two", @"Three", @"Four",

@"Five", @"Six", @"Seven", @"Eight", @"Nine"

};

NSInteger SOUND_COUNT = 10;

Notice how we’re going to treat row 0 of the table as Vibrate. Now you

implement the table data source methods by having tableView:number-

OfRowsInSection: return SOUND_COUNT and by adding a single line to

tableView:cellForRowAtIndexPath:’s default behavior.

2. Ironically, despite the name System Sound Services, the API offers no access to the
various alert beeps installed with the system or the user’s custom ringtones.
3. Since a reader asked, we created the files with Automator’s “Ask for Text” and “Text

to Audio File” actions and then converted from AIFF to CAF with Core Audio’s afconvert

command-line utility.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=367

PLAYING SYSTEM SOUNDS 368

Download MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m

// Set up the cell...

cell.textLabel.text = soundNames[indexPath.row];

return cell;

Creating System Sounds

When the application gets the tableView:didSelectRowAtIndexPath: call-

back, it needs to react to the row selection by finding one of the CAFs

and playing the sound. We can create a system sound with the C func-

tion AudioServicesCreateSystemSoundID(). This function takes a CFURLRef

parameter providing a file://-style URL to the sound and the address of

a SystemSoundID4 that it can populate. The function returns an OSStatus

to indicate success or failure; if the return value is kAudioServicesNoError,

then you can take the SystemSoundID and pass it to AudioServicesPlaySys-

temSound() to play the sound. You could also pass the system sound to

the similar function AudioServicesPlayAlertSound(), which plays the sound

with vibration on an iPhone and plays an alert jingle (ignoring the spe-

cific sound you passed in) on iPod touch.

So, here’s how we’ll create a system sound, given the indexPath passed

to tableView:didSelectRowAtIndexPath:.

Download MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m

Line 1 // create a system sound id for the selected row
- SystemSoundID soundID;
-

- OSStatus err = kAudioServicesNoError;
5 if (indexPath.row == 0) {
- // special case: vibrate
- soundID = kSystemSoundID_Vibrate;
- } else {
- // find corresponding CAF file

10 NSString *cafName = [NSString stringWithFormat: @"%d", indexPath.row];
- NSString *cafPath =
- [[NSBundle mainBundle] pathForResource:cafName ofType:@"caf"];
- NSURL *cafURL = [NSURL fileURLWithPath:cafPath];
- err = AudioServicesCreateSystemSoundID((CFURLRef) cafURL, &soundID);

15 }

4. Note that this type is defined as a 32-bit pointer and is not an opaque type (which

would be a pointer to some struct and would have Ref at the end of its name). Therefore,

you don’t have to CFRelease() it, though it has its own cleanup routine that we’ll attend to

shortly.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m
http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=368

PLAYING SYSTEM SOUNDS 369

There are a couple of interesting things to point out here. First, if the

row is 0, then line 7 uses a System Sound Services constant, kSystem-

SoundID_Vibrate, to get vibration (or the iPod touch jingle) as a system

sound. Otherwise, we get the filename from the row (for example, 3.caf)

on line 10, find the CAF in the bundle on line 12, and convert the path

to an NSURL on line 13.5 Finally, line 14 uses toll-free bridging to cast

the NSURL to a CFURLRef as needed by AudioServicesCreateSystemSoundID()

to create the system sound. A key thing to note here—and you’re going

to see this a lot in these C-based APIs—is how we provide the address

of our SystemSoundID pointer, which will be populated with a reference

to the system sound if the call is successful.

Playing, Monitoring, and Disposing of System Sounds

We’re basically ready to play the sound, but there’s a detail we haven’t

accounted for: managing the sound’s life cycle. If you’re done with a

sound, you need to dispose of it with AudioServicesDisposeSystemSoun-

dID(), but when to do so is a matter of timing. If we wanted to keep

the sound in memory because we intended to use it repeatedly, then

we could just make it an instance variable and dispose of it in dealloc.

But for this app, we will want to dispose of the sound once we’re done

playing it.

The trick is knowing when it’s OK to dispose of the sound, since the

application will keep going while the sound plays. If you dispose of

the sound immediately after calling AudioServicesPlaySystemSound(), you

won’t hear the sound, since it will be destroyed just after you start

playing it. What you need is to know when the sound is done playing,

so you can clean it up.

To do this, we can register a completion process, a C function that will

be called when the sound is done playing. You register a process with

AudioServicesAddSystemSoundCompletion(). Here’s the rest of our table-

View:didSelectRowAtIndexPath: implementation, which registers a com-

pletion process, plays the sound, and alerts the user if any of our Sys-

tem Sound Services calls returned an error code.

5. Note that system sounds can be created only from file:// URLs, not from http:// or any
other network URL.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=369

PLAYING SYSTEM SOUNDS 370

Download MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m

Line 1 if (err == kAudioServicesNoError) {
- // set up callback for sound completion
- err = AudioServicesAddSystemSoundCompletion
- (soundID, // sound to monitor
5 NULL, // run loop (NULL==main)
- NULL, // run loop mode (NULL==default)
- SystemSoundsDemoCompletionProc, // callback function
- self // data to provide on callback
-);

10 statusLabel.text = @"Playing";
- AudioServicesPlaySystemSound (soundID);
- }
- if (err != kAudioServicesNoError) {
- CFErrorRef error = CFErrorCreate(NULL, kCFErrorDomainOSStatus, err, NULL);

15 NSString *errorDesc = (NSString*) CFErrorCopyDescription (error);
- UIAlertView *cantPlayAlert =
- [[UIAlertView alloc] initWithTitle:@"Cannot Play:"
- message: errorDesc
- delegate:nil

20 cancelButtonTitle:@"OK"
- otherButtonTitles:nil];
- [cantPlayAlert show];
- [cantPlayAlert release];
- [errorDesc release];

25 CFRelease (error);
- }

The completion process is registered on lines 3–9. This function takes

five parameters, as described in its documentation. AudioServicesAddSys-

temSoundCompletion() takes the system sound to play, the run loop and

run loop mode to use (just use NULLs to get the default behavior), the

name of the C function to call back, and finally a “user data” pointer,

for which we’ll just pass in our view controller object with self.

With the completion process registered, we can set the label to Playing

(line 10) and finally start playing the sound on line 11.

If anything has gone wrong—specifically, if the OSStatus returned by any

of the System Sound Services calls has returned a value other than kAu-

dioServicesNoError, then an error-handling block (lines 13 to 26) presents

the user with an alert message. Line 14 creates a CFErrorRef from the

returned OSStatus value, and line 15 copies its description string and

(via toll-free bridging) casts it to an NSString for use in a UIAlertView.6

6. CFErrorRef is toll-free bridged to NSError, so you could also cast to NSError and use its

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=370

PLAYING SYSTEM SOUNDS 371

Notice how, since we create new objects with CFErrorCreate() and CFEr-

rorCopyDescription() on lines 14 and 15, we are responsible for releasing

them on lines 24 and 25.

Now the last thing we need is to actually supply the callback func-

tion. This code (or a C forward declaration) should appear earlier in

the source file than the AudioServicesAddSystemSoundCompletion() that

references it.

The function header is defined by AudioServicesSystemSoundCompletion-

Proc(), which you can find by way of a link from AudioServicesAddSystem-

SoundCompletion()’s documentation. The two arguments are the system

sound that has finished playing and the client data pointer you regis-

tered. Here’s a simple implementation:

Download MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m

void SystemSoundsDemoCompletionProc (

SystemSoundID soundID,

void *clientData)

{

AudioServicesDisposeSystemSoundID (soundID);

((SystemSoundsDemoViewController*)clientData).statusLabel.text = @"Stopped";

};

As you can see, the first thing we do is to use the C function AudioSer-

vicesDisposeSystemSoundID() to dispose of the system sound and any re-

sources it is using. Next, we set the text of the label to Stopped. Even

though the code is inside SystemSoundsDemoViewController.m, it is a C

function and therefore has no awareness of the view controller object or

its instance variables. So, we cast the client data object to an instance

of SystemSoundsDemoViewController and access the statusLabel property to

set the text.

With this, you’re finally ready to use your sounds. You’ve provided code

to create SystemSoundIDs, play them, and dispose of them in a registered

completion process. Do a Build and Go to run the application in the

simulator.

methods for handling the error.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MediaPlayback/SystemSoundsDemo/Classes/SystemSoundsDemoViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=371

A CORE AUDIO OVERVIEW 372

As you tap around each of the table cells, as well as Vibrate, you should

hear each of the various system sounds play. Though the use of proce-

dural C makes it seem difficult—and it is difficult, if you don’t do much

C—this is a pretty simple API, compared to the rest of Core Audio.

Certainly for playing one-off sounds, it’s preferable to using the more

involved APIs of the next section. Of course, coding your UI sounds

with the Objective-C AV Foundation would be easier still, though Sys-

tem Sound Services does have the advantage of being somewhat less

resource-intensive.

17.3 A Core Audio Overview

By using the System Sounds Services API, we’ve had a brief taste of

what’s in Core Audio. As you push deeper into its APIs, you get access

to more functionality, at the price of greater complexity and challenge.

With its tricky C-based API and prerequisite knowledge of digital signal

processing, really getting into Core Audio would pretty much require its

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=372

A CORE AUDIO OVERVIEW 373

own book, so in lieu of that, we’ll use this section to provide an overview

of the Core Audio frameworks and what each one provides.

Technically, the Core Audio infrastructure is split into five frameworks:

Audio Toolbox, Audio Unit, AVFoundation, and Core Audio (headers

used by multiple frameworks),7 and OpenAL. Within these, there are a

number of services provided by Audio Toolbox, which are almost like

individual frameworks unto themselves.

Audio Session Services

We introduced the concept of the audio session—an expression of the

application’s use of audio and its relationship to other audio on the

device—in Section 16.7, Interacting with Audio Sessions, on page 360.

In that section, we worked with AVFoundation’s AVAudioSession. That class

is an Objective-C abstraction atop the C APIs in this Audio Toolbox ser-

vice. With the Audio Session API, you can define an audio category as

before and inspect traits of the audio hardware, such as the latency of

its input and output hardware, the hardware sample rate, and more.

In the Audio Toolbox, this is the API that provides notification of inter-

ruptions from other applications, like incoming phone calls, something

that AVFoundation forwards to the AVAudioPlayer and AVAudioRecorder.

There’s additional functionality in the C API not currently exposed by

AVAudioSession. One particularly useful thing you can do with Audio Ses-

sions is to inspect the current audio path, that is, whether the output is

going to speakers or headphones, by retrieving the session’s kAudioSes-

sionProperty_AudioRoute. You can also set up a listener on this property

so you’ll get a callback when the route changes. With this, you could

automatically stop an audio player when the user removes his or her

headphones.

Audio Queue Services

Audio Queue Services is a high-level (relative to the rest of Core Audio,

anyway) API for recording and/or playing audio from any source that

can provide audio samples. It works by exchanging buffers of audio

data. For example, a playback audio queue repeatedly calls back to

your application with empty buffers that you fill with audio data (either

7. From here out, we’ll use “Core Audio” to refer to the entire infrastructure and “Core

Audio framework” for this tiny framework.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=373

A CORE AUDIO OVERVIEW 374

compressed formats or PCM samples). For recording, the queue delivers

buffers with data captured from the microphone or other input device.

Since Audio Queue Services doesn’t tie you into storing recorded audio

into files or playing audio only from files or memory, you might use this

API for network audio applications, such as web radio players or chat

applications. Since you provide the audio data directly to the queue,

you could also support encrypted or DRM’ed media with this API: you’d

decrypt your source into audio data in memory and provide that directly

to the queue.

Audio Queue Services also provides a level metering API, as well as an

“offline rendering” function, which would allow you to export audio to a

buffer instead of to the audio output hardware.

Audio File Services

Another part of the Audio Toolbox, Audio File Services simplifies work-

ing with the various container formats for audio. With Audio File Ser-

vices, an application that’s working with an audio stream can write that

stream or read it from various file formats that support the stream for-

mat, without having to worry about the many differences between .caf,

.mp3, .wav, .aif, and so on.

For those interested in such details, Audio File Services’ property API

also lets you work with many forms of audio file metadata in a format-

agnostic way. For example, this API lets you get album/artist/title

metadata from music files, in addition to working with metadata that

would be useful in sound editing, like regions, markers, and SMPTE

time codes.

Audio File Stream Services

The Audio File Stream Services API helps you deal with audio streams

that don’t necessarily have a beginning or end and therefore can’t be

accessed in a random-access fashion like a file’s contents can. This is

another API you would use for network-based audio applications. As

you read data from a stream, you’d have Audio File Stream Services

parse the stream and determine its format, eventually delivering pack-

ets of audio data that you could then pass to an audio queue or process

in your own code.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=374

A CORE AUDIO OVERVIEW 375

Audio Conversion Services and Extended Audio Files

Audio Toolbox’s Audio Conversion Services is a set of APIs for convert-

ing encoded data to PCM, or vice versa (but not between two different

encoded formats, unless you use PCM as an intermediate representa-

tion). It can also be used to convert between different PCM representa-

tions. It works on bufferfuls of data of in-memory audio data. You don’t

have to use this service if you’re using an Audio Queue, because the

queue performs these kinds of conversions for you automatically.

A related service, Extended Audio File Services combines the Audio File

and Audio Conversion services, allowing you to convert formats and

read from or write to a file in one action.

Audio Units and Audio Unit Graphs

An entire framework unto itself, Audio Units is the lowest publicly

accessible level of the Core Audio infrastructure. Audio Units are soft-

ware objects that process audio samples and can be combined in a

chain to achieve complex audio processing streams.

The most important of these is the I/O unit, retrieved via the Audio

Component API with the constant kAudioUnitSubType_RemoteIO. The I/O

unit is an abstraction over the audio input and output hardware. You

can connect a “renderer callback” to the I/O unit to get callbacks to

provide audio samples, which will be sent directly to the speaker or

headphones. Unlike the AVAudioPlayer and Audio Queues, which use

buffers and therefore introduce latency, connecting directly to the I/O

unit is very low-latency. You can get your audio out in less than 30

milliseconds—equivalent to the screen refresh rate—by sending PCM

directly to the I/O unit. Going in the other direction, you can also get

low-latency audio capture by working with the I/O unit. Low-latency

is important if you’re writing an application in which you want to your

user to interact directly with sound, such as virtual instruments that

need to play or modulate sound immediately in response to touch,

shake, or voice. iPhone SDK 3.0 also adds a Voice Processing I/O audio

unit, which performs echo cancellation: if your app performs two-way

voice chat, this unit prevents user A’s voice from being picked up by

user B’s microphone, and coming back to user A as a sort of digital

“echo.” The Voice Processing I/O unit is used by the Game Kit voice

chat API, described back in Section 13.9, Voice Chat, on page 298.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=375

A CORE AUDIO OVERVIEW 376

Aside from the I/O units, the iPhone also comes with several mixer

units to combine multiple audio sources and comes with an iPod Equal-

izer Unit to perform the audio processing offered by the native music

player. As of iPhone SDK 3.0, you can write your own audio units to

add custom audio processing to your application.

You can connect audio units together, such that one unit’s output is

another’s input. The output unit at the end “pulls” audio by calling a

render method on any units connected to its input, which in turn pull

data from any of their upstream connections. However, these connec-

tions can be somewhat burdensome to set up and maintain, because

they work with a property-style API. The Audio Unit Graph API greatly

simplifies working with multiple audio units. You create an AUGraph

and then fill it with AUNodes, which are just wrappers around audio

units. The graph makes it easy to connect and coordinate the nodes in

a graph. You connect nodes with AUGraphConnectNodeInput() and start

the audio processing with AUGraphStart().

OpenAL

The last Core Audio framework we’ll discuss isn’t an Apple framework at

all. OpenAL is an industry-standard framework for 3D positional audio.

Its design is highly analogous to the OpenGL graphics API, and the two

are meant to be used together for game programming. On the iPhone,

OpenAL is implemented atop the rest of Core Audio, using a 3D mixer

audio unit to represent the spatialized sound in the left-right soundfield

of the headphones. Since the OpenAL data is sent to a mixer unit and

then onto the I/O unit, it’s another means of achieving very low-latency

audio on the iPhone. This is mostly of use to game developers, who can

count on in-game sound keeping up with the on-screen action.

As a third-party API, the OpenAL instruction set is nothing like the rest

of Core Audio and has more in common with the idioms of OpenGL.

OpenAL is hosted by Creative Technology, and as of 2009, its website

(http://openal.org) redirects to a Creative site, where you can find docu-

mentation, examples, and a wiki.

We hope this chapter has given you an idea of the capabilities of the

audio frameworks on the iPhone and which ones will be useful to you

for a given application. For more information, you can consult Apple’s

Core Audio Overview [App07b] and go from there to the reference or

programming guide for each framework.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://openal.org
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=376

A CORE AUDIO OVERVIEW 377

There has been an ongoing effort on Apple’s part to make things eas-

ier: playing audio files on iPhone SDK 2.0 required the use of Audio

Queues, which although high-level relative to Core Audio (certainly eas-

ier than expecting developers read files themselves, convert encoded

packets to PCM, and feed those to the I/O unit), was still too chal-

lenging for many developers. iPhone 2.2 added AVFramework’s AVAu-

dioPlayer, and 3.0 adds AVAudioRecorder and AVAudioSession. If you’re in

the majority of developers that simply needs to play from or record into

an encoded format, those classes will serve you well. But if you have

more sophisticated needs, you can determine what level of Core Audio

suits your needs—do you want to hand buffers of encoded data to an

Audio Queue, or do you want to process PCM data in audio units?—and

use those functions.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=377

Chapter 18

Events, Multi-Touch,
and Gestures

Multi-Touch is one of the features that just blows people away. The

ability to pinch and rotate photos makes people smile the first time

they see it. The great thing is that with UIKit it’s straightforward to add

these types of interactions to our applications. In this chapter, we’ll

cover the event system and how our applications fit into it and respond

to the events to make a fantastic application.

The UIKit defines a different interaction model than a desktop model.

The most obvious is the touch instead of the mouse click. But even

more interesting is the addition of multiple touches at the same time.

In a typical desktop environment, there is a single mouse and only one

event type to deal with at a time. On the iPhone, there can be multiple

touches going on at the same time with some touches going away while

new ones come in. The touches have context and can indicate user

intent (like rotating photos). The event system on the iPhone gives us

some great opportunities to make amazing user interactions possible.

Let’s dig into how the events work.

18.1 Event Model

Events are the life blood of an application; in order to make great apps,

you have to understand how your app gets the events and what is pos-

sible once you get them. This section is all about events and the iPhone

events model.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

EVENT MODEL 379

Your App

iPhone OS

Event Queue

Event

Event

Event

Responder Chain Event

pop

Figure 18.1: Event delivery system

Events come from the operating system via the responder chain. We

briefly discussed responders and their role in event processing in Chap-

ter 2, Hello iPhone, on page 22 and in a few places since. Let’s talk about

them again in the context of event delivery. In Figure 18.1, we can see

the events as they are processed by the OS and then sent to our appli-

cation’s event queue. The event loop dequeues events off the queue and

sends them to the responder chain.

The responder chain is simply a list of objects connected together via

their nextResponder property. As a responder receives an event, it either

processes the event or passes it on to its nextResponder. Many of the

objects you use to build your application are responders. The applica-

tion object, all views (including windows), and all UI widgets are respon-

ders. Being in a chain allows the objects deepest in the chain to respond

to events they understand but then delegate up the chain for events

they don’t understand.

If you have done much UI or event-based programming, you have prob-

ably run into a responder chain of one type or another. The pattern

community calls this pattern the “chain of responsibility.” It’s simply

a way to organize processing objects (the responders here) so they can

pass off any command objects (events in this context) that they don’t

know how to use to other processing objects in a consistent way.

The application object is the keeper of the first responder and the object

in your application that receives all events as they are dequeued from

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=379

TRACKING TOUCHES 380

the event queue. So, as each event comes to the application, it is sent

to the first responder and then travels its way back up the responder

chain, ending eventually in either being processed or being discarded.

When the user’s finger touches the screen over a view, the view is sent

the touchesBegan:withEvent: method. If the view is a button or other con-

trol, it processes the event by invoking its actions. If the view is one

of your views and you don’t implement the method, then the default

implementation on UIView is invoked, and the responder chain is sent

the message until either something responds or the event is discarded.

As the user moves the touch around on the screen, a series of touches-

Moved:withEvent: methods are sent and are processed in the same way.

When the user lifts their finger(s) off the screen, the touchesEnded:with-

Event: is sent and again is processed by the responder chain. If the sys-

tem interrupts the application (because of a system event like an incom-

ing phone call), the application is sent the touchesCancelled:withEvent: to

give your application the chance to clean up any information it was

keeping related to the current event processing happening.

In each of the event methods, the first argument is a set of the touches

that have changed since the last event method was called. The second

argument is the event that contains all the touches (via the allTouches

property) or all the touches for a particular view (via allTouchesForView:).

Each touch knows which view it started in and its current and previous

location in that view.

Implementing these event-processing methods and using the touches

information is key to making your application Multi-Touch. In the re-

mainder of this chapter, we will be looking at the details of how to

make applications do many of the cool Multi-Touch things that other

iPhone apps do, like swipe and rotate. Throughout the remainder of

this chapter, we are going to implement several examples of handling

events. Let’s get started with tracking touches.

18.2 Tracking Touches

To provide a good Multi-Touch experience to your users, you have to

understand how to track touches. As the user’s finger moves across ele-

ments, the direction and duration are used to discern intent in interest-

ing ways. For example, when you touch an email cell in the mail appli-

cation and slide your finger across the cell, the Delete button appears

so you can delete the email. This event type is known as a swipe. In

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=380

TRACKING TOUCHES 381

Figure 18.2: Dots from touches

the Photos application, flicking takes the user to the next or previous

photo, and pinching and stretching cause the photo to zoom in or out.

Tracking touches is what makes Multi-Touch gestures possible.

Enough talk about events—let’s dig into some code and build an exam-

ple. Create a new view-based project, and call it Draw. In this example,

we’ll build an application that tracks touch events in a view. For each

touchesMoved:withEvent: method, we are going to capture the location

and then draw a dot at that location. The example is shown in Fig-

ure 18.2.

To make this application work, the view tracks both the beginning of

the touch as well as the touch moving. Create a new view subclass, and

call it DrawView. Open the DrawViewController.xib file in Interface Builder,

and change the class of the view to DrawView.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=381

TRACKING TOUCHES 382

As with all event streams, we begin in the touchesBegan:withEvent:

method. Here is the code:

Download MultiTouch/Draw/Classes/DrawView.m

Line 1 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
2 UITouch *touch = [touches anyObject];
3 CGPoint location = [touch locationInView:self];
4 Dot *dot = [[[Dot alloc] init] autorelease];
5 dot.x = location.x;
6 dot.y = location.y;
7 [self.dots addObject:dot];
8 [self setNeedsDisplay];
9 }

In this code, we’re creating the first Dot for the sequence of events. On

line 3, we get the location of the touch in the view, create a Dot for that

location, and add that to the list and then mark the view for display.

The Dot class is very simple and is only a holder of the x and y values.

The list of Dots are used to draw circles (that is, the dots) in the view,

one for each instance at the location captured in the object. Keep in

mind that this code is meant to give us a visual of what tracking our

events can do for us, not be an example of how to do the most efficient

drawing on the iPhone.

Next is the touchesMoved:withEvent: method. Here is the code:

Download MultiTouch/Draw/Classes/DrawView.m

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

UITouch *touch = [touches anyObject];

CGPoint location = [touch locationInView:self];

Dot *dot = [[[Dot alloc] init] autorelease];

dot.x = location.x;

dot.y = location.y;

[self.dots addObject:dot];

[self setNeedsDisplay];

}

In this method, we are doing more or less the same thing as in the

touchesBegan:withEvent: except that this method is called many more

times than the previous method.

The Dot is a really simple subclass of NSObject. It plays the role of our

Model class. To create it, make a new subclass of NSObject, and add two

properties of type CGFloat named x and y. Add the instance variables

and the @synthesize statements to the implementation file, and you’re

done with the Dot class.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/Draw/Classes/DrawView.m
http://media.pragprog.com/titles/amiphd/code/MultiTouch/Draw/Classes/DrawView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=382

TAPPING 383

18.3 Tapping

Tapping is another fundamental way users interact with their iPhones.

Taps go through the same cycle of touchesBegan, touchesMoved, and

touchesEnded as other events, so in order to make our applications

respond to one or more taps, we implement one or more of these meth-

ods. In the simple case where we want to provide a “double tap” action

for one of our responders, we can implement touchesBegan:withEvent:. If

the tapCount property is equal to two, then we invoke the “double tap”

functionality. If not, then we ignore the event.

An interesting case comes up if we want a responder to do one action

on a single tap and do a different action on a double tap. The system

will send the responder the first (single tap) event and then send the

second tap as a new event. The responder gets what looks like a single

tap and a double tap.

It turns out that making this work is not difficult, but it can be confus-

ing if you haven’t done something like it before. The trick is to delay the

performance of the single tap action until you know whether it’s really

a single tap or the first of a double tap sequence. The way we do that

on the iPhone is with the performSelector:withObject:afterDelay: method.

This method queues up the execution of a method (a selector is the

data structure the ObjC runtime uses to represent methods) to happen

some time later.

Once we queue up the response to the initial single tap, we can then

wait for the double tap, and if it does come, we can cancel the initial

single tap invocation via another method called cancelPreviousPerform-

RequestsWithTarget:. All this can seem a bit abstract, so let’s look at the

code. In this example, the view turns red on a single tap and turns blue

on a double tap. Here is part of the code:

Download MultiTouch/MultiTap/Classes/MultiTapView.m

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {

UITouch *touch = [touches anyObject];

if(touch.tapCount == 1) {

[self performSelector:@selector(turnRed) withObject:nil afterDelay:0.10f];

}

if(touch.tapCount == 2) {

[self turnBlue];

}

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/MultiTap/Classes/MultiTapView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=383

MULTI-TOUCH GESTURES 384

When the tap ends (the user picks up their finger) and the tapCount is 1,

the single tap method is queued up to be executed in 0.1 seconds. If the

tapCount is 2, then the double tap method is invoked right away. This

is relatively straightforward code. However, we are not canceling the

single tap method, so if this was all we had, then both would happen,

and the view would turn blue then red. Let’s look at the code to fix that:

Download MultiTouch/MultiTap/Classes/MultiTapView.m

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

UITouch *touch = [touches anyObject];

if(touch.tapCount == 2) {

[[self class] cancelPreviousPerformRequestsWithTarget:self

selector:@selector(turnRed)

object:nil];

}

}

If the second tap comes in, then the single tap method is canceled. The

delay we put in of 0.1 seconds gives the user that amount of time to tap

a second time and register the double tap event; otherwise, it will be

another single tap. Using this technique, we can give multiple actions

to our responders. For example, you might want to provide a control

that selects on a single tap but edits on a double tap.

18.4 Multi-Touch Gestures

To this point we have been looking at scenarios where we consider only

one finger down on the screen at a time. Although that covers most of

the event handling needed for most applications, there are cases where

more than one finger can be used to indicate more complex interac-

tions. The canonical case in the built-in apps is the pinch gesture. It

is hard to imagine a better user interaction model that could be done

with one finger. Who wants to tap buttons even if they fade in and out

or whatever when the two finger gesture is so natural? We should strive

for the same type of natural interaction model in our apps. Make some-

thing amazing that the users already know how to use.

Let’s return to the simple draw application we did back in Section 18.2,

Tracking Touches, on page 380 and modify it to draw dots for each

touch on the screen. It’s surprisingly simple to add Multi-Touch draw-

ing to this application.

The first thing we need to do is turn on Multi-Touch for the view. We

could do this in code by setting the multipleTouchEnabled property to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/MultiTap/Classes/MultiTapView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=384

MULTI-TOUCH GESTURES 385

Figure 18.3: Multiple touch turned on

YES, but it’s more straightforward to do the configuration in IB. Open

DrawViewController.xib, and select Draw View (DrawViewController.xib is part

of the Draw project we built earlier). Switch on the Multiple Touch

checkbox in the Attributes inspector (Command-1). The inspector with

the checkbox turned on is shown in Figure 18.3.

Now that we have changed the view so that it tracks multiple touches,

we need to take advantage of that in our code. Here is the code for the

touchesBegan:withEvent: method. Let’s look at it in detail.

Download MultiTouch/DrawMulti/Classes/DrawView.m

Line 1 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
- UITouch *anyTouch = [touches anyObject];
- if(anyTouch.tapCount > 1) {
- self.dots = nil;
5 [self setNeedsDisplay];
- return;
- }
- BOOL needsDraw = NO;
- for(UITouch *touch in event.allTouches) {

10 if(UITouchPhaseBegan == touch.phase) {
- CGPoint location = [touch locationInView:self];
- Dot *dot = [[[Dot alloc] init] autorelease];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/DrawMulti/Classes/DrawView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=385

MULTI-TOUCH GESTURES 386

- dot.x = location.x;
- dot.y = location.y;

15 [self.dots addObject:dot];
- needsDraw = YES;
- }
- }
- if(needsDraw) {

20 [self setNeedsDisplay];
- }
- }

This code is not all that different from the code we discussed previously

except that when adding dots, we consider every touch (starting on

line 9) that is part of the event instead of any touch in the touches

parameter. Also notice on line 10 that only the touches just beginning

are considered. In this way, the application does not add a new dot for

existing touches as a new touch joins the event cycle. Next up, let’s look

at the touchesMoved:withEvent: method. Here is the code:

Download MultiTouch/DrawMulti/Classes/DrawView.m

Line 1 - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
- BOOL needsDraw = NO;
- for(UITouch *touch in event.allTouches) {
- if(UITouchPhaseStationary != touch.phase) {
5 CGPoint location = [touch locationInView:self];
- Dot *dot = [[[Dot alloc] init] autorelease];
- dot.x = location.x;
- dot.y = location.y;
- [self.dots addObject:dot];

10 needsDraw = YES;
- }
- }
- if(needsDraw) {
- [self setNeedsDisplay];

15 }
- }

Recall that touches are active while the finger the touch represents

is on the screen. Whenever any of the touches moves, the touches-

Moved:withEvent: method is called. As the events are processed, the

application will avoid looking at any stationary touches on 4. That will

prevent the application from adding dot upon dot on any touches that

are not moving.

One other thing to notice in this code. The view is not keeping any per-

sistent information about the events and touches it receives, so there is

nothing to be removed or cleaned up when the events are done. There-

fore, there is no implementation of touchesCanceled:withEvent:.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/DrawMulti/Classes/DrawView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=386

MULTI-TOUCH GESTURES 387

Figure 18.4: Touch zoom

With just a bit of math, we could determine whether the touches are

getting closer together or further apart and thus provide a pinch or

zoom gesture for the application. Being able to process multiple touches

and know whether they are moving or not is key to adding gestures

to your application. Let’s look at an example that provides the pinch

gesture.

In Figure 18.4, we can see a simple application that displays the robot

in a layer and allows you to zoom in or out with the pinch gesture. The

two gray circles are from the simulator; you can simulate Multi-Touch

by holding down the Alt key.

The pinch gesture tracks two fingers on the display. If they are moving

together, you zoom out; when moving apart, you zoom in. The view

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=387

MULTI-TOUCH GESTURES 388

needs to keep track of the distance between the two touches. Let’s look

at the code to track that. Here is the code for touchesBegan:withEvent::

Download MultiTouch/PinchZoom/Classes/PinchZoomView.m

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

if(event.allTouches.count == 2) {

pinchZoom = YES;

NSArray *touches = [event.allTouches allObjects];

CGPoint pointOne = [[touches objectAtIndex:0] locationInView:self];

CGPoint pointTwo = [[touches objectAtIndex:1] locationInView:self];

previousDistance = sqrt(pow(pointOne.x - pointTwo.x, 2.0f) +

pow(pointOne.y - pointTwo.y, 2.0f));

} else {

pinchZoom = NO;

}

}

In this code, we first check to make sure we have a two-finger gesture

happening, and then if so, we turn the flag on that indicates a pinch

gesture and then calculate the distance between the two touches. We

keep the flag and the distance in instance variables so we can use them

in the touchesMoved:withEvent: method. Let’s look at that code now:

Download MultiTouch/PinchZoom/Classes/PinchZoomView.m

Line 1 - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
- if(YES == pinchZoom && event.allTouches.count == 2) {
- NSArray *touches = [event.allTouches allObjects];
- CGPoint pointOne = [[touches objectAtIndex:0] locationInView:self];
5 CGPoint pointTwo = [[touches objectAtIndex:1] locationInView:self];
- CGFloat distance = sqrt(pow(pointOne.x - pointTwo.x, 2.0f) +
- pow(pointOne.y - pointTwo.y, 2.0f));
- zoomFactor += (distance - previousDistance) / previousDistance;
- zoomFactor = fabs(zoomFactor);

10 previousDistance = distance;
- self.robotLayer.transform =
- CATransform3DMakeScale(zoomFactor, zoomFactor, 1.0f);
- }
- }

As either or both fingers are moved around on the screen, the view

is sent the touchesMoved:withEvent: method. If a pinch gesture is in

progress, we calculate the current distance between the two touches

and use that to calculate the zoom factor. Once the zoom factor is cal-

culated, we get the absolute value on line 9 so that we are never using

a negative zoom. If you don’t do this, the image will flip when the factor

turns negative. When one or more touches end, we reset the flag and

the distance.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/PinchZoom/Classes/PinchZoomView.m
http://media.pragprog.com/titles/amiphd/code/MultiTouch/PinchZoom/Classes/PinchZoomView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=388

MULTI-TOUCH GESTURES 389

Here is the code:

Download MultiTouch/PinchZoom/Classes/PinchZoomView.m

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {

if(event.allTouches.count != 2) {

pinchZoom = NO;

previousDistance = 0.0f;

}

}

We reset the values only if we don’t have two touches. That is important

because someone might place a third finger on the screen and then pick

it up. We don’t want to reset the pinch until the two fingers are off the

screen.

The PinchZoom example uses a CALayer to achieve the pinch zoom effect.

Although it is not necessary to use a layer, it was the easiest way to

demonstrate the principles without getting deep into the internals of

Core Graphics. So, please forgive the forward usage of layers and believe

that it is much easier to understand pinch zoom here with a layer. For

more detail about layers, see Chapter 21, Core Animation, on page 412.

In this chapter, we have learned about the event model and how it

works in the Multi-Touch environment on the iPhone. We also went over

approaches to making our applications respond to multiple touches in

interesting ways.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MultiTouch/PinchZoom/Classes/PinchZoomView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=389

Chapter 19

Drawing in Custom Views
So far, we have created our application’s views using off-the-shelf com-

ponents and Interface Builder. Sometimes you will want to build some-

thing special—something you can’t create with the standard compo-

nents. In this chapter, you will build custom user interfaces by extend-

ing the UIView class and drawing your own UI via the Core Graphics

library.

The Core Graphics library provides the primitives that you will use

to assemble into custom drawings. Specifically, in this chapter, we’ll

focus on using the vector-drawing features of Core Graphics. You will

learn about the image-drawing features of Core Graphics in Chapter 20,

Drawing Images and Photos, on page 401.

One word of caution—it takes a long time to get drawing just right. If

you don’t need custom drawing, then stick with the built-in

components.

19.1 Drawing Model

Drawing on the iPhone is a somewhat indirect affair. You never just

start drawing; instead, you have to tell Cocoa Touch what needs to be

drawn. Then, when it is a good time for the drawing to be done (dur-

ing the event processing cycle), Cocoa Touch will do all the necessary

configuration and then tell your view to draw by invoking the drawRect:

method.

In addition, iPhone applications don’t usually redraw the whole screen.

Instead, individual views (or even regions of the views) are marked as

needing to be updated. We write the code that updates the view in the

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

VECTOR DRAWING 391

Event Loop Custom Viewneeds display? drawRect:
prepare for
drawing

Figure 19.1: Drawing cycle

drawRect: method. Then during the event cycle, Cocoa Touch tells the

view to update by invoking drawRect:. Figure 19.1 graphically describes

the drawing cycle.

During each pass through the event cycle, the drawing machinery

checks to see whether any views have been marked as needing to be

drawn. Each view that needs to be redrawn will be sent the drawRect:

method after Cocoa Touch takes care of all the configuration neces-

sary to draw. We will look at how to mark a view as needing an update

shortly.

Once in the drawRect: method, you can use any of the Core Graph-

ics routines to draw any content that needs to be drawn. Your freshly

drawn pixels are then pushed to the screen after drawRect: finishes.

19.2 Vector Drawing

Let’s make a simple app that fills a rectangle with blue. As you know

from the drawing cycle, you update the contents of the rectangle when

the view’s drawRect: method is called. So, that is where we’ll put the

code to fill the rectangle.

In this example, we will start a new project named Filling; use the view-

based template for this project. Once you have the project, create a

new subclass of UIView called FillingView. In the New File dialog box,

choose “Objective-C class,” and then in the “Subclass of” pop-up choose

UIView.

Now comes the fun part. Open FillingView.m, and move to the drawRect:

method. It has the inviting comment “Drawing code” placed there by the

template begging us to fill it in. There are, of course, an almost limitless

number of options here, but we are going to start simple. We are going

to use a convenience function to fill the rectangle.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=391

PATHS 392

Here is the code:

Download Drawing/Filling/Classes/FillingView.m

- (void)drawRect:(CGRect)rect {

[[UIColor blueColor] setFill];

UIRectFill(rect);

}

The first line of code sets blue as the color to fill the rectangle with

(more on setting graphics context state such as fill color soon). The

second line fills the CGRect (that is, the rect parameter) passed into the

drawRect: method.

The UIRectFill() function takes a rectangle and creates a Core Graph-

ics object called a CGPath and fills it. This function hides the details

from us of how paths are created (thus making it easy). These kinds of

functions are called convenience functions because they make some of

our drawing easier. However, if you want to do more than fill a rectan-

gle, you need to move a step deeper to understand the underlying path

objects. We will cover paths in a moment; for now let’s look at what we

need to get our newly created view into our user interface.

Open the FillingViewController.xib file. Select the view, and change its class

by clicking D-4. Then type FillingView into the Class field. Click the Build

and Go button, and you should see the entire screen filled with blue.

Congratulations! You have successfully built your first custom view that

draws to the screen. It was a fairly straightforward endeavor. Now that

we have seen the basic mechanisms that allow us to draw to the screen,

let’s look in more detail at paths and how they work.

19.3 Paths

We use paths to describe rectangles, circles, and other shapes we want

to draw. Paths can be stroked, filled, or both stroked and filled. Stroking

a path causes the path to be drawn according to the state in the graph-

ics context. Filling causes the area inside the path to be painted. In Core

Graphics, there are four primitives used to represent paths, points,

lines, arcs, and curves.

A point is a single location in two-dimensional space. Don’t think of it

as a pixel. You need to think of it the way you did back in geometry

class. A point takes up no space at all, so drawing one will not show

anything on the screen. You can add as many points as you’d like to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Drawing/Filling/Classes/FillingView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=392

PATHS 393

your path. To get something to show up, you’d use one of the other

primitives, which are composed with points.

A line is defined by two points: the starting point and ending point. A

line can be stroked, which means that whatever properties are set on

the graphics context (such as stroke width or color) will be applied to

the line between the two points. Lines occupy no area, so they can’t be

filled. Instead, you would use a set of lines or curves together to make

a shape and then close the path and fill that.

An arc is defined by single point (the center), a radius, a start angle, and

a stop angle. To get a circle, you’d make an arc with an angle starting

at zero radians and stopping at 2π radians. Since an arc is a path and

marks an area, it can be filled or stroked or both. When you fill a path

that is not closed (any path that is not explicitly closed is open), the

filling routines will close it for you.

Finally, curves are represented as a Bezier curve. You define a curve

with four points: two points describe the end points, and the other two

points describe the tangent to the curve at each end point. A curve is

like an line in that it does not describe an area; however, since there is

curve in a Bezier curve, a call to the fill routines will close the path (by

drawing a line from the start point to the end point) and will thus end

up with some area to fill.

Paths can be used to draw some very sophisticated graphics. In fact,

you can do with Core Graphics almost everything you can do with

advanced vector graphics tools.

The simple single-line rectangle fill that we saw in the previous example

is easy to use, but like many other easy-to-use things, it hides a bunch

of flexibility from us. We are going to rebuild that example to see what

is going on behind that single function invocation so that we can better

understand the path primitives.

Here is the code for a new drawRect: method that will fill a 100x100

rectangle with an origin at 10,10. We started a whole new project and

created a new view (and changed the view’s class in IB), but you can

simply change your existing FillingView’s drawRect: if you’d prefer. We will

be covering graphics contexts in a moment; for now, focus on the path

code.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=393

PATHS 394

Figure 19.2: Blue-filled view

Download Drawing/FillingSquare/Classes/FillingView.m

- (void)drawRect:(CGRect)rect {

CGMutablePathRef path = CGPathCreateMutable();

CGPathMoveToPoint(path, NULL, 10.0f, 10.0f);

CGPathAddLineToPoint(path, NULL, 100.0f, 10.0f);

CGPathAddLineToPoint(path, NULL, 100.0f, 100.0f);

CGPathAddLineToPoint(path, NULL, 10.0f, 100.0f);

CGPathCloseSubpath(path);

CGContextRef ctx = UIGraphicsGetCurrentContext();

CGContextSetFillColorWithColor(ctx, [UIColor blueColor].CGColor);

CGContextAddPath(ctx, path);

CGContextFillPath(ctx);

}

When you run this application, you should see something that looks

like Figure 19.2. Instead of us filling the whole view, we now have a

square.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Drawing/FillingSquare/Classes/FillingView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=394

PATHS 395

Figure 19.3: Bar graph drawing

Now that you have seen how to build a path with a really simple shape,

let’s move on to a bit more complex example that draws a bar graph

with rounded tops. Figure 19.3 is a screenshot of the application in

action.

Let’s look at the code a piece at a time. Here is the drawRect: method:

Download Drawing/BarGraph/Classes/BarGraphView.m

Line 1 - (void)drawRect:(CGRect)rect {
- CGSize size = self.bounds.size;
- CGFloat width1 = size.width * 0.75f;
- CGFloat width2 = size.width * 0.35f;
5 CGFloat width3 = size.width * 0.55f;
-

- CGFloat height = size.height * 0.2f;
-

- CGRect one = CGRectMake(0.0f, height + 5.0f,
10 width1, height - 10.0f);

- CGRect oneText = CGRectMake(10.0f, height + 25.0f,
- width1, height - 30.0f);

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Drawing/BarGraph/Classes/BarGraphView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=395

PATHS 396

- CGRect two = CGRectMake(0.0f, 2.0 * (height + 5.0f),
- width2, height - 10.0f);

15 CGRect twoText = CGRectMake(10.0f, 2.0 * height + 30.0f,
- width2, height - 30.0f);
- CGRect three = CGRectMake(0.0f, 3.0 * (height + 5.0f),
- width3, height - 10.0f);
- CGRect threeText = CGRectMake(10.0f, 3.0 * height + 35.0f,

20 width3, height - 30.0f);
-

- CGContextRef ctx = UIGraphicsGetCurrentContext();
-

- [[UIColor blueColor] setFill];
25 CGPathRef pathOne = [self pathInRect:one];

- CGContextAddPath(ctx, pathOne);
- CGPathRelease(pathOne);
- CGContextFillPath(ctx);
- [[UIColor blackColor] setFill];

30 [@"One" drawInRect:oneText withFont:[UIFont systemFontOfSize:34]];
- [[UIColor redColor] setFill];
- CGPathRef pathTwo = [self pathInRect:two];
- CGContextAddPath(ctx, pathTwo);
- CGPathRelease(pathTwo);

35 CGContextFillPath(ctx);
- [[UIColor blackColor] setFill];
- [@"Two" drawInRect:twoText withFont:[UIFont systemFontOfSize:34]];
- [[UIColor yellowColor] setFill];
- CGPathRef pathThree = [self pathInRect:three];

40 CGContextAddPath(ctx, pathThree);
- CGPathRelease(pathThree);
- CGContextFillPath(ctx);
- [[UIColor blackColor] setFill];
- [@"Three" drawInRect:threeText withFont:[UIFont systemFontOfSize:34]];

45 }

The method is somewhat long, but it is really only doing five things:

• On line 3, we calculate the width of the bar.

• On line 7, we calculate the height of the bar.

• On line 9, we create a rectangle for the bar to be drawn in.

• On line 25, we add the path to the context and then fill it.

• On line 30, we draw the label.

Of course, each of these five steps is repeated for each of the bars, so

it looks like a ton of code. Don’t let the volume of code throw you off,

though. Really, only the five things are taking place. Now to see how

the path is created, let’s take a look at that code.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=396

GRAPHICS CONTEXT 397

Download Drawing/BarGraph/Classes/BarGraphView.m

-(CGPathRef) pathInRect:(CGRect)rect {

CGMutablePathRef path = CGPathCreateMutable();

CGFloat radius = CGRectGetHeight(rect) / 2.0f;

CGPathMoveToPoint(path, NULL, CGRectGetMinX(rect), CGRectGetMinY(rect));

CGPathAddLineToPoint(path, NULL, CGRectGetMaxX(rect) - radius,

CGRectGetMinY(rect));

CGPathAddArc(path, NULL, CGRectGetMaxX(rect) - radius,

CGRectGetMinY(rect) + radius,

radius, -M_PI / 2.0f, M_PI / 2.0f, NO);

CGPathAddLineToPoint(path, NULL, CGRectGetMinX(rect), CGRectGetMaxY(rect));

CGPathCloseSubpath(path);

CGPathRef imutablePath = CGPathCreateCopy(path);

CGPathRelease(path);

return imutablePath;

}

This code also looks a bit complex on first blush, but it’s really not. We

initially calculate the radius of the rounded end of the bar to be half the

height of the bar. We then move to the top-left corner of the bar, place

our first point, continue around the shape until we get to the bottom-

left corner, and then close the path. Once the path is closed, we make

an immutable copy, do some memory cleanup by releasing the mutable

path, and then return.

These examples give you a quick overview of what is possible within

Core Graphics, but there is a lot more. A big part of the flexibility and

power of Core Graphics comes from the graphics context. Let’s take a

look at that next.

19.4 Graphics Context

Think back to when you drew as a kid. When you wanted red, you

picked up the red crayon and drew the lines of your masterpiece. When

blue was called for, you switched to the blue crayon. Well, the graphics

context in Core Graphics is a lot like your hand. As we switch the colors

and other parameters of the graphics context, we are switching between

different crayons. In the previous examples, we glossed over the [UIColor

blueColor]; line of code. Now we are going to see what is really going on

with that color object.

You can assign the value of many different variables in the graphics

context to affect the way drawing gets done. We have seen the fill color

used in the previous two examples, but there are many other variables

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Drawing/BarGraph/Classes/BarGraphView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=397

GRAPHICS CONTEXT 398

that determine what happens when we fill or stroke a path. For exam-

ple, we can set the width of the “crayon” to be 5, and then when we

stroke the path, the area covered by our virtual ink will be 5 units

wide. We can set other variables that affect how a path is stroked too,

such as the dash pattern (to make dashed lines for example), the stroke

color, and many others. Let’s go back to our filled square and stroke the

path after setting the stroke width. Here is the code to set the stroke

width to 10 and the stroke color to yellow and then stroke the path:

Download Drawing/StrokedFilledSquare/Classes/StrokedFilledSquareView.m

- (void)drawRect:(CGRect)rect {

// create and build the path

CGMutablePathRef path = CGPathCreateMutable();

CGPathMoveToPoint(path, NULL, 10.0f, 10.0f);

CGPathAddLineToPoint(path, NULL, 100.0f, 10.0f);

CGPathAddLineToPoint(path, NULL, 100.0f, 100.0f);

CGPathAddLineToPoint(path, NULL, 10.0f, 100.0f);

CGPathCloseSubpath(path);

CGContextRef ctx = UIGraphicsGetCurrentContext();

// configure the fill parameters and fill the path

CGContextSetFillColorWithColor(ctx, [UIColor blueColor].CGColor);

CGContextAddPath(ctx, path);

CGContextFillPath(ctx);

// configure the stroke parameters and stroke the path

CGContextSetStrokeColorWithColor(ctx, [UIColor yellowColor].CGColor);

CGContextSetLineWidth(ctx, 10.0f);

CGContextAddPath(ctx, path);

CGContextStrokePath(ctx);

}

There are a couple of important things to notice here. First, we set all

the values we are interested in before we do the drawing. Remember

that the graphics context defines the crayon. If we have a red crayon in

our hand when we go to draw a line, we will get a red line. If we want a

yellow line, we need the yellow crayon. The second thing to notice here

is that we have to add the path to the context again. When we stroke or

fill a path, it is cleared from the context. Our newly drawn square looks

like Figure 19.4, on the following page.

You can do a lot more with drawing paths and manipulating the graph-

ics context to get just the look you want. We have only begun to scratch

the surface of what is possible. For a lot more detail on vector drawing

with the Core Graphics library, see Programming with Quartz [GL06] or

the Apple online documentation Introduction to Quartz 2D Programming

Guide [App07c].

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Drawing/StrokedFilledSquare/Classes/StrokedFilledSquareView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=398

REDISPLAYING A VIEW 399

Figure 19.4: Stroked-filled square

19.5 Redisplaying a View

Now we should take a moment to discuss how to force your view to

redraw its content. We pay a performance penalty every time we push

new pixels to the screen. The bits that get colored in a drawRect: eventu-

ally have to get pushed out to the graphics card (and thus to the screen),

and that takes time. Since it costs a lot to get new pixels pushed to

the screen, the UIKit is careful to draw only when absolutely neces-

sary. With each pass through the event loop, the drawing machinery of

Cocoa Touch checks to see which views (if any) need to be redrawn. By

default, nothing needs to be redrawn; we have to explicitly mark views

as needing to be redrawn before they will be redrawn. If a view does

need to be redrawn, then the drawing machinery focuses on that view,

configures a graphics context for drawing, makes it current, and then

sends the drawRect: to the view.

You can mark a view that needs to be redrawn by calling the setNeedsDis-

play or setNeedsDisplayInRect: method. The first method marks the entire

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=399

REDISPLAYING A VIEW 400

view as needing redisplay; the second method has a rectangle param-

eter that lets us mark a subregion of the view as needing redisplay.

Whichever means you use to mark a view for redisplay, Cocoa Touch

will pass the appropriate rectangle (either the whole bounds or the sub-

set of the bounds) into the drawRect: method when it is time to draw.

You never call the drawRect: method directly; instead, mark a view

(or part of a view) as needing to be redrawn. Cocoa Touch and the

drawing machinery will take care of configuring a graphics context for

you. Then, when it is time to draw, Cocoa Touch will call your view’s

drawRect: method.

If you are doing complex drawing that takes a long time to calculate

or set up, then it makes sense in your drawRect: method to use the

rectangle parameter to limit what you recalculate and redraw. If your

drawing is less sophisticated, then it might make sense to just redraw

the whole view again anyway. The only way to really know is to try both

ways and do some performance profiling; see Chapter 28, Performance

Tuning, on page 512 for more details.

In this chapter, we have covered the basics of drawing on the iPhone.

From the basics of drawing that you have learned here, you can build

some really cool applications that take advantage of the power inherent

in Core Graphics.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=400

Chapter 20

Drawing Images and Photos
In this chapter, we will learn how to work with images on the iPhone.

The images might be bundled with the application, be part of the photo

library, or be new images captured with the iPhone’s camera.

Wherever the images come from, we will want to display them, and that

is the theme of this chapter. In Chapter 19, Drawing in Custom Views,

on page 390, we discussed the drawing model and how to use the vector

drawing routines. In this chapter, we are going to use our knowledge

of the drawing model to draw images. We are going to use images from

our projects as well as grab photos from the photo library.

There are many cool ways to use the photos in an application. For

example, wouldn’t it be cool to have an application that allowed us to

take a picture of our kids and turn that photo into an animated bobble

head when we shake the phone? Silly but fun! Another great way to

integrate photos is found in the Contacts application. You could click

where an image would go for your contact and be prompted to attach

a photo from your library or even use the camera to take the person’s

picture. As is often the case, the hard part is deciding what you want

the user experience to be. The actual code is fairly straightforward. All

you have to do is make a couple of connections in Interface Builder and

implement a couple of methods.

Our journey through this chapter starts with using the UIImageView

to draw our images. This class makes it really easy for us to get our

images onto the screen. Next up we will look at the UIImage class and

see how we can draw images with it. Although this class is not as easy

to use as UIImageView, it gives us more flexibility in how an image is

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

BASIC IMAGE DRAWING 402

Joe Asks. . .

Can I Use Any Image Format?

Not exactly. Although the iPhone is able to use many different
image formats (JPEG, GIF, and so on), it is optimized for PNG
files. So, make sure your artwork is in PNG format before shipping
your application.

drawn. Finally, we will look at how to integrate with the photo library

and camera so we can make our applications all the more personal for

our users.

20.1 Basic Image Drawing

To draw images, you have two options:

• The UIImageView provides the simplest method of showing an

image on the screen.

• The second option is to use a UIImage object to represent the image

and then draw the image into a view.

We’ll take start with the simplest approach and put an image into a

UIImageView.

If you don’t have complex requirements on the way your images are

drawn, then the UIImageView is a great way to display the images. All

you need to do is set the image property on the image view to get your

image drawn to the screen.

Let’s build a sample application that uses a UIImageView to display an

image that will be contained in your application bundle.

Create a new view-based project called ImageView. Next you need to

add an image to the project. Feel free to choose the image photo.png

included with the sample code or one of your own images. To add an

existing file to your project, choose the group you want to add it to,

right-click that group, choose Add > Existing Files, and follow the steps

in the wizard. We almost always choose the “Copy items into destination

group’s folder (if needed)” checkbox on the last page of the wizard so

that we get a copy instead of a reference to the file.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=402

BASIC IMAGE DRAWING 403

Figure 20.1: Changing the image

Now that we have an image, we can do the rest of the work for this

example in Interface Builder. Open the ImageViewViewController.xib file.

From the Library (D-B-L), choose a UIImageView, and drag it out to the

view. Resize the image view (with the Size inspector, select the image

view, and hit D-3) to a size that fits comfortably on the screen, such as

300x300 with the origin at 10, 10.

Our image view is ready, we can place an image into the view, and it

will be drawn. Open the Attributes inspector with D-1, and in the top

pull-down, select the image you added to your project. Our inspector

looks like Figure 20.1.

After you get your project to this point, spend some time modifying the

Mode pull-down value so that you can see the different ways the UIIm-

ageView displays the image. The choice you make depends on how you

want the image to draw. Our image drawn with the Aspect Fit option

chosen is shown in Figure 20.2, on the following page.

Here is the great part; our image is displayed on-screen, and we have

written no code. Simplicity—the beauty of the image view. This makes it

very easy for us to get images into our UI. However, the only control we

have over the way the image is drawn is the different modes. If these

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=403

CUSTOMIZING THE IMAGE DISPLAY 404

Figure 20.2: Image drawn with Aspect Fit

modes meet your requirements, then you are good to go. If not, it is

time to look at the UIImage. Let’s look at that next.

20.2 Customizing the Image Display

The UIImage allows us to specify how and where an image is drawn. It

gives us the ability to drastically change what the image looks like on

the screen.

Let’s build an example that takes advantage of this flexibility. Create

a new view-based project called Image, add a new UIView subclass to it

called ImageView, and then change the class of the view in ImageView-

Controller.xib to ImageView. Also, add the same image you used in the last

project to this project (if you don’t want to create a new project, you can

always go back to the last custom view project and modify that). Now

that we have the setup done, let’s implement the drawRect: method to

draw our image.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=404

CUSTOMIZING THE IMAGE DISPLAY 405

Download Images/Image/Classes/ImageView.m

Line 1 - (void)drawRect:(CGRect)rect {
- UIImage *image = [UIImage imageNamed:@"photo.png"];
- CGFloat idealSize = 300.0f;
- CGFloat ratio = 1.0f;
5 CGFloat heightRatio = idealSize / image.size.height;
- CGFloat widthRatio = idealSize / image.size.width;
- if(heightRatio < widthRatio) {
- ratio = heightRatio;
- } else {

10 ratio = widthRatio;
- }
- CGRect imageRect = CGRectMake(10.0f, 10.0f, image.size.width * ratio,
- image.size.height * ratio);
- [image drawInRect:imageRect blendMode:kCGBlendModeDifference alpha:1.0f];

15 }

In this code we are basically implementing the Aspect Fit mode (one

of the other modes available from the UIImageView) but with a small

twist. We are drawing the image with the difference blend mode just to

show off some of the flexibility we get from using the UImage class. Let’s

go through the code piece by piece. On line 2, we see the loading of

the image with the imageNamed: method. This method will look in the

resources of the project for an image with the specified name. After the

image is loaded, we can get its size and then calculate the appropriate

ratio to preserve the aspect ratio (as shown on line 7).

Now that we have the rectangle that will preserve the aspect ratio, we

can draw the image. We draw the image with the drawInRect:blendMode:

alpha: method and pass in the rectangle on line 14. The blend mode

and alpha parameters give us much more control over the way the

image is drawn than what we had when drawing with the UIImageView.

In this case, we are only setting the alpha value to 1.0. The blend mode

parameter gives us a bunch of flexibility in the way the image will look.

The blend mode changes the way the image’s pixels are blended with

the background pixels. There are many different options; you should try

several of them just to get a feel for the ways you can blend images. In

Figure 20.3, on the next page, we can see the image drawn in difference

mode with an alpha of one. As you can see, we can get some pretty cool-

looking effects using the UIImage drawing methods.

Images can also be drawn with the CGContextDrawImage(), but the de-

tails of using the underlying core graphics context to draw images are a

bit more involved. The default coordinate system would draw the image

upside down, so we are required to do a bit of coordinate transformation

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Images/Image/Classes/ImageView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=405

IMAGE PICKER 406

Figure 20.3: Image drawn with difference blend mode

before drawing. There is a sample program (called CGImage) in the code

for the book that draws the image properly if you are interested in the

details.

20.3 Image Picker

Now that you have seen how to draw an image, it is time to look at

how to get an image from the user’s photo library. Not only is this a

fun and easy feature to implement, but it also brings another level of

personalization to your application.

You interact with either the camera or the photo library on the iPhone

through an instance of UIImagePickerController. The image picker, as it is

known, is a subclass of view controller. As such, it does all you would

expect from a view controller. It manages a screen full of information,

it has a view that can be animated in or out, and it acts as a con-

troller between the view elements and the underlying model. The image

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=406

IMAGE PICKER 407

picker is the sole interface we have to the underlying photos in the

photo library. Fortunately, using the image picker is as easy as setting

a delegate and implementing a couple of methods. Let’s look at that

now.

We first touched on delegation in Chapter 3, iPhone Development Fun-

damentals, on page 35 where we saw the application’s delegate. As you

recall, delegation is a way for us to customize the behavior of an object

without having to subclass. In this case, the delegate of the image

picker gets to make the decisions of what happens with the chosen

image. We implement two methods to interact with the image picker;

the first one passes the chosen image, and the second informs the del-

egate when the user cancels.

Let’s create a new project that will grab an image out of the photo library

and place it into a UIImageView.

Create a new view-based project called PhotoView. We need two outlets

in the PhotoViewViewController: one for the image picker and one for the

image view. Modify the PhotoViewViewController.h so that it looks like this:

Download Images/PhotoView/Classes/PhotoViewViewController.h

@interface PhotoViewViewController : UIViewController

<UIImagePickerControllerDelegate> {

UIImageView *imageView;

UIImagePickerController *imagePicker;

}

@property(nonatomic, retain) IBOutlet UIImageView *imageView;

@property(nonatomic, retain) IBOutlet UIImagePickerController *imagePicker;

@end

Notice that we also made this view controller conform to the UIImagePick-

erControllerDelegate protocol. We will see the methods of that protocol in

a moment. For now, just make sure the header declares our inten-

tion that the view controller conforms to this protocol. Next let’s go to

Interface Builder to configure and set up our image picker. Open Pho-

toViewViewController.xib by double-clicking the file in Xcode. Open the

library with D-L, and find Image Picker Controller. Drag an instance

of the image picker into the document window. Your document should

look like Figure 20.4, on the next page.

Now that we have the image picker in our nib file, we need to connect

our view controller to it. Ctrl+click the PhotoViewController (that is, the

File’s Owner), and drag to the new image picker. When you mouse up,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Images/PhotoView/Classes/PhotoViewViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=407

IMAGE PICKER 408

Figure 20.4: Image picker controller

select imagePicker to make the connection to the image picker. We also

need to connect the UIImagePickerController’s delegate to the view con-

troller, so Ctrl+click the image picker and drag to the view controller.

When you mouse up, choose delegate. If you see two rows in the pop-up

for delegate, just choose the first one.

Next we need to add an instance of UIImageView and make the connec-

tion from the PhotoViewController to it. Go to the library (B-D-L), choose

the UIImageView, and drag it into your view. In the Size inspector (D-3),

set the width and height to 300, and set the x and y coordinates to 10

and 10, respectively. Now drag from the PhotoViewController to the new

image view, and connect the imageView outlet to it.

Now that we have the Interface Builder configuration done, we need

to return to Xcode to actually implement the UIImagePickerControllerDel-

egate protocol as well as write the code that makes the image picker

show up.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=408

IMAGE PICKER 409

First, here is the code to make the image picker appear:

Download Images/PhotoView/Classes/PhotoViewViewController.m

Line 1 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
- if([[touches anyObject] tapCount] > 1) {
- // bring up image grabber
- if([UIImagePickerController isSourceTypeAvailable:
5 UIImagePickerControllerSourceTypeCamera]) {
- self.imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
- } else {
- self.imagePicker.sourceType =
- UIImagePickerControllerSourceTypePhotoLibrary;

10 }
- self.imagePicker.allowsImageEditing = YES;
- [self presentModalViewController:self.imagePicker animated:YES];
- }
- }

This method brings up the image picker in a modal way if the user has

tapped more than once (that is, a double tap). Remember that since the

view controller is in the responder chain, it gets a chance to respond to

events. When the touchesEnded:withEvent: goes to the view, it forwards

it to the view controller; our code responds by bringing up the image

picker.

There are a few things to note here in this code. First, on line 5, we see

we’re checking for the camera type before setting the source type. It is

important that you check to see whether the camera is available (that

is, some iPhone OS devices do not have a camera) before trying to use

it. Next, on line 11, we are setting the controller to allow editing. When

this flag is set to YES, the user is allowed to move and zoom in on the

image before hitting the Choose button. If the flag is set to NO, then

the user can only choose an image without zooming or moving. Finally,

on line 12, the view controller animates the image picker into view as a

modal view.

In addition to the two source types shown here, you can also specify

UIImagePickerControllerSourceTypeSavedPhotosAlbum to allow the user to

choose only one of the saved photos from the library.

One other thing to be aware of. In version 2.2 of the iPhone OS SDK,

there is a bug. The simulator reports that it has a camera (if you have

an iSight camera on your computer) but then fails to attach to the cam-

era properly, so it cannot take a photo. To work around this bug, you

can use this code to always set the source type to UIImagePickerController-

SourceTypePhotoLibrary if the application is running in the simulator.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Images/PhotoView/Classes/PhotoViewViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=409

CAPTURING VIDEO 410

Download Images/PhotoView/Classes/PhotoViewViewController.m

if([[[UIDevice currentDevice] name] rangeOfString:@"Simulator"].location !=

NSNotFound) {

self.imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

}

OK, now that we have the image picker animating in, we need to deal

with the user choosing a photo or canceling. As you recall, we do that

through the delegate methods. Here is the code that handles the cancel:

Download Images/PhotoView/Classes/PhotoViewViewController.m

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {

[self.imagePicker dismissModalViewControllerAnimated:YES];

}

All that we are doing here is dismissing the image picker. Next let’s look

at using the image after the user has chosen it. Here is the code:

Download Images/PhotoView/Classes/PhotoViewViewController.m

Line 1 - (void)imagePickerController:(UIImagePickerController *)picker
2 didFinishPickingMediaWithInfo:(NSDictionary *)info {
3 imageView.image = [info objectForKey:UIImagePickerControllerEditedImage];
4 [self dismissModalViewControllerAnimated:YES];
5 }

Here we are using the info dictionary parameter to get the edited photo.

Since we allow editing, the user can crop and scale the image to their

liking. Then when they hit Done, the original image, the edited image,

and the crop rectangle are put together into the info dictionary. We

get the edited image with the UIImagePickerControllerEditedImage key, the

original is found under the UIImagePickerControllerOriginalImage key, and

the crop rectangle is found with the UIImagePickerControllerCropRect key.

We don’t need these last two items in our simple example, but if your

application can use them, they are available.

20.4 Capturing Video

In addition to being able to get photos either from the user’s library

or from the camera, in some iPhone OS 3.0 and newer devices the user

can also capture video. We can integrate that video into our applications

using the same basic flow. Create an image picker, set the source type,

present the picker, and then get the captured media via the delegate

callback.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Images/PhotoView/Classes/PhotoViewViewController.m
http://media.pragprog.com/titles/amiphd/code/Images/PhotoView/Classes/PhotoViewViewController.m
http://media.pragprog.com/titles/amiphd/code/Images/PhotoView/Classes/PhotoViewViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=410

CAPTURING VIDEO 411

To see whether the device your app is running on is capable of video,

you ask the image picker for the source types by sending the available-

MediaTypesForSourceType: method. The returned array will contain the

constant kUTTypeMovie if the device supports video capture.

If your user’s device supports video, then you can get at that video in

your delegate method by getting the media URL from the info dictionary

with the UIImagePickerControllerMediaURL key. Once you have the URL,

you can do whatever makes sense for your application with that video.

See Chapter 14, Video Playback, on page 301 for more information

about using video in your application.

In this chapter, we have seen how to display images that we ship as part

of the application bundle. We’ve also learned to use photos, videos, and

camera images with our iPhone application. Integration is straightfor-

ward, with the only requirement being to implement the UIImagePicker-

ControllerDelegate protocol.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=411

Chapter 21

Core Animation
Every animation on the iPhone—every flipped view, fade-in, scroll, and

so on—is done with Core Animation. The fact that we have not had

to say much about Core Animation (CA) and still get so much done

is one of the best things about it. It underlies everything in the UI on

the iPhone but is almost entirely covered by more abstract, and often

simpler, APIs. Not that Core Animation is complex—it’s just that it has

more knobs and switches that we can tweak and therefore has more for

us to understand and think about.

In this chapter, we’ll cover the breadth of CA and then go into some of

the specific things that can be done on the iPhone only by using Core

Animation.

21.1 Introduction to Core Animation

Layers are the building blocks that make everything else in Core Ani-

mation possible. Picture a layer as a rectangular 2D surface that “lives”

in a 3D world. You can place content such as images or PDF to that

surface and then move the surface around easily. The best part for

performance is that the content does not have to be redrawn for it to

move around.

Actually, moving a layer around is just the beginning. You can shrink

everything in a layer. You can move a layer around in three-dimensional

space, which is how the Cover Flow view works in the iPod application.

You can fade the contents of a layer in or out. In other words, just about

every property of the layer can be animated. Geometry properties like

position and bounds as well as style properties like opacity or contents

can all be animated.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

ANIMATING UIVIEW 413

There are two basic types of animation. With implicit animations, you

set a new position for a layer, and it will move there in a nice, smoothly

animated fashion. We don’t have to set up timers, think about threads,

or do any redrawing. It just works, as the saying goes. When you set

or change any property that can be animated, you trigger an implicit

animation.

If you can’t get the effect you are looking for from the implicit anima-

tions, then you can easily replace the animations that are used implic-

itly with your own explicit custom animations. Using explicit anima-

tions, we can gain exact control over all aspects of the animation, from

the timing to the key points along the animation.

Finally, layers can move in 3D space. Core Animation has some really

cool (and relatively easy to use) features that allow us to push our con-

tent into 3D space. Before we dive into the cool 3D effects, though, let’s

spend some time getting to know CA by looking at how we have been

using it thus far.

Rather than walk you through creating each new project, in this chap-

ter, we are just going to discuss the details of making the animations

happen. If you’d like to follow along, you can start a new project for

each section in this chapter. If you’d prefer to have the code to look at

rather than starting from scratch, grab it from the book’s code bundle.

21.2 Animating UIView

We have already seen lots of Core Animation with UIView, but we’ve

been able to ignore the details because of the integration of Cocoa

Touch and Core Animation. The visible part of all UIViews is really a

layer. The view basically exists to process events and fit into the respon-

der chain. All the drawing, animation, and other visual features of a

view are directly or indirectly handled by the layer.

Animation Blocks

Any properties changed on a UIView within an animation block will be

animated with the implicit (or explicit, more on that later) animation

defined for that property. Creating animation blocks is a snap. The

class method +beginAnimations:context: starts a block. Then when you

want the animation to start, you call +commitAnimations. All the changes

made while the block is active will be animated instead of appearing

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=413

ANIMATING UIVIEW 414

Figure 21.1: Basketball image view

immediately. Let’s look at a really simple example to get us started. A

UIImageView with a basketball in it perched at the top of the view is

shown in Figure 21.1. We are going to move the image from the top of

the screen to the bottom and back.

The animation block begins on line 2 with the call to +beginAnima-

tions:context:. Both arguments to this method are more or less arbitrary

and for us to give clues to the delegates we set up (more on that shortly).

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=414

ANIMATING UIVIEW 415

Here is the code:

Download CoreAnimation/SimpleMovement/Classes/SimpleMovementViewController.m

Line 1 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
- [UIView beginAnimations:@"movement" context:nil];
- CGPoint center = movingBall.center;
- if(center.y > 85.0f) {
5 center.y -= 295.0f;
- movingBall.center = center;
- } else {
- center.y += 295.0f;
- movingBall.center = center;

10 }
- [UIView commitAnimations];
- }

If the ball is at the top, place it at the bottom. If it’s at the bottom, place

it at the top. Notice that we are setting the center property rather than

the origin of the frame. The center property is often simpler to work with

than the frame, so use it whenever you can.

The numbers in this example were chosen because they looked nice, not

because they have any special significance. Take a moment to run the

application. Notice that the ball moves from top to bottom quickly (the

default implicit animation lasts for 0.25 seconds). One of the ways we

can use explicit animation is to make the duration longer (we will look

at customizing animations in Section 21.2, Customizing Animations, on

the following page).

We can also animate the transition between two subviews with the set-

AnimationTransition:forView:cache:. If we set a transition animation, any

change to the view hierarchy will be animated in the manner we re-

quest. Here is the code for our example:

Download CoreAnimation/SimpleMovement/Classes/SimpleMovementViewController.m

Line 1 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
- if(event.allTouches.count > 1) {
- [UIView beginAnimations:@"switch" context:nil];
- [UIView setAnimationTransition:UIViewAnimationTransitionCurlUp
5 forView:self.view cache:YES];
- if(nil == basketBall.superview) {
- basketBall.center = tennisBall.center;
- [tennisBall removeFromSuperview];
- [self.view addSubview:basketBall];

10 movingBall = basketBall;
- } else {
- tennisBall.center = basketBall.center;
- [basketBall removeFromSuperview];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/SimpleMovement/Classes/SimpleMovementViewController.m
http://media.pragprog.com/titles/amiphd/code/CoreAnimation/SimpleMovement/Classes/SimpleMovementViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=415

ANIMATING UIVIEW 416

- [self.view addSubview:tennisBall];
15 movingBall = tennisBall;

- }
-

- [UIView commitAnimations];
- }

20 }

In this example, we set the transition on line 5 to “curl up” when the

view is switched out. We can choose from several built-in transition

animations. We’re using “curl up” here because it looks cool. Try some

of the others to see which ones you like best. Also make sure to try

them on your device because transitions often look better on the device

than they do in the simulator.

Customizing Animations

So far, we’ve only been experimenting with animations in their default

states. There are lots of options, though, for customizing the way the

implicit animations work. Changing things like the timing curve on an

animation to an ease-in or ease-out can provide subtle clues to users

about what the application is doing. These subtle clues can often make

the difference between a good UI and a great one. Let’s change our

bouncing ball application to use timing curves. Here is the code:

Download CoreAnimation/TimingCurve/Classes/TimingCurveViewController.m

Line 1 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
- [UIView beginAnimations:@"movement" context:nil];
- [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
- [UIView setAnimationDuration:1.0f];
5 [UIView setAnimationRepeatCount:3];
- [UIView setAnimationRepeatAutoreverses:YES];
- CGPoint center = basketBall.center;
- if(center.y > 85.0f) {
- center.y -= 295.0f;

10 basketBall.center = center;
- } else {
- center.y += 295.0f;
- basketBall.center = center;
- }

15 [UIView commitAnimations];
- }

This code is familiar except for the addition of animation customization

code starting on line 3. Setting the curve to “ease in” causes the anima-

tion to start slowly and then accelerate. An ease-in often adds a feel of

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/TimingCurve/Classes/TimingCurveViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=416

ANIMATING UIVIEW 417

realism to the animations because that is how we see things in the real

world move. Nothing in the real world starts moving instantaneously.

We also set the duration to 1.0 second on the next line, which as you’d

expect causes the duration of the animation to be one second (instead

of the default 0.25). We often use the duration for debugging; setting to

one or two seconds allows you to see things that you might miss when

it’s over in a quarter of a second.

Next in this example, we’ll set the repeat count and autoreverse. This

animation will cause the basketball to bounce up and down three times

(along with the reverse animation). Run the application, and watch

the difference the ease-in curve makes. The ease-in curve makes the

bouncing much more natural.

In running the animation, you probably noticed that after the final

repeat cycle of the animation the ball jumps to the bottom of the screen.

That happens because of the nature of the animation repeat cycle. Each

animation (recall we are repeating three times) proceeds from the start-

ing point (the top) to its end point (the bottom) and reverses (back to

the top). Since we changed the center of the ball image to the bottom of

the screen and the animation ends at the top of the screen, we get the

jump.

The fix for that is to use keyframe animations and take control of the

whole animation. Specifying six keyframes, one for each top and bottom

bounce point, would make the ball bounce three times and stop when

it hits the bottom on the third bounce. We would probably make each

“top point” less than the previous one as well. There is an example of

key frame animation in Section 21.3, Layers, on page 419, but an in-

depth discussion is beyond the scope of this chapter. You can get more

information from Core Animation for Mac OS X and the iPhone [Dud08].

Animation Delegation

You can set one of your objects to be the delegate of the animation so

that when the animation starts or stops your delegate will get notifica-

tion. This is particularly useful for doing things such as playing sounds

when the animation starts or stops. Our coverage of audio begins with

Chapter 15, iPod Library Access, on page 310, so for our example here

we will simply write to the log. After you get audio under your belt, you

can replace these log messages with your own sounds.

You can set the delegate for your animations with the setAnimationDel-

egate: method. You also have to set the start and stop selectors so

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=417

ANIMATING UIVIEW 418

that Core Animation knows which methods to invoke. You set the start

selector with the setAnimationWillStartSelector: and the stop selector with

setAnimationDidStopSelector:.

Let’s set an animation delegate in our bouncing basketball example.

Here is the updated code for the touchesEnded:withEvent: method:

Download CoreAnimation/AnimationDelegate/Classes/AnimationDelegateViewController.m

Line 1 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
- [UIView beginAnimations:@"movement" context:nil];
- [UIView setAnimationDelegate:self];
- [UIView setAnimationWillStartSelector:@selector(didStart:context:)];
5 [UIView setAnimationDidStopSelector:@selector(didStop:finished:context:)];
- [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
- [UIView setAnimationDuration:1.0f];
- [UIView setAnimationRepeatCount:3];
- [UIView setAnimationRepeatAutoreverses:YES];

10 CGPoint center = basketBall.center;
- if(center.y > 85.0f) {
- center.y -= 295.0f;
- basketBall.center = center;
- } else {

15 center.y += 295.0f;
- basketBall.center = center;
- }
- [UIView commitAnimations];
- }

On line 3, we are setting the delegate for the animations that follow. On

the following two lines, we are setting the selectors to be called when

the animation starts or stops. These methods can have any name that

we want but must have the correct signatures. The start selector should

have two parameters; the first is an NSString and is the name we gave

the animation in the call to beginAnimations:context:. The second is a void

pointer and will be the same pointer passed to beginAnimations:context:.

The stop selector should take three parameters: an NSString, a BOOL,

and a void pointer. The first corresponds to the name, and the third

corresponds to the void pointer passed into the beginAnimations:context:

method. The second parameter is a flag indicating whether the anima-

tion completed. Implementing these delegate methods gives us another

level of insight and control over how the animations proceed and what

happens when they start and stop.

To gain complete control over the animations, we need to dig a little

deeper into Core Animation. Let’s get started by covering the relation-

ship between the layer and the view.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/AnimationDelegate/Classes/AnimationDelegateViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=418

LAYERS 419

UIView and CALayer

Core Animation layers provide delegation methods that allow us to draw

and animate in custom ways without having to subclass the layer. For

more information on layers and Core Animation in general, see Core

Animation for Mac OS X and the iPhone [Dud08]. UIView takes advan-

tage of the delegation because the view is always the delegate of its

layer. This allows us to add layer delegate methods to our view and

gain additional control over the way an animation happens. Let’s look

at replacing the default animation with one of our own to see how it

works. Here is the code:

Download CoreAnimation/LayerDelegate/Classes/LayerDelegateView.m

- (id <CAAction>)actionForLayer:(CALayer *)layer forKey:(NSString *)key {

CAAnimation *animation = (CAAnimation *)[super actionForLayer:layer

forKey:key];

if([animation respondsToSelector:@selector(setDuration:)]) {

animation.duration = 2.0f;

}

return animation;

}

This code is setting the duration to 2.0 seconds for all animations.

Although we have seen other ways to set the duration of an anima-

tion, the UIView methods work only in an animation block. This code

will set the duration of any animation for the view whether we have

configured a block.1 The other cool thing we can do here is replace the

default with our own animations. A full discussion of what is possible

is beyond the scope of this book; check out Core Animation for Mac OS

X and the iPhone [Dud08] for more information.

You can also draw into the layer from the delegation methods (draw-

Layer:inContext: and displayLayer:), but that is rarely necessary because

the UIView’s drawRect: method is almost always a sufficient place to do

your drawing in.

21.3 Layers

The tight integration with UIKit often allows you to do what you need

with the slightly simpler UIKit approach. However, for doing 3D trans-

formations, customizing the timing of an animation, and doing other

1. During the event loop, the iPhone OS creates a block for us.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/LayerDelegate/Classes/LayerDelegateView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=419

LAYERS 420

customizations, you will get more fined-grained control by using the

layer-based APIs.

As is often the case, gains in one area come at the cost of losses in

another. Layers are not responders, so they do not respond to events.

Even if you implement the event methods (touchesBegan:withEvent:, and

so on), they won’t get called. For the most part, though, you can almost

always get the event handling you need by processing the events in the

view that contains the layers. You can use the hitTest: method to find

the layer that the user touched and then proceed based on that. It is

important that, as you build up your layer-based UI, you remember

that the layers are not responders.

Since layers are really 2D objects existing in a 3D space, we can ani-

mate them around in 3D space. To do that, we use the zPosition and the

transform properties. Let’s look at an example using the transform prop-

erty. Here is the code:

Download CoreAnimation/ThreeDTransform/Classes/ThreeDTransformViewController.m

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {

CAKeyframeAnimation *animation = [CAKeyframeAnimation

animationWithKeyPath:@"transform"];

NSValue *initial = [NSValue valueWithCATransform3D:

CATransform3DMakeRotation(0.0, 1.0f, -1.0f, 0.0f)];

NSValue *middle = [NSValue valueWithCATransform3D:

CATransform3DMakeRotation(M_PI, 1.0f, -1.0f, 0.0f)];

NSValue *final = [NSValue valueWithCATransform3D:

CATransform3DMakeRotation(0.0, 1.0f, -1.0f, 0.0f)];

animation.values = [NSArray arrayWithObjects:initial,

middle, final, nil];

animation.duration = 2.0f;

[self.basketBall addAnimation:animation forKey:@"transform"];

}

In this method, we are creating a CAKeyframeAnimation and adding three

transforms to it: initial is the starting point, middle is the middle of the

animation, and final is back to the starting point. This will cause the

layer to rotate in 3D space around the vector 45 degrees up from verti-

cal (that is, 1.0, -1.0 , 0.0) 360 degrees. The basketball about one third

of the way through its rotation is shown in Figure 21.2, on the next

page.

UIViews are drawn in order according to their position in the subviews

property of their superview. CALayers are ordered based on two prop-

erties: first the order of the layer in its superlayer’s sublayers array and

second the value of the zPosition property. If two sibling layers share the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/ThreeDTransform/Classes/ThreeDTransformViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=420

LAYERS 421

Figure 21.2: Basketball image view

same zPosition value, then they are ordered according to their order in

the parent layer’s sublayers array. Otherwise, the layers are drawn in the

order specified by their zPosition. Let’s look at a simple example that has

two layers placed offset from the center of the view; one is red and one

is blue. When the application starts, the blue layer has its zPosition set

to 5.0, and the red has its zPosition set to -5.0. Here is the code for the

viewDidLoad::

Download CoreAnimation/Depth/Classes/DepthViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

self.blue = [CALayer layer];

blue.backgroundColor = [[UIColor blueColor] CGColor];

blue.bounds = CGRectMake(0.0f, 0.0f, 100.0f, 100.0f);

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/Depth/Classes/DepthViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=421

OPENGL ES 422

blue.position = CGPointMake(160.0f - 20.0f, 240.0f - 20.0f);

blue.zPosition = 5.0f;

[self.view.layer addSublayer:blue];

self.red = [CALayer layer];

red.backgroundColor = [[UIColor redColor] CGColor];

red.bounds = CGRectMake(0.0f, 0.0f, 100.0f, 100.0f);

red.position = CGPointMake(160.0f + 20.0f, 240.0f + 20.0f);

red.zPosition = -5.0f;

[self.view.layer addSublayer:red];

}

Even though the blue layer is added to the sublayers list first (and thus

should be drawn first), it is drawn last (on top) because its zPosition is set

to 5.0, while the red layer has its zPosition set to -5.0. To further illustrate

how the zPosition affects layer drawing mode, take a look at this code:

Download CoreAnimation/Depth/Classes/DepthViewController.m

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {

CGFloat oldBlue = self.blue.zPosition;

self.blue.zPosition = self.red.zPosition;

self.red.zPosition = oldBlue;

}

This simple change in zPosition causes the layers to switch drawing

order. In more complex situations where the layers are rotated in 3D

space, the effect of changing zPosition will be more dramatic.

There are many many more things that can be done to get just the effect

you want or need from the animations in your application. See the Core

Animation book for more details (Core Animation for Mac OS X and the

iPhone [Dud08]).

21.4 OpenGL ES

OpenGL on the iPhone is done via a CAEAGLLayer layer. You subclass

UIView and return the CAEAGLLayer class from the +layerClass method.

The layerClass method returns CALayer by default and is called when

setting up the view. On the iPhone all views are backed by a layer (the

layer is referred to sometimes as the backing store) and have their draw-

ing and other visual content cached there. The layerClass method gives

us the chance to specify our own layer instead of the default.

If the default OpenGL ES options are sufficient for your drawing, you

don’t need to do anything else to get an OpenGL ES surface to draw

on. However, it is often the case that the defaults are not sufficient. To

customize them, you only need to set the drawableProperties property on

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/Depth/Classes/DepthViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=422

OPENGL ES 423

the layer. A full treatment of what is required to properly configure and

initialize an OpenGL ES environment is beyond this book; check out

OpenGL SuperBible [RSWLH07] for a much more thorough treatment.

Let’s dive into the example. We are going to use the default rotating

square that comes from the OpenGL ES template from Xcode to explain

how to set up your OpenGL environment. We are not going to dive into

the details of the OpenGL ES, though. Instead, we will focus on the

Core Animation aspects of the example.

Let’s take a quick look at the code provided by the template, starting

with the code to configure the layer:

Download CoreAnimation/OpenGL/Classes/EAGLView.m

Line 1 - (id)initWithCoder:(NSCoder*)coder {
- if ((self = [super initWithCoder:coder])) {
- CAEAGLLayer *eaglLayer = (CAEAGLLayer *)self.layer;
- eaglLayer.opaque = YES;
5 eaglLayer.drawableProperties =
- [NSDictionary dictionaryWithObjectsAndKeys:
- [NSNumber numberWithBool:NO], kEAGLDrawablePropertyRetainedBacking,
- kEAGLColorFormatRGBA8, kEAGLDrawablePropertyColorFormat, nil];
- context = [[EAGLContext alloc]

10 initWithAPI:kEAGLRenderingAPIOpenGLES1];
-

- if (!context || ![EAGLContext setCurrentContext:context]) {
- [self release];
- return nil;

15 }
-

- self.animationInterval = 1.0 / 60.0;
- }
- return self;

20 }

The initWithCoder: method is called as this view is loaded from the nib

file.

Note that the opaque flag on the layer is set on line 4. Making your

OpenGL ES layers opaque and letting Core Animation know that can

considerably improve performance. So, do all your OpenGL ES drawing

in an opaque layer if you can.

We also set the drawableProperties on line 8. The configuration here spec-

ifies no retained backing and the RGBA 8 color format (via the kEAGLCol-

orFormatRGBA8 constant). There are many, many options for what kind

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/OpenGL/Classes/EAGLView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=423

OPENGL ES 424

of color format to use. Given the more limited memory bandwidth avail-

able on the iPhone, however, it is important to use the smallest types

(including color formats) that work for your application.

We set the API level on line 10, which specifies which version of the

API we’d like to use. For iPhone OS 2.0, the value must be kEAGLRen-

deringAPIOpenGLES1, but expect the list to expand to future releases

of the iPhone OS. Next we set the context on line 12, which lets the

OpenGL ES runtime know which context to use when we start sending

OpenGL ES commands.

In layoutSubviews, we set the current context and re-create the frame

buffer (the gnarly OpenGL stuff you have to look in the Blue Book to

grok: OpenGL SuperBible [RSWLH07]). And if all goes well, the applica-

tion is ready to draw its first frame. layoutSubviews is called automati-

cally for us because the view is placed in the window. Here is the code:

Download CoreAnimation/OpenGL/Classes/EAGLView.m

- (void)layoutSubviews {

[EAGLContext setCurrentContext:context];

[self destroyFramebuffer];

[self createFramebuffer];

[self drawView];

}

After layoutSubviews is called, the application is more or less finished

with its startup tasks. When the app finishes startup, recall that the

application delegate is sent the applicationDidFinishLaunching: method.

In that method, the delegate sends the view the startAnimation method.

Let’s look at that code next:

Download CoreAnimation/OpenGL/Classes/EAGLView.m

- (void)startAnimation {

self.animationTimer =

[NSTimer scheduledTimerWithTimeInterval:self.animationInterval

target:self selector:@selector(drawView)

userInfo:nil repeats:YES];

}

In this method, we are creating the timer that will be fired every anima-

tionInterval seconds (in our case it’s every 1/60 seconds). Each time the

timer fires, it invokes the drawView method.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/OpenGL/Classes/EAGLView.m
http://media.pragprog.com/titles/amiphd/code/CoreAnimation/OpenGL/Classes/EAGLView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=424

OPENGL ES 425

Let’s look at that code next:

Download CoreAnimation/OpenGL/Classes/EAGLView.m

Line 1 - (void)drawView {
- const GLfloat squareVertices[] = {
- -0.5f, -0.5f,
- 0.5f, -0.5f,
5 -0.5f, 0.5f,
- 0.5f, 0.5f,
- };
- const GLubyte squareColors[] = {
- 255, 255, 0, 255,

10 0, 255, 255, 255,
- 0, 0, 0, 0,
- 255, 0, 255, 255,
- };
-

15 [EAGLContext setCurrentContext:context];
-

- glBindFramebufferOES(GL_FRAMEBUFFER_OES, viewFramebuffer);
- glViewport(0, 0, backingWidth, backingHeight);
-

20 glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- glOrthof(-1.0f, 1.0f, -1.5f, 1.5f, -1.0f, 1.0f);
- glMatrixMode(GL_MODELVIEW);
- glRotatef(3.0f, 0.0f, 0.0f, 1.0f);

25

- glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
- glClear(GL_COLOR_BUFFER_BIT);
-

- glVertexPointer(2, GL_FLOAT, 0, squareVertices);
30 glEnableClientState(GL_VERTEX_ARRAY);

- glColorPointer(4, GL_UNSIGNED_BYTE, 0, squareColors);
- glEnableClientState(GL_COLOR_ARRAY);
- glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
-

35 glBindRenderbufferOES(GL_RENDERBUFFER_OES, viewRenderbuffer);
- [context presentRenderbuffer:GL_RENDERBUFFER_OES];
- }

Apart from all the OpenGL ES code, this method does two basic things.

First it ensures that the current context is the correct context on line

15, and then it pushes the render buffer to the screen on line 36. The

rest of the code in this method is basic OpenGL code that you can

discover details about in the Blue Book.

Core Animation can be a powerful addition to your application. When

you need advanced control over your animations or the ability to move

stuff in 3D space, layers are the way to go.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/CoreAnimation/OpenGL/Classes/EAGLView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=425

Chapter 22

Accelerometer
It wasn’t that long ago that a phone’s physical interface consisted of

ten-digit buttons, plus * and #. The iPhone radically overhauls this

paradigm with its touchscreen, but it’s just as important to consider

the unseen accelerometer as an essential part of the device’s UI. By

sensing the pull of gravity and motion, the accelerometer can help an

application better adapt to the user’s needs. If the device is on its side,

accelerometer data can let an app know to rotate its UI. If the device is

shaken, an application can use that gesture to trigger an undo or an

erase. And for many games, tilting and twisting the device has proven

to be a highly intuitive control scheme, another feature facilitated by

the accelerometer.

In this chapter, we’ll take a deep look at how the accelerometer pro-

vides data to your application. We’ll start with the higher-level APIs

that inform you of the overall orientation of the device, and then we’ll

look at how the iPhone lets your application get the raw data coming

from the on-device accelerometer and, more important, how you can do

anything useful with it.

Simulators Don’t Tilt

The iPhone Simulator provides no meaningful simulation of the
accelerometer. When your application asks the simulator for
updates from the accelerometer, nothing happens. Because
of this, running the sample applications in this chapter require
you to be able to put your apps on a device.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

GETTING DEVICE ORIENTATION 427

Figure 22.1: Visualizing the accelerometer axes

But what is an accelerometer? Basically, it’s a tiny device that measures

force. Specifically, it reports the force of gravity, user-initiated motion,

or both. This motion is reported along three axes: x, y, and z. If you

visualize your iPhone in portrait mode, with the home button at the

bottom, then x is the axis that goes across your screen (parallel to top

and bottom), y is the axis that goes up and down your screen (parallel to

the sides), and z is the axis that comes out of the screen (perpendicular

to the plane of the screen) right at you. This 3D arrangement as a 2D

perspective image is shown in Figure 22.1.

All you ever get from the accelerometer is three floating-point values for

the force along these axes, along with a timestamp of when the forces

were measured. So. . . what the heck do you do with it?

22.1 Getting Device Orientation

First, let’s consider the easy cases of not directly addressing the accele-

rometer at all. For example, you might be concerned only with adjust-

ing your user interface if the device is rotated. You’ve known how to

do this since way back in Chapter 2, Hello iPhone, on page 22. You

opt in to rotation notifications by implementing shouldAutorotateToInter-

faceOrientation: to return YES when it agrees to rotate to the proposed

orientation (one of UIInterfaceOrientationPortrait, UIInterfaceOrientationPor-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=427

GETTING SHAKES FROM THE UIRESPONDER CHAIN 428

traitUpsideDown, UIInterfaceOrientationLandscapeLeft, or UIInterfaceOrienta-

tionLandscapeRight). If you support a given rotation, the view controller

will get various callbacks such as willRotateToInterfaceOrientation:duration:

to inform it of the progress of the rotation animation; check the UIV-

iewController class reference, under the “Handling Rotation” topic, for

a complete list of callback methods and their meanings. You can also

inspect your current orientation by inspecting the inherited property

interfaceOrientation.

Then again, the UIViewController orientation APIs are all about the user

interface and, specifically, a UI that uses UIKit. Although we’ve focused

on UIKit throughout the book, it’s not the only way to build an iPhone

GUI. For example, a game might take over the entire screen with an

OpenGL view and make little or no use of UIKit, and such an application

would need some other means of getting orientation data.

To get device orientation data without regard for whether the current

UI rotates to that orientation, or even uses UIKit at all, you can use

the UIDevice class directly. Get the systemwide shared instance with

[UIDevice sharedInstance], and then you can inspect its orientation prop-

erty. One caveat here: you must first call the method beginGeneratingDe-

viceOrientationNotifications in order to power up the accelerometer. If you

don’t, the orientation property will always return a meaningless 0. And,

having powered up the accelerometer, you need to let go of it at some

point in your application with a call to endGeneratingDeviceOrientation-

Notifications.

22.2 Getting Shakes from the UIResponder Chain

In iPhone OS 3.0, the system provides a limited level of shake detec-

tion for your application. The UIResponder class, which is a superclass

of UIView, has added three new methods for motion detection: motion-

Began:withEvent:, motionEnded:withEvent:, and motionCancelled:withEvent.

The first argument is a UIEventSubtype enumerated constant whose only

meaningful value in 3.0 is UIEventSubtypeMotionShake.

To get these events, your view needs to be the first responder (see Chap-

ter 18, Events, Multi-Touch, and Gestures, on page 378 for more on UIKit

event delivery and responders) and then implement at least one of the

motion... methods. We’ll show an example of this later in the chapter as

we build out an extensive accelerometer-based application, as well as

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=428

GETTING RAW ACCELEROMETER DATA 429

noting how you can use raw accelerometer data to do your own shake

detection, a technique that is backward compatible with iPhone OS 2.0.

iPhone SDK 3.0 adds one more acceleration API you should be aware

of: if you use the NSUndoManager to support undo in your application,

you can set the applicationSupportsShakeToEdit property on the shared

instance of UIApplication to bring up the undo manager’s Undo or Redo

button when the user shakes the device.

22.3 Getting Raw Accelerometer Data

Orientation and shake detection are nice, but there are a number of

interesting things you can do when you have access to the raw accele-

rometer data. You can determine your orientation in three dimensions

(and not assume that the device is upright), and you can use that tilt

as a user interface. Or, you can filter out gravity and just detect user

motions: whether the user has turned, shaken, swung, or dropped the

device.

For a first example, let’s let the accelerometer’s detection of gravita-

tional force work for us. The BalanceBall example will let you roll a ball

around the screen by looking straight down at the device and tilting

it. As you tilt toward one side, the pull of gravity will appear on the x-

and/or y-axes, and we’ll apply that acceleration to the x and y compo-

nents of the ball’s velocity.

For technical reasons, we decided to use Xcode’s Utility Application

template (introduced in Section 9.1, Displaying a Flippable Preference

View in Your Application, on page 172) for this sample. First, it provides

us with the view-flipping Info button, which we’ll use to add a flip-side

preferences screen to enable or disable some filtering logic to improve

our use of the accelerometer data. Second, it provides us with a custom

UIView subclass that we can customize to draw our playfield.

The Utility Application provides us with a MainViewController to handle

the logic of the front-side view, and it’s here that we’ll keep track of the

ball’s location and velocity, as well as update the view. So, this is the

class where we want to opt into updates from the accelerometer. Let’s

ask for updates once the view is loaded, that is, in viewDidLoad.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

// ask for accelerometer events

[[UIAccelerometer sharedAccelerometer] setUpdateInterval: 0.03]; // 30 fps

[[UIAccelerometer sharedAccelerometer] setDelegate: self];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=429

GETTING RAW ACCELEROMETER DATA 430

The first of these two lines indicates how frequently we want to get

updates from the accelerometer, expressed as the time interval between

callbacks, in seconds. Nothing is guaranteed, but within certain sensi-

ble ranges, you can expect to get more or less the frequency you ask

for. Choosing the appropriate frequency is largely a function of what

you’re going to do with the data. If you wanted to figure out orienta-

tion only, you would get acceptable resolution polling 10 or 20 times a

second, which would be an interval of 0.10 to 0.05 seconds. For games

and other cases where you need the accelerometer to provide you with

a higher-resolution user-input device, you generally want to run closer

to frame rate, so an interval of 0.033 (30 updates per second) or even

0.02 (50 updates per second) is appropriate.

The second line sets a delegate to get callbacks with the accelerometer

data. You can have only one UIAccelerometerDelegate in your applica-

tion, so if multiple parts of your application wanted updates from the

accelerometer, it would be up to your application to distribute them as

needed. As soon as you set the delegate, you’ll start getting callbacks

with accelerometer data, and they’ll continue until you nil-out the del-

egate, which is your signal that you’re done with the accelerometer. In

ball rolling app, we want to always be getting accelerometer data, so we

won’t nil out the delegate until the dealloc method.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

- (void)dealloc {

[[UIAccelerometer sharedAccelerometer] setDelegate: nil];

[super dealloc];

}

The UIAccelerometerDelegate protocol requires us to declare in Main-

ViewController.h that we implement the protocol—so add <UIAccelerom-

eterDelegate> to the @interface as you would for any other protocol

implementation—and to implement its one method, accelerometer:did-

Accelerate:. This method provides us with the UIAccelerometer that pro-

vides the data and a UIAcceleration object that provides the acceleration

data.

But what are we going to do with this data? We don’t have our rolling

ball to apply the gravitational acceleration to yet, so let’s attend to that.

We’ll keep track of the ball’s position and velocity in the view controller,

leaving the custom view class to just paint the ball. For the sake of this

example, we’ll use really simple graphic primitives, introduced in Chap-

ter 19, Drawing in Custom Views, on page 390. To draw the ball, we’ll

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=430

GETTING RAW ACCELEROMETER DATA 431

need to know its current drawing rectangle, represented as a CGRect,

and the previous drawing rectangle, which we’ll erase before drawing

the ball in its new location. So, we need a couple of CGRects and meth-

ods to set the ball’s location and its size. Here’s the MainView.h header

file:

Download Accelerometer/BalanceBallFor3.0/Classes/MainView.h

@interface MainView : UIView {

CGRect ballRect;

CGRect oldBallRect;

}

-(void) setBallX: (CGFloat) newX Y: (CGFloat) newY;

-(void) setBallWidth: (CGFloat) newW height: (CGFloat) newH;

Implementing the setBallWidth:height: method is trivial:

Download Accelerometer/BalanceBallFor3.0/Classes/MainView.m

- (void) setBallWidth: (CGFloat) newW height: (CGFloat) newH {

ballRect.size.width = newW;

ballRect.size.height = newH;

oldBallRect.size.width = newW;

oldBallRect.size.height = newH;

}

Setting the ball’s location requires three simple tasks: updating the

ballRect’s origin point, requesting an update of the on-screen view, and

saving off the rectangle we just drew as an erase rectangle for the next

update. Erase-and-draw is more efficient than drawing the whole view,

and we make it more efficient by setting a clipping rectangle that tells

Quartz that the only “dirty” part of the view, that is, the only areas that

could possibly require repainting, are in the rectangle defined by the

union of the old and new drawing rectangles. We calculate this union

rectangle with CGRectUnion().

Download Accelerometer/BalanceBallFor3.0/Classes/MainView.m

-(void) setBallX: (CGFloat) newX Y: (CGFloat) newY {

ballRect.origin.x = newX;

ballRect.origin.y = newY;

// update view

CGRect clipRect = CGRectUnion (oldBallRect, ballRect);

[self setNeedsDisplayInRect:clipRect];

// update oldBallRect

oldBallRect.origin.x = ballRect.origin.x;

oldBallRect.origin.y = ballRect.origin.y;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainView.h
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainView.m
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=431

GETTING RAW ACCELEROMETER DATA 432

The setNeedsDisplayInRect: call will result in drawRect: getting called. Our

custom implementation of this method draws the view by getting the

current graphics context of the view, fills the old drawing rectangle with

the background color (which we set as green in IB; your taste may vary),

and draws a plain white circle at the ball’s current location.

Download Accelerometer/BalanceBallFor3.0/Classes/MainView.m

- (void)drawRect:(CGRect)rect {

// Drawing code

CGContextRef context = UIGraphicsGetCurrentContext();

// undraw ball at old location

CGColorRef undrawColor = self.backgroundColor.CGColor;

CGContextSetFillColorWithColor (context, undrawColor);

CGContextFillRect (context, oldBallRect);

// draw ball at new location

CGContextSetGrayFillColor(context, 1.0, 1.0);

CGContextFillEllipseInRect(context, ballRect);

}

With the drawing done, we can return our attention to the view con-

troller and, ultimately, to the accelerometer. In the MainViewController

headers, we’ll set up variables for the ball’s location and position. We’ll

also want to keep track of the timestamp of the last accelerometer call-

back in order to compute how much time has elapsed and therefore

how far the ball has moved. Finally, wire up an IBOutlet to the MainView

so you’ll be able to call its setBallX:Y: method.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.h

CGFloat ballX;

CGFloat ballY;

CGFloat ballVelocityX;

CGFloat ballVelocityY;

NSTimeInterval lastAccelTimestamp;

Along the way, we’ll also define some constants for the ball height and

width (both 20.0) and a MAX_ACCEL_PER_SEC that represents how many

units per second we want an acceleration of 1.0 to represent (that is, the

pull of gravity if the device is standing all the way on one edge). With all

of this set up, we can provide a method to set the ball near the center

of the view, which we’ll do when the application starts, and another to

check whether the ball has gone out of the view, which will require us

to reset the ball.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainView.m
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=432

GETTING RAW ACCELEROMETER DATA 433

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

- (void) resetBall {

ballVelocityX = 0.0;

ballVelocityY = 0.0;

filteredAccelX = 0.0;

filteredAccelY = 0.0;

ballX = self.view.frame.size.width / 2;

ballY = self.view.frame.size.height / 2;

}

- (void) checkBallInPlay {

if ((ballX + BALL_WIDTH < 0) ||

(ballY + BALL_HEIGHT < 0) ||

(ballX > self.view.frame.size.width) ||

(ballY > self.view.frame.size.height)) {

NSLog (@"reset ball out of bounds");

[self resetBall];

}

}

Now, in viewDidLoad, you can set up the initial state of the game by

calling the methods you’ve created to set the ball’s size, reset its loca-

tion, and update the view. Notice that we have to cast the view property

to MainView in order to call setBallWidth:height: and setBallX:Y: without a

warning.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

[(MainView*) self.view setBallWidth: BALL_WIDTH height:BALL_HEIGHT];

[self resetBall];

[(MainView*) self.view setBallX:ballX Y:ballY];

Our rolling ball simulation now has a ball (complete with on-screen

appearance and a model of its location and velocity) but no actual

rolling. That’s because we haven’t yet done anything with the accele-

rometer data that our delegate (the view controller) is going to be receiv-

ing. Let’s finally deal with that. Each time we get a callback with accele-

rometer data, we’ll apply the x and y components to our ball’s velocity,

which is measured in units per second. So, if the device is straight up

in portrait mode, it should get a 1.0 acceleration on its y-axis, and in

landscape mode, it should get 1.0 on the x-axis. Typically, tilting it will

result in some amount of pull on both axes, as well as on z, which we

don’t use in this application. We defined a constant earlier to represent

how much acceleration one second of 1g will provide in our game world,

so we can implement accelerometer:didAccelerate: to apply that force to

the ball’s velocity and then use the velocity and the elapsed time to

figure out how far to move the ball.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=433

GETTING RAW ACCELEROMETER DATA 434

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

- (void)accelerometer:(UIAccelerometer *)accelerometer

didAccelerate:(UIAcceleration *)acceleration {

NSTimeInterval elapsedTime = acceleration.timestamp - lastAccelTimestamp;

ballVelocityX = ballVelocityX +

(acceleration.x * MAX_ACCEL_PER_SEC * elapsedTime);

ballVelocityY = ballVelocityY -

(acceleration.y * MAX_ACCEL_PER_SEC * elapsedTime);

if (lastAccelTimestamp > 0) {

// recalc ball position

ballX += (ballVelocityX * elapsedTime);

ballY += (ballVelocityY * elapsedTime);

// update view

[mainView updateBallX:ballX Y:ballY];

// check for ball out of bounds

[self checkBallInPlay];

}

lastAccelTimestamp = acceleration.timestamp;

The callback method gives us a UIAcceleration object with four proper-

ties: an NSTimeInterval value for the timestamp and three UIAccelerationVa-

lue (defined as double) properties: x, y, and z. In this implementation, we

take the acceleration on one axis and determine how much of it to apply

to the velocity for this callback interval. For example, if we received a 1.0

value and hadn’t updated for an entire second, then we’d add or sub-

tract 1.0 seconds times 1.0g times MAX_ACCEL_PER_SEC from the velocity.

In practice, of course, we’ll get much smaller values much more fre-

quently. Another thing to notice is that while we add the accelerator

value along the x-axis, we subtract it for the y value. This is because

the accelerometer reports upward acceleration as positive values and

downwards as negative, while the coordinate system of the iPhone has

y values increasing as they go down the screen. Therefore, positive y

acceleration (a pull toward the top of the screen) needs to produce neg-

ative velocity so that the ball’s origin point goes “down” relative to the

coordinate system.1

And with that, the BalanceBall application is ready to play. Assuming

you have the credentials to sign an application and put it on your

device, go ahead and do so, and roll the ball back and forth. You’ll notice

it takes a great deal of tilt to turn the ball around, because in part we

haven’t applied any friction to slow the ball down once it gets going. The

application in all its graphic simplicity is shown in Figure 22.2, on the

next page.

1. It might have been cleaner to simply apply a transformation matrix to the view’s

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=434

FILTERING ACCELEROMETER DATA 435

Figure 22.2: Moving an on-screen ball with the accelerometer

22.4 Filtering Accelerometer Data

So far, we’ve made fairly trivial use of the raw data provided to us by the

accelerometer, simply mapping the forces measured by the accelerom-

eter onto a virtual ball that we model. But the real art of working with

the accelerometer involves making smart decisions about the data we

get from the callbacks, such as smoothing out erroneous data and dis-

tinguishing user input from the pull of gravity.

Basic Accelerometer Filters

As written, our ball-rolling application takes whatever force it measures

and applies it to the ball’s velocity, whether that force comes from grav-

ity or from the user’s own motions. Many apps will want one or the

other of these forces, and a pair of simple filter algorithms can suffice

drawing code, thereby flipping its coordinate system to match the accelerometer’s inter-

pretation of the y-axis.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=435

FILTERING ACCELEROMETER DATA 436

in many cases. These simple filters, which you see in Apple’s documen-

tation as well as many of its examples, are the low-pass filter and high-

pass filter. Each one uses the fact that gravity is constantly present as

the key to how it works.

The low-pass filter takes a single accelerometer reading and applies

it to previously calculated accelerometer readings using only a small

fraction of the new value. This approach devalues sudden movement

in favor of long-term force, with the practical result that it’s useful for

ignoring twitchy fingers in favor of gravity. The high-pass filter is the

opposite: it subtracts the calculated low-pass filter value from the cur-

rent accelerometer value, meaning it discards long-term forces in favor

of instantaneous ones. Therefore, the high-pass filter is better suited to

detecting the user’s movement.

Let’s try this with our ball-rolling app. We’ll put a segmented control on

the flip-side view to allow the user to pick what kind of filtering they

want to use. And to further test quick motion detection, we’ll use the

high-pass filter to detect device shakes.

Since we chose Xcode’s utility application template, you have an info

button on your main view, which takes you to a flip-side view for set-

ting preferences. Add a UISegmentedControl to FlipsideView.xib (as shown

in Figure 22.3, on the following page) and wire it up to a property fil-

terControl. It needs to be a property, so that you can read its value

when the flipside view is dismissed. In MainViewController’s flipsideView-

ControllerDidFinish, collect the value from the filterControl, and use it as the

new value of filterPref, which is an instance variable for remembering the

chosen filter type.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

- (void)flipsideViewControllerDidFinish:(FlipsideViewController *)controller {

[self dismissModalViewControllerAnimated:YES];

// set low-level filter use to switch state

filterPref = controller.filterControl.selectedSegmentIndex;

}

MainViewController.m is where we’re actually going to do the filtering,

so just inside the @implementation, we’ll add a few needed constants,

starting with an enum for the possible filter values passed in from the

segmented control. Next, we’ll define a “filtering factor” to represent just

how much weight to give each new value we get from the accelerometer.

With a factor of 0.1, the low-pass filter will give a 10 percent weight to

the new value and 90 percent to its previously filtered value. Finally,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=436

FILTERING ACCELEROMETER DATA 437

Figure 22.3: Preference interface for accelerometer filter

we’ll want a constant to represent just how much force will count as

a “shake”; 2gs is strong enough to not be mistaken for anything but a

good shake.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

// filter types, as values from the multiswitch

enum SORT_TYPES {

NO_FILTER = 0,

LOW_PASS_FILTER,

HIGH_PASS_FILTER

};

// how much weight we give to a single accelerometer value

float kFilteringFactor = 0.1;

// how much acceleration (high-pass filtered) counts as a shake

CGFloat SHAKE_THRESHOLD = 2.0;

Now we can do the filtering in the accelerometer:didAccelerate: method

where we’ve already been handling the accelerometer data. We’ll need

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=437

FILTERING ACCELEROMETER DATA 438

instance variables declared in the header file for filteredAccelX and fil-

teredAccelY, because the algorithms for high- and low-pass filters need

to use the previously filtered acceleration values to compute the new

acceleration. Here are the simple formulas for the low-pass and high-

pass filters on the x- and y-axes:

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

CGFloat lowPassFilteredX = (acceleration.x * kFilteringFactor) +

(filteredAccelX * (1.0 - kFilteringFactor));

CGFloat lowPassFilteredY = (acceleration.y * kFilteringFactor) +

(filteredAccelY * (1.0 - kFilteringFactor));

CGFloat highPassFilteredX = acceleration.x - lowPassFilteredX;

CGFloat highPassFilteredY = acceleration.y - lowPassFilteredY;

If you keep in mind that we defined kFilterFactor as 0.1, you can see that

the low-pass filters basically amount to “add 10 percent of the current

accelerometer value to 90 percent of the previously filtered value.” And

if you think about it, you’ll see that this will tend to negate one-time-

only jolts in favor of force that shows up in repeated callbacks (that is,

gravity). Meanwhile, the high-pass filter takes the computed low-pass

value and subtracts it from the current accelerometer value.

All that’s left is to use the user’s choice of filtered acceleration value to

modify the ball’s velocity, replacing the earlier computations of ballVe-

locityX and ballVelocityY as follows:

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

switch (filterPref) {

case NO_FILTER: {

filteredAccelX = acceleration.x;

filteredAccelY = acceleration.y;

break;

}

case LOW_PASS_FILTER: {

filteredAccelX = lowPassFilteredX;

filteredAccelY = lowPassFilteredY;

break;

}

case HIGH_PASS_FILTER: {

filteredAccelX = highPassFilteredX;

filteredAccelY = highPassFilteredY;

break;

}

}

// apply acceleration to velocity

NSTimeInterval elapsedTime = acceleration.timestamp - lastAccelTimestamp;

ballVelocityX = ballVelocityX + (filteredAccelX * MAX_ACCEL_PER_SEC * elapsedTime);

ballVelocityY = ballVelocityY - (filteredAccelY * MAX_ACCEL_PER_SEC * elapsedTime);

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=438

FILTERING ACCELEROMETER DATA 439

While we’re at it, we should also zero out the old filteredAccelX and fil-

teredAccelY values when we reset the ball to the center of the view and

set its velocity to 0.

Implementing Shake Detection

The other thing we said we were going to do with the filters was to

detect a shake. For iPhone OS 3.0 users, we can let the system detect a

shake and deliver an event to our MainView. That’s handy, but we want

to respond to the shake in the view controller, not the view. So, let’s

deliver the event to the controller by means of an informal protocol.

Define a shakeDelegate property in MainView.h:

Download Accelerometer/BalanceBallFor3.0/Classes/MainView.h

@property (nonatomic, retain) id shakeDelegate;

Back in the MainViewController, you can set this delegate to be the view

controller. While you’re at it, you also need to make the view become the

first responder in order to receive the UIEvents. So, let’s perform both of

these tasks in viewWillAppear:.

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

- (void) viewDidAppear: (BOOL) animated {

[super viewDidAppear: animated];

[self.view becomeFirstResponder];

((MainView*)self.view).shakeDelegate = self;

}

Now we need the view to deliver the shake events to the controller. The

view has to be able to become first responder and then to implement

the motionBegan:withEvent: callback method. We’ll just call a shakeMotion-

Began: method on the delegate, if it has such a method:

Download Accelerometer/BalanceBallFor3.0/Classes/MainView.m

-(BOOL) canBecomeFirstResponder {

return YES;

}

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event {

[super motionBegan: motion withEvent: event];

if ((motion == UIEventSubtypeMotionShake) &&

[self.shakeDelegate respondsToSelector:

@selector (shakeMotionBegan:)]) {

[self.shakeDelegate shakeMotionBegan: event];

}

}

Back in the controller, we implement the callback by simply logging the

event and resetting the ball’s position.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainView.h
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainView.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=439

FILTERING ACCELEROMETER DATA 440

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

-(void) shakeMotionBegan: (UIEvent*) event {

NSLog (@"got system shake motion");

[self resetBall];

}

But what if we can’t assume the user has iPhone OS 3.0? To sup-

port shake-to-reset on iPhone 2.0, we can use the high-pass filter that

we’ve already set up, which will mostly eliminate gravity and repre-

sent only significant user-applied force. So, as a simple implementa-

tion, we’ll interpret any sharp movement on the x- or y-axis (in excess

of SHAKE_THRESHOLD, which we defined as 2.0g) as a shake, and we’ll

respond by resetting the ball:

Download Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m

// detect shake

if ((fabsf (filteredAccelX) > SHAKE_THRESHOLD) ||

(fabsf (filteredAccelY) > SHAKE_THRESHOLD)) {

[self resetBall];

}

Notice how we use the floating-point absolute value function, fabsf(), so

that whether the acceleration is positive or negative, we’re concerned

only with its magnitude and whether it’s enough to count as a shake.

Try rolling the ball on your device with different kinds of filtering and

see what you think. The difference between no filtering and the low-

pass filter is subtle, since there’s so much more gravitational force than

that of your own tilting, which only goes to increase the pull toward the

ground anyway. Still, there’s a slight difference. On the other hand, the

high-pass filter really doesn’t make sense in this case, because you’d

be hardpressed to apply more force than is going to be picked up by the

small amount of gravity that doesn’t get filtered out. Still, the payoff of

the high-pass filter is in the shake detection. Flick the device right, left,

up, or down, and you’ll see the ball reset to the center.

Advanced Accelerometer Filtering

We said before that these filters are pretty simplistic, and they go only

so far. For example, there’s clearly some gravitational pull that gets past

the high-pass filter, so you couldn’t entirely depend on that for a game

control.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://media.pragprog.com/titles/amiphd/code/Accelerometer/BalanceBallFor3.0/Classes/MainViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=440

FILTERING ACCELEROMETER DATA 441

Getting into more sophisticated filtering risks getting too deeply into

digital signal processing, but we do have some ideas for further

research.

If you’re writing a tilt-controlled game, you might want to look at the

accelerometer code in the Apple demo Touch Fighter II, which was

demoed at WWDC 2008 and the late-2008 iPhone Tech Talk World

Tour. This first-person space shooter sets up calibration values to rep-

resent the initial orientation and pull of gravity, resetting the calibration

if the player’s ship drifts all the way to one side of the screen, and uses

these calibration values to average out incoming accelerometer data,

trying to filter to just significant user movement. Unfortunately, as of

this writing, the code is available only to attendees of those events.

The shake logic presented in this chapter accounts only for a single,

strong jolt, strong enough to provide 2g of force on either the x- or

y-axis. It might be a better interface to detect a back-and-forth move-

ment, which wouldn’t necessarily have to be as strong. A simple form

of this might just note when a sufficient shake has been registered in

one direction and then expect an equal shake in the opposite direction

within a very short period of time (say, a few hundred milliseconds). A

more sophisticated shake detector could look for the shake as a repeat-

ing signal along one axis. You could presumably do this with a Fourier

Transform, which detects frequencies in functions. However, the iPhone

doesn’t have the Fast Fourier Transform (FFT) functions commonly

found on desktops, so you’d have to provide your own implementation.

Or, if you can count on your users having iPhone OS 3.0 installed, just

depend on the system-delivered shake events from UIResponder.

One other thing you might want to do is to detect specific motions with

the device: golf swings, pointing motions, sword slashes, and the like.

This kind of thing is really popular on another accelerometer-based

device, the Nintendo Wii video game console, so we asked some of our

game developer friends where they learned the tricks of the trade. They

said the best source for information is the Wii developer forums, which

are available only to Nintendo licensees. Still, they did help us find

some interesting academic research on the topic, including a paper out

of the University of Oldenburg, “Gesture Recognition with a Wii Con-

troller” [SPHB08], which uses a number of techniques such as mod-

eling gestures onto points of a sphere. A Gamasutra article, “Where’s

the Wiimote? Using Kalman Filtering To Extract Accelerometer Data”

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=441

FILTERING ACCELEROMETER DATA 442

[Ras07], filters motion data by using time-dependent probability theory:

given where the device has been going, where is it likely going next?

Note that most of the published articles on accelerometer sensing are

heavy on the math, rife with differential equations and matrix multipli-

cation, which limits the number of developers who can understand and

apply the material in code. We hope we’ll see sophisticated accelerome-

ter libraries, suitable for use by the everyday iPhone developer, emerge

in the near future.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=442

Chapter 23

Address Book
Your application can use phone numbers, addresses, or any other infor-

mation a user might keep in their Address Book. You tie into the Ad-

dress Book with view controllers in much the same way that you inte-

grated with the photo library and camera. You’ll also find that once

again you’ll end up using mostly C functions to work with the selected

data. In this chapter, we will see how to use the two frameworks related

to the Address Book to add that extra touch of personalization into our

applications.

23.1 Address Book UI

The Address Book integration offers two view controllers that we can

use to present existing contacts. The first is called ABPeoplePickerNavi-

gationController, which allows us to choose any contact from the whole

database. The second is called ABPersonViewController, which allows us

to view and edit a single contact. The people picker is, as its name

suggests, a navigation controller, and the person controller is a view

controller.

An example application will help us understand these two controllers

better. Let’s create an application that will allow us to choose several

of our contacts, list them alphabetically, and then choose individual

contacts and see their phone numbers. Create a new navigation-based

project called Contacts.

Since we will be interacting with Address Book classes, we need to

add the AddressBook.framework and AddressBookUI.framework frameworks

to our project. Right-click the Frameworks group, choose Add Existing

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

PEOPLE PICKER DELEGATE 444

Framework, navigate to the iPhone SDK, choose the two frameworks,

and click the Add button.

Integrating with the Address Book controllers is similar to the way we

integrated with other controllers including the photo library in Chap-

ter 20, Drawing Images and Photos, on page 401. The RootViewController

will implement delegation protocols and then become the delegate of the

Address Book controllers. Since it is the delegate, it will get callbacks

from the Address Book controllers when appropriate stuff happens (like

the user selecting a contact).

Specifically, we need to add the ABPeoplePickerNavigationControllerDele-

gate and ABPersonViewControllerDelegate protocols to the RootViewCon-

troller and implement the required methods. We also need two collec-

tions: one to hold the names of the chosen contacts and the other to

hold their identifiers. Open the .h file, and add the protocol declaration

and the instance variable and property. The code should look like this:

Download AddressBook/Contacts/Classes/RootViewController.h

#import <UIKit/UIKit.h>

#import <AddressBookUI/AddressBookUI.h>

@interface RootViewController : UITableViewController

<ABPeoplePickerNavigationControllerDelegate,

ABPersonViewControllerDelegate> {

NSMutableArray *contactNames;

NSMutableArray *contactIDs;

}

@property(nonatomic, retain) NSMutableArray *contactNames;

@property(nonatomic, retain) NSMutableArray *contactIDs;

- (IBAction)makeNewEntry;

@end

23.2 People Picker Delegate

There are three methods to implement as part of this protocol. We are

going to look at them one at a time. The peoplePickerNavigationController-

DidCancel: method is called when the user hits the Cancel button. Since

the selection is canceled, all we really want to do in this method is clean

up anything we set up to receive a selection and dismiss the people

picker controller.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=444

PEOPLE PICKER DELEGATE 445

Here is the code for that method:

Download AddressBook/Contacts/Classes/RootViewController.m

- (void)peoplePickerNavigationControllerDidCancel:

(ABPeoplePickerNavigationController *)peoplePicker {

[peoplePicker dismissModalViewControllerAnimated:YES];

[peoplePicker autorelease];

}

In this code, all we are doing is dismissing the view controller and clean-

ing up the memory used. Since this is a cancel operation, we don’t want

to modify any data.

Next, we need to implement the method that is called when a user

selects a contact. The peoplePickerNavigationController:should-

ContinueAfterSelectingPerson: method is called when a contact is selected.

If we want to continue to see the contact’s detailed information, we

should return YES; if we don’t want to show the detailed information,

we return NO. Most of the time if we return NO, we also want to dismiss

the controller. For the example that we are building, we do not want to

see the details, so we are going to return NO and perform the same dis-

miss that we did for the cancel case. We also want to grab the contact’s

name and identifier and place them both into their respective arrays.

Here is the code:

Download AddressBook/Contacts/Classes/RootViewController.m

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person {

NSString *name = (NSString *)ABRecordCopyCompositeName(person);

[self.contactNames addObject:name];

[self.contactIDs addObject:

[NSNumber numberWithInt:ABRecordGetRecordID(person)]];

[peoplePicker dismissModalViewControllerAnimated:YES];

[peoplePicker autorelease];

NSIndexPath *path = [NSIndexPath indexPathForRow:self.contactIDs.count - 1

inSection:0];

[self.tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:path]

withRowAnimation:UITableViewRowAnimationRight];

return NO;

}

We can cast the return value from ABRecordCopyCompositeName() to an

NSString because behind the scenes the CFStringRef and NSString have the

same memory layout. This concept is called toll-free bridging between

Core Foundation and Foundation. You can read more about toll-free bridg-

ing of types in Apple’s Carbon-Cocoa Integration Guide [App06b].

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=445

CREATING AND CONFIGURING THE PEOPLE PICKER 446

And finally, we need to implement peoplePickerNavigationController:

shouldContinueAfterSelectingPerson:property:identifier:. For our example, we

are not going to do anything with this method except return NO. Since

we returned NO from peoplePickerNavigationController:shouldContinueAf-

terSelectingPerson: and then dismissed the controller, this method will

not ever be called anyway. If you’d like to implement this method, you

would do very similar things to what we did in the “should continue”

method. Take the property, and copy its value into your own data struc-

ture for use in your application. The return value from this method

tells the Address Book framework to either do the “default” action (like

start composing an email or dialing a phone number) or nothing. If you

return YES, the default action will take place; if you return NO, it won’t.

There’s one last method implementation before we talk about how to

get our people picker controller to show up. Instead of setting up the

arrays for the contact IDs and names in an init method, we implement

the get methods to lazily create the arrays like this:

Download AddressBook/Contacts/Classes/RootViewController.m

-(NSMutableArray *)contactNames {

if(nil == contactNames) {

contactNames = [[NSMutableArray alloc] init];

}

return contactNames;

}

The sample code has both the contactNames and contactIDs methods

implemented, but apart from the name of the instance variable, they

are the same.

23.3 Creating and Configuring the People Picker

Now that we have the delegate methods implemented, it’s time to make

the person picker and animate it into view. To do that, let’s start with

adding a + button to the right side of the navigation bar (for more details

about the navigation bar, see Chapter 6, Navigation, on page 114). We

set the navigationItem’s rightBarButtonItem to a new Bar Button Item. Here

is the code:

Download AddressBook/Contacts/Classes/RootViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

self.navigationItem.rightBarButtonItem = [[[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

target:self

action:@selector(add)]

autorelease];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=446

PERSON CONTROLLER 447

self.title = @"Selected Contacts";

}

Since we used the system item UIBarButtonSystemItemAdd, a + button will

be placed in that top-right side of the nav bar. We also want to set the

title of this view controller to Selected Contacts. And finally, the add

should bring up the people picker. Here is the code for that method:

Download AddressBook/Contacts/Classes/RootViewController.m

- (void)add {

ABPeoplePickerNavigationController *peoplePicker =

[[ABPeoplePickerNavigationController alloc] init];

peoplePicker.peoplePickerDelegate = self;

[self presentModalViewController:peoplePicker animated:YES];

}

In this method, we are creating an instance of the people picker, setting

its peoplePickerDelegate to self so that we get the callbacks, and then

presenting the people picker as a modal view controller.

23.4 Person Controller

Next we want to make our application navigate to the details of a con-

tact when the user selects a row from our table view. To do that, we are

going to push an instance of ABPersonViewController onto the navigation

controller’s stack.

The usage pattern is, as you might expect, that we create the per-

son view controller, set its delegate to self, and then push the person

view controller onto the nav controller’s stack. We will start with the

implementation of the single method required by the ABPersonViewCon-

trollerDelegate protocol. Here is the code:

Download AddressBook/Contacts/Classes/RootViewController.m

- (BOOL)personViewController:(ABPersonViewController *)personViewController

shouldPerformDefaultActionForPerson:(ABRecordRef)person

property:(ABPropertyID)property

identifier:(ABMultiValueIdentifier)valueID {

ABPropertyType type = ABPersonGetTypeOfProperty(property);

switch (type) {

case kABStringPropertyType: {

NSString *value = (NSString *)ABRecordCopyValue(person, property);

NSLog(@"property value = %@", value);

[value release];

break;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=447

PERSON CONTROLLER 448

case kABMultiStringPropertyType: {

ABMutableMultiValueRef multi = ABRecordCopyValue(person, property);

CFIndex index = ABMultiValueGetIndexForIdentifier(multi, valueID);

CFStringRef value = ABMultiValueCopyValueAtIndex(multi, index);

NSLog(@"value = %@", (NSString *)value);

CFRelease(multi);

CFRelease(value);

break;

}

default:

break;

}

[self.navigationController popViewControllerAnimated:YES];

return NO;

}

This method is called when the user selects one of the attributes from

the person view. The code demonstrates some of the API calls that we

can use to use the Address Book types. First we get the type of the

property that was selected, and then we switch on the type. We consider

only two types here, but there are several others to choose from. We are

logging only to the console in this method, but in your own code you’d

want to do something more sophisticated.

Next we need to look at how to invoke the person view controller. When

the user selects one of the contacts displayed in our table view, we want

to have the person view controller navigate in. So, we need to implement

the tableView:didSelectRowAtIndexPath: method to create and display the

person view controller. Here is the code to do that:

Download AddressBook/Contacts/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

ABAddressBookRef addressBook = ABAddressBookCreate();

ABRecordRef person = ABAddressBookGetPersonWithRecordID(addressBook,

[[self.contactIDs objectAtIndex:indexPath.row] intValue]);

ABPersonViewController *pvc = [[ABPersonViewController alloc] init];

pvc.personViewDelegate = self;

pvc.displayedPerson = person;

[self.navigationController pushViewController:pvc animated:YES];

CFRelease(addressBook);

[pvc autorelease];

}

In this method, we are creating an ABAddressBookRef and then using

that to find the person who our ID represents. We then pass that per-

son into the person view controller’s displayedPerson property, set self as

the personViewDelegate, and then push the view controller onto the nav-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=448

ADDING NEW CONTACTS 449

igation stack. Since we did not copy the person object, we do not need

to release it.

The Address Book object is conceptually a connection to the Address

Book database. If you need to create new entries, you would start with a

new instance of ABAddressBookRef and then use the other Address Book

functions such as ABPersonCreate() and ABAddressBookAddRecord(). You

need to make sure that access to an instance of ABAddressBookRef is

always from one thread, or undefined behavior can result.

Now that we have our person view showing up, we can select a value.

It will be logged to the console, and then the person view controller will

animate out of view.

23.5 Adding New Contacts

As we mentioned earlier, the interface that we have to interact with the

contact database is the ABAddressBookRef. Once we have this connection

established, we can add, remove, and modify Address Book entries. For

each thread in your application that needs access to the database, you

need to make a new instance of ABAddressBookRef.

Let’s add a method to our view controller that creates a single-person

entry to the database. Our entry will be hard-coded to some data we will

make up. In a more sophisticated application, you might be retrieving

contact information from a web service or some other means. Once you

have the data, though, the process and API you will use is the same.

In our example, we’ll create a new person object, set the first and last

names, add two phone numbers, and set the home address. Then we

will add the person record to the database and clean up the memory

we allocated. The process is straightforward, but if you’ve never done

any C code, it might be a bit overwhelming looking at these API calls.

Keep in mind two things: there is an introduction to working with Core

Foundation in Section 17.1, Using the Procedural-C APIs, on page 364,

and although this looks like a lot of code, it is doing only the five things

outlined. Let’s go through the code piece by piece. (To see all the code at

once, grab the whole project and look at makeNewEntry in our RootView-

Controller.) Here is the code to make the Address Book and the entry:

Download AddressBook/Contacts/Classes/RootViewController.m

ABAddressBookRef addressBook = ABAddressBookCreate();

ABRecordRef person = ABPersonCreate();

CFErrorRef error = NULL;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=449

ADDING NEW CONTACTS 450

Despite the name, calling ABAddressBookCreate() does not create a new

database; it merely opens a connection to the existing shared database.

Calling ABPersonCreate() does create a new person object, and this is the

object we are going to add all the data to and then pass off to our

connection to the database to be stored. Next up we set the first and

last names of our newly created person object:

Download AddressBook/Contacts/Classes/RootViewController.m

// set the first and last name properties

ABRecordSetValue(person, kABPersonFirstNameProperty,

CFSTR("Wonder"), &error);

ABRecordSetValue(person, kABPersonLastNameProperty,

CFSTR("Widget"), &error);

if(NULL != error) {

NSLog(@"an error occurred");

}

Here we are using two Core Foundation string objects via the CFSTR()

macro to set the first and last names of our person object. Remember

that Core Foundation objects are toll-free bridged to their Foundation

equivalents, so if you’d prefer to use NSStrings, you can do so via a cast

like this:

ABRecordSetValue(person, kABPersonFirstNameProperty,

(CFStringRef)@"Wonder", &error);

Next we add two phone numbers to the person object. Phone numbers

are multivalued properties in the Address Book schema, so the code is

a bit more involved than setting the name. Here it is:

Download AddressBook/Contacts/Classes/RootViewController.m

// set a phone number

ABMutableMultiValueRef multi =

ABMultiValueCreateMutable(kABMultiStringPropertyType);

ABMultiValueAddValueAndLabel(multi, CFSTR("(123) 456-7654"),

kABPersonPhoneMobileLabel, NULL);

ABMultiValueAddValueAndLabel(multi, CFSTR("(321) 543-7890"),

kABPersonPhoneWorkFAXLabel, NULL);

// add the phone numbers to the person record

ABRecordSetValue(person, kABPersonPhoneProperty, multi, &error);

CFRelease(multi);

if(NULL != error) {

NSLog(@"an error occurred");

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=450

ADDING NEW CONTACTS 451

Instead of passing the phone numbers into the person object, we first

create a multivalued object and add the phone numbers to that object.

Then we pass the multivalue object to the person object. Notice that we

are doing only minimal error checking here; in a more sophisticated

application, you’d want to do more sophisticated error checking.

The phone number multivalue object contains strings, and the address

multivalue uses a dictionary. Let’s look at that next. Here is the code:

Download AddressBook/Contacts/Classes/RootViewController.m

// set the home address

CFStringRef keys[4] = {kABPersonAddressStreetKey,

kABPersonAddressCityKey,

kABPersonAddressStateKey,

kABPersonAddressZIPKey};

CFStringRef values[4] = {CFSTR("765 Four St."),

CFSTR("Fivesville"),

CFSTR("CO"),

CFSTR("80424")};

CFDictionaryRef data =

CFDictionaryCreate(NULL,

(void *)keys,

(void *)values,

4,

&kCFCopyStringDictionaryKeyCallBacks,

&kCFTypeDictionaryValueCallBacks);

multi = ABMultiValueCreateMutable(kABDictionaryPropertyType);

ABMultiValueAddValueAndLabel(multi, data, kABHomeLabel, NULL);

// add the address to the person record

ABRecordSetValue(person, kABPersonAddressProperty, multi, &error);

CFRelease(multi);

At first glance, this code looks much more complicated than setting

up the phone number object. But when you dig into it, what is really

happening is about the same. Instead of creating a string object with

CFSTR(), we create a dictionary. It does take more code, but conceptu-

ally it is still just one object. After we create the dictionary, we add it to

a new multivalued property and then add the address dictionary data

to that multivalued property. After that is all set up, we add the mul-

tivalued property to our person object with the address property. It is

more code, but it’s basically the same thing that we saw with the phone

number.

Finally, now that we have all the data in the person object, it’s time to

add the person to the Address Book, save the data, and clean up.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=451

ADDING NEW CONTACTS 452

Here is the code:

Download AddressBook/Contacts/Classes/RootViewController.m

// add the person record, save and clean up

ABAddressBookAddRecord(addressBook, person, &error);

ABAddressBookSave(addressBook, &error);

CFRelease(person);

CFRelease(addressBook);

Many people get confused by moving to the C API of Core Foundation

when they start dealing with the Address Book; don’t worry if it is con-

fusing at first. It takes some getting used to. But with experience you

will master it. If you would like a primer on the C programming lan-

guage, A Book on C [KP88] is a great resource.

Congratulations, you have successfully added the Address Book to an

application. Using the knowledge you have gained here, you can add

some really great personalization features to your application.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AddressBook/Contacts/Classes/RootViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=452

Chapter 24

iPhone Location API
Having location available on the phone changes your experience while

traveling. You probably expect that when you’re in a major metropolitan

area, there is a great museum close to where you are. If instead you are

in the middle of a remote part of the world on a hike, there probably

isn’t a museum nearby, but there might be an amazing spot to take

photos.

The Core Location service is part of every iPhone, so our iPhone knows

where we are and can therefore help us not miss the best museums or

the most amazing sites. Instead of looking in a book that has places

around “famous” spots, we have a device that can say “you are here”

and then find great spots near where we are.

As with the other iPhone features, it’s important that you stop to think

about how best to take advantage of Core Location. Once you’ve decided

what you want to do with location, you’ll find that it’s surprisingly easy

to use the Core Location service on the iPhone. With just a handful of

lines of code, we can fire up the location-oriented hardware and start

getting updates about the location of the device. Let’s get started.

24.1 Knowing Where

You’ll use the CLLocationManager to turn the location services off and

on and to specify the level of service you need. Let’s build an exam-

ple application that simply displays the location as reported by Core

Location.

To get started, create a new view-based project called LocationDisplay.

You will also need to add the Core Location framework to the project.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

KNOWING WHERE 454

Location Manager’s Delegate

In a typical application, you’d want the delegate object to be
the controller that will be interacting with whatever model you
have to keep track of the application’s location data. In this
example, we don’t have a separate model, so we are sim-
ply going to have our view controller be the delegate. In a
more complex application, you might want to do something
like keep a running weighted average of the location data
over time (as an example). The controller that manages the
weighted average of the data would be a great candidate
to be the delegate.

To do that, select the target for your project, and click D- i . At the

bottom of the General tab, click the + button, and then choose the Core

Location framework.

In LocationDisplayViewController.h, declare a property named locationMan-

ager that is of type CLLocationManager. You also need to add the import

for the Core Location header and the declaration that this class imple-

ments the CLLocationManagerDelegate protocol.

The next step is to create a new Core Location CLLocationManager object

in LocationDisplayViewController’s viewDidLoad method and set the dele-

gate to the view controller. The delegate does not have to be a view

controller; we could use any object as long as it implements the dele-

gate protocol, but it is often convenient. After we create the manager

and set its delegate, we call the startUpdatingLocation method to fire up

all the location-based hardware and start looking for where the iPhone

is. Here is the code required to get notified of location updates:

Download Location/LocationDisplay/Classes/LocationDisplayViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

self.locationManager = [[[CLLocationManager alloc] init] autorelease];

self.locationManager.delegate = self;

[self.locationManager startUpdatingLocation];

}

Now that we have started the location service and set the delegate,

we’ll receive all the location updates when the delegate method loca-

tionManager:didUpdateToLocation:fromLocation: is called. We’ll implement

that method in a minute, but let’s first build a UI that will show the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/LocationDisplay/Classes/LocationDisplayViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=454

KNOWING WHERE 455

Figure 24.1: Location coordinates

location that the hardware has found. We want two labels and two text

fields, one for latitude and one for longitude. The UI is shown in Fig-

ure 24.1.

In the locationManager:didUpdateToLocation:fromLocation: method, we will

need access to these two labels, so don’t forget to add two IBOutlets to

the view controller’s header file and link them in IB. That way, we can

set the text of the text fields as we receive location updates from the

location manager.

Next we need to look at the delegate method that we implement to get

notification of location updates. Here is the code:

Download Location/LocationDisplay/Classes/LocationDisplayViewController.m

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation {

latitudeTextField.text = [NSString stringWithFormat:@"%3.5f",

newLocation.coordinate.latitude];

longitudeTextField.text = [NSString stringWithFormat:@"%3.5f",

newLocation.coordinate.longitude];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/LocationDisplay/Classes/LocationDisplayViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=455

KNOWING WHERE 456

This method is called by the CLLocationManager that we started in the

viewDidLoad method. After we start the location manager, it sends this

method to its delegate at least once (and typically several times; more

on that in a moment). In this method, we are converting the two compo-

nents of the coordinate to strings and placing those strings into the text

fields that we placed on our UI. If you build and run the application in

the simulator, the only location you will get is from Apple’s campus in

Cupertino, California. A typical Mac does not support location aware-

ness, so the simulator can’t either. If you’d like to see a more accurate

representation of what your location is, push the application to your

device and run it.

Now that we have seen the basic operation of the Core Location ser-

vices, let’s go back to the viewDidLoad method and adjust the service

parameters on the location service to optimize for our application.

Core Location Service Parameters

As with every other aspect of iPhone software, the location service uses

power. We need to be careful with how we configure the location service

to make sure that we use as little power as possible and still meet the

requirements of our application.

There are two parameters on the location manager that we can use

to adjust how much power is used on our behalf. The first is called

desiredAccuracy, which tells the location manager how accurate we want

the results it sends to our code to be. There are five options ranging

from kCLLocationAccuracyBest to kCLLocationAccuracyThreeKilometers. The

more accurate we need the results to be, the more power will be con-

sumed in getting that result. So, be deliberate in the way you set this

property. If your application helps people find the closest coffee shop,

then you need much better accuracy than if you are helping them find

the nearest national park. Make sure that you set this to the largest

value your application can reasonably work with.

The next property is called distanceFilter. This property gives us control

over the frequency of updates that we get from the location service. If

you are providing real-time walking directions around a city, then you

will need to set this to a small number (say 5 or 10 meters). If you are

providing more granular information, like how far your user rode her

bike, then the location updates can be more like 100 meters. Keep in

mind that just like the desiredAccuracy property, more updates require

more power.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=456

KNOWING WHERE 457

Joe Asks. . .

How Does Location Work Anyway?

There are three components to the location service for an
iPhone; for the iPod touch, there is one. Wifi-based location
services are common between the iPhone and iPod touch.
Wifi-based location works by querying a global database that
maps wifi router MAC addresses to a geolocation. The iPhone
has two additional means to determine the device’s location.
The first is via cell towers. Many towers (if not all) have their
geolocation and broadcast it to interested devices. Via these
locations, the iPhone can triangulate its position based on the
location information it gets from the towers it can connect.
Finally, almost every iPhone has an integrated GPS receiver that
determines its position by triangulating based on the signals
from three or four GPS satellites.

Of the three options for location determination, GPS uses the
most power, but as clients of the API, we have no way to ask
that any one of these pieces of hardware be used or not. Our
interface is only through the distanceFilter and desiredAccuracy

properties.

Finally, on power consumption, the best thing you can do to limit the

power consumed by the location service is to turn it off. If your appli-

cation needs a fix on location only rarely, then make sure to send the

stopUpdatingLocation when you have a location that is accurate enough

for your application. This will allow the iPhone OS to turn off all the

hardware related to getting your location. The most power efficient chip

is the one that is turned off.

One last point about the location manager—the user can turn off

location-based services in the Settings application. You should consider

checking to see whether the location services have been disabled before

calling startUpdatingLocation. The iPhone OS will prompt the user with

an alert asking whether he wants to turn location services back on. If

your application can work with the location services turned off, then

this could be irritating to the user. If, on the other hand, your appli-

cation won’t work with the location service turned off, then the user

might want the chance to turn it back on from your app.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=457

LOCATION UPDATES 458

As always, test the user experience in all cases to make sure the app

flow is the best it can be for your users.

24.2 Location Updates

Now that we have an application that is updated by the location service,

let’s look at the information that we can get from these updates beyond

the basic latitude and longitude.

When you implement the locatonManager:didUpdateToLocation:fromLo-

cation:, you get not only the current best known location but also the

previous known location. On the first call to this method, the oldLoca-

tion is nil, but the rest of the calls to this method get both old and new

values. The old location can be useful if you want to do a simple form

of averaging of the locations. If your app needs a very accurate loca-

tion value, you probably want to do at least a little bit of averaging.

The location objects that you get here are the subject of the rest of this

section.

Accuracy

We have seen how to tell the Core Location service what accuracy we

want, but just because we are requesting a particular accuracy does

not mean that we will get it. Instead, with each delivery of a location

update, the service also tells us the accuracy of that location. When

the system is determining the accuracy of its location fix, it takes into

account the actual means used to get the fix and many other factors.

We should always look at the accuracy to make sure it is within the

bounds needed for our applications.

There are two accuracy fields on CLLocation objects. The first is called

horizontalAccuracy and tells us how sure the system is of the coordinate

field on the location object (that is, the latitude and longitude). The

second is verticalAccuracy, which tells how sure the system is of the

reported altitude. Both properties will report a negative number when

the system is not sure at all about the accuracy.

The location service is only as good as the data it is able to get. If the

MAC address of the wifi networks that the device has access to are not

in the database or if the cell towers in range don’t provide altitude data,

then the device can’t know where it is. This is where we have to be very

clever in the way we interpret the data. As we have seen, the verticalAc-

curacy property tells us whether the altitude number can be trusted,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=458

LOCATION UPDATES 459

and the horizontalAccuracy value tells us whether the coordinate can be

trusted. If either of these accuracy values is negative, then the corre-

sponding reading should not be trusted. Even when the accuracy num-

bers are positive, on occasion they are potentially inaccurate. Thinking

through how location determination works helps us understand why.

When only one cell tower can be found (for the sake of the argument,

ignore GPS and wifi for now), the device can’t triangulate and knows

only that it’s in range of the tower it can access. Even when two towers

are in range, the numbers can be off by quite a bit.

It is important to keep the accuracy numbers that the location ser-

vice reports in mind as you use the location information. Averaging

the numbers over time will help smooth out the aberrations. There are

many different approaches you could take to do the averaging; the thing

to do is experiment with various approaches to see which one works

best with your application.

Distance

A location object can calculate the distance between itself and another

location object with a call to getDistanceFrom:. This calculation can be

used in a number of applications.

Let’s build an example application that calculates the user’s total dis-

tance and average speed and displays these numbers on the UI. The

user interface with the values displayed in labels is shown in Fig-

ure 24.2, on the next page.

The code behind this sample is very similar to what we have seen before.

In the viewDidLoad, we fire up a CLLocationManager and have it start

updating our location. However, we are a bit more specific on the terms

of service we’d like with this implementation than we were with the last.

Here is the code:

Download Location/Distance/Classes/DistanceViewController.m

- (void)viewDidLoad {

[super viewDidLoad];

self.locationManager = [[[CLLocationManager alloc] init] autorelease];

self.locationManager.distanceFilter = 10.0f;

self.locationManager.delegate = self;

self.locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters;

[self.locationManager startUpdatingLocation];

// 32 is a guess of a 'good' number

self.locations = [NSMutableArray arrayWithCapacity:32];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/Distance/Classes/DistanceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=459

LOCATION UPDATES 460

Figure 24.2: Distance interface

In this method, we set the distanceFilter property to 10 meters because

we want the notification to come in only for changes in distance greater

than 10 meters. Then we set the desiredAccuracy to 10 meters with

the kCLLocationAccuracyNearestTenMeters constant. This combination of

service parameters will tell the hardware that we really only want to

know to within 10 meters accuracy of where we are. We also allocate

a mutable array to hold the location updates. Next up is the delegate

method that processes the location updates. Here is the code:

Download Location/Distance/Classes/DistanceViewController.m

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation {

// if we have a valid location, and its within 20 meters then stop

// updating location, but turn it back on in 60 seconds

if(newLocation.horizontalAccuracy > 0.0f &&

newLocation.horizontalAccuracy < 20.0f) {

if(self.locations.count > 3) {

[self.locationManager stopUpdatingLocation];

[self.locationManager performSelector:@selector(startUpdatingLocation)

withObject:nil

afterDelay:60.0f];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/Distance/Classes/DistanceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=460

LOCATION UPDATES 461

[self.locations addObject:newLocation];

[self updateDisplay];

}

}

In this method, we are looking for a valid accuracy (that is, the horizon-

talAccuracy is greater than zero) and that the accuracy is better than

20.0 meters. Keeping things in this range will ensure that we keep only

valid data in our locations array. Next we make sure to capture at least

three valid locations and then turn off the location manager. We then

queue it up for checking again in sixty seconds. Grabbing three valid

locations before turning off the service ensures that we have a valid

set of data to do our calculations. Turning off the location manager for

sixty seconds after we get a valid location will minimize our impact on

power usage but still give us good enough results for our application.

Finally, we update the user interface with the data so that our users

can see how far they have moved. Here is the code for that method:

Download Location/Distance/Classes/DistanceViewController.m

- (void)updateDisplay {

CLLocationDistance distance = [self totalDistanceTraveled];

totalDistance.text = [NSString stringWithFormat:@"%5.3f", distance];

NSTimeInterval time = [self timeDelta];

// don't want to divide by zero

if(time == 0.0f) {

averageSpeed.text = @"0.000";

} else {

averageSpeed.text = [NSString stringWithFormat:@"%5.3f", distance / time];

}

NSDateFormatter *inputFormatter = [[[NSDateFormatter alloc] init] autorelease];

[inputFormatter setDateFormat:@"HH:mm:ss.SSSS"];

NSDate *date = [(CLLocation *)[self.locations lastObject] timestamp];

lastUpdate.text = [inputFormatter stringFromDate:date];

}

In this method, we are just performing the calculations necessary to

find the total distance traveled and the time taken to travel that dis-

tance and then using these two values to calculate the average speed.

The timestamp label is also updated. Don’t forget that in order to make

all this work with the default view controller you get from the template,

you need to add IBOutlets to the UILabels and configure the UI in Inter-

face Builder.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/Distance/Classes/DistanceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=461

COMPASS 462

Now let’s look at how the total distance traveled is calculated. Here is

the code:

Download Location/Distance/Classes/DistanceViewController.m

- (CLLocationDistance)totalDistanceTraveled {

CGFloat totalDistanceTraveled = 0.0f;

CLLocation *oldLocation = nil;

for(CLLocation *location in self.locations) {

if(nil == oldLocation) {

oldLocation = location;

continue;

}

totalDistanceTraveled += fabs([location getDistanceFrom:oldLocation]);

oldLocation = location;

}

return totalDistanceTraveled;

}

In this method, we are summing the differences between the previous

location and the new location. We take the absolute value because we

count going forward and backward while still traveling. If we did not

take the absolute value, we could show a zero amount traveled if the

user went 1 kilometer north and then 1 kilometer south.

Finally, here is the calculation for the time delta:

Download Location/Distance/Classes/DistanceViewController.m

- (NSTimeInterval)timeDelta {

NSDate *first = [(CLLocation *)[self.locations objectAtIndex:0] timestamp];

NSDate *last = [(CLLocation *)[self.locations lastObject] timestamp];

return [last timeIntervalSince1970] - [first timeIntervalSince1970];

}

This method simply calculates the time difference between the first

location object and the last.

24.3 Compass

With iPhone OS 3.0, Apple added support for a magnetometer, which is

basically a fancy word for a digital compass. The new features require

one of the new iPhone 3Gs devices to work, but the great part is you

really don’t have a lot more to learn here. As the delegate of your

location manager, you can implement the locationManager:didUpdate-

Heading: method to receive updated heading information. All you need

to do is tell your location manager to turn on the compass by sending

the startUpdatingHeading.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/Distance/Classes/DistanceViewController.m
http://media.pragprog.com/titles/amiphd/code/Location/Distance/Classes/DistanceViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=462

COMPASS 463

Let’s add the heading to our display of location manager information.

Open the LocationDisplayViewController.xib file, and add a label and text

field to the view. Change the label’s text to Heading:. In the LocationDis-

playViewController.h file, add an IBOutlet to point to the new text field, and

call it headingTextField. Add the @synthesize statement to the implementa-

tion, and save your work. Now go back to Interface Builder, and connect

the new outlet to the new text field. Now that we have the connections

done, we can turn on the compass. Here is the code from the location

display example with the additional code to turn on the compass on

line 6:

Download Location/LocationDisplay02/Classes/LocationDisplayViewController.m

Line 1 - (void)viewDidLoad {
2 [super viewDidLoad];
3 self.locationManager = [[[CLLocationManager alloc] init] autorelease];
4 self.locationManager.delegate = self;
5 [self.locationManager startUpdatingLocation];
6 [self.locationManager startUpdatingHeading];
7 }

Simply calling the startUpdatingHeading turns on the compass and will

cause the location manager to inform us with each heading update by

calling the locationManager:didUpdateHeading: method. When we get this

call, we are going to update the text field in the delegate method. Here

is the code:

Download Location/LocationDisplay02/Classes/LocationDisplayViewController.m

- (void)locationManager:(CLLocationManager *)manager

didUpdateHeading:(CLHeading *)newHeading {

headingTextField.text = [NSString stringWithFormat:@"%3.2f",

newHeading.trueHeading];

}

In your own application, you will likely want to do something much

more sophisticated with your user interface. For example, you might

want to draw a view differently depending on which direction the user

is facing.

The magnetometer occasionally needs to be calibrated. When the loca-

tion manager discovers that a calibration step is necessary, it will send

the delegate a locationManagerShouldDisplayHeadingCalibration:. If you re-

turn YES, a panel pops up and asks the user to move the device around

in a figure-eight pattern. If you return NO, the panel is not displayed.

Keep in mind that if you don’t allow the calibration step to take place,

all the heading updates will reflect uncalibrated results.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Location/LocationDisplay02/Classes/LocationDisplayViewController.m
http://media.pragprog.com/titles/amiphd/code/Location/LocationDisplay02/Classes/LocationDisplayViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=463

COMPASS 464

Another thing to keep in mind when using the compass feature is that

only some iPhone OS devices support this feature. To discover whether

the current device has a compass, you can get the headingAvailable

property from your location manager. If the value is YES, the device has

a compass and NO otherwise. You should check this property before

you try to turn on heading updates.

As you can see, there are a lot of options in how to use the location

manager and the Core Location service. It is vital that any application

that we write with the location service is careful to be a good citizen and

not consume more power than is necessary.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=464

Chapter 25

Map Kit
Location services are fantastic and can add some cool features to our

apps. Once your app knows where your user’s device is, the next logical

step is often to place that location on a map. That is where Map Kit

comes in. With Map Kit, we can place locations onto a map and then

present that map to our users. Map Kit provides the tiles (the images

used in the map) and all the zooming and panning features.

Let’s get started building an application to help us explore what is pos-

sible with the Map Kit.

25.1 Contact Mapper

Contact Mapper is an application to place selected contacts onto a map

and show them relative to where you are. After starting up, the map

shows your location with the nice blue button that is typical of the Maps

application. You can then hit the Choose button to get to your contacts.

After selecting a contact, a pin is placed at the contact’s address, and

then the map zooms to show both your location and the location of your

contact. On the next page is a screenshot of the application running in

the simulator with a single contact added.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

SHOWING A MAP 466

When the user clicks the pin, the callout is shown (Kate Bell in the

screenshot). Clicking the blue chevron brings the user to the contact’s

editing page. The blue dot shows the device’s current location (in the

simulator that defaults to Cupertino, California).

Map Kit provides a whole host of great features for this application.

The user can pinch to zoom, move a finger around on the screen to

move the map, and even flick to move a long way on the map. All the

tiles from Google Maps are loaded automatically and zoomed/scaled as

appropriate. Map Kit makes building this kind of application a breeze.

25.2 Showing a Map

Let’s get started building ContactMapper with a new view-based appli-

cation. We are not going to go step-by-step; there is too much Map

Kit–specific stuff to cover. So, if you need a nudge to get the application

working, grab the code from the book’s code bundle under the MapKit

folder.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=466

SHOWING A MAP 467

In this first version of the application, we’ll get the map to appear and

to show the current location. To use Map Kit, we need to add the Map

Kit.framework and CoreLocation.framework frameworks to the project.1

Open the ContactMapperViewController.xib file so we can work on the

interface. If the view is not already open, double-click it. Open the

library (D-B-L), and choose Map View. It’s in the Data Views group.

Here is a screenshot of the library with Map View selected:

Drag the map view out onto the view. With the map view selected, open

the Attributes inspector (D-1). Specify that the map should show the

user’s current location by turning on the switch box. We have the map

type set to Map; the other choices are Satellite and Hybrid. In a typical

app, you should provide a way for the user to switch between the three

types unless it does not make sense for your user to switch. We are

finished with IB for the moment, so save your work and hide (D-H) it.

In fact, we now have a map-based application. If you Build and Go, the

application will appear and show the blue dot for where you are. Once

loaded, the map can be zoomed in or out panned around—all the stuff

you’d expect from a map on your phone.

1. To add frameworks, select the ContactMapper target (in the Targets group), right-click

it, and choose Get Info. In the General tab, hit the + button at the bottom of the screen,
choose the two frameworks, and click the Add button.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=467

SHOWING A MAP 468

But we don’t want to stop here. When the current location is found,

we want the map to recenter over that location and zoom in so that the

features/map is recognizable. The map view method setRegion:animated:

does exactly what we want. The region parameter is a C structure, much

like the CGRect we first discussed in the Chapter 19, Drawing in Custom

Views, on page 390. The MKCoordinateRegion has two parts, the center

and the span. The center is a CLLocationCoordinate2D with the latitude

and longitude of the center point of the region. The span is an MKCo-

ordinateSpan and specifies the change in longitude and latitude degrees

that the region should encompass. Keep in mind that the actual area

defined by the span will vary depending on how far you are from the

equator; the further north you go, the closer together the longitude lines

become.

When the user’s current location is updated, we want to recenter the

map over that location and change the span to about 0.15 degrees in

each direction.

Recentering the map is a snap; we just create the new MKCoordinateRe-

gion and tell the map view what its region is. Here is the code to do

that:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (void)setCurrentLocation:(CLLocation *)location {

MKCoordinateRegion region = {{0.0f, 0.0f}, {0.0f, 0.0f}};

region.center = location.coordinate;

region.span.longitudeDelta = 0.15f;

region.span.latitudeDelta = 0.15f;

[self.mapView setRegion:region animated:YES];

}

We initialize the region to contain all zeros. Then we set the center and

span of our region and tell the view to make that its region. Setting the

animation flag to YES as you’d expect causes the map to animate to the

new region. If you set it to NO, the view will jump to the new region. To

make this work, we also need to have a pointer to the map view, so you

guessed it—we need to add an IBOutlet to our interface and make the

connection in IB.

The interesting part of this feature is knowing when the update should

occur. Well, you already know at least one way to accomplish this. Our

view controller can become the delegate of a location manager and

recenter the map each time an update comes in; for more detail, see

Chapter 24, iPhone Location API , on page 453. But it turns out that the

map view already does that for us. When we turn on the Shows User

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=468

MAP ANNOTATIONS 469

Location switch in IB or set the showsUserLocation property to YES, the

map view will turn on the location manager and get updated with the

current location. All we need to do is implement the proper map view

delegate method. We will look at that in just a minute.

25.3 Map Annotations

There are two parts to each annotation on the map. The model piece of

it is intended to be lightweight, so you can have many of them attached

to a given map and not have to worry about the memory footprint. The

other side is the view. Let’s look at the model side first.

Map Kit defines the MKAnnotation protocol but no public implementa-

tions. So, in order to add an annotation to the map, we need to cre-

ate our own implementation of this protocol. The protocol defines one

property and two optional methods. The property is the location for the

annotation; the methods are title and subtitle. The title is used as the

text for the callout when the user clicks the annotation. The subtitle is

displayed in smaller text under the title. Here is the header file for our

annotation:

Download MapKit/ContactMapper_01/Classes/ContactAnnotation.h

#import <Foundation/Foundation.h>

#import <CoreLocation/CoreLocation.h>

#import <MapKit/MapKit.h>

#import <AddressBook/AddressBook.h>

@interface ContactAnnotation : NSObject <MKAnnotation> {

CLLocationCoordinate2D _coordinate;

NSString *_title;

NSString *_subtitle;

ABRecordRef _person;

}

+ (id)annotationWithCoordinate:(CLLocationCoordinate2D)coordinate;

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate;

@property (nonatomic, assign) CLLocationCoordinate2D coordinate;

@property (nonatomic, assign) ABRecordRef person;

@property (nonatomic, copy) NSString *title;

@property (nonatomic, copy) NSString *subtitle;

@end

Since our annotation represents one of our contacts, we add a prop-

erty named person for the contact. We also defined the title and subtitle

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactAnnotation.h
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=469

MAP ANNOTATIONS 470

properties instead of just defining the methods defined in the proto-

col. Finally, we have the initWithCoordinate: and annotationWithCoordinate:

methods that do as you’d expect, initialize a ContactAnnotation, and cre-

ate and return an autoreleased annotation, respectively. Here is the

implementation for the ContactAnnotation:

Download MapKit/ContactMapper_01/Classes/ContactAnnotation.m

@implementation ContactAnnotation

@synthesize coordinate = _coordinate;

@synthesize title = _title;

@synthesize subtitle = _subtitle;

@synthesize person = _person;

+ (id)annotationWithCoordinate:(CLLocationCoordinate2D)coordinate {

return [[[[self class] alloc] initWithCoordinate:coordinate] autorelease];

}

- (id)initWithCoordinate:(CLLocationCoordinate2D)coordinate {

self = [super init];

if(nil != self) {

self.coordinate = coordinate;

}

return self;

}

@end

Now that we have our annotation, we need to look at how we are going

to create and add the annotation to the map. Thinking back to the

way we want the application to work, when the user clicks the Choose

button, we want to bring up the people picker. After a contact’s address

is chosen, we want to add the annotation. To make that happen, we

have to do a couple of steps:

1. Add the AddressBook and AddressBookUI frameworks to the

project.

2. Add an action method to the view controller, and implement it to

present the person chooser.

3. Add a toolbar to the bottom of the view, and resize the map view

to fit.

4. Connect the Choose button to the action method.

5. Implement the people picker delegate protocol to get the address

when it’s clicked.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactAnnotation.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=470

MAP ANNOTATIONS 471

Let’s look at the action method. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (IBAction)choose {

ABPeoplePickerNavigationController *picker =

[[ABPeoplePickerNavigationController alloc] init];

picker.peoplePickerDelegate = self;

[self presentModalViewController:picker animated:YES];

[picker release];

}

Now that we have the implementation, we need to add the declaration

in the header file and then go back to IB to add the toolbar and make

the connection from the button to the File’s Owner.

For more detail on the people picker, see Chapter 23, Address Book, on

page 443. Now that we have become the delegate of the people picker,

we need to add that protocol to the header file and implement the meth-

ods. Of the three methods, we are going to look only at one, the peo-

plePickerNavigationController:shouldContinueAfterSelectingPerson:property:

identifier: method. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

Line 1 - (BOOL)peoplePickerNavigationController:
- (ABPeoplePickerNavigationController *)peoplePicker
- shouldContinueAfterSelectingPerson:(ABRecordRef)person
- property:(ABPropertyID)property
5 identifier:(ABMultiValueIdentifier)identifier{
- if(kABPersonAddressProperty == property) {
- NSString *fullName = (NSString *)ABRecordCopyCompositeName(person);
- CLLocationCoordinate2D coordinate = {0.0f, 0.0f};
- self.newAnnotation = [ContactAnnotation annotationWithCoordinate:coordinate];

10 self.newAnnotation.title = fullName;
- self.newAnnotation.person = person;
- [fullName release];
- ABMultiValueRef addresses =
- ABRecordCopyValue(person, kABPersonAddressProperty);

15 CFIndex selectedAddressIndex =
- ABMultiValueGetIndexForIdentifier(addresses, identifier);
- CFDictionaryRef address =
- ABMultiValueCopyValueAtIndex(addresses, selectedAddressIndex);
- self.newAnnotation.coordinate = [AddressGeocoder locationOfAddress:address];

20 [self dismissModalViewControllerAnimated:YES];
- }
- return NO;
- }

If the contact’s address was chosen, then we grab the contact’s full

name, create an annotation, set the fullName to be the title, and set the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=471

MAP ANNOTATIONS 472

annotation’s person to be the selected contact. We also grab the address

starting on line 13. We then geocode the address on line 19. We will look

at the geocoding stuff in a moment (in Section 25.3, TouchXML and the

AddressGeocoder, on page 474). After the user has chosen an address,

we dismiss the person picker view.

Now our work is almost complete. Although we have created the new

annotation, we have not added it to the map. We could do that in the

people picker delegate method. However, we will get a much nicer ani-

mation if we place the code in the viewDidAppear: name. Here is the

code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];

if(nil != self.newAnnotation) {

[self.mapView addAnnotation:self.newAnnotation];

self.newAnnotation = nil;

}

if(self.mapView.annotations.count > 1) {

[self recenterMap];

}

}

First we check to see whether we have a new annotation to add, and

if so, we add it and then set the newAnnotation to nil. If we have more

than one annotation, we also recenter the map by calling the recen-

terMap method. Recentering the map is straightforward; we build a new

region centered between the annotations with a span that covers all the

annotations. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (void)recenterMap {

NSArray *coordinates = [self.mapView valueForKeyPath:@"annotations.coordinate"];

CLLocationCoordinate2D maxCoord = {-90.0f, -180.0f};

CLLocationCoordinate2D minCoord = {90.0f, 180.0f};

for(NSValue *value in coordinates) {

CLLocationCoordinate2D coord = {0.0f, 0.0f};

[value getValue:&coord];

if(coord.longitude > maxCoord.longitude) {

maxCoord.longitude = coord.longitude;

}

if(coord.latitude > maxCoord.latitude) {

maxCoord.latitude = coord.latitude;

}

if(coord.longitude < minCoord.longitude) {

minCoord.longitude = coord.longitude;

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=472

MAP ANNOTATIONS 473

if(coord.latitude < minCoord.latitude) {

minCoord.latitude = coord.latitude;

}

}

MKCoordinateRegion region = {{0.0f, 0.0f}, {0.0f, 0.0f}};

region.center.longitude = (minCoord.longitude + maxCoord.longitude) / 2.0;

region.center.latitude = (minCoord.latitude + maxCoord.latitude) / 2.0;

region.span.longitudeDelta = maxCoord.longitude - minCoord.longitude;

region.span.latitudeDelta = maxCoord.latitude - minCoord.latitude;

[self.mapView setRegion:region animated:YES];

}

After identifying the minimum and maximum latitude and longitude,

we create a new region based on this min and max and then tell the

map view to set its region to this new region.

Now we have an application that does most of what we want. Build

and Go, and choose one of your contacts to see the pin drop and the

map resize to fit your current location and the location of the chosen

contact.

However, our pin is red, and we really wanted it to be purple. The

default color is red, and since we have not done anything special, that

is what we get. Although that works, we want a purple pin. To get a

purple pin, we need to implement the MKMapViewDelegate protocol.

There are several methods in the MKMapViewDelegate protocol; most of

them are callbacks to let you know when interesting stuff is happening

with the map view (that is, mapViewWillStartLoadingMap:). The one we are

interested in now, though, is the mapView:viewForAnnotation: method.

Like the table view, the map view keeps a set of annotation views that

can be dequeued and reused. Our implementation of this method needs

to take that into account and make sure to use the dequeued view when

possible. Here is the code:

Download MapKit/ContactMapper_01/Classes/ContactMapperViewController.m

- (MKAnnotationView *)mapView:(MKMapView *)mapView

viewForAnnotation:(id <MKAnnotation>)annotation {

MKPinAnnotationView *view = nil;

if(annotation != mapView.userLocation) {

view = (MKPinAnnotationView *)

[mapView dequeueReusableAnnotationViewWithIdentifier:@"identifier"];

if(nil == view) {

view = [[[MKPinAnnotationView alloc]

initWithAnnotation:annotation reuseIdentifier:@"identifier"]

autorelease];

}

[view setPinColor:MKPinAnnotationColorPurple];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_01/Classes/ContactMapperViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=473

MAP ANNOTATIONS 474

[view setCanShowCallout:YES];

[view setAnimatesDrop:YES];

} else {

CLLocation *location = [[CLLocation alloc]

initWithLatitude:annotation.coordinate.latitude

longitude:annotation.coordinate.longitude];

[self setCurrentLocation:location];

}

return view;

}

The first thing we do is check whether the current annotation is the

current user location. We could return our own annotation view for the

current user location, and it would work; however, if we return nil, then

the default annotation view is used. The default annotation view for

the current user’s location is the blue dot that has the nice bouncing

animation.

If this is not the user’s current location, we dequeue an annotation

view, and if there is not one to dequeue, we create one. Then we set up

the annotation view the way we want it and then return the view. In

our case, we are setting the pin color to purple, turning on callouts and

specifying that the annotation should drop in with an animation.

If it is the user’s current location, we call the setCurrentLocation:. This is

where we get the Map Kit’s integration with a location manager without

having to implement the delegation methods ourselves.

TouchXML and the AddressGeocoder

Now let’s talk about the AddressGeocoder. The geocoder uses a web ser-

vice to encode the addresses. We pass in an address and out pops XML

with the address and the latitude and longitude. As you saw back in

the Chapter 12, Connecting to the Internet, on page 244, we can use

the NSXMLParser to parse XML, and although that works, it can be quite

tedious to parse the whole XML file when you really want only a couple

of bits of information. To get at the data we want, we have a couple of

options. The iPhone includes the libXML2 open source library, which

works like a champ. But the API is entirely C-based, which makes it

a bit of a cognitive disconnect when you’d rather be doing Objective-C.

Enter the TouchXML open source library.

TouchXML provides an Objective-C wrapper over the libXML2 library.

The project is located on the Google Code website at http://code.google.

com/p/touchcode/wiki/TouchXML. Version 1.0.6 is included in the code

for this chapter, so you don’t have to download it. The driver behind

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://code.google.com/p/touchcode/wiki/TouchXML
http://code.google.com/p/touchcode/wiki/TouchXML
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=474

MAP ANNOTATIONS 475

TouchXML is to provide the simplified XML APIs that are available on

the Mac but not on the iPhone. So, if you want detailed documentation

about one of the classes, you can replace the leading C with NS and look

in the Mac documentation for details.

TouchXML provides us with XPath, which requires far less code to

extract the information we need than doing the same with the parser.

To get TouchXML working with your project, you need to do a couple of

things:

• Get the code, either from the projects for this chapter or from the

website.

• Add the source code for TouchXML and Tidy to your project.

• Add the libxml2 header path to your header search path.

The TouchXML code includes the code for Tidy, so if you grabbed the

code from TouchXML’s website or from the code bundle for the book,

you have the Tidy code. Let’s look at adding the code to your project so

you can use it instead of the parser.

First we need to add a group for TouchXML and then add a group

under TouchXML for Tidy. Select the project, Ctrl+click, and choose

Add > New Group. Name the group TouchXML. Select the group, right-

click, and choose Get Info. On the General tab, click the Choose button

near the Path item. Create a new folder called TouchXML, select it,

and hit the Choose button. Repeat the steps for the Tidy group, select

the TouchXML group, right-click, choose Add > New Group, name it

Tidy, and specify its path is the Tidy folder. Here is a screenshot of the

TouchXML folder in our project:

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=475

MAP ANNOTATIONS 476

Depending on where you got the code, the directory structure will be

different. If you are grabbing the code from the book’s source bundle,

then everything is under the TouchXML directory and the Tidy direc-

tory under that. If you are grabbing the source from the TouchXML

project site, the TouchXML code is under Common/Source and Com-

mon/Source/Creation. The Tidy source is under Externals/tidy/src and Exter-

nals/tidy/include. You need all the files from both TouchXML and Tidy.

In the Finder, select all the files for TouchXML, and drag them into the

TouchXML group in Xcode. When prompted, make sure to select the

“copy files” checkbox. Do the same for the Tidy files, dragging them

into the Tidy group, and make sure to copy them as well. When you are

done, Xcode should look roughly like this:

Now that we have all the code, we need to tell Xcode where to find the

libXML2 headers. Select your target under the Targets group. Right-

click or C-click the item, and choose Get Info. On the Build tab, type

header s into the search field, and you should see something like the

next screenshot.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=476

MAP ANNOTATIONS 477

Double-click the line that reads Header Search Paths. In the sheet that

pops up, click the + button, and type /usr/include/libxml2 into the Path

column. When you are done, it should look like this:

Click the OK button, and you should be able to build with TouchXML

and Tidy as part of your project.

There are other ways to approach this; we could instead make a static

library from the TouchXML and Tidy source, but that is beyond what

we will cover.

Now that we have TouchXML set up and running, let’s take a look at

the AddressGeocoder class and how it uses TouchXML to get an address

back from one of the geocoding services.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=477

MAP ANNOTATIONS 478

Here is part of the implementation:

Download MapKit/ContactMapper_02/Classes/AddressGeocoder.m

Line 1 + (BOOL)geocodeStreetAddress:(NSString *)street
- city:(NSString *)city
- state:(NSString *)state
- zip:(NSString *)zip
5 country:(NSString *)country
- intoLocation:(CLLocationCoordinate2D *)location {
- BOOL success = NO;
- NSURL *url = [self urlForAddress:street city:city state:state
- zip:zip country:country];

10 NSError *error = nil;
- CXMLDocument *doc = [[CXMLDocument alloc]
- initWithContentsOfURL:url
- options:CXMLDocumentTidyXML error:&error];
- CXMLElement *element = [doc rootElement];

15 NSDictionary *namespaceMappings =
- [NSDictionary dictionaryWithObject:@"http://earth.google.com/kml/2.0"
- forKey:@"kml"];
- NSArray *status = [element nodesForXPath:@"//kml:Status/kml:code"
- namespaceMappings:namespaceMappings

20 error:&error];
- if([@"200" isEqualToString:[[status objectAtIndex:0] stringValue]]) {
- NSArray *coordElements = [element nodesForXPath:@"//kml:coordinates"
- namespaceMappings:namespaceMappings
- error:&error];

25 NSString *coords = [[coordElements objectAtIndex:0] stringValue];
- NSArray *components = [coords componentsSeparatedByString:@","];
- NSNumberFormatter *formatter = [[NSNumberFormatter alloc] init];
- NSNumber *longitude =
- [formatter numberFromString:[components objectAtIndex:0]];

30 NSNumber *latitude =
- [formatter numberFromString:[components objectAtIndex:1]];
- location->longitude = [longitude floatValue];
- location->latitude = [latitude floatValue];
- [formatter release];

35 success = YES;
- }
- return success;
- }

On line 9, we turn the address into a URL suitable for the geocoding

service we are using. This URL will of course be service specific. Next

we grab the XML from the Web and turn it into a CXMLDocument on

line 13. Behind the scenes, TouchXML takes the URL, downloads the

whole XML document, parses it, and turns it into a DOM tree for us to

use. Downloading the XML on the main thread might not be the best

option for your application, so evaluate carefully if you need to place

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_02/Classes/AddressGeocoder.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=478

SELECTING AN ANNOTATION 479

this into a background thread. For this example, we are not going to

go into placing our XML parsing and downloading into a background

thread. Next we set up the name spaces used by the XML document. We

then get and check the status to make sure that we got a valid response

from our server on line 20. Then if everything has gone as planned, we

have a valid response, and we turn that into a latitude and longitude

starting on line 24.

This is not all the code involved in the AddressGeocoder; for the complete

class, make sure to download the code bundle and add the class to the

project.

Our application is nearly finished. We can select contacts from the peo-

ple picker and have them placed on a map. The last feature we need to

implement is seeing the details about a contact when we click one of

the pins. Let’s look at that now.

25.4 Selecting an Annotation

When the user clicks one of the annotations on the map, the map view

displays the callout view. The callout can have two accessory views.

Although we can use any subclass of UIView as the accessory view for

our annotation, it is typical to use a UIControl. If you use a control, the

map view will take care of handling the events for you. If you write your

own view, then you will have to deal with the events yourself.

In the Maps application, the accessory view used is a UIButton with its

type set to UIButtonTypeDetailDisclosure. Since users are so used to that

paradigm, we are going to do the same in our application. Here is the

modified code that builds the annotation view:

Download MapKit/ContactMapper_02/Classes/ContactMapperViewController.m

Line 1 - (MKAnnotationView *)mapView:(MKMapView *)mapView
- viewForAnnotation:(id <MKAnnotation>)annotation {
- MKPinAnnotationView *view = nil;
- if(annotation != mapView.userLocation) {
5 view = (MKPinAnnotationView *)
- [mapView dequeueReusableAnnotationViewWithIdentifier:@"identifier"];
- if(nil == view) {
- view = [[[MKPinAnnotationView alloc]
- initWithAnnotation:annotation reuseIdentifier:@"identifier"]

10 autorelease];
- view.rightCalloutAccessoryView =
- [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
- }

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_02/Classes/ContactMapperViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=479

SELECTING AN ANNOTATION 480

- [view setPinColor:MKPinAnnotationColorPurple];
15 [view setCanShowCallout:YES];

- [view setAnimatesDrop:YES];
- } else {
- CLLocation *location = [[CLLocation alloc]
- initWithLatitude:annotation.coordinate.latitude

20 longitude:annotation.coordinate.longitude];
- [self setCurrentLocation:location];
- [location release];
- }
- return view;

25 }

On line 11, we set the right callout accessory view to be a button. Notice

that we don’t have to set up the target/action stuff for the button. The

map view takes care of it for us and calls the mapView:annotationView:

calloutAccessoryControlTapped: method when the accessory button is

clicked.

This callback is similar in many ways to the method that is invoked by

the table view when a row is clicked. The map view calls us when the

user taps on the control to let us know so we can do whatever the user

expects. Here is the implementation:

Download MapKit/ContactMapper_02/Classes/ContactMapperViewController.m

- (void)mapView:(MKMapView *)mapView

annotationView:(MKAnnotationView *)view

calloutAccessoryControlTapped:(UIControl *)control {

ContactAnnotation *ann = (ContactAnnotation *)view.annotation;

ABPersonViewController *personVC =

[[[ABPersonViewController alloc] init] autorelease];

UINavigationController *nav =

[[[UINavigationController alloc] initWithRootViewController:personVC]

autorelease];

personVC.navigationItem.leftBarButtonItem =

[[[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemStop

target:self

action:@selector(stopEditingPerson)]

autorelease];

personVC.displayedPerson = ann.person;

personVC.personViewDelegate = self;

[self presentModalViewController:nav animated:YES];

}

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/MapKit/ContactMapper_02/Classes/ContactMapperViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=480

SELECTING AN ANNOTATION 481

We create the person view controller, set it up in a nav controller so we

can add buttons to the nav bar, and then set the person that we want

displayed. Just before displaying the person view, we set our selves

as the delegate. In our implementation of the person viewer delegate

method, we simply return NO. But in your application, it might make

sense to allow the user to dial a number or send an email from this

view.

The Map Kit has some great functionality that gives our applications

something far more interesting than what we could achieve with the

location manager alone.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=481

Chapter 26

Application Integration
Integrating your application with others on the system adds a level of

sophistication that your users are sure to appreciate. For example, if

your application displays phone numbers, your users will be very grate-

ful if you allow them to click the phone number and have the phone

application launched.

In this chapter, we will see how to get our applications to launch the

others on the system. The actual code to do so is minimal; the inter-

esting parts of the integration come down to what you want the user

experience to be.

We’ll also show you how to allow other applications to launch your

application in the same way that Apple has made it possible for us to

launch Mail and Safari. We will see how in the last half of this chapter.

Let’s start with an application that will launch Safari and search for a

term with Google.

26.1 Launching Other Applications

Applications that support URLs can be launched with a call to the UIAp-

plication’s openURL:. As long as the URL is well formed and the applica-

tion is properly registered, the iPhone OS will take care of the rest. Let’s

look at how to launch Safari with this mechanism.

Let’s create a new project, add the UI to let us enter a search term, and

add the code that will launch Safari and run a search at Google. Create

a new view-based project called Searcher. Open the SearcherViewCon-

troller.xib file, and add a text field to the view. Set its placeholder text to

“query term” in the Attributes inspector (D-1). Then set the text field’s

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

LAUNCHING OTHER APPLICATIONS 483

delegate to be the file’s owner (Ctrl+drag from the text field to the File’s

Owner object). We are finished with the UI, so you can quit Interface

Builder if you’d like.

Now we need to implement the UITextFieldDelegate protocol on our

SearcherViewController class so that we can capture the search term from

the text field. (For more information on the delegate protocol, see Sec-

tion 4.7, Configuring the Text Field, on page 81.) Open the SearcherView-

Controller.h, and add the protocol declaration; then open the Searcher-

ViewController.m file, and add an implementation of the textFieldShoul-

dReturn: that looks like this:

Download AppIntegration/Searcher/Classes/SearcherViewController.m

- (BOOL)textFieldShouldReturn:(UITextField *)field {

[field resignFirstResponder];

return YES;

}

As we saw in Section 4.7, Configuring the Text Field, on page 81, the

textFieldShouldReturn: is a great place to resign first responder status

so the keyboard animates out. The next method that we implement

is textFieldDidEndEditing:. Here is the code for that method:

Download AppIntegration/Searcher/Classes/SearcherViewController.m

- (void)textFieldDidEndEditing:(UITextField *)field {

NSString *query = @"iPhone";

if(field.text != nil && [field.text length]) {

query = field.text;

}

NSString *urlString = [NSString stringWithFormat:@"http://google.com?q=%@",

query];

NSURL *url = [NSURL URLWithString:urlString];

[[UIApplication sharedApplication] openURL:url];

}

If there is a query term, we grab it; otherwise, we default to searching

for iPhone. Once we have the term, we construct a URL with it. Then

we get our application object via the sharedApplication method and ask

our application to open the URL with openURL:.

When the user taps the return button after typing in a term, Safari will

be launched and will open the URL and thus display search results.

Although it is great to be able to reuse these other applications via

this mechanism, it does cause your application to quit, so you should

consider the implications of that closely as you take advantage of this

feature. If the launch to a new app is a logical stopping point in your

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AppIntegration/Searcher/Classes/SearcherViewController.m
http://media.pragprog.com/titles/amiphd/code/AppIntegration/Searcher/Classes/SearcherViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=483

BECOMING INTEGRATION READY 484

application and the user is unlikely to want to return to your app unless

they are starting a new cycle, then this type of integration makes great

sense. If the user is going to want to come back to your application after

a short time and continue where they left off, you will need to take that

into account with the way your application launches1 to make sure the

experience is what your users want and expect.

In this example, we have seen HTTP links. However, Cocoa Touch sup-

ports several other schemes. Phone uses the tel: scheme, and SMS uses

the sms:. Unlike the other applications, Maps, YouTube, and the App-

Store use specially constructed http: URLs.

All the applications that can be launched from a URL will be launched

in the same way. The only difference is in the construction of the URL.

You can read the details about the various URL schemes that are sup-

ported in the iPhone docs by doing a full-text search for URL Scheme

Reference.

Now that we have seen how to launch an application with a URL, let’s

go see how we can make one of our applications launchable.

26.2 Becoming Integration Ready

In this section, we are going to see what needs to be done to make your

application launch with a URL. There are just two steps:

1. Add an entry to your Info.plist file.

2. Implement the application:handleOpenURL: method.

And that is it. As you can see, getting your application integration ready

is straightforward. Let’s look at an example that can be launched via

a URL and uses the resource specifier of the URL to update a label on

the UI.

Start another view-based project called Integrated. Open the Integrat-

edViewController.h and add two instance variables, one NSString named

message and an IBOutlet called messageLabel of type UILabel. Also add a

property for message so we can set it from the app delegate (which we

will update shortly).

1. For example, you could save the state of where your application is when the other
app is launched and then restore that location when the user returns.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=484

BECOMING INTEGRATION READY 485

Our header looks like this:

Download AppIntegration/Integrated/Classes/IntegratedViewController.h

@interface IntegratedViewController : UIViewController {

NSString *message;

IBOutlet UILabel *messageLabel;

}

@property(nonatomic, retain) NSString *message;

@end

Now let’s go update the UI and make our connections. Open the Inte-

gratedViewController.xib file. Add a UILabel to the view, and set its text to

default. Connect the IntegratedViewController’s messageLabel outlet to the

newly added UILabel (the IntegratedViewController is the File’s Owner). We

are done with the UI, so you can quit Interface Builder if you’d like.

Next we need to implement the setMessage: method in the Integrated-

ViewController so that whenever the message is set, the label also gets

updated. Here is the code:

Download AppIntegration/Integrated/Classes/IntegratedViewController.m

- (void)setMessage:(NSString *)newMessage {

[message release];

message = [newMessage retain];

messageLabel.text = message;

}

In this method, we are making sure to honor the retain attribute we set

in the property declaration by releasing the old message and retaining

the new message. Then, after doing the housekeeping, we update the

messageLabel. That is all we need to do here.

Next up we need to implement the application:handleOpenURL: method.

The implementation of this method can be very simple or very complex

depending of course on the needs of your application. However, there

are some things that you should be very deliberate in thinking through:

• The URL is a public API; it’s difficult to change once others start

to use it.

• What malicious use could be made of the URL? You must make

sure to guard against the attacks you have thought of and the

ones you have not.

• Limiting the complexity (and thus flexibility) of the URL will make

it easier for others to integrate.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AppIntegration/Integrated/Classes/IntegratedViewController.h
http://media.pragprog.com/titles/amiphd/code/AppIntegration/Integrated/Classes/IntegratedViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=485

BECOMING INTEGRATION READY 486

For our example, we are going to do only minimal work on checking the

URL to make sure it is not malicious (not that the app needs that; it’s

just for illustration). And since this is just an illustrative application,

there is no real complexity to consider, so our URL scheme/ implemen-

tation is very simple. We choose integrated:// as our scheme and will

take the resource specifier (the part after :// in the URL) as the mes-

sage. Here is the implementation of application:handleOpenURL::

Download AppIntegration/Integrated/Classes/IntegratedAppDelegate.m

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {

BOOL flag = NO;

if([[url resourceSpecifier] length] < 25) {

viewController.message = [[url resourceSpecifier] substringFromIndex:2];

flag = YES;

}

// if the message is longer than 25 it might be malicious

return flag;

}

In this code, we are first checking to see whether the resource specifier

is less than 25 characters, and if so, we use it; otherwise, we assume it

might be malicious and ignore it. If the URL meets our approval, then

we grab the resource specifier and pass that along to the viewController’s

message property, which updates the UI. We are almost there; there’s

one last thing to take care of, and that is letting the iPhone OS know

that our application understands integrated URLs.

To register our application’s ability to open integrated URLs, we need to

add a CFBundleURLName array key to our Info.plist. The plist file format is

well documented in the iPhone docs, so we are not going to go into any

of the detail here. This is the code you’d add to the bottom of the file:

<key>CFBundleURLTypes</key>

<array>

<dict>

<key>CFBundleURLName</key>

<string>com.pragprog.amiphd.integrated</string>

<key>CFBundleURLSchemes</key>

<array>

<string>integrated</string>

</array>

</dict>

</array>

We are declaring here that our application understands URLs with the

scheme integrated. To launch our application, we need to have a URL

that starts with integrated://, so build and install the application in

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/AppIntegration/Integrated/Classes/IntegratedAppDelegate.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=486

BECOMING INTEGRATION READY 487

the simulator (with the Build and Go button). Once the application

is launched, stop it by hitting the Home button. Then launch Safari

and type in the URL integrated://message. When you hit the Go but-

ton, Safari will quit, and our application will come to the front with the

default message changed to message.

Very cool! You have an application that can be launched via URLs and

is open for integration with other applications on the iPhone.

Registering your new scheme does not make your URLs recognized by

the text system. That means that sending an email between your users,

or an SMS message won’t automatically recognize the URL. However, if

you enclose the URL in angle brackets (that is, < and >), the system

will understand that it’s a link. When your users click it, the proper

application will be launched. In our example here, adding this <inte-

grated://worked> to an email will allow the user to click the link and

have the integrated app launch and display “worked.”

Of course, you can also embed your links into proper HTML anchor

tags like this: say worked. How you

want your users to see links to your app will determine how you end

up putting links into text. If you want your users to know that the

link launches your app, then the first option is better. If your users

don’t need (or want) to know that your app is behind the link, then the

second option is probably better.

In this chapter, you have seen how to launch other applications with

URLs and not just launch them but also pass information along in the

URL. You have also learned how to make your application have these

same features so that other applications can launch your app.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=487

Chapter 27

Debugging
As you’ve worked through this book and developed your own code, we’re

sure that, like us, you’ve had no problems along the way. Your code has

built the first time, has run correctly without any hitches, and has done

so with blazing efficiency. After all, this stuff is easy, right?

Right?

No, of course not. And it didn’t work for us the first time either. Every

code example in this book has been banged off the compiler more times

than any of us would like to count.

Developing a working application, particularly on a platform that’s both

new to you and to the world at large, is a process of constant refine-

ment, which implicitly means it’s one of repeated failure. It will probably

go something like this:

1. First your code won’t compile.

2. Then, it will compile, but it will crash.

3. Then, it won’t crash, but it won’t work right.

4. Then it will work right, but it will be slow.

5. Then it will be fast.

6. And then it will be freaking awesome.

In this chapter, we’ll look at the first three of these problems—how you’ll

use the tools provided by the iPhone SDK to make your code stable and

correct. Once that’s done, you can move on to Chapter 28, Performance

Tuning, on page 512, in which you’ll make your code run as fast as

possible on the device.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

UNDERSTANDING AND FIXING BUILD ERRORS 489

27.1 Understanding and Fixing Build Errors

The first problem you’re likely to encounter is the compiler error. It’s

as total a failure as can be, because regardless of the merits of most of

your code, the parts that are kicking up build-time errors are so broken

that you can’t even run your application until they’re resolved. But as

severe as the problem is, the cause is often trivial; a lot of times, all you

have to do to clear a compiler error is fix a typo.

In fact, let’s deliberately blunder into that kind of an error right now.

The sample project TrivialCompilerErrors features a one-view GUI whose

only contents are a single UITextView, wired up to the variable textView in

the TrivalCompilerErrorsViewController. The only work we’ll have this class

do is try to set the text when the view comes up.

Download Debugging/TrivialCompilerErrors/Classes/TrivialCompilerErrorsViewController.m

- (void)loadView {

[super loadView];

textView.txt = @"Hi mom";

}

As you can see, all we want the application to do is set the UITextView’s

text property to a static string. But here, we’ve made a typo by using the

property name txt, when the correct property name is in fact text. One

thing that might tip you off is that when you type a known property or

function name of a class, Xcode’s syntax highlighting turns it purple;

the fact that txt remains black is a subtle warning that this code is

broken.

What happens when you build this code? You get a build error. You’ll

see a little status indicator in the bottom right of the project window,

and every source window open in this project looks like this:

The total number of errors in this status bar are shown with the white

“x” in a red circle; if you had any build warnings, they would appear as

a white “!” inside a yellow triangle. Each of the warning/error counts

works like a hyperlink; you can click the number to view the Build

Results window, shown in Figure 27.1, on the following page. Within

this window, you can click each error or warning in the top pane, and

you’ll be shown the offending line in the bottom pane, with a little pop-

up that indicates the error.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Debugging/TrivialCompilerErrors/Classes/TrivialCompilerErrorsViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=489

UNDERSTANDING AND FIXING BUILD ERRORS 490

Figure 27.1: Xcode Build Results window

In this case, the error is "error: request for member ’txt’ in something not

a structure or union".1 You can fix the error anywhere it’s visible: in the

Build Results window, in the project window (after you select the source

file from the list), in the source file’s own editing window, and so on.

Just change txt to text, build again, and you’ll be all set.

While we’re in such a simple project, let’s tweak a few other parts of

the code to create some common errors that you’ll see in your everyday

work. One of the most common mistakes for new Objective-C program-

mers is to forget to declare your objects as pointers. Let’s see what that

looks like. Go to the TrivialCompilerErrorsViewController.h file, and find the

declaration of the text view:

IBOutlet UITextView* textView;

1. This is arguably either a terrible error message or an argument against the decision to

reuse the dot operator, originally defined in C to denote members of a struct, for Objective-

C properties, which is what text actually is. The error has nothing to do with structures
or unions, but you wouldn’t know that if you took the message at face value.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=490

UNDERSTANDING AND FIXING IMPORTING/LINKING ERRORS 491

We’ll mess that up by removing the * character, meaning it’s no longer

a Objective-C object reference:

IBOutlet UITextView textView;

When we do this, we get three errors. Two of the errors (one each for

TrivialCompilerErrorsAppDelegate.m and TrivialCompilerErrorsViewController.m,

because both import TrivialCompilerErrorsViewController.h) complain of the

statically allocated instance of Objective-C class ’UITextView’, while the third

reports that ’struct UITextView’ has no member named ’text’, which is really

a side effect of not having an actual UITextView instance and therefore

not knowing what its properties are.

Notice, by the way, that the files that Xcode reports as having errors

aren’t actually the source of the problem. The actual error is in the

TrivialCompilerErrorsViewController.h header file, but the compiler reports

errors in the implementation .m files that import that header. When you

get errors, it’s important to consider the nonobvious nature of some of

the messages. Fortunately, in this case, if you click the errors in the

Build Results window, Xcode will highlight the offending line from the

header file.

27.2 Understanding and Fixing Importing/Linking Errors

Another common mistake is to have code that is correct but doesn’t

build because the information about building the code is incorrect.

These are two common errors of this variety:

• Not importing needed header files

• Not linking needed frameworks

The first will be familiar to anyone who’s worked with any flavor of C.

When you fail to #import or #include a needed header file, every reference

you make to an object, method, or procedural function defined by that

header file coughs up an error in your build.

For example, in Chapter 10, The SQLite Database, on page 194, we

imported the SQLite3 database’s header file in order to be able to use

its functionality. If we had forgotten to include the header file—#include

<sqlite3.h>—then we would have seen errors or warnings for every at-

tempted call to SQLite, claiming either that the functions were unde-

fined or that we were implicitly declaring them, as shown in Figure 27.2,

on the following page.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=491

UNDERSTANDING AND FIXING IMPORTING/LINKING ERRORS 492

Figure 27.2: Build results with missing #include

A similar problem results from failing to add a framework or library to

the Xcode project. Although using the #include, #import, or @class dec-

laration will satisfy the compiler by providing it with class, method,

and/or definitions, the linker still needs to have a path to the .frame-

work bundle or .dylib file that actually contains the framework or library

code. If not, you’ll get a “Symbol(s) not found” linking error, like the one

shown in Figure 27.3, on the next page.

When you see this error and realize you haven’t added the library

or framework to your project, it’s a simple matter to right-click the

Frameworks folder in the Groups & Files section of your Xcode project,

choose Add Existing Framework, and navigate to the needed frame-

work bundle or library file (taking care to ensure the path is within

the SDK directories, like /Developer/Platforms/iPhoneSimulator.platform or

/Developer/Platforms/iPhoneOS.platform, and not in the Mac OS X /Sys-

tem/Library/Frameworks directory).

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=492

USING IPHONE SDK DOCUMENTATION 493

Figure 27.3: Build results with missing library

For the new developer, both of these errors are fairly shocking because

the sheer number of errors can be overwhelming—nobody is happy

when a build breaks with more than 100 errors and warnings. But in

time, you’ll find that both of these common mistakes are almost obvious

by the extent of their build results, and the fix to each is quite simple.

27.3 Using iPhone SDK Documentation

Thinking back to the first example that broke our build, the typo in

which we tried to access the nonexistent txt property of a UITextView,

consider this question: what if you honestly thought the property was

called txt? Or what if you didn’t think it was a property at all and instead

tried to use a method setText: that turns out not to exist?

In such a case, it would be a good time to go looking at the documen-

tation. After all, perhaps the best way to avoid bugs is to know what

you’re doing.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=493

USING IPHONE SDK DOCUMENTATION 494

As mentioned earlier, the syntax coloring can be a tip. Once you type

a valid method, function, or property, Xcode will color it according

to your editor preferences. If you’re stuck, you might also try using

Xcode’s code completion features. When you’re a few characters into

a class name, method name, function name, or property name, Xcode

will attempt to autocomplete it if you stop typing briefly. If the proposed

completion isn’t what you want, you can bring up the next one with C .

or see a list of completions with E ESC.

When you need more information than a code completion offers, Xcode

provides documentation for all the iPhone SDK in a Documentation

Viewer window, which you can bring up from the Help menu or with the

keyboard combination DE ?. As shown in Figure 27.4, on the follow-

ing page, the Documentation Viewer provides documentation for your

installed SDKs—typically Mac OS X, Java, and one or more versions of

the iPhone SDK—as well as for Xcode itself. These “doc sets” are shown

in the narrow left pane, and the first time you bring up the viewer, you

may see a Get or Subscribe button next to a given documentation set.

Assuming you have the bandwidth, subscribing is probably the best

option, so you’ll always have local copies of the latest documentation.

The alternative is that if you don’t have the current doc sets locally

installed, you’ll sometimes find that when you look something up in

the viewer, clicking the search result will open up your default web

browser and load a documentation page from Apple’s developer website

(http://developer.apple.com/).

In the case of Figure 27.4, on the next page, we’ve looked up documen-

tation for the UITextView class by typing its name into the search field

at the upper right of the toolbar. Below this, you’ll notice a strip that

affects the behavior of the search. The leftmost segment determines

whether to look for the term in APIs (class, method, or function names,

constants, and so on), in filenames, or in the full text of the documen-

tation. The next segment determines whether to apply the search to all

doc sets or the doc set selected on the left panel. After that, another

pair of buttons determines whether the search applies to all languages

or just Objective-C, C++, JavaScript, and C. Finally, the last modifier

specifies whether the query should find documents starting with your

search term, containing it, or exactly matching it.

The table in the upper portion of the window shows the search results.

So, a search for APIs containing the search term UIText-

View matches the UITextView class, the UITextViewDelegate class, and sev-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://developer.apple.com/
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=494

USING IPHONE SDK DOCUMENTATION 495

Figure 27.4: Xcode Documentation Viewer window

eral constants used for notifications. The top result will automatically

be selected from this table, and the corresponding help document will

be displayed in the HTML viewer below. So, in our rhetorical case of

not knowing how to set the text of a UITextView, we’d just scroll through

the description of the class down to the Tasks section, where we find a

link to the text property, which when clicked goes to a description and

definition of the property further down in the file.

There are several shortcuts you can use to quickly access the documen-

tation from your code. You can Option+double-click any text in your

source to bring up the Documentation Viewer, with the term you clicked

prepopulated in the search box (you don’t have to select the text first—

Xcode will use the surrounding whitespace to figure out what term

you clicked). This is great for looking up documentation for unfamil-

iar methods and classes. But what if you have an object reference and

you don’t remember exactly what class it’s an instance of? In this case,

you can right-click (or Ctrl+click) the reference to bring up a contextual

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=495

USING IPHONE SDK DOCUMENTATION 496

Figure 27.5: Xcode Research Assistant

menu with, among other things, a variety of search options. Perhaps

the most helpful is Jump To Definition. This will take you to wherever

the object is defined, presumably a header file, whether in your code or

in a framework you’ve imported. The definition will declare the object’s

class, at which point you could just Option+double-click the class name

to search for its documentation in the Documentation Viewer.

Another documentation option is to use the Research Assistant, a float-

ing window that is brought up with the Help menu’s Show Research

Assistant item (CD ?). This window (shown in Figure 27.5) searches

for whatever text is selected and—if it is a class, method, C func-

tion, or other documented item—presents an overview of documenta-

tion related to the selection, including its definition, an abstract (typi-

cally the first paragraph of its documentation), SDK availability, sam-

ple code that uses the item, and more. Blue items in the window are

hyperlinks that take you to documentation, sample code projects, or

definitions in header files. Rather than opening the Research Assistant

on an as-needed basis, try leaving it open as you move through your

code, and watch as it updates its contents each time you cursor over a

term it recognizes.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=496

UNDERSTANDING AND FIXING INTERFACE BUILDER ERRORS 497

27.4 Understanding and Fixing Interface Builder Errors

Thus far, we have focused exclusively on problems with code, which

is a natural tendency for programmers. However, when developing in

Cocoa, it’s highly possible to make mistakes that don’t expose them-

selves in code. . . because the mistakes are actually in Interface Builder.

Perhaps the simplest IB problem is making changes to your GUI (or

other content loaded from a nib file) without remembering to save the

nib file in IB. When you build and run against the old version of the

nib, you could be missing GUI widgets, you could fail to get notifications

from UI events, or you might not see changes to the GUI that you expect

your code to cause, such as setting the contents of text views. In cases

like these, you need to remember to just quickly go to IB and look at

the nib’s Close button; if there’s a dot in the middle, then you have

unsaved changes that need to be saved before you try again.

Similar IB problems can be caused by failing to correctly wire up your

components in the first place. Let’s consider two highly common exam-

ples. The first is when you add a view and forget to make its connec-

tions. If you expect to refer to this view from code—for example, to set

the text of a UITextView as we did before—you’ll typically declare a ref-

erence to it in one of your header files, preceding the declaration with

the IBOutlet keyword. Then in IB, you’ll change the class of File’s Owner

to match the class that owns the reference. By performing these two

steps, you’ll be able to wire a connection from the view to the outlet via

IB. However, if you forget to actually wire up the connection, the calls

from your code to interact with the view won’t do anything, because

there’s nothing connecting the reference in your code to the view when

it’s loaded from the nib. What makes this trickier is that it’s a silent

failure. Trying to call methods on or set properties of the uninitialized

reference to the view won’t kick up an error or crash. It just won’t do

anything.

A similar problem comes from when you forget to connect a view’s dele-

gate connection to the class that implements the delegate methods, or

a UITableView’s dataSource to the class that implements UITableViewData-

Source. You’ll see this manifested as a table that doesn’t show any data

or respond to input, even though you’re sure you implemented all the

delegate and table source methods.

Another common IB mistake, fortunately, does kick up an easy-to-spot

error message. Let’s say you’ve developed a custom view controller and

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=497

DEBUGGING 498

a custom view, and you make them visible in code, perhaps by pushing

the view controller onto the stack of a UINavigationController. To do this,

you’d typically allocate the view controller and initialize it with some-

thing like initWithNibName:bundle:. One very common error will actually

crash your application when you first try to load the view.

How do you find it? Bring up Xcode’s Debugger Console window from

the Run menu (or with the keyboard shortcut DB R), and notice the

following message right before the gdb debugger dumps a bunch of call

stack addresses:

2008-10-10 15:53:22.149 FilesystemExplorer[7959:20b] *** Terminating app due to

uncaught exception 'NSInternalInconsistencyException', reason: '-[UIViewController

loadView] loaded the "FileOverviewView" nib but no view was set.'

What has happened here? Simple—you’ve created the custom view in IB

and perhaps set the File’s Owner class, but you’ve forgotten to connect

the File’s Owner’s view to the custom view in the nib. The view controller

needs to have a valid view in order to appear in the GUI, and without

this connection, it doesn’t have one. The crucial step of making this

connection is shown in Figure 27.6, on the next page.2 If you don’t do

it before you try to run your app, you’ll remember to do so after you

crash.

27.5 Debugging

Even if you don’t crash, you’ll often find yourself wondering why your

application is behaving incorrectly. The code may compile, the connec-

tions in IB may be correct, but the application logic is somehow wrong.

At this point, you need to take a detailed look at your code as it runs

and determine why it behaves the way it does.

Logging to Standard Output

The program crash in the previous section logged its error to the sys-

tem’s “standard output” (also known as stdout), which we viewed in

Xcode’s Console window. Since these log messages go to the system’s

standard output, they can also be viewed in the Console.app applica-

tion (located in /Applications/Utilities), where they’ll appear alongside the

2. As you can tell from the error message and the figure, we have deliberately broken

and now fixed one of the custom views from the FilesystemExplorer application in Chapter 8,

File I/O, on page 138 in order to generate the error message and the figure in this chapter.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=498

DEBUGGING 499

Figure 27.6: Connecting a view controller to its view

log messages from every other application and system process. Fortu-

nately, Console.app offers a filter at the upper right, so you can restrict

your view to just the current application (by typing its name into the fil-

ter box, because all log messages are preceded by their process name).

As an experienced developer, chances are you’re familiar with writ-

ing text to standard out by using something like C’s printf(), Python’s

print(), or Java’s System.out.println(). And chances are, you’ll want to do it

with your iPhone applications. Debugging misbehaving code by leaving

yourself a bunch of “I’m doing X” messages may not please the purists,

but it’s a bread-and-butter technique for many developers.

In Objective-C, you’ll use the function3 NSLog() to send messages to

stdout. NSLog() takes an NSString reference, followed by zero to many

additional variables. In its simplest form, you can log a single string:

NSLog (@"Hello iPhone");

3. Notice this is a procedural function and not an object-oriented method.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=499

DEBUGGING 500

This sends the String Hello iPhone to stdout, where you see it in the

Console window.

The more sophisticated, and valuable, use of NSLog() is to use the string

as a format string. In this case, you use special character sequences

to indicate where variables’ values are to be inserted into the string

before it’s sent to stdout. For example, if you were in a method that

had an NSString variable called userName, you could log its value with

the following statement:

NSLog (@"User name is %@", userName);

The %@ sequence is used to provide a String representation of any

Objective-C value. Technically, it retrieves the value of the NSObject

method descriptionWithLocale: (or, if that method is undefined, descrip-

tion:), which Cocoa classes typically implement to provide a string repre-

sentation that would be useful at debugging time. Of course, an NSString

just returns its own value, which we use here to insert the userName

string into the format string.

A complete list of the substitution sequences is in the “String Format

Specifiers” section of Apple’s String Programming Guide for Cocoa, which

you can find by just looking up the documentation for Foundation’s

NSLogv() function (the low-level function called by NSLog()). Some of the

most commonly used format strings are summarized here:

Sequence Meaning

%@ String representation of an object, the result of calling

descriptionWithLocale: or, failing that, description:

%d, %D, %i Signed 32-bit integer (a long)

%u, %U Unsigned 32-bit integer

%x Unsigned 32-bit integer expressed as hexidecimal

%f 64-bit floating point number (a float)

%s A string derived by interpreting the value as the address

of a null-terminated string of 8-bit characters (a typical “C

string,” in the system encoding)

%S A string derived by interpreting the value as the address of

a null-terminated string of 16-bit Unicode characters

Let’s look at how this could be useful by offering up another deliber-

ately broken application. The PathologicalPrimeCounter is an application

that simply allows the user to enter a maximum value and find all the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=500

DEBUGGING 501

Figure 27.7: Prime number counter application

prime integers up to that value. A working version of the application is

shown in Figure 27.7. This is a single-view application with a UITextField

connected to the view controller as countToField, a UITextView connected

as primesView, and a UIButton that calls handleGoTapped: when tapped.

To see how NSLog() can help us, let’s use it to debug a logic error. The

sample application is set up to call countPrimesToSelectedValue when

either the button is tapped or the user presses Enter after inputting

a maximum value. Here’s an initial, incorrect, implementation of that

method:

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

- (void) countPrimesToSelectedValue {

int maxPrime = [countToField.text intValue];

if (maxPrime < 1)

return;

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=501

DEBUGGING 502

// for each int up to maxPrime, check every divisor up to

// maxPrime/2+1. there are more efficient prime counters,

// but this is easy to understand

for (int i=2; i<maxPrime; i++) {

int maxDivisor = i/2 + 1;

BOOL isPrime = YES;

for (int j=1; j<maxDivisor; j++) {

if (i%j == 0) {

isPrime = NO;

break;

}

}

if (isPrime) {

NSLog (@"%d is prime", i);

}

}

}

In this version, we haven’t worried about populating the text view yet...

we’re just writing out all the primes to standard output for now. Each

discovered prime will be written out with the statement:

NSLog (@"%d is prime", i);

In this case, there’s one character substitution sequence, %d, whose

value is provided by the additional argument, i.

So, bring up the Console window with Command+Shift+R, do a Build

and Go, enter a maximum number, press Go, and...

Nothing happens.

So, what’s going on? Is the loop not running? Are primes being rejected

improperly? Let’s test the second hypothesis by adding a log statement

(right before isPrime = NO) to the block that rejects a potential prime, i,

because it’s divisible by some smaller integer, j. We’ll use a format string

that prints out both of these values:

NSLog (@"%d is not prime, divisible by %d", i, j);

As you can see, the format string reserves space for two signed inte-

gers, which are then provided as the next two values to the NSLog()

statement.

Run this, and the output makes the bug obvious.4

4. In the actual output, each line is preceded by a timestamp. We’ve removed that so

that each line of output fits on one printed line in the book.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=502

DEBUGGING 503

PathologicalPrimeCounter[13308:20b] 2 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 3 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 4 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 5 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 6 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 7 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 8 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 9 is not prime, divisible by 1

PathologicalPrimeCounter[13308:20b] 10 is not prime, divisible by 1

The bug is that for every potential prime, we start our loop of poten-

tial divisors, j, at 1, and since every integer divides evenly by one, we

wrongly conclude that every value of i isn’t a prime. The fix is to start

the j loop at 2.

Using the Debugger

NSLog()-based debugging may be a bread-and-butter technique for a lot

of us, but it has its limits. It worked in the previous case only because

we had some inkling of what was going on, so we had some idea what

to actually put in our NSLog() statement. So, what do you do if you truly

have no idea what your code is doing?

Let’s push this example a little harder. Instead of fixing the inner loop

by changing the initial value of j to 2, let’s make things even worse by

changing it to 0. Run this, enter a value for the maximum prime, tap

Go...and you won’t even see your log messages in the Console window.

Instead, you’ll see a message from gdb, the GNU debugger, which looks

something like this:

Loading program into debugger...

GNU gdb 6.3.50-20050815 (Apple version gdb-962) (Sat Jul 26 08:14:40 UTC 2008)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

What has happened here? Actually, your application has crashed, and

the debugger has taken control (assuming you launched from Xcode;

if you ran directly on the simulator or device, the app goes black and

returns to the home screen). What you’re left with is the Console win-

dow ready to take command-line input to gdb. If you’re familiar with

gdb, you’re welcome to issue commands here, but most of us will be

more productive working with Xcode’s debugger GUI.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=503

DEBUGGING 504

Figure 27.8: Xcode’s debugger

In Xcode, bring up the debugger from the Run menu or with the key-

board combination DB Y. The contents of this window are shown in

Figure 27.8. At the top left, you see the current call stack for the active

thread. Scroll down, and you can see the stack of calls that got all

the way from the main() that Xcode created for you in main.m up to

the method call you were in when you crashed. Method and function

calls for which source is available—generally meaning your code and

not the various system libraries—are shown in black text, with the rest

in gray. Click one of the black lines of text, as we’ve done here, to show

the source in the bottom pane (if you click a gray line, you’ll see the

assembly code for that call). In the source pane, the red arrow at the

left indicates where the application execution has stopped.

At the upper right, the debugger shows a table of variables and their

current values. Take a look at the offending line of code:

if (i%j == 0)

Then take a look at all the variables on the right (you can also examine

the value of the variables by mousing over them in source, as shown in

Figure 27.9, on the next page). There are only two variables that matter

on this line: i has a value of 1, and j has a value of 0. So, what’s wrong

with 1 % 0? The problem is that it’s division by zero, which is always a

crasher.

In fact, since the debugger has captured the state of the application

immediately prior to the crash, you can confirm this for yourself by

letting the application continue. Click the Continue button from the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=504

DEBUGGING 505

Figure 27.9: Viewing variable values in source code

Figure 27.10: Adding a breakpoint

debugger’s toolbar, and you’ll see the crash message at the bottom of

the debugger: Program received signal: “EXC_ARITHMETIC”.

There’s a lot more you can do with the debugger than just watch your

application crash. In fact, you carefully step through the code one line

at a time and even reset the values of variables as you go. Let’s try that.

Stop the application if it’s running, and go to the PathologicalPrimeCoun-

terViewController.m source. In the wide gutter at the far left, next to the

BOOL isPrime = YES; statement, click the mouse to create a breakpoint, as

shown in Figure 27.10.

Build and Go to run the application again. With the breakpoint set,

the application will stop as soon as execution reaches the breakpoint.

This will give you an opportunity to carefully examine the app’s state

right up to the crash. With the application stopped, the list of variables

shows i equals 2, isPrime is YES, and j is out of scope.

At this point, you could click the Continue button to plow ahead and

crash, or you can use the three Step buttons to inch toward the crash.

Each of these allows you to proceed ahead through a certain number

of method or function calls. Step Into executes the next statement, and

if that statement is itself a method call, function call, or other complex

statement, execution will stop within the statement (with the call stack

and source display updated, if necessary). In a series of deep calls,

this can show you who’s calling whom, but it can also be burdensome

to dig several layers deep. Step Out is the corresponding command: if

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=505

FINDING OVER-RELEASED “ZOMBIE” OBJECTS 506

you’re in a method call, it allows execution to continue until the method

returns. And if you don’t care about the interior of the method call at

all, you can use Step Over to execute the method call, however many

calls deep that ends up being, and stop again when the top-level call

returns.

In this case, click Step Into once to advance past the breakpoint. This

will bring you into the for statement. j is now in scope but is not initial-

ized until your next step, so it has some random value. Step Into again,

and its value will be set to 0.

You are now on the brink of the crash. Step again, and you’ll move on to

the modulo statement that will divide by zero and crash the application.

But you know what? Let’s not crash. In the variables table, double-click

j’s value, and notice that it’s editable. Go ahead and set it to 2, and then

step into or over again. By changing the value at runtime, you’re able

to continue without crashing!

Of course, your next time through the loop, you’ll crash, but you now

see what you have to change in your code to make it work. You’ve

proven that avoiding 0 as a value for j eliminates the crash, and the

fix is just one Build and Go away.5

Moreover, in the big picture, it’s quite powerful to be able to stop your

code at breakpoints, inspect the values of variables, and even edit those

values while the app is running to see what kinds of values will make

your app work correctly.

27.6 Finding Over-Released “Zombie” Objects

In the previous section, we saw how you can use the debugger to find

and fix a divide-by-zero crashing bug. Most crashes will not be that

obvious, however. By far, the most common crashing bug is EXC_BAD_

ACCESS, which always results from some sort of pointer error, such as

failing to initialize a pointer, using a referenced numeric value (rather

than the pointer) as an address, and so on.

5. When developing Mac OS X applications, you can sometimes use Xcode’s Fix com-
mand to insert fixed code into a running application, but this seems not to work on the

iPhone Simulator, at least when we tried it.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=506

FINDING OVER-RELEASED “ZOMBIE” OBJECTS 507

Figure 27.11: An EXC_BAD_ACCESS crash caused by a broken pointer

For a simple example, consider a simple failure to assign a pointer:

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

NSString *nullReferenceString;

NSLog (nullReferenceString);

Since nullReferenceString is never allocated and assigned, the reference

is bogus, and the first attempt to reference the nonexistent object will

crash with EXC_BAD_ACCESS. Fortunately, this is extremely easy to spot

with the debugger, as shown in Figure 27.11.

As you can see, the debugger is stopped on the offending NSLog() call,

and mousing over the nullReferenceString shows us that it is “invalid,”

which you can also see in the variable list in the top-right pane.

So, that was easy enough to debug, but consider this attempt to log a

message at the bottom of the countPrimesToSelectedValue method:

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

NSString *headerString = [NSString stringWithFormat:

@"Counted primes to %@", countToField.text];

NSLog (headerString);

[headerString release];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=507

FINDING OVER-RELEASED “ZOMBIE” OBJECTS 508

This might look perfectly harmless at first glance, but it crashes every

time you run it. Worse yet, investigating the crash with the debugger

doesn’t yield an obvious problem. None of our application code is impli-

cated in the crashed thread’s stack, because the crash occurs when

NSPopAutoReleasePool attempts to send a message to an object. . . and,

unfortunately, we can’t even tell what object or method call is to blame.

We’ll reveal the cause first and then show you a tool for tracking this

kind of crash. The problem is an over-release of an object. The class

method stringWithFormat: creates an autoreleased NSString, so the sub-

sequent [headerString release] is not appropriate. What happens is that

our release reduces the reference count to zero, freeing the object, but

then the autorelease pool tries to release the object again later, sending

another release message to the object that’s already gone and whose

reference is now bogus. The fix is either to eliminate the release or to

replace stringWithFormat: with the nonautoreleasing alloc and initWithFor-

mat: pair.

Thing is, even if you suspect an over-release, it can be hard to find just

which object is being over-released.

This is a job for zombies, specifically, NSZombies. In Cocoa, zombies are

objects that, while dead, are still walking around and causing trouble.

Fortunately, there are tools available in Xcode to find and hunt zom-

bies. What we can do is to enable a build setting that, instead of freeing

objects when their reference count gets to 0, converts them into NSZom-

bie objects. This class’s purpose is to log any call to an instance of it,

since that means the code is trying to call a method on a dead object.

In your project window, under Groups & Files, expand the Executables

item, and select the PathologicalPrimeCounter application. Bring up its

Inspector with Get Info (D I or the Info toolbar button), and choose the

Arguments tab. In the bottom half, “Variables to be set in the environ-

ment,” use the + button at the bottom to add two variables: NSZombieEn-

abled and MallocStackLogging, setting both to the value YES, as shown in

Figure 27.12, on the following page

Bring up the console (D R), and run again. You’ll see some messages

about where “malloc stack logs” are being written, usually into your

/tmp directory:6

⇒ launchd(2018) malloc: stack logs being written into

/tmp/stack-logs.2018.launchd.odBbpt

6. We’ve wrapped the output to fit the book’s layout.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=508

FINDING OVER-RELEASED “ZOMBIE” OBJECTS 509

Figure 27.12: Enabling NSZombieEnabled in the executable’s environ-

ment variables

Go ahead and count some primes to cause the crash. This time, right

before the crash, you’ll get a message from the zombie:

⇒ 2009-03-10 16:56:01.128 PathologicalPrimeCounter[2018:20b] ***
-[CFString release]: message sent to deallocated instance 0x591f40

Now we have something. We now know the message being sent to the

over-released object (another release), the class of the over-released

object (CFString, the Core Foundation equivalent of NSString), and even

the address of the zombie. That tells us the end of the story, but what

about the beginning; how do we trace back to where things went wrong?

That’s what the malloc tracing is for. Using the zombie’s address, we

can find when it was allocated.

In the Console window, after the (gdb), type this:7

shell malloc_history pid address

7. The shell command sends the rest of the command to the Darwin shell, so you could
also just issue the malloc_history command directly to the command line in Terminal or

xterm.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=509

FINDING OVER-RELEASED “ZOMBIE” OBJECTS 510

where pid is the process ID shown in parentheses in the malloc: log

messages, and address is the address of the zombie as reported by

the “deallocated instance” message. Given the previous log messages,

here’s what your interaction with the console will look like:

⇐ (gdb) shell malloc_history 2018 0x591f40

⇒

Call [2] [arg=32]: thread_a024c720 |0x1 | start | main | UIApplicationMain |

-[UIApplication _run] | GSEventRun | GSEventRunModal | CFRunLoopRunInMode |

CFRunLoopRunSpecific | PurpleEventTimerCallBack | SendEvent |

_UIApplicationHandleEvent | -[UIApplication sendEvent:] | -[UIWindow sendEvent:] |

-[UIControl touchesBegan:withEvent:] |

-[UIControl(Internal) _sendActionsForEvents:withEvent:] |

-[UIControl sendAction:to:forEvent:] | -[UIApplication sendAction:to:from:forEvent:] |

-[PathologicalPrimeCounterViewController handleGoTapped:] |

-[PathologicalPrimeCounterViewController countPrimesToSelectedValue] |

+[NSString stringWithFormat:] |

-[NSPlaceholderString initWithFormat:locale:arguments:] |

_CFStringCreateWithFormatAndArgumentsAux | CFStringCreateCopy |

__CFStringCreateImmutableFunnel3 | _CFRuntimeCreateInstance | malloc_zone_malloc

You may get multiple Call[]s here, some of which may not even be from

your application (that is, they’re logged from other applications). But

if you look for your own classes, you can find the call stack that rep-

resents the creation of the object that eventually became a zombie. In

the previous output, you can see that this object was created via the

NSString class method stringWithFormat:, called from inside countPrimesToS-

electedValue. With that, you should be able to look at the source, figure

out which object is the troublemaker, and ultimately figure out how

you’ve managed to over-release it.

Once you’ve figured out your over-release, it’s important to remove

the NSZombieEnabled and MallocStackLogging environment variables (or

set them to NO) before you ship. After all, NSZombieEnabled works by

converting objects that should be freed into NSZombie objects instead,

meaning that no objects are ever freed when you have NSZombieEnabled

set.

Armed with these tools to track and kill zombies, you should be able to

work through over-release crashes.8 Combine them with the debugger

techniques described earlier, and you’ll be able to analyze and under-

stand any pointer problems that lead to EXC_BAD_ACCESS crashes.

8. And, using the techniques introduced in Section 28.3, Investigating Performance with

the Clang Static Analyzer, on page 524, you may be able to avoid creating over-release

bugs in the first place.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=510

FINDING OVER-RELEASED “ZOMBIE” OBJECTS 511

Oh, and did we mention that everything the debugger does—setting

breakpoints, stepping through code, and viewing and altering variables

—works when your application is running on the device, not just on the

simulator? The same goes for viewing your logging output. Xcode gives

you tremendous tools for developing iPhone applications, and the more

you use them, the more you’ll find them invaluable.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=511

Chapter 28

Performance Tuning
When we introduced the prime counter application in Section 27.5,

Debugging, on page 498, we said we were going to put the resulting

primes in a UITextView. Now that the logic to find primes is working, let’s

do that. As a simple way to do this, let’s append the text in the view

every time we find a new prime. Here’s a simple method to do that:

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

- (void) appendPrimeToPrimeArea: (int) aPrime {

NSString *primeString = [[NSString alloc] initWithFormat: @"%d ", aPrime];

primesView.text = [primesView.text stringByAppendingString: primeString];

}

Each time this method is called with a new prime number, it creates

an NSString consisting of the number with a trailing space, gets the

UITextView’s current string, and replaces it with a new value, created

by appending the new string to the old value. Call it in the if block that

reports found primes (while you’re there, comment out the no-longer-

needed NSLog() statement):

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

if (isPrime) {

// NSLog (@"%d is prime", i);

[self appendPrimeToPrimeArea: i];

}

Run this, and you’ll see output more or less like the working app shown

in Figure 27.7, on page 501. Ask for primes up to 100, and they pop

right up. Enter 1,000, and they’re displayed after a slight pause. Ask

for primes to 10,000, and you’ll have to wait a few seconds. Ask for

100,000, and. . . well. . . it looks like our application is hanging pretty

badly.

Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

INVESTIGATING PERFORMANCE WITH SHARK 513

Figure 28.1: Selecting a process to profile with Shark

Yet, we’re not doing anything that expensive. Sure, we have a nested

loop that we iterate more than 100,000 times, but half of those will

break out on the first trip through the inner loop, since all even num-

bers are divisible by 2, the first value for j. The smart programmer

knows that something is rotten. The question is. . . what?

Some programmers will get ahead of themselves at this point and begin

to throw various optimizations at the problem—hacks with loops and

side effects meant to cut down the number of instructions executed.

The smart programmer asks him or herself, “Where’s the slowdown,

and what can I do about it?”

28.1 Investigating Performance with Shark

Xcode includes a number of performance analysis tools. One that has

been around for a number of years is called Shark, so named because

of the relentless, predatory instinct required for hunting performance

problems. Shark is located in /Developer/Applications/Performance Tools,

and although it was originally intended for use with Mac applications,

it proves enormously helpful at analyzing apps running in the iPhone

as well.

To use Shark, begin by running the application in the simulator with

a typical Build and Go. Once it’s running, switch over to Shark, where

you’ll be presented with its main window, shown in Figure 28.1. In

this window, one pop-up offers a choice of profiling types (we’ll use the

default, Time Profile) and a kind of target (either a specific process or

the entire system). Set Process for the target, and then look up the

PathologicalPrimeCounter in the final pop-up. Note that the name may be

truncated, as it is in the figure.

With the target selected, click Start to begin profiling. Now you can

return to the iPhone Simulator and continue using the application,

knowing that Shark is watching where the app spends its time. Enter

10000 for the maximum prime value, and tap Go. When the text area is

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=513

INVESTIGATING PERFORMANCE WITH SHARK 514

Figure 28.2: Shark Time Profile results, “heavy” view

finally populated, go back to Shark, and click Stop to end the profiling.

At this point, Shark analyzes the data it has collected and produces a

Time Profile window, as shown in Figure 28.2.

The Time Profile window has two basic viewing modes, controlled by

a pop-up at the bottom right. In heavy (bottom-up) mode, shown in

Figure 28.2, you can see which method and function calls account for

the most time spent by the application. The table is sortable by its

various columns: Self and Total (to be explained shortly), Library, and

Symbol. Just taking an uninformed first look at the table, something

should stand out: the application is spending nearly all of its time in the

WebCore library. Calls to WebCore methods account for seven of the ten

most called methods, and these methods alone represent nearly half of

the time our application is spending.

Now, take a closer look at what these methods are: WidthIterator::ad-

vance(), Font::glyphDataForCharacter(), SimpleFontData::widthForGlyph()...

even without knowing the first thing about what any of the methods

are, you may start to hypothesize that our application is spending an

extraordinary amount of time performing graphic layout, presumably

for the text we’re putting in the UITextView.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=514

INVESTIGATING PERFORMANCE WITH SHARK 515

Figure 28.3: Shark Time Profile results, tree view

We can verify this by switching view modes from heavy (bottom-up)

to tree (top-down). Now instead of seeing where we spend our time by

method, we get a stronger idea of who’s calling those methods. The table

starts with the lines start(), main(), and UIApplicationMain(), which is the

top of the call stack to start an iPhone application. Further down, you’ll

see the application’s main run loop (CFRunLoopRunInMode()), which is

sending the tap event ([UIApplication sendAction:to:from:forEvent:]). Further

down, you’ll finally see the methods from our application, Pathological-

PrimeCounter, as shown in Figure 28.3.

This is where the Self and Total columns come into play. The Self

method represents the percentage of the application’s time spent in this

method itself, while Total includes the time spent in everything called

by this method. As you can see, of the three PathologicalPrimeCounter

methods on the stack, our handling of the tap event consumes a total

of 90.6 percent of the application’s time. However, effectively zero time

is spent in handleGoTapped:, and only 0.6 percent of the application’s

time is actually spent in the loops of countPrimesToSelectedValue. Nearly

all the time spent by our application, 89.7 percent to be exact, is spent

in the GUI methods called by appendPrimeToPrimeArea:.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=515

INVESTIGATING PERFORMANCE WITH SHARK 516

By profiling in this way, we know where we should, and shouldn’t, look

for performance optimizations. Whether or not our prime counting algo-

rithm is efficient, it accounts for less than 1 percent of our run time,

so all the “loop unrolling” optimizations in the world won’t make a dif-

ference there. The problem is in the expense of putting the contents

into the UITextView. If we think about it further, the fact that these lay-

out operations seem to be expensive should lead us to an alternative

approach. Instead of resetting the view’s contents every time we find a

prime, what if we set the view’s contents only once, at the bottom of the

loop?

Let’s try that. Instead of calling appendPrimeToPrimeArea: each time we

find a prime, we’ll instead append the prime to an NSMutableString and

then use that to set the view’s contents only when we’ve found all our

primes. So, write a simple method to use a string formatter to add a

prime number and a trailing space to a mutable string:

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

- (void) appendPrime: (int) aPrime

toMutableString: (NSMutableString*) mutableString {

NSString *primeString = [[NSString alloc] initWithFormat: @"%d ", aPrime];

[mutableString appendString: primeString];

}

And rewrite countPrimesToSelectedValue to call the String appender. Here

is the rewritten loops and the post-loop call to set the view’s text.

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

NSMutableString *mutableString =

[[NSMutableString alloc] initWithCapacity: maxPrime * 5];

for (int i=2; i<maxPrime; i++) {

int maxDivisor = i/2 + 1;

BOOL isPrime = YES;

for (int j=2; j<maxDivisor; j++) {

if (i%j == 0) {

// NSLog (@"%d is not prime, divisible by %d", i, j);

isPrime = NO;

break;

}

}

if (isPrime) {

// NSLog (@"%d is prime", i);

[self appendPrime:i toMutableString: mutableString];

}

}

// with loop done, do one-time set of the view text

primesView.text = mutableString;

[mutableString release];

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=516

INVESTIGATING PERFORMANCE WITH SHARK 517

Try it and behold the results. Running the original version in the simu-

lator on an eight-core Mac Pro—we’re not about to put such inefficient

code on the iPhone hardware itself—counting primes up to 10,000 took

2.5 seconds to display and up to 50,000 took 66.8 seconds. Switch-

ing to the version that builds up an NSMutableString and sets the view’s

text once cut those times to 0.02 seconds and 0.25 seconds, respec-

tively. With a fairly simple change, we’ve gone from over a minute down

to a quarter second, which is exactly what you’d expect when we can

eliminate the repeated calls that were accounting for nearly all of our

execution time.

And that’s the power of profiling: you can determine exactly where your

application is spending time to find hotspots where you can attempt

either to write more efficient code or to find alternative approaches that

eliminate the hotspot entirely.

Using Shark to Profile Applications on the Device

Although it’s not immediately obvious, Shark can also be attached to

iPhone OS applications running on the device.

Assuming you have already configured your environment to code-sign

your application for running on an iPhone OS device connected to your

Mac, run your application (either via Xcode’s Build and Go or by simply

running it from the device’s home screen), and then start up Shark

if it’s not already running. In Shark, choose the menu item Sampling

> Network/iPhone Profiling (BDN). This causes a new pane to slide

out the bottom of the Shark window, as shown in Figure 28.4, on the

following page.

This pane exposes Shark’s remote debugging options, controlled by

the radio buttons at the top of the pane. Selecting “Profile this com-

puter” will collapse the pane and return to local profiling mode. What

we want is the last option: “Control network profiling of shared com-

puters.” Select the checkbox next to your device’s name (Cloud in this

example), and use the pop-ups to configure the kind of sampling (the

default Time Profile is what we’ve used thus far) and the target process.

If your app is running, you should see its short name, like Pathologi-

calPrim, in the Target pop-up list. Then just click Start at the top of the

window. From this point, Shark works just like before: run your appli-

cation through its hotspots, stop the sampling in Shark, and examine

the profile results.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=517

INVESTIGATING PERFORMANCE WITH INSTRUMENTS 518

Figure 28.4: Profiling processes on the device with Shark

28.2 Investigating Performance with Instruments

While Shark is powerful and straightforward at finding extraordinary

hotspots, its approach is limited in a key way: it treats all activity

within its sampling period as more or less the same. It can’t catch short

segments of time, usually the result of some external event, that may

account for most of the activity that you’re interested in. In the previous

example, nearly all the work was done after tapping the Go button, but

Shark shows all activity within its sampling period equally, whether it

happened before or after we started grinding primes.

This is where the Instruments application comes in handy. Instruments

keeps a time-based log of activity in your program and shows it on a

timeline, so you can see how your application consumes CPU, mem-

ory, and other resources in response to activity within the application’s

lifetime.

Let’s take a quick look at how Instruments would diagnose the same

problem with the PathologicalPrimeCounter. Revert to the inefficient ver-

sion of countPrimesToSelectedValue; if you’ve downloaded the sample

code, all the various versions of this method are commented out, so

just comment in the one that says it calls appendPrimeToPrimeArea:. To

run with Instruments, build the app again and then go to the Run

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=518

INVESTIGATING PERFORMANCE WITH INSTRUMENTS 519

Figure 28.5: Instruments window with Sampler instrument timeline

menu and select Start with Performance Tool, selecting CPU Sampler

from the submenu. The Instruments application will start up and show

its main window. Switch to the iPhone Simulator, and use the appli-

cation as before, entering some nice high maximum prime value (we

used 50,000 again). When you’re finished, switch back to Instruments,

and click the Stop button to stop sampling. Now let’s take a look at the

Instruments window, shown in Figure 28.5

The top portion of the Instruments window shows a timeline, as you

might be used to from media editing applications like GarageBand or

Final Cut Pro. This timeline represents the time that your app was

running, from when you started recording (that is, when Instruments

started up, since launching from Xcode causes Instruments to begin

recording immediately) to when you clicked stop. This timeline shows

two “tracks” in the figure: one for the Sampler instrument and one for

the CPU Monitor. Above the timeline, there’s a small white triangle;

this is the playhead, which you can drag back and forth to pick out

specific moments in the application’s execution for further analysis.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=519

INVESTIGATING PERFORMANCE WITH INSTRUMENTS 520

Joe Asks. . .

If Instruments Does CPU Sampling and More, Why Bother
with Shark?

Instruments has big advantages over Shark: it combines a
bunch of tools in one place (CPU sampling, leak detection, and
so on) and has a timeline concept that lets you see these met-
rics over time. Apple has made it clear that Instruments is its tool
of the future.

Still, for a quick look at where your cycles are going, the
simplicity of Shark can sometimes trump the comprehensive
approach of Instruments. It’s pretty easy to get an overall sense
of where your cycles are going in Shark and to drill down to
CPU hogs with Shark’s two straightforward views. In Instruments,
there’s a lot of mental correlating between the timeline and
the two detail views.

If you want to learn only one tool, go with Instruments. But we
still like Shark too.

Slide it back and forth, and you’ll see pop-ups along the various tracks

showing their status at that time, such as the CPU usage (as a percent)

in the Sampler track.

As you can see from the Sampler track, there’s an extraordinary burst

in activity about 14 seconds into the application’s lifetime, indicated

by the purple bar graph in the track. As you might have guessed, this

represents the time after the user clicked the Go button, and the appli-

cation was busy generating primes and doing lots of what turned out

to be unnecessary layout within the UITextView. With the Sampler track

selected, you can also see an overview of function and method calls in

the bottom of the window, called the detail pane. By setting some of the

options over to the left, you can screen out system calls that aren’t rel-

evant to your analysis (Objective-C message dispatching, for example)

and focus on where your application is spending its time. Although the

layout and presentation is different from Shark, you can see once again

that the application is spending the overwhelming majority of its time

in WebCore layout methods.

The Instruments window also has an extended detail pane on the right,

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=520

INVESTIGATING PERFORMANCE WITH INSTRUMENTS 521

Figure 28.6: Instruments window with the extended detail pane

though it’s hidden by default. To show it, select Extended Detail from

the View menu, use the keyboard combo D E, or click the half-filled

rectangle button at the bottom of the Instruments window, below the

detail pane. With both panes visible, you can click an item in the detail

pane to show more information about the selected item in the extended

detail pane. For example, with the Sampler track selected, if you click

one of the method names in the detail pane, the extended detail pane

will show the “heaviest stack trace” that results in that method call. In

Figure 28.6, we can see a stack trace in its extended detail pane that

implicates our PathologicalPrimeCounter in the call stack for the WebCore

call that accounts for more than 39 percent of the runtime activity.

When you launch Instruments from Xcode, you do so by indicating one

instrument you want to use, like the CPU Sampler we launched with

earlier. But once Instruments is running, you can add more instru-

ments as tracks, allowing you to investigate how your application uses

different system resources. To see available instruments, bring up the

Library window with its menu item (in the Window menu) or via the

keyboard combo D L. The Library shows all the instruments that you

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

Download at WoweBook.Com

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=521

INVESTIGATING PERFORMANCE WITH INSTRUMENTS 522

can drop into a Mac or Xcode Instruments session. Of course, some

of the instruments don’t apply to iPhone, like the Core Data or Java

tools; when you select a tool, the description pane at the bottom of

the Library window will indicate whether the tool is for use with Mac,

iPhone, or both.

So, although we’ve eliminated our waste of CPU power, let’s make sure

we’re not wasting memory either. Select the ObjectAlloc instrument,

and drag it to the list of instruments at the left side of the window.

Click Record to run the app again. Now that we know we can crunch

a lot of primes in very little time, go ahead and count all the primes

up to 50,000. When the text view fills in, switch back to Instruments,

and take a look at the timeline. You can see that at the same time

that there’s a small burst of activity in the CPU Monitor, there’s also a

bump in the ObjectAlloc graph. That means that when we go into our

prime-counting routine, we’re creating a lot of objects. Moreover, care-

ful examination of the graph shows that the object count isn’t going

down. You can confirm this by looking at the table of categories1 in

the detail pane and clicking those categories that interest you. In Fig-

ure 28.7, on the next page, we’ve clicked CFString (which is the Core

Foundation equivalent to NSString), which causes a red bar graph to be

drawn into the purple bar graph of All Allocations. In fact, you can des-

elect All Allocations with its checkbox, leaving only CFString selected; the

resulting graph shows the count of objects going straight up and not

coming down.

With a mass of objects being created and never released, it’s highly

likely we’re leaking memory.

To investigate, open the Extended Detail window, and click the arrow

that appears next to CFString when you mouse over it. This will replace

the table of categories with a list of all the CFString instances, when

they were created, and what call created them. Since our memory leak

seems to occur later in the timeline, we can sort by time and scroll down

in the table to find instances created later in the application’s lifetime.

What we’ll find is thousands of instances created by -[NSPlaceholderString

initWithFormat:locale:arguments:]. Click one, and we’ll see the call stack

in the extended detail pane and, smack in the middle, a set of calls

from PathologicalPrimeCounter. Double-click the last of these, and it will

1. Categories, in this usage, is understood to be Cocoa classes and Foundation opaque
types, which are not classes per se.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=522

INVESTIGATING PERFORMANCE WITH INSTRUMENTS 523

Figure 28.7: Examining a possible memory leak with the ObjectAlloc

instrument

take you to the exact line that created the leaked string. It’s in append-

Prime:toMutableString:. Let’s look at that method again:

Download Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m

- (void) appendPrime: (int) aPrime

toMutableString: (NSMutableString*) mutableString {

NSString *primeString = [[NSString alloc] initWithFormat: @"%d ", aPrime];

[mutableString appendString: primeString];

}

Do you see the leak? We create an NSString, append it to the NSMuta-

bleString...and never release it. Once we’ve appended it to the NSMuta-

bleString, we’re no longer interested in it and can release it immediately.

Add one line to the bottom of this method:

[primeString release];

Build again, switch to Instruments, and record. Set the ObjectAlloc

instrument to only graph CFStrings, and you should see the much better

result illustrated in Figure 28.8, on the following page. There’s a spike

in the object count right around the time that the CPU gets busy count-

ing primes and filling the UITextView, but then it drops right off, since

we’ve cleaned up all the temporary string objects.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://media.pragprog.com/titles/amiphd/code/Debugging/Primes/Classes/PathologicalPrimeCounterViewController.m
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=523

INVESTIGATING PERFORMANCE WITH THE CLANG STATIC ANALYZER 524

Figure 28.8: Examining a fixed memory leak with the ObjectAlloc

instrument

28.3 Investigating Performance with the Clang Static Analyzer

Profiling your code with Shark or Instruments is exceptionally useful

at identifying your code as it runs under real-world conditions. Still,

you won’t catch everything through profiling. Bugs lurking in branches

of code that you don’t typically take in your testing won’t show up;

and it’ll only be when an end user tries something you hadn’t antici-

pated that those issues will manifest themselves. And as we saw in the

Instruments section, your application generates thousands of objects

as a normal part of its execution, meaning it’s easier to find a bug that

leaks a lot of objects at once than continues to leak objects slowly over

a long period of time.

Static analysis offers a radically different approach to finding bugs.

Rather than examining your code as it runs, static analyzers model the

code through their own techniques and attempt to find readily identi-

fiable mistakes. In just the last few months, an Apple-sponsored open

source project has released the LLVM/Clang Static Analyzer. It works

with Xcode projects, including iPhone applications.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=524

INVESTIGATING PERFORMANCE WITH THE CLANG STATIC ANALYZER 525

Clanging on the Bleeding Edge

If you are running Xcode 3.2 or newer on Snow Leopard, the
Clang Static Analyzer is installed and integrated into Xcode.
If you are developing on Leopard, you will need to install
the command-line version of the analyzer yourself. You’ll find
instructions for setting up the command-line version of the Static
Analyzer in a PDF included with the book’s downloadable
code.

Although the interface to the Static Analyzer is changing, the
tests it performs and the reports it puts out are likely to remain
pretty stable, which is what we focus on in this section.

The analyzer is an offshoot of the Clang project, which provides a front

end to the LLVM compiler2 for C, C++, Objective-C, and Objective-C++.

Assuming that you have the Analyzer installed on your Mac (see the

the sidebar on the current page sidebar for a link to our install docs

for the command-line version), let’s test it on some real code. Be sure

that your project builds without errors with its default options. If it

doesn’t, you may see a bewildering error message saying that scan-build

can’t find a needed version of gcc. In practice, we’ve seen this when a

project defaults to building for the device instead of the simulator, and

the current environment isn’t provisioned for code-signing. This may be

the case if you download someone else’s code, the project is set to build

for the device, or you haven’t joined the paid iPhone developer program

and gotten an app-signing certificate yet. You can get around this by

changing the project’s properties to build for the simulator by default,

rather than the device. In your Xcode project, select the project icon

from the very top of the Groups & Files tree, and then click Get Info in

the toolbar or the File menu. As shown in Figure 28.9, on the following

page, set Base SDK to Simulator, rather than Device.

2. The Low Level Virtual Machine (LLVM), hosted at http://www.llvm.org/, is a multipronged

approach to improving application performance by employing a virtual instruction set
that can be intelligently adapted to its host environment by offering the ability to optimize

its native bytecode at runtime and even post-installation.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://www.llvm.org/
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=525

INVESTIGATING PERFORMANCE WITH THE CLANG STATIC ANALYZER 526

Figure 28.9: Setting the base SDK to the simulator for use with the

Clang Static Analyzer

With all this business worked out, try kicking off a scan from the project

directory. If you’re using the command line, type scan-build xcodebuild.

If you can run a scan from Xcode, choose Build & Analyze.

Assuming all goes well,3 you’ll be notified that a bug has been found.

In the web view, each bug that scan-build finds is listed in the Reports

area, with links to view a report of the bug. Click the View Report link to

see a step-by-step assessment of the bug. The web page generated from

the command line looks like Figure 28.10, on the next page. If you are

3. We’re sure you’ll let us know on the book’s forum (http://forums.pragprog.com/forums/83)
if it doesn’t. Also, one of our readers pointed out that doing a clean build as part of

running the Static Analyzer can help while iteratively fixing bugs.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://forums.pragprog.com/forums/83
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=526

INVESTIGATING PERFORMANCE WITH THE CLANG STATIC ANALYZER 527

Figure 28.10: Viewing the Clang Static Analyzer report of an Objective-

C memory leak

running the Static Analyzer from within Xcode, you will see the bugs

reported much the same way that errors and warnings are. Despite

the differences in the interface, the resulting bug report contains this

information:

• “Method returns an object with a +1 retain count (owning

reference).”

• “Object allocated on line 61 and stored into ’primeString’ is no

longer referenced after this point and has a retain count of +1

(object leaked).”

In this case, the analysis has found another case where we allocate an

NSString instance and never release it.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=527

INVESTIGATING PERFORMANCE WITH THE CLANG STATIC ANALYZER 528

So, outside of finding memory leaks, what does the tool do? Here’s a

short list of some of the most useful checks it performs:

• Proper use of retain and release

• Unused instance variables

• Uninitialized variables

• Unreachable code paths

• Referencing null pointers

• Division by zero

• Dead stores (assigning a value to a variable that is never used)

• Objective-C method signatures with type incompatibilities

• Missing dealloc

• Unused instance variables

What’s interesting about this list is that some of these tests are things

you would never catch with profiling. We found the leaking objects in

Section 28.2, Investigating Performance with Instruments, on page 518

largely because we were leaking so many of them, so fast. With so many

objects naturally created as part of an application’s life cycle, it might

be a lot harder to find a bug that steadily but slowly leaked objects

over a long time. However, a reference-counting bug like that is some-

thing that scan-build could catch. Trying to write to a variable that’s

already been freed is potentially a crashing bug, and catching it early

with static analysis could save you, your testers, and your users some

pain. Finally, it’s worth remembering that profiling won’t catch bugs in

branches of your code that you don’t take in your testing, but the Static

Analyzer looks at every possible path through your code, again finding

bugs that you might otherwise miss.

The Clang Static Analyzer is still very early and incomplete, but it does

enough right that it could be a useful addition to your testing toolkit.

What’s Next?

In this chapter and the previous one, we’ve looked at a number of tools

provided by Xcode to help you ensure that your application runs cor-

rectly and efficiently. We started in the previous chapter by looking at

how to deal with common compilation errors and how to find docu-

mentation and moved on to more sophisticated debugging techniques

for diagnosing and resolving more serious problems. In this chapter, we

moved into performance by investigating CPU activity, first with Shark

and then with Instruments, the latter tool also giving us the ability to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=528

INVESTIGATING PERFORMANCE WITH THE CLANG STATIC ANALYZER 529

track object allocations that leaked memory. We also stepped onto the

cutting edge by trying out the Clang Static Analysis tool to find memory

leaks and other bugs at build time.

There are a few Instruments that we haven’t specifically tried out in this

chapter, which will be of use to some iPhone application developers.

There are instruments to measure the graphics performance and CPU

usage of Core Animation and OpenGL ES calls, as well as a System

Usage instrument to measure I/O calls such as opens, closes, reads,

writes, and so on.

There are also a number of Mac-specific Instruments, including a highly

desirable UI Recorder, which allows you to record a set of interactions

with your GUI and then “replay” them in order to find and fix perfor-

mance issues specific to how the application is being used. Although

these tools may not be available for the iPhone SDK now, the fact that

there are Mac equivalents provides some hope that they might be ported

over in the future.

Although it’s not a performance tool per se, iPhone SDK 3.0 also adds

integrated support for unit testing, which allows you to write code that

tests the logic and runtime behavior of your code, thereby allowing you

to automate some of your testing. You do this by selecting the project’s

Targets and adding new Unit Test Bundle targets. You then create new

classes in your project that target the unit test bundle target, rather

than the application target. The process is fairly involved, particularly

for runtime tests, so if unit testing is an important part of your devel-

opment process, you’ll want to study the “Unit Testing Applications”

chapter of the iPhone Development Guide [App08d].

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=529

Chapter 29

Before and After
So, here we are. We have come a long way since the opening paragraph

encouraged you to build something great. We’re sure after reading the

book your head is teeming with ideas. In this chapter, we’ll take a step

back and talk about the stuff around the technology that goes into a

successful application.

We kick off our discussion with starting correctly. Before you can write

code, you have to decide what you are going to write in the first place. Of

course, this can be a huge part of the battle to get something shipping.

It’s hard to narrow down what you are going to build into a defined

subset of all the great ideas flying around. It is, however, one of the

most important things you can do to make sure you are able to ship.

If you don’t plan, you can end up with a kitchen-sink application. The

kitchen-sink apps can be fun to build but can often be hard to sell. We

will talk about some of the strategies you can use to nail down the exact

feature set you want to build.

Once the major functionality of your application is in place and work-

ing, it is important to go through your application looking for places

that you can polish. Users appreciate a polished app and are more

likely to talk about it and share it with their friends. This is one of the

areas that is so often ignored but is so important to the success of your

application.

After you have built your application, it is important to test it. Getting

your app in testers’ hands can be a daunting task. The next section

talks you through the basics of what you need to do to set up a suc-

cessful beta test via ad hoc distribution. We will also cover some things

Prepared exclusively for Vadim Kudria

STARTING RIGHT 531

to do to polish your application for your testers so that their initial

impression is as positive as possible.

Now that your application is polished and tested, it’s ready to go the

next step: promotion. In the final section of this chapter, we talk

through some ideas of what you can do to generate buzz about your

app. There is a lot to generating buzz, and much of what you do will

depend on the community your app is aimed at. We will talk about

several general ideas that can help you get attention.

Let’s get started at the beginning.

29.1 Starting Right

When we have a great idea, we’re so tempted to fire up Xcode and

start code slinging. Long, hard nights of refactoring have taught us

that this is the wrong approach. Although we can make great progress

on fleshing out our ideas with Xcode and Interface Builder, the cost of

change goes up dramatically when an idea is committed to code.

Before you are ready for Xcode, you should do at least two things: define

an application definition statement and draw out a paper prototype.

Instead of coding up a prototype to further understand your idea, flesh

it out in your mind and on paper. Write down what your application is

going to do and what the intended audience is. Use a pencil and paper,

really.

The application definition statement, ADS for short, is probably one of

the most important things you can do for your application. This state-

ment, one sentence long, helps gel what your application is all about.

It helps you make decisions on features and pieces of your UI that will

make your application much more focused and clean than it would be

otherwise.

Writing an ADS is not hard, but it will force you to articulate what your

application is all about. There are three parts to any good ADS:

• The differentiator

• The solution

• The audience

The differentiator is what makes your application special. Is your appli-

cation going to be “easy to use”? Then that can be your differentiator.

This part of your ADS sets your application apart from other applica-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=531

STARTING RIGHT 532

tions in the space. Instead of easy to use, you might want the appli-

cation to be “graphically enticing.” Whatever it is that you want your

application to stand out for should be the differentiator.

The solution defines what problem your application is going to solve.

Are you going to provide some information, organize information, or

allow your users to share photos? The solution you are going to provide

defines the problem your app is going to solve for your user. From this

part of the statement you will get a list of features, and then you will

delete all that do not apply to your audience.

The audience defines who the app is written for. Are you building a tool

for serious photographers or an entertaining application for children?

Keeping focused on your audience helps you cull your feature list to

those that are important for your audience. If you are setting out to

make an entertainment app for kids, your set of features and the user

interface you choose to present them will be vastly different than if your

audience is salespeople on the road.

To some, this sounds crazy. “I could spend a whole week writing down

an ADS and drawing out my UI and have no code to show for it!”

Although you won’t have any code to show for your efforts, you will,

however, have a much better idea of how your idea translates into a

real application.

All too often we have sat down with Xcode and started coding only to

realize hundreds of lines of code later that the metaphor we had in

mind does not work. At that point we’re faced with the daunting task of

rewriting the application or trying to tweak the metaphor. The cost of a

rewrite can be huge, so we end up tweaking. What we end up with is

not what we wanted the application to be.

Practically, using pencil and paper to draw out your application trans-

lates into some broad ideas:

• Really use pencil and paper, not OmniGraffle. Although it’s tempt-

ing to use software to plot out your UI, that often leads to tweaking

the drawing rather than fleshing out the idea. The point is to get

your ideas written down, not to learn the intricacies of getting a

pixel-perfect drawing.

• Draw your ideas on index cards or screen-sized sheets of paper.

Then you can simulate the real UI look by sliding in the next

screen when a button is clicked. This makes for a great way to

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=532

STARTING RIGHT 533

show your users what the app will really look like without having

to write any code.

• As you find parts of your interface that don’t work, throw out those

pieces of paper and quickly create another sketch. Paper drawings

feel more dispensable, and that’s what you want at this point—

cheap ideas that can be thrown away if they aren’t working.

• Spend time on “the stuff that matters.” It is not always easy to

tell “what matters,” but think about what makes your application

unique, what will be on each screen, how will it be presented—that

kind of stuff. Don’t spend a lot of time on stuff you will simply be

reusing, like a nav bar or picker list. In other words, it’s important

to draw out what your application looks like, not to get the drawing

of a particular picker list exactly right.

• Share and review the paper with someone else. If you have a team,

make sure they are involved in reviewing (and even coming up with

the paper in the first place). If you don’t have someone who can

review the paper, make sure to share it with someone who is a

“representative” user of your application. The more feedback you

get at this point, the easier building the perfect app will be.

• Since everything is on paper at this point, it’s cheap to add both

layouts to your application (landscape and portrait) and very

cheap to throw out one that does not work. Users love getting

a different layout when they rotate the device, but if that layout

does not make sense, it’s better to find that out on paper than

after many hours of coding.

Now that you have a good idea of what your application will look like,

it’s time to start thinking outside the box. Drawing a UI on paper gives

us insights into what our application will look like and even how it will

work. But, there is a lot of cool technology that comes with the iPhone,

and now that you know what your app will do and how it will look,

it is time to think about the “wow factor.” What can you add to your

application that will make your users want to talk about it with their

friends? Is there some way to add a “shake gesture” that makes sense?

Can you use the “always on” Internet connection to add a social aspect

to your app?

These kind of “thinking outside of the box” features are what will add

that extra something to your app. These kinds of features are another

reason to favor paper prototypes rather than code. It’s easy to add loca-

tion awareness to paper. Just draw it out, and if it does not work for

the application, it is just as easy to pitch it.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=533

STARTING RIGHT 534

Keep in mind that when putting together the “wow factor” features,

it’s easy to get carried away. And if you are carried away in code, the

emotional attachment is much greater. Paper is easy to crumple up

and put into the waste bin, so it’s much easier to get rid of paper “wow

factor” features that don’t work than it is to delete them from code.

As always, the important thing to think about in any feature you add

to your application is the user. If the great feature or gesture only adds

clutter to the app, then it’s much better to leave it out. Even if it’s cool

looking, in the end it detracts from the core of your application.

Consider a “shake gesture” again for a moment. It is kind of cool that

you can shake an iPhone and get something to happen. But does the

shake make sense to your users? Ask yourself these kinds of questions.

Will my users know that they can shake the device to get this function

or feature? If not, is there another way for them to invoke the function?

Questions like this are very important and can be easily missed in the

excitement of adding the “wow factor” features.

Another great way to find these cool features is to show your prototype

to users and get their feedback. Often your potential users will have

some great ideas for cool features that you had not even thought of.

It is doubly hard when writing the feature into code. Who wants to think

through whether the “wow factor” is actually useful when in the midst

of coding? We hate to keep repeating this, but it’s another great reason

to put your idea on paper first. It’s lots easier to pitch the idea if you

have invested only some graphite and paper to it.

It is often these seemingly little things, choosing what to pitch, what

small tweak to add, what cool gesture to incorporate. These things

make people want to show off the application to their friends. But if

one of these features or gestures is clumsy or just gets in the way, it

can have the opposite effect that you were hoping for. Ultimately, the

reason to build any app in the first place is to make someone’s life

better, not more complex. Always keep your user at the center of your

decisions, and you will find it hard to go wrong.

Now that we have talked about the front end of the process, let’s fast-

forward to the other end and talk about polishing up your application

before letting it loose in the wild for some testing.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=534

POLISH 535

29.2 Polish

Once the application is working, it’s often tempting to send it out for

testing right away to get all your hard work in front of some real users

and get their feedback. Although early feedback and testing is impor-

tant, we think it is best to take a step back after the heavy lifting is

done and look for areas to polish.

Polish can mean many different things, but the general idea is to make

your application seamless and simple to use. Questions like these are

important to consider:

• How does my app handle interruptions, such as incoming calls?

• Are the major features/functions easy to get to and use?

• What is the perceived performance profile? Does the application

start quickly enough?

• Do any areas in the application that use more power than it should

/could?

Although none of these questions has a universal answer, it is impor-

tant that you ask them before calling your application done. Users

really appreciate the attention to detail that is paid in these areas even

if they don’t send you an email saying “great job” on handling incoming

phone calls.

Another area to consider when polishing up your application is the

startup image. On the device it can take a bit of time for your appli-

cation to start up, especially if it’s doing some network access or other

intensive process before becoming active.

One trick of the trade to improve perceived performance is to add a

Default.png file to your application. When your application is starting

up, this image is loaded and displayed to the user right away. So, what

many applications do is take a typical screenshot of what the applica-

tion might look like at startup and make that the Default.png file. This

gives the users the impression that the application is going before it

really is. In addition to the Default.png, you can add one file for each URL

scheme that your application can load. For example, in Chapter 26,

Application Integration, on page 482, we built an application that was

opened via URLs with the integrated scheme. We could add a Default-

integrated.png image to that application, and each time it is launched

with a URL, that image would be used instead of the Default.png image.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=535

OTHER FEATURES 536

Handling interruptions gracefully is equally important. Know your

users and how they expect to use your application. If your applica-

tion has very little context, then restarting where the user left off is

not very important. But as the amount of context built up increases,

it becomes more important to be able to restore the previous state of

your application with each launch. In our applications, we use SQLite

to store the context so that we can restart at the same spot each time

the application is launched (for more info on SQLite see Chapter 10,

The SQLite Database, on page 194). Every application will be different;

just make sure to think through how your users expect the application

to work, and make it work that way.

One last bit of polish to take care of before you email the beta version

of your application out to testers is the icons. You need two, one for the

iTunes icon that will be used to represent your application there and

the other for your application on the iPhone home screen.

For your application icon, you need a couple of things. The icon for

the app should be 57x57 pixels in PNG format. Add it to the Resources

section in Xcode. You also need to update Info.plist to specify the file. The

code to do that is listed here:

<key>CFBundleIconFile</key>

<string>icon.png</string>

Just replace the icon.png value with the name of your icon, and the

iPhone will display that instead of the generic white blob.

For iTunes you need to add an image file called iTunesArtwork (note the

lack of extension) to the Resources group in Xcode for your project. This

file is used by iTunes to represent your application under the Applica-

tions tab. The file should be a 512x512 PNG or JPEG image and ideally

be the same as the icon for your application on the device.

Now that your application is polished, it’s time to send it to a group of

real-world users for beta testing.

29.3 Other Features

Another thing to consider is using some of the web-based features that

Apple introduced with iPhone OS 3.0, namely, in-application purchase

and push notifications.

In-application purchase allows your users to purchase additional add-

ons to your application after they have purchased your application. Is

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=536

BETA TESTING 537

it possible for you to offer additional features or components of your

application to your users after the fact? If so, it might make sense to

integrate with the in-app purchase features. No only do you need to

write the pieces in your application, but you also need a web server

on the Internet that can interact with your application and Apple’s

servers. Look at the developer documentation for more details about

this feature.

Another cool feature of the 3.0 release is push notification. Does it make

sense for your application to inform your users of new content? If so,

you should consider integrating with the push notification service. This

feature also requires you to have a server that is available on the Inter-

net and set up to communicate with Apple’s push notification servers.

29.4 Beta Testing

Testing is one of the most important stages in your application’s life

cycle. When your application makes it way out into the hands of a

real-world user is when the rubber finally meets the road. It is vitally

important to your application that you don’t scrimp on this step. Allow

adequate time for your users to use the application and to give you

feedback.

Listen to your testers. We know it might seem silly to say that, but why

bother getting people to test your application if you don’t listen to them?

The problem is that sometimes testers’ feedback is going to be negative.

It is often hard to take negative feedback, but it is often some of the

most helpful. It is so much easier for your application to address the

negatives in this early stage than it is to dig out of a bunch of negative

reviews on the App Store. That brings us to another really important

point.

Choose your beta testing group carefully. You want to have people who

will take the time to test and give you honest feedback. If you get only

positive feedback, it’s important to go fishing for what people did not

like. Push hard for what did not work or what people did not like.

Although it’s nice to get positive feedback, it rarely helps the application

get better.

The details of the process to get your application into beta testers’

hands is constantly evolving, but the basic idea is that you need to

get an “ad hoc distribution profile” for the tester’s device. In order to do

that, you need the device ID from each device that will be used in the

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=537

GETTING INTO THE STORE 538

test. To get that, you can connect the device to a computer with Xcode

installed, open the Organize window, choose the device, and grab the ID

from the summary page. Or if you don’t have access to the device, have

the user connect their device, launch iTunes, and select the device. In

the Summary tab of iTunes, clicking the Serial Number field switches

to the Identifier field. After switching to Identifier, the user can hit Copy

(or Command+C) to copy the number into the pasteboard. They can

then launch mail, paste the ID into a new mail message, and send it to

you.

Once you have your testers’ device IDs, you can take them to the iPhone

developer portal and get an ad hoc distribution profile for each device.

Follow the instructions from Apple exactly because any deviation can

lead to a failure to deploy on your users’ devices.

Now that you have your application in real users’ hands, you need to

provide great support. When bugs are reported, make sure to send the

tester a note letting them know you got the bug report and that you are

looking into it. People are motivated by positive feedback, and it’s really

important to keep your testers motivated.

Finally, a note on finishing well—you should be careful to address as

many bugs as you can during the beta phase, but be careful of scope

creep disguised as a bug report. Keep focused on the “main thing” that

your application addresses. Many great ideas will come in from your

testers. If it’s not a bug, put it aside for later implementation. Too many

applications have languished under feature creep. Shipping software

beats perfect software every time.

29.5 Getting into the Store

There has been a lot of press about Apple’s application approval pro-

cess, and some of it can be a bit discouraging. Don’t let that get to you,

though. As with so many things in life, bad news makes headlines,

while good news goes unnoticed. Chances are very high that you will

get approved, but here are a few ideas to help to ensure a first time

success.

First things first, make sure to get your legal stuff settled well before

you want to release an app. That means establish a bank account for

your business, get a taxpayer identifier, and set up all the other local

requirements in place to be a real company. Make sure you get the

contracts signed with Apple as well as getting this information to them.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=538

PROMOTING YOUR APPLICATION 539

It takes time for the machinery to grind through all this and actually

verify you are who you say you are, so don’t expect to be ready on day

one of submission to be able to ship an app. Also keep in mind that

there are thousands of developers with many new ones coming online

every day. Apple has a lot of people doing this work, but it still takes

time to process each new developer.

When the docs tell you not to use private APIs, they really mean it.

If your application links to and uses private frameworks, you will be

rejected. Apple documents this kind of stuff fairly extensively and pro-

vides many warnings about it, but many rejections still happen because

people ignore these restrictions. It might be tempting to use text to

speech, but if you do, you will be rejected.

If you do get rejected and the reason seems bogus to you, make sure

to take a deep breath, step away from it for a day or so, and then look

at it again with fresh eyes. Most of the app rejections are valid, and

changing the application really is the right thing to do.

If after a bit of time away from the issue you decide the rejection is

bogus, try resubmitting. The reviewers are human, after all, and a fresh

set of eyes might look at your application differently. Also keep in mind

that the reviewers have to review hundreds of applications every day,

and mistakes happen, so don’t take it personally. Just resubmit, and

see whether a new reviewer has a different perspective. Check with

colleagues to see whether there’s a restriction you missed or whether

Apple might be making a mistake. If your app gets rejected again, refer

to the previous paragraph.

29.6 Promoting Your Application

Marketing and promoting your application can be a full-time job. If you

are an independent developer, it is easy to get sucked into doing this

full-time. If you are not an independent, you might have folks to take

care of all this for you.

If you are not that person with a team to handle your marketing and

promotion, then read on. If you are forced to wear multiple hats and

are looking for the biggest bang for the buck, this section is for you.

Getting the word out can be tough, but the real secret is to build a

network of people that know and trust your work so that they can help

you. Get to know people via online social networks like Twitter, Face-

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=539

PROMOTING YOUR APPLICATION 540

book, or LinkedIn. Joining local developer meetups is another way to

build a network. Then once your product is ready, make sure to ping

your network with the facts. Don’t spam people, but politely let them

know your app is ready and available.

Another often underutilized group of people is your testers. If someone

has had the chance to use your application and liked it, make sure to

ask them for a review on iTunes as well as asking them to spread the

word.

Press releases can be effective at getting the word out. A comprehen-

sive list of sites that review iPhone applications would be impossible to

maintain because of the very dynamic nature of the marketplace. But

spending thirty minutes googling around for sites can be quite produc-

tive and help you find several avenues to get people exposed to your

application.

Please make sure to customize your press releases for the site. If you

write a generic press release, you will get a generic response (all too

typically the spam filter). If you have a game and are writing to a site

that specializes in games, focus on the “gameness” of your app. If you

are writing to a site that reviews all kinds of apps, write about the fun

or challenge of your game. Use your common sense, and write a specific

press release to a specific person or site. They will appreciate it and will

be much more likely to publish you.

Finally, a word about support—when someone sends you an email ask-

ing questions about your application or asking for a feature, and so on,

make sure to get back to them quickly and politely. We know it sounds

crazy to have to tell people to be polite to their customers, but some-

times user requests can seem a bit crazy; always tell them thank you

and be polite. In the end, a polite response to a support email might

make the difference between an angry customer who talks bad about

your application and a customer who recommends your stuff to their

friends.

This chapter is far from comprehensive of all the things that you can

and will have to do to have a successful application. What we covered

is what has worked (or not) for us as independent iPhone application

developers. It is our hope that the information contained in this chapter

will help you attain whatever your goals are with your application. If you

have other ideas, please share them on the book’s forum. Good luck!

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=540

Appendix A

Bibliography

[Apa09] Apache Software Foundation. Authentication, Authorization

and Access Control. http://httpd.apache.org/docs/2.0/howto/

auth.html , 2009.

[App06a] Apple, Inc. Cocoa Fundamentals. http://developer.apple.

com/documentation/Cocoa/Conceptual/CocoaFundamentals/

CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/

doc/uid/TP40002974-CH6-SW1, 2006.

[App06b] Apple, Inc. Toll Free Bridging. http://developer.apple.com/

documentation/Cocoa/Conceptual/CarbonCocoaDoc/Articles/

InterchangeableDataTypes.html, 2006.

[App07a] Apple, Inc. Carbon-Cocoa Integration Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

CarbonCocoaDoc/index.html, 2007.

[App07b] Apple, Inc. Core Audio Overview. http://developer.apple.com/

documentation/MusicAudio/Conceptual/CoreAudioOverview/,

2007.

[App07c] Apple, Inc. Introduction to Quartz 2D Programming Guide.

http://developer.apple.com/documentation/GraphicsImaging/

Conceptual/drawingwithquartz2d/dq_intro/chapter_1_section_1.

html, 2007.

[App08a] Apple, Inc. Archives and Serializations Programming

Guide for Cocoa. http://developer.apple.com/DOCUMENTATION/

Cocoa/Conceptual/Archiving, 2008.

Prepared exclusively for Vadim Kudria

http://httpd.apache.org/docs/2.0/howto/auth.html
http://httpd.apache.org/docs/2.0/howto/auth.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW1
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW1
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW1
http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW1
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/Articles/InterchangeableDataTypes.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/Articles/InterchangeableDataTypes.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/Articles/InterchangeableDataTypes.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/index.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/index.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CarbonCocoaDoc/index.html
http://developer.apple.com/documentation/MusicAudio/Conceptual/CoreAudioOverview/
http://developer.apple.com/documentation/MusicAudio/Conceptual/CoreAudioOverview/
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_intro/chapter_1_section_1.html
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_intro/chapter_1_section_1.html
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_intro/chapter_1_section_1.html
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Archiving
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/Archiving

APPENDIX A. BIBLIOGRAPHY 542

[App08b] Apple, Inc. Event-Driven XML Programming Guide for

Cocoa. http://developer.apple.com/documentation/Cocoa/

Conceptual/XMLParsing/, 2008.

[App08c] Apple, Inc. iPhone Developer Program. http://developer.apple.

com/iphone/program/, 2008.

[App08d] Apple, Inc. iPhone Development Guide. http://developer.

apple.com/IPhone/library/documentation/Xcode/Conceptual/

iphone_development/, 2008.

[App08e] Apple, Inc. Key-Value Coding Programming Guide. http://

developer.apple.com/documentation/Cocoa/Conceptual/

KeyValueCoding, 2008.

[App08f] Apple, Inc. Obtaining your iPhone Development Certifi-

cate. http://developer.apple.com/iphone/manage/certificates/

team/howto.action, 2008.

[App08g] Apple, Inc. Predicate Programming Guide. http://developer.

apple.com/documentation/Cocoa/Conceptual/Predicates/

predicates.html, 2008.

[App09a] Apple, Inc. HTTP Live Streaming Overview. http://developer.

apple.com/iphone/library/documentation/NetworkingInternet/

Conceptual/StreamingMediaGuide/, 2009.

[App09b] Apple, Inc. Introduction to Core Data Programming

Guide. http://developer.apple.com/documentation/Cocoa/

Conceptual/CoreData/cdProgrammingGuide.html, 2009.

[App09c] Apple, Inc. iPhone Application Programming Guide. http://

developer.apple.com/iphone/library/documentation/iPhone/

Conceptual/iPhoneOSProgrammingGuide, 2009.

[App09d] Apple, Inc. Technical Note TN2188: Exporting Movies for iPod,

Apple TV and iPhone. http://developer.apple.com/technotes/

tn2007/tn2188.html, 2009.

[App09e] Apple, Inc. The Objective C Programming Language. http://

developer.apple.com/documentation/Cocoa/Conceptual/

ObjectiveC, 2009.

[Dud08] Bill Dudney. Core Animation for OS X: Creating Dynamic

Compelling User Interfaces. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2008.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://developer.apple.com/documentation/Cocoa/Conceptual/XMLParsing/
http://developer.apple.com/documentation/Cocoa/Conceptual/XMLParsing/
http://developer.apple.com/iphone/program/
http://developer.apple.com/iphone/program/
http://developer.apple.com/IPhone/library/documentation/Xcode/Conceptual/iphone_development/
http://developer.apple.com/IPhone/library/documentation/Xcode/Conceptual/iphone_development/
http://developer.apple.com/IPhone/library/documentation/Xcode/Conceptual/iphone_development/
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/documentation/Cocoa/Conceptual/KeyValueCoding
http://developer.apple.com/iphone/manage/certificates/team/howto.action
http://developer.apple.com/iphone/manage/certificates/team/howto.action
http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/predicates.html
http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/predicates.html
http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/predicates.html
http://developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/
http://developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/
http://developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/
http://developer.apple.com/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide
http://developer.apple.com/technotes/tn2007/tn2188.html
http://developer.apple.com/technotes/tn2007/tn2188.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=542

APPENDIX A. BIBLIOGRAPHY 543

[GL06] David Gelphman and Bunny Laden. Programming with

Quartz, 2D and PDF Graphics in Mac OS X. Morgan Kauf-

man, San Francisco, 2006.

[Hip09] Inc. Hipp, Wyrick & Company. Sql features that sqlite does

not implement. http://www.sqlite.org/omitted.html, 2009.

[KP88] Al Kelley and Ira Pohl. A Book on C. Addison-Wesley Profes-

sional, New York, 1988.

[KR98] Brian W. Kernighan and Dennis Ritchie. The C Programming

Language. Prentice Hall PTR, Englewood Cliffs, NJ, second

edition, 1998.

[Pan09] R. Pantos, Ed. Http live streaming (internet-draft).

http://www.ietf.org/internet-drafts/draft-pantos-http-live-streaming-01.txt,

2009.

[PT08] Maija Palmer and Paul Taylor. Google homes in on revenues

from phones. Financial Times, February 13, 2008.

[Ras07] Bertis Rasco. Where’s the wiimote? using kalman filtering

to extract accelerometer data. Gamasutra, June 20, 2007.

[RSWLH07] Jr. Richard S. Wright, Benjamin Lipchak, and Nicholas

Haemel. OpenGL SuperBible. Addison Wesley Longman,

Reading, MA, fourth edition, 2007.

[SPHB08] Thomas SchlÃűmer, Benjamin Poppinga, Niels Henze, and

Susanne Boll. Gesture recognition with a wii controller. In

Proceedings of the 2nd international conference on Tangible

and embedded interaction, pages 11–14, New York, 2008.

ACM Press.

[Ste09] Daniel H Steinberg. Cocoa Programming: A Quick-Start Guide

for Developers. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2009.

[Sto08] Brad Stone. iphone users love that mobile web. The New

York Times, June 19, 2008.

[Uni04] Inc. Unicode. Unicode technical standard 35: Locale data

markup language (ldml). Unicode Technical Reports, 2004.

[Zar09] Marcus Zarra. Core Data: Apple’s API for Persisting Data

under Mac OS X. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2009.

Report erratum

this copy is (P1.0 printing, September 2009)
Prepared exclusively for Vadim Kudria

http://www.sqlite.org/omitted.html
http://www.ietf.org/internet-drafts/draft-pantos-http-live-streaming-01.txt
http://books.pragprog.com/titles/amiphd/errata/add?pdf_page=543

Index
Symbols
#pragma mark, 271

* character, 60, 491
+ character, 43

- character, 43

%@ format specifier, 48, 500

_ characters, 280
:// resource specifier, 486

A
a-law, 343

AAC, 342

Accelerometer, 426–442
axes of, 427f

device orientation, 427–428

filtering data, 437f, 435–442
overview, 426

raw data access, 429–434, 435f

shake detection, 428–429, 437, 439
simulator and, 426

Accessory type, 119

Actions, 42, 46, 246

adding, 161
adding to view controller, 69–71

button, 62–66

implementing, 48–49
target/action paradigm, 66

Add button, 102

Address Book, 443–452
adding contacts to, 449–452

people picker configuration, 446–447

people picker delegation, 445–446

person controller, 447–449
user interface, 443–444

AddressGeocoder, hyperpage474, −−, 479

ADPCM, 343
ALAC, 343

Alignment, 44

alloc, 365

Allocator, 365, 366

Angle brackets, 76

Animation, 412–425

customizing, 416

delegation, 417

layers, 414f, 421f, 420–422

OpenGL and, 422–425

overview, 412–413

UIView, 413–419

Animation blocks, 413, 415

Apache, Bonjour-enabled websites,

278, 279f

App Store, 16, 538–539

Event-Driven XML Programming Guide

for Cocoa (Apple, Inc.), 272

Application anatomy, 50–52

Application definition statement (ADS),
531

Application delegate, 50, 53

Application ID, 147

Application memory, managing, 56–57

Application music player, 313

Applications, 530

approval for, 538–539

beta testing, 537–538

crashing, 503

flippable views, 173f, 172–174

integration of, 482–487

launching other applications,
482–484

overview, 482

preparation for, 484–487

navigation-based, 116–119

photos and, 401

polishing, 535–536

promoting, 539–540

starting and planning for, 531–534

web-based features, 536–537

Arcs, 393

Prepared exclusively for Vadim Kudria

ARRAYS CIRCLES

Arrays, 91, 132

PreferenceSpecifiers, 184

Aspect Fit, 404f, 405

Asynchronous file reading, 157–161

Attributes inspector, 44, 51, 109

tab bar controller, 129

Audience, 531, 532

Audio category, 360

Audio Conversion Services, 375

Audio file formats, 337

Audio File Services, 374

Audio File Stream Services, 374

Audio formats, 308

Audio Queue Services, 334, 374

Audio session services, 372–373

Audio sessions, 360–362

Audio Unit Graph, 376

Audio Units, 375–376

Audio/visual formats, 308

Authentication, Authorization and

Access Control (Apache), 257

AuthenticationChallengeViewController, 260

Autorelease pool, 50

Autoreleasing, 56

AVAudioPlayer, 357, 359

AVAudioRecorder, 336f, 334–338

delegate callbacks, 348

methods for, 348

recording levels, 354f, 350–355

tab-based application, 335

using, 346–350

AVAudioSession, 360–362

Average power level, 350

AVFoundation

AVAudioRecorder, delegate callbacks,
348

AVAudioRecorder, methods for, 348

AVAudioRecorder, using, 346–350

encoded formats, 344f, 342–346

key-value pairs, 342

playing audio,

hyperpage355, 356f, −−, 359

properties, 340

recording levels, monitoring, 354f,
350–355

sample application setup, 335–338

settings, 340

tab layout, 336f

uncompressed audio formats, 340f,

338–342

Axes, accelerometer, 427f

B
BalanceBall example, 429, 435f

Bar graph drawing, 395f

Beta testing, 537–538

Bezier curves, 393

Bluetooth, see Game Kit

Bonjour

enabling Apache, 278, 279f

network services, 277–279

philosophy of, 277

service discovery, 281f, 279–285

web viewing, 284f

A Book On C: Programming in C (Kelley
& Pohl), 452

Boolean preference, 187f

Breakpoint, 505f

Browsers, see Web browsers

Bug, in iPhone OS SDK, 409

Bugs, see Debugging

Build errors, 490f, 489–491

Bundle, settings, 184, 185f

Bunny, Laden, 398

Button action, 62–66

Buttons, 102

callback method, 162

done, 239

text for, 45

C
cabinetController, 120

CAEAGLLayer, 422

.caf files, 337

CALayer, 419

Callback method, 162

Callbacks, 252

Carbon-Cocoa Integration Guide (Apple,

Inc.), 445

Cell identifier, 96

Cell reuse, 95

Cell styles, custom, 107f, 105–109,

110f

Cells, table, 94f, 92–96

center, 415

Certificate, developer, 32

CFNetwork, 253

CFRelease, 366

CGContextDrawImage(), 405

CGRect, 95

Checkmark, 119

Circles, 393

545
Prepared exclusively for Vadim Kudria

CLANG STATIC ANALYZER COREDATA/CONFERENCE PROJECT

Clang Static Analyzer, 526f, 527f,

524–529

Classes, 36, 38–40

collection, 39

described, 40

CLLocationManager, 453, 456

Clock application, 128

Clock, constant updates for, 181–182

Cocoa Fundamentals Guide: Cocoa

Design Patterns (Apple, Inc.), 62

Cocoa Programming: A Quick-Start

Guide for Developers (Steinberg),

36

Cocoa Touch, 36

classes, 38–40

Core Foundation references and, 365

delegation, 52–55

development process, 69

drawing, 390

fundamentals, summary of, 60–61

reference counting system, 56

schemes and, 484

service resolution, 282

support, 484

URL Loading System, 249

see also Objective-C

Code navigation, 31

“Coding in Objective-C 2.0”

(screencasts), 35

Collection classes, 39

Command objects, 379

Compass, 462–464

Compiler errors, 490f, 489–491

Completion process, 369

Conference application, see

CoreData/Conference project

Connections inspector, 51, 71, 81

Contact Mapper

AddressGeocoder, 474–479

annotations, 469–479

annotations, selecting, 479–481

described, 465–466

recentering a map, 472

showing a map, 466–469

ContactAnnotation, 469

Container formats, 307

Content view, 106

contentView, 106

Coordinates, 455f

Core Animation, 412–425

customizing, 416

delegation, 417

layers, 414f, 421f, 420–422

OpenGL ES, 422–425

overview, 412–413

UIView, 413–419

Core Animation for OS X: Creating

Dynamic Compelling User

Interfaces (Dudney), 417, 419, 422

Core Audio, 363–377

Audio Conversion Services, 375

Audio File Services, 374

Audio File Stream Services, 374

Audio Queue Services, 374

audio session services, 372–373

Audio Units, 375–376

four-character codes, 347

OpenAL, 376

overview, 363

Procedural C APIs, 364–366

settings, 340

system sounds, 366–372

Core Data, 212–243

CoreData/Conference project

changing tracks, 234–237

Core Data stack, 220–221

creating, 216–219

description of, 213–216

fetching tracks, 233

modeling classes, 222–228

navigation, 238–243

table views, 229–233

overview of, 212

persistent object stores for, 218

vs. SQLite, 195, 212

Core Data Documentation (Apple, Inc.),

232

Core Data stack

building, 220–221

components of, 219

modeling classes, 222–228

objects, 217

CoreData/Conference project, 213–216

adding and deleting tracks, 214

changing tracks, 234–237

Core Data stack, 220–221

editing tracks, 214

fetching tracks, 233

modeling classes for, 222–228

navigation, 238–243

selecting as session, 215

table views, 229–233

546
Prepared exclusively for Vadim Kudria

Core Data: Apple’s API for Persisting Data under Mac OS X (APPLE DONE BUTTON

Core Data: Apple’s API for Persisting

Data under Mac OS X (Apple, Inc.),
231, 232

Core Foundation

Cocoa and, 365

memory management, 365

rules for, 366

string objects, 450

Core Graphics, 390–400

bar graphs, 395f

drawing model, 391f, 390–391

filled view, 394f

graphics context, 397–398

paths, 392–397

redrawing, 399
vector drawing, 391–392

Core Location, 453–464

accuracy and, 458

compass, 462–464

components of, 457

coordinates, 455f, 453–458

distance, 459, 460f

location updates, 458–462

service parameters, 456

see also Map Kit

CoreData/Conference project

creating, 216–219

create table, 196

CreateDirectoryViewController, 140

CreateFileViewController, 140, 166
createNewDirectory, 164, 165f

createNewFile, 163

Ctrl+drag, 71, 81

Currency formatter, 79

Curves, 393

customizableViewControllers property, 136

D
Data storage, see Filesystem
Databases, 194–211

adding to device, 200–202

Core Data vs. SQLite, 195, 212

creating, 195–197

creating on desktop, 202

function calls for, 203

inserting values, 204–206

reading values, 207–210

sample application, 198–200

SQLite overview, 194

Dead reckoning, 293

dealloc, 69

Debugging, 488–511

breakpoint, 505f

compiler errors, 490f, 489–491

debugger, 504f, 498–506

importing/linking errors, 492f, 493f,

491–493

Interface Builder errors, 497–498,
499f

objects and, 507f, 509f, 506–511

overview, 488

remotely, with Shark, 517

using documentation, 495f, 496f,

493–496

see also Performance

Decibels, 352

Declarations, 60, 70

Delegate protocols, 53, 60, 158

Delegation, 52–55

Address Book, 445–446

animation, 417

images, 407

location manager, 454

table view, 88

deleteObject:, 235

Deleting, table data, 96, 97, 99f

Detail Disclosure Button, 119

Detail pane, 520

Developer certificates, 32

Development tools, see Instruments;
Interface Builder; Xcode

Device orientation, accelerometer,

427–428

Dictionary

data and, 124, 125

preferences, 185

Differentiator, 531

Directories, 140, 144–148

creating and deleting, 162f, 165f,
167f, 161–167

DirectoryViewController, 140, 147

Disclosure Indicator, 119

displayName, 291

Distance, 459, 460f

Dot, 382

Documentation, 23, 493

Research Assistant, 496f

shortcuts to, 495

Documentation Viewer, 495f

Research Assistant, 495f

Documents directory, 140

done button, 239

547
Prepared exclusively for Vadim Kudria

DONE GRAPHIC USER INTERFACE

done, 179

Dot operator, 48, 59

Double taps, 383

Drawing, 390–400

bar graphs, 395f

filled view, 394f

graphics context, 397–398

model for, 391f, 390–391

paths, 392–397

planning, before coding, 533

redrawing, 399

vectors, 391–392

drawRect:, 395, 399

Dudney, Bill, 417, 419, 422

DVDCase app, 116–119

E
editButtonItem, 99f

Editing table, 96–98, 99f

Editor pane, 26

Email, 274f, 273–276

Encoded formats, audio, 344f, 342–346

Entities, 219, 223, 224

Errors, see Debugging

Event model, 379f, 378–380

Event-driven parser, 265

EXC_BAD_ACCESS, 506, 507f

Explicit animation, 413

Extended Audio File Services, 375

Extended detail, Instruments app.,

521f, 521

F
Fast Fourier transform, 441

Fetched results controller (FRC), 229,

233

File’s Owner, 46, 47, 108, 118, 178,

246, 498

File/resource list, 26

FileContentsViewController, 140

FileOverviewViewController, 140

Filesystem, 138–171

adding actions, 161

alternatives to, 138

asynchronous file reading, 157–161

creating and deleting directories,

162f, 165f, 167f, 161–167

directories, 139–141

directories in, 144–148

FilesystemExplorer application, 141f

FilesystemExplorer application, creating,

142–148

file attributes, 152f, 148–153

files, reading data from, 157f,
153–157

navigation flow of, 139f

overview of, 138

property lists, 170–171

refactoring code, 142, 143f

writing to files, 167–170

FillingView, 391

Filter predicates, 326

Filters, 435

Flippable view, 173f, 172–174

changing and updating, 178–181

preferences, 175–178

FlippableClock, 174

FlipsideViewController, 179

Format specifier (%@), 48

Format strings, 500

Forward declarations, 70, 83

Four-character codes (4cc), 347

Fourier transform, 441

Fragmentation, 15

Frameworks, 41, 491

G
Game alerts, 299f

Game Kit

data mode, 293

GKSession communication, 294–298,

299f

networked game, 287f, 287–288

networking game logic, 292–293

overview, 285–286

peer picker delegate, 289–292

peer picker setup, 288–289, 290f

peer-to-peer chat, 298–300

receiving data, 297

state changes, 295

support for, 286

Game logic, 292–293

Gelphman, David, 398

General media items property keys, 314

“Gesture Recognition with a Wii

Controller” (Schlömer), 442

GKPeerPickerController, 290f

GKSession, 291, 294–298, 299f

GPS receiver, 457

Graphic user interface, see Interface

Builder (IB); User interface

548
Prepared exclusively for Vadim Kudria

GRAPHICS CONTEXT IPHONE

Graphics context, 397–398

Grouped style, tables, 86, 87f, 94f

H
Header files, 36, 60, 68

ConferenceAppDelegate, 217
errors with, 491

forward declarations, 70

instance variables, 267

Session class, 227
SQLite API, 201

Track class, 227

Heads-up-display (HUD), 46
Hello iPhone project, 25f, 24–26

anatomy of, 50–52

parts of, 40

returning the greeting, 41
Hello World project, 32–34

High-pass filter, 435, 436, 438

htpasswd, 258
HTTP authentication, 256f, 261f,

255–262

HTTP LIVE Streaming (Apple, Inc.), 305

Human Interface Guidelines (HIG), 27

I
IB, see Interface Builder

IBAction, 42–43

IBOutlet, 42–43, 59

Icons, 536
Identifier, 32

IMA4, 343

Images, 401–411
display, customizing, 406f, 404–406

drawing, 403f, 404f, 402–404

formats of, 402

image picker, 408f, 406–410
overview, 401

startup, 535

video, 410–411

Implementation files, 36
Implicit animation, 413

#import, 491

Importing/linking errors, 492f, 493f,
491–493

#include, 491, 492f

indexPath, 91

init method, custom, 68
initWithSessionID, 290

insertTrack(), 234

Installation, developer tools, 23

Instance variables, 59, 60, 76, 91, 124,

267

editing tables, 101

flippable views, 177

writing data to files, 168

Instruments, 23

Instruments application, 519f, 521f,
523f, 518–523, 524f

integrated://, 486

Integration, 482–487

launching applications, 482–484

overview, 482

preparation for, 484–487

Interactive application, 41

Interface, see User interface

Interface Builder (IB), 23, 26–31

audio encoding settings, 344f

browser, building, 245, 246f

code navigation, 31

connecting outlets and actions, 80

custom cell styles, 107f, 105–109,

110f

debugging, 497–498, 499f

editing view controller in, 84–85

file types for, 29

File’s Owner, 108

GUI layout in, 43–47

IBAction, 43

images in, 403

Movie class, 71

navigation objects, 103

table views, 87f

target/action paradigm, 66

user interface, adjusting, 29–30, 31

see also Table views; UIWebView;

User interface

Internet, 244–276

building a browser, 244–249, 250f

HTTP authentication, 256f, 261f,

255–262

overview of, 244

reading network data, 251f, 250–255

sending mail, 274f, 273–276

XML parsing, 264f, 266f, 272f,

262–273

see also Peer-to-peer networking

Internet Low-Bitrate Codec, 343

Introduction to Quartz 2D Programming

Guide (Apple, Inc.), 398

iPhone

audio formats, 337

549
Prepared exclusively for Vadim Kudria

iPhone Application Programming Guide (APPLE MAP KIT

audio recording capabilities, 361

components, 87

filesystem in, 138

fundamentals, summary of, 60–61

Hello World application, 25f, 24–26

image formats supported by, 402

impact of, 15–16

Interface Builder, 26–31

user interface, adjusting, 29–30,

31

Internet use, 244

keyboard, 54, 77

media application names, 311

Multi-Touch feature, 81, 378

rotation, 29

running apps on, 32–34

SDK documentation, 495f, 496f,

493–496

software stack, 36

terminology, for this book, 23

tools for, 23

versions, 361, 409

versions of, 175, 286, 429

Xcode and, 22–24

see also App Store

iPhone Application Programming Guide

(Apple, Inc.), 308

iPhone Developer Program (Apple, Inc.),
23, 32

iPhone Development Book (Apple, Inc.),

529

iPod, 310–333

application name, 311

library for, 321–331

media library search, 324

media queues, 325f

playback, 310–319

playback control, 319–321

playback status, 313–315

player notifications, 317–319

time properties, 317f, 316–317

time, setting, 331

UISearchDisplayController, 323f

user interface, 312f, 311–313

K
Key path, 232

Key-Value Coding (Apple, Inc.), 228,

232

Key-Value Coding, 112

Key-value pairs, 185, 342

Keyboard, 54, 77, 81

Keyframe animations, 417
Keywords, see IBAction; IBOutlets

L
Labels, 28

Launching applications, integration

and, 482
Layers, 412, 421f, 420–422

CAEAGLLayer, 422

CALayer, 419

OpenGL and, 422–425
layoutSubviews, 424

Level meters, 350, 352

Library, 27, 141
iPod, 321–331

libXML2, 474

libsqlite3.dylib, 200
libXML2 library, 474

Linear PCM, 338, 339, 340f, 340, 342

Lines, 393

Linking errors, 492f, 493f, 491–493
Location, 453–464

accuracy, 458

compass, 462–464
coordinates, 455f, 453–458

delegation, 454

distance, 459, 460f
iPhone components of, 457

location updates, 458–462

service parameters for iPhone, 456

see also Map Kit
Lossy, 342

Low-pass filter, 435, 436, 438

M
Magnetometer, 462–464

Mail, navigation through, 114–115
main(), 52

make-table-script, 197

malloc:, 510
Managed object context (MOC), 214,

219, 221

Managed object model (MOM), 219,

221–228
Map Kit, 465–481

Contact Mapper

AddressGeocoder, 474–479
annotations, 469–479

annotations, selecting, 479–481

overview, 465–466

550
Prepared exclusively for Vadim Kudria

MAP VIEW OBJECTIVE-C PROTOCOL

recentering a map, 472

showing a map, 466–469

overview, 465

Map View, 467

Markers, 124

Media formats, 307–309

Media Player framework, 321, 322

Memory, 522, 523, 524f

autorelease of, 50

Core Foundation, 365

managing, 56–57, 365

in Movie class, 68

properties and, 58

releasing, 49, 61

see also Performance

Messages, 38

Method calls, 38

Method declaration syntax, 43

Method declarations, 60

Method signatures, 55

Methods, map annotations, 469

MKAnnotation, 469–479

MKMapViewDelegate, 473

modalTransitionStyle, 175

Models, building, 67–69

Models, for tables, 90

Movie class example, 67–69

sorting, 112, 113f

table data, modeling, 90

MovieEditorViewController, 83, 99–100

MPMediaItem, 330f

MPMoviePlayerController, 301–305

movie selection, 304–305

notifications, 306–307

supported media formats, 307–309

user interface, 303–304

Multi-Touch feature, 81, 378

event model and, 380

gestures, 389f, 384–389

multiple touch, 385f

tapping, 383–384

tracking touches, 381f, 381–382

zoom, 387f

Multivalue objects, 450

N
Navigation, 31, 98–105, 114–126

applications based on, 116–119

controller for, 115–116

mail, 114–115

navigation bar, customizing,

121–126

of Track, 238–243

view controllers and, 120–121

view controllers, popping, 126

see also Tab bar controllers

Navigation bar, 89

Navigation controller, 89, 101, 115–116

Navigation items, 89

Navigation objects, 89f, 103

Navigation-based application template,
217

Network keys, 292

Networked games, 287f, 287–288

New projects, 24

nextResponder, 379

.nib files, 29

adding, 79

contents of, 51

owner of, 45, 108

refactoring, 144f

tab bar controllers, 134

view controllers and, 73

Non-FTP protocol, 253

Non-HTTP protocol, 253

Notifications center, 318

NSDateFormatter, 177

NSFileManager, 146

NSLog(), 499, 501, 502, 507

NSNetServiceBrowser, 280, 281f

NSOutputStream, 167

NSStream, 167

NSString, 170

NSTimer, 181

NSZombie, 508, 509f

O
ObjectAlloc, Instrument, 522, 523f

objectForKey, 133

Objective-C, 35

classes in, 36

coding in, 36–38

method calls in, 38

method declaration syntax, 43

necessity of, 37

parameters, 38

vs. Procedural C, 364

properties, 57–59

The Objective-C 2.0 Programming

Language (Apple, Inc.), 35

Objective-C protocol, 53

551
Prepared exclusively for Vadim Kudria

OBJECTS PREFERENCES

Objects, 60

autoreleasing, 56

command objects, 379

Core Data stack, 217, 219

debugging, 507f, 509f, 506–511

delegation, 52–55
memory and, 61

multivalue objects, 450

navigation items, 89f, 89

opaque types and, 364, 365

over-release of, 508

as pointers, 490

processing objects, 379

table view data source, 87

Observers, 318

Obtaining your iPhone Development

Certificate (Apple, Inc.), 32, 34
1718449215, 347

Opaque, 423

Opaque types, 364, 365

OpenAL, 376

OpenGL ES, 422–425

OpenGL SuperBible (Wright, Lipchak &

Haemel), 423, 424

openURL:, 483

Organizing data, see Navigation; Tab
bar controllers; User interface

Outlets, 42, 46, 246

adding to view controller, 69–71

Over-released objects, 508

P
P2PTapWar game, 287f, 287–288
Parameters, 38, 365

GKSession, 290

Parsing XML, 264f, 266f, 272f, 262–273

Password-protected web site setup,

255–258

Paths, 394f, 395f, 392–397

pause, 348

PCM, see Pulse code modulation

Peak power level, 350

Peer picker delegate, 289–292
Peer picker setup, 288–289, 290f

Peer-to-peer chat, 298–300

Peer-to-peer networking, 277–300

Bonjour services, 281f, 284f,

279–285

Bonjour-enabled, 279f, 277–279

Game Kit overview, 285–286

Game Kit, game logic, 292–293

Game Kit, GKSession, 294–298, 299f

Game Kit, networked game setup,

287f, 287–288

Game Kit, peer picker delegate,

289–292

Game Kit, peer picker setup,

288–289, 290f

Game Kit, peer-to-peer chat,
298–300

overview, 277

see also Internet

Performance, 512–529

cell reuse and, 95

Clang Static Analyzer, 526f, 527f,

524–529

Instruments application, 519f, 521f,

523f, 518–523, 524f

Instruments vs. Shark, 520

overview, 512

profiling, 516, 517

Shark and, 513f, 514f, 515f,

513–517, 518f

Persistent object store (POS), 218, 220

Persistent store coordinator (PSC), 219

Photos, uses for, 401

see also Images

Picker, 178, 179, 199, 356, 407,

445–446, 471

Pin color, 473

Pinch gesture, 387

Placeholder text, 82

Plain style, tables, 86, 87f, 94f

Playback status, 313–315

Playhead, 519

Podcast item property keys, 314

Pointers, 506

Polishing applications, 535–536

Population data, ordering, 131

Power levels, 350

Predicate Programming Guide (Apple,
Inc.), 243

Preferences, 141, 172–193

boolean, 187f

changing and updating, 178–181

constant updating (clock), 181–182

flippable view, 173f, 172–174

flips vs. bundles, 186

loading, 190–193

managing, 175–178

overview of, 172

552
Prepared exclusively for Vadim Kudria

PREFERENCESPECIFIERS STARTUP IMAGE

Settings application, 184f, 185f, 187f,

188f, 182–189, 190f
PreferenceSpecifiers, 184

Prime number counter application,

501f
Primitives, 39

Procedural C APIs, 364–366

Processing objects, 379

Products, 41
Profiling, 516, 517, 524

Programming with Quartz (Gelphman &

Bunny), 398
Promoting applications, 539–540

Properties, 61

adding, 68
dot operator, 48

layers, 412

support for, 59

variables as, 57–59
Properties Inspector, 339

Property lists, 170–171

Protocols, 53, 60
Pulse code modulation (PCM), 338,

340f, 340, 342

Push notifications, 536–537

Q
Queue, 322, 325f, 330f, 331

R
Readability, 58
record, 348

Recording levels, monitoring, 354f,

350–355
Redrawing, 399

Reference counting system, 56

removeItemAtPath:error:, 165

Research Assistant, 496f, 496
Resolution, 282

Resources, 41

Responder chain, 379
Reusing cells, 95

Root.plist, 184, 185f, 188f

RootViewController, 89–92, 104f
RootViewController, 142, 143f

Rotation, of device and text, 29–31

Rows, 86

Run loop, 158

S
Safari WebKit, see UIWebView

Sampling, 338

Sandbox approach to security, 139

save:, 235, 239

scan-build, 526, 528

Scrubbing, 311, 320

Search result tables, 328

selectedTimeZone, 180

Sending mail, 274f, 273–276

Service record, 282

Session entity, 224

Session, 241

sessionMode, 291

setMessage:, 485

Settings application, 184f, 185f, 187f,

188f, 190f, 182–193

Settings.bundle, 184

Shake detection, accelerometer,

428–429

sharedApplication, 483

Shark, 513f, 514f, 515f, 513–517, 518f,
520

Shopping list database

application details, 198–200

creating, 195–197

inserting values, 204–206

reading values, 207–210

Signatures, 55

Simulator, 426

Single taps, 383

Software stack, 36

Solution, 531, 532

Sort descriptors, 111, 132

Sorting table data, 113f, 109–113

Sound, measuring, 352

Source files, 40

Springs, 29

SQLite database, 194–211

adding to device, 200–202

vs. Core Data, 195, 212

creating, 195–197

creating on desktop, 202

function calls for, 203

home page, 194

inserting values, 204–206

overview of, 194

reading values, 207–210

sample application, 198–200

SQLite’s C API, 200

sqlite3, 195, 196

sqlite3_open(), 204

Startup image, 535

553
Prepared exclusively for Vadim Kudria

STATES EXAMPLE (TABS) UIIMAGE OBJECT

States example (tabs), 128

configuration for, 137

customizing with view controllers,

131–135

tab bar template, 129–130

Static analysis, 524

Steinberg, Daniel, 35

stop, 348

Streaming support, 305

Streams, 155, 157, 160
String programming Guide for Cocoa

(Apple, Inc.), 500

String representation, 48

String-appender, 516

Strings

cell identifiers, 96

format specifier for, 48, 500

format strings, 500

Struts and Springs configuration, 29

Symbols list, 32

Synthesize statements, 68

Synthesizing, 58

System Settings application, 184f, 185f,

187f, 188f, 190f, 182–193

System sounds, 366–372

SystemSoundsDemo, 367–372

T
Tab bar controllers, 127–137

creating, 129–130

multiple, working with, 135–137

use of, 127–128

view controllers for, 131–135

see also Navigation

Table view data source, 87

Table view delegates, 88

Table views, 86–113
adding items to, 102, 103

basic view, 93f

cells, 94f, 92–96

custom cell styles, 107f, 105–109,

110f

custom cells, assigning values to,

109

custom cells, loading and using, 107

data modeling, 89–92

data, sorting, 113f, 109–113

editing, 96–98, 99f

media queue, 328

navigating with, 98–105

navigation, 88–89

parts of, 87f, 86–88

tab bar controllers and, 132

UITableView, 88–90

visual styles for, 86

Tags, 109

Tapping, 383–384

Target/action paradigm, 66
Technical Note TN2188: Exporting

Movies for iPod, Apple TV, and

iPhone (Apple, Inc.), 309

Templates, 24, 129

MediaPlayer, 302

navigation-based, 217

Utility Application, 175

utility application project, 323
view-based, 245

Temporary (tmp) directory, 141

Testing, 537–538

Text fields, naming, 44

textFieldDidEndEditing:, 78, 483

textFieldShouldReturn:, 483

Thread handling, 58

Tidy, 475, 477

Time Profile window, Shark, 514

timeLabel, 177

Timeline, Instruments application, 519

Timing curves, 416

Toll-free bridged, 365

Toolbar, 25

Touch Fighter II, 441
TouchXML, 474, 475, 477

Track changing, 234–237

Track fetching, 233

Track table views, 229–233

Tracks, 213, 223, 227

TrackEditingViewController, 238

transform, 420

TrivialCompilerErrors, 489

twentyFourHourSwitch, 178

Twitter, 262

loading data, 263

parsing data, 265

public timeline, 272f

U
u-law, 343

UIAccelerometerDelegate protocol, 430

UIActionSheet, 162f

UIBarButtonItem, 104f

UIButton, 479

UIImage object, 402, 404, 405

554
Prepared exclusively for Vadim Kudria

UIIMAGEPICKERCONTROLLER XCODE

UIImagePickerController, 408f, 406–410

UIImageView, 401, 402

UIKit, 378

animation layers and, 419

UIKit framework, 39

UIPickerView, 355

UIResponder, 428–429
UISearchDisplayController, 323f, 325

UITabBarDelegate protocol, 137

UITableView, 88–89, 90, 93, 94f, 95

UITableViewCell, 106

UIView, 413–419

UIWebView, 248f, 244–249, 250f

Uncompressed audio formats, 340f,

338–342

Underscore characters, 280

updateTimeView, 177

URL Loading System, 250, 253

URL, launching application with, 484
User interface

Address Book, 443–444

AudioRecorderPlayer, 340

browsers, 245, 246f

images and, 403

in Interface Builder, 43–47

iPod, 312f, 311–313

media queues, 325f

Movie class model, 71

.nib files, adding, 79–83

planning for, 533

rotation, adjusting for, 29

tab bar controllers, 127–128

video playback and, 303–304

see also Drawing; Interface Builder;
Preferences; Table views

User-defined property keys, 314

uses24Hour, 180

Utility application project template, 323

Utility Application template, 174, 175

V
Variables

adding, 68

outlets as, 43

as properties, 57–59

in source code, 505f

Vector drawing, 391–392

Video, 301–309, 410–411

MPMoviePlayerController, 301–305

movie selection, 304–305

notifications, 306–307

supported media formats,

307–309
user interface, 303–304

overview, 301

View controllers (VC), 62–85

accelerometer and, 432
associating to views, 151

button action, 62–66

connecting to view, 499f
creating new, 75–79

creating programatically, 150

editing in IB, 84–85

implementing, 73–75
MovieEditorViewController, 83

navigation and, 120–121

outlets and actions for, 69–71
overview of, 62

popping, 126

properties and customizing, 121–126

tabs for, 127, 131–135
as text field’s delegate, 54

tying two together, 126

user interface, building, 79–83

View-based Application template, 24,
25, 245

viewWillAppear:, 74

viewWillDisappear:, 160
Voice chat, 285, 298–300

Volume level meter, 350, 352

W
Web browsers, 244–249, 250f

Web services, 264f, 266f, 272f, 262–273

Web sharing, 256f

“Where’s the Wiimote Using Kalman
Filtering to Extract Accelerometer

Data” (Rasco), 442

“Wow factor”, 534
Writing, to files, 167–170

X
Xcode

adding MediaPlayer, 302

as app bundle, 26
application definition statement, 531

autocompletion feature, 494

Build and Go, 28

Build Results window, 490f
code navigation, 31

Debugger Console, 498

Debugger window, 504f

555
Prepared exclusively for Vadim Kudria

.XIB FILE TYPES ZPOSITION

documentation for, 23

Documentation Viewer, 495f
editor pane, 26

Hello iPhone project, 25f, 24–26

Interface Builder, 26–31
user interface, adjusting, 29–30,

31

importance of, 41

installation, 22–24
libXML2 headers and, 476

refactoring in, 142, 143f

Research Assistant, 496f, 496
running apps, 32–34

Shark, 513f, 514f, 515f, 513–517,

518f

syntax highlighting, 489, 494

templates for, 24, 129

toolbar, 25

Utility Application template, 174,

175

.xib file types, 29, 497

XML parsing, 264f, 266f, 272f, 262–273

Z
Zero Configuration Networking, The

Definitive Guide (O’Reilly), 285

Zombie objects, 507f, 509f, 506–511

Zooming, 387

zPosition, 420

556
Prepared exclusively for Vadim Kudria

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of September 2009; be sure to check our website

at pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 250

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280
Continued on next page

Prepared exclusively for Vadim Kudria

pragprog.com

Title Year ISBN Pages

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83
Continued on next page

Prepared exclusively for Vadim Kudria

Title Year ISBN Pages

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

The Seed of Hope 2009 9781934356357 280

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Prepared exclusively for Vadim Kudria

More iPhone and Mac books...

Core Animation for OS X/iPhone
Have you seen Apple’s Front Row application and

Cover Flow effects? Then you’ve seen Core
Animation at work. It’s about making applications

that give strong visual feedback through movement

and morphing, rather than repainting panels. This
comprehensive guide will get you up to speed

quickly and take you into the depths of this new

technology.

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

Bill Dudney

(220 pages) ISBN: 978-1-9343561-0-4. $34.95
http://pragprog.com/titles/bdcora

Core Data
Learn the Apple Core Data APIs from the ground

up. You can concentrate on designing the model for

your application, and use the power of Core Data to
do the rest. This book will take you from beginning

with Core Data through to expert level

configurations that you will not find anywhere else.
Learn why you should be using Core Data for your

next Cocoa project, and how to use it most

effectively.

Core Data: Apple’s API for Persisting Data under

Mac OS X

Marcus S. Zarra
(200 pages) ISBN: 978-1-93435-632-6. $32.95

http://pragprog.com/titles/mzcd

Prepared exclusively for Vadim Kudria

http://pragprog.com/titles/bdcora
http://pragprog.com/titles/mzcd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
iPhone SDK Development’s Home Page

http://pragprog.com/titles/amiphd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragprog.com/titles/amiphd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Vadim Kudria

http://pragprog.com/titles/amiphd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/amiphd
www.pragprog.com/catalog

	Contents
	Foreword
	Introduction
	In This Book
	Acknowledgments

	Hello iPhone
	Gearing Up
	Create the Hello iPhone Project
	Creating a Simple Interface
	Rotating the Text---Adjusting the UI
	Rotating the Text---Adjusting the Code
	Code Navigation
	Running Your App on Your iPhone

	iPhone Development Fundamentals
	The iPhone Software Architecture
	Coding in Objective-C
	Essential Cocoa Touch Classes
	Working with Xcode and Interface Builder
	Anatomy of Your iPhone Application
	Customizing Behavior with Delegation
	Managing Application Memory
	Accessing Variables as Properties
	Take-Away: Stuff to Remember

	View Controllers
	Implementing a Button Action
	Building a Model
	Adding Outlets and Actions to the Controller
	Updating the UI
	Implementing the Controller
	Creating the New View Controller
	Building the UI
	Making the MovieEditorViewController
	The Editing View Controller in Interface Builder

	Table Views
	Parts of a Table
	Setting Up Table-Based Navigation
	Modeling Table Data
	Table Cells
	Editing Tables
	Navigating with Tables
	Custom Table View Cells
	Sorting Table Data

	Navigation
	Navigating Through Mail
	The Navigation Controller
	Navigation-Based Applications
	Pushing View Controllers
	Customizing the Navigation Bar
	Popping View Controllers

	Tab Bar Controllers
	When to Use Tabs
	Creating a Tab Bar Controller
	View Controllers in Tab Controllers
	Many Controllers

	File I/O
	Exploring Your Filesystem
	Creating Our Project
	Getting File Attributes
	Reading Data from Files
	Asynchronous File Reading
	Creating and Deleting Files and Directories
	Writing Data to Files
	Property Lists and NSCoding

	Preferences
	Displaying a Flippable Preference View in Your Application
	Managing Preferences
	Changing and Updating Preferences
	Side Trip: Updating the Clock Label Every Second
	Using the System Settings Application for Preferences
	Loading Preferences Configured in the Settings Application

	The SQLite Database
	Creating Your Database
	Creating the Sample Application
	Putting Your Database on the Device
	Using Your Database on the Device

	Core Data
	The Conference Application
	The Core Data Stack
	Building the Core Data Stack
	Modeling
	Track Table View
	Fetching the Tracks
	Change the Tracks
	Navigation

	Connecting to the Internet
	Building a Browser in Ten Minutes with UIWebView
	Reading Data from the Network
	HTTP Authentication
	Parsing XML from Web Services
	Sending Mail from Your Application

	Peer-to-Peer Networking
	Using Ad Hoc Network Services with Bonjour
	Bonjour Service Discovery
	Game Kit Overview
	Setting Up a Bluetooth-Networked Game
	Setting Up a Peer Picker
	Providing a Peer Picker Delegate
	Network Game Logic
	Communicating via the GKSession
	Voice Chat

	Video Playback
	Video Playback with MPMoviePlayerController
	Receiving Notifications from the Movie Player
	Supported Media Formats

	iPod Library Access
	Monitoring iPod Playback
	Controlling iPod Playback
	Using the iPod Library
	Browsing the iPod Library

	Playing and Recording Audio
	Creating an AVAudioRecorder
	Uncompressed Audio Formats
	Encoded Audio Formats
	Using the AVAudioRecorder
	Monitoring Recording Levels
	Playing Audio with the AVFramework
	Interacting with Audio Sessions

	Core Audio
	Using the Procedural-C APIs
	Playing System Sounds
	A Core Audio Overview

	Events, Multi-Touch, and Gestures
	Event Model
	Tracking Touches
	Tapping
	Multi-Touch Gestures

	Drawing in Custom Views
	Drawing Model
	Vector Drawing
	Paths
	Graphics Context
	Redisplaying a View

	Drawing Images and Photos
	Basic Image Drawing
	Customizing the Image Display
	Image Picker
	Capturing Video

	Core Animation
	Introduction to Core Animation
	Animating UIView
	Layers
	OpenGL ES

	Accelerometer
	Getting Device Orientation
	Getting Shakes from the UIResponder Chain
	Getting Raw Accelerometer Data
	Filtering Accelerometer Data

	Address Book
	Address Book UI
	People Picker Delegate
	Creating and Configuring the People Picker
	Person Controller
	Adding New Contacts

	iPhone Location API
	Knowing Where
	Location Updates
	Compass

	Map Kit
	Contact Mapper
	Showing a Map
	Map Annotations
	Selecting an Annotation

	Application Integration
	Launching Other Applications
	Becoming Integration Ready

	Debugging
	Understanding and Fixing Build Errors
	Understanding and Fixing Importing/Linking Errors
	Using iPhone SDK Documentation
	Understanding and Fixing Interface Builder Errors
	Debugging
	Finding Over-Released ``Zombie'' Objects

	Performance Tuning
	Investigating Performance with Shark
	Investigating Performance with Instruments
	Investigating Performance with the Clang Static Analyzer

	Before and After
	Starting Right
	Polish
	Other Features
	Beta Testing
	Getting into the Store
	Promoting Your Application

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

