

What readers are saying about ThoughtWorks Anthology

The technical depth, level of detail, and amount of new ideas/research

in the essays in this book vary, but the connecting factor is that

they’re all very relevant in practice. The authors have managed to do

something I haven’t seen in quite some time—a great balance between

“thought provoking” and “immediately applicable.”

Stefan Tilkov

CEO, innoQ

The anthology provides a peek into the diversity of views and perspec-

tives held by a company that dares to take on the long-accepted tenet

of the IT industry that custom software is too hard and too costly.

W. James Fischer

Former CTO/Retired Senior Partner, Accenture

From highly successful open source projects such as CruiseControl

to the ideas shared via blogs and conferences, chances are you’ve felt

the impact of ThoughtWorks on your projects. While those of us on

the outside have been left to ponder what kind of conversations took

place within their walls, this book is a rare opportunity to pull back

the curtain and join in the discussion—you’ll be a better developer

for it.

Nathaniel T. Schutta

Author/Speaker/Teacher

Software is in many ways a team sport, and the leaders shape the

software culture. Often successful organizations don’t take the time to

document them, and hence others don’t benefit from them. This inter-

esting collection of personal essays gives a glimpse into the culture of

ThoughtWorks through some of its leaders.

Dave Thomas

Bedarra Research Labs

The best insights in software development come from the people who

solve real problems for real customers. Aside from combing through

scattered blogs, though, it’s nearly impossible to gain access to their

insights. ThoughtWorkers have solved many real problems over the

past decade, so I am truly delighted to hold a snapshot of their comp-

bined expertise in my hands.

Gregor Hohpe

Coauthor, Enterprise Integration Patterns

This is an excellent collection of essays discussing the proper use of

languages and tools to develop software in today’s demanding indus-

try. The authors are accomplished veterans of the software world.

Terence Parr

ANTLR Project Lead, University of San Francisco

ThoughtWorks has done a fantastic job of pulling together a collection

of essays that give the rest of us access to some of the experience and

wisdom that ThoughtWorks is so well known for. This is one of those

often-quoted books that shows up on every project bookshelf.

Jeff Brown

Director North American Operations, G2One

The ThoughtWorks Anthology
Essays on Software Technology and Innovation

Roy Singham Martin Fowler Rebecca Parsons

Neal Ford Jeff Bay Michael Robinson

Tiffany Lentz Stelios Pantazopoulos

Ian Robinson Erik Doernenburg

Julian Simpson Dave Farley

Kristan Vingrys James Bull

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 ThoughtWorks, Inc.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-14-X

ISBN-13: 978-1-934356-14-2

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

First printing, February 2008

http://www.pragprog.com

Contents
1 Introduction 11

2 Solving the Business Software “Last Mile” 15

by Roy Singham and Michael Robinson

2.1 The Source of the “Last Mile” Problem 15

2.2 Understanding the Problem 16

2.3 Solving the “Last Mile” Problem 18

2.4 People . 18

2.5 Automation . 19

2.6 Design for Automated Testing of Nonfunctional

Requirements . 20

2.7 Decouple Design from Production Environment 22

2.8 Versionless Software . 23

3 One Lair and Twenty Ruby DSLs 25

by Martin Fowler

3.1 My Lair Example . 25

3.2 Using Global Functions 28

3.3 Using Objects . 31

3.4 Using Closures . 37

3.5 Evaluation Context . 38

3.6 Literal Collections . 41

3.7 Dynamic Reception . 46

3.8 Final Thoughts . 48

4 The Lush Landscape of Languages 49

by Rebecca J. Parsons

4.1 Introduction . 49

4.2 The Specimens . 49

4.3 The Variety of Varieties 53

4.4 The Tree of Life for Languages 57

4.5 That’s All Very Interesting, But Why Should You Care? 59

CONTENTS 8

5 Polyglot Programming 60

by Neal Ford

5.1 Polyglot Programming 61

5.2 Reading Files the Groovy Way 61

5.3 JRuby and isBlank . 63

5.4 Jaskell and Functional Programming 64

5.5 Testing Java . 67

5.6 Polyglot Programming the Future 69

6 Object Calisthenics 70

by Jeff Bay

6.1 Nine Steps to Better Software Design Today 70

6.2 The Exercise . 71

6.3 Conclusion . 79

7 What Is an Iteration Manager Anyway? 81

by Tiffany Lentz

7.1 What Is an Iteration Manager? 81

7.2 What Makes a Good Iteration Manager? 82

7.3 What an Iteration Manager Is Not 83

7.4 The Iteration Manager and the Team 84

7.5 The Iteration Manager and the Customer 85

7.6 The Iteration Manager and the Iteration 86

7.7 The Iteration Manager and the Project 87

7.8 Conclusion . 88

8 Project Vital Signs 89

by Stelios Pantazopoulos

8.1 Project Vital Signs . 89

8.2 Project Vital Signs vs. Project Health 90

8.3 Project Vital Signs vs. Information Radiator 90

8.4 Project Vital Sign: Scope Burn-Up 91

8.5 Project Vital Sign: Delivery Quality 94

8.6 Project Vital Sign: Budget Burn-Down 95

8.7 Project Vital Sign: Current State of Implementation . . 97

8.8 Project Vital Sign: Team Perceptions 100

9 Consumer-Driven Contracts: A Service Evolution Pattern 101

by Ian Robinson

9.1 Evolving a Service: An Example 103

9.2 Schema Versioning . 104

http://books.pragprog.com/titles/twa/errata/add?pdf_page=8

CONTENTS 9

9.3 Breaking Changes . 109

9.4 Consumer-Driven Contracts 111

10 Domain Annotations 121

by Erik Doernenburg

10.1 Domain-Driven Design Meets Annotations 121

10.2 Case Study: Leroy’s Lorries 126

10.3 Summary . 140

11 Refactoring Ant Build Files 142

by Julian Simpson

11.1 Introduction . 142

11.2 Ant Refactoring Catalog 144

11.3 Summary . 171

11.4 References . 171

11.5 Resources . 171

12 Single-Click Software Release 172

by Dave Farley

12.1 Continuous Build . 172

12.2 Beyond Continuous Build 173

12.3 Full Lifecycle Continuous Integration 174

12.4 The Check-in Gate . 175

12.5 The Acceptance Test Gate 177

12.6 Preparing to Deploy . 177

12.7 Subsequent Test Stages 180

12.8 Automating the Process 181

12.9 Conclusion . 181

13 Agile vs. Waterfall Testing for Enterprise Web Apps 183

by Kristan Vingrys

13.1 Introduction . 183

13.2 Testing Life Cycle . 184

http://books.pragprog.com/titles/twa/errata/add?pdf_page=9

CONTENTS 10

13.3 Types of Testing . 187

13.4 Environments . 193

13.5 Issue Management . 196

13.6 Tools . 197

13.7 Reports and Metrics . 198

13.8 Testing Roles . 199

13.9 References . 201

14 Pragmatic Performance Testing 202

by James Bull

14.1 What Is Performance Testing? 202

14.2 Requirements Gathering 203

14.3 Running the Tests . 208

14.4 Communication . 214

14.5 Process . 216

14.6 Summary . 218

Bibliography 219

Index 220

http://books.pragprog.com/titles/twa/errata/add?pdf_page=10

Chapter 1

Introduction
ThoughtWorks is a collection of passionate, driven, intelligent individu-

als that delivers custom applications and no-nonsense consulting. Ask

a ThoughtWorker what they like most about the company, and they

will likely say it is the other ThoughtWorkers they get to meet, work

with, and learn from. We’re a mixture of geeks, managers, analysts,

programmers, testers, and operations folks with varied cultural, eth-

nic, and educational backgrounds. This diversity of background and

perspective, coupled with a passion for ideas that we share, can result

in some pretty lively debates.

We have created a successful company with nearly 1,000 smart,

opinionated people in six countries organized with little hierarchy and

a fanatical commitment to transparency. Of course, our definition of

success is not the typical one either; success must encompass client

satisfaction, impact on our industry, and impact on our society. We do

aim high.

The voices of many ThoughtWorkers are heard in the blogosphere, on

the conference circuit, on the Web, and on the bookshelves. Indeed, part

of our commitment to excellence involves ruthlessly critiquing what

we’ve done and how we’ve done it to see how to improve it the next

time. We’re a tough bunch to satisfy. Once we’ve learned something, we

want to tell others about it.

Our battle scars come from myriad projects in different domains, tech-

nologies, and platform choices. Although we do think (a lot) about what

we do, that thinking is grounded in the real world of delivering lots of

software for people. There’s purity to our function that has allowed us

to focus on developing software.

CHAPTER 1. INTRODUCTION 12

One doesn’t generally pay a consultant to sit in meetings discussing

the new HR policies, so our workdays are far more focused on deliver-

ing software than most IT professionals, resulting in a combination of

pragmatism and rigor.

This anthology provides a great snapshot into the incredibly diverse

set of IT problems on which ThoughtWorkers are working. This anthol-

ogy strives to do more than simply present a few ways to produce bet-

ter software; it grapples with the problems of realizing actual business

value from the IT efforts that organizations take on. Roy’s opening essay

sets the tone with his call to arms for bringing about a change in the

“last mile” of getting a system into the production environment. His pro-

gram is broad and ambitious—nothing less than making those opera-

tional and deployment issues as core to the development process as the

requirements gathering and coding itself. By remembering that success

is not merely getting your code to pass your QA department and have

it ready to toss over the wall at an operations team that deals with

production, deployment, and the like, the team building the software

knows they’re not “done” until they’ve seen the software to the end. And

Roy’s advocacy goes past simply some clever redefinitions of completion

and success. He calls for a rethinking of how and when stakeholders get

involved. All the genius that has gone into making tools better for the

coding process (for example, tools for automated builds and scripted

testing, as well as refactoring) can be applied to tackling much of the

“last mile” problem.

As you read through the collection, you’ll see that his call gets answered

repeatedly. For example, James takes on performance testing, an area

that is habitually neglected and put off until the late stages of a project,

when so many design decision have been baked into the code that

undoing them without damaging the hard-won working business func-

tionality for the sake of tackling performance feels like an undertaking

in violation of the Second Law of Thermodynamics. James takes a suit-

ably pragmatic approach, not simply arguing that we need the perfor-

mance requirements up front (who can argue with this?) but discussing

ways to get useful requirements from the stakeholders. He doesn’t sim-

ply say “test early!” but actually discusses how and where these tests

can be run.

Julian takes on Ant refactoring by cataloging a large number of stan-

dard refactorings and then providing clear examples for each. His essay

is an excellent reference for anyone dealing with a growing and evolv-

http://books.pragprog.com/titles/twa/errata/add?pdf_page=12

CHAPTER 1. INTRODUCTION 13

ing build script. Dave’s essay provides nice bookend symmetry to Roy’s

opening with his outlining of the conceptual framework around single-

click deployment. He takes on some big issues, such as managing

the large, unwieldy binaries that get generated and integration in the

heterogeneous environments in which software is typically deployed.

All the techniques that work to make business-software development

effective will eventually migrate into the world of the deployment tools.

Dave’s essay takes that program forward.

Stelios’s essay takes on communication techniques for conveying pro-

ject health. He puts forth some metrics, both objective and subjective,

and discusses effective ways to present them so that everyone involved

has the same “dashboard” to work from every day. He’s bringing the

visibility of the project’s vital signs to as many stakeholders as pos-

sible. This connects to another notion: a sort of project anthropology.

Tiffany’s essay reads like Margaret Mead reporting on her findings in

Samoa. She has stumbled upon a whole new kind of project team mem-

ber, the iteration manager, and tells us about how it fits into the tribe.

She sees a chance to address how to organize the team a little dif-

ferently to make it more effective, and hence we have a role to help

work through this. Jeff’s “nine rules of thumb” essay reminds me of

some master talking to disciples about the Tao of programming. The

rules are simple and elegant and maddeningly hard to adhere to (espe-

cially because they require any coder to “unlearn” so many habits).

Rebecca’s essay feels to me like she sneaks in a strong stance on the

issue of “language wars” by starting out as an engaging read on clas-

sifying various languages. At first you read along, imagining Linnaeus

strolling through a garden, looking at particular characteristics of the

plants he sees, and then generalizing them to a framework for clas-

sifying any plant he comes along in the future. Rebecca lays down a

great foundation. But her surprise comes at the end: this isn’t just

some survey course in some languages currently in vogue but instead

a demonstration of the diversity of tools out there and that any partic-

ular “Java vs. .NET” language dispute is just the latest iteration in a

never-ending conversation. But what matters is knowing what kind of

problem you’re trying to solve and what kind of tools you have at your

disposal for tackling them. I feel like she came into a cluttered work-

shop, sorted the wrenches from the hammers, and put them in drawers

with some labels that tell you what the items within are good for.

The remaining essays are a lot more technically focused but demon-

strate more of the diversity of talent that I get to call fellow co-workers.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=13

CHAPTER 1. INTRODUCTION 14

Ian lays out a comprehensive approach for thinking about SOA con-

tracts that are consumer, rather than customer, driven. His essay takes

another whack at the eternal problem of how to build and evolve shared

services that need to adapt over time to changing business needs and

do so in a way that doesn’t cripple the existing consumers of that ser-

vice. And Erik considers a similar problem. In a well-designed system,

you decouple the domain model from infrastructure layers, but this

requires that the infrastructure layer use the metadata present in the

domain model. Some implicit metadata can be gleaned from what’s in

there such as the choice of classes to represent certain domain ele-

ments, but it doesn’t really provide enough information for really rich

stuff like validations. Some modern languages such as Java and C#

provide for more metadata in the form annotations and attributes, and

Erik explores how to exploit these features through a case study. And

Martin’s playful romp through various DSLs for evil megalomaniacs

reminded me of when I was learning C so long ago. My reference was

Kernighan and Ritchie, and I watched in amazement as they worked

through a few iterations of a string copy function to bring it to a level of

simplicity and elegance that seemed to elude me through all my subse-

quent programming efforts.

The threads of connection are everywhere in this anthology. These es-

says explore an ecosystem of IT problems and yet link together in all

sorts of obvious and surprising ways. The breadth of topics and variety

of approaches for solving them reflect the health of an environment of

ideas that exists at the organization that all these authors are part of.

Seeing a slice of it in the form of this collection leaves me hungry to see

what else we’re capable of doing.

Mike Aguilar (Vice President, ThoughtWorks)

February 15, 2008

http://books.pragprog.com/titles/twa/errata/add?pdf_page=14

Chapter 2

Solving the
Business Software “Last Mile”

by Roy Singham, Founder and Chairman, and

Michael Robinson, Technology Principal

Agile practices such as test-driven design (TDD), continuous integra-

tion (CI), pair programming, refactoring, and so on, have allowed us to

deliver high-quality software quickly. Not only does the software work

reliably right from the beginning, but it continues working reliably as it

is modified to accommodate evolving requirements.

However, many challenges remain, particularly in the “last mile” of soft-

ware development. This “last mile” is the part of the process that hap-

pens after the software satisfies the functional requirements but before

the software goes into production and starts to deliver value to the

business.

For software developers, particularly software developers under delivery

pressure, the “last mile” is easy to overlook. However, this is increas-

ingly the biggest stress point for business software delivery.

2.1 The Source of the “Last Mile” Problem

The “last mile” problems tends to be a situation you grow into. You

may start from scratch as a small start-up with an innovative business

model idea. With no existing systems, transaction data, customers, or

revenue, you need a simple system to prove the viability of the business

model.If it is successful, you will make further investments in features

and scalability. For now, you have limited funding and therefore need

to deliver the system and get results as quickly as possible.

UNDERSTANDING THE PROBLEM 16

This scenario is close to ideal for rapid deployment to production. There

is no “last mile” problem. In this case, the software can go into produc-

tion almost as soon as the business requirements are satisfied.

Time goes on, and your start-up has become successful and profitable.

You now have many customers and two years of transaction data.

You’ve purchased a customer relationship management (CRM) system

and an accounting package, both of which have been integrated with

the core business system.

The original core business system has received several new features,

but now there is a new business opportunity that will require the devel-

opment of a second core business system that will need to integrate

with the existing systems.

At this point, your life is somewhat more complicated. Before the second

core business system can be put into production, it will need to be

tested for reliable operation with legacy systems and data.

Again, time passes, and your company has grown into a large, diver-

sified, multinational, publicly traded corporation with many business

lines and markets. The company has tens of thousands of employees

and millions of customers. Revenues are large and growing but closely

scrutinized by investors and market analysts. The original core busi-

ness system now contains eight years of historical transaction data and

integrates with twelve other business-critical systems. The system has

been patched and extended over the years but is no longer able to keep

up with the rate of transaction growth and changing business require-

ments. The company wants to replace the old system with a new system

built from scratch to take advantage of more modern technology.

This is software with a “last mile” problem.

2.2 Understanding the Problem

Businesses fund new software development for the business value it

can deliver, but new software often also represents a significant finan-

cial hazard if any of the following happens:

• The new software is unable to accommodate the number of users

or volume of transactions required by the business model.

• The new software introduces corrupt data into legacy databases.

• The new software fails unpredictably or interacts with legacy sys-

tems in a way that causes them to become unstable.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=16

UNDERSTANDING THE PROBLEM 17

• The new software exposes sensitive information to untrusted

parties.

• The new software allows malicious users to perform unauthorized

actions.

The business value at risk can easily exceed the business value that the

new software is expected to deliver. Consequently, the larger a company

grows, the more cautious it must become about introducing new soft-

ware. This, in turn, causes old systems and technologies to accumulate

in the production environment, rather than be replaced. The integra-

tion challenges of the accumulated legacy systems, in turn, increase

the costs and risks of introducing new software, and so on.

This vicious cycle makes it progressively more difficult and expensive

for a company to adapt to changing business model requirements as it

grows and ages. New companies without this technical burden may be

able sprint ahead of their older rivals to a certain point, but eventually

they too will succumb.

Agile software development promises the rapid accommodation of

changing requirements. This promise of responsiveness is increasingly

attractive to businesses now that advances in information technology,

ubiquitous Internet, and globalization have greatly accelerated the pace

of business model innovation.

From the perspective of the business sponsors, however, software devel-

opment matters only as an end-to-end process—from the time the bud-

get is approved to the time the software is working for the business.

What happens in between is of less interest. So, for the business spon-

sors, an agile process is only as agile as its ability to get software into

production faster.

Large, long-established businesses with complex legacy systems may

well need to spend three, four, or more months on installing, testing,

and stabilizing a new software release to adequately ensure that the

software is safe. In such an environment, agile developers may be able

to implement a new feature requested from the business in a week

or two, but depending on the timing of release cycles and how feature

freezes are handled, it could be half a year before the feature is available

for business use.

It may be tempting to view this as an agile success story—two-week

turnaround!—and view the six-month delay as someone else’s problem,

but this view would be mistaken.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=17

SOLVING THE “LAST MILE” PROBLEM 18

2.3 Solving the “Last Mile” Problem

An agile software development project today often looks something like

this:

1. The business sponsor identifies the need.

2. The business sponsor gets funding approval.

3. The development team identifies a list of stories.

4. The development team finishes the stories.

5. The business sponsor accepts the finished stories.

6. The development team hands over the finished code.

A successful project is one where steps 3, 4, and 5 go smoothly and

efficiently and the team gets to step 6 on or ahead of schedule. The end

result is a piece of software that passes all acceptance tests. This piece

of software is then, in effect, thrown over a wall, and if all goes well,

some months later the business sponsor can start to use it.

If things do not go well, the software may be thrown back over the wall.

Good developers will try to prevent this from happening with good test

design, pair programming, and so on, and they may in many cases

succeed. However, in projects that follow this pattern, the “last mile”

process still significantly delays the delivery of business value, even

when the code thrown over the wall is flawless and delivered ahead of

schedule.

The “last mile” problem won’t be solved until the agile software develop-

ment process becomes an end-to-end software delivery process, where

deployment to production issues are addressed at each and every step.

We can start by reexamining the role of people and automation.

2.4 People

One of the biggest contributions of the agile software movement is the

recognition that software development is fundamentally a social activ-

ity. Improve the conversation, and you improve the software. Much of

the effort in adopting agile development practices has gone into break-

ing down the old structures of social organization and replacing them

with more effective patterns and practices.

However, the focus to date has been almost entirely on the conversation

between the software developers and the software users. This conver-

sation produces good requirements and a common understanding of

http://books.pragprog.com/titles/twa/errata/add?pdf_page=18

AUTOMATION 19

business objectives, but what about the nonfunctional requirements?

Who owns those requirements, and how and when do they participate

in the conversation? These questions often go unanswered.

The easiest way to eliminate “code over the wall” software development

is simply to involve the stakeholders responsible for nonfunctional and

cross-cutting requirements in the social activity of software develop-

ment. Have them participate in the conversation early and often. Again,

this will likely require breaking down old structures of social organiza-

tion and replacing them with more effective patterns and practices.

Operations staffers, for example, need to install and configure the soft-

ware once it is written. They need to monitor the system in produc-

tion to ensure proper operation. They need documented procedures to

restore proper operation if something goes wrong. They need to plan

for the physical infrastructure requirements—memory, disks, network,

power, cooling, and so on—of the system when it is initially installed

and as it grows.

Support or help-desk staffers need useful error reporting from the sys-

tem and effective diagnostic procedures. They need to know how to

resolve simple system problems for users, and they need to know when

and how to escalate serious system problems.

In many industries, regulatory compliance staffers need to ensure, for

example, that systems implement legally mandated privacy protections

or data retention policies. They need to ensure the system complies

with mandatory auditing requirements.

Such stakeholders have real, legitimate business requirements that

must be satisfied. The earlier these requirements are addressed in the

development process, the sooner the software will be able to go into pro-

duction. The sooner the stakeholders are brought into the conversation,

the sooner and more efficiently their requirements can be addressed.

2.5 Automation

Currently, much of the “last mile” release process is manual, inefficient,

and error prone and hence is time-consuming and expensive. To signif-

icantly reduce the time spent in the “last mile,” we need to aggressively

automate everything that can be automated. This involves changes in

how software is built.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=19

DESIGN FOR AUTOMATED TESTING OF NONFUNCTIONAL REQUIREMENTS 20

Soon after teams start to automate development processes, they quickly

discover that automation has many of the same problems as software

development. Build scripts need to be tested and debugged. Tests break

and need to be updated. However, because these automation artifacts

are often perceived as “not software,” it is not unusual for teams to

overlook all the hard-won wisdom about how to manage exactly these

problems.

Build scripts, test scripts, installation scripts, and configuration files

are all part of the end-to-end code that contributes to the final pro-

duction system, and they should be treated that way. There should

be no separate or unequal treatment of “development stuff” and “pro-

duction stuff.” Both should be maintained in the project version con-

trol repository. Both should be organized for clarity and maintained

for consistency. And both should be refactored to simplify structure

and reuse common functionality. Finally, every system component—

operating system, application server, database, firewalls, storage sys-

tems, and so on—should support efficient automated testing. The over-

all system architecture should be designed for and defined in terms of

automated tests.

For environments with many integrated legacy systems, it may not be

practical to fully support the automated testing of integration points. In

such cases, mocks of the legacy integration points are better than noth-

ing. However, all new systems should provide test automation facilities

for exposed integration points (for example, test setup, test teardown,

test result logging, and retrieval).

A useful technique to validate new software prior to release to produc-

tion is to “play back” live transactions from the current system for a

specific time period and compare the results between systems. New

systems should include facilities to support efficient automated play-

back testing.

2.6 Design for Automated Testing of Nonfunctional

Requirements

Nonfunctional requirements (NFRs) may not be part of the system’s

functional specification, but they are nevertheless requirements with

legitimate and often critical business value. Much of the time spent in

“last mile” testing is to confirm the satisfaction of such nonfunctional

requirements as system response time, system transaction throughput,

http://books.pragprog.com/titles/twa/errata/add?pdf_page=20

DESIGN FOR AUTOMATED TESTING OF NONFUNCTIONAL REQUIREMENTS 21

system availability, system security, and so on. However, all too often,

the NFR testing starts only after the software is “finished.”

The right time to start NFR testing is before coding starts. Requirements

for performance and resource utilization in particular need to be iden-

tified and analyzed up front, and a model needs to be created to map

functional code to these requirements as development proceeds.

A typical approach to performance testing is to specify at the start of

the project, for example, that “system response time for this operation

should be less than five seconds.” Then developers write the software.

When they’re done, operations staffers install the software on a prepro-

duction system. The testers then perform the operation, look at a clock,

and see how long the system takes to respond.

This approach has two major problems. First, if the operation in ques-

tion is discovered to take five minutes rather than five seconds, the

relevant software may well need to be completely rewritten just when

people are expecting it to go into production. Second, if the develop-

ment team attempts to avoid this problem by writing an automated

performance test and incorporating this into the continuous integra-

tion test suite, the test results will be meaningful only to the extent the

wall-clock performance of the test environment matches the wall-clock

performance of the production environment. In many cases, this is not

practical or affordable.

It is, however, possible to say something like “The production system

can service 500 random disk accesses per second, and therefore the

system cannot exceed 2,500 random disk accesses to perform this

operation.” Most operating system environments provide detailed per-

formance counters that can be easily incorporated into automatic test-

ing. The advantage of a counter-based performance testing strategy

over wall-clock testing is that the tests become independent of the test-

ing environment. If the tests can be run in more places, they can be

run more often. Also, counter-based tests can be written at a much

more relevant level of granularity. Consequently, the development team

is more likely to learn of performance or resource problems as the soft-

ware is written, which is when such problems are the cheapest and

easiest to fix.

The performance and resource utilization model is part of the end-

to-end delivery. It needs to be versioned, maintained, and calibrated

across different environments. Library facilities to collect and expose

http://books.pragprog.com/titles/twa/errata/add?pdf_page=21

DESIGN FOR AUTOMATED TESTING OF NONFUNCTIONAL REQUIREMENTS 22

appropriate counter data need to be provided to developers so they can

easily and effectively integrate their code with the automated perfor-

mance tests. If the model and tests are done well, final preproduction

testing should be quick and free from unpleasant surprises.

2.7 Decouple Design from Production Environment

Continuous integration and test-driven design have been invaluable

tools for producing high-quality software quickly. Rapid feedback

allows the development team to eliminate errors quickly and cheaply

as they arise and to work with confidence that the system functions as

expected at any given point in time.

Unfortunately, the deployment to production process has so far reaped

few benefits from CI and TDD. Ideally, user and operational tests of the

fully integrated production environment would be easy to write, and

the CI system would be able to run a comprehensive suite of such tests

quickly enough to validate software as it is written. Typically, though,

a number of obstacles prevent this from happening in practice.

First, production environments are often large, complex, expensive, and

hard to set up. Second, end-to-end tests of such environments are

often difficult to design, write, and verify. Third, even if an appropriate

environment is set up and tests are written, such tests will typically

run very slowly. A comprehensive suite of such tests may take days to

complete.

The simple solution to the last problem is to run tests in parallel. If

you can run ten tests at a time, you can run the test suite ten times

as often. Unfortunately, the first problem—large, complex, expensive—

makes this solution somewhat impractical. Providing and maintaining

ten production environments for a development team to run tests is an

unimaginable luxury in almost all cases.

If, however, the costs could be reduced, if production environments

could be set up instantly, and if the costs could be shared among a

number of development teams, then running large test suites in parallel

becomes a much more realistic option. As it happens, recent advances

in virtualization technology allow just that. Products are now available

that can quickly save and restore complete virtual production environ-

ments on large arrays of cheap, commodity hardware.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=22

VERSIONLESS SOFTWARE 23

Of course, if the system under development behaves differently in a

virtual test environment vs. the real production environment, then this

approach is fatally flawed. There will be no confidence in the automated

test results and, consequently, little improvement in development or

testing efficiency.

Every piece of business software has dependencies on and makes as-

sumptions about the context of its deployment environment. These

assumptions and dependencies can be either explicit or implicit. When

a system has a large number of implicit assumptions and dependencies

on its deployment context, it becomes challenging to write meaningful

end-to-end system tests for alternative environments.

Consequently, to be able to take advantage of such environments for

rapid, comprehensive system testing, system designers must identify

the implicit assumptions and dependencies and make them explicit and

testable, and they must systematically reduce the overall number of

such assumptions and dependencies.

Once it becomes a realistic option to run a comprehensive automated

system test suite, the investment required to write such a suite then

becomes much more attractive. The ultimate objective is for the CI sys-

tem to give the development team and operations staff confidence that

the software is ready for deployment to production at any given point

in time.

2.8 Versionless Software

The value of an agile process comes from reducing the end-to-end time

and expense between the point a business need arises and the point

when software goes into production to address that need. Taking this

objective to the extreme, you can envision a situation where an individ-

ual feature is requested and goes directly into production as soon as it

is finished.

This situation already exists today for certain types of small, simple

web applications. Adding a new feature into production can sometimes

be done in less than an hour. In this case, the developers don’t need

to release versions of software into production; they are able to release

software feature by feature.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=23

VERSIONLESS SOFTWARE 24

For large, complex, sensitive legacy environments, though, versionless

software remains at best a distant aspirational goal. The release over-

head of the “last mile” process requires that functionality be bundled

into large, infrequent versions, and this is likely to be the case for the

foreseeable future.

However, the costs of the current practice are unsustainable. The direct

costs to business in wasted labor and the indirect costs of missed

opportunities are enormous, and they represent a large and growing

proportion of the total cost of software development.

Although we may not be able to achieve versionless software, we can

certainly do much better. Many immediate improvements are easy and

obvious. Many more improvements will no doubt be found if smart and

motivated people look for them. Solving the “last mile” problem will

not happen overnight. But, step by step, with the focus and active col-

laboration of all participants in the end-to-end software development

process, it will happen.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=24

Chapter 3

One Lair and Twenty Ruby DSLs
by Martin Fowler, Chief Scientist

Much of the reason for Ruby’s recent popularity is its suitability as

a base for writing internal domain-specific languages. Internal DSLs

are domain-specific languages written using a valid subset of a host

language. There’s a resurgence about doing them in the Ruby at the

moment.

Internal DSLs are an old idea particularly popular in Lisp circles. Many

Lispers dismiss Ruby as having nothing new to offer in this space. One

feature that does make Ruby interesting is the wide range of different

techniques you can use in the language to develop an internal DSL.

Lisp gives you some great mechanisms but relatively few compared to

Ruby, which offers many options.

My purpose in this essay is to explore lots of these options for a single

example so you have a sense of the possibilities and so you can consider

which techniques work for you more than others.

3.1 My Lair Example

For the rest of this chapter I’ll use a simple example to explore the

alternative techniques. The example is a common, interesting abstract

problem of configuration. You see this in all sorts of equipment: if you

want x, you need to have a compatible y. You see this configuration

problem when buying computers, installing software, and doing lots of

other less nerdy pursuits.

MY LAIR EXAMPLE 26

For this particular case, imagine a company that specializes in provid-

ing complex equipment to evil megalomaniacs who want to conquer the

world. Judging by the amount of films about them, it’s a large market—

and one made better by the fact that these lairs keeping getting blown

up by glamorous secret agents.

So, my DSL will express the configuration rules for things that megalo-

maniacs put in lairs. This example DSL will involve two kinds of things:

items and resources. Items are concrete things such as cameras and

acid baths. Resources are amounts of stuff you need, like electricity.

I have two kinds of resources in my example: electricity and acid. I

assume that resources have potentially lots of different properties that

need to be matched. For instance, I’ll need to check that all the items’

power needs are supplied by power plants in the lair (evil geniuses

don’t like bothering with utilities). As a result, each resource will be

implemented by its own class in my abstract representation.

For the sake of the problem, I assume resources fall into two categories,

simple ones that have a small, fixed number of properties that can thus

be rendered as arguments in the constructor (electricity) and complex

ones with many optional properties that need lots of setting methods

(acid). Acid actually has only two properties for this example, but just

imagine there are dozens of them.

When it comes to items, I can say three things about them: they use

resources, they provide resources, and they depend on another item

that needs to be present in the lair.

Now for the curious, here’s the implementation of this abstract repre-

sentation. I’ll use the same abstract representation for all the examples

I’ll discuss:

Download lairs/model.rb

class Item

attr_reader :id, :uses, :provisions, :dependencies

def initialize id

@id = id

@uses = []

@provisions = []

@dependencies = []

end

def add_usage anItem

@uses << anItem

end

http://media.pragprog.com/titles/twa/code/lairs/model.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=26

MY LAIR EXAMPLE 27

def add_provision anItem

@provisions << anItem

end

def add_dependency anItem

@dependencies << anItem

end

end

class Acid

attr_accessor :type, :grade

end

class Electricity

def initialize power

@power = power

end

attr_reader :power

end

I store any particular configuration in a configuration object:

Download lairs/model.rb

class Configuration

def initialize

@items = {}

end

def add_item arg

@items[arg.id] = arg

end

def [] arg

return @items[arg]

end

def items

@items.values

end

end

For the purpose of this chapter, I’ll define just a few items and their

rules:

• An acid bath uses 12 units of electricity and grade-5 hydrochloric

acid (HCl).

• A camera uses 1 unit of electricity.

• A small power plant provides 11 units of electricity and depends

on a secure air vent in the lair.

http://media.pragprog.com/titles/twa/code/lairs/model.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=27

USING GLOBAL FUNCTIONS 28

I can state these rules in terms of the abstract representation like this:

Download lairs/rules0.rb

config = Configuration.new

config.add_item(Item.new(:secure_air_vent))

config.add_item(Item.new(:acid_bath))

config[:acid_bath].add_usage(Electricity.new(12))

acid = Acid.new

config[:acid_bath].add_usage(acid)

acid.type = :hcl

acid.grade = 5

config.add_item(Item.new(:camera))

config[:camera].add_usage(Electricity.new(1))

config.add_item(Item.new(:small_power_plant))

config[:small_power_plant].add_provision(Electricity.new(11))

config[:small_power_plant].add_dependency(config[:secure_air_vent])

Although this code populates the configuration, it isn’t very fluent. The

rest of this chapter explores different ways of writing code to express

these rules in a better way.

3.2 Using Global Functions

Functions are the most basic structuring mechanism in programming.

They provide the earliest way to structure software and to introduce

domain names into a program.

So, my first attempt at a DSL might be to use a sequence of global

function calls:

Download lairs/rules8.rb

item(:secure_air_vent)

item(:acid_bath)

uses(acid)

acid_type(:hcl)

acid_grade(5)

uses(electricity(12))

item(:camera)

uses(electricity(1))

item(:small_power_plant)

provides(electricity(11))

depends(:secure_air_vent)

http://media.pragprog.com/titles/twa/code/lairs/rules0.rb
http://media.pragprog.com/titles/twa/code/lairs/rules8.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=28

USING GLOBAL FUNCTIONS 29

The function names introduce the vocabulary of the DSL: item declares

an item, and uses indicates that an item uses a resource.

The configuration rules in this DSL are all about relationships. When I

say a camera uses 1 unit of electricity, I want to make a link between

an item called camera and an electricity resource. In this first lair

expression, this linkage is done through a context established by the

sequence of commands. The line uses(electricity(1)) applies to the camera

item because it immediately follows the declaration of camera. I might

say that this relationship is defined implicitly by the sequential context

of the statements.

As a human, you can infer the sequential context by how you read the

DSL text. When processing the DSL, however, the computer needs a bit

more help. To keep track of the context, I use special variables as I load

the DSL; unsurprisingly, they’re called context variables. One context

variable keeps track of the current item:

Download lairs/builder8.rb

def item name

$current_item = Item.new(name)

$config.add_item $current_item

end

def uses resource

$current_item.add_usage(resource)

end

Since I am using global functions, I need to use global variables for

my context variables. This isn’t that great, but as you’ll see, there are

ways to avoid this in many languages. Indeed, using global functions is

hardly ideal either, but it serves as a starting point.

I can use the same trick to handle the properties of the acid:

Download lairs/builder8.rb

def acid

$current_acid = Acid.new

end

def acid_type type

$current_acid.type = type

end

Sequential context works for the links between an item and its re-

sources but is not very good for handling the nonhierarchical links

between dependent items. Here I need to make explicit relationships

between items. I can do this by giving an item an identifier when I

http://media.pragprog.com/titles/twa/code/lairs/builder8.rb
http://media.pragprog.com/titles/twa/code/lairs/builder8.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=29

USING GLOBAL FUNCTIONS 30

declare it (item(:secure_air_vent)) and using that identifier when I need

to refer to it later (depends(:secure_air_vent). The fact that it is the small

power plant that depends on the secure air vent is handled through

sequential context.

A useful distinction here is that the resources are what Evans calls

value objects [Eva03]. As a result, they aren’t referred to other than by

their owning item. Items themselves, however, can be referred to in any

way in the DSL through the dependency relationship. As a result, items

need some kind of identifier so that I can refer to them later.

The Ruby way of handling an identifier like this is to use a symbol data

type: :secure_air_vent. A symbol in Ruby is a sequence of nonwhites-

pace characters beginning with a colon. Symbol data types aren’t in

many mainstream languages. You can think of them as like strings,

but for the particular purpose of this kind of usage. As a result, you

can’t do many of the usual string operations on them, and they are

also designed so all uses of them share the same instance. This makes

them more efficient for lookups. However, I find the most important

reason to use them is that they indicate my intent of how I treat them.

I’m using :secure_air_vent as a symbol, not a string, so picking the right

data type makes my intent clear.

Another way of doing this, of course, is to use variables. I tend to shy

away from variables in a DSL. The problem with variables is that they

are variable. The fact that I can put a different object in the same vari-

able means I have to keep track of which object is in which variable.

Variables are a useful facility, but they are awkward to keep track of.

For DSLs I can usually avoid them. The difference between an iden-

tifier and a variable is that an identifier will always refer to the same

object—it doesn’t vary.

Identifiers are necessary for the dependency relationship, but they can

also be used to handle resources as an alternative to using sequential

context:

Download lairs/rules7.rb

item(:secure_air_vent)

item(:acid_bath)

uses(:acid_bath, acid(:acid_bath_acid))

acid_type(:acid_bath_acid, :hcl)

acid_grade(:acid_bath_acid, 5)

uses(:acid_bath, electricity(12))

http://media.pragprog.com/titles/twa/code/lairs/rules7.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=30

USING OBJECTS 31

item(:camera)

uses(:camera, electricity(1))

item(:small_power_plant)

provides(:small_power_plant, electricity(11))

depends(:small_power_plant, :secure_air_vent)

Using identifiers like this means I’m being explicit about the relation-

ships, and it also allows me to avoid using global context variables.

These are both usually good things: I do like being explicit, and I don’t

like global variables. However, the cost here is a much more verbose

DSL. I think it’s valuable to use some form of implicit mechanism in

order to make the DSL more readable.

3.3 Using Objects

One of the principal problems of using functions as I did earlier is that

I have to define global functions for the language. A large set of global

functions can be difficult to manage. One of the advantages of using

objects is that I can organize my functions by classes. By arranging my

DSL code properly, I can keep the DSL functions collected together and

out of any global function space.

Class Methods and Method Chaining

The most obvious way to control the scope of methods in an object-

oriented language is to use class methods. Class methods do help

scope the use of functions but also introduce repetition because the

class name has to be used with each call. I can reduce the amount of

that repetition considerably by pairing the class methods with method

chaining, as in this example:

Download lairs/rules11.rb

Configuration.item(:secure_air_vent)

Configuration.item(:acid_bath).

uses(Resources.acid.

set_type(:hcl).

set_grade(5)).

uses(Resources.electricity(12))

Configuration.item(:camera).uses(Resources.electricity(1))

Configuration.item(:small_power_plant).

provides(Resources.electricity(11)).

depends_on(:secure_air_vent)

http://media.pragprog.com/titles/twa/code/lairs/rules11.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=31

USING OBJECTS 32

Here I begin each of my DSL clauses with a call to a class method. That

class method returns an object that is used as a receiver for the next

call. I can then repeatedly return the object for the next call to chain

together multiple method calls. In some places, the method chaining

becomes a little awkward, so I use class methods again.

It’s worth digging into this example in more detail so you can see what’s

happening. As you do this, remember that this example does have some

faults that I’ll explore, and remedy, in some later examples.

I’ll begin with the opening of the definition of an item:

Download lairs/builder11.rb

def self.item arg

new_item = Item.new(arg)

@@current.add_item new_item

return new_item

end

This method creates a new item, puts it into a configuration stored in a

class variable, and returns it. Returning the newly created item is the

key here, because this sets up the method chain.

Download lairs/builder11.rb

def provides arg

add_provision arg

return self

end

The provides method just calls the regular adder but again returns itself.

This continues the chain, and the other methods work the same way.

Using method chaining like this is at odds with a lot of good program-

ming advice. In many languages the convention is that modifiers (meth-

ods that change an object’s state) do not return anything. This follows

the principle of command query separation, which is a good and use-

ful principle and one that’s worth following most of the time. Unfortu-

nately, it is at odds with a flowing internal DSL. As a result, DSL writ-

ers usually decide to drop this principle while they are within DSL code

in order to support method chaining. This example also uses method

chaining to set the type and grade of acid.

A further change from regular code guidelines is a different approach to

formatting. In this case, I’ve laid out the code to emphasize the hierar-

http://media.pragprog.com/titles/twa/code/lairs/builder11.rb
http://media.pragprog.com/titles/twa/code/lairs/builder11.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=32

USING OBJECTS 33

chy that the DSL suggests. With method chaining you often see method

calls broken over newlines.

As well as demonstrating method chaining, this example demonstrates

how to use a factory class to create resources. Rather than add methods

to the Electricity class, I define a resources class that contains class

methods to create instances of electricity and acid. Such factories are

often called class factories or static factories because they contain only

class (static) methods for creating appropriate objects. They can often

make DSLs more readable, and you avoid putting extra methods on the

actual model classes.

This highlights one of the problems with this DSL fragment. To make

this work, I have to add a number of methods to the domain classes—

methods that don’t sit well. Most methods on an object should make

sense as individual calls. But DSL methods are written to make sense

within the context of DSL expressions. As a result, the naming, as well

as principles such as command query separation, are different. Fur-

thermore, DSL methods are very context specific, and they should be

used only within DSL expressions when creating objects. Basically, the

principles for good DSL methods aren’t the same as what makes regular

methods work effectively.

Expression Builder

A way of avoiding these clashes between DSLs and regular APIs is to use

the Expression Builder pattern. Essentially this says that the methods

that are used in a DSL should be defined on a separate object that

creates the real domain object. You can use the Expression Builder

pattern in a couple of ways. One route here is to use the same DSL

language but to create builder objects instead of domain objects.

To do this, I can change my initial class method call to return a different

item builder object:

Download lairs/builder12.rb

def self.item arg

new_item = ItemBuilder.new(arg)

@@current.add_item new_item.subject

return new_item

end

The item builder supports the DSL methods and translates these onto

methods on the real item object.

http://media.pragprog.com/titles/twa/code/lairs/builder12.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=33

USING OBJECTS 34

Download lairs/builder12.rb

attr_reader :subject

def initialize arg

@subject = Item.new arg

end

def provides arg

subject.add_provision arg.subject

return self

end

Of course, when I start doing this, I can completely break free of the API

of my domain objects and write my DSL more clearly. Consider this:

Download lairs/rules14.rb

ConfigurationBuilder.

item(:secure_air_vent).

item(:acid_bath).

uses(Resources.acid.

type(:hcl).

grade(5)).

uses(Resources.electricity(12)).

item(:camera).uses(Resources.electricity(1)).

item(:small_power_plant).

provides(Resources.electricity(11)).

depends_on(:secure_air_vent)

Here I use a builder from the beginning and use method chaining on

the builder itself. Not only does this remove some repetition, but it also

avoids the icky class variable. The first call is a class method that cre-

ates a new instance of configuration builder:

Download lairs/builder14.rb

def self.item arg

builder = ConfigurationBuilder.new

builder.item arg

end

def initialize

@subject = Configuration.new

end

def item arg

result = ItemBuilder.new self, arg

@subject.add_item result.subject

return result

end

I create the configuration builder and immediately call the item method

on the new instance. The instance method gives me a new item builder

and returns it for further processing. I have the odd case here of a

class method that has the same name as an instance method. Usually

http://media.pragprog.com/titles/twa/code/lairs/builder12.rb
http://media.pragprog.com/titles/twa/code/lairs/rules14.rb
http://media.pragprog.com/titles/twa/code/lairs/builder14.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=34

USING OBJECTS 35

I’d avoid this because it’s a recipe for confusion, but again I break my

usual API rules because it makes for a smoother DSL.

The item builder has the same methods that you saw before for cap-

turing information about the item. In addition, it needs its own item

method to handle when you want to start defining a new item.

Download lairs/builder14.rb

def item arg

@parent.item arg

end

def initialize parent, arg

@parent = parent

@subject = Item.new arg

end

This need to revert to the parent is one reason why I pass the config-

uration builder as a parent to the item builder when I create it. The

other reason is to allow the item builder to look up other items when

recording dependencies.

Download lairs/builder14.rb

def depends_on arg

subject.add_dependency(configuration[arg])

return self

end

def configuration

return @parent.subject

end

For the previous cases, I had to look up from a global or class variable

to do this.

A final refinement is that I renamed the methods on the acid builder to

make them read better since the builder frees me from worrying about

name clashes with the underlying domain object.

This use of Expression Builder, making a builder object for each domain

object, isn’t the only way to use Expression Builder. Another route is

to have a single object that acts as the builder. Here’s how this works

with the same DSL as you just saw:

Download lairs/builder13.rb

def self.item arg

result = self.new

result.item arg

return result

end

http://media.pragprog.com/titles/twa/code/lairs/builder14.rb
http://media.pragprog.com/titles/twa/code/lairs/builder14.rb
http://media.pragprog.com/titles/twa/code/lairs/builder13.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=35

USING OBJECTS 36

def initialize

@subject = Configuration.new

end

def item arg

@current_item = Item.new(arg)

@subject.add_item @current_item

return self

end

Instead of creating new objects, I use context variables to keep track of

the item on which I am currently working. This also means I don’t have

to define the parent’s forwarding methods.

More Chaining

Since chaining is a good tool, can you use it all the time? Can you

eliminate the resources factory? Indeed, you can. The resulting DSL

code looks like this:

Download lairs/rules2.rb

ConfigurationBuilder.

item(:secure_air_vent).

item(:acid_bath).

uses.acid.

type(:hcl).

grade(5).

uses.electricity(12).

item(:camera).uses.electricity(1).

item(:small_power_plant).

provides.electricity(11).

depends_on(:secure_air_vent)

(Note that I’ve added some blank lines to help the readability—Ruby is

tolerant that way.)

The choice between using method chaining and parameters is a

constant choice to make. When your parameter is a literal, such as

grade(5), then using method chaining is going to be very complicated,

while parameters are really easy. I tend to prefer really easy over very

complicated, so that’s a straightforward choice. The tricky one is

between uses.electricity... and uses(Resources.electricity....

As you use method chains more, you add complexity to the builder. This

is particularly the case when you start to involve subsidiary objects.

This is a good example of this kind of complication. Resources are used

http://media.pragprog.com/titles/twa/code/lairs/rules2.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=36

USING CLOSURES 37

in two contexts, either following uses or following provides. As a result,

if you’re using method chaining, you have to keep track of which case

you’re in so you can respond to the call to electricity correctly.

On the other hand, the issue with using parameters is that you have

lost the scoping control that method chaining gives you, so you have

to provide some scope to the parameter creation—as in this case using

a class method on the factory. Quoting factory names is one of those

repetitive awkwardness things that I like to avoid.

Another issue with parameters is that it may not make sense for the

writer of the DSL as to when to use one or the other, which makes it

harder to write DSL expressions.

My advice here is tentative, because I haven’t had enough experience

to guide you. Certainly use method chaining, because there is a lot of

support for it as a technique. While you use it, however, pay attention to

the complexity of dealing with the method chains. Once the complexity

of implementing the builder begins to get messy (I realize that’s a very

vague indicator), introduce parameters. I’ll show a few other techniques

later for introducing parameters that help you avoid the repetition of

class factories, but these do depend on your host language.

3.4 Using Closures

Closures are an increasingly common feature of languages, particularly

dynamic languages that are popular for internal DSL work. They work

very nicely for DSLs because they provide a simple way of introducing

new contexts in a hierarchic structure. Here is the lairs example using

closures:

Download lairs/rules3.rb

ConfigurationBuilder.start do |config|

config.item :secure_air_vent

config.item(:acid_bath) do |item|

item.uses(Resources.acid) do |acid|

acid.type = :hcl

acid.grade = 5

end

item.uses(Resources.electricity(12))

end

config.item(:camera) do |item|

item.uses(Resources.electricity(1))

end

http://media.pragprog.com/titles/twa/code/lairs/rules3.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=37

EVALUATION CONTEXT 38

config.item(:small_power_plant) do |item|

item.provides(Resources.electricity(11))

item.depends_on(:secure_air_vent)

end

end

A feature of this example is it uses a clear receiver for each method

call and does not use method chaining. The receivers are set up using

the closure syntax of the host language, which makes it easy to nest

method calls in a way that fits very nicely with the hierarchic structure

that you tend to have in a DSL.

An immediate visual advantage of this approach is that the natural

nesting of the host language mirrors the nesting of the DSL code. This

makes it easy to lay out the code easily. The variables used to hold the

language elements (for example, item and acid) are properly constrained

within their blocks by the host language structure.

Using explicit receivers means you don’t have to use method chaining.

This means you may be able to avoid using builders when the domain

object’s own API works. In this case, I used a builder for item but the

actual domain object for acid.

One limitation for this technique is that you need to have closures in

your language. Although you can use temporary variables to do some-

thing vaguely similar, this exposes you to all the problems of temps

since they aren’t well scoped unless you add separate scoping mecha-

nisms. With or without extra scoping, the resulting code doesn’t have

the flow that I look for in a DSL, and it is very prone to errors. Closures

avoid this by combining the scoping and the variable definition.

3.5 Evaluation Context

In my discussion so far, I haven’t talked about the overall context in

which the DSL code is being evaluated. That is, if I mention a function

call or data item without a receiver, how does this mention get resolved?

The assumption so far is that the context is global, so a function foo() is

assumed to be a global function. I’ve talked about using method chains

and class methods to allow you to use functions in other scopes, but I

can also alter the scope of the entire DSL program text.

The most straightforward way to do this is to embed the program text

into a class. This way the code can take advantage of methods and

fields defined elsewhere for that class. In languages that support open

http://books.pragprog.com/titles/twa/errata/add?pdf_page=38

EVALUATION CONTEXT 39

classes, this can done directly in a class; otherwise, you can use a

subclass.

Here’s an example of this style:

Download lairs/rules17.rb

class PrimaryConfigurationRules < ConfigurationBuilder

def run

item(:secure_air_vent)

item(:acid_bath).

uses(acid.

type(:hcl).

grade(5)).

uses(electricity(12))

item(:camera).uses(electricity(1))

item(:small_power_plant).

provides(electricity(11)).

depends_on(:secure_air_vent)

end

end

Placing the DSL text in a subclass allows me to do several things that

aren’t possible when I run the code in a global execution context. I no

longer have to use method chaining for the successive calls to item,

because I can make item a method of configuration builder. Similarly, I

can define acid and electricity as methods of configuration builder and

avoid the need for static factories.

The downside of this is that I have the addition of the class and method

headers and footers to my DSL text.

In this case, I’ve shown evaluating the text in the context of an object

instance. This is useful because it allows access to instance variables.

You can also do this for a class context by using class methods. Usually

I prefer an instance context, since that allows me to create a builder

instance, use it for evaluation, and then discard the instance. That way

I keep my evaluations isolated from each other, which avoids the risk

of leftover data from one messing up another (a particularly nasty risk

if concurrency is involved).

Ruby offers a particularly nice way to have and eat your cake here.

Ruby has a method called instance_eval, which can take some code,

either as a string or as a block, and evaluate in the context of an object

instance. This allows you to have only the DSL text of this example in a

http://media.pragprog.com/titles/twa/code/lairs/rules17.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=39

EVALUATION CONTEXT 40

file but still adjust the evaluation context. The result looks something

like this:

Download lairs/rules1.rb

item :secure_air_vent

item(:acid_bath).

uses(acid.

type(:hcl).

grade(5)).

uses(electricity(12))

item(:camera).uses(electricity(1))

item(:small_power_plant).

provides(electricity(11)).

depends_on(:secure_air_vent)

Some languages allow you to combine closures and alter the evaluation

context. So, Ruby allows you take code defined with a closure and pass

it to instance_eval to be evaluated against an object instance. Using this

allows me to write my DSL text like this:

Download lairs/rules18.rb

item :secure_air_vent

item(:acid_bath) do

uses(acid) do

type :hcl

grade 5

end

uses(electricity(12))

end

item(:camera) do

uses(electricity(1))

end

item(:small_power_plant) do

provides(electricity(11))

depends_on(:secure_air_vent)

end

The result is quite attractive. I have the structure of closures without

having the repetition of the block arguments as explicit receivers. How-

ever, this is a technique that you need to be wary of. The switch in block

context is likely to cause a lot of confusion. In each block, the pseudo-

variable self refers to a different object, which can easily confuse the

DSL writer. It also makes things awkward if you actually need access

to the normal self within the block.

http://media.pragprog.com/titles/twa/code/lairs/rules1.rb
http://media.pragprog.com/titles/twa/code/lairs/rules18.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=40

LITERAL COLLECTIONS 41

This confusion was seen in practice during the development of Ruby’s

builder library. Early versions used instance_eval, but practice found

it confusing and difficult to use. Jim Weirich (the author of the Ruby

builder library) concluded that switching evaluation context like this

isn’t a good idea for DSLs that are written by programmers because

it violates the expectations of the host language (a concern echoed by

other Rubyist DSLers). This is much less of an issue if the DSLs are

targeted for nonprogrammers, since they don’t have these expectations.

My sense is that the more an internal DSL integrates with the host lan-

guage, the less you’d want to do something like this that changes the

regular expectations of the language. For mini-languages that aren’t

intended to look like the host language so much, like my configura-

tion example, then the benefit of an easier-to-read language becomes

greater.

3.6 Literal Collections

Function call syntax is an important structuring mechanism for inter-

nal DSLs. Indeed, for many languages it’s pretty much the only mecha-

nism available. However, another useful mechanism available in some

languages is the ability to write literal collections and use them freely

in expressions. This ability is limited in many languages either because

you don’t have a convenient syntax for literal collections or because you

can’t use these literals in all the places that you might like.

Two kinds of literal collections are useful: lists and maps (aka hashes,

dictionaries, and associative arrays). Most modern languages provide

these objects in libraries, together with a reasonable API to manipulate

them. Both structures are handy for DSL writing, although any Lisper

will tell you that you can simulate maps with lists.

Here is an example that uses literal data structures for the definition

of acid:

Download lairs/rules20.rb

item :secure_air_vent

item(:acid_bath) do

uses(acid(:type => :hcl, :grade => 5))

uses(electricity(12))

end

item(:camera) do

uses(electricity(1))

end

http://media.pragprog.com/titles/twa/code/lairs/rules20.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=41

LITERAL COLLECTIONS 42

item(:small_power_plant) do

provides(electricity(11))

depends_on(:secure_air_vent)

end

For this case I am mixing function calls and literal collections and tak-

ing advantage of Ruby’s ability to eliminate bracketing when there’s no

ambiguity. The acid function looks like this:

Download lairs/builder20.rb

def acid args

result = Acid.new

result.grade = args[:grade]

result.type = args[:type]

return result

end

Using a literal hash as an argument is a common idiom in Ruby (one of

its Perlish influences). It works very well for functions such as creation

methods that have lots of optional arguments. In this case, not only

does it provide a clean DSL syntax, but it also means I can avoid having

builders for acid and electricity—just creating the objects I need directly.

What happens if I take the use of literals further, such as replacing the

function calls for uses, provides, and depends_on with a map?

Download lairs/rules4.rb

item :secure_air_vent

item :acid_bath,

:uses => [acid(:type => :hcl,

:grade => 5) ,

electricity(12)]

item :camera,

:uses => electricity(1)

item :small_power_plant,

:provides => electricity(11),

:depends_on => :secure_air_vent

It’s a mixed result that shows both the strength and the weakness of

this approach. For the small power plant, it works very nicely because

it’s simple. The awkwardness lies in more complicated cases like the

acid bath. Here I have two resources that the acid bath depends on; as

a result, I need to put the acid and electricity calls in a list. Once I start

nesting things inside literal maps, it starts getting harder to see what’s

happening.

http://media.pragprog.com/titles/twa/code/lairs/builder20.rb
http://media.pragprog.com/titles/twa/code/lairs/rules4.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=42

LITERAL COLLECTIONS 43

This further step also complicates the implementation. The call to item

involves both the name and the map. Ruby treats this as a name argu-

ment followed by a multiarg of name-value pairs.

Download lairs/builder4.rb

def item name, *args

newItem = Item.new name

process_item_args(newItem, args) unless args.empty?

@config.add_item newItem

return self

end

The function needs to switch on the key in order to process each clause;

furthermore, it needs to deal with the fact that the value may be a single

element or a list.

Download lairs/builder4.rb

def process_item_args anItem, args

args[0].each_pair do |key, value|

case key

when :depends_on

oneOrMany(value) {|i| anItem.add_dependency(@config[i])}

when :uses

oneOrMany(value) {|r| anItem.add_usage r}

when :provides

oneOrMany(value) {|i| anItem.add_provision i}

end

end

end

def oneOrMany(obj, &block)

if obj.kind_of? Array

obj.each(&block)

else

yield obj

end

end

When you have a situation like this, where the value may be single or

a list, it’s often easier to use a list for the whole thing:

Download lairs/rules21.rb

item :secure_air_vent

item :acid_bath,

[:uses,

acid(:type => :hcl, :grade => 5),

electricity(12)]

item :camera,

[:uses, electricity(1)]

http://media.pragprog.com/titles/twa/code/lairs/builder4.rb
http://media.pragprog.com/titles/twa/code/lairs/builder4.rb
http://media.pragprog.com/titles/twa/code/lairs/rules21.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=43

LITERAL COLLECTIONS 44

item :small_power_plant,

[:provides, electricity(11)],

[:depends_on, :secure_air_vent]

Here the arguments to the item method are the name of the item and

a list (rather than a hash). The first item of the list is the key, and the

remaining items in the list are the values. (This is the way Lispers treat

hashes as lists.) This approach reduces the nesting and is easier to

process.

Download lairs/builder21.rb

def item name, *args

newItem = Item.new name

process_item_args(newItem, args) unless args.empty?

@config.add_item newItem

return self

end

def process_item_args anItem, args

args.each do |e|

case e.head

when :depends_on

e.tail.each {|i| anItem.add_dependency(@config[i])}

when :uses

e.tail.each {|r| anItem.add_usage r}

when :provides

e.tail.each {|i| anItem.add_provision i}

end

end

end

The important trick here is to think of a list as a head and tail rather

than as numbered elements. So, don’t replace a hash by a two-element

list because this gains you nothing. Instead, treat the key as the head

of the list, and flatten all the values in the tail. This way you don’t have

to embed one collection inside another.

Head and tail aren’t in Ruby’s list class (called Array) by default but are

trivial to add:

Download lairs/builder21.rb

class Array

def tail

self[1..-1]

end

alias head first

end

http://media.pragprog.com/titles/twa/code/lairs/builder21.rb
http://media.pragprog.com/titles/twa/code/lairs/builder21.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=44

LITERAL COLLECTIONS 45

Before I leave the topic of using literal collections, it’s worth mention-

ing the ultimate forms of each. Here is the whole configuration using

primarily maps with lists when needed:

Download lairs/rules22.rb

{:items => [

{:id => :secure_air_vent},

{:id => :acid_bath,

:uses => [

[:acid, {:type => :hcl, :grade => 5}],

[:electricity, 12]]},

{:id => :camera,

:uses => [:electricity, 1]},

{:id => :small_power_plant,

:provides => [:electricity, 11],

:depends_on => :secure_air_vent}

]}

And here it is with only lists, what you might call Greenspun Form:

Download lairs/rules6.rb

[

[:item, :secure_air_vent],

[:item, :acid_bath,

[:uses,

[:acid,

[:type, :hcl],

[:grade, 5]],

[:electricity, 12]]],

[:item, :camera,

[:uses, [:electricity, 1]]],

[:item, :small_power_plant,

[:provides, [:electricity, 11]],

[:depends_on, :secure_air_vent]]]

Variable Argument Methods

Some languages define variable argument methods, which are a useful

technique to use literal lists in the context of a function call. In the

following version, I use them to have a single call to the uses method:

Download lairs/rules24.rb

item :secure_air_vent

item(:acid_bath) do

uses(acid(:type => :hcl, :grade => 5),

electricity(12))

end

http://media.pragprog.com/titles/twa/code/lairs/rules22.rb
http://media.pragprog.com/titles/twa/code/lairs/rules6.rb
http://media.pragprog.com/titles/twa/code/lairs/rules24.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=45

DYNAMIC RECEPTION 46

item(:camera) do

uses(electricity(1))

end

item(:small_power_plant) do

provides(electricity(11))

depends_on(:secure_air_vent)

end

Using a varargs method is handy in situations like this when you want

to group a list together in a method call, particularly if the language is

picky about where you can place literal lists.

3.7 Dynamic Reception

One of the benefits of dynamic programming languages is that they can

respond effectively to method calls that are not defined on the receiving

object.

We’ll explore that sentence a bit more with my example. So far, I’ve

assumed that the resources in my lair are a relatively fixed set, fixed

enough that I am happy to write specific code to handle them. What if

this wasn’t the case? What if there are many resources and I wanted to

include them in the configuration as part of the configuration?

Download lairs/rules23.rb

resource :electricity, :power

resource :acid, :type, :grade

item :secure_air_vent

item(:acid_bath).

uses(acid(:type => :hcl, :grade => 5)).

uses(electricity(:power => 12))

item(:camera).

uses(electricity(:power => 1))

item(:small_power_plant).

provides(electricity(:power => 11)).

depends_on(:secure_air_vent)

In this case, I still want to have electricity and acid as calls on the

builder. I want it to construct the newly defined resources in those

methods, but I don’t want to define the methods, since they should be

inferred from the resources.

http://media.pragprog.com/titles/twa/code/lairs/rules23.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=46

DYNAMIC RECEPTION 47

A way to do this in Ruby is to override method_missing. In Ruby, if an

object receives a call for a method that it doesn’t know, then it executes

its method_missing method. This method by default is inherited from the

Object class and throws an exception. The trick is that you can override

this method to do something more interesting.

First I prepare the ground in the calls to the resource method:

Download lairs/builder23.rb

def resource name, *attributes

attributes << :name

new_resource = Struct.new(*attributes)

@configuration.add_resource_type name, new_resource

end

Ruby has a facility for creating anonymous classes called structs. So,

when I’m asked for a resource, I define a struct for it, naming it after

the first argument to the resource call and giving it a property for each

subsequent argument. I also add a name argument. I store these structs

on the configuration.

Next I override method_missing to see whether the method name corre-

sponds to one of my new structs; if so, I load up the struct based on

the arguments to the call—using a literal dictionary helps with this.

Download lairs/builder23.rb

def method_missing sym, *args

super sym, *args unless @configuration.resource_names.include? sym

obj = @configuration.resource_type(sym).new

obj[:name] = sym

args[0].each_pair do |key, value|

obj[key] = value

end

return obj

end

As with any time I use method missing, I first look to see whether I can

recognize the call. If not, I call super, which in this case would lead to

an exception.

Most dynamic languages have the facility to override the handler for an

unknown method. It’s a powerful technique but one that needs to be

used carefully. It’s a mechanism that allows you to alter the method

dispatch system of your program. Use it unwisely, and you can seri-

ously confuse anyone who reads your program.

http://media.pragprog.com/titles/twa/code/lairs/builder23.rb
http://media.pragprog.com/titles/twa/code/lairs/builder23.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=47

FINAL THOUGHTS 48

Ruby’s builder library, written by Jim Weirich, is a wonderful demon-

stration of how you can use this. Builder’s purpose is to generate XML

markup, and it uses closures and method_missing to do this in a very

readable way.

A simple example shows how nice it looks. This code:

Download lairs/frags

builder = Builder::XmlMarkup.new("", 2)

puts builder.person do |b|

b.name("jim")

b.phone("555-1234", "local"=>"yes")

b.address("Cincinnati")

end

generates this markup:

Download lairs/frags

<person>

<name>jim</name>

<phone local="yes">555-1234</phone>

<address>Cincinnati</address>

</person>

3.8 Final Thoughts

A couple of years ago Dave Thomas talked about the notion of code

katas on his blog. The idea of a kata was a simple problem that you

could solve lots of different ways to explore how different solutions

worked and the trade-offs between them. This essay is such an exercise.

It doesn’t come to any definitive conclusions, but it does help explore

the many options Ruby gives you in forming internal DSLs—and many

of these options are available in other languages too.

http://media.pragprog.com/titles/twa/code/lairs/frags
http://media.pragprog.com/titles/twa/code/lairs/frags
http://books.pragprog.com/titles/twa/errata/add?pdf_page=48

Chapter 4

The Lush
Landscape of Languages

by Rebecca J. Parsons, Chief Technology Officer

4.1 Introduction

A botanist, wandering through a field alive with plant life, marvels at the

diversity and likely identifies the different species encountered there.

The same is true of computer scientists marveling at the diversity of

computer languages and categorizing them on the basis of their charac-

teristics. Even with that, understanding these characteristics provides

a strong basis for understanding new entries into the wonderful world

of languages.

4.2 The Specimens

Whereas for plants and animals the characteristics are color, size, leaf

shape, flowers, fruit, and thorns, computer-language characteristics

deal with issues such as the types of statements available, the way

types are handled, the way the language itself is implemented, and the

basic organizing principle for programs. Given this difference in the

kinds of characteristics, it shouldn’t be surprising that languages can

fit in many categories; plant classification is much more straightfor-

ward in that way. In this essay, we’ll examine some specimens and

start to develop a tree of life for languages. We’ll look at old and new

languages, paying particular attention to things for which particular

languages are known.

THE SPECIMENS 50

Consider first an old faithful language, Fortran. Fortran in its many

incarnations, long the king for hardcore scientific computation, is a

classic language with some fairly simple language characteristics. As-

signment statements manipulate the state of memory through the use

of variable names. Other statements access that memory state and per-

form computations. Fortran is a classic imperative programming lan-

guage. Imperative languages are often also referred to as procedural

languages because the basic organization mechanism for statements is

the procedure. However, these language characteristics are quite differ-

ent, and thus it is useful to continue to distinguish between them.

Fortran is also a static language, in that programs are compiled and

linked and then are ready to load and execute. The compiler translates

the source program into machine language, performs optimizations,

and is also responsible for declaring whether a program is syntactically

legal.

Now, let’s consider another classic programming language, Lisp, con-

sidered for a time to be almost synonymous with artificial intelligence,

although it was more widely used than that. The acronym LISP is jok-

ingly expanded as “Lots (of) insignificant silly parentheses” along with

many other variants, but the language has several notable characteris-

tics. Lisp is a functional programming language, not to be confused with

procedural. The basic building blocks of Lisp programs are functions,

in the mathematical sense. Pure functions manipulate data passed in

as parameters and return a value; the value returned is always the

same if the same input parameters are provided. Thus, pure functions

have no memory or no state that can be saved from one invocation to

the next.

Lisp is also a dynamic language. This language characteristic refers

to when particular decisions or computations are made. Dynamic lan-

guages perform many of the functions that a compiler performs during

execution. So, the “code, compile, test, pound desk, and repeat” cycle of

program development in a static language becomes “code, test, pound

desk, and repeat” in a dynamic language. The program is directly exe-

cuted. The increasing popularity of virtual machines such as the CLR

and the JVM are making this particular distinction less precise, but the

class of dynamic languages is an important one.

Lisp is also dynamically typed. In dynamically typed languages, the type

of a particular value is not determined until the statement is executed.

Thus, there is no notion of defining a variable to be of a particular type.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=50

THE SPECIMENS 51

A variable has the type of whatever value it currently holds. A variable X

could be an integer in one instance, and then the next reference might

be to a list or a boolean. Dynamic and dynamically typed languages are

not the same set of languages; they cover different types of language

characteristics, and their implementations are not tied to each other.

Now, let’s move to a more modern language, Java. Java is an object-

oriented (OO) programming language since the major organizational

unit in a Java program is an object. Conceptually, an object is a col-

lection of state variables and methods. Objects are members of a class

that specifies what state and methods an object contains. Objects of the

same class are related, but they are distinct entities. There are compet-

ing definitions for what is actually necessary and sufficient to be con-

sidered an OO language, but almost all definitions include the features

of inheritance and encapsulation. Inheritance is a way for classes and

thus objects to be related to each other. A subclass inherits all the com-

ponents of its superclass and may then extend the class definition with

new methods or state or override some of the existing methods. Encap-

sulation is a technique to implement information hiding. The details

of the object’s implementation should be hidden behind interfaces to

reduce implementation dependences. Polymorphism, the ability for a

particular function to operate on items of different types of objects, is

also often considered a necessary feature for OO languages, although

other languages also exhibit polymorphism. Similarly, encapsulation

isn’t a discriminating characteristic of OO languages either, in that this

same approach can be used in many other languages.

Java, though, shares many constructs with the curly-brace languages,

C and C++, and thus it also has some imperative characteristics; it is

not a pure OO language.

The Ruby language is currently a darling of the IT press. Ruby is an

OO language, a dynamic language, and a dynamically typed language.

Ruby has a strong extension mechanism and also provides support for

functional and even procedural programming.

Now let’s consider Haskell, a less well-known language (although it’s

getting more and more recognition as time goes on). Haskell is a pure

functional language in that, unlike Lisp, there are no imperative con-

structs. The language is statically typed, using type inference to reduce

the number of explicit type declarations. Haskell also differs signifi-

cantly from other languages in that the language semantics are lazy.

A lazy language is one that never evaluates anything that isn’t needed

http://books.pragprog.com/titles/twa/errata/add?pdf_page=51

THE SPECIMENS 52

to determine the final result of the program. This laziness applies to

parts of data items as well; the need for the first element of the list

means that only the first element (and no others) are calculated. This

difference in the execution semantics is often overlooked in the recent

mentions of Haskell, but lazy semantics make Haskell programming a

very different exercise than other functional languages.

Let’s consider a very different example, SQL. SQL is the common query

language for accessing data in a relational database. SQL is a declara-

tive language. A program in a declarative language specifies what is to

be computed, not how to compute it. In the case of SQL, a statement

defines the characteristics of the desired data, not how to go about

finding the data. Prolog is another well-known declarative language;

a Prolog program consists of logical assertions—axioms and inference

rules—that describe the state of the system. The execution of a Prolog

program consists of answering questions about the logical provability

of assertions relative to the state as defined by the axioms and infer-

ence rules. The computational model for Prolog is the algorithm that

draws conclusions from the assertions, rather than an abstract com-

puter model that describes the actual computation.

Many consider this definition of declarative languages to be unhelpful.

One way to think about the definition, though, is to consider what you

can determine about the computation that will occur based on looking

at a particular statement. In a nondeclarative language, the statement

in the language specifies what computation will occur. In a declara-

tive language, a statement in the language specifies some aspect of the

desired answer, with no notion of how that answer is to be determined.

Admittedly, the issue is still likely cloudy. Additionally, as the level of

abstraction of the nondeclarative languages increases and the aggres-

siveness of various compiler optimizations increases, the distinction is

becoming less clear and likely of less interest.

Finally, let’s consider language whose star is currently rising, Erlang.

Erlang is a functional, strict, dynamically typed language with explicit

language support for concurrent computation. All the other languages

described here are sequential languages; although they can support

concurrent execution by using threads or by adding a messaging layer,

Erlang programs explicitly describe their concurrent execution and

communicate explicitly through messages.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=52

THE VARIETY OF VARIETIES 53

4.3 The Variety of Varieties

Just looking at these languages reveals categories related to the orga-

nizing principles of languages, their type systems, their execution be-

havior, and their implementation. There’s something pretty important

missing from this list, at least as it relates to general-purpose program-

ming languages. Any language that supports conditional statements

and indefinite iteration is considered Turing complete; all of these lan-

guages are capable of expressing any program that takes finite input

and completes any task resulting in a finite output on that input in

finite time.

So, what’s the relevance of Turing completeness? Despite the passion

with which people defend their preferred choice, all the major general-

purpose programming languages, including Lisp, Ruby, Java, C#, C,

and so on, and even the crusty old assembly languages, can express

the same set of programs. Yes, I said the same set.

Now, just because you can write any program in any one of these lan-

guages doesn’t mean it is always easy or desirable to do so. Different

problems require different solutions; different languages provide differ-

ent abstractions and techniques that facilitate these different solutions.

The same algorithm implemented in different languages will obviously

look quite different but will also possibly perform quite differently. One

language may allow the algorithm to run more efficiently, for example.

Another language may allow the algorithm to be more cleanly imple-

mented. Compiler optimizations are more or less difficult depending on

the language being compiled. Understanding the different languages

characteristics and the programming models they support allows you

to select the language appropriate for a particular task. Let’s take these

different aspects of variability and the options.

Paradigms

The set of programming paradigms generally includes imperative, pro-

cedural, functional, object-oriented, declarative, and logical. Some lan-

guages contain aspects of multiple paradigms. Common Lisp, for exam-

ple, is a functional language supporting OO concepts as well. C++ has

OO features but also has many features of procedural languages. The

table on the next page shows the major programming paradigms:

http://books.pragprog.com/titles/twa/errata/add?pdf_page=53

THE VARIETY OF VARIETIES 54

Class Definition Examples

Imperative Sequences of statements

manipulate state.

Assembly, Fortran

Procedural Organized around proce-

dures—groups of state-

ments.

C, Pascal, Cobol

Object-oriented Organized around ob-

jects.

Smalltalk, Java, Ruby

Functional Organized around state-

less functions.

Lisp, Scheme, Haskell

Logical Solution characteristics

in terms of axioms and

inference rules.

Prolog, OPS5

Declarative Describes the solution,

not how to achieve it.

XSLT, SQL, Prolog

This table might look like it combines things that aren’t really much

alike. Indeed, three different characteristics are wrapped up in this

table.

There are notions of organization, state, and scoping. As described

earlier, different language paradigms organize code differently, using

objects, functions, procedures, or even single statements as the basic

organizational unit. Then there is the notion of state. Imperative lan-

guages explicitly manipulate a memory state, whereas functional lan-

guages do not mutate any state. Finally, there is the notion of the visi-

bility of state. In object-oriented languages, state resides in the object,

and that state is visible only from the object itself. Imperative languages

have a global state that is visible to all parts of a given program. Func-

tional languages have bindings of variables to values within the closure

of the function, but these are not mutable and are not visible to other

functions.

Type Characteristics

The type of an identifier describes the legal values that identifier can

hold and, implicitly, the operations that can be performed on that

variable. There are several different kinds of type systems that refer

to different types characteristics, but the most frequently discussed

type characteristic describes when the type of a variable is determined.

Statically typed languages assign a single type to a variable, often at

compile time. In dynamically typed languages, the type of a variable is

http://books.pragprog.com/titles/twa/errata/add?pdf_page=54

THE VARIETY OF VARIETIES 55

determined only when an operation is about to be performed on that

variable. In such languages, the type of a given variable can potentially

change over the execution of a problem; this cannot occur in statically

typed languages. A particular style of dynamic typing utilized in Ruby,

for instance, is duck typing. Under duck typing, the notion of the type

of a value is weakened somewhat. The type of the value does not have

to match a specific type; it merely needs to have the ability to perform

the specifically requested operation.

Another important, although widely abused, term is strongly typed. A

common definition for a strongly typed language is that a program is

not allowed to compile if it might exhibit a type error at runtime. Of

course, this then necessitates a definition-of-type error. Although divi-

sion by zero, as an example, could be considered a type error, generally

a type error is restricted to things like attempting an arithmetic opera-

tion on a string or an array.

One final aspect of typing that is of interest is type inference. Using

type inference, the compiler attempts to infer a typing that renders the

program correct. Type inference makes strongly typed languages more

user friendly, although there are perfectly correct programs for which

the type inference algorithms are unable to infer the correct type.

The following table shows some of the common languages and where

they fall relative to these characteristics:

Class Definition Examples

Static Type of a variable fixed,

usually at compile time.

Java, C, Fortran, ...

Dynamic Type of a variable deter-

mined when accessed.

Scheme, Lisp, Ruby

Strong No runtime type errors

are possible.

Haskell, C++ (if you ig-

nore what you can do

with casts)

Type Inference A type inference algo-

rithm assigns types to

variables without explicit

type definitions.

Haskell, ML

Duck Typing Only the part of the type

needed is checked.

Ruby

http://books.pragprog.com/titles/twa/errata/add?pdf_page=55

THE VARIETY OF VARIETIES 56

Execution Behavior

There are two different classes of behavior to discuss here, although

there are many others that could be introduced. The first is the distinc-

tion between sequential and concurrent languages; the second is the

distinction between lazy and strict languages.

Most programmers never think too much about concurrent computa-

tion, although even the advent of client-server models introduced some

notion of concurrency. Given this, it isn’t surprising that most lan-

guages are sequential; the execution semantics of the language assume

that a single statement of the program at a time is executed. However,

we’ve had access to parallel machines for decades, and many applica-

tions rely on parallel or distributed computation to perform their task.

Sometimes this parallelism is inferred by the compiler. Other times,

a messaging layer, a task layer, and possibly locking or semaphore

libraries are used to introduce parallelism. Some languages include

explicit language constructs to support parallelism. Although previ-

ously limited to applications in science research and complex finan-

cial analysis, such languages are coming into more mainstream con-

sideration as multicore processors become more common and as the

expectations of users of applications continue to expand.

Lazy evaluation is even less commonly thought about in business appli-

cations, but as interest in Haskell increases, the power of lazy evalu-

ation will be better understood. Almost all languages have strict exe-

cution semantics. Simply put, this means statements are executed,

in order, until the end of the program. Conceptually, lazy evaluation

means that the execution begins by determining what the result is and

finding which statements need to be executed to get that result. Any

statement not directly required for the end result is ignored. Consider

the following, admittedly silly, program in some unspecified language:

X = Y/0;

Y=6;

End(Y);

The end statement indicates that the desired final result is the value of

Y. Under strict evaluation, this program would fail with a divide-by-zero

exception (we’ll ignore compiler optimizations here that remove dead

code). Under lazy evaluation, even without compiler optimizations, this

program would return the value 6. There is no need to determine the

value of X, so that statement is ignored. The implications of lazy eval-

uation are further reaching than simply optimizations, allowing for the

http://books.pragprog.com/titles/twa/errata/add?pdf_page=56

THE TREE OF LIFE FOR LANGUAGES 57

manipulation and specification of infinite data structures, for example;

these implications are beyond the scope of this essay, though.

There’s no need for a table here, since with the prominent exception

of Haskell and the closely related Hope languages, most languages are

strict. It is possible to implement lazy evaluation in a strict language for

specific applications, but the language semantics remain strict.

Implementation Models

A final category of interest concerns how the language is implemented.

There used to be two big, broadly understand categories: compiled and

interpreted languages. In the “old days,” interpreted languages were

slow, so any real work needed to be done in compiled languages—or so

the conventional wisdom went. Even in those days, people were writ-

ing real systems in Lisp, hard as that might be for some to believe.

Interpreted languages were considered toy languages or simply script-

ing languages. The popularization of the virtual machine has blurred

the line somewhat; as in languages such as Java, the program is com-

piled into some bytecode representation and then interpreted on the

virtual machine. However, I still find the following distinction useful: a

compiler creates something that needs to be executed to get an answer

from some source program, whereas an interpreter takes some source

program and actually produces an answer.

The phrase “scripting language” in particular seemed to convey that the

language was worthy of writing scripts only rather than programs. The

number of systems implemented in such languages tends to make that

characterization seem rather silly.

Some languages, such as some versions of Scheme, have both compiled

and interpreted versions, again clouding the characterizations.

Again, a table is less important here, because many languages exist in

both compiled and interpreted versions and the use of bytecode-style

virtual machines further complicates the issue.

4.4 The Tree of Life for Languages

The following table shows some common languages and where they fall

relative to these categories. Many languages have quite similar char-

acteristics, although the syntax may be very different. From the per-

spective of program design, the syntax is less relevant, because the

http://books.pragprog.com/titles/twa/errata/add?pdf_page=57

THE TREE OF LIFE FOR LANGUAGES 58

expressiveness of the language derives more from its characteristics.

However, individual programmers are generally picky about syntax; this

makes sense given that they have to work directly with the syntax of a

language. The resurgence of integrated development environments

(IDEs) has lessened some of the syntactic burden, but it can never be

eliminated.

Language Paradigms Typing Implementation

Assembly Imperative Dynamic Assembled, sequential

Fortran Imperative Static Compiled, sequential with

parallelizing compilers

C Imperative,

procedural

Static, but

with pointers

Compiled, sequential

C++ Imperative,

OO, proce-

dural

Static, but

with pointers

Compiled, sequential with

parallelizing compilers

Java Imperative,

OO, proce-

dural

Static Compiled, with threads for

concurrency

Lisp Functional

(CLOS

adds OO)

with some

imperative

Dynamic Interpreted and compiled,

sequential

Scheme Functional

with some

imperative

Dynamic Interpreted and compiled,

sequential

Haskell Functional,

lazy

Static, type

inference

Interpreted and compiled

Ruby OO Dynamic,

duck

Interpreted and compiled,

sequential

Prolog Declarative Dynamic

Scala Functional

and OO

Static Interpreted and compiled,

with parallel support

Erlang Functional Dynamic Interpreted and compiled,

concurrent

This list of categories is not exhaustive. We could discuss many differ-

ent language features. Additionally, many features of older languages

are beginning to appear in modern languages (closures, higher-order

functions, and so on). Languages will continue to evolve to introduce

new abstractions and approaches.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=58

THAT’S ALL VERY INTERESTING, BUT WHY SHOULD YOU CARE? 59

4.5 That’s All Very Interesting, But Why Should You Care?

Language wars have been raging for decades, and there’s no reason to

believe they’ll stop now. Some folks seem convinced that there is one

perfect language out there. My belief is that this is simply hogwash. The

notion is even more ridiculous if you accept that domain-specific lan-

guages (DSLs) will continue to gain popularity and if new approaches

such as intentional programming and language workbenches really pan

out. In reality, individual languages should have a set of features and

syntax for those features that allows for the implementation of partic-

ular kinds of components or programs. Obviously, the broader a lan-

guage’s sweet spot, the more general purpose that language will be.

Of course, from the perspective of a CIO with lots of applications to

maintain, one true language would simplify matters of staffing tremen-

dously, at least on the surface. We’ll continue to argue over the relative

merits of Java and Ruby or whatever the next set of contenders are. I

can still dream, though, of a day when the discussion is about which

language to use for a problem rather than just which language to use.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=59

Glenn Vanderburg

In ten years, everyone will be programming in

Smalltalk, no matter what they call it.

Chapter 5

Polyglot Programming
by Neal Ford, Meme Wrangler

When Java came along in 1995, it was a welcome relief to C++ pro-

grammers tired of fighting with pointers, memory management, and

other arcane plumbing. Java allowed them to just get work done. But

for Java to succeed, it needed to appeal to the current high priesthood

of developers, those same C++ developers. Thus, the designers of Java

purposely made the Java language look and feel a lot like C++, which

made perfect sense. It’s hard to attract developers to new languages if

they have to learn all the basics again.

But in 2008, backward compatibility no longer makes much sense.

Much of the strange stuff that new Java developers must learn has

nothing to do with getting real work done but rather with strange ritu-

als in Java. Think about the following code, which is the first code most

Java developers encounter:

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World");

}

}

How many things do you have to explain to a new developer for them to

understand this code? Java is rife with C++-isms (such as zero-based

arrays) and baggage that made sense in 1995 (such as the distinction

between primitives and objects) that don’t help the productivity of mod-

ern developers.

Fortunately, the designers of Java made a brilliant decision when they

built Java: they separated the language from the platform. That gives

developers a “get out of jail free” card called polyglot programming.

POLYGLOT PROGRAMMING 61

5.1 Polyglot Programming

The word polyglot means speaking many languages. Polyglot program-

ming leverages the separation of language and platform in Java (and in

C# as well), allowing developers to use specialized languages to solve

specific problems. We now have hundreds of languages that run on the

Java virtual machine and the .NET managed runtime. Yet, as develop-

ers, we don’t leverage this capability enough.

Of course, developers already do this all the time: most applications

use SQL to access databases, JavaScript to add interactivity to web

pages, and of course the ubiquitous XML to configure everything. But

the idea of polyglot programming is different. All these examples are

orthogonal to the JVM; they run outside the world of Java. And that

causes big headaches. How many billions of dollars have been spent

on the impedance mismatch of objects and set-based SQL? Impedance

mismatch makes developers nervous because they feel the pain of the

places where they already use multiple languages. But polyglot pro-

gramming is different. It is about leveraging languages that produce

bytecode within the JVM, eliminating impedance mismatch.

The other impediment to polyglot programming is the perception that

you are changing languages. Always in the past, changing languages

meant changing platforms, which has an obvious bad connotation to

developers who don’t want to rewrite all their libraries again. But the

separation of the platform from the language in both Java and C#

means you no longer have to fight that battle. Polyglot programming

allows you to leverage all your existing assets but also use languages

more suitable to the job at hand.

Just what do I mean by more suitable to the job at hand? The following

sections are some examples of applying polyglot programming.

5.2 Reading Files the Groovy Way

Here is a task: write a simple program that reads a text file and prints

the contents of the text file with line numbers added to the front of each

line. Here is the solution in Java:

Download ./code/ford/LineNumbers.java

package com.nealford.polyglot.linenumbers;

import java.io.*;

import static java.lang.System.*;

http://media.pragprog.com/titles/twa/code/./code/ford/LineNumbers.java
http://books.pragprog.com/titles/twa/errata/add?pdf_page=61

READING FILES THE GROOVY WAY 62

public class LineNumbers {

public LineNumbers(String path) {

File file = new File(path);

LineNumberReader reader = null;

try {

reader = new LineNumberReader(new FileReader(file));

while (reader.ready()) {

out.println(reader.getLineNumber() + ":"

+ reader.readLine());

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

} finally {

try {

reader.close();

} catch (IOException ignored) {

}

}

}

public static void main(String[] args) {

new LineNumbers(args[0]);

}

}

Here is the same solution in Groovy, the scripting language that runs

on the JVM:

Download ./code/ford/LineNumbers.groovy

def number=0

new File (args[0]).eachLine { line ->

number++

println "$number: $line"

}

For simple tasks, Java is massively overcomplicated. In the previous

example, there are more lines of boilerplate exception code than solu-

tion code. Groovy handles most of the mundane plumbing for you, mak-

ing it easier to see the solution without all the ritual. This code com-

piles to Java bytecode, making the end result almost identical to the

Java one. Yes, the bytecode for the Groovy version isn’t going to be as

efficient: Groovy has to do lots of magic with Java’s bytecode to make

it more dynamic (such as calling Java classes through proxy objects).

But what’s more important in this situation: developer productivity or

efficiency of execution? If you are reading files to add line numbers and

it takes 500 milliseconds vs. 100 milliseconds, who cares? You save

http://media.pragprog.com/titles/twa/code/./code/ford/LineNumbers.groovy
http://books.pragprog.com/titles/twa/errata/add?pdf_page=62

JRUBY AND ISBLANK 63

several million times that amount in the time it saves you writing the

code. Use the tool more suitable for the job rather than prematurely

optimizing for performance.

5.3 JRuby and isBlank

Of course, the example in the previous section was a simple scripting

solution for which Java is poorly suited. What about something more

common, such as code you’d need in a web application to verify that

parameters aren’t blank?

This Java code comes from the Apache Commons project, which is a

repository of commonly needed Java infrastructure code. It allows you

to determine whether a String is blank, which comes up all the time in

web application parameter harvesting. This is the isBlank() method from

the StringUtils class:

Download ./code/ford/StringUtils.java

public static boolean isBlank(String str) {

int strLen;

if (str == null || (strLen = str.length()) == 0) {

return true;

}

for (int i = 0; i < strLen; i++) {

if ((Character.isWhitespace(str.charAt(i)) == false)) {

return false;

}

}

return true;

}

This code manages to expose lots of built-in deficiencies in the Java lan-

guage. First, it’s in a class called StringUtils, because the Java language

won’t allow you to make changes to or extend String. This is an example

of a poorly hung method, meaning that it isn’t part of the class it should

be. Next, you must verify that the object sent to you isn’t null. null is

special in Java (it isn’t a primitive or an object). Lots of Java code is

required to check for nulls. Last, you must iterate over the string, mak-

ing sure that all the remaining characters are whitespace. Of course,

you can’t call a method on each character to determine this (because

characters are primitives); you must use the Character wrapper class.

http://media.pragprog.com/titles/twa/code/./code/ford/StringUtils.java
http://books.pragprog.com/titles/twa/errata/add?pdf_page=63

JASKELL AND FUNCTIONAL PROGRAMMING 64

Here is code that does the same thing in JRuby:

Download ./code/ford/blankness.rb

class String

def blank?

empty? || strip.empty?

end

end

And here are tests to prove it:

Download ./code/ford/test_blankness.rb

require "test/unit"

require "blankness"

class BlankTest < Test::Unit::TestCase

def test_blank

assert "".blank?

assert " ".blank?

assert nil.to_s.blank?

assert ! "x".blank?

end

end

Notice several things about this solution. First, Ruby allows you to add

methods directly to String, resulting in a property hung method. Second,

the code is very simple because you don’t have to worry about primitives

vs. objects. Third, notice in the test that I don’t have to worry about the

nil case: nil in Ruby is an object (like everything else in the language), so

if I try to pass a nil as a string, the to_s() method (Ruby’s version of the

toString() method) returns an empty string, which is blank.

You can’t retrofit this code back into Java because the Java String class

is final in the Java world. But, if you are using Ruby on Rails atop

JRuby, you can do this with Java strings.

5.4 Jaskell and Functional Programming

Most of the examples presented so far deal with language deficiencies

in Java. But polyglot programming also addresses fundamental design

decisions. For example, threading is hard in imperative languages such

as Java and C#. You must understand the nuances and side effects of

using synchronized and how things are different when multiple threads

access shared data.

http://media.pragprog.com/titles/twa/code/./code/ford/blankness.rb
http://media.pragprog.com/titles/twa/code/./code/ford/test_blankness.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=64

JASKELL AND FUNCTIONAL PROGRAMMING 65

With polyglot programming, you can avoid this issue entirely by using

a functional language such as Jaskell (the Java version of Haskell) or

Scala (a modern functional language written for the JVM).

Functional languages don’t suffer many of the shortcomings of imper-

ative languages. Functional languages adhere to mathematical princi-

ples more rigorously. For example, a function in a functional language

works just like a function in mathematics: the output is entirely depen-

dent on the input. In other words, functions can’t modify external state

as they do their work. When you call a mathematical function such as

sin(), you don’t worry that the next call to sin() might accidentally return

the cosine because some internal state has been modified. Mathemat-

ical functions don’t have internal state that can be modified between

calls. Functions (and methods) in functional languages work the same

way. Examples of functional languages include Haskell, O’Caml, SML,

Scala, F#, and others.

In particular, functional languages handle multithreaded support much

better than imperative languages because they discourage statefulness.

The upshot of this is that it is easier to write robust thread-safe code in

a functional language than in an imperative one.

Enter Jaskell. Jaskell is a version of the Haskell language that runs on

the Java platform. In other words, it is a way to write Haskell code that

produces Java bytecode.

Here is an example. Let’s say you wanted to implement a class in Java

that allowed safely accessing an element of an array. You could write a

class that resembles the following:

Download ./code/ford/SafeArray.java

class SafeArray{

private final Object[] _arr;

private final int _begin;

private final int _len;

public SafeArray(Object[] arr, int len){

_arr = arr;

_begin = begin;

_len = len;

}

public Object at(int i){

if(i < 0 || i >= _len){

throw new ArrayIndexOutOfBoundsException(i);

}

return _arr[_begin + i];

}

http://media.pragprog.com/titles/twa/code/./code/ford/SafeArray.java
http://books.pragprog.com/titles/twa/errata/add?pdf_page=65

JASKELL AND FUNCTIONAL PROGRAMMING 66

public int getLength(){

return _len;

}

}

You can write the same functionality in Jaskell as a tuple, which is

essentially an associative array:

Download ./code/ford/safearray.jaskell

newSafeArray arr begin len = {

length = len;

at i = if i < begin || i >= len then

throw $ ArrayIndexOutOfBoundsException.new[i]

else

arr[begin + i];

}

Because tuples work as associative arrays, calling newSafeArray.at(3)

calls the at portion of the tuple, which evaluates the code defined by

that part of the tuple. Even though Jaskell isn’t object-oriented, both

inheritance and polymorphism can be simulated using tuples. And,

some desirable behavior, such as mixins, is possible with tuples in

Jaskell but not with the core Java language. Mixins offer an alterna-

tive to the combination of interfaces and inheritance, where you can

inject code into a class, not just a signature, without using inheritance.

Essentially, mixins give you polymorphism without inheritance.

Haskell (and therefore Jaskell) features lazy evaluation of functions,

meaning that eventualities are never executed until needed. For exam-

ple, this code is perfectly legal in Haskell but would never work in Java:

makeList = 1 : makeList

The code reads as “Make a list with a single element. If more elements

are needed, evaluate them as needed.” This function essentially creates

a never-ending list of 1s.

Perhaps you have a complex scheduling algorithm that would be 1,000

lines of Java code but only 50 of Haskell. Why not take advantage of

the Java platform and write it in a language more suitable to the task?

Increasingly, just as we have database administrators on projects, we

will have other specialists to write some code that exhibits special

characteristics.

It’s unlikely that you’ll write an entire application using solely Jaskell.

But why not take advantage of what it does really well in your larger

application? Let’s say you have a web application that requires a highly

http://media.pragprog.com/titles/twa/code/./code/ford/safearray.jaskell
http://books.pragprog.com/titles/twa/errata/add?pdf_page=66

TESTING JAVA 67

concurrent scheduling piece. Write just the scheduling part in Jaskell,

write the web pieces in Rails using JRuby (or Groovy on Grails), and

leverage the existing code you’ve already written to communicate with

your old mainframe. Because of the Java platform, you can glue them

all together at the bytecode level, increasing your productivity because

you are using tools better suited to the problems you need to solve.

5.5 Testing Java

Using multiple languages doesn’t mean you have to throw out what

you are already doing. Even in your existing infrastructure, you can

leverage better-suited languages. One of the common tasks you need to

perform is testing complex code. But creating mock object expectations

can take a lot of time because Java isn’t well suited to the flexibility

required to allow objects to mimic others. Why not write the tests (and

only the tests) in a more suitable language?

Here’s an example of testing the interaction between an Order class

(actually, class + interface) and a Warehouse class, using JMock (a pop-

ular mock object library for Java):

Download ./code/ford/OrderInteractionTester.java

package com.nealford.conf.jmock.warehouse;

import org.jmock.Mock;

import org.jmock.MockObjectTestCase;

public class OrderInteractionTester extends MockObjectTestCase {

private static String TALISKER = "Talisker";

public void testFillingRemovesInventoryIfInStock() {

//setup - data

Order order = new OrderImpl(TALISKER, 50);

Mock warehouseMock = new Mock(Warehouse.class);

//setup - expectations

warehouseMock.expects(once()).method("hasInventory")

.with(eq(TALISKER),eq(50))

.will(returnValue(true));

warehouseMock.expects(once()).method("remove")

.with(eq(TALISKER), eq(50))

.after("hasInventory");

//exercise

order.fill((Warehouse) warehouseMock.proxy());

http://media.pragprog.com/titles/twa/code/./code/ford/OrderInteractionTester.java
http://books.pragprog.com/titles/twa/errata/add?pdf_page=67

TESTING JAVA 68

//verify

warehouseMock.verify();

assertTrue(order.isFilled());

}

}

This code tests that the Order class correctly interacts with the Ware-

house class (through its interface), verifying that the proper methods

are called and that the result is correct.

Here is the same test utilizing JRuby (and the powerful Mocha mock

object library from the Ruby world) to perform the same test:

Download ./code/ford/order_interaction_test.rb

require 'test/unit'

require 'rubygems'

require 'mocha'

require "java"

require "Warehouse.jar"

%w(OrderImpl Order Warehouse WarehouseImpl).each { |f|

include_class "com.nealford.conf.jmock.warehouse.#{f}"

}

class OrderInteractionTest < Test::Unit::TestCase

TALISKER = "Talisker"

def test_filling_removes_inventory_if_in_stock

order = OrderImpl.new(TALISKER, 50)

warehouse = Warehouse.new

warehouse.stubs(:hasInventory).with(TALISKER, 50).returns(true)

warehouse.stubs(:remove).with(TALISKER, 50)

order.fill(warehouse)

assert order.is_filled

end

end

This code is much more concise because Ruby is a dynamic language.

You can directly instantiate an interface (in this case, Warehouse) be-

cause JRuby wraps Java objects in proxy classes. Also notice that you

can put all the pertinent Java classes on the test’s classpath with the

simple require ’warehouse.jar’ at the top. Wouldn’t you love to be able to

do that in Java?

http://media.pragprog.com/titles/twa/code/./code/ford/order_interaction_test.rb
http://books.pragprog.com/titles/twa/errata/add?pdf_page=68

POLYGLOT PROGRAMMING THE FUTURE 69

Polyglot programming doesn’t have to be a major, earth-moving switch

in the way you work. In most companies, test code isn’t considered

“official” code, so you might not even need permission to start writing

your tests in JRuby.

5.6 Polyglot Programming the Future

In early 2007, ThoughtWorks released its first-ever commercial prod-

uct, called Mingle. It is an agile project-tracking tool. It was very impor-

tant to achieve a fast time to market for Mingle, so we decided to write

it in Ruby on Rails. But, we wanted to leverage some existing libraries

that already existed, namely, Subversion support and a Java-based

charting library. Thus, we implemented it using Rails on JRuby, which

allowed us to use existing Java libraries and take advantage of the ease

of deployment of Java. Mingle is the embodiment of this idea of polyglot

programming: leveraging the best of tools for the job at hand while

taking advantage of the robustness and richness of the underlying

platform.

The days of trying to cram solutions into a single language are dis-

appearing. Because we have outstanding managed runtimes (Java and

CLR), we should leverage those platforms with better tools. Polyglot pro-

gramming allows you to mix and match solutions without discarding all

the code you already have that does important work. Language devel-

opment is exploding on these two proven platforms. As developers, you

need to learn how to take advantage of this growth so you can write

better code using tools more suited to the job.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=69

Chapter 6

Object Calisthenics
by Jeff Bay, Technology Principal

6.1 Nine Steps to Better Software Design Today

We’ve all seen poorly written code that’s hard to understand, test, and

maintain. Object-oriented programming promised to save us from our

old procedural code, allowing us to write software incrementally, re-

using as we go. But sometimes it seems like we’re just chasing down

the same old complex, coupled designs in Java that we had in C. This

essay will give new programmers an opportunity to learn best practices

while writing their own code. For sophisticated and experienced pro-

grammers, it will give you a vehicle to refocus on best practices or to

use for demonstration purposes in teaching co-workers.

Good object-oriented design can be hard to learn; however, it can also

result in immense gains in simplicity. Transitioning from procedural

development to object-oriented design requires a major shift in think-

ing that is more difficult than it seems. Many developers assume they’re

doing a good job with OO design, when in reality they’re unconsciously

stuck in procedural habits that are hard to break. It doesn’t help that

many examples and best practices (even Sun’s code in the JDK) encour-

age poor OO design in the name of performance or the simple weight of

history.

The core concepts behind good design are well understood. As an exam-

ple, here are seven code qualities that are commonly known to matter:

cohesion, loose coupling, zero duplication, encapsulation, testability,

readability, and focus. Yet it’s hard to put those concepts into practice.

It is one thing to understand that encapsulation means hiding data,

THE EXERCISE 71

implementation, type, design, or construction. It’s another thing alto-

gether to design code that implements encapsulation well. So here’s an

exercise that can help you internalize principles of good object-oriented

design and actually use them in real life.

6.2 The Exercise

Do a simple project using far stricter coding standards than you’ve ever

used in your life. In this essay, you’ll find nine “rules of thumb” that

will help push you into writing code that is almost required to be object-

oriented. This will allow you to make better decisions and give you more

and better options when confronted with the problems of your day job.

By suspending disbelief and rigidly applying these rules on a small,

1,000-line project, you’ll start to see a significantly different approach

to designing software. Once you’ve written 1,000 lines of code, the exer-

cise is done, and you can relax and go back to using these rules as

guidelines.

This is a hard exercise, especially because many of these rules are not

universally applicable. The fact is that sometimes classes are

little more than fifty lines. But there’s great value in thinking about

what would have to happen to move those responsibilities into real,

first-class objects of their own. It’s developing this type of thinking

that’s the real value of the exercise. So, stretch the limits of what you

imagine is possible, and see whether you start thinking about your code

in a new way.

The Rules

Here are the rules for the exercise:

1. Use only one level of indentation per method.

2. Don’t use the else keyword.

3. Wrap all primitives and strings.

4. Use only one dot per line.

5. Don’t abbreviate.

6. Keep all entities small.

7. Don’t use any classes with more than two instance variables.

8. Use first-class collections.

9. Don’t use any getters/setters/properties.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=71

THE EXERCISE 72

Rule 1: Use One Level of Indentation per Method

Ever stare at a big old method wondering where to start? A giant method

lacks cohesiveness. One guideline is to limit method length to five lines,

but that kind of transition can be daunting if your code is littered

with 500-line monsters. Instead, try to ensure that each method does

exactly one thing—one control structure or one block of statements per

method. If you have nested control structures in a method, you’re work-

ing at multiple levels of abstraction, and that means you’re doing more

than one thing.

As you work with methods that do exactly one thing, expressed within

classes doing exactly one thing, your code begins to change. As each

unit in your application becomes smaller, your level of reuse will start

to rise exponentially. It can be difficult to spot opportunities for reuse

within a method that has five responsibilities and is implemented in

100 lines. A three-line method that manages the state of a single object

in a given context is usable in many different contexts.

Use the Extract Method feature of your IDE to pull out behaviors until

your methods have only one level of indentation, like this, for example:

class Board {

...

String board() {

StringBuffer buf = new StringBuffer();

for(int i = 0; i < 10; i++) {

for(int j = 0; j < 10; j++)

buf.append(data[i][j]);

buf.append("\n");

}

return buf.toString();

}

}

Class Board {

...

String board() {

StringBuffer buf = new StringBuffer();

collectRows(buf);

Return buf.toString();

}

Void collectRows(StringBuffer buf) {

For(int I = 0; I < 10; i++)

collectRow(buf, i);

}

http://books.pragprog.com/titles/twa/errata/add?pdf_page=72

THE EXERCISE 73

Void collectRow(StringBuffer buf, int row) {

For(int I = 0; I < 10; i++)

Buf.append(data[row][i]);

buf.append("\n");

}

}

Notice that another effect has occurred with this refactoring. Each indi-

vidual method has become virtually trivial to match its implementation

to its name. Determining the existence of bugs in these much smaller

snippets is frequently much easier.

Here at the end of the first rule, I should also point out that the more

you practice applying the rules, the more the advantages come to fru-

ition. Your first attempts to decompose problems in the style presented

here will feel awkward and likely lead to little gain that you can perceive.

There is a skill to applying the rules, however; this is the art of the

programmer raised to another level.

Rule 2: Don’t Use the else Keyword

Every programmer understands the if/else construct. It is built into

nearly every programming language, and simple conditional logic is

easy for anyone to understand. Nearly every programmer has seen a

nasty nested conditional that’s impossible to follow or a case statement

that goes on for pages. Even worse, it is all too easy to simply add

another branch to an existing conditional rather than factoring to a

better solution. Conditionals are also a frequent source of duplication.

Status flags, for example, frequently lead to this kind of trouble:

public static void endMe() {

if (status == DONE) {

doSomething();

} else {

<other code>

}

}

You have several options for rewriting this without the else. For simple

cases, use this:

public static void endMe() {

if (status == DONE) {

doSomething();

return;

}

<other code>

}

http://books.pragprog.com/titles/twa/errata/add?pdf_page=73

THE EXERCISE 74

public static Node head() {

if (isAdvancing()) { return first; }

else { return last; }

}

public static Node head() {

return isAdvancing() ? first : last;

}

Here, four lines have been collapsed down to one line with one extra

word on it. Note that early returns can easily reduce clarity if overused.

See the Design Patterns book [GHJV95] for the Strategy pattern to find

an example of using polymorphism to avoid branching on the status

inline. The Strategy pattern is particularly useful here if the branch on

the status is duplicated in multiple places.

Object-oriented languages give you a powerful tool—polymorphism—

for handling complex conditional cases. Simple cases can be replaced

with guard clauses and early returns. Designs that use polymorphism

can be easier to read and maintain and can express their intent more

clearly. But it’s not always easy to make the transition, especially when

you have else in your back pocket. So as part of this exercise, you’re

not allowed to use else. Try the Null Object pattern; it may help in some

situations. Other tools can help you rid yourself of the else as well. See

how many alternatives you can come up with.

Rule 3: Wrap All Primitives and Strings

An int on its own is just a scalar with no meaning. When a method takes

an int as a parameter, the method name needs to do all the work of

expressing the intent. If the same method takes an hour as a parameter,

it’s much easier to see what’s happening. Small objects like this can

make programs more maintainable, since it isn’t possible to pass a year

to a method that takes an hour parameter. With a primitive variable,

the compiler can’t help you write semantically correct programs. With

an object, even a small one, you are giving both the compiler and the

programmer additional information about what the value is and why it

is being used.

Small objects such as hour or money also give you an obvious place

to put behavior that otherwise would have been littered around other

classes. This becomes especially true when you apply the rule relating

to getters and setters and only the small object can access the value.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=74

THE EXERCISE 75

Rule 4: Use Only One Dot per Line

Sometimes it’s hard to know which object should take responsibility

for an activity. If you start looking for lines of code with multiple dots,

you’ll start to find many misplaced responsibilities. If you have more

than one dot on any given line of code, the activity is happening in

the wrong place. Maybe your object is dealing with two other objects

at once. If this is the case, your object is a middleman; it knows too

much about too many people. Consider moving the activity into one of

the other objects.

If all those dots are connected, your object is digging deeply into another

object. These multiple dots indicate that you’re violating encapsulation.

Try asking that object to do something for you, rather than poking

around its insides. A major part of encapsulation is not reaching across

class boundaries into types that you shouldn’t know about.

The Law of Demeter (“talk only to your friends”) is a good place to start,

but think about it this way: you can play with your toys, with toys that

you make, and with toys that someone gives you. You don’t ever, ever

play with your toy’s toys.

class Board {

...

class Piece {

...

String representation;

}

class Location {

...

Piece current;

}

String boardRepresentation() {

StringBuffer buf = new StringBuffer();

for(Location l : squares())

buf.append(l.current.representation.substring(0, 1));

return buf.toString();

}

}

class Board {

...

class Piece {

...

private String representation;

http://books.pragprog.com/titles/twa/errata/add?pdf_page=75

THE EXERCISE 76

String character() {

return representation.substring(0, 1);

}

void addTo(StringBuffer buf) {

buf.append(character());

}

}

class Location {

...

private Piece current;

void addTo(StringBuffer buf) {

current.addTo(buf);

}

}

String boardRepresentation() {

StringBuffer buf = new StringBuffer();

for(Location l : squares())

l.addTo(buf);

return buf.toString();

}

}

Note that in this example the algorithm’s implementation details are

more diffuse, which can make it a little harder to understand at a

glance. However, you just create a named method for the piece’s trans-

formation into a character. This is a method with a strong cohesive

name and job and is quite likely to be reused—the odds of representa-

tion.substring(0, 1)" being repeated in other parts of the program has now

been reduced dramatically. The method names take the place of com-

ments in this brave new world—spend time on those names. It really

isn’t more difficult to understand a program with this type of structure;

it simply requires a slightly different approach.

Rule 5: Don’t Abbreviate

It’s often tempting to abbreviate in the names of classes, methods, or

variables. Resist the temptation. Abbreviations can be confusing, and

they tend to hide larger problems.

Think about why you want to abbreviate. Is it because you’re typing the

same word over and over again? If that’s the case, perhaps your method

is used too heavily, and you are missing opportunities to remove dupli-

cation. Is it because your method names are getting long? This might

be a sign of a misplaced responsibility or a missing class.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=76

THE EXERCISE 77

Try to keep class and method names to one to two words, and avoid

names that duplicate the context. If the class is an Order, the method

doesn’t need to be called shipOrder(). Simply name the method ship() so

that clients call order.ship()—a simple and clear representation of what’s

happening.

For this exercise, all entities should have a name that is one or two

words, with no abbreviations.

Rule 6: Keep All Entities Small

This means no class that’s more than fifty lines and no package that’s

more than ten files.

Classes of more than fifty lines usually do more than one thing, which

makes them harder to understand and harder to reuse. Fifty-line

classes have the added benefit of being visible on one screen without

scrolling, which makes them easier to grasp quickly.

What’s challenging about creating such small classes is that there are

often groups of behaviors that make logical sense together. This is

where you need to leverage packages. As your classes become smaller

and have fewer responsibilities and as you limit package size, you’ll

start to see that packages represent clusters of related classes that

work together to achieve a goal. Packages, like classes, should be cohe-

sive and have a purpose. Keeping those packages small forces them to

have a real identity.

Rule 7: Don’t Use Any Classes with More Than Two Instance

Variables

Most classes should simply be responsible for handling a single state

variable, but a few will require two. Adding a new instance variable to a

class immediately decreases the cohesion of that class. In general, while

programming under these rules, you’ll find that there are two kinds of

classes, those that maintain the state of a single instance variable and

those that coordinate two separate variables. In general, don’t mix the

two kinds of responsibilities.

The discerning reader might have noticed that rules 3 and 7 can be

considered to be isomorphic. In a more general sense, there are few

cases where a cohesive single job description can be created for a class

with many instance variables.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=77

THE EXERCISE 78

Here’s an example of the kind of dissection I’m asking you to engage in:

String first;

String middle;

String last;

}

The previous code could be decomposed into two classes like this:

class Name {

Surname family;

GivenNames given;

}

class Surname {

String family;

}

class GivenNames {

List<String> names;

}

Note that in thinking about how to do the decomposition, the oppor-

tunity to separate the concerns of a family name (used for many legal

entity restrictions) could be separated from an essentially different kind

of name. The GivenName object here contains a list of names, allow-

ing the new model to absorb people with first, middle, and other given

names. Frequently, the decomposition of instance variables leads to

an understanding of commonality of several related instance variables.

Sometimes several related instance variables actually have a related life

in a first-class collection.

Decomposing objects from a set of attributes into a hierarchy of collab-

orating objects leads much more directly to an effective object model.

Prior to understanding this rule, I spent many hours trying to fol-

low data flows through large objects. It was possible to tweeze out

an object model, but it was a painstaking process to understand the

related groups of behavior and see the result. In contrast, the recursive

application of this rule has led to a very quick decomposition of com-

plex large objects into much simpler models. Behavior naturally follows

the instance variables into the appropriate place—the compiler and the

rules on encapsulation won’t allow otherwise. If you get stuck, work

downward by splitting objects into related halves or upward by picking

any two instance variables and making an object out of them.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=78

CONCLUSION 79

Rule 8: Use First-Class Collections

The application of this rule is simple: any class that contains a collec-

tion should contain no other member variables. Each collection gets

wrapped in its own class, so now behaviors related to the collection

have a home. You may find that filters become part of this new class.

Filters may also become function objects in their own right. Also, your

new class can handle activities such as joining two groups together or

applying a rule to each element of the group. This is an obvious exten-

sion of the rule about instance variables but is important for its own

sake as well. A collection is really a type of very useful primitive. It has

many behaviors but little semantic intent or clues for either the next

programmer or the maintainer.

Rule 9: Don’t Use Any Getters/Setters/Properties

The last sentence of the previous rule leads almost directly to this rule.

If your objects are now encapsulating the appropriate set of instance

variables but the design is still awkward, it is time to examine some

more direct violations of encapsulation. The behavior will not follow

the instance variable if it can simply ask for the value in its current

location. The idea behind strong encapsulation boundaries is to force

programmers working on the code after you leave it to look for and place

behavior into a single place in the object model. This has many bene-

ficial downstream effects, such as a dramatic reduction in duplication

errors and a better localization of changes to implement new features.

This rule is commonly stated as “Tell, don’t ask.”

6.3 Conclusion

Eight of these nine rules are simply ways to visualize and implement

the Holy Grail of object-oriented programming—the encapsulation of

data. In addition, another drives the appropriate use of polymorphism

(not using else and minimizing all conditional logic), and another is

a naming strategy that encourages concise and straightforward nam-

ing standards, without inconsistently applied and hard-to-pronounce

abbreviations.

The entire thrust is to craft code that has no duplication in code or idea.

The goal is code that concisely expresses simple and elegant abstrac-

tions for the incidental complexity we deal with all day long.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=79

CONCLUSION 80

In the long run, you will inevitably find that these rules contradict each

other in some situations or that applying the rules leads to degenerate

results. For the purpose of the exercise, however, spend 20 hours and

1,000 lines writing code that conforms 100% to these rules. You will

find yourself having to break old habits and change rules that you may

have lived with for your whole programming life. Each of the rules has

been chosen such that if you follow it, you will encounter situations

that would typically have an obvious (but perhaps incorrect) answer

that is not available to you.

Following these rules with discipline will force you to come up with the

harder answers that lead to a much richer understanding of object-

oriented programming. If you write 1,000 lines that follow all these

rules, you will find that you have created something completely differ-

ent from what you expected. Follow the rules, and see where you end

up. If you keep working at it, the code you are writing might conform to

these rules without any conscious effort on your part.

On a final note, some might see these rules as overkill or impossible to

apply in a real working system. They would be incorrect—I’m finalizing

a system as this book goes to press that has more than 100,000 lines

written in this style. The programmers working on this system routinely

follow these rules and are each overjoyed to see how much less tiresome

development can be when embracing deep simplicity.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=80

Chapter 7

What Is an
Iteration Manager Anyway?

by Tiffany Lentz, Project Manager

As the industry changes and buzzwords such as agile, iterative, and

iteration become more commonplace, a new and ambiguously defined

role has emerged: iteration manager. Is this the project manager for

the new generation? Is this a glorified team lead? Is this a new layer of

management? Who is this masked manager?

This essay highlights the function and value of having an iteration

manager as a member of a software team. We’ll look at the limits of

an iteration manager’s responsibilities and discuss how iteration man-

agers play an integral role in maintaining a healthy environment amidst

organizational and cultural challenges.

7.1 What Is an Iteration Manager?

In general, on a large agile project, the project manager cannot focus

on the success of each iteration for any specific project team and the

entire program at the same time. When teams were struggling to find

high-priority work to do on one particular project in 2000, the solution

was to identify someone who could provide a continual stream of high-

priority functionality at a sustainable pace to the delivery teams. This

is the role that has grown into the iteration manager (IM).

In an iterative development world, someone needs to support the team,

facilitate daily conversations with the business customer, and keep the

team focused on the top-priority efforts. Fred George, senior architect at

WHAT MAKES A GOOD ITERATION MANAGER? 82

ThoughtWorks, describes the iteration manager as “the inward-facing

role for the management team. The iteration manager is responsible

for the smooth flow of stories through the team. This includes creat-

ing sound team assignments and recommending staff changes as skill

needs shift.”

7.2 What Makes a Good Iteration Manager?

IMs can come from many different skill backgrounds—they can be tech-

nical (with strong people skills!), they can be analytical (with strong

people skills!), or they can come from any number of other business or

administrative specialties (with strong people skills!). They must have

a forward-thinking, can-do attitude and an aptitude that embraces

change. These inward-facing facilitators use their aptitude to perfect

the processes of their delivery team on a daily basis.

For instance, once an iteration’s workload is agreed upon, the IM tracks

the team’s progress throughout the course of the iteration and pragmat-

ically and proactively implements process improvement changes within

the team. Imagine that in a daily stand-up meeting, the IM hears a

developer mention that he has been working for three days on a story

that was estimated to be completed in one day. Since the IM is respon-

sible for each team member’s daily activities and for the iteration’s

progress, the IM should begin digging further into the details of this

underestimated story. If the IM does not quickly determine the actual

status of the story and communicate any implications of change in the

iteration schedule to the customer immediately, the team will be at risk

of missing its commitment. The IM could begin by asking the following

questions:

• Does the developer understand the scope of the story?

• Have the story’s tasks changed since the original estimate, and if

so, how?

• Does the developer need help from the business analyst or cus-

tomer to better understand the desired end state of the story?

• Does the developer need help from the technical lead?

• Is something standing in the developer’s way of getting the story

done (in other words, is it a hardware, software, or infrastructure

problem)?

• Is the developer allocated to another project or attending too many

miscellaneous meetings to get the story done?

http://books.pragprog.com/titles/twa/errata/add?pdf_page=82

WHAT AN ITERATION MANAGER IS NOT 83

These questions are just an example of how an IM might work to keep

the team on schedule and communicate the daily status to the cus-

tomer. The IM must be listening and responding to the team’s needs

every day. The primary responsibility of an IM is to develop a well-

oiled machine that can deliver functionality, at a desired quality, within

project boundaries.

IMs should have technical familiarity balanced with business knowl-

edge. Mary and Tom Poppendieck write that agile leaders have “a deep

understanding of both the customers and the technical issues that

gains them the respect of the development team.” Good communica-

tion skills are a necessity. IMs function as the team’s advocate in the

relationship with the customers and the relationship with management.

Also, the IM must facilitate, enforce, and defend the team member’s

rights. For many agile teams, these rights come from the developers’

Bill of Rights. These rights are agreed upon by the entire team, and

often the team needs the assistance of the IM to ensure that they are

enforced.

Often this takes the shape of facilitating intrateam and interteam com-

munication. Most developers are not accustomed to talking directly to

the customer and getting their direct input on story completion. The IM

often needs to facilitate open communication by providing examples of

metrics, charts, and graphs.

The IM must uphold the customer’s rights, too. Every time the tempta-

tion of team members to work out of priority order rears its ugly head,

the IM steps in as the customer advocate. The customer has the right

to pay for work in their desired priority order, remember? Throughout

all this, the IM must remain a neutral party.

7.3 What an Iteration Manager Is Not

An IM is not a project manager (PM). Unlike a PM, the IM is engaged on

the ground with the team members during their day-to-day activities. If

you’re an IM, leave the budgeting, resource managing, compliance, and

general mayhem to the PM. Just focus on the team!

Further, an IM is a team member and not a people or resource manager.

The IM cannot be responsible for writing a yearly review of team mem-

bers. This would undermine their central task of remaining a neutral

party who can defend the team while keeping the team focused on the

http://books.pragprog.com/titles/twa/errata/add?pdf_page=83

THE ITERATION MANAGER AND THE TEAM 84

customers’ highest-priority functionality. Team members should not be

more concerned with giving the IM a good impression than with asking

for help when they need it.

The IM is also not the customer. Often the team’s business analysts or

the architect may function as the customer, depending on the nature

of the stories or the availability of the actual customer. However, the

IM should never function as the customer. The IM cannot facilitate

proper problem solving with the team if they are making decisions as a

customer.

Finally, an IM typically does not ensure technical integrity, ensure

adherence to standards, or provide technical infrastructure support

(for the build, deployment, or databases, for example). Project fulfill-

ment activities such as coordinating across projects and coordinating

deployment or rollout usually fall to the technical lead or lead business

analyst.

7.4 The Iteration Manager and the Team

The iteration manager role, while not prescriptive, entails several daily

responsibilities. Some of these are as follows:

• Collects time spent on stories

• Makes bottlenecks in the delivery process visible

• Reports team status to the customer

• Addresses issues, impediments, and obstacles raised at the daily

stand-up meeting

• Controls all work flowing into the team and manages the distribu-

tion of that work to maintain a sustainable pace

Many metrics can be generated from collecting actual hours spent on

individual stories. Gathering these hours to compare them to various

other data points helps the IM sharpen the team’s output. First, com-

paring the actual hours spent on completed stories to the number of

story points completed within an iteration allows the IM to know what

percentage of the team’s time is being spent on actual story delivery,

as opposed to team meetings, and so on. Second, comparing the actual

hours spent on completed stories to the team’s planned time for the

project gives the IM an idea of team capacity and how available the

team is to the project. Finally, comparing the actual hours spent on

completed stories to story estimates produces estimation accuracy. All

http://books.pragprog.com/titles/twa/errata/add?pdf_page=84

THE ITERATION MANAGER AND THE CUSTOMER 85

of these metrics are useful in different environments and should be

used to help the team find a consistent delivery pace.

This consistent delivery pace is the basis for calculating team capacity

for future iterations. By capturing the team’s completely tested output

of each iteration and capturing the planned availability of each team

member, the IM can plan capacity for delivery based on actual, proven

data. Capacity is not dictated for the team or picked based on a need to

deliver at a specific time. Capacity is calculated so the team members

govern themselves. If the pace is not in line with the business need,

other project levers can be adjusted, but the actual output continues

to predict the future capacity.

Bottlenecks can be identified by several metrics or careful layout of a

story card wall. Noting that a story estimated at one day is still sitting in

the development category on the story card wall after three days effec-

tively highlights a bottleneck that opens team discussion. One success-

ful metric created by Fred George is the finger chart. This chart uses a

stacked area graph, with each area representing each of the phases in

the delivery life cycle. Updating the story status daily allows the team to

watch each area on the graph grow and watch the stories flow through

the delivery life cycles. When all the areas on the graph are growing pro-

portionately, the areas resemble fingers. When one area on the graph is

out of proportion compared to the others (that is, the Awaiting Develop-

ment area is wider than the Development area), a bottleneck appears.

At this point, the team can discuss how to reduce the bottleneck to

restabilize the team’s delivery pace.

During the daily stand-up meeting, the IM removes noise and keeps the

team members on track as they give their update of what they did the

past twenty-four hours, what they will do the next twenty-four hours,

and what their impediments are. The IM listens for action items and

obstacles to remove that day so the team members can complete their

story cards. If the IM hears someone monopolizing time in the daily

stand-up meeting for more than the standard update, the IM can bring

the team back to focus. This usually means suggesting that the person

with a larger issue address it following the meeting.

7.5 The Iteration Manager and the Customer

As already discussed, metrics help the IM determine the team’s sus-

tainable pace. This allows the team to regularly make commitments

http://books.pragprog.com/titles/twa/errata/add?pdf_page=85

THE ITERATION MANAGER AND THE ITERATION 86

and keep them. However, in order for the team members to uphold

their commitments, the IM must keep the customer from changing

the stories during the iteration. The IM acts as a gatekeeper, helping

the customer prioritize upcoming work without distracting the team by

constantly changing priorities.

As the gatekeeper, the IM protects the team from distraction and pro-

tects the customer from inadvertently hurting the team’s productivity.

Outside the iteration, customers can and should change priorities con-

stantly. Until an iteration starts, all decision-making factors are subject

to change, and new information is regularly introduced.

The concept of just-in-time decision making within a project is not a

new one. The Lean Development System as implemented by Toyota’s

Knowledge-Based Engineering has been successfully employing a tech-

nique called Set-Based Concurrent Engineering for years. Set-Based

Concurrent Engineering is described as “being very careful not to make

decisions until they absolutely must be made and working hard to

maintain options so that decisions can be made as late as possible

with the most amount of information possible to allow the development

team to arrive at a more optimal solution much faster than an approach

that closes off options quickly for the sake of being decisive.”

7.6 The Iteration Manager and the Iteration

There are also iteration-specific responsibilities. The IM works with the

customer and team to plan each iteration by:

• Helping the customer prioritize

• Facilitating the team’s recommendations

• Planning the team’s capacity for delivery

The IM coaches, encourages, and motivates the team. The IM keeps

the team honest by performing health checks. These checks are not to

assure that the team is true to all components of agile but to see which

techniques agile offers from which the team might benefit.

One final iteration-specific responsibility resting on the IM’s shoul-

ders is meeting facilitation. The IM owns and conducts planning meet-

ings, including the iteration planning meetings and the release plan-

ning meetings. Proper facilitation of the iteration planning meetings

and release planning meetings sets the team up for success. Metrics,

http://books.pragprog.com/titles/twa/errata/add?pdf_page=86

THE ITERATION MANAGER AND THE PROJECT 87

what’s working, and what’s not as well as capacity planning all must

be discussed openly and honestly.

During the release planning meetings, the IM shows their strength as

a visionary by working with the customer to plan high-level pieces of

functionality to be delivered for the next release. Once this has been

agreed upon and the expectation set that it will change, the IM helps

the team add high-level estimates (for example, story points) to give the

customer an idea of what can be delivered in the next release.

Within the iteration planning meeting, the iteration manager often pro-

tects the team members from themselves as they sign up for more work

than they can deliver. Also, by reviewing the metrics, the IM helps the

team members “own” their tools and improve their output.

Finally, the IM facilitates the retrospective, so the team can “fail fast”

and make visible the improvements needed during the next iteration.

The IM leads the team’s discussion concerning what is working and not

working during the iteration. Through this discussion, opportunities

arise to assign team members to focus on improving the things that are

not working. This creates a circle of accountability that empowers the

team members to better themselves.

7.7 The Iteration Manager and the Project

As discussed in this essay, an IM has a typical set of project-related

responsibilities, but occasionally they are called on to meddle in cul-

tural objectives within their teams. IMs facilitate an environment that

creates fulfilled, happy, productive, and respected team members while

satisfying business customers. Fred George said, “As a secondary objec-

tive, I look for the iteration manager to give back better people at the

end of the project. The team is a sacred trust, and broadening their

skills is the job of the iteration manager.”

IMs should work toward a professional and accountable environment.

Such environments exhibit proper behaviors and mannerisms, such as

the following:

• Mutual respect is displayed for self, others, and customers.

• Successes are celebrated.

• Mistakes are treated as learning experiences.

The iteration manager strives to form the team into one cohesive group,

where members succeed and fail together.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=87

CONCLUSION 88

7.8 Conclusion

Building a well-oiled delivery machine, continually feeding it story

cards, and tuning the machine all constitute a full-time job. Articulate

communication, pragmatism, and an aptitude for change are difficult

skills to find and develop. Since 2000, ThoughtWorks has trained IMs

and sent them to clients, increasing and stabilizing the success of agile

projects. IMs leave behind a repeatable process to enhance agile teams,

complete projects within set boundaries, and improve team cultures.

This results in happy, productive team members.

Having daily communication, removing noise, and keeping the cus-

tomer up-to-date can fill up a developer’s day with little time left to

write code. Without an iteration manager on an agile team, the team is

likely to fail. The team needs to remain focused on the task (or story) at

hand and leave the noise to the iteration manager.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=88

Chapter 8

Project Vital Signs
by Stelios Pantazopoulos, Iteration Manager

In the field of medicine, a doctor or nurse can walk into a patient’s

room, look at the patient’s chart, and get a near real-time summary of

the patient’s vital signs. With that information in hand, the practitioner

can quickly form an opinion of the patient’s health and decide whether

corrective action is necessary.

Wouldn’t it be great for a custom software development project to have

a chart, like the one a medical practitioner has, that would give a near

real-time summary of the project’s vital signs?

This essay proposes simple, pragmatic, low-overhead approaches for

capturing a near real-time summary of a project’s vital signs and to

effectively communicate those vital signs to the project team members

and stakeholders. In this way, the team has information to make an

informed opinion about the health of the project and to propose correc-

tive action to address the root cause of the project’s health problems.

8.1 Project Vital Signs

Project vital signs are quantitative metrics that, taken collectively, give

timely insights into overall project health.

Project vital signs include the following:

• Scope burn-up: The state of scope delivery for a deadline

• Delivery quality: The state of the end product being delivered

• Budget burn-down: The state of the budget in terms of scope

delivery

PROJECT VITAL SIGNS VS. PROJECT HEALTH 90

• Current state of implementation: The real-time state of the system

delivery

• Team perceptions: The team perspective on the state of the project

8.2 Project Vital Signs vs. Project Health

Project vital signs are independent metrics that should not be con-

fused with project health. Project health is an opinion of the overall

state of the project that is formed from an analysis of the project vital

signs. By its very nature, project health is subjective and not measur-

able. When looking at the same project vital signs, two project team

members could arrive at different conclusions regarding project health.

A manager might place more weight on budget burn-down, while QA

might put more emphasis on delivery quality. Developers might con-

sider scope burn-up more significant. An opinion on project health has

much to do with each team member’s perspective. Regardless, each

opinion is relevant, important, and unique.

The best way for team members to arrive at an informed opinion of over-

all project health is to collect and publish project vital signs. Without

project vital signs as a frame of reference, an opinion of project health

is little more than a guess.

Each team needs to create its own definition of project health. To form

a consensus on project health, the team members must produce a list

of project vital signs about which they will want information. Once they

have identified project vital signs, then they need to develop information

radiators for those project vital signs.

8.3 Project Vital Signs vs. Information Radiator

An information radiator, a term coined by Alistair Cockburn, is a

“publicly posted display that shows people walking by what is going

on.” Information radiators are an effective approach to communicating

project vital signs.

There is no single “must-have” information radiator for a project vital

sign. This essay suggests one for each project vital sign that has proven

effective for practitioners. The information radiators that follow are not

the only way to communicate the project vital signs, however.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=90

PROJECT VITAL SIGN: SCOPE BURN-UP 91

Figure 8.1: Scope burn-up chart

8.4 Project Vital Sign: Scope Burn-Up

Scope burn-up represents the state of scope delivery for a deadline.

Metrics should illustrate the amount of scope, the rate at which scope

is delivered, and the deadline for scope delivery.

Example Information Radiator for Scope Burn-Up

The scope burn-up chart shown in Figure 8.1 is an approach for mea-

suring and communicating how much of the system has been built and

how much remains to be built.

Information conveyed by the chart includes the following:

• The unit of measure for scope (the number of stories)

• The total scope as measured at the end of each week (fifty-five

stories as of March 22)

• The interim milestones important to the successful delivery of the

scope (milestones 1 and 2)

• The week-by-week progress toward the interim milestones (fifteen

of the fifty-five stories in scope are production-ready as of March

22)

• The deadline for the delivery of the scope (April 26, the end of

iteration 12)

http://books.pragprog.com/titles/twa/errata/add?pdf_page=91

PROJECT VITAL SIGN: SCOPE BURN-UP 92

To facilitate communication, visibility, and ease of maintenance, the

chart should be managed by a development lead or iteration manager

and exist on a white board located in proximity to the entire project

team.

Defining a Unit of Measure for Scope

To effectively capture scope burn-up, all project team members must

agree to a unit of measure for defining the scope. Invariably, the defi-

nition of the unit of measure for the scope will vary depending on the

project. Ideally, the definition of the unit of measure does not change

during the course of the project. If the definition changes midstream,

historical scope burn-up data in most cases becomes unusable.

Avoid using hours (or days) as a unit of measure for the scope. The

scope is meant to be a measurement of how much there is to do, not a

length of time (that is, it should be how much, not how long). With time

comes the associated baggage of estimated time vs. actual time, thus

making it more difficult to effectively measure and communicate scope.

Using Interim Milestones to Uncover Bottlenecks

The rate of progress toward interim milestones indicates how well the

delivery process works. Delivery bottlenecks can be uncovered by com-

paring rates of progress toward interim milestones. A difference be-

tween rates indicates a delivery bottleneck. For example, a bottleneck

in the QA feedback loop is apparent when the rate of progress to the

Feature Complete milestone is greater than for the Ready for Production

milestone.

Scope Burn-up Chart Further Explained

For the project described in the scope burn-up chart, the unit of mea-

sure for the scope is stories.

For this example, the team arrived at a definition for the story unit of

measure prior to project inception.

The team defined a story as having the following characteristics:

• It represents all or part of the implementation of one or more use

cases.

• A developer can build and unit test its implementation in two to

five calendar days.

• Quality assurance can acceptance test its implementation to en-

sure it meets the requirements.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=92

PROJECT VITAL SIGN: SCOPE BURN-UP 93

In this example, two interim milestones for the implementation of the

scope were defined and set at the start of the project. Milestone 1 was

the expected date to have all stories built and unit tested but not yet

passed Quality Assurance. Milestone 2 was the date when all stories

are expected to be built and unit tested and to have passed Quality

Assurance. Progress toward the successful completion of the interim

milestones was tracked directly in the project burn-up chart.

This is a brief explication of how the project managed scope:

1. At the start of the project, the scope was seventy stories.

2. During iteration 2, eight stories were added to the scope, bringing

the total to seventy-eight stories.

3. During iteration 4, all project stakeholders met and came to the

consensus that, given historical trends in the project burn-up

chart, the team was unlikely to hit milestones 1 and 2 on time, on

budget, and with the desired quality. The agreed course of action

was to cut the scope. In a subsequent meeting, the stakeholders

agreed to postpone twenty-three stories to a future release, thus

bringing the scope down to fifty-five stories.

4. For iteration 5, the scope was decreased to fifty-five stories.

5. The project is currently in iteration 8. The scope is still at fifty-five

stories. The team members are unsure of whether they will meet

milestone 2, but they have decided to hold back on taking any

corrective action at this time.

These are the raw scope metrics that went into producing the scope

burn-up chart metrics:

Iteration Scope On Deck

or In

Develop-

ment

Built and

Awaiting

QA

Built But

Has Seri-

ous Bugs

Built and

Passes

QA

1 70 70 0 0 0

2 78 73 2 3 0

3 78 71 1 6 0

4 78 66 3 9 0

5 55 25 9 11 10

6 55 20 8 12 15

7 55 13 10 17 15

http://books.pragprog.com/titles/twa/errata/add?pdf_page=93

PROJECT VITAL SIGN: DELIVERY QUALITY 94

Figure 8.2: Bug count chart

8.5 Project Vital Sign: Delivery Quality

The delivery quality represents the state of the end product being deliv-

ered. Metrics should illustrate how well the team delivers on the scope.

Example Information Radiator for Quality

The bug count chart (shown in Figure 8.2) is an approach to measuring

and communicating the number of system defects grouped by severity.

The chart conveys the following information:

• The total count of bugs yet to be resolved (forty-seven bugs as of

the week of March 22, the end of iteration 7)

• The count of bugs that must be fixed before release (high-priority

bug section; thirty-three of the forty-seven bugs as of the week of

Mar 22, the end of iteration 7)

• The count of bugs whose fix could be postponed to a future release

(low-priority bug section; fourteen of the forty-seven bugs as of the

week of March 22, the end of iteration 7)

• Week-by-week historical bug counts (zero at the end of iterations

1 and 2; fourteen at the end of iteration 3; eight at end of iteration

4; nine at end of iteration 5; and twenty at end of iteration 6)

http://books.pragprog.com/titles/twa/errata/add?pdf_page=94

PROJECT VITAL SIGN: BUDGET BURN-DOWN 95

To facilitate communication, visibility, and ease of maintenance, the

chart should be managed by Quality Assurance and exist on a white

board in proximity to the entire project team.

Bug Count Chart Further Explained

When submitting a bug report, Quality Assurance assigns a severity

level to the bug of either Low, Medium, High, or Critical. Critical bugs

hold back Quality Assurance and must be fixed immediately. High bugs

must be fixed before release to production. Medium bugs should ideally

have a fix in place before release to production. Low bugs are ones that

would be nice to fix but are not essential repairs.

On Monday mornings, the Quality Assurance team updates the bug

count chart to include bug counts as they were reported as of the end of

day Friday. High-priority bugs are all outstanding bugs with a severity

rating of Critical or High. Low-priority bugs are all the outstanding bugs

with a severity level of Medium or Low.

In this project example, bug counts were zero for the first two weeks

because the Quality Assurance team was not yet assembled and no

one was acceptance testing the story implementations built to date.

The following are the raw bug count metrics that went into producing

the chart:

Last Day of

Iteration

Critical

Bug Count

High Bug

Count

Medium

Bug Count

Low Bug

Count

1 0 0 0 0

2 0 0 0 0

3 0 9 4 1

4 0 3 4 1

5 0 6 2 1

6 0 15 3 2

7 3 30 10 4

8.6 Project Vital Sign: Budget Burn-Down

Budget burn-down represents the state of the budget in terms of scope

delivery. Metrics illustrate how much budget the project has, the rate

at which the budget is spent, and how long the budget needs to last.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=95

PROJECT VITAL SIGN: BUDGET BURN-DOWN 96

Figure 8.3: Budget burn-down chart

Example Information Radiator for Budget

The budget burn-down chart is an approach for measuring and com-

municating the amount of project budget spent, the amount of budget

remaining, and the rate the budget is spent. An example is shown in

Figure 8.3.

The chart conveys the following information:

• The unit of measure for the budget (in thousands of dollars)

• The total budget (fixed at $300,000 at the start)

• The budget spent to date (budget spent section; $220,000 spent

by end of iteration 7)

• The budget remaining to date (budget remaining section; $80,000

remaining at end of iteration 7)

• Week-by-week burn-down of budget ($25,000 per week for itera-

tions 1 and 2; grows to $33,333 per week from iteration 3 forward)

• Deadline for delivery of the scope (April 26, the end of iteration 12)

To facilitate communication, visibility, and ease of maintenance, the

chart should be managed by the project manager and exist on a white

board in proximity to the entire project team.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=96

PROJECT VITAL SIGN: CURRENT STATE OF IMPLEMENTATION 97

Figure 8.4: Storyboard

Budget Burn-Down Chart Further Explained

For iterations 1 and 2 of the project, there were eight billable project

team members, each with a leased workstation and one leased devel-

opment build/source control server shared by all. The weekly budget

burn-down for the billable team members, leased workstations, and

leased server was $25,000.

In iteration 3, two billable team members, two leased workstations,

and one leased acceptance test server were added to the project. The

increase in billable team members, leased workstations, and leased

servers resulted in an increase in the weekly budget burn-down to

$33,333.

8.7 Project Vital Sign: Current State of Implementation

The current state of implementation represents the real-time state of

the system delivery. Metrics should illustrate the real-time state of

delivery of each item within the scope.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=97

PROJECT VITAL SIGN: CURRENT STATE OF IMPLEMENTATION 98

Figure 8.5: Story card

Example of an Information Radiator for Current State of

Implementation

The storyboard (shown in Figure 8.4, on the previous page) and the

story card (shown in Figure 8.5) are approaches to measuring and

communicating the state of the system’s implementation at the present

time. The chart and cards convey the following information:

• Each item that encompasses the scope (all fifty-five stories in

scope, with each represented as a gray story card)

• The states of implementation that an item can be in (On Deck,

Analysis, Dev, QA, Bugs, and Ready)

• The current state of implementation of each item in scope (each

story card is filed under a state of implementation)

• The number of items at each state of implementation (four on

Deck, five in Analysis, four in Dev, ten in QA, seventeen in Bugs,

fifteen in Ready)

• The developer currently assigned to the implementing the item

(the yellow sticky note with the developer name on the story card;

John is assigned to story 35)

To facilitate visibility, communication, and ease of maintenance, the

board should be managed by analysts, developers, and Quality Assur-

ance and exist on a white board in proximity to the entire project team.

Defining States of Implementation

The states of implementation that an item can be in are unique to

each project. The states, as put forward in Figure 8.4, on the previous

page, do not necessarily make sense for all projects. The states decided

upon should be clearly understood and agreed upon by all members of

the team.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=98

PROJECT VITAL SIGN: CURRENT STATE OF IMPLEMENTATION 99

Figure 8.6: Team mood chart

Changing the states of implementation midproject is acceptable. Often

the states of implementation have to be revisited midproject because,

in hindsight, the original ones no longer make sense.

Storyboard and Story Card Further Explained

The storyboard is as of 3:14 p.m. on the Tuesday of iteration 8. This is

a further description of each state of implementation:

State of Implementation Definition

On Deck Story analysis and implementation has

yet to begin.

Analysis Story analysis is in progress.

Dev Story construction and unit test is in

progress.

QA Story implementation is built, unit tested,

and now ready for review by Quality

Assurance.

Bugs Quality Assurance has reviewed the story

and found problems with its implementa-

tion.

Ready Quality Assurance has reviewed the story

implementation, and the problems identi-

fied with it have been fixed.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=99

PROJECT VITAL SIGN: TEAM PERCEPTIONS 100

8.8 Project Vital Sign: Team Perceptions

Team perceptions are the collective team perspective on the state of the

project. Metrics should illustrate the team’s opinion of a certain aspect

of project delivery.

Example of an Information Radiator for Team Perceptions

The team mood chart (shown in Figure 8.6, on the preceding page) is

an approach to measuring and communicating team members’ percep-

tions of how the project is progressing.

The chart conveys the following information:

• Questions asked to team members at each weekly iteration retro-

spective meeting (“Are you confident...?”)

• The possible answers to the question that team members could

give (“yes,” “unsure,” or “no”)

• The answers each team member gave to the question asked

(“When asked at the iteration 6 retrospective meeting, eight of ten

team members answered yes”)

To facilitate visibility, communication, and ease of maintenance, the

chart should be updated by all team members at a weekly retrospective

meeting and exist on a white board in proximity to the entire project

team. The answers of the team members should be submitted anony-

mously in an attempt to circumvent influence or intimidation by other

team members.

A team is not restricted to having only one question.

Team Mood Chart Further Explained

Each team member’s answer to the question is represented by a green

dot. Answers to the question are submitted anonymously at a weekly

retrospective meeting.

In this project, the number of project team members has changed since

project inception. For iterations 1 and 2, there were eight team mem-

bers. For iteration 3 and on, there were ten team members.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=100

Chapter 9

Consumer-Driven Contracts:
A Service Evolution Pattern

by Ian Robinson, Architect
1

Service-oriented architectures (SOAs) increase organizational agility

and reduce the overall cost of change. Placing high-value business

functions in discrete, reusable services makes it easier to connect and

orchestrate them to satisfy core business processes. The cost of change

is further reduced by decreasing the dependencies between services so

that they can be rapidly recomposed and tuned in response to change

or unplanned events.

A business can fully realize these benefits, however, only if its SOA

enables services to evolve independently of one another. The commonly

accepted way of enabling this independence is to build services that

share contracts, not types. Providers publish a contract that describes

the service, the messages it sends and receives, its endpoints, and the

accepted ways of communicating with it. Consumers can thereafter

implement the contract and use the service without any ties either to

the internal domain representations maintained by the service or to the

platform and technologies on which it is based.

In this essay, I’ll discuss how service contracts and the ways they are

often implemented and consumed can lead to overly coupled services.

Developing services against contracts can quite often force us to evolve

1. I would like to thank the following individuals for their help during the preparation

of this chapter: Ian Cartwright, Duncan Cragg, Martin Fowler, Robin Shorrock, and Joe

Walnes

CHAPTER 9. CONSUMER-DRIVEN CONTRACTS: A SERVICE EVOLUTION PATTERN 102

consumers at the same rate as the service provider because service

consumers often couple themselves to the provider by naively express-

ing the whole of a document schema within their internal logic. Adding

schema extension points and performing “just enough” validation of

received messages are two well-understood strategies for mitigating the

coupling issues.

Services often end up tightly coupled to one another because of the

provider-centric basis of the service contract. Provider contracts are by

their very nature oblivious to the expectations and demands of indi-

vidual consumers. To remedy this, I suggest orienting service provision

around consumer demands, or consumer contracts, which express the

reasonable expectations a consumer has for the business functionality

represented by the service.

A service that imports consumer contracts, and adheres to them whilst

exchanging messages with consumers, implements a derived form of

provider contract called a consumer-driven contract. Drawing on the

assertion-based language described elsewhere in this essay, consumer-

driven contracts imbue providers with insight into their consumer obli-

gations and focus service evolution around the delivery of the key busi-

ness functionality demanded by consumers.

The consumer-driven contract pattern is targeted primarily at service

communities in which consumers can be identified and influenced, that

is, services within the boundaries of an enterprise. There are obvious

limitations to the pattern, not least of which are the lack of tool support,

its impact on the message-processing pipeline, and the increased com-

plexity and protocol dependence it introduces into a service community.

But we believe that when the pattern is applied in the appropriate con-

text, the benefits far outweigh the drawbacks. Despite it seemingly com-

plicating the communications between services, the pattern is decidedly

agile insofar as it seeks to promote the kinds of fine-grained insight

and rapid feedback upon which organizational agility depends. Some

degree of coupling between services is both inevitable and desirable:

consumer-driven contracts help make such couplings known, quan-

tifiable, and amenable to analysis. Moreover, the pattern bridges the

development, deployment, and operations parts of the system life cycle,

allowing us to establish lightweight versioning strategies and anticipate

the effects and costs of evolving services, and as such it contributes to

fulfilling our duty of care with respect to the total cost of ownership of

a system.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=102

EVOLVING A SERVICE: AN EXAMPLE 103

9.1 Evolving a Service: An Example

To illustrate some of the problems you might encounter while evolv-

ing services, consider a simple Product service that allows consumer

applications to search a product catalog.

An example search result document looks like this:

<?xml version="1.0" encoding="utf-8"?>

<Products xmlns="urn:example.com:productsearch:products">

<Product>

<CatalogueID>101</CatalogueID>

<Name>Widget</Name>

<Price>10.99</Price>

<Manufacturer>Company A</Manufacturer>

<InStock>Yes</InStock>

</Product>

<Product>

<CatalogueID>300</CatalogueID>

<Name>Fooble</Name>

<Price>2.00</Price>

<Manufacturer>Company B</Manufacturer>

<InStock>No</InStock>

</Product>

</Products>

The Product service is currently consumed by two applications: an

internal marketing application and an external reseller’s web appli-

cation. Both consumers use XSD validation to validate received doc-

uments prior to processing them. The internal application uses the

CatalogueID, Name, Price, and Manufacturer fields; the external appli-

cation uses the CatalogueID, Name, and Price fields. Neither uses the

InStock field. Though considered for the marketing application, InStock

was dropped early in the development life cycle.

One of the most common ways in which you might evolve a service

is to add a field to a document on behalf of one or more consumers.

But depending on how the provider and consumers have been imple-

mented, even a simple change like this can have costly implications for

the business and its partners.

In this example, after the Product service has been in production for

some time, a second reseller considers using it but asks that a Descrip-

tion field be added to each product. Because of the way the consumers

have been built, the change has significant and costly implications

both for the provider and for the existing consumers—the cost to each

varying based on how you implement the change. There are at least

http://books.pragprog.com/titles/twa/errata/add?pdf_page=103

SCHEMA VERSIONING 104

two ways in which you can distribute the cost of change between the

members of the service community. First, you can modify the original

schema and require each consumer to update its copy of the schema

in order to correctly validate search results; the cost of changing the

system is distributed between the provider—who, faced with a change

request like this, will always have to make some kind of change—and

the existing consumers, who have no interest in the updated function-

ality. Alternatively, you can choose to expose a second operation and

schema to the new consumer and maintain the original operation and

schema on behalf of the existing consumers. The cost of change is now

constrained to the provider but at the expense of making the service

more complex and more costly to maintain.

Even a simple example such as this illustrates the point that once ser-

vice providers and consumers are in production, providers rapidly find

themselves adopting a cautious approach to changing any element of

the contract they offer their consumers; this is because they cannot

anticipate or gain insight into the ways in which consumers realize

their contracts. Without introspecting the function and role of the con-

tracts you implement in your SOA, you subject your services to a form

of “hidden” coupling that anyone is rarely equipped to address in any

systematic fashion. The absence of programmatic insights into the ways

in which a community of services has adopted a contract and the lack

of constraints on the contract-driven implementation choices made by

service providers and consumers combine to undermine the purported

benefits of SOA enabling the enterprise. In short, you burden the enter-

prise with services.

9.2 Schema Versioning

We’ll begin the investigation into the contract and coupling problems

that bedevil the example Product service by looking at the issue of

schema versioning. The WC3 Technical Architecture Group (TAG) has

described a number of versioning strategies that can help you evolve

your service’s message schemas in ways that mitigate your coupling

problems.2

Both extremes bring with them problems that inhibit the delivery of

business value and exacerbate the total cost of ownership of the

2. Proposed TAG Finding, “Versioning XML Languages [editorial draft],” November 16,

2003; http://www.w3.org/2001/tag/doc/versioning.

http://www.w3.org/2001/tag/doc/versioning
http://books.pragprog.com/titles/twa/errata/add?pdf_page=104

SCHEMA VERSIONING 105

system. Explicit and implicit “no versioning” strategies result in sys-

tems that are alike in being unpredictable in their interactions, being

fragile, and being costly to change downstream.

Big bang strategies, on the other hand, give rise to tightly coupled ser-

vice landscapes where schema changes ripple through providers and

consumers, disrupting uptime, retarding evolution, and reducing rev-

enue generating opportunities.

The example service community effectively implements a big bang strat-

egy. Given the costs associated with enhancing the business value of

the system, it is clear that the providers and consumers would ben-

efit from a more flexible versioning strategy—what the TAG finding

calls a compatible strategy—that provides for backward- and forward-

compatible schemas. In the context of evolving services, backward-

compatible schemas enable consumers of newer schemas to accept

instances of an older schema; a service provider built to handle new

versions of a backward-compatible request, say, would nonetheless

still accept a request formatted according to an old schema. Forward-

compatible schemas, on the other hand, enable consumers of older

schemas to process an instance of a newer schema. This is the sticking

point for the existing Product consumers: if the search result schema

had been made forward-compatible when first put into production, the

consumers would be able to handle instances of the new version of the

search result without breaking or requiring modification.

Extension Points

Making schemas both backward- and forward-compatible is a well-

understood design task best expressed by the Must Ignore pattern

of extensibility.3 The Must Ignore pattern recommends that schemas

incorporate extensibility points. These extensibility points allow us to

add extension elements to types and additional attributes to each ele-

ment. The pattern also recommends that XML languages define a pro-

cessing model that specifies how consumers process extensions. The

simplest model requires consumers to ignore elements they do not rec-

ognize, which is where the pattern gets its name. The model may also

require consumers to process elements that have a “Must Understand”

flag, or abort if they cannot understand them.

3. David Orchard, “Extensibility, XML Vocabularies, and XML Schema”;

http://www.pacificspirit.com/Authoring/Compatibility/ExtendingAndVersioningXMLLanguages.html.

http://www.pacificspirit.com/Authoring/Compatibility/ExtendingAndVersioningXMLLanguages.html
http://books.pragprog.com/titles/twa/errata/add?pdf_page=105

SCHEMA VERSIONING 106

This is the schema on which we originally based our search results

documents:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="urn:example.com:productsearch:products"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

targetNamespace="urn:example.com:productsearch:products"

id="Products">

<xs:element name="Products" type="Products" />

<xs:complexType name="Products">

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"

name="Product" type="Product" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Product">

<xs:sequence>

<xs:element name="CatalogueID" type="xs:int" />

<xs:element name="Name" type="xs:string" />

<xs:element name="Price" type="xs:double" />

<xs:element name="Manufacturer" type="xs:string" />

<xs:element name="InStock" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:schema>

Let’s roll back time to specify a forward-compatible, extensible schema:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="urn:example.com:productsearch:products"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

targetNamespace="urn:example.com:productsearch:products"

id="Products">

<xs:element name="Products" type="Products" />

<xs:complexType name="Products">

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"

name="Product" type="Product" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Product">

<xs:sequence>

<xs:element name="CatalogueID" type="xs:int" />

<xs:element name="Name" type="xs:string" />

<xs:element name="Price" type="xs:double" />

<xs:element name="Manufacturer" type="xs:string" />

<xs:element name="InStock" type="xs:string" />

<xs:element minOccurs="0" maxOccurs="1"

name="Extension" type="Extension" />

</xs:sequence>

http://books.pragprog.com/titles/twa/errata/add?pdf_page=106

SCHEMA VERSIONING 107

</xs:complexType>

<xs:complexType name="Extension">

<xs:sequence>

<xs:any minOccurs="1" maxOccurs="unbounded"

namespace="##targetNamespace" processContents="lax" />

</xs:sequence>

</xs:complexType>

</xs:schema>

This schema includes an optional Extension element at the foot of each

product. The Extension element itself can contain one or more elements

from the target namespace.

Now when you get a request to add a description to each product, you

can publish a new schema containing an additional Description element

that the provider inserts into the extension container. This allows the

Product service to return results that include product descriptions and

consumers using the new schema to validate the entire document.

Consumers using the old schema will not break, even though they will

not process the description. The new results document looks like this:

<?xml version="1.0" encoding="utf-8"?>

<Products xmlns="urn:example.com:productsearch:products">

<Product>

<CatalogueID>101</CatalogueID>

<Name>Widget</Name>

<Price>10.99</Price>

<Manufacturer>Company A</Manufacturer>

<InStock>Yes</InStock>

<Extension>

<Description>Our top of the range widget</Description>

</Extension>

</Product>

<Product>

<CatalogueID>300</CatalogueID>

<Name>Fooble</Name>

<Price>2.00</Price>

<Manufacturer>Company B</Manufacturer>

<InStock>No</InStock>

<Extension>

<Description>Our bargain fooble</Description>

</Extension>

</Product>

</Products>

http://books.pragprog.com/titles/twa/errata/add?pdf_page=107

SCHEMA VERSIONING 108

The revised schema looks like this:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="urn:example.com:productsearch:products"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

targetNamespace="urn:example.com:productsearch:products"

id="Products">

<xs:element name="Products" type="Products" />

<xs:complexType name="Products">

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"

name="Product" type="Product" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Product">

<xs:sequence>

<xs:element name="CatalogueID" type="xs:int" />

<xs:element name="Name" type="xs:string" />

<xs:element name="Price" type="xs:double" />

<xs:element name="Manufacturer" type="xs:string" />

<xs:element name="InStock" type="xs:string" />

<xs:element minOccurs="0" maxOccurs="1"

name="Extension" type="Extension" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Extension">

<xs:sequence>

<xs:any minOccurs="1" maxOccurs="unbounded"

namespace="##targetNamespace"

processContents="lax" />

</xs:sequence>

</xs:complexType>

<code:bold><xs:element name="Description"

type="xs:string" /></code:bold>

</xs:schema>

Note that the first version of the extensible schema is forward-compa-

tible with the second and that the second is backward-compatible with

the first. This flexibility, however, comes at the expense of increased

complexity. Extensible schemas allow you to make unforeseen changes

to an XML language; but by the same token, they provide for require-

ments that may very well never arise. In so doing, they obscure the

expressive power that comes from a simple design and frustrate the

meaningful representation of business information by introducing

metainformational container elements into the domain language.

I won’t discuss schema extensibility further here. Suffice to say, exten-

sion points allow you to make backward- and forward-compatible

changes to schemas and documents without breaking service providers

http://books.pragprog.com/titles/twa/errata/add?pdf_page=108

BREAKING CHANGES 109

and consumers. Schema extensions do not, however, help you when

you need to make what is ostensibly a breaking change to a contract.

9.3 Breaking Changes

As a value-add, the Product service includes in the search results a field

indicating whether the product is currently in stock. The service popu-

lates this field using an expensive call into a legacy inventory system—

a dependency that’s costly to maintain. The service provider wants to

remove this dependency, clean up the design, and improve the over-

all performance of the system—preferably without imposing any of the

cost of change on the consumers. Fortunately, none of the consumer

applications actually does anything with this value; though expensive,

it is redundant.

That’s the good news. The bad news is that with our existing setup, if

we remove a required component—in this case, the InStock field—from

our extensible schema, we will break existing consumers. To fix the

provider, we have to fix the entire system. When we remove the func-

tionality from the provider and publish a new contract, each consumer

application will have to be redeployed with the new schema. We’ll also

have to test the interactions between services thoroughly. The Product

service in this respect cannot evolve independently of its consumers:

provider and consumers must all jump at the same time.

The service community in this example is frustrated in its evolution

because each consumer implements a form of “hidden” coupling that

naively reflects the entirety of the provider contract in the consumer’s

internal logic. The consumers, through their use of XSD validation and

static language bindings derived from a document schema, implicitly

accept the whole of the provider contract, irrespective of their appetite

for processing the component parts.

David Orchard provides some clues as to how you might avoid this

issue when he alludes to the Internet Protocol’s Robustness Princi-

ple: “In general, an implementation must be conservative in its sending

behavior and liberal in its receiving behavior.”

In the context of service evolution, we can augment this principle by

saying that message receivers should implement “just enough” valida-

tion; that is, they should process only that data that contributes to

the business functions they implement and should validate received

data only in a bounded or targeted fashion, as opposed to the implicitly

unbounded, “all-or-nothing” validation inherent in XSD processing.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=109

BREAKING CHANGES 110

Schematron

One way you can improve consumer-side validation is by asserting

pattern expressions along the received message’s document tree axes,

perhaps using a structural tree pattern validation language such as

Schematron.4 Using Schematron, each consumer of the Product ser-

vice can programmatically assert what it expects to find in the search

results:

<?xml version="1.0" encoding="utf-8" ?>

<schema xmlns="http://www.ascc.net/xml/schematron">

<title>ProductSearch</title>

<ns uri="urn:example.com:productsearch:products" prefix="p"/>

<pattern name="Validate search results">

<rule context="*//p:Product">

<assert test="p:CatalogueID">Must contain

CatalogueID node</assert>

<assert test="p:Name">Must contain Name node</assert>

<assert test="p:Price">Must contain Price node</assert>

</rule>

</pattern>

</schema>

Schematron implementations typically transform a Schematron sche-

ma such as this into an XSLT transformation that the message receiver

can apply to a document to determine its validity.

Notice that this sample Schematron schema makes no assertions about

elements for which the consuming application has no appetite. In this

way, the validation language explicitly targets a bounded set of required

elements. Changes to the underlying document’s schema will not be

picked up by the validation process unless they disturb the explicit

expectations described in the Schematron schema, even if those

changes extend to removing formerly mandatory elements.

Here then is a relatively lightweight solution to the contract and cou-

pling problems: one that doesn’t require you to add obscure metainfor-

mational elements to a document. So, let’s roll back time once again

and reinstate the simple schema described at the outset of the chap-

ter. But this time round, we’ll insist that consumers are liberal in their

receiving behavior. This means they should validate and process only

4. Dare Obasanjo, “Designing Extensible, Versionable XML Formats”;

http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07212004.asp.

http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07212004.asp
http://books.pragprog.com/titles/twa/errata/add?pdf_page=110

CONSUMER-DRIVEN CONTRACTS 111

the information that supports the business functions they implement

(using Schematron schemas rather than XSD to validate received mes-

sages). Now when the provider is asked to add a description to each

product, the service can publish a revised schema without disturbing

existing consumers. Similarly, on discovering that the InStock field is

not validated or processed by any of the consumers, the service can

revise the search results schema, again without disturbing the rate of

evolution of each consumer.

At the end of this process, the Product results schema looks like this:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="urn:example.com:productsearch:products"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

targetNamespace="urn:example.com:productsearch:products"

id="Products">

<xs:element name="Products" type="Products" />

<xs:complexType name="Products">

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded"

name="Product" type="Product" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Product">

<xs:sequence>

<xs:element name="CatalogueID" type="xs:int" />

<xs:element name="Name" type="xs:string" />

<xs:element name="Price" type="xs:double" />

<xs:element name="Manufacturer" type="xs:string" />

<xs:element name="Description" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:schema>

9.4 Consumer-Driven Contracts

The use of Schematron in the previous example leads to some inter-

esting observations about contracts between providers and consumers,

with implications beyond document validation. This section generalizes

some of these insights and expresses them in terms of a Consumer-

Driven Contract pattern.

The first thing to note is that document schemas are only a portion of

what a service provider has to offer consumers. You call the sum total

of a service’s externalized exploitation points the provider contract.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=111

CONSUMER-DRIVEN CONTRACTS 112

Provider Contracts

A provider contract expresses a service provider’s business function

capabilities in terms of the set of exportable elements necessary to sup-

port that functionality. From a service evolution point of view, a con-

tract is a container for a set of exportable business function elements.

A non-normative list of these elements includes the following:

• Document schemas: We’ve already discussed document schemas

in some detail. Next to interfaces, document schemas are the parts

of a provider contract most likely to change as the service evolves;

but perhaps because of this, they’re also the parts we have most

experience of imbuing with service evolution strategies such as

extension points and document tree path assertions.

• Interfaces: In their simplest form, service provider interfaces com-

prise the set of exportable operation signatures a consumer can

exploit to drive the behavior of a provider. Message-oriented sys-

tems typically export relatively simple operation signatures and

push the business intelligence into the messages they exchange.

In a message-oriented system, received messages drive endpoint

behavior according to semantics encoded in the message header

or payload. RPC-like services, on the other hand, encode more

of their business semantics in their operation signatures. Either

way, consumers depend on some portion of a provider’s interface

to realize business value, so we must account for interface con-

sumption when evolving our service landscape.

• Conversations: Service providers and consumers exchange mes-

sages in conversations that compose one or more message ex-

change patterns. Over the course of a conversation, a consumer

can expect the messages the provider sends and receives to exter-

nalize some state particular to the interaction. For example, a

hotel reservation service might offer consumers the ability to re-

serve a room at the outset of a conversation and to confirm the

booking and make a deposit in subsequent message exchanges.

The consumer here might reasonably expect the service to “re-

member” the details of the reservation when engaging in these

follow-on exchanges, rather than demand that the parties repeat

the entire conversation at each step in the process. As a service

evolves, the set of conversational gambits available to provider and

consumer might change. Conversations are thus candidates for

being considered part of a provider contract.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=112

CONSUMER-DRIVEN CONTRACTS 113

• Policy: Besides exporting document schemas, interfaces, and con-

versations, service providers may declare and enforce specific

usage requirements that govern how the other elements of the

contract can be used. Most commonly, these requirements relate

to the security and transactional contexts in which a consumer

can exploit a provider’s functionality. The web services stack typi-

cally expresses this policy framework using the WS-Policy generic

model plus additional domain-specific policy languages such as

WS-SecurityPolicy, but in the context of our considering policies

as candidates for being included in a provider contract, our defi-

nition of policy is specification and implementation agnostic.5

• Quality of service characteristics: The business value potential that

service providers and consumers exploit is often evaluated in the

context of a specific quality of service characteristics such as avail-

ability, latency, and throughput. You should consider these char-

acteristics as likely constituents of a provider contract and ac-

count for them in your service evolution strategies.

The definition of a contract here is a little broader than the one you

might usually hear when talking about services, but from a service

evolution perspective it usefully abstracts the significant forces that

impact the problem domain. That said, the definition is not meant to

be exhaustive in terms of the kinds of elements a provider contract

might contain; it refers simply to a logical set of exportable business

function elements that are candidates for including in a service evolu-

tion strategy. From a logical point of view, this set of candidate elements

is open, but in practice, internal or external factors, such as interoper-

ability requirements or platform limitations, may constrain the type of

elements a contract can contain. For example, a contract belonging to

a service that conforms to the WS-Basic profile will likely not contain

policy elements.

Notwithstanding any such constraints, the scope of a contract is deter-

mined simply by the cohesion of its member elements. A contract can

contain many elements and be broad in scope, or focus narrowly on

only a few, so long as it expresses some business function capability.

How do you decide whether to include a candidate contractual element

in your provider contract? You ask whether any of your consumers

5. “Schematron: A Language for Making Assertions About Patterns Found in XML Doc-

uments”; http://www.schematron.com.

http://www.schematron.com
http://books.pragprog.com/titles/twa/errata/add?pdf_page=113

CONSUMER-DRIVEN CONTRACTS 114

might reasonably expect the element’s business function capability to

continue to be satisfied throughout the service’s lifetime. You’ve already

seen how consumers of the example service can express an interest in

parts of the document schema exported by the service and how they

might assert that their expectations regarding this contractual element

continue to be met. Thus, the document schema is part of the provider

contract.

Provider contracts have the following characteristics:

• Closed and complete: Provider contracts express a service’s busi-

ness function capabilities in terms of the complete set of export-

able elements available to consumers and as such are closed and

complete with respect to the functionality available to the system.

• Singular and authoritative: Provider contracts are singular and

authoritative in their expression of the business functionality

available to the system.

• Bounded stability and immutability: A provider contract is stable

and immutable for a bounded period and/or locale.6 Provider con-

tracts typically use some form of versioning to differentiate differ-

ently bounded instances of the contract.

Consumer Contracts

If you decide to account for consumer expectations regarding the sche-

mas you expose—and consider it worth your provider knowing about

them—then you need to import those consumer expectations into the

provider. The Schematron assertions in this example look very much

like the kinds of tests that, given to the provider, might help ensure the

provider continues to meet its commitments to its clients. By imple-

menting these tests, the provider gains a better understanding of how

it can evolve message structures without breaking the service commu-

nity. And where a proposed change would in fact break one or more

consumers, the provider will have immediate insight into the issue and

so be better able to address it with the parties concerned, accommo-

dating their requirements or providing incentives for them to change as

business factors dictate.

6. WS-Policy; http://www-128.ibm.com/developerworks/library/specification/ws-polfram.

http://www-128.ibm.com/developerworks/library/specification/ws-polfram
http://books.pragprog.com/titles/twa/errata/add?pdf_page=114

CONSUMER-DRIVEN CONTRACTS 115

In this example, you can say that the set of assertions generated by all

consumers expresses the mandatory structure of the messages to be

exchanged during the period in which the assertions remain valid for

their parent applications. If the provider were given this set of asser-

tions, it would be able to ensure that every message it sends is valid for

every consumer—but only insofar as the set of assertions is valid and

complete.

Generalizing this structure, you can distinguish the provider contract

from the individual contractual obligations that are particular to an

instance of a provider-consumer relationship, which I will now call

consumer contracts. When a provider accepts and adopts the reason-

able expectations expressed by a consumer, it enters into a consumer

contract.

Consumer contracts have the following characteristics:

• Open and incomplete: Consumer contracts are open and incom-

plete with respect to the business functionality available to the

system. They express a subset of the system’s business function

capabilities from the point of view of a consumer’s expectations of

the provider contract.

• Multiple and nonauthoritative: Consumer contracts are multiple in

proportion to the number of consumers of a service. Moreover,

each consumer contract is nonauthoritative with regard to the

total set of contractual obligations placed on the provider. The

nonauthoritative nature of the relationship extending from con-

sumer to provider is one of the key features that distinguishes a

service-oriented architecture from a distributed application archi-

tecture. Service consumers must recognize that their peers in a

service community are liable to consume the provider in ways

quite different from their own. Peers may evolve at different rates

and demand changes of the provider that potentially disturb the

dependencies and expectations residing in other parts of the sys-

tem. A consumer cannot anticipate how or when a peer will dis-

turb the provider contract; a client in a distributed application has

no such concerns.

• Bounded stability and immutability: Like provider contracts, con-

sumer contracts are valid for a particular period of time and/or

location.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=115

CONSUMER-DRIVEN CONTRACTS 116

Consumer-Driven Contracts

Consumer contracts allow you to reflect on the business value being

exploited at any point in a provider’s lifetime. By expressing and assert-

ing expectations of a provider contract, consumer contracts effectively

define which parts of that provider contract currently support the busi-

ness value realized by the system and which do not. This leads me to

suggest that service communities might benefit from being specified in

the first instance in terms of consumer contracts. In this view, provider

contracts emerge to meet consumer expectations and demands. To

reflect the derived nature of this new contractual arrangement, you

can call such provider contracts consumer-driven contracts or derived

contracts.

The derivative nature of consumer-driven provider contracts adds a

heteronomous aspect to the relationship between service provider and

consumer. That is, providers are subject to an obligation that origi-

nates from outside their boundaries. This in no way impacts the funda-

mentally autonomous nature of their implementations; it simply makes

explicit the fact that for success services depend on their being con-

sumed. Consumer-driven contracts have the following characteristics:

• Closed and complete: A consumer-driven contract is closed and

complete with respect to the entire set of functionality demanded

by existing consumers. The contract represents the mandatory set

of exportable elements required to support consumer expectations

during the period in which those expectations remain valid for

their parent applications.

• Singular and nonauthoritative: Consumer-driven contracts are

singular in their expression of the business functionality available

to the system but nonauthoritative because they’re derived from

the union of existing consumer expectations.

• Bounded stability and immutability: A consumer-driven contract

is stable and immutable with respect to a particular set of con-

sumer contracts. That is to say, you can determine the validity

of a consumer-driven contract according to a specified set of con-

sumer contracts, effectively bounding the forward- and backward-

compatible nature of the contract in time and space. The compat-

ibility of a contract remains stable and immutable for a particu-

lar set of consumer contracts and expectations but is subject to

change as expectations come and go.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=116

CONSUMER-DRIVEN CONTRACTS 117

Summary of Contract Characteristics

The following table summarizes the characteristics of the three types of

contract described in this chapter:

Contract Open Complete Number Authority Bounded

Provider Closed Complete Single Authoritative Space/time

Consumer Open Incomplete Multiple Nonauthor-
itative

Space/time

Consumer-
driven

Closed Complete Single Nonauthor-
itative

Consumers

Implementation

The Consumer-Driven Contract pattern recommends building service

communities using consumer and consumer-driven contracts. The pat-

tern does not, however, specify the form or structure consumer and

consumer-driven contracts should adopt, and it does not determine

how consumer expectations are communicated to the provider and

asserted during the provider’s lifetime.

Contracts may be expressed and structured in several ways. In their

simplest form, consumer expectations can be captured in a spread-

sheet or similar document and implemented during the design, devel-

opment, and testing phases of a provider application. By going a little

further and introducing unit tests that assert each expectation, you can

ensure that contracts are described and enforced in a repeatable, auto-

mated fashion with each build. In more sophisticated implementations,

expectations can be expressed as Schematron- or WS-Policy-like asser-

tions that are evaluated at runtime in the input and output pipelines of

a service endpoint.

As is the case with the structure of contracts, you have several options

when it comes to communicating expectations between providers and

consumers. Since the Consumer-Driven Contract pattern is implemen-

tation-agnostic, you could, given the appropriate organizational setup,

transmit expectations simply by talking to other teams or using email.

Where the number of expectations and/or consumers grows too large

to manage in this manner, you can consider introducing a contract

service interface and implementation into the service infrastructure.

Whatever the mechanism, it is likely communications will be conducted

out-of-band and prior to any conversations that exercise the business

functionality of the system.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=117

CONSUMER-DRIVEN CONTRACTS 118

Benefits

Consumer-driven contracts offer two significant benefits when it comes

to evolving services. First, they focus the specification and delivery

of service functionality on key business-value drivers. A service is of

value to the business only to the extent it is consumed. Consumer-

driven contracts tie service evolution to business value by asserting the

value of exportable service community elements, that is, the things con-

sumers require of providers to do their job. As a result, providers expose

a lean contract clearly aligned with the business goals that underpin

their consumers. Service evolution emerges where consumers express

a clear business need by modifying their expectations of the provider.

Of course, your ability to start with a minimal set of requirements and

evolve your service to meet changes in consumer expectations presup-

poses that you are in a position to evolve and operate the service in a

controlled and efficient manner. Because they do not capture any of the

expectations around service consumption, provider contracts must be

supplemented with some other mechanism for monitoring and assess-

ing the impact of change. Consumer contracts, on the other hand,

imbue providers with a repository of knowledge and a feedback mecha-

nism that you can draw on during the operations part of the system life

cycle. Using the fine-grained insight and rapid feedback you derive from

consumer-driven contracts, you can plan changes and assess their

impact on applications currently in production. In practice, this allows

you to target individual consumers and provide incentives for them to

relinquish an expectation that is stopping you from making a change

that is not currently backward- and/or forward-compatible.

Consumer-Driven Contracts and SLAs

We’ve discussed ways in which consumer and consumer-driven con-

tracts express business value. But I should make clear that despite

some superficial resemblances to specifications such as WS-Agreement

and Web Service Level Agreement (WSLA), consumer-driven contracts

are not intended to express service-level agreements.7 WS-Agreement

and WSLA are motivated by the need to provide assurances to con-

sumers regarding quality of service and resource availability and, in

the case of WSLA, by the requirement to provision services and allo-

cate resources dynamically. The underlying assumption behind the

consumer-driven contract pattern is that services, by themselves, are of

7. See http://www-128.ibm.com/developerworks/webservices/library/specification/ws-secpol.

http://www-128.ibm.com/developerworks/webservices/library/specification/ws-secpol
http://books.pragprog.com/titles/twa/errata/add?pdf_page=118

CONSUMER-DRIVEN CONTRACTS 119

no value to the business; their value is in being consumed. By specify-

ing services in terms of how they are actually being used by consumers,

we aim to deliver organizational agility by exploiting business value in

a way that allows for controlled service evolution.

That said, both WS-Agreement and WSLA serve as examples of what

an automated contracting protocol and infrastructure might look like.

Both specifications describe agreement templates that can be composed

with any assertion language for representing and monitoring agreement

conditions. Agreements are established through web service interfaces

that remain independent of the service proper and are monitored by

injecting handlers into the service pipeline.

Liabilities

We have identified the motivation for introducing consumer-driven

contracts into the service landscape and have described how the

Consumer-Driven Contract pattern addresses the forces that determine

service evolution. We will end this essay by discussing the scope of the

pattern’s applicability, together with some of the issues that may arise

while implementing consumer and consumer-driven contracts.

The Consumer-Driven Contract pattern is applicable in the context of

either a single enterprise or a closed community of well-known ser-

vices, or more specifically, an environment in which providers can exert

some influence over how consumers establish contracts with them.8 No

matter how lightweight the mechanisms for communicating and repre-

senting expectations and obligations, providers and consumers must

know about, accept, and adopt a set of channels and conventions. This

inevitably adds a layer of complexity and protocol dependence to an

already complex service infrastructure. The problem is exacerbated by

a lack of tools and execution environment support for describing, imple-

menting, and operating contracts.

I’ve suggested that systems built around consumer-driven contracts

are better able to manage breaking changes to contracts. But I don’t

mean to suggest that the pattern is a cure-all for the problem of break-

ing changes; when all is said and done, a breaking change is still a

8. See the section “Validity of Data in Bounded Space and Time” in

Pat Helland’s article, “Data on the Outside vs. Data on the Inside: An

Examination of the Impact of Service Oriented Architectures on Data”;

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/dataoutsideinside.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/dataoutsideinside.asp
http://books.pragprog.com/titles/twa/errata/add?pdf_page=119

CONSUMER-DRIVEN CONTRACTS 120

breaking change. I do believe, however, that the pattern provides many

insights into what actually constitutes a breaking change. Put sim-

ply, a breaking change is anything that fails to satisfy an extant con-

sumer expectation. By helping identify breaking changes, the pattern

may serve as the foundation for a service versioning strategy. More-

over, as already discussed, service communities that implement the

pattern are better placed to anticipate the effects of service evolution

and identify potentially breaking changes before they impact the health

of the system. Development and operations teams in particular can

more effectively plan their evolutionary strategies—perhaps by depre-

cating contractual elements for a specific period and simultaneously

targeting recalcitrant consumers with incentives to move up to new

versions of a contract.

Consumer-driven contracts do not necessarily reduce the coupling be-

tween services. Schema extensions and “just enough” validation may

help reduce the coupling between service providers and consumers,

but even loosely coupled services will nonetheless retain a degree of

coupling. Although not contributing directly to lessening the dependen-

cies between services, consumer-driven contracts do excavate and put

on display some of those residual “hidden” couplings so that providers

and consumers can better negotiate and manage them.

Conclusion

An SOA can enable organizational agility and reduce the cost of change

only if its services are capable of evolving independently of one another.

Overly coupled services result from the way in which consumers naively

implement provider contracts. The Must Ignore pattern of schema ex-

tension points and the “just enough” schema validation strategy imple-

mented using Schematron assertions benefit consumers by reducing

the coupling between themselves and their providers. Service providers,

on the other hand, gain more insight into and feedback on their runtime

obligations by deriving their contracts from the set of consumer con-

tracts communicated to them by their consumers. Consumer-driven

contracts support service evolution throughout the operational lifetime

of a service and more closely align the specification and delivery of ser-

vice functionality with key business goals.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=120

Chapter 10

Domain Annotations
by Erik Doernenburg, Technology Principal

10.1 Domain-Driven Design Meets Annotations

Over the past decade, many people involved in development projects

have come to understand that the real complexity in most applications

lies in the actual problem domain the software is dealing with. For this

reason, the approach that is known as domain-driven design follows

these two premises:

• For most software projects, the primary focus should be on the

domain and domain logic.

• Complex domain designs should be based on a model.

This means that domain-driven design places an object-oriented model

of the domain, expressed in terms of the domain, at the heart of soft-

ware systems. Data is often stored in a relational database, but the

main view of the data is in terms of the domain objects, not in terms of

tables and stored procedures. Core domain logic is kept in the domain

model, rather than being spread across classes in the user interface

and the service layers of the application.

Following domain-driven design produces software systems that have a

clear separation between the domain model, which is usually long-lived

and comparably stable, and application interface and infrastructure

code, which are more short-lived and intertwined with specific tech-

nologies such as object-relational mappers or web frameworks. The

challenge lies in maintaining this separation to keep both halves of

the software system reusable; on one hand, it should be possible to use

the domain model in several applications or services or upgrade to a

DOMAIN-DRIVEN DESIGN MEETS ANNOTATIONS 122

new technology stack, and on the other hand, the infrastructure code

should be readily usable for arbitrary domain models. The ultimate goal

is, of course, the productization of infrastructure code, commercially or

as open source software, so that application developers can concentrate

on their problem domain.

Domain-Specific Metadata

Develop applications based on the domain model simply and by leverag-

ing automation. Don’t require code changes to either the infrastructure

code or the domain model. Naturally, this requires heavy use of reflec-

tion and generic types, but at the same time the infrastructure code

benefits from any metainformation available about the domain.

Much metadata is present as part of the model’s implementation. For

example, the fact that the relationship between department and em-

ployee is a one-to-many relationship can be inferred from the types

used for the relationship in the department and employee classes.

Using a collection in the department class to hold the employees tells

other code that the relationship is a to-many relationship, and a nor-

mal object reference to the department in the employee class makes

it specifically a one-to-many relationship. Based on this information,

a user interface framework can choose an appropriate widget, such as

a listbox for the employees, in an autogenerated screen for the

department.

Implicit metadata, which is metadata that is present as a necessary

part of the implementation, allows for a great deal of automation; how-

ever, most applications can benefit from more, and explicit, metadata.

This is especially true in the area of validation. In the previous exam-

ple, the framework that autogenerates maintenance screens has no way

to determine whether a department without any employees is valid. If

metadata is added to the employees collection to signify that this is a

1..n relationship, then the framework can prevent users from saving a

department that has no employees. This information could be provided

by using specific collection classes, but modern development platforms

include a better construct for this purpose.

Java Annotations and .NET Attributes

The power of metadata to provide abstractions and reduce coupling did

not escape the designers of programming languages, and from its first

release, the Microsoft .NET platform and its common language run-

http://books.pragprog.com/titles/twa/errata/add?pdf_page=122

DOMAIN-DRIVEN DESIGN MEETS ANNOTATIONS 123

time (CLR) provided a mechanism for developers to create and add arbi-

trary metadata to almost any language element. The CLR uses the term

attribute for this concept. Attributes are defined like other types and

can have data and behavior like classes, but they use a special syntax

with square brackets to attach to a language element.

The following example demonstrates an attribute in C#; the attribute

is intended to specify and validate the maximum length of a property

value:

[AttributeUsage(AttributeTargets.Property)]

public class MaxLengthAttribute : Attribute

{

private int maxLength;

public MaxLengthAttribute(int maxLength)

{

this.maxLength = maxLength;

}

public void validate(PropertyInfo property, object obj)

{

MethodInfo method = property.GetGetMethod(false);

string propertyValue = (string)method.Invoke(obj, new object[0]);

if(propertyValue.Length > maxLength)

throw new ValidationException(...);

}

}

Apart from inheriting from Attribute, the AttributeUsage attribute defined

by the CLR is attached to the attribute declaration to signal that the

attribute must be used with properties, rather than classes or fields,

for example. The implementation actually assumes that the property

is of type string, but this constraint cannot be expressed as part of

the attribute definition. Using reflection to achieve loose coupling, as

shown in the validate method, is quite common for attributes. Note

that the validate method must be triggered by application code; the

CLR does not provide a mechanism to have the code invoked when the

target property is accessed.

The attribute could be used in code as in the following example:

[MaxLength(50)]

public string Name

{

get { return name; }

set { name = value; }

}

http://books.pragprog.com/titles/twa/errata/add?pdf_page=123

DOMAIN-DRIVEN DESIGN MEETS ANNOTATIONS 124

A similar construct was added to Java in Java 5. In the Java world, the

term annotation is used, which describes the concept somewhat better

and is less overloaded in the context of software development. For this

reason, we will use the term annotation in the remainder of this essay

to refer to all implementations of this concept.

Java also uses a special syntax, in this case involving the @ charac-

ter, to attach an annotation to a language element. However, there

are several marked differences compared to the .NET version. Java

does not use inheritance to define an annotation but uses a new key-

word, namely, @interface, for that purpose. It does not specify where

an attribute can be used, but it does specify to which stage of the

development cycle it should be retained. The most important differ-

ence, though, is that Java annotations cannot contain code; they are

more like interfaces than classes. This means that where .NET can use

constructors to provide default values, Java annotations have to use

the special default keyword.

A graver consequence is that the validation behavior must be written

in an external class. In itself this is not a disaster, but it does work

against the principle of encapsulation. Where the .NET version keeps

the max length value private and contains the validation logic, a Java

version has to make the value public and has to pass the annotation

into the validation method in another class. As a code smell, this is

“feature envy,” and it results in parallel class hierarchies. It should be

noted, though, that most uses of annotations do not lend themselves to

contain behavior like this, and therefore most uses of Java annotations

and .NET attributes follow the same patterns.

Domain Annotations

A logical name for annotations that are used to express information

about the domain is domain annotations.

Domain annotations have three distinct characteristics:

• They are added to language elements in domain objects only, that

is, to the classes, to domain-specific public methods, or possibly

to arguments of such methods.

• They are defined in the domain model in the same package/name-

space as the domain objects.

• They provide information that can be used by more than one area

of functionality in the application.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=124

DOMAIN-DRIVEN DESIGN MEETS ANNOTATIONS 125

The first item in the previous list can be seen as a truly defining charac-

teristic. Annotations on objects not in the domain model are clearly out-

side the scope of the domain. And although some environments require

domain objects to implement specific methods, ranging from the simple

case of equal and hash code methods to more complex examples such

as serialization, it is highly unlikely that domain annotations will pro-

vide value on such methods. Similarly, private methods are obviously

internal to an object’s implementation, and therefore it should not be

necessary to provide additional information about them.

Of course, there are also exceptions to the rule: the one-to-many exam-

ple in the previous section shows metadata that is useful in many dif-

ferent domains, which is why, for example, the EJB3 standard pro-

vides the generic @OneToMany annotation. However, an annotation like

this that is not defined in the domain model but in an infrastructure

framework contradicts the second rule, and using it couples the domain

model to the EJB3 specification. Worse, if other application infrastruc-

ture code needs this information as well, it also becomes coupled to the

EJB3 specification. There is an obvious conflict between keeping the

domain model free of dependencies on infrastructure code and having

generic infrastructure code that requires specific annotations to do its

magic. As usual, there is no categorical answer to the question of when

to use which.

The Case for Domain Annotations

I mentioned before that annotations provide data, and in the case of

CLR attribute behavior, they are never part of the execution path of

annotated elements. This means that extra code is required to use the

annotation. Despite the additional code, annotations can still result in

less overall code and a clearer implementation. Consider an alternative

approach to the max length validation example. It would be possible to

add, by convention or an explicit interface, a validation method to the

domain objects. This could contain code like the following Java code:

public void validate()

{

if(getName().length > 50)

throw new ValidationException("Name must be 50 characters or less");

if(getAddressLineOne().length > 60)

throw new ValidationException(

"Address line one must be 60 characters or less");

/* more validation of the object's state omitted */

}

http://books.pragprog.com/titles/twa/errata/add?pdf_page=125

CASE STUDY: LEROY’S LORRIES 126

It is obvious that such a method is quite problematic because it mixes

several concerns. Imagine, for example, that at a later stage the system

has to be capable of reporting multiple problems at the same time.

For this reason, most developers would extract a method to report the

validation problem, which would leave the code as follows:

public void validate()

{

if(getName().length > 50)

validationError("Name", 50);

if(getAddressLineOne().length > 60)

validationError("AddressLineOne", 60);

/* more validation of the object's state omitted */

}

A further step that increases the level of abstraction is to create a single

validation method that retrieves the value and carries out the check.

Its implementation would use reflection, and the remaining code in the

validate method could look as follows:

public void validate()

{

validate("name", 50);

validate("addressLineOne", 60);

}

In this case, all code that can possibly be abstracted is moved into a

single method; all that is left in the validate method is a list of metadata.

However, this is arguably better kept in an annotation:

@MaxLength(50)

public String getName()

{

/* implementation omitted */

}

Not only does using an annotation keep the length information about

the name next to the getName method, but, more important, it also

avoids the use of strings to refer to methods. The only additional code

needed in comparison to the previous version is a loop over all methods

to find the ones that have the MaxLength annotation.

10.2 Case Study: Leroy’s Lorries

Rather than being invented by a smart person, design patterns are

observed in existing code. The same holds true for domain annotations,

and this section presents two domain annotations that are quite similar

to the first annotations we used in this way. (This example won’t use the

http://books.pragprog.com/titles/twa/errata/add?pdf_page=126

CASE STUDY: LEROY’S LORRIES 127

Figure 10.1: Transfers

exact annotations or the original source code for commercial reasons;

they were part of a project that ThoughtWorks delivered for a client.)

Leroy’s Lorries is a small sample application that my colleague Mike

Royle and I prepared to show how to use domain annotations. It is

based on our experience from the ThoughtWorks project mentioned

earlier, and as in the original project, the problem domains are logis-

tics and shipping. The code is written such that it would work in a

smart client application—a Windows application that maintains data

on a server but can work in disconnected mode. Like the original appli-

cation, we used C# as the implementation language, but we upgraded

to the newer 2.0 version of the language to make the code clearer.

The Domain Model

For the purpose of this case study, two areas of the domain model

are of interest. One is concerned with modeling the transfer of prod-

ucts between warehouses, and the another is concerned with modeling

users of the system and their roles.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=127

CASE STUDY: LEROY’S LORRIES 128

At the center of the transfer model is the PlannedTransfer domain object,

which represents a planned transfer of a certain quantity of product

from an origin warehouse to a destination warehouse in a period, which

is a month in a given year. An actual transfer that has taken place

is represented by the Transfer domain object, which has a reference to

the planned transfer to which it corresponds. A transfer also contains

the actual pickup date, which does not have to be within the period

originally planned, and the quantity of the product that was actually

transferred.

Also relevant are a few domain objects concerned with geography. Ware-

houses, which are the origins and destinations of transfers, are located

in regions that in turn are located in countries.

For the purpose of this case study, all the domain objects have been

reduced to the properties required to demonstrate how to use the two

domain annotations. In the real model that Leroy’s Lorries is based on—

for example, the product contained seven properties—different types of

transfers were modeled by six different classes and had properties such

as mode of transport and a reference to the contract. This is important

to bear in mind when considering alternative approaches that might

seem reasonable for this simplified model.

The user domain object represents users of the system. In this simpli-

fied model, users have a name; are associated with a country, which

is the country they work in; and can have multiple roles. Possible

roles are Planner, Country Admin, and Global Admin. Planners are

users who create and modify planned transfers; country administrators

maintain warehouse, region, and user data for their countries; and

global administrators can set up new countries and designate coun-

try administrators.

Data Classification

The first domain annotation concerns itself with classifying data. In

the previous description of the domain model, all domain objects were

treated in the same way—as objects that describe concepts of the

domain. At one point, though, warehouse, region, and country were

described as geographical data, which shows that they represent enti-

ties that have something in common. Also, in the description of the

roles, users can have a distinction between different classes of data

that different roles can manipulate.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=128

CASE STUDY: LEROY’S LORRIES 129

Figure 10.2: Users

Clearly, the domain has more information about the domain objects

than is currently represented, and perhaps unsurprisingly at this point,

we use annotations to express this.

The annotation used in Leroy’s Lorries is the DataClassification annota-

tion, and it is used to place the domain objects into one of the following

four categories:

• Reference data: Country, region, warehouse, product, user

• Transactional data: Period, transfer, planned transfer

• Configuration: Role

• Audit: Audit record

http://books.pragprog.com/titles/twa/errata/add?pdf_page=129

CASE STUDY: LEROY’S LORRIES 130

The implementation uses an enum to express the categories, and the

attribute has no functionality beyond storing the classification for a

given class, which means that a Java version would look very similar:

namespace LeroysLorries.Model.Attributes

{

public enum DataClassificationValue

{

Reference,

Transactional,

Configuration,

Audit

}

[AttributeUsage(AttributeTargets.Class)]

public class DataClassificationAttribute : Attribute

{

private DataClassificationValue classification;

public DataClassificationAttribute(

DataClassificationValue classification)

{

this.classification = classification;

}

public DataClassificationValue Classification

{

get { return classification; }

}

}

}

The most common query is to get the classification for a given type,

and for that reason you can create a small method in a helper class to

provide this information in this code:

public static DataClassificationValue GetDataClassification(Type classToCheck)

{

return

GetAttribute<DataClassificationAttribute>(classToCheck).Classification;

}

private static T GetAttribute<T>(Type classToCheck)

{

object[] attributes = classToCheck.GetCustomAttributes(typeof(T), true);

if (attributes.Length == 0)

throw new ArgumentException(...);

return (T)attributes[0];

}

http://books.pragprog.com/titles/twa/errata/add?pdf_page=130

CASE STUDY: LEROY’S LORRIES 131

The public method would also make sense as a static method on the

attribute class itself, thus keeping the entire API in one place. In that

case, the generic method should be made public in a helper class so

that it can be reused.

Alternatives

There are alternatives to using annotations in order to classify data. An

obvious solution is to use inheritance. We could have created a common

base class for all reference data, maybe ReferenceDataObject, and make

Country, Region, and so on, inherit from it. The same would work for the

other classes of domain objects. However, Java and the standard .NET

languages do not allow multiple inheritance, which makes inheritance

a card that can be played only once, and we felt that we might need

inheritance for another problem dimension.

A more theoretical but stronger argument against using inheritance to

classify data lies in domain-driven design, which requires shared own-

ership of the model between the domain experts and the technical peo-

ple. Inheritance expresses an is-a relationship, and although nobody

would have a problem stating that “region is a location,” if we chose

to create such a parent class for region and country, it simply makes

no sense in the real world to say a region is a reference data object.

In short, the argument stipulates that the domain object inheritance

should be used to model real-world taxonomies and nothing else.

Probably the most straightforward approach to adding classification

data to the domain objects is to use an interface with one method:

interface DataClassification

{

DataClassificationValue GetDataClassification();

}

All domain objects implement this interface and have hard-coded

return values as follows:

public DataClassificationValue GetDataClassification()

{

return DataClassificationValue.Transactional;

}

Going down this route requires additional code, and the method on the

domain object stands out insofar as the return value is constant for

every instance; it is metadata and not data.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=131

CASE STUDY: LEROY’S LORRIES 132

A static method would suit the problem better; however, in Java and

C#, interfaces cannot contain static methods, and polymorphism is also

impossible on static methods.

Another solution to classify data is to use marker interfaces, that is,

interfaces without methods. This is a possible workaround in languages

that do not have annotations, but it means using a language element

that was designed for one purpose, namely, to declare methods for poly-

morphic references, for something else, and for storing metadata.

Furthermore, if we had used interfaces in such a way, it is likely that

we would have created a base interface, DataClassification, for example,

and four subinterfaces corresponding to the possible classification val-

ues. This would have made it possible to ask an object whether it is

ReferenceData but also whether it is DataClassification, somehow mixing

up the classification of a domain object and the storage of the classifi-

cation data.

Use in Auditor

The first use of the DataClassification annotation occurred in the audit

logic to implement the following business rule:

• Audit records should be created only for reference data changes.

This rule is implemented in the Auditor class, which is responsible for

creating the actual audit records. It uses the helper method described

earlier.

private bool ShouldAudit(Type type)

{

DataClassificationValue classification =

ReflectionHelper.GetDataClassification(type);

return classification == DataClassificationValue.Reference;

}

The information needed to decide whether to create an audit record is

stored as an annotation in the domain object, but the logic acting on

this information is in the Auditor class. Usually, it is beneficial to keep

data and behavior together, but in this case, a case for a domain anno-

tation, the same data will be used for multiple purposes, which means

the only way to keep data and behavior together would be to keep all

behavior related to this annotation in one place. The next sections show

that the uses of this annotation are quite different, which makes sepa-

rating them a good idea.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=132

CASE STUDY: LEROY’S LORRIES 133

Use in PermissionChecker

The following business rule is also implemented using the same Data-

Classification annotation:

• Only global administrators can modify all reference data.

Using the same reflection helper method, the implementation of a

method in the PermissionChecker class, which decides whether an object

can be changed, is extremely simple and focused on the implementa-

tion of the business logic:

public bool CanChangeObject(User user, object anObject)

{

DataClassificationValue classification =

ReflectionHelper.GetDataClassification(anObject.GetType());

switch(classification)

{

case DataClassificationValue.Reference:

return user.HasRole(RoleValue.GlobalAdmin)

default:

return true;

}

}

The difference from the previous code is that the decision is not based

directly on the value of the annotation, but the value is used to select a

rule appropriate for the classification.

Use in Loader

As mentioned in the introduction, Leroy’s Lorries is a smart client appli-

cation that can work disconnected from the server. This means a work-

ing set of data must be downloaded to the client before going offline,

and this set should be as small as possible to minimize server load and

download volume.

In this context, the data classification is used to implement the follow-

ing rule:

• Transactional data should be loaded only for planners.

The implementation is almost identical to the previous one but high-

lights an advantage of using annotations over concrete methods on the

domain objects. We pass in the type of the object because when this

method is invoked, no instances exist; this method decides whether to

create objects.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=133

CASE STUDY: LEROY’S LORRIES 134

private bool ShouldLoad(Type type, User user)

{

DataClassificationValue classification =

ReflectionHelper.GetDataClassification(type);

if(classification == DataClassificationValue.Transactional)

return user.HasRole(RoleValue.Planner);

return true;

}

The original application that Leroy’s Lorries is based on had more com-

plex rules with more cases that made the use of annotations for data

classification even more compelling than shown here.

Navigational Hints

The second domain annotation I’ll present in this essay is related to

indirect relationships in the domain model. For example, even though

Warehouse has no direct relationship with Country, it is possible to say

which country a warehouse is located in because of the relationships

from warehouse to region and from region to country. Indirect relation-

ships are obviously not confined to objects with the same classifica-

tion, regional in this case. Looking at the domain model, a transfer, for

example, is also related to a country; actually, two countries as planned

transfers have relationships to two warehouses.

In Leroy’s Lorries, we chose annotations to mark those properties that

need to be followed to eventually arrive at a target object, a country,

for example. Following properties means retrieving the related domain

object and then searching for a property with the same annotation on

the resulting object to continue the search.

The implementation of the annotation is even simpler than that of the

classification because no value is needed. This again implies that a Java

version would be very similar:

namespace LeroysLorries.Model.Attributes

{

[AttributeUsage(AttributeTargets.Property)]

public class CountrySpecificationAttribute : Attribute

{

}

}

The attribute used on the properties for the relationships, as well as

the Warehouse class from Leroy’s Lorries minus any code that pertains

to the name of the warehouse, looks like the code on the next page.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=134

CASE STUDY: LEROY’S LORRIES 135

namespace LeroysLorries.Model.Entities

{

[DataClassification(DataClassificationValue.Reference)]

public class Warehouse

{

private Region region;

[CountrySpecification]

public Region Region

{

get { return region; }

set { region = value; }

}

}

}

Complementing the annotation is a generic pathfinder class that allows

you to get a target object as well as an array of strings describing the

path followed from a given type to the target. The following two exam-

ples illustrate its use:

Warehouse warehouse; // get this from somewhere

PathFinder<Country> finder = new PathFinder<Country>();

Country country = finder.GetTargetObject(warehouse);

After creating a pathfinder that targets countries, the pathfinder is used

to get the country for a given warehouse. It is noteworthy that the

pathfinder uses a convention to determine which attribute to follow.

It simply appends SpecificationAttribute to the type name, Country in this

case, and then looks for an attribute with that name in the Attributes

namespace. The reason for creating a generic pathfinder will become

obvious later in this essay.

PathFinder<Country> finder = new PathFinder<Country>();

string[] path = finder.GetPath(typeof(Warehouse));

In this second example, the pathfinder returns the path it would have

followed as a string array, which contains the strings "Region" and

"Country" representing the names of the properties in the Warehouse and

Region classes, respectively. This method can obviously be used before

any instances of domain objects exist because it works with types, not

instances.

public class PathFinder<T>

{

private static string NAMESPACE = "LeroysLorries.Model.Attributes.";

private Type attrType;

http://books.pragprog.com/titles/twa/errata/add?pdf_page=135

CASE STUDY: LEROY’S LORRIES 136

public PathFinder()

{

string typeName = NAMESPACE + typeof(T).Name + "SpecificationAttribute";

if((attrType = Type.GetType(typeName)) == null)

throw new ArgumentException(...);

}

public T GetTargetObject(object anObject)

{

Type objectType = anObject.GetType();

if(objectType == typeof(T))

return (T)anObject;

PropertyInfo propInfo = ReflectionHelper.GetPropertyWithAttribute(

objectType, attrType);

object nextObject = ReflectionHelper.GetPropertyValue(

anObject, propInfo.Name);

return GetTargetObject(nextObject);

}

public string[] GetPath(Type type)

{

List<string> path = new List<string>();

if(BuildPath(type, path) == false)

throw new ArgumentException(...);

return path.ToArray();

}

private bool BuildPath(Type type, List<string> path)

{

if(type == typeof(T))

return true;

PropertyInfo prop = ReflectionHelper.GetPropertyWithAttribute(

type, attrType);

if(prop == null)

return false;

path.Add(prop.Name);

return BuildPath(prop.PropertyType, path);

}

}

Alternatives

As with the classification example, there are alternatives to using anno-

tations. In this case, the most obvious choice would be to implement a

property for the relevant type on every domain object, hard-coding the

relationship directly.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=136

CASE STUDY: LEROY’S LORRIES 137

For example, the following property would be added to warehouse:

public Country Country

{

get { return region.Country; }

}

The country pathfinder, rather than searching for a property with the

country specification, would now simply invoke the property that is

typed as Country. Although this is still nicely encapsulated object-

oriented code, it requires a lot of discipline and legwork to maintain

on the domain model.

A more automated approach, which does not require additional code on

the domain model, would employ graph searching. The domain object

types and their relationships can be seen as a directed graph, and start-

ing from a domain object standard depth-first-search or breadth-first,

a search algorithm could be used to find the target object. This would

work on instances as well as types, thus allowing for a full implemen-

tation of the pathfinder.

With some caching of paths that have been discovered by the search

algorithm, this approach could work well, at least as long as the paths

are unambiguous and do not require domain logic. Unfortunately, in

Leroy’s Lorries, this is not the case. Planned transfers have an origin

and a destination warehouse, and if these are in different countries, a

search algorithm requires additional information to choose which one

to follow. Using annotations, the country specification is added to the

origin property, reflecting the domain knowledge that planned transfers

should be listed under the origin country.

Use in PermissionChecker

Returning to the permission checker described earlier, we use the coun-

try specification in the implementation of the following business rule:

• Country administrators can change reference data only for their

own country.

The implementation extends the CanChangeObject() method. Adding

the new rule to the switch case for reference data, it looks like the code

shown on the next page.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=137

CASE STUDY: LEROY’S LORRIES 138

public bool CanChangeObject(User user, object anObject)

{

DataClassificationValue classification =

ReflectionHelper.GetDataClassification(anObject.GetType());

switch(classification)

{

case DataClassificationValue.Reference:

if(user.HasRole(RoleValue.GlobalAdmin))

return true;

if(user.HasRole(RoleValue.CountryAdmin))

return FindCountry(anObject) == user.Country;

return false;

default:

return true;

}

}

Global administrators can still change all reference data, but for coun-

try administrators, the country for the reference data domain object

must match the administrator’s. The actual use of the pathfinder is

extracted into a helper method to keep the code clearer:

private Country FindCountry(object anObject)

{

return new PathFinder<Country>().GetTargetObject(anObject);

}

This example not only shows different uses of the individual annota-

tions, but it also shows how both work together to provide a clear and

concise implementation of the business rule, without sacrificing sepa-

ration of concerns.

Use in Loader

Planners are assigned to a country and handle the transfers only for

that given country. Similarly, country administrators can maintain data

only for their country. When considering the data volume that is down-

loaded to the client application, it is an obvious optimization to trim the

data following this rule:

• Only data for the user’s country should be loaded, unless they are

global admins.

Using the country specifications and a pathfinder, it is possible to deter-

mine a path for each domain object class that leads to the country

object. It is then up to the object-relational mapping technology to turn

this into a query criterion that limits the objects fetched into memory.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=138

CASE STUDY: LEROY’S LORRIES 139

The following code shows an abstracted implementation of the idea:

private Query CreateQuery(Type type, User user)

{

QueryBuilder builder = new QueryBuilder(type);

if(!user.HasRole(RoleValue.GlobalAdmin))

{

PathFinder<Country> finder = new PathFinder<Country>();

string[] path = finder.GetPath(type);

builder.AppendCondition(path, QueryBuilder.EQUALS, user.Country);

}

return builder.GetQuery();

}

This method would obviously be called, and the objects loaded, only

when the ShouldLoad() method described in the previous section returns

true for the type/user combination.

In Leroy’s Lorries, geography is only one important dimension. Equally

important is time and the planners’ work in monthly planning cycles.

This means that, except for historical reference, planners are interested

in data only for three months: the current, the previous, and the next

month. So, rather than loading years worth of data, we implemented

the following rule and lazy loading for other data:

• Transactional data should be loaded only for the previous, cur-

rent, and next month.

This rule is in addition to the rule presented earlier that stipulates

transactional data should be loaded only for planners.

With the pathfinder’s generic implementation and the convention for

naming and finding the specification attributes, we were able to create

the following attribute and place it on the domain objects representing

transfers and planned transfers:

namespace LeroysLorries.Model.Attributes

{

[AttributeUsage(AttributeTargets.Property)]

public class PeriodSpecificationAttribute : Attribute

{

}

}

http://books.pragprog.com/titles/twa/errata/add?pdf_page=139

SUMMARY 140

Following this, we extended the CreateQuery() method described earlier

as follows:

private Query CreateQuery(Type type, User user)

{

QueryBuilder builder = new QueryBuilder(type);

if(!user.HasRole(RoleValue.GlobalAdmin))

{

PathFinder<Country> finder = new PathFinder<Country>();

string[] path = finder.GetPath(type);

builder.AppendCondition(path, user.Country);

}

if(ReflectionHelper.GetDataClassification(type) ==

DataClassificationValue.Transactional)

{

PathFinder<Period> finder = new PathFinder<Period>();

string[] path = finder.GetPath(type);

builder.AppendCondition(path, period);

}

return builder.GetQuery();

}

I believe this final example shows how neatly different concerns are

separated by using domain annotations and generic algorithms based

on them. An optimization in the data layer that exploits some domain

knowledge is clearly split into the domain part, which is implemented

in the domain model, and none of the data access logic leaks out of the

data layer.

This example also brings together all three annotations from the case

study, which shows again that the annotations are used to implement

cross-cutting concerns, which are best kept in a separate area of the

codebase.

10.3 Summary

Annotations in Java and attributes in C# have added a construct to

these programming languages that enables developers to express meta-

data in a clear and extensible way. When following a domain-driven

design process, metadata belonging to the application domain is ex-

pressed as annotations on domain objects; we propose the term domain

annotations for these annotations. They are strictly limited to the

domain model, are normally defined in the same package/namespace

as the domain model, and are usually useful for multiple purposes.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=140

SUMMARY 141

Using domain annotations makes it easier to separate domain-specific

code from infrastructure code, allowing for independent reuse. The

benefit of this separation is twofold. All knowledge about the domain

is expressed in a domain model that can be reused with different infras-

tructure technologies, and infrastructure code can be productized,

commercially or as open source software. This means that application

developers can focus on the application domain and create something

of lasting value.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=141

When we...construct and maintain build files, all those

code perfectionist ideals seem to disappear.

Paul Glover

Chapter 11

Refactoring Ant Build Files
by Julian Simpson, Build Architect

11.1 Introduction

A bad software build system seems to actively resist change. The most

innocent change can stop your colleagues from being able to work.

Such a reputation won’t encourage people to try to improve a build

if it eventually gets the job done. This essay will show you how to help

ease some of that pain and allow change to take place by describing

some short refactorings to apply to your Ant build file. Each refactor-

ing is expressed as a “before” and “after” code example (separated by

an arrow to show the direction of transformation) with an explanation.

You will be left with some concrete tools that you can apply to your Ant

build to make it smaller, more legible, and easier to modify.

What Is Refactoring? And What Is Ant?

Refactoring is the art of making small changes to a system to improve

the readability, clarity, or ease of maintenance of a codebase. Refactor-

ing doesn’t change functionality; it’s used to make the internals of a

codebase easier to work on.

Ant is the build tool of choice for many Java-based software projects.

It was written at a time when XML seemed to be the answer to any

problem in software development. Hence, a project’s dependencies are

described in an XML file, typically called build.xml. This is the Java

equivalent of a Makefile. Ant has been very successful as an open

source project, but as projects grow, flex, and become more compli-

cated, it generally becomes hard to maintain.

INTRODUCTION 143

When Should You Refactor? When Should You Run Away?

Before we get into the details of each refactoring, let’s set the context

and purpose of the whole exercise. Most of us are here to deliver work-

ing software. To do that, you need to be able to build it. Sometimes

you’ll need to change the build. If nobody wants to change the build,

you can’t deliver. And that’s bad.

So, this essay is an attempt to lower the cost (or pain) of that change.

Obviously you need to consider the big picture. Is the build a major

source of pain? Is it slowing down the rate at which you can deliver

software? Are the issues on the project much larger than the build?

Should you head for the door right now?

So, you’re still here, and your build is still a problem. How big a problem

is it? If you have a real spaghetti monster, this essay is for you, but pro-

ceed very, very carefully. Start looking at what you can delete. You may

have some targets that aren’t used. Start with them. I have successfully

used the Simian similarity analyzer on projects to find the duplications

that hurt so much and then used Extract Macrodef or Extract Target to

address them.

Most of these refactorings can coexist. The previous extraction refac-

torings can be mutually exclusive in some situations—there may be

no difference in the effect of either. There is a wide range of motiva-

tions for performing them. You may want to make sure that the code is

more easily understood by the casual reader (replacing “comment” with

“description”), and you may want to stop the build from being used in

unintended ways (by enforcing internal targets).

Can You Refactor a build.xml File?

During a refactoring exercise, a build file’s external behavior is easy

to define. Given some source files, you generally want some artifacts

generated—compiled code, test results, documentation, or a deployable

artifact like a WAR file.

Ant build files are equally as deserving of refactoring as business code.

They are less tolerant of errors than programming languages. Some

errors won’t break the build immediately but will cause the build to

fail in interesting ways later. For example, failing to set a property will

not cause the build to exit in the same way that an undeclared vari-

able will in Java, Ruby, or Python. The challenge is to apply refactoring

techniques with discipline but without a testing safety net or IDE tools.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=143

ANT REFACTORING CATALOG 144

Refactoring usually relies heavily on unit tests to ensure that the refac-

toring has no functional impact on the code. In this case, we don’t have

many tools to help us see the impact of the change. There is no ubiq-

uitous test framework like Java’s JUnit or Ruby’s Test::Unit and no

convenient way to isolate a unit for testing with stubbed dependencies.

Even if you did have these tools, they may be of questionable value.

Should you need a build system that is so complex that you need to

test-drive it?

To make matters worse, Ant has static typing without the benefit of

compile-time class checking, and the build file is expressed as an XML

file that can never be validated because there is no fixed DTD. Changes

to a poorly factored build file often have a high risk because a sin-

gle change can impact productivity. At the beginning of the refactoring

process, it may be difficult to test your changes locally before checking

in. You may need to make very small changes and test frequently. As

you simplify the internal structure of the build, you should gain more

traction and be able to make more aggressive refactorings.

11.2 Ant Refactoring Catalog

Each refactoring has a name, a brief description, and an example of the

refactoring in action. The first code snippet is the original code, and the

snippet after the arrow shows the refactored code. A longer explanation

follows the snippets, and some refactorings have an extra sidebar.

Refactoring Description

Extract macrodef. Take small blocks of Ant code, and

pull out into macrodef with appro-

priate name.

Extract target. Take part of a large target, declare

it as an independent target, and

declare as a dependency of the for-

mer.

Introduce declaration. Make targets declare their depen-

dencies.

Replace call with dependency. Replace invocations of antcall with

intertarget dependencies.

Introduce filtersfile. Use a property file in a filterset

rather than nested filter elements.

(cont.)

http://books.pragprog.com/titles/twa/errata/add?pdf_page=144

ANT REFACTORING CATALOG 145

Refactoring Description

Introduce property file. Move properties from the body of

your build.xml file to a flat file.

Move target to wrapper build. Take targets that aren’t used by

developers to a higher-level file,

and invoke the developer build.

Replace a comment with a

description.

Annotate elements with the

description attribute instead of

XML comments.

Push deployment code into

import.

Import deployment code from an

external build file so you can

import the correct file at build

time.

Move element to Antlib. Share frequently used tasks

between projects in an Antlib.

Replace large library definitions

with a fileset.

Use a fileset to discover your

libraries using a glob rather than

specifying the path to each one.

Move runtime properties. Ensure some separation between

the properties that you use to

build your code and the runtime

configuration.

Reuse elements by ID. Declare an instance of a type once

(for example, a fileset), and make

references to it elsewhere to avoid

duplication.

Move property outside target. Put properties into the body of the

build.xml so they don’t give the illu-

sion that they are scoped to the

target (they aren’t).

Replace value attribute with loca-

tion.

Represent filesystem paths with

the location attribute so that Ant

will normalize the path.

Push wrapper script into build.xml

file.

Put input validation and classpath

manipulation inside the build.xml

file in a cross-platform Ant script.

Add taskname attribute. Show the intent of the task at

runtime by adding the taskname

attribute.

(cont.)

http://books.pragprog.com/titles/twa/errata/add?pdf_page=145

ANT REFACTORING CATALOG 146

Refactoring Description

Enforce internal target. Disable internal targets from

being invoked from the command

line.

Move outputs directory to parent. Keep all outputs from the build

under a single tree.

Replace Exec with Apply. Use pathlike structures as inputs

to execution rather than a list of

arg elements.

Use CI publishers. Tag your build and publish arti-

facts after the developer build has

completed, not during the build.

Introduce distinct target naming. Use a different punctuation for

targets and properties to enhance

readability.

Rename target with noun. Name targets with the output of

the target, rather than the process

that is applied.

Extract Macrodef

Summary: Macrodefs can be used to tease out small parts of a confused

build file.

Download refactoring_before.xml

<target name="build_and_war_foo.war">

<javac srcdir="src/foo" destdir="classes/foo" />

<copy todir="${classes.dir}">

<filterset>

<filter token="ENV" value="${environment}" />

</filterset>

<fileset dir="config" />

</copy>

<war destfile="foo.war">

<fileset dir="${classes.dir}" />

</war>

<move todir="archives" file="foo.war" />

</target>

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=146

ANT REFACTORING CATALOG 147

Download refactoring_after.xml

<macrodef name="build_code">

<attribute name="component" />

<sequential>

<javac srcdir="src/@{component}" destdir="classes/@{component}" />

<copy todir="${classes.dir}">

<filterset>

<filter token="ENV" value="${environment}" />

</filterset>

<fileset dir="config" />

</copy>

</sequential>

</macrodef>

<macrodef name="make_war">

<attribute name="component" />

<sequential>

<war destfile="@{component}.war">

<fileset dir="${classes.dir}" />

</war>

<move todir="archives" file="@{component}.war" />

</sequential>

</macrodef>

<target name="foo.war" >

<build_code component="foo"/>

<make_war component="foo"/>

</target>

Large targets in Ant have the same smell as large methods in an OO

language. They can be brittle, hard to test, and hard to debug, and

they can’t easily be reused.

Making changes to them can be hard because each line may have an

implicit dependency on others in the target. Long targets can also con-

fuse the reader as to the intent of the build file author.

The macrodef task is a container task (which wraps the sequential or

parallel tasks, which themselves contain the tasks you want to reuse)

that can be invoked anywhere in your build file, with attributes. The

attributes can be defaulted, which is handy when you might have sev-

eral uses for a particular macrodef.

Macrodefs also lend themselves well to reuse. In the previous example,

a target is doing too much, and we can pull out part of the target to

isolate bits of XML. We may take the further step of introducing a target.

http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=147

ANT REFACTORING CATALOG 148

Download refactoring_before.xml

<target name="bar.war">

<war warfile="bar.war" basedir="classes/bar"/>

</target>

<target name="baz.war">

<war warfile="baz.war" basedir="classes/baz"/>

</target>

Download refactoring_after.xml

<macrodef name="war">

<attribute name="name"/>

<sequential>

<war warfile="'@{name}.war" basedir="classes/@{name}"/>

</sequential>

</macrodef>

Build files can be very prone to duplication. Macrodefs are good replace-

ments for antcall, which was used in older versions of Ant (before

Ant 1.6) for reuse. The previous example contains duplication, which

you replace with many calls to a single macrodef, passing different

attributes.

How far should you go writing macrodefs? By all means, write large

macrodefs if you need to do complex things, but make sure you don’t

introduce macrodefs that might be better expressed as targets. The

XML language may prove hard to scale; you may also want to consider

writing your own Ant tasks in Java or a dynamic language. You can try

to enjoy the best of both worlds by writing your task in a dynamic lan-

guage such as Ruby or Python using the scriptdef task. You get to write

tested code, with no compilation. Be aware that you need to spend some

time learning the object model of Ant.

Extract Target

Summary: Break up targets that appear to be doing different kinds of

tasks into two or more targets.

Download refactoring_before.xml

<target name="test" >

<javac srcdir="${test.src}" destdir="${test.classes}">

<classpath refid="test.classpath"/>

</javac>

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=148

ANT REFACTORING CATALOG 149

<junit failureproperty="test.failure">

<batchtest todir="${test.results}">

<fileset dir="${test.results}"

includes="**/*Test.class"/>

</batchtest>

</junit>

</target>

Download refactoring_after.xml

<target name="compile_tests" depends="compile_code">

<javac srcdir="${test.src}" destdir="${test.classes}">

<classpath refid="test.classpath"/>

</javac>

</target>

<target name="unit_tests" depends="compile_tests">

<junit failureproperty="test.failure">

<batchtest todir="${test.results}">

<fileset dir="${test.results}"

includes="**/*Test.class"/>

</batchtest>

</junit>

</target>

Long Ant targets can be hard to understand, troubleshoot, or add to.

The easiest short-term change to make is to add things to existing tar-

gets, so that’s what people do. Teasing the functional parts into sepa-

rate targets with the correct dependencies helps you keep a build.xml file

cleaner and easier to maintain.

When should you extract a macrodef, and when should you extract a

target? If you have a block of code that has dependencies, make it a tar-

get. If you want to call it from the command line, for example, a target to

drop your private database schema, make it a target. In fact, almost all

the time you’ll want to make targets. If you have something that seems

to be a duplicate block of code, perhaps with different paths or inputs,

extract a macrodef so you can invoke with a different attribute. Com-

pilation and unit testing in large projects that may have many source

trees and many kinds of tests are good candidates to have targets that

invoke a macrodef to do the work.

Another useful trick is to call a macrodef when you might otherwise

be tempted to use an antcall; a real-world example is an antcall to a

target that checked for build status. antcall can also be slow, because

internally it needs to create a new project object.

http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=149

ANT REFACTORING CATALOG 150

Introduce Declaration

Summary: Use Ant’s built-in declarative logic to replace if conditions,

which can be hard to debug.

Download refactoring_before.xml

<target name="deploy">

<if>

<equals arg1="${j2ee.server}" arg2="was" />

<then>

<antcall target="was_deploy"/>

</then>

<else>

<antcall target="weblogic_deploy"/>

</else>

</if>

</target>

Download refactoring_after.xml

<property name="j2ee.server" value="was" />

<import file="${j2ee.server}.build.xml" />

<!-- there is now a an appropriate target named

deploy depending on the version of the app server -->

In this example, we use logic to branch off to the appropriate version

of a target. This feels natural but is hard to express so clearly in an

XML-based language. XML was intended to be used to represent data

in the first place. Logic doesn’t work so well. Besides that, Ant has a

declarative language. You need to relinquish some control over the file

and let Ant execute tasks in the right order—with a little guidance.

Each target in the Ant file declares its dependencies using the depends

attribute in the target declaration. If you feel the need to do any kind of

branching in your build file, this indicates you may want to rearrange

your build file.

This technique is especially powerful if you have many if-else elements in

your build; you can take half a dozen branching constructs and distill

them all down to a very cleanly delineated pair of files. Developers who

work with object-oriented code may recognize this as an example of

polymorphism, in which the Ant build can have targets of the same

name but different behavior depending on the context.

Ant has possessed an import task since version 1.6, and you can use

this feature with properties to import the file that contains the behavior

you need.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=150

ANT REFACTORING CATALOG 151

ant-contrib

The if element comes from the ant-contrib project, which adds
some scripting capabilities to Ant. Both the original creator and
maintainers of Ant believe that Ant shouldn’t be a complete
scripting language. Use ant-contrib with care!

Replace Call with Dependency

Summary: Let Ant manage the dependencies instead of explicitly invok-

ing them.

Download refactoring_before.xml

<target name="imperative_build">

<antcall target="compile"/>

<antcall target="test"/>

</target>

Download refactoring_after.xml

<target name="declarative_build" depends="test, publish "/>

<target name="test" depends="compile"/>

The entire point of dependency-based build tools such as Ant is to pre-

vent targets from being run more than once. antcall subverts the subtle

declarative nature of Ant by executing tasks imperatively. It is often

used to try to reuse a task by passing different parameters upon invo-

cation. It’s easy to run targets twice or more when you use antcall, espe-

cially if you mix depends and antcall inside the same build.

The correct thing to do is declare that the deploy target depends on

compile and test. The test target has its own dependency on compila-

tion. Ant is designed to resolve the tree of dependencies and execute

them in the correct order. It will also attempt to execute in the order

that you declared them, but don’t count on this because it will adjust

that order to satisfy dependencies.

Replace Literal with Property

Summary: Use a property to replace repeating literal values in your

build file; use built-in Java and Ant properties for external values.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=151

ANT REFACTORING CATALOG 152

Environment Variable

One common smell is the use of imported environment vari-
ables to find out what the username is or what the running
OS is. Although this works, it’s another external dependency on
the build system, and this can make systems fragile. Java’s sys-
tem properties are included by default in an Ant build’s names-
pace. So instead of importing the environment and then trying
to derive things from entries that you find, use the built-in prop-
erties where you can: user.name, os.name, and so on.

Download refactoring_before.xml

<target name="deploy_to_tomcat">

<copy file="dist.dir/webapp.war" todir="tomcat.webapps.dir"/>

</target>

Download refactoring_after.xml

<property name="dist.dir" location="${build.dir}/dist"/>

<property name="tomcat.webapps.dir" location="/opt/tomcat5/webapps"/>

<target name="deploy_to_tomcat">

<copy file="${dist.dir}/webapp.war" todir="${tomcat.webapps.dir}"/>

</target>

It’s necessary to use properties to represent static and dynamic strings

in your build. The directory that you compile classes to may not change

often, but when it does, you want to make one change, rather than five.

As a rule of thumb, if you find yourself typing the same string three

times, you should make a property. See “Replace Value Attribute with

Location” for more about how to represent filesystem paths in prop-

erties. It’s always worth remembering that properties are immutable

in Ant. So, the first value to be assigned to the property sticks to the

property. This means you can override the property outside the build if

you want or introduce default values in a property file in a file that is

evaluated last.

Introduce filtersfile

Summary: Use a property file to map elements to values, and refer

to the properties directly in your template rather than via a set of

elements.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=152

ANT REFACTORING CATALOG 153

Download refactoring_before.xml

<target name="filter">

<copy todir="${build}" file="${src}/config/config.xml">

<filterset>

<filter token="APP_SERVER_PORT" value="${appserver.port}"/>

<filter token="APP_SERVER_HOST" value="${appserver.host}"/>

<filter token="APP_SERVER_USERID" value="${appserver.userid}"/>

</filterset>

</copy>

</target>

Download refactoring_after.xml

<target name="filtersfile">

<copy todir="${build}" file="${src}/config/config.xml">

<filterset filtersfile="appserver.properties"/>

</copy>

</target>

Download appserver.properties

appserver.port=8080

appserver.host=oberon

appserver.userid=beamish

END filtersfile

Build files can quickly become difficult to read. Properties are some-

times best kept in a plain-text file where any member of the project team

can see and understand them. This example demonstrates this tech-

nique in the context of filtersets. Many build systems replace tokens in

templates with values, especially when you need to maintain files for

different environments. If you don’t already reuse filterset elements by

ID, you’ll find that they can dominate the build file with large blocks

of tokens. This approach has two benefits; you don’t need to introduce

a token for a value (you can directly use the property name), and you

get to expose a property file that anyone can edit without making your

XML invalid. You can use more than one filtersfile value as a child of

the copy element as well. They are evaluated on a first-come first-served

basis, so values can have defaults. The filters file is a plain properties

file, which can be used elsewhere in your build.

Introduce Property File

Summary: Move infrequently changing properties out of the main build

and into a file.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/appserver.properties
http://books.pragprog.com/titles/twa/errata/add?pdf_page=153

ANT REFACTORING CATALOG 154

How Many Properties Should You Have Anyway?

Too few, and you end you end up with unattractive concate-
nations of properties, a violation of the Don’t Repeat Yourself
(DRY) rule; too many, and you end up having duplicate prop-
erties or too many to keep in mind. If you can divide your build
into different files, you can try to scope properties by file.

Download refactoring_before.xml

<property name="appserver.port" value="8080" />

<property name="appserver.host" value="oberon" />

<property name="appserver.userid" value="beamish" />

Download refactoring_after.xml

<property file="appserver.properties" />

Download appserver.properties

appserver.port=8080

appserver.host=oberon

appserver.userid=beamish

END filtersfile

Ant doesn’t recognize entities like constants in a build file; there’s no

point because all properties are immutable in any case. The main dif-

ference that you may encounter is that some properties are fixed; in

addition, some are dynamically created perhaps on invocation in Ant or

as an output of a task. Those static properties are the closest thing we

have to constants, and it is those that you can remove from your Ant file

and evaluate via a properties file. This does make your build.xml more

legible, although you may trade some of the visibility of the properties

as you push them down into a file.

Move Target to Wrapper Build File

Summary: Pull CI targets out of the developer build file; provide some

indirection.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/appserver.properties
http://books.pragprog.com/titles/twa/errata/add?pdf_page=154

ANT REFACTORING CATALOG 155

Download refactoring_before.xml

<target name="build">

<!-- developer build-->

</target>

<target name="functest">

<!-- functional tests-->

</target>

<target name="cruise" depends="update,build,tag"/>

<target name="functional_cruise" depends="update,build,functest,tag"/>

Download refactoring_after.xml

<target name="build">

<!-- developer build-->

</target>

<target name="functest">

<!-- functional tests-->

</target>

Download ccbuild.xml

<project name="cruise" default="tag">

<target name="tag" depends="build">

<!-- code to tag the files you have checked out -->

</target>

<target name="build" depends="update">

<ant buildfile="build.xml"/>

</target>

<target name="update" >

<!-- code to update from your scm system-->

</target>

</project>

<!-- END ccbuild -->

<project default="update" basedir="."

xmlns:my="antlib:com.thoughtworks.monkeybook">

<target name="update" depends="build">

<my:svn_up/>

</target>

</project>

<!-- END antlibccbuild -->

Continuous integration is a technique for reducing integration pain on

software projects. Every time a developer commits source code changes

to the source control repository, the CI server will check out the newest

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/ccbuild.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=155

ANT REFACTORING CATALOG 156

version of the code, compile it, and run tests. There are many ways to

notify the team of changes in status (audible warnings are great for a

colocated team), and there should be a strong cultural bias to keeping

the build in a green or passing state. If two developers work on code

that doesn’t integrate, the team will know quickly.

CI operations (for example, SCM tagging, updates, and so on) can some-

times become very tightly coupled to your build. Ideally, the CI system

should run the identical build to the developer, with any extra targets

being in a wrapper Ant file that calls down to the developer build, using

the ant task. If you run several CI builds on the same codebase, you

can maintain several ccbuilds and keep all the mechanics of CI out of

harm’s way in these files.

Replace Comment with Description

Summary: Apply descriptions to tags rather than inline comments.

Download refactoring_before.xml

<target name="distribute">

<!-- copy the compiled classes -->

<copy todir="${dist}">

<fileset dir="${classes.dir}"/>

</copy>

</target>

Download refactoring_after.xml

<target name="dist">

<copy todir="${dist}" description="copy compiled classes">

<fileset dir="${classes.dir}"/>

</copy>

</target>

Many Ant build files are peppered with comments. Comments can be

a good thing, but they can also obscure the mechanics of the build.

Almost all tasks accept a description attribute; so, you can directly anno-

tate a task rather than introduce a comment near it. You could also use

the taskname attribute to tell the user what is happening at runtime. I

like to keep the task names short, so keep the long explanations to the

descriptions.

Push Deployment Code into Import

Summary: The targets that deploy your code should be in a separate

file from the targets your developers use.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=156

ANT REFACTORING CATALOG 157

A Good Likeness

Having said all that, try to deploy to as lifelike a stack as you
can. Choose your lightweight container wisely.

Download refactoring_before.xml

<target name="deploy_to_weblogic" >

<!-- insert WL task or similar -->

<sshexec host="${deploy.host}" username="dev" command="restart_container"/>

</target>

Download refactoring_after.xml

<import file="deploy.xml" />

<target name="test_in_container" depends="deploy_to_weblogic"/>

If all projects used a single application server on a single host, it would

be simple to have one build file. But it’s common to use more than

one application server on a project, such as a lightweight server on the

developer’s desktop and an enterprise one in the data center.

If you extract the relevant code for each to a separate file, you get a

nice separation of concerns. You can import whatever file you need,

and all the details of deploying to everything else are hidden. Also, you

can significantly simplify your final project object that Ant builds when

it parses the build files, so the fact that you are missing some of the

dependencies for a local build isn’t a problem when you want to deploy

to an enterprise server.

Move Element to antlib

Summary: Take Ant build elements that are repeated across many

projects and distribute via an antlib.

Download ccbuild.xml

<project name="cruise" default="tag">

<target name="tag" depends="build">

<!-- code to tag the files you have checked out -->

</target>

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/ccbuild.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=157

ANT REFACTORING CATALOG 158

<target name="build" depends="update">

<ant buildfile="build.xml"/>

</target>

<target name="update" >

<!-- code to update from your scm system-->

</target>

</project>

<!-- END ccbuild -->

<project default="update" basedir="."

xmlns:my="antlib:com.thoughtworks.monkeybook">

<target name="update" depends="build">

<my:svn_up/>

</target>

</project>

<!-- END antlibccbuild -->

Download ccbuild.xml

<project default="update" basedir="."

xmlns:my="antlib:com.thoughtworks.monkeybook">

<target name="update" depends="build">

<my:svn_up/>

</target>

</project>

<!-- END antlibccbuild -->

Download antlib.xml

<antlib>

<macrodef name="svn_up">

<attribute name="svn.exe" default="/usr/bin/svn" />

<sequential>

<echo message="${basedir}" />

<exec failonerror="true" executable="@{svn.exe}">

<arg value="update" />

</exec>

</sequential>

</macrodef>

</antlib>

<!-- END antlib-->

Ant-based projects often repeat the same literal blocks of Ant XML code

again and again. This is one of the factors that led to the creation of

the Maven project: “While there were some common themes across the

separate builds, each community was creating its own build systems

http://media.pragprog.com/titles/twa/code/ccbuild.xml
http://media.pragprog.com/titles/twa/code/antlib.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=158

ANT REFACTORING CATALOG 159

Where Is Each Library Used?

If you make subdirectories for runtime and build-time libraries,
it’s a good start. Knowing whether something is required for
build or deploy is very useful.

and there was no reuse of build logic across projects” [Casey]. antlib is

an XML file with a root element of antlib. When this file is in your class-

path (perhaps bundled as a JAR file in your $ANT_HOME/lib directory)

and you specify an XML namespace for your build file, you can directly

access the elements defined. Here’s a real-world example:

For example, on large projects you may end up with dozens of smaller

projects being built by CruiseControl. Each one of these projects needs

to do the following:

• Update the checkout from source control.

• Invoke the developer build.

• Tag the codebase if the build passes.

Each build will have a short build file (possibly called cc-build.xml or

similar) that does these operations before calling down to the developer

build. antlib allows you to expose types, tasks, and macrodefs via the

default classpath. So, for the example project, you can declare an SVN

task or macrodef and put it in the $ANT_HOME/lib directory, so every-

body or everything using your default Ant distribution can use common

types. You’ll need to do some work to package it for use by the rest of

the team.

mkdir -p com/thoughtworks/monkeybook/

cp ~/workspace/monkeybook/content/antlib.xml com/thoughtworks/monkeybook/.

jar cvf antlib.jar com

cp /tmp/antlib.jar apache-ant-1.6.5/lib/.

Once the JAR file is in the project’s classpath, you can use the macrodef

as in the earlier example.

Replace Large Library Definitions with a Fileset

Summary: Use a nested fileset inside your path definition rather than

painstakingly specifying your path elements by hand.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=159

ANT REFACTORING CATALOG 160

Download refactoring_before.xml

<path id="build.path">

<pathelement location="${lib}/build/junit.jar"/>

<pathelement location="${lib}/build/crimson.jar"/>

<pathelement location="${lib}/build/emma.jar"/>

</path>

Download refactoring_after.xml

<path id="build.path">

<fileset dir="${lib}/build" />

</path>

In most projects, libraries get checked into source control. It can be

tedious to update references to libraries as they change. This example

doesn’t have version numbers in the path, but if you want to upgrade

a library one point release, you have to change your build. Letting Ant

discover your libraries does a lot of the work for you, but beware: you

still need to understand what libraries your code uses and organize

them in the right way.

Move Runtime Properties

Summary: Keep runtime properties distinct from your build properties

so that you can reconfigure your application easily.

Download refactoring_before.xml

<target name="war">

<copy file="${src}/runtime.properties"

tofile="${build}/war/lib/myapp.properties"/>

<war destfile="${dist}/myapp.war" basedir="${build}/war"/>

</target>

Download refactoring_after.xml

<property name="runtime.smtp.server" value="foo.thoughtworks.com"/>

<property name="web.service.endpoint" value="bar.thoughtworks.com/axis"/>

<target name="war">

<echoproperties destfile="${build}/war/lib/myapp.properties"/>

<war destfile="${dist}/myapp.war" basedir="${build}/war"/>

</target>

Do you need to repackage or even recompile your application to deploy

to a different environment? You should be able to compile your release

candidates and park them in a repository to be deployed at some later

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=160

ANT REFACTORING CATALOG 161

Free the Configuration

Once your build starts to get slow and/or you get closer to
release, consider unbundling the configuration from the code.
There will come a time where you want to change a con-
figuration property without redeploying. You can deploy run-
time property files to the filesystem, for example. This works
well because you can edit them when you need to, although
in a production environment you’ll need to make sure they
are secured. LDAP is another possibility (although more work),
and you may introduce another service that your application
depends on.

stage; that ensures you are always deploying the same code that you

tested earlier. Another problem we have seen is the need to rebuild

applications in order to change trivial properties that the application

uses at runtime (“Web services endpoint URL changed? You need to

rebuild.”).

There are two very different sets of properties in your build: build

time (where to compile to and what repository to publish to) and run-

time (what database credentials to use and external service informa-

tion). It’s easy to get these runtime and buildtime properties mixed up,

with much hilarity. This doesn’t often cause issues until you start to

merge properties back and forth between code branches as environ-

ments change or until you need to wait for twenty minutes of auto-

mated functional tests to pass so you can get a release candidate with

your single property change in it.

Properties can get out of control if you don’t manage them throughout

the life cycle of a software project; do yourself a favor, and separate

them into different buckets—those properties needed to create the arti-

fact of a deployable application and the configuration properties needed

to run that application. Consider moving the runtime properties to their

own repository so they are independent of a particular build of code,

project, or team.

Reuse Elements by ID

Summary: Replace duplicated elements such as paths and sets with a

reference to a single instance of that element.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=161

ANT REFACTORING CATALOG 162

Download refactoring_before.xml

<target name="copy_and_filter">

<copy todir="${build}/content">

<fileset dir="${html}" />

<filterset>

<filter token="AUTHOR" value="${author.name}" />

<filter token="DATE" value="${timestamp}" />

<filter token="COPYRIGHT" value="${copyright.txt}" />

</filterset>

</copy>

<copy todir="${build}/abstracts">

<fileset dir="${abstracts}" />

<filterset>

<filter token="AUTHOR" value="${author.name}" />

<filter token="DATE" value="${timestamp}" />

<filter token="COPYRIGHT" value="${copyright.txt}" />

</filterset>

</copy>

</target>

Download refactoring_after.xml

<filterset id="publishing_filters">

<filter token="AUTHOR" value="${author.name}" />

<filter token="DATE" value="${timestamp}" />

<filter token="COPYRIGHT" value="${copyright.txt}" />

</filterset>

<target name="copy_and_filter">

<copy todir="${build}/content">

<fileset dir="${html.content}" />

<filterset refid="publishing_filters"/>

</copy>

<copy todir="${build}/abstracts">

<fileset dir="${abstracts}" />

<filterset refid="publishing_filters"/>

</copy>

</target>

Many top-level elements such as path, filterset, and fileset allow the

author to call them by reference. Instead of duplicating a path, you

can declare it once, assign an ID to it, and then refer to that element

throughout the rest of the build.xml file. This is particularly useful when

confronted with a large build.xml file from a busy project; the sheer num-

ber of lines in the file can make it hard to understand the intent behind

it, and collapsing many path or filterset declarations into a single line is

a nice gumption-boosting activity that allows you to get traction.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=162

ANT REFACTORING CATALOG 163

You may also find a bug, such as if somebody forgot to update all the

instances of a filterset in a big build.xml file.

Move Property Outside Target

Summary: Move properties that are declared in a target to the body of

the build file.

Download refactoring_before.xml

<target name="distribute">

<property name="dist_file" value="widget-1.0.tar"/>

<tar destfile="${dist_file}">

<tarfileset dir="${build}/dist"/>

</tar>

<gzip src="${dist_file}"/>

<scp file="${dist_file}.gz"

todir="${appserver.userid}@${appserver.host}:/tmp"/>

</target>

Download refactoring_after.xml

<property name="dist_file" value="widget-1.0.tar"/>

<target name="distribute">

<tar destfile="${dist_file}">

<tarfileset dir="${build}/dist"/>

</tar>

<gzip src="${dist_file}"/>

<scp file="${dist_file}.gz"

todir="${appserver.userid}@${appserver.host}:/tmp"/>

</target>

Many of us know how to make a variable local to a block of code. It’s

lexical scoping, and it doesn’t exist in Ant. If you declare a property, it is

immediately available to any task or target in your project namespace.

It’s a tempting idea to declare properties where they are used, but don’t

think you have scoped the property to the target.

What can really start to confuse your colleagues is if they use the same

property names; the value of a property may then change depending on

the execution order of the targets. It is possible, using the ant-contrib

library, to break the fundamentally immutable nature of a property.

This can lead to your project using Ant as a scripting language rather

than a build tool.

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=163

ANT REFACTORING CATALOG 164

Replace Value Element with Location

Download refactoring_before.xml

<property name="libdir" value="lib" />

<property name="libdir.runtime" value="${libdir}/runtime" />

Download refactoring_after.xml

<property name="libdir" location="lib" />

<property name="libdir.runtime" location="${libdir}/runtime" />

Your Ant build may work if you run it from a certain directory or with

a certain environment variable set. You may even have a wiki page

that tells a new developer how to get set up and how to build their

environment.

Ideally, however, your build.xml file should tell the user what it needs,

if it can’t find out for itself. Using the location attribute on a property

element is the first step toward achieving this goal of a robust build.

People will misuse your scripts and tools; try to accommodate the com-

mon misuse cases so that running something as the wrong user will

immediately cause the program to exit with a nice error message. Ant

generally does the right thing when you invoke it from the wrong direc-

tory; by default, it sets a ${basedir} property to be the directory where

the build.xml file is installed. Ant constructs properties set with a loca-

tion attribute to be relative to the ${basedir} directory and will do the

right thing by setting the path to be fully qualified to the directory your

build.xml file is residing in, rather than a relative path. A lot of builds

use the value attribute in properties, which can lead to brittle builds.

You can use the location attribute in other kinds of elements as well,

most notably the arg element passed to tasks such as execute. These

work in the same way, providing an accurate path to the task.

Push Wrapper Script into build.xml File

Summary: Move path and option scripts back down into the build file.

Download go.bat

@echo off

set CLASSPATH=%CLASSPATH%;lib\crimson.jar

set CLASSPATH=%CLASSPATH%;lib\jaxp.jar

set CLASSPATH=%CLASSPATH%;lib\ojdbc14.jar

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/go.bat
http://books.pragprog.com/titles/twa/errata/add?pdf_page=164

ANT REFACTORING CATALOG 165

cd build

ant -f build.xml

rem END push_down_wrappers

Download refactoring_after.xml

<classpath id="classpath" description="The default classpath.">

<pathelement path="${classpath}"/>

<fileset dir="lib">

<include name="jaxp.jar"/>

<include name="crimson.jar"/>

<include name="ojdbc14.jar"/>

</fileset>

</classpath>

Many projects end up generating DOS batch, Unix shell, or Perl wrap-

pers to the Ant build. These usually contain project-specific informa-

tion and perhaps some options; they are sometimes used to provide a

friendly front end to complicated project builds so that anybody can

build the code. They also tend to get wrapped in other scripts. It can

be frustrating trying to debug these, so try to avoid using them where

possible, or just use a one-line script if necessary. They can also have

the unintended consequence of never passing return codes up to the

calling process. This can mask problems if your automated deployment

process calls an Ant script and then does something else.

To make your build more robust, you can use the fail element to do a

preflight check and make sure that all your properties are set correctly.

In conjunction with fail, you can use the available task to signal via a

property that files, classpath entries, or JVM resources are obtainable

by your Ant process. You can also use -D options on the command line

to create properties that you might need.

If you’re getting fed up with typing in the command line or you get com-

plaints from the rest of the team, then by all means do create a wrap-

per script like go.bat, but keep it to one or two lines—just enough to

get you from your operating system’s shell into Ant. For extra credit on

Windows systems, you might unset the CLASSPATH environment vari-

able so it doesn’t pollute the build’s classpath. Many Windows installer

packages will append or prepend entries to the CLASSPATH environ-

ment variable, giving unpredictable results on some workstations.

Sometimes, however, you’ll need to make some libraries available to Ant

for it to execute some tasks. The Ant manual lists those tasks that have

external library dependencies.

http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=165

ANT REFACTORING CATALOG 166

Calling Ant

Ant’s invocation script will reliably give a nonzero exit code
on Unix systems if the build fails. Don’t assume that you’ll get
the same thing on Windows systems, because the ant.bat file
notably doesn’t return a Windows error-level value on some ver-
sions of Ant. There are also some dynamic language wrappers
to Ant; you’re best to test these also to make sure that a failed
build will stop your deploy script from keeping on trucking.

To satisfy those dependencies, you could use a wrapper script with a

list of libraries to add to the classpath, or you could put the libraries

in Ant’s lib directory. When Ant is invoked, it calls a launcher class to

generate a classpath from the libraries it finds. This is a convenient way

to satisfy library dependencies. It’s also a good idea to check this copy

of Ant into source control so everybody can check it out and run the

build, without setting up their computers for the project.

Add taskname Attribute

Summary: Make Ant display meaningful output for the task so you can

understand the intent of the code.

Download refactoring_before.xml

<target name="copy_config">

<copy tofile="${output}/style.xsl" file="${src}/xsl/style.xsl" />

<copy todir="${output}">

<fileset dir="${xml.docs}"/>

</copy>

<copy todir="${output}/images">

<fileset dir="${common}/images"/>

</copy>

</target>

Download refactoring_after.xml

<target name="copy_config">

<copy tofile="${output}/style.xsl"

file="${src}/xsl/style.xsl" taskname="copy xsl stylesheet"/>

<copy todir="${output}" taskname="copy xml docs to output">

<fileset dir="${xml.docs}"/>

</copy>

<copy todir="${output}/images" taskname="copy images to output">

<fileset dir="${common}/images"/>

</copy>

</target>

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=166

ANT REFACTORING CATALOG 167

Sometimes you end up writing a build that executes the same task

several times in a row; copy is a good example of this. It can be hard

for the users of your build file to see what the build is doing in this

situation. It helps greatly if you add a task name to the task so that it’s

clear what you are trying to achieve.

Enforce Internal Target

Summary: Make the first character of internal target names a hyphen

so they cannot be called from the command line.

Download refactoring_before.xml

<target name="init">

<mkdir dir="build"/>

</target>

Download refactoring_after.xml

<target name="-init">

<mkdir dir="build"/>

</target>

Calling the wrong target may have unintended consequences for your

build, especially if you never intended the target to be run from the

command line. Because there is no way to declare a task private like

you might create a private method in Java code, someone thought

up this simple but clever idea: fool Ant into treating the target like a

command-line option. The shell passes it to the Ant wrapper script as

a positional parameter, and Ant itself parses arguments with a leading

hyphen as an option. So, it has no choice but to try to evaluate a task

like -create_database as an option, which doesn’t exist. You may con-

fuse matters if you have an internal target called -propertyfile or -logger,

however.

Move Outputs Directory to Parent

Summary: Take components that are built from many places and cen-

tralize them under one directory.

project/

|-- build

|-- dist

|-- docs

|-- src

`-- testresults

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=167

ANT REFACTORING CATALOG 168

project/

|-- build

| |-- dist

| |-- docs

| `-- testresults

`-- src

If you have many directories that could be dynamically updated by

your code, things get confusing. You have to clean several directories

to start from scratch, you cherry-pick pieces from one directory to drop

to another, and your life is more complicated. Pick one directory as the

place where things are generated, make sure that your source control

system will ignore generated files, and start migrating all built artifacts

there. If your properties refer to a canonical location, moving the direc-

tory becomes a one-line change.

Replace Exec with Apply

Download refactoring_before.xml

<exec executable="md5sum" output="md5sums.txt">

<arg value="${dist.dir}/foo.dll"/>

<arg value="${dist.dir}/bar.dll"/>

</exec>

Download refactoring_after.xml

<apply executable="md5sum" output="md5sums.txt">

<fileset dir="${dist.dir}" includes="*.dll"/>

</apply>

Exec has a limited set of arguments that you can apply and is really

meant for simple commands. Apply allows you to exec something on

an Ant type, which means you can pass filesets, with refids, and so on.

Much cleaner.

Use CI Publishers

Summary: Don’t let a failed tag break the build; it impedes the devel-

oper feedback cycle.

Download refactoring_before.xml

<target name="cruisecontrol" depends="developer_build, functional_tests, tag">

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=168

ANT REFACTORING CATALOG 169

Download refactoring_after.xml

<target name="cruisecontrol" depends="developer_build, functional_tests">

<target name="tag"

description="this will fail unless run from a cruise publisher">

<fail unless="logdir"

message="${logdir} property missing -

are you running this from a cruisecontrol publisher"/>

</target>

Introduce Distinct Target Naming

Summary: Use a style so that targets and properties don’t have the

same naming conventions.

Download refactoring_before.xml

<property name="build.dir" location="${basedir}/build"/>

<property name="lib.dir" location="${basedir}/build"/>

<target name="test.unit" >

<junit haltonerror="false" haltonfailure="false">

<!-- details excluded -->

</junit>

</target>

Download refactoring_after.xml

<property name="build.dir" location="${basedir}/build"/>

<property name="lib.dir" location="${basedir}/build"/>

<target name="unit-test" >

<junit haltonerror="false" haltonfailure="false">

<!-- details excluded -->

</junit>

</target>

“... Something about the nature of Ant itself makes people treat it very

differently from the code it’s building. Rules concerning consistency,

testing, maintainability and even common sense seem to go out the win-

dow” [Newman]. XML isn’t necessarily easy to read. build.xml files need

as much help as they can get to stay legible. In practice, this means

sticking to a style for build.xml files. What quickly bugs the reader is

using the same style of separating words with dots for targets and prop-

erties. It’s not always clear when an attribute might refer to a property

and when it may refer to a value. Consider using dots to separate words

in properties, because Java properties use dots, and the namespace of

Java system properties is included in your Ant project’s. Underscores or

http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://books.pragprog.com/titles/twa/errata/add?pdf_page=169

ANT REFACTORING CATALOG 170

dashes work nicely for target names. See “The Elements of Ant Style”1

for more. Some of the advice isn’t required anymore; for example, mod-

ern IDEs help you navigate through Ant files instead of needing to add

blocks of comments to identify targets. Also, tools such as Grand (see

the “Resources” section for more information) will help you visualize

your build dependency tree.

Rename Target with Noun

Summary: Name your targets with the article that they produce instead

of the process of producing them.

Download refactoring_before.xml

<target name="foo-build-webapp">

<war destfile="foo.war">

<fileset dir="${build.dir}/frontend/dist"/>

</war>

</target>

Download refactoring_after.xml

<target name="foo.war">

<war destfile="foo.war">

<fileset dir="${build.dir}/frontend/dist"/>

</war>

</target>

“I recommend choosing names describing what they produce, e.g., clas-

ses, test/report.” [Williams]

There is a an idiom in Ant build.xml files that you should have a “compile”

target, a “test” target, and so on. There’s a certain logic in this. Some-

times you want just to run a target that represents a state. This could

be ready to deploy, ready to publish, or something similar. Where your

build produces artifacts, you can focus on that artifact. There’s also the

possibility of using the uptodate task to skip running targets that don’t

need to be run, saving everyone time. This also greatly enhances the

clarity of the build.

You might have seen this before if you used any of the make family. The

generally accepted make style is to name targets after the artifact they

produce. What you gain in ease of use, you lose in platform indepen-

dence unfortunately.

1. http://wiki.apache.org/ant/TheElementsOfAntStyle

http://media.pragprog.com/titles/twa/code/refactoring_before.xml
http://media.pragprog.com/titles/twa/code/refactoring_after.xml
http://wiki.apache.org/ant/TheElementsOfAntStyle
http://books.pragprog.com/titles/twa/errata/add?pdf_page=170

SUMMARY 171

11.3 Summary

This essay introduced refactoring to Ant build files. Some of the refac-

torings are directly translated from the original Refactoring book

[FBB+99]; others are gathered from the field. It can be hard to get

started when confronted with an existing build that you want to change,

but your effort will pay off. Don’t lose sight of the fact that you build

software to deploy to production. If you’re constantly evaluating your

build in that context, you might just have a good go-live weekend.

11.4 References

[Hunt, Thomas] The Pragmatic Programmer

[Newman] http://www.magpiebrain.com/blog/2004/12/15/ant-and-the-use-of-the-full-stop/

[Casey] Better Builds with Maven

[Fowler, Foemmel] http://martinfowler.com/articles/continuousIntegration.html

[Loughran, Hatcher] Java Development with Ant

11.5 Resources

Grand: www.ggtools.net/grand

The Elements of Ant Style: wiki.apache.org/ant/TheElementsOfAntStyle

http://www.magpiebrain.com/blog/2004/12/15/ant-and-the-use-of-the-full-stop/
http://martinfowler.com/articles/continuousIntegration.html
www.ggtools.net/grand
wiki.apache.org/ant/TheElementsOfAntStyle
http://books.pragprog.com/titles/twa/errata/add?pdf_page=171

Chapter 12

Single-Click Software Release
by Dave Farley, Technology Principal

12.1 Continuous Build

A core practice in agile development projects is the use of continuous

integration (CI). CI is a process by which builds and extensive suites of

automated test cases are run at the point that software is committed to

the version control system.

This practice has been in use on projects for many years and provides

a high degree of security that at any given point the software under

development will successfully build and pass its unit-test suite. This

significantly increases confidence that the software serves its purpose.

For many, and some would say most, projects, this is a huge step for-

ward in the quality and reliability of the software ultimately delivered.

In complex projects, though, the potential for problems doesn’t stop at

the point at which the code will compile and pass unit tests.

However good the unit test coverage, it is, by its nature, closer to the

solution of the problem than the requirements. In some circumstances,

unit tests can get into a state where they prove only that the solution

is the same solution that the development team envisaged, rather than

that it is one that fulfills the requirements.

Once the code is built, it must be deployed, and for most modern

software built by teams of developers, this is not a simple case of

copying a single binary to the file system. Instead, it often involves

deploying and configuring a collection of technical pieces, web servers,

databases, application servers, queues, and others in addition to the

software itself.

BEYOND CONTINUOUS BUILD 173

Such software usually has to go through a reasonably complex release

process, visiting a variety of deployed environments on its progress

toward production. It will be deployed to development machines, QA

environments, performance test environments, and production staging

environments before finally making it into production.

In most projects, most, if not all, of these steps will include a significant

degree of manual intervention. People will manually manage configura-

tion files, and they will manually tailor the deployment to suit the envi-

ronment to which it is being deployed. There is always something to

forget. “It took me two hours to find that the development environment

stores its template files in a different location than production.”

Continuous integration helps, but in its most common incarnation it is

misnamed; it should be called “continuous build.” What if it really did

apply to the whole release process? What if it really was a continuous

integration of the entire system?

12.2 Beyond Continuous Build

The teams I have been working on have been taking this to heart for

the past couple of years and have been building end-to-end continu-

ous integration release systems that will deploy large, complex applica-

tions to whichever environment we choose at the click of a button. This

approach has resulted in a dramatic reduction in stress at the point

of release and a significant reduction in problems encountered. During

the process of establishing these end-to-end CI environments, we have

discovered a fairly general abstraction of the build process that helps

us hit the ground running and allows us to build fairly sophisticated

build systems rapidly at the start of our projects.

The process is based on the idea of a release candidate progressing

through a series of gates. At each stage the confidence in the release

candidate is enhanced. The objective of this approach is to develop this

level of confidence in a release candidate to a point at which the system

is proven ready for release into production. True to agile development

principles, this process is started with every check-in, with every check-

in, in effect, being a viable release candidate in its own right.

As the release candidate proceeds through the process, some of the

gates through which the release candidate may pass are essential to

most projects, and some are more tailored to meet the needs of a spe-

cific project.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=173

FULL LIFECYCLE CONTINUOUS INTEGRATION 174

We commonly refer to this process, this sequence of gates, as a build

pipeline, pipelined build, or continuous integration pipeline. It has also

been referred to as a staged build.

12.3 Full Lifecycle Continuous Integration

You can see a typical full lifecycle in Figure 12.1, on page 178. This

is a continuous integration pipeline that captures the essence of the

approach. This process has proven, through experience on a number

of different projects, to be fairly generic, although it is, as with all agile

practices, normally tailored and tuned to meet specific project needs.

The process starts with the developers committing changes into a

source code repository. The CI system, typically CruiseControl on our

projects, responds to the commit by triggering the CI process. In this

case, it compiles the code, runs commit tests, and, if they all pass, cre-

ates assemblies1 of the compiled code and commits these assemblies to

a managed area of storage.

Managing Binaries

A fundamental of this approach is that each step in the process should

move the release candidate forward in its progress toward full release.

One important reason for this is that we want to minimize the opportu-

nities for errors to creep into the process.

For example, when we store source code only, we have to recompile that

source code each time we want to deploy. If we are about to run a per-

formance test and need to first recompile the source code, then we run

the risk of something being different in the performance test environ-

ment; perhaps we inadvertently used a different version of the compiler

or linked with a different version of a library. We want to eliminate, as

far as we can, the possibility of inadvertently introducing errors that we

should have found at the commit test or functional test stages of the

build pipeline.

This philosophy of avoiding rework within the process has several side

benefits. It tends to keep the scripts for each step in the process very

1. In this instance, assemblies are any grouping of compiled code; these will be .NET

assemblies, Java JARs, WAR files, and EAR files. A key point is that these assemblies do

not include configuration information. We want the same binary to be runnable in any

environment.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=174

THE CHECK-IN GATE 175

simple, and it encourages a clean separation of environment-specific

stuff and environment-neutral stuff.2

However, care needs to be taken when managing binaries in this man-

ner. It is too easy to waste vast amounts of storage on binaries that

are rarely if ever used. In most cases, we compromise. We avoid storing

such binaries in version control systems, because the overhead is sim-

ply not worth the benefits. Instead, we have started using a dedicated

area of a shared filesystem. We manage this as a rolling binary reposi-

tory, archiving binaries into version-labeled, compressed images. So far

we have written our own scripts for this stuff, not yet having found a

suitable off-the-shelf alternative.

These binary images are tagged with the version information of the

source code from which they were built. It is easiest to think of the

build tag as a release candidate identifier; it is used to represent the

association between all the source code, all the binaries, and all the

configuration information, scripts, and anything else it takes to build

and deploy the system.

This collection of “managed binaries” represents a cache of recent

builds. Past a certain point we delete the old binaries. If we later decide

that we need to step back to a version for which the binaries have been

removed, we must rerun the whole pipelined build for that source tag,

which remains safely in the version control system, but this is a very

rare event.

12.4 The Check-in Gate

The automated build pipeline is initiated by creating a release candi-

date. This candidate is created implicitly when any developer commits

any change to the version control system.

At this point, code will be compiled, and a series of commit tests will be

run. This collection of commit tests will normally include all unit tests,

plus a small selection of smoke tests, plus any other tests that prove

that this check-in does indeed represent a viable release candidate, one

that is worth the time to evaluate further.

2. The process implicitly discourages the compilation of binaries for specific deployment

targets. Such deployment-target-specific binaries are the antithesis of flexible deployment

yet are common in enterprise systems.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=175

THE CHECK-IN GATE 176

The objective of these commit tests is to fail fast. The check-in gate is

interactive; the developers are waiting for a pass before proceeding to

their next task. In view of this, speed is of the essence to maintain the

efficiency of the development process.

However, failures later in the CI pipeline are more expensive to fix, so

a judicious selection of additions to the commit test suite, beyond the

essential unit tests, is often valuable in maintaining the efficiency of

the team.

Once the commit tests have all passed, we consider that the check-

in gate has been passed. Developers are now free to move on to other

tasks, even though later stages in the build pipeline have yet to run, let

alone pass.

This is more than anything else a process-level optimization. In an ideal

world where all acceptance tests, performance tests, and integration

tests will run in a matter of seconds, there is no advantage to pipelining

the CI process. However, in the real world, these tests always take a

long time to run, and it would be a massive blow to the productivity of

a development team to have to wait until all had completed successfully

before being able to continue.

Treating the commit test build as a check-in gate frees the team to move

on with new tasks. However, the team is expected to closely monitor

the outcome of the release candidate that results from their check-in

through the rest of its life cycle. The objective is for the team to catch

errors as soon as it can and fix them, while allowing them to get on with

other work in parallel with lengthy test runs.

This approach is acceptable only when the commit test coverage is suf-

ficiently good to catch most errors. If most errors are being caught at

later stages in the pipeline, it is a good signal that it is time to beef up

your commit tests!

As developers, we will always argue for the fastest commit cycle. In

reality, this need must be balanced with the check-in gate’s ability to

identify the most common errors we are likely to introduce. This is an

optimization process that can work only through trial and error.

Start the design of your commit test suite by running all unit tests,

and later add specific tests to try to trap common failures that you see

occurring in later stages of the pipeline.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=176

THE ACCEPTANCE TEST GATE 177

12.5 The Acceptance Test Gate

Unit tests are an essential part of any agile development process, but

they are rarely enough on their own. It is not uncommon to have an

application where all unit tests pass but where the application doesn’t

meet the requirements of the business it was developed to serve.

In addition to unit tests, and the slightly broader category of commit

tests, the teams I work with rely heavily on automated acceptance tests.

These tests capture the acceptance criteria of the stories we develop and

prove that the code meets those acceptance criteria.

These are functional tests; that is, they exercise the system end to end,

though often with the exception of any interactions with external sys-

tems outside our control. In those cases, we generally stub such exter-

nal connection points for the purposes of our acceptance test suite.

We like to bring the creation and maintenance of these acceptance tests

into the heart of our development process, with no story deemed com-

plete until its acceptance criteria are tested by an automated suite cre-

ated by the developers and added to the acceptance test suite. We tend

to expend some energy on ensuring such tests are very readable, even

to nontechnical people, but that is perhaps less fundamental to our CI

process and so is outside the scope of this essay.

Acceptance tests are run in a controlled environment dedicated to the

task and are monitored by our CI management system (usually Cruise-

Control).

The acceptance test gate is a second key point in the life cycle of a

release candidate. Our automated deployment system will deploy only

those release candidates that have passed all acceptance tests. This

means that it is not possible to progress any release candidate beyond

this stage into production unless all acceptance criteria are met.

12.6 Preparing to Deploy

In some circumstances, it may make sense to automate the deployment

of everything associated with an application, but for large-scale enter-

prise applications this is rarely the case. However, if we could automate

the management and configuration of the entire infrastructure, it would

eliminate the cause of many errors, specifically the manual deployment

and configuration process so common in enterprise-scale systems. This

http://books.pragprog.com/titles/twa/errata/add?pdf_page=177

PREPARING TO DEPLOY 178

Figure 12.1: Continuous integration pipeline

being the case, the attempt is worth some effort, and even if we partially

succeed, we will usually eliminate many sources of common errors.

We have adopted a pragmatic approach to this problem, and we will

often rely on a standard server image, application servers, message bro-

kers, databases, and so on. These images will represent some form of

“snapshot” of a deployed system installed and configured with a base-

level configuration.

Such images can take many forms, whatever is needed or convenient

for the project. Often we will have a database script that will establish a

starting schema and a dump of data that will populate it. We may have

standard OS installations or application-server configurations that can

be deployed and established as part of the commissioning process for

any server we decide to deploy to; it may even be as simple as a copy

of a folder tree to a file system, so we always have the same structure

in place.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=178

PREPARING TO DEPLOY 179

Whatever the nature of the “image,” the intent is to establish a common

baseline configuration so that subsequent changes can be maintained

as a collection of deltas from it.

Often we will maintain a collection of such images so that new environ-

ments can be set up quickly, leaving little room for human error.

This raw infrastructure is not deployed each time we deploy the soft-

ware; in most cases, it is laid down at the point at which we commission

some new environment and then rarely touched.

However, each time we deploy the application, we will reset the infras-

tructure to as close to this base state as is possible in order to establish

a known-good starting point for the remainder of the deployment.

Once this baseline infrastructure is in place, it may prove helpful to run

a suite of simple deployment tests. These tests are intended to confirm

that the basic infrastructure is in place and ready to be configured to

the specific needs of the application and specific environment. Typically

these tests will be very simple and represent an assertion that the basic

plumbing is in place, such as ensuring that the DBMS is present and

the web server is responding to requests.

If these tests fail, we know that there is something wrong with our

image or the hardware.

Once these tests pass, we know we are ready to deploy the applica-

tion. The application-specific deployment scripts are run to copy our

assemblies, which were built and tested during the commit stage of the

process, from their area of managed storage to the correct locations.

In addition to simply copying binaries, our scripts will, where neces-

sary, start and stop any application servers or web servers, populate

databases with schemas or updates as appropriate, perhaps configure

the message broker, and so on.

In essence, deployment is a five-stage process, with four stages for each

individual deployment:

• A third-party infrastructure is installed, often from an image,

where practicable.This is done only at commissioning time for a

new server environment.

• The infrastructure is cleaned to a known-good start state.

• Deployment tests confirm the infrastructure is ready for the soft-

ware.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=179

SUBSEQUENT TEST STAGES 180

• Application assemblies are deployed.

• The infrastructure is configured appropriately to the needs of the

application.

We divide our build/deploy scripts into small pieces to keep them sim-

ple, as with any other well-factored software. Each is focused on a spe-

cific task and relies as much as possible on clearly defined inputs.

12.7 Subsequent Test Stages

As stated earlier, the acceptance test gate is a key milestone in the

project life cycle. Once passed, the release candidate is available for

deployment to any of a variety of systems. If the candidate fails this

gate, it is effectively undeployable without significant manual effort;

this is a good thing, because it maintains the discipline of releasing only

that code that has been thoroughly tested and, as far as our automated

test suite is able to, proven to work.

Progress through the continuous integration pipeline to this point has

been wholly automated. If the release candidate has passed the previ-

ous stage of the process, it is promoted to the next stage, and that stage

is run.

In most projects, that approach doesn’t make sense for the remaining

stages in the process, so instead we make the following stages optional,

allowing any release candidate that has passed acceptance testing to

be selected for deployment to either manual user acceptance testing,

performance testing, or, indeed, deployment into production.

For each of these deployments, the steps described in the “Preparing to

Deploy” section are performed, helping to ensure a clean deployment.

By the time a release reaches production, it will have been successfully

deployed using the same techniques several times, so there is little con-

cern that anything will go wrong.

In my last project, each server that could host our application had a

simple web page that provided a list of available release candidates

and the ability to optionally rerun the functional test suite and/or the

performance test suite in that environment. This provided a high degree

of flexibility in our ability to deploy our system anytime we wanted to

wherever we wanted with little fear of inadvertently introducing errors

in the process.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=180

AUTOMATING THE PROCESS 181

The degree of automation involved, or not, in promoting release can-

didates through these subsequent stages is perhaps the most vari-

able part of this otherwise fairly generic process. On some projects,

it makes sense to always include a performance test run, and on oth-

ers it may not. The details of the relationships between the different

post-acceptance test stages and whether they are selected manually

or run automatically is not really a problem, provided that the scripts

managing the CI process are well factored.

12.8 Automating the Process

You’ll see a simple map of the scripts used for the automation of a

CI pipeline in Figure 12.2, on the following page. Each box represents

a process stage, and each line within a box represents an individual

script, or build script target, that fulfills that function.

In most projects, using this approach, the first two process gates,

check-in and acceptance, are initiated by a continuous integration

management application such as CruiseControl.

One of the important benefits of this approach to organizing the build

scripts is that each script, or script element, is focused on doing one,

relatively straightforward thing well rather than trying to manage the

entire build process in one complex step. This is a very important gain

in ensuring that the build process is manageable and amenable to

change as the project evolves and matures.

The details of these scripts are not within the scope of this essay and

are, in reality, too project-dependant to be of much interest; however,

we have found in a number of different projects that when we apply

this kind of high-level structure to our build processes, we get reliable,

repeatable, and trustworthy deployment, allowing us to deploy in sec-

onds or minutes what previously took days—and often fraught weekend

days at that!

12.9 Conclusion

If your organization is not yet using a CI approach to your build, start

tomorrow. It is the most effective means of improving the reliability of

your systems that we have found.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=181

CONCLUSION 182

Figure 12.2: Example process steps

Extending the range of CI to effectively eliminate as many sources of

human error as possible has enormous benefits, not just in productivity

but also in the quality of the deliverable and in lowering the stress of

delivering into production.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=182

Chapter 13

Agile vs. Waterfall Testing
for Enterprise Web Apps

by Kristan Vingrys, QA Consultant

13.1 Introduction

How is the test strategy for an agile enterprise web application project

different from the test strategy for one being developed using a water-

fall process? Testing in either case focuses on informing business cus-

tomers about what the application does. It also focuses on removing

the risk of failure of the application once delivered into production. The

main difference is not in the testing that is performed but in when the

testing is performed and by whom. Test phases can start anytime the

system is available and do not need to wait until a previous phase of

testing has completed.

This essay is targeted at people either who have not been on an agile

project before or who have just started an agile project and are looking

for some guidance. The information isn’t new, but it has been collected

and presented to help you move in the direction of a more agile process.

The testing phases of an agile project are generally the same as a water-

fall project. Exit criteria can still apply for each phase, but there is no

longer a need to wait for the complete application to be finished before

entering each testing phase. Instead, you wait only until enough of the

application is completed to enter the next phase of testing. Because the

testing is around functionality that is complete and not a release, test-

ing phases are continually running in parallel. This results in a lot of

TESTING LIFE CYCLE 184

regression testing, which means it is essential to automate the tests.

Environment usage and resources are also a concern for a project that

is agile because environments are needed earlier and more frequently.

“Fail fast” is a motto of agile projects, meaning try to determine that the

application is not going to meet business requirements as soon as pos-

sible. To achieve this, you need to continually check and verify that the

solution is satisfying the business need, and when it is not, you need

to rectify the problem as soon as possible. An agile project team con-

sists of developers, testers, architects, business analysts, and business

representatives who are all concerned with delivering business value as

early as possible. Therefore, testing is a concern of all team members

and no longer just the responsibility of the tester.

13.2 Testing Life Cycle

The testing life cycle is where the biggest difference appears between

waterfall and agile projects. Waterfall projects will have strict entry and

exit criteria for each phase and move from one to the next only when the

previous phase has finished. Agile projects will start a testing phase as

soon as possible and allow them to overlap. There is still some structure

to an agile project including exit criteria, but there is no strict entry

criteria.

In Figure 13.1, on the next page, you can immediately see a difference

between the testing life cycle for an agile project and that for a waterfall

project. On an agile project, business analysts, test analysts, and busi-

ness representatives discuss what the idea will do, how it fits into the

bigger picture, and how to prove that it is doing what it should. This

analysis forms the basis of the functional, user acceptance, and perfor-

mance tests. It is after this analysis that the functionality is developed,

which is when unit, integration, exploratory, and nonfunctional testing

(and data validation if it is being performed) begins. Production verifi-

cation occurs only once the system is about to go into production.

Not having strict entry criteria for a testing phase means it can begin

at any time that is applicable. Because all test phases are important

in ensuring the quality of an application, it is important to perform the

analysis for each phase as soon as possible. Doing the test analysis

early helps shape the design of the application and bring out issues,

which can save significant time later in the project. Example exit crite-

ria for an agile project are as follows.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=184

TESTING LIFE CYCLE 185

Figure 13.1: Testing life cycle for an agile project and waterfall project

Here are the criteria for unit testing:

• 100% automated

• 100% passing

• Greater than 90% code coverage

• Included in continuous build

Here are the criteria for integration testing:

• 100% automated

• 100% passing

• Included in continuous build

Here are the criteria for functional testing:

• Greater than 90% automated

• 100% passing

• All automated tests included in continuous build

http://books.pragprog.com/titles/twa/errata/add?pdf_page=185

TESTING LIFE CYCLE 186

Here is the criterion for exploratory testing:

• Confidence from test analysts that application is of good quality

Here are the criteria for user acceptance testing:

• Agreement from business representative that application satisfies

need

• Agreement from users that application is usable

Here are the criteria for performance testing:

• 100% automated

• Agreement from business that application satisfies business per-

formance requirements

• Performance tests are repeatable

Here are the criteria for nonfunctional testing:

• Agreement from business that nonfunctional requirements are

met

• Agreement from operations that nonfunctional requirements are

met

Here is the criterion for data validation testing:

• Confidence the data has been migrated correctly

Here is the criterion for production verification:

• Confidence the application has been installed correctly in the pro-

duction environment

The testing life cycle of a waterfall project restricts the test phase that

can be conducted until an earlier one has been completed. In theory,

this makes sense because later test phases will rely on an earlier one

passing (don’t bother testing the performance of some functionality if

it is not functionally correct). However, there is no reason to wait for

all functionality to be correct before starting performance testing. An

agile project will begin each test phase when it is appropriate, which

results in issues being found early, giving the team more time to rectify

the problems. But the exit of the test phases on an agile project is still

the same as a waterfall project. Performance testing of functionality will

not be considered complete until after the functionality is correct.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=186

TYPES OF TESTING 187

13.3 Types of Testing

The types of testing conducted on an agile project are pretty much the

same as a waterfall project. A major difference is the focus of effort and

when each testing phase is conducted. Agile projects focus heavily on

unit and functional testing, therefore producing high-quality code for

the later phases of testing. The result is that later phases of testing are

not finding defects that could have been found earlier and can focus

on the areas they are trying to test. This is a common problem for

waterfall projects where the focus of later testing phases is on finding

defects that could have been detected earlier. The result is a higher cost

of fixing defects, duplicated testing effort, and incorrect test focus.

Another significant difference between waterfall and agile projects is

test automation. Agile projects strive to have 100% test automation for

all areas of testing. Tests are integrated with continuous build systems,

so when a change is made in the code, it is automatically detected, the

application is built, and then all tests are executed.

Test-driven development (TDD) is an approach commonly used by agile

projects. This approach means that test cases are written before the

code is created. Using test-driven development makes it more likely

that code and functionality will have test cases created for them. By

driving development with automated tests and then eliminating dupli-

cation, any developer can write reliable, bug-free code no matter what

its level of complexity. TDD is more commonly applied to unit testing

but can also work with functional, integration, user acceptance, and

performance testing.

Unit Testing

Unit testing, also known as white box testing, involves testing each mod-

ule as it is developed. Waterfall projects do not focus on this testing

phase, and in most cases it is done ad hoc if at all. Agile projects put

emphasis on unit testing and automating all unit tests. The automated

unit tests are the foundation of an agile project and assist continuous

integration and refactoring.

Unit testing should consider the following:

• Use stubs and mocks to remove the dependency on external inter-

faces.

• Be written by the developers who are creating the code.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=187

TYPES OF TESTING 188

• Be automated and included with the continuous development

build.

• No dependencies between unit tests, so each unit test can be exe-

cuted in isolation.

• Be executable by any developer on their own machine.

• Use code coverage to determine which areas of code do not have

unit tests covering them.

• 100% unit tests passing before checking in a code change.

• Any test failure means build failure.

Functional Testing

Functional testing, commonly associated with system testing, is fo-

cused on testing the functionality of the application (including nega-

tive and boundary conditions). On a waterfall project, this is gener-

ally where the testing team will start its testing activities. The team

members will wait until the developers have completed all the func-

tionality and passed the unit tests before entering this phase. Agile

projects break up functionality into stories, with a number of stories

being developed in an iteration. Every story has a number of accep-

tance criteria that are usually created by the business analyst and the

test analyst and can be considered to be similar to test conditions. The

test analysts will take the acceptance criteria and create test cases to

demonstrate how the completed code behaves in relation to the accep-

tance criteria. Once the story has been coded and unit tested, it is then

functionally tested to determine whether it satisfies the acceptance cri-

teria. This means that functional testing on an agile project starts when

the first piece of functionality has been coded and continues through-

out the project life cycle.

Functional testing should consider the following:

• Automate and include with the development continuous build. (If

the tests are taking a long time to run, then it is possible to include

only a select few with the development continuous build and to

include all with the system integration continuous build.)

• Write the intent of the tests before the code is written. The test

implementation can be completed once the code is complete.

• Have all of the functional tests passing before a story is considered

complete.

• Execute the functional tests on the application when it is installed

in another environment (staging or production if possible).

http://books.pragprog.com/titles/twa/errata/add?pdf_page=188

TYPES OF TESTING 189

Any test failure means build failure.

Exploratory Testing

Exploratory testing is also known as ad hoc testing. Waterfall projects

do not include this type of testing in their strategy, but most testers

will practice this to some degree. This is a critical phase of testing for

an agile project because it is used to check the coverage of the auto-

mated tests and get general feedback on the quality of the application.

It is a structured way for testers and business analysts to operate and

explore the system to find defects. If exploratory testing finds a signif-

icant amount of defects in an area of functionality, then the existing

automated test cases for that area are reviewed.

Exploratory testing should consider the following:

• Execute in the system integration environment.

• Capture exploratory testing activities at a high level (possibly in a

wiki).

• Use an automated setup to reduce setup time.

• Include destructive testing as part of exploratory testing.

Integration Testing

Integration testing is about integrating the separate parts of the appli-

cation that will be needed when the application is put into produc-

tion. A waterfall project will include integrating separate modules of

the application as well as applications that are not part of the project

but required by the application being developed. For an agile project,

the integration of separate modules of the application is covered by

the continuous builds; therefore, the focus of integration testing is on

external interfaces that are not being developed as part of the project.

Integration testing should consider the following:

• Consider functionality not being developed for the current itera-

tion when performing integration testing.

• Create integration tests to target particular integration points to

assist in debugging the code, even if the functional tests will pro-

voke the integration points.

• Automate integration tests, and include them in the system inte-

gration continuous build.

Any test failure means build failure.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=189

TYPES OF TESTING 190

Data Validation

Data validation needs to be conducted if the project requires existing

data to be migrated. Data validation will ensure that existing data has

been migrated to the new schema correctly, new data has been added,

and redundant data has been removed. Waterfall projects and agile

projects approach this type of testing the same way with the only excep-

tion being that an agile project will automate the testing as much as

possible.

Data validation should consider the following:

• Execute in the system integration environment, staging environ-

ment, and production environment.

• Automate as much as possible.

• Include tests in the system integration continuous build.

Any test failure means build failure.

User Acceptance Testing (UAT)

UAT focuses on complete business processes, ensuring that the appli-

cation fits in with the way business works and satisfies business needs.

It will also look at the usability of the application for a customer, con-

sumer, administrator, and other user. In a waterfall project, this stage

will usually be finding bugs that should have been found in the earlier

stages of the testing cycle. Often, this type of testing is used by busi-

ness to verify the quality of the application that has been delivered by

the development team. Agile projects are able to focus UAT on ensuring

the application meets business needs because the quality of the code

is higher when entering this phase of testing. Because business are

involved in the earlier phases of testing in an agile project, they have

more confidence in what is being delivered.

UAT should consider the following:

• Do a manual pass first, and then automate when it is verified that

the system behaves as it should.

• Include automated tests into the system integration continuous

build.

• Get the end users of the application to conduct the manual run-

through, but have it coordinated by a project tester.

• Conduct UAT on the staging environment for sign-off.

• Conduct UAT whenever a business process has been completed or

major UI component is completed.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=190

TYPES OF TESTING 191

Any test failure means build failure.

Performance Testing

Performance testing covers a lot of areas but can generally be broken

into three parts:

• Capacity testing: Checks the capacity, in isolation, of core func-

tional components. For example, how many concurrent users can

perform a search at the same time, how many searches can be

performed per second, and so on? Capacity testing is used to

gauge the extreme limits of a system and also to assist capacity

planning and scalability.

• Load testing: Focuses on how a system performs when load is

applied. The load should mirror the expected traffic mix the sys-

tem will experience.

• Stress testing: Concerned with how the system behaves under

stress. A soak test is a common stress-testing technique; it is

putting the system under load for a sustained period of time to

shake out long-term issues, such as memory leaks or resource

leaks. Stress testing also covers failover and recovery, such as the

failing of a server in a cluster while the system is under load to

check that it fails correctly and recovers.

Waterfall projects will leave performance testing until the end of the

project, once the application has been “completely” developed and been

through unit and functional testing. An agile project will conduct per-

formance tests as soon as possible.

Performance testing should consider the following:

• Place some performance metrics in the functional tests, such as

seeing how long a test takes to run the first time and then com-

paring the percentage change (increase is bad, decrease is good)

in time for each subsequent run.

• Include some performance tests in the system integration contin-

uous build.

• Conduct performance tests whenever a business process, signifi-

cant functionality, or interface has been completed.

• Only sign off on performance tests once run in the staging envi-

ronment.

Any test failure means build failure.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=191

TYPES OF TESTING 192

Nonfunctional Testing

Nonfunctional testing covers a lot of different areas, and performance

testing will usually fall into this. However, performance testing is an

important part of an enterprise solution and needs different resource

and skill sets, so it has been separated as a different test phase. Some

common areas covered by nonfunctional testing include operational

(including monitoring, logging, audit/history), reliability (including fail-

over, single component, complete failure, interface failure), and secu-

rity. Both waterfall and agile projects struggle with this testing phase,

and there is little difference in the approach.

Nonfunctional testing should consider the following:

• Nonfunctional requirements are usually not captured or, if cap-

tured, are not easily measurable (for example, 99.9% uptime).

• Automate nonfunctional requirements as much as possible and

include in the system integration testing environment.

• Involve the people who will be monitoring and supporting the pro-

duction environment in the test case definition.

• Nonfunctional testing, or monitoring, continues once the applica-

tion is in production.

Regression Testing

For waterfall projects, this is one of the most expensive testing phases,

in time and money. If defects are found late in the project cycle, for

example, in the UAT phase, then a new build of the application will

require all unit tests, functional tests, and UAT tests to be rerun.

Because most waterfall projects don’t have automated tests, this makes

regression testing expensive. Agile projects embrace regression testing

with continuous builds and automated tests, making regression testing

occur for every build.

Regression testing should consider the following:

• Run manual tests at the end of each iteration (for a large set, rotate

them so they are run every three to four iterations) to provide early

feedback.

Production Verification

Production verification looks at the application when it is in the pro-

duction environment. The testing checks that everything is installed

properly and the system is operational before making it available to

http://books.pragprog.com/titles/twa/errata/add?pdf_page=192

ENVIRONMENTS 193

users. However, there may also be some testing that cannot be com-

pletely done until in the production system, and this testing will be con-

ducted as soon as possible. There is no difference between the waterfall

approach and agile approach to production verification.

Production verification should consider the following:

• Get end users to execute the production verification tests.

• Run as many automated regression tests from early test phases

as possible on the production system prior to go-live.

Testing phases on a waterfall and agile project are similar, but there is a

difference in the emphasis of each and when they occur. An agile project

will create a lot of automated tests and use continuous integration to

reduce the impact of regression testing on the project. On a waterfall

project, it is common to perform testing from an earlier phase in a later

phase (that is, functional testing during UAT) while the quality of the

application is low. Agile projects reduce test waste, detect failures early,

and increase confidence in the application being delivered.

13.4 Environments

Testing environments are used during different stages of the develop-

ment process to ensure the application is working. The later in the

phase that the environment is used, the more it will resemble the

intended production environment. Typical testing environments in-

clude a development environment, where developers integrate their

code together and can run some tests. A system integration environ-

ment is similar to the development environment but will integrate with

more third-party applications and potentially a larger set of data. Stag-

ing environments mirror production as much as possible and are the

last stage before production.

There is not a big difference in the environments required for an agile

project vs. a waterfall project. What is different is that agile projects

require all environments from the project onset and use them through-

out the project life cycle. For an agile project, it is also imperative that

the environment is always available and working. If it does experience

problems for any reason, then it is the highest priority to get it work-

ing again. Another difference between agile and waterfall is the impact

on the planning and resourcing of the environments, especially if the

environments are managed by a team that is not on the project.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=193

ENVIRONMENTS 194

Development Integration Environment

A development environment is used by the developers to integrate code

and produce the application being developed. A waterfall project does

not consider the development environment to be of high importance;

it is continually broken and is seen as being needed only when the

developers have to integrate code with each other, which is generally

toward the end of the project. For an agile project, the development

environment is integral to the development effort and must be available

before any coding is started. The environment is used to continuously

integrate the code and run a suite of tests. If the environment is broken

for any reason, then it is the highest priority to get it working again.

A development environment should consider the following:

• Keep the time it takes to integrate the code, build, and test to less

than fifteen minutes.

• Have the development environment the same as what each devel-

oper is using. (Different hardware is OK, but software should be

the same).

• Data used should be as close to production data as possible. If

production data is too big to include, then a cut-down copy can be

used. The data should be refreshed from production at the start

of each release cycle.

• The management of the environment should be the responsibility

of the project team.

• Deployment to this environment will likely occur on an hourly

basis.

• Automate deployment into this environment.

System Integration Environment

A system integration environment is used to integrate the application

being developed with other applications that it interacts with. For a

waterfall project, this environment (if one exists) is used only toward

the end of the project and is likely to be shared between projects. An

agile project requires this environment to be available from the day

that coding is started. The application is deployed to this environment

frequently and then functional, integration, usability, and exploratory

tests are executed. Demonstrations of the application (showcases) will

occur from this environment.

A system integration environment should consider the following:

http://books.pragprog.com/titles/twa/errata/add?pdf_page=194

ENVIRONMENTS 195

• Integration points should be replaced with real external applica-

tions. The external applications should be test environments and

not production versions.

• Replicate the architecture of the production environment.

• Data used in this environment should be a replication of the pro-

duction environment and refreshed at the start of each release

cycle.

• Have a system integration continuous build that runs a complete

suite of tests in this environment.

• The management of the environment should be the responsibility

of the project team.

• Builds are likely to be deployed into this environment on a daily

basis.

• Automate the deployment of the application into this environment.

Staging Environment

Staging environments exist to verify that the application will deploy and

function in production. To this end, the staging environment is a repli-

cation of the production environment, including network configuration,

routers, switches, and computer capacity. On a waterfall project, this

environment will generally need to be “booked” and will have a plan of

how many deployments will be needed and when they will occur. An

agile project does not rely on this environment as much as it does the

development and integration environments; however, it still requires

frequent access with multiple deployments over the project life cycle.

A staging environment should consider the following:

• Data used should be a copy of production data and refreshed

before each deployment of the application.

• Use it for sign-off of UAT, performance testing, and nonfunctional

testing (stability, reliability, and so on).

• Builds are likely to be deployed into this environment on an itera-

tion basis, such as every two weeks.

• The management of the environment should be by the same people

who manage the production environment. This will give them early

exposure to the application and knowledge transfer.

• Automate the deployment of the application into this environment.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=195

ISSUE MANAGEMENT 196

Production Environment

The production environment is where the application runs when live.

Production verification testing is conducted in this environment, as is

gathering metrics to determine the effectiveness of the testing effort.

It is similar for waterfall and agile projects. For an agile project, the

release process would be automated as much as possible to allow for

frequent releases into production.

A production environment should consider the following:

• Executing a suite of automated regression tests in the production

environment before go-live (or just after go-live).

• Have metrics available that will help determine how effective the

testing effort was, such as the severity and number of issues

raised by users in the first three to six months.

Having an environment available when required is critical to any project

timeline. A waterfall project will try to stick to a rigid plan, making

it easy to schedule environment usage. Agile projects are more fluid.

Enough functionality may be built to warrant going into a staging envi-

ronment, or the business may decide to move to production early. To

assist agile projects, a system integration environment should be made

available with processes in place to allow for rapid deployment through

staging and then into production environments.

13.5 Issue Management

Issues encompass defects (bugs) and change requests. Waterfall pro-

jects have a very strict defect and change request management, where-

as agile projects are not as strict on change management as agile is

about embracing change. If change is required, a new story (or stories)

is created and put onto the backlog. Highest-priority stories will be

assigned to the next iteration.

Defect management is still applicable to an agile project. As defects are

found on a story in development, informal communication (over the

shoulder) is used to communicate these defects to the developers, and

the defect is addressed immediately. If a defect is found that is not for a

story that is currently in the iteration or is seen as a minor defect on a

story being developed, it is raised in a defect-tracking tool. The defect is

then treated like a story; that is, a story card is created, prioritized by

the customer, and put into the story backlog. A team needs to balance

http://books.pragprog.com/titles/twa/errata/add?pdf_page=196

TOOLS 197

troubleshooting the defect to provide enough information for it to be

understood and prioritized without spending too much time on a defect

that may not be a high priority for the customer to get resolved.

Defect content (description, component, severity, and so on) is the same

for an agile project and a waterfall project, except there is one extra field

that should be captured for an agile project, and that is business value,

in dollar terms if possible. This is the business value that would be real-

ized if the defect were resolved. Having a business value associated with

a defect makes it easier for the customer to decide whether the defect

is more valuable and therefore higher priority than new functionality.

13.6 Tools

All projects will use some tools to some degree. Waterfall projects will

use tools to help enforce the process as well as improve efficiency,

which can sometimes cause conflicts. Agile projects will use tools to

help improve efficiency, not to enforce a process. For an agile project,

all tests should be able to be run by any team member in their own envi-

ronment, which means that the tools used to automate the test cases

have to be available to all team members. Because of this, open source

products are usually used on an agile project, which means that the

skills to use these tools are different. Open source tools are not docu-

mented or supported as well as commercial tools, and therefore people

using them need to be proficient with coding. Pairing a developer with

a person who is not a strong programmer is a good way to increase that

person’s skills. It is possible to use commercial tools on an agile project,

but the majority of the commercial tools are not developed with the agile

process in mind and therefore do not fit into it easily. In particular, con-

tinuous integration can require a lot of code to get a commercial tool to

work.

For testing purposes, a project should consider tools for the following

tasks:

• Continuous integration tool (for example, CruiseControl, Tinder-

box)

• Unit testing (for example, JUnit, NUnit)

• Code coverage (for example, Clover, PureCoverage)

• Functional testing (for example, HttpUnit, Selenium, Quick Test

Professional)

http://books.pragprog.com/titles/twa/errata/add?pdf_page=197

REPORTS AND METRICS 198

• User acceptance testing (for example, Fitness, Quick Test Profes-

sional)

• Performance testing (for example, JMeter, LoadRunner)

• Issue tracking (for example, Bugzilla, JIRA)

• Test management (for example, Quality Center)

13.7 Reports and Metrics

Metrics are gathered to determine the quality of the software and mea-

sure the testing effort. Some testing metrics for a waterfall project rely

on all test cases to be created prior to the test effort and testing to

occur only once the application is finished. Then metrics such as how

many defects found per test case executed and test cases executed per

day can be collected and used to determine whether the application is

ready for release. On agile projects, the test cases are created and exe-

cuted when functionality is complete, which means the metrics used

for waterfall testing cannot be applied.

Returning to the reason for gathering metrics, to determine the quality

of the application and measure the testing effort, you can look at the

following areas:

• Measure the testing effort using code coverage; this is particularly

useful for unit tests.

• The number of defects found during exploratory testing will show

how effective the unit and functional testing efforts are.

• Defects found during UAT indicate that the earlier testing is not as

sufficient as UAT and should focus on business process and not

software bugs. If UAT is finding a lot of issues that are functional

rather than software bugs, this indicates a lack of understanding

in the stories or changing requirements.

• The number of defects found after the story has been completed is

a good measure of software quality. This is the number of defects

(software bugs, not functional changes) found in integration, non-

functional, performance, and UAT tests.

• Rate of reopened defects. If defects are reopened frequently, it indi-

cates that the quality of the software is low.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=198

TESTING ROLES 199

Figure 13.2: Testing roles for different team members

13.8 Testing Roles

Testing roles do not equate to a single resource. A single resource may

perform all the testing roles, or each role may be performed by sepa-

rate people. The roles outlined are those that are needed to ensure the

testing effort of a project is successful. A good tester will have elements

of all these roles. The roles are the same for an agile project as they

are for a waterfall project; the difference is who performs the roles. For

an agile project, all team members will perform some testing roles. In

Figure 13.2, you’ll see an example of the roles that each team member

on an agile project will take on. This is not prescriptive; each team is

different, but this is seen as a good mix.

Test Analysis

Test analysis looks at the requirements, architecture, code, or other

artifacts to determine what should be tested and where testing should

be focused.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=199

TESTING ROLES 200

On a waterfall project there would normally be a senior resource (or

resources) who will perform this role. They examine relevant documents

(requirements, design, architecture), create test plans, create high-level

test case descriptions, and then hand off everything to a junior per-

son to fill in the detailed test scripts. Agile projects encourage all team

members to perform this role. Developers will focus on the analysis of

the code and design to create unit tests, and they may also assist the

business analyst or testers when creating functional tests and will be

involved in analysis for nonfunctional and performance tests. The busi-

ness analyst and testers work closely to create functional tests, create

user acceptance tests, and perform exploratory testing. Customers/end

users will be engaged for the user acceptance tests.

Test Scripting

A scripting role is one that creates the detailed test scripts. These could

be manual or automated. A scripter on a waterfall project will normally

be a junior person who uses the test plans and test case descriptions

to create the detailed, step-by-step manual instructions. Automated

scripting is performed by a more senior person, and developers may be

involved in scripting unit test cases. An agile project will use developers

a lot for test scripting, mainly because the test scripts are automated.

Test Execution

This role exists for both manual and automated tests; however, for

automated tests, the role is performed by a computer. A test execu-

tor will execute the detailed test scripts and determine whether the test

passes or fails. This role in a waterfall project will normally be con-

ducted by testers. For an agile project, all team members are encour-

aged to perform this role, in particular testers, business analysts, and

the customer.

Environment Management

This role manages the testing environments, including the environment

that the application runs on as well as the infrastructure required to

support automated testing. They will also look after data used for test-

ing and external interfaces. This role is similar in both waterfall and

agile projects.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=200

REFERENCES 201

Issue Management

Issues are raised and need to be followed up on. This role helps triage

issues to ensure that they are correctly created, including the severity,

priority, component, and so on. Issue lifecycle and tool support is also

part of this role. This role is very similar in waterfall and agile projects.

Troubleshooting

This role troubleshoots issues as they are raised to determine whether

they are software defects. For software defects, they will look at what

the cause is and possible solutions and workarounds. This role is sim-

ilar in waterfall and agile projects.

Agile teams focus on ensuring that the roles are adequately performed

with less focus on who is doing them and who is responsible for them.

There is little delineation between testers and other team members,

with more focus on making sure that the team delivers. As a team, it is

important that the software being produced is of high quality, and each

team member contributes in any way they can to achieve this goal. On

an agile team, testers can expect to get support from all team mem-

bers and in return assist others in improving their testing skills. This

approach ensures everybody on the team is committed to delivering a

quality application.

13.9 References

Test-Driven Development: By Example by Kent Beck (Addison-Wesley

Professional, 2002)

“Exploratory Testing Explained v.1.3 4/16/03,” copyright 2002–2003

by James Bach, http://www.James@satisfice.com

http://www.James@satisfice.com
http://books.pragprog.com/titles/twa/errata/add?pdf_page=201

Chapter 14

Pragmatic Performance Testing
by James Bull, QA Consultant

Software that performs poorly will annoy people and hinder organiza-

tions rather than make their lives easier. It will, regardless of the level

of functionality delivered, have a strong negative impact on the per-

ceived quality of the software. People who have had a bad experience

with software from your company won’t wait to see whether you can do

better next time. They will vote with their wallets and take their money

elsewhere.

Given the choice between a fast, reliable system that scales well and

a system that does not, the decision is obvious. When we talk about

performance testing, we generally use it to encompass scalability and

reliability as well as performance because they are often done at the

same time using the same tools. In this essay, I’ll talk about how to

ensure that the finished product has these properties that I will often

refer to collectively as performance.

14.1 What Is Performance Testing?

At this point, we are probably all in agreement that the previously men-

tioned software attributes are not just a good thing but are worth paying

money for. The question now is, where does performance testing fit into

all this? How does that help us with our goal of writing software with

an appropriate level of performance?

Performance testing should encompass all the activities necessary to

make sure that the product released has satisfactory performance.

There are four key elements: requirements, product performance data,

communication, and process.

REQUIREMENTS GATHERING 203

If any of these elements are missing, then performance testing will be

significantly less effective. If the only activity undertaken is testing, you

aren’t really in a much better position, because it is not known how

fast it is supposed to go. For this reason, you need to do some require-

ments gathering too. If the results are not communicated, then nobody

knows that there is a problem, so no action can be taken. Even when

we have established the requirements, tested the product, and commu-

nicated the results, we are still not finished. If there is no room in the

plan for performance bug fixing or no established process by which the

work needed gets planned based on the communicated results, then

you have minimal impact on the software that actually gets shipped. In

this final case, you have spent a significant amount of money ensur-

ing you are very well informed about the exact extent of your failure or

success with regard to performance.

What we want is not just to be well informed but to allow the informa-

tion gained to have an effect on the software that is being written, thus

ensuring we meet or, at worst, get closer to meeting the desired level of

performance. I’ll discuss each of these four elements in detail.

14.2 Requirements Gathering

Requirements gathering is often undervalued and overlooked. I’ll try to

explain what we are measuring, how we know what we want, and how

to come up with numbers that are actually going to be helpful and not

counterproductive.

What Are We Measuring?

The key measurements for performance are maximum throughput and

response time at a given level of throughput. It is good to measure

response times at a number of different throughput volumes to see how

system load affects the response time. If you have stringent response

time targets, then maybe the throughput it can achieve while main-

taining those targets will be significantly lower than the maximum. You

want to find the throughput at which response times are acceptable and

the response times you get when running at the desired throughput.

The key measurements for scalability are how the initial performance

measurements vary as the size of the data set and the number of users

or the hardware the system is running on changes.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=203

REQUIREMENTS GATHERING 204

The key measurements for reliability are whether the system continues

to function correctly when under an abnormally high load and whether

the system continues to function correctly when run for a long time.

How Do You Set a Figure?

To know what throughput the system will need to achieve, you need

to know how many users there will be on the system and what their

pattern of usage is going to be. How often does a user perform a given

function, and how quickly does it need to be completed?

This information should be available from somebody in the business.

You should prepare them for the fact that this information will be

needed on a regular basis and then establish a process that will allow

this information to be gathered with a minimum of fuss.

You want to reach a state where you can reliably obtain the information

you need and have a process whereby you can arrive at the figures that

are necessary to support the business at that particular moment in

time. If you don’t calculate these numbers regularly, you can end up

working toward targets that have been rendered irrelevant.

Once you have determined the throughput that is currently required,

you can start to think about the response times. When considering the

UI, it is easy to fall into the trap of thinking that because you want the

user interface to respond in a fraction of a second, the function it is

executing must also be completed in this time. The UI should respond

immediately with a display informing the user that their request is

being processed. The rest of the application that does not depend on

the function being executed should still be available.

Response time targets should be primarily for the user interface and

should be low. They should not carry the expectation that any given

function should complete within that time.

Just in case that isn’t clear, the following is a quick example.

How Does This Fit in with the Normal Software Development

Process?

Ideally, the meetings to determine the performance requirements for

the current week’s work should include the project manager, the per-

formance stakeholder, a senior developer, and the performance tester.

The developer is required in order to point out whether any of the

requirements being looked at are obviously not going to be met or are

http://books.pragprog.com/titles/twa/errata/add?pdf_page=204

REQUIREMENTS GATHERING 205

unreasonable. The performance stakeholder is there to provide infor-

mation and knowledge about the business to help determine the re-

quirements. The project manager needs to know what is being decided

and provide some direction, and the performance tester obviously

needs to be present so they know what they are testing against.

Next you need to decide who you are going to have these discussions

with. It is very important that there is a point of contact within the

business who will share the responsibility for determining performance

requirements. This ensures that the customer knows what they want

and that the developers know what they want too. The requirements

that we come up with should not be regarded as inviolable. As with

all requirements, they should be a starting point for dialogue with the

customer about what is achievable.

Once the requirements have been set, you can agree on how you will

show that these requirements have been met and then estimate and

plan the work to develop these tests as you would with any other piece

of work.

Don’t the Developers Also Have Requirements from the

Performance Testing?

The requirements the developers have will vary, but the driver for them

is that if a certain piece of code needs rework, then they will need addi-

tional information about what was happening at the time. This could

vary from output from a code profiler to thread dumps or even just some

additional logging. They may want to know how busy the database was

compared to the application server or how busy the network was during

times of peak load.

It is probably not worth trying to answer all these questions up front

because this would represent a significant amount of work. What you

can do, though, is where there is some code that needs rework, you can

work out what information the developers need in order to effectively

fix the problem and then go through this with the client and add it to

the list of tasks you need to do. You can at this time consider whether

it would be easy to do this for all tests from now on or whether this is

going to be a once-off exercise for this particular incident.

When the developers’ requirements are brought up in the requirements

meeting in this way, everyone is aware of them. They can be taken

into account when prioritizing and planning the work later. The end

result will be that the performance testing that is done is able to satisfy

both parties’ requirements. It will give the customer confidence in the

http://books.pragprog.com/titles/twa/errata/add?pdf_page=205

REQUIREMENTS GATHERING 206

software as it is being developed. And it will help the developers track

down and eliminate any issues that occur.

What If You Can’t Find a Stakeholder for Performance

Requirements?

If you can’t find a stakeholder for performance requirements, then there

are several risks. The first is that you will create software that is inap-

propriate for the business, and the project will fail. The second is that

the customer will disagree about whether the software is appropriate

regardless of the actual suitability of the product because they think

they have not been consulted. The third risk is that you might cre-

ate tension in the team as you push for the development team to do

work that they see as unnecessary because it has not come from the

customer. This can happen whether your concerns are valid or not and

can result in necessary work not getting done or, conversely, time being

wasted doing work that is not necessary.

What Happens If the Customer Isn’t Very Technical and Wants

Something We Believe Is Impossible?

There is a risk that the customer might want a level of performance

from the product that is either impossible or uneconomic to achieve.

You want to prevent this from happening by directing the conversation

toward what the business actually requires by asking some pertinent

questions.

Some questions to consider when it comes to throughput are, how

many transactions are processed every business day? How are these

transactions distributed? Do they come in evenly spread, or are there

peaks and troughs? Is there a rush every Friday afternoon, or is there

no particular pattern to when the peaks occur?

Questions to consider when it comes to response time are, how will

the response time of the user interface affect the amount of work that

can be done with the system? Can the interface be decoupled from the

actual action being performed? For example, you might have a scenario

where a user inputs some data that is then subject to some lengthy data

processing. The user does not want to wait for the data processing to

finish before they enter their next piece of data, so rather than expect

the data processing to complete in a second, decouple the interface

from the processing and allow the system to work on this data in the

background while allowing the user to continue entering data using the

interface.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=206

REQUIREMENTS GATHERING 207

In this way, we keep both parties focused on the level of performance

that will actually help the business, and we are able to differentiate

between what is actively needed and what is simply nice to have. It

might turn out that what is genuinely needed is not possible given the

current constraints on the project or that it will be very expensive. In

this case, the client can decide whether to proceed at an earlier stage

than would otherwise have been possible if this requirements analysis

were not done.

The bad thing about the customer wanting something they can’t have is

that they will be disappointed with the final system even though it may

perform well enough to satisfy their business needs. These discussions

will have a dual function. They will bring to light the actual require-

ments the business has while at the same time making the client aware

of what it is they require. This will lead to the client being satisfied with

the system if it does what they need. They are much less likely to have

their expectations confounded, and if they are disappointed, then it is

likely to be with good reason.

Why Not Get the Business Analysts to Gather These Requirements

As Well?

It is not necessary to have a business analyst present for a couple of

reasons. The first is that the functional requirements gathering will

already have been done. The second is that even if a business ana-

lyst were present, this would not remove the need for a developer to be

there because they are need to articulate the requirements they have

for investigating performance problems while also being there to flag

whether any of the things that are required are likely to cause difficul-

ties or require a different approach. The performance tester should be

able to drive the conversation by asking questions similar to the previ-

ous ones. They can also say how easy or difficult it will be to test each

function. In this case, the business analyst’s time would be better spent

elsewhere.

Summary

The purpose of requirements gathering is to be well informed about

how well the product needs to perform in order to be able to support

the business goals. The reason for involving the customer is that they

are the ones with the most knowledge of their own business. This helps

ensure that the requirements you gather are accurate. It also has the

http://books.pragprog.com/titles/twa/errata/add?pdf_page=207

RUNNING THE TESTS 208

benefit of making the customer explicitly aware of what their require-

ments in this area are, and so it manages their expectations of the final

system.

14.3 Running the Tests

I’ll talk briefly now about the sort of tests you want to run and when

you want to run them.

What Tests Are You Running Again?

You want a test for all frequently performed user actions. These tests

should record throughput, error rate, and response time metrics. You

then want to reuse these tests to create more complex ones. You want a

test that runs all these tests together in a realistic distribution. This will

give you sufficient information about the performance of the product.

Once you have done this, you then take the realistic test and run it

with differing numbers of users and different size data sets to see how

it scales. If it is possible, you also want to run the system on different

numbers of machines to show how the performance changes as more

hardware is added. This will give you the information you need for scal-

ability.

Finally, you want a test that puts the system under more load than you

expect so you can find the failure points. You also want a test based

on the realistic test with similar distributions of users but sped up.

Running this for a long period of time should tell you how reliable the

system is.

When Should You Run Them?

The obvious answer is as often as possible. There is a problem with this,

of course. Performance test suites by their nature tend to take a long

time to run. Reliability tests particularly need to run for a long time to

be useful, so there are not enough hours in the day to run a comprehen-

sive performance test suite on every build. You want to provide rapid

feedback to the developers and also test the product comprehensively.

One solution is to have a single dedicated box that runs a limited set of

performance tests continuously on the latest build. It should be set to

fail if the results differ markedly from the previous build. The results

you get from this will not be indicative of the real-world performance

but will be an early warning system that will quickly tell developers

http://books.pragprog.com/titles/twa/errata/add?pdf_page=208

RUNNING THE TESTS 209

whether something they have done has caused a significant change in

the way the product performs.

The full suite of tests should then be running on the full performance

environment as often as it can. This might be several times a day, or if

access to the environment is limited, then running them overnight is a

good compromise.

The reliability test obviously has to take a long time, and often it has

to be run on the same environment as everything else. This means it

cannot be done during the week, so running it over the weekend every

week is about as good as you can hope to get without having a separate

environment dedicated to reliability testing.

Where Should You Run Them?

If at all possible, you should try to get hold of a system that mimics the

production system. If this is not possible because the production sys-

tem is too large, then you need to build an environment that mimics a

slice of the production environment and express the absolute require-

ments in terms of a figure per server.

If it is not possible to get access to a dedicated performance testing

environment, then things start to get a little tricky. If you have to

share with the functional testing team, then running the performance

suite overnight is one option. In this case, it is wise to have separate

databases for the performance and functional tests and a script to swap

the program under test between them. This means that the two conflict-

ing uses of the system will not interfere with each other. This of course

assumes that it is possible to run the application under test on a desk-

top machine and develop the performance tests on that.

One issue to be careful of when running at night is that the network

conditions will be different from those during the day. The network

may be less busy because people are not in work, but there is also the

possibility that backups or other overnight batch processes will have

a significant effect on the network traffic. A burst of network activity

during a performance test may well affect the results, and if both the

performance tests and the job that causes the traffic are scheduled

to start at the same time, then there could be a consistent effect on

the results that you won’t see unless you run the test at a different

time. Arranging to run the test suite once during a normal working day

will let you know whether there are significant differences in your test

results because of time differences. If there is a big difference, then

http://books.pragprog.com/titles/twa/errata/add?pdf_page=209

RUNNING THE TESTS 210

you can either try to simulate the average network traffic you would

get during a normal day or see whether the difference between running

at the two times is consistent and just take that into account when

looking at the results.

In my experience where there is significant contention for a test envi-

ronment, it is necessary to be very organized with regard to whom uses

the system, at what time, and running against which database. It is

also the case that sometimes a test will fail on the test environment

yet pass on the local machine. This will require the environment to be

switched across to the performance database and the rest of QA not to

use the system until the issue is resolved. Because of these difficulties

and the fact that sharing an environment significantly limits how often

you run your tests, it is worth trying to organize a separate environ-

ment for running these tests if at all possible, even if this means the

environment you run the tests on most often is not production-like.

If you end up with a situation where you must choose between a non-

production-like environment or limited time on a production-like one,

then take both. The exclusive environment allows you to have unhin-

dered access to develop and run tests on a regular basis. This could

then be included in the continuous integration system. The production-

like environment allows you to compare the results you get on that sys-

tem to the results you get on the nonproduction system you run on

more regularly. This will give you an idea of how the results you get are

likely to relate to the ultimate performance of the system.

How Do You Relate Test Results on a Smaller Test Rig to

Production?

One problem that often occurs is that the environment you have is not

the same as the production one. It is important to realize that having

a test system with no similarities at all to production makes it almost

impossible to judge how the system will perform on different hardware.

So when you necessarily have to have a smaller environment, what can

you do? Here I am going to go into greater detail about what I mean by

the representative slice of the system.

Consider the example of a large-volume web application. The basic

architecture of the system might be several application servers, a num-

ber of web servers, and some database servers. If in the production sys-

tem there are a number of database servers (very big boxes), two times

the number of application servers per database server (big boxes), and

http://books.pragprog.com/titles/twa/errata/add?pdf_page=210

RUNNING THE TESTS 211

four web servers per application server (little boxes), then you might

consider the following approach. Buy one database server half as pow-

erful as a production one. Buy one application server that is the same

specification as one of the ones in production, and buy one web server.

You then have an application server/database combination where the

specification of the machines relative to each other is the same but

should be about half the speed. You also have an inadequate web server

capacity.

You can find out what the performance of the application is by hitting

the application servers directly. This will give you a figure for what each

application server can achieve. You then test through the single web

server you have, which in this scenario should show the web server

to be a bottleneck. This will allow you to get a per-server figure for

the web server that is not held back by the rest of the system. You

should be able to use this to tell whether the ratio of different types

of machines mooted for the production system is correct and come up

with an estimate of the performance of the production system that you

have a certain degree of confidence in.

One thing to remember is that given that every web request will be

served only from a single application server/database combination as

the number of machines increases, only the throughput will increase

as a direct result of this. The response time will improve only as a

result of increases in the amount of CPU power or memory available per

machine, assuming the level of load the system is subjected to remains

the same. A faster CPU will process more requests more quickly, while

more memory allows more items to be cached.

This does of course assume that the machines remain the same, that

the CPUs are all from the same manufacturer, that they are all running

the same version of the same OS, and that they are running the same

database/webserver/appserver combination.

Do bear in mind that the further the system is from production in terms

of specification of machines, software used, and so on, the less confi-

dence you should have in any estimate you make of the performance of

the final system. In the previous example, you could put together a test

environment for a fraction of the cost of the full production kit, and you

could have some confidence that the numbers projected for the final

system would not be too far off. If you had machines with wildly dif-

ferent specifications that used MySQL instead of Oracle or WebSphere

http://books.pragprog.com/titles/twa/errata/add?pdf_page=211

RUNNING THE TESTS 212

instead of JBoss, then although you could still measure performance

changes, any projection would be of dubious value.

What Size Database Is Appropriate for Performance Testing?

When running performance tests, it is important to note that the size of

a database can have a very large impact on the time it takes to retrieve

rows from a table. If a table is not correctly indexed, then the problem

may not be apparent with a small data set; however, if your production

data has more than a few thousand rows, then the performance will

degrade significantly.

You should have a chat with the performance stakeholder about getting

hold of a copy of the production database so you can test the code

against that. When doing this, it is important that you are aware of

data protection issues and that the database you use has been suitably

cleaned to remove or change personal information.

You should also discuss with the performance stakeholder how the vol-

ume of data is stored is likely to change. Will it remain roughly con-

stant, or is it likely to grow? If it’s going to grow, is it going to grow slowly

or quickly? Knowing this will help you decide whether it is appropriate

to test with a database significantly larger than the current one.

The best way to get a larger database is to use your stability tests to

create a new database. As part of your stability test, you should be cre-

ating new users and new transactions, and if the system successfully

runs all weekend, then you should have a sizable data set you can use

in the future.

How Do You Deal with Third-Party Interfaces?

When a system has many third-party interfaces, it is a good idea not

to hit these systems directly. There are two reasons for this. The first

is that the third parties will probably not be pleased to be part of your

performance tests, and the second is that even where they do provide a

test environment, relying on a third party that you have no control over

will make your tests less reliable.

The best thing to do is to perform a test to find out how quickly this

system responds on average and then write a mock or stub that simply

waits this long before returning a fixed response. You could simply have

it return a response immediately, but then you would be losing a certain

amount of realism from your scenario because the application server

http://books.pragprog.com/titles/twa/errata/add?pdf_page=212

RUNNING THE TESTS 213

could potentially be working its way through database connections or

network connections faster than it otherwise would, which could make

a difference to the final results.

How Many Different Test Cases Do You Need?

This is quite an important question because using the wrong amount of

data will skew the results badly whether you use too much or too little.

If you use a too few test cases, all the relevant bits of information will

become cached, and your results will show the system to be quicker

than it actually is. If you use too many different test cases, then you

will find that you burst the cache, and the system will appear to be

slower than it will actually be in normal operation.

To use the correct number of test cases, you will need to discuss the

expected usage of the system with the performance stakeholder and

if possible get the logs of usage for the existing system. For example,

if you are retrieving customer information inside an application, then

obviously the number of customers whose information you retrieve

should be comparable to the number of unique customers retrieved

during normal operation. If 5% of the records in the system are re-

trieved in any given day, then your test cases should cover this number

of customers.

Why Take Several Different Measurements for Response Time and

Throughput?

In general, as you begin to increase load from idle, the response time of

the system is unlikely to degrade. As load continues to increase, there

will come a point where the total number of transactions processed

per unit time continues to increase (that is, throughput goes up), but

this comes at the expense of response time, which will also begin to

rise. As the server reaches its maximum capacity, throughput initially

remains constant while response times begin to increase significantly

before finally the throughput itself collapses because the machine is

just unable to keep up with the volume of work it is being asked to do.

At this point, response times will shoot up, and the whole system will

grind to a halt.

You are interested in several pieces of information. The first thing you

want to know is the point at which the maximum throughput of the sys-

tem occurs. Other interesting pieces of information are the load level at

which response times meet their targets, the best achievable response

http://books.pragprog.com/titles/twa/errata/add?pdf_page=213

COMMUNICATION 214

time, and the response times at 80% and 90% of the previously mea-

sured maximum throughput.

This allows you to limit the number of connections the application

server will accept per machine to keep the performance characteristics

of the system within the bounds agreed on during the requirements

gathering. You will notice that the variability of response times will

increase dramatically as you approach maximum load and are signifi-

cantly less variable at 80% or even 90% capacity. This is worth bearing

in mind if you have to guarantee a certain level of performance.

Is It Necessary to Test Every Function in the System?

It is rarely feasible to test every single piece of functionality in the sys-

tem. What is important, though, is to make sure you hit the functions

that are used most often. To do this, you need to identify the major

ways the system is used and create different tests for each scenario.

For example, in an online shopping site the major usage modes might

be browsing and buying. Not everyone who comes to buy an item will

do so after extensive browsing, and not everyone will browse for a long

time. What you need to do is create one script for browsing and one for

buying. The information you need to make these scripts realistic is the

average number of items a browser browses, the number of items on

the average order, and the total percentage of all items that get browsed

by all users on the site over the course of a typical day.

Summary

Many questions can arise in the course of performance testing. What

should you measure? How often? How many scripts? How much data?

The main thing to remember is that your regular chats to the perfor-

mance stakeholder should be the forum in which questions like these

are aired and where needed information can be gathered. You should

also make time to talk to the project manager and the performance

stakeholder if you think the way things are going are having a signifi-

cant impact on the efficacy of these tests.

14.4 Communication

Communicating the results is important. The question then is, what

exactly is it that we are communicating? Communicating the results is

about more than just reporting raw numbers. If you do this, you are

http://books.pragprog.com/titles/twa/errata/add?pdf_page=214

COMMUNICATION 215

requiring everybody on the team to spend time analyzing the results

when they have other things to do. It makes it easier for everyone if

the results are subject to some basic analysis and interpretation and a

summary is presented.

Therefore, you need to interpret the results with respect to the require-

ments that have been agreed on and with respect to the current level of

performance. First, you want to report on how close the performance is

to the target, either faster or slower. Second, you want to report whether

the performance of an aspect of the product changes significantly. You

would want this to be widely known whether or not it causes you to

miss performance targets. It could be the case that a large piece of

additional functionality has gone in, which unavoidably affects the per-

formance of the product, in which case there might be little that could

be done. It might, however, be something as simple as a missing index

on the database, which would be easy to fix.

Who Needs to Know?

Three sets of people need to have the results communicated to them:

the developers, the project manager, and the client. The developers and

the project manager need to know as soon as the tests are run so that

the team can deal with any issues appropriately as soon as they occur.

You don’t necessarily want to be bothering the client every day with

small problems, though; otherwise, they will be less inclined to listen

when you have something important to tell them. You don’t want to

neglect it, however, so having a scheduled meeting once a week when

you can go through the results is probably a good idea.

It’s also worth considering that different people are interested in dif-

ferent information. It might be that clients or project managers want

to see a higher-level view of the information, while the developers are

more interested in the raw data, how many responses are within a given

period, and so on. If you can provide the right information to the right

people, then it makes the job of communicating the status of the prod-

uct a lot easier.

So, You Just Need to Create a Report, Right?

Not quite. The problem with just creating a report and sending it round

is that it means the majority of people won’t read it, so the information

you want to convey will be lost. Any report you create is just a tool to

http://books.pragprog.com/titles/twa/errata/add?pdf_page=215

PROCESS 216

help you to get your message across; it doesn’t mean you can stop at

that point.

It is useful to have a website you can direct people to that contains the

latest performance test results. Then when you go over to someone’s

desk to tell them about the results, you can bring up the web page and

take them through what you have found. Unfortunately, test reports do

not make riveting reading for the majority of people, and the only way

you can be sure you have got your message across is to go to their desk

or pick up the phone and go through the report with them.

Summary

You are aiming to be in a situation where, because your requirements

are well known, you do not have to ask the client every time a test

result comes in whether it is acceptable. When you meet on a weekly

basis to go through the current status of the project, you want to be

able to point out any anomalies or abnormalities in the test results and

explain them. If the software is particularly bad in a particular area but

it has been judged not to be a serious issue, then you should be able to

tell them why it is slower and that the project manager did not think it

was a high priority and give them the reason why. If they disagree with

the decision, then it is time for the project manager and the customer

to sit down and have a discussion about the current situation.

14.5 Process

Performance testing is often left until the end of a project, but this has

a significant effect on how effective it can be. The most important thing

about doing performance testing is to do it regularly. If you leave it until

the last few weeks of a project, then you will have a lot of work to do

in a small timeframe. You will spend most of your time writing scripts

and getting some numbers out of the product. You will then be in a

situation where it is known roughly how fast the system is, but there

is little idea whether this is good enough, and there is no time to make

any changes that might be required.

Performance testing should start as the first piece of code is being devel-

oped. Although there may not yet be anything you can test, there are

still lots of things you can do. You can talk to the developers about the

technology they will be using, evaluate suitable tools, and find one that

provides the functionality you will need to test this product. You can

http://books.pragprog.com/titles/twa/errata/add?pdf_page=216

PROCESS 217

also identify a performance stakeholder and begin the requirements-

gathering process with them.

So, How Do You Link It All Together?

From this point onward, you can start to get into a cycle. At the begin-

ning of the week you meet with the performance stakeholder for the

first time. This meeting is to discuss requirements for the functions

currently being implemented. It is also a place where you can describe

the tests you plan to create and how that would show that the require-

ments were satisfied. The customer can also request additional tests

at this point. Throughout the rest of the week, you can be implement-

ing tests for the most recently completed functionality, maintaining the

automated tests, and checking the results. At the end of the week, you

meet with the performance stakeholder again. The purpose of this sec-

ond meeting is twofold. First you are showing them the tests you have

written during the week. You can then discuss with the client whether

these new tests actually show that the product meets the requirements

you discussed earlier. The second purpose of the meeting is to go over

the current results for the existing performance tests.

How Do You Make Sure You Don’t Drop Behind?

As you are working to a weekly cycle, it should become apparent very

quickly whether you are dropping behind. To catch up again, you can

either increase the resources allocated to performance testing or reduce

the amount of work that you try to do. Which of these you choose

should be largely dependent on just how important the performance

requirements for this project are.

One way to do this is to create a list of tasks that are required based

on the tests that you and the client have decided upon. You can then

go through the list of tests with the client and prioritize them. You then

do as many as you can in a week and then move on. If this approach

results in very spotty test coverage, then it may be that more effort is

required for performance testing. You will probably find, however, that

by dropping the most difficult and lowest-priority tests, you can develop

a suite of tests that provides adequate coverage without falling behind.

How Do You Make Sure That Once an Issue Is Identified That

Something Gets Done About It?

Talking to the project manager at the start of the project about how

performance fixes will be dealt with is important here. You need to

http://books.pragprog.com/titles/twa/errata/add?pdf_page=217

SUMMARY 218

make sure they agree with this approach and think the requirements

you are gathering are valid. You want to ensure that they are happy for

you to raise performance issues as bugs and that they will be worked

on as they occur so that you do not find yourself in the situation where

there are a large number of known issues to address at the end of the

project. There is, after all, little value in identifying whether the current

performance is acceptable if you then take no action to remedy it when

it becomes necessary.

14.6 Summary

The main benefit of these processes is that it ensures that you know

what you need, you know what you actually have, and you ensure that

you have some tests for every part of the system. This greatly increases

the chance that you will be able to deal with any problems that occur.

The fact that you are able to test each feature as it is developed means

you have time to change it if it is necessary. The fact that you have

requirements means you know whether a change is required. The fact

that the requirements come from the client and are based on their busi-

ness processes and volumes means that the whole team has confidence

in them. This in turn means that people will be happy to spend the time

needed to fix performance bugs because they know each one represents

a valuable piece of work.

http://books.pragprog.com/titles/twa/errata/add?pdf_page=218

Bibliography

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in

the Heart of Software. Addison-Wesley Professional, Read-

ing, MA, first edition, 2003.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

Index
A
Abbreviating, 76–77

Acceptance tests, 177

Agile vs. waterfall test strategy, 183

data validation, 190

environments, testing, 193–196

exploratory testing, 189

functional testing, 188

integration testing, 189

issue management, 196

nonfunctional testing, 192

performance testing, 191

production verification, 193

regression testing, 192

reports and metrics for, 198

test types, 187

testing life cycle, 185f, 184–186

testing roles for, 199f, 199–201

tools for, 197–198

unit testing, 187

user acceptance testing, 190

Annotations

domain, 124–125

domain, benefits of, 125–126

domain-driven design and, 121–122

domain-specific metadata and, 122

Java and .NET and, 123–124

Ant, refactoring, 142–171

taskname attribute, 166–167

build files, 143–144

CI publishers and, 168

declarations in, 150

dependencies in, 151

deployment code, 156–157

descriptions vs. comments, 156

directories, centralizing, 167

elements and antlibs, 157–159

elements, reusing, 161–163

Exac vs. Apply, 168

filtersfile, 152–153

internal targets, 167

invoking, 166

library definitions and filesets,

159–160

literal values and properties,

151–152

location attribute, 164

macrodef, 146–148

move target to wrapper build file,

154–156

name and description catalog,

144–170

path and option scripts, moving,

164–166

properties files, 153–154

properties, moving outside target,

163

runtime properties, 160–161

target naming, 169–170

targets, extracting, 148–149

Apache Commons project, 63

Assembly, 58

Associative arrays, tuples as, 66

Automation

continuous integration pipeline and,

181, 182f

deployment and, 178–180

“Last mile” problem and, 19

nonfunctional requirements testing

and, 21–22

B
Bay, Jeff, 70–80

Bill of Rights, developers, 83

Binaries, managing, 174–175

Bottlenecks, 92

Breaking changes, 109–111

Budget burn-down, 96f, 95–97

BUG COUNTS 221 DOMAIN ANNOTATIONS

Bug counts, 94f, 94–95

Bull, James, 202–218

Business software, see Last Mile

problem; Enterprise web

applications

Business value

and agile processes, 23–24

“Last mile” problem and, 16–17

C
C, 58

C++, 58

Class methods, 31–33

Classes

collections and, 79

entities and, 77

instance variables, 77–78

Closures, 37–38

Cockburn, Alistair, 90

Code

qualities for, 70

standards for, 71

Code katas, 48

Command query separation, 32

Commit-tests, 175

Communication

“Last mile” problem and, 18–19

performance testing and, 215–216

see also Iteration manager

Compiled languages, 57

Computer languages

characteristics of, 57–58

conflict over, 59

Erlang, 52

execution behavior, 56–57

Fortran, 50

Haskell, 51–52

implementation models, 57

Java, 51

Lisp, 50–51

paradigms, 53–54

vs. platform, 60

polyglot programming and, 60–69

Ruby, 51

SQL, 52

type characteristics of, 54–55

varieties of, 53–57

see also Dynamic languages

Concurrent languages, 56

Configuration objects, 27

Consumer contracts, 114–115

Consumer-driven contracts, 101

benefits of, 118

breaking changes and, 109–111

characteristics of, 116

consumer contracts and, 114–115

evolving a service and, 103–104

implementation of, 117

liabilities and, 119–120

provider contracts and, 111–114

schema versioning and, 104–109

service-level agreements and, 119

service-oriented architecture

overview and, 101–102

Context variables, 29

Continuous integration, 22, 172–182

acceptance tests, 177

automation of, 181, 182f

defined, 155

deployment, 178–180

end-to-end release systems, 173–174

full lifecycle pipeline, 174–175, 178f

practice of, 172–173

release candidate, 175–176

test stages, 180–181

Conversations, see Communication

Counter-based testing, 21

Current state of implementation, 97f,

98f, 97–99

Customers, iteration managers and, 86

Customers, requirements gathering

and, 206

D
Data encapsulation, 79–80

Data validation, 190

Declarations, Ant, 150

Declarative languages, 52

Decomposition, 78

Delivery quality, 94f, 94–95

Dependencies, Ant, 151

Deployment, 178–180

Design, see Object-oriented design;

Domain annotations

Design vs. production environment,

22–23

Design, code qualities for, 70

Development integration environment,

194

Doernenburg, Erik, 121–141

Domain annotations, 121–141

benefits of, 125–126

DOMAIN-SPECIFIC LANGUAGES 222 INFORMATION RADIATOR

characteristics of, 124–125

design and, 121–122

Java and .NET and, 123–124

Leroy’s Lorries case study, 127–140

data classification in, 129–134

domain model of, 127–128

navigational hints for, 134–140

transfers, 127f

users, 129f

metadata and, 122

Domain-specific languages, see DSLs

Dots per line, 75–76

DSLs

closures and, 37–38

dynamic reception and, 46–48

evaluation context and, 38–41

global functions and, 28–31

internal, 25

lair example background, 25–28

literal collections and, 41–46

objects and, 31–37

variables in, 30

Duck typing, 55

Dynamic languages

Lisp as, 50

method calls and, 46

unknown methods and, 47

Dynamic reception, 46–48

Dynamic typing, 55

Dynamically typed languages, 50

E
Elements, reusing, 161–163

else, 73–74

Encapsulation, 79–80

Enterprise web applications, 183

data validation, 190

environments, testing, 193–196

exploratory testing, 189

functional testing, 188

integration testing, 189

issue management, 196

nonfunctional testing, 192

performance testing, 191

production verification, 193

regression testing, 192

reports and metrics for, 198

test types, 187

testing life cycle, 185f, 184–186

testing roles, 199f, 199–201

tools for, 197–198

unit testing, 187

user acceptance testing, 190

Entities, 77

Environment variables, 152

Environments, testing, 193–196

Erlang, 52, 58

Evaluation context, 38–41

Evans, value objects, 30

Execution behavior, 56–57

Exploratory testing, 189

Expression Builder, 33–36

F
Farley, Dave, 172–182

filtersfile, 152–153

Finger chart, 85

First-class collections, 79

Ford, Neal, 60–69

Fortran, 50, 58

Fowler, Martin, 25–48

Functional languages, 50, 51, 65

Functional programming, Jaskell and,

64–67

Functional testing, 188

Functions, global, 28–31

G
George, Fred, 81, 85, 87

getters/setters properties, 79

Global functions, 28–31

objects and, 31–37

Greenspun Form, 45

Groovy, 61–63

H
Haskell, 51–52, 58

see also Jaskell

I
Identifiers, 30

if element, 151

if/else construct, 73–74, 150

Imperative languages, 50

Implementation models, 57

Implementing Lean Software

Development: From Concept to

Cash (Poppendieck &

Poppendieck), 86

Indentation, 72–73

Information radiator, 98

INFORMATION RADIATORS 223 NONFUNCTIONAL TESTING

Information radiators, 90

Instance variables, 77–78

Integrated development environments

(IDEs), 58

Integration testing, 189

Interfaces, provider contracts and, 112

Interfaces, third-party, 212

Interpreted languages, 57

Issue management, 196

Iteration manager, 81–88

customers and, 86

iterations and, 86–87

project environment and, 87

vs. project manager, 83–84

project vital signs and, 92

role of, 81–82

skills and responsibilities of, 82–85

team and, 84–85

J
Jaskell, 64–67

Java, 51, 58

annotations in, 124

isBlank(), 63–64

origins of, 60

reading files in, 61

testing, 67–69

see also Ant; Polyglot programming

JMock, 67

JRuby, 63–64, 68

K
Katas, 48

Key, 43, 44

L
Languages, see Computer languages;

Dynamic languages

“Last mile” problem, 15–24

automation and, 19

business value and, 16–17

communication and, 18–19

defined, 15

design and production environment,

22–23

nonfunctional requirements testing,

21–22

solving, 18

source of, 15–16

versionless software and, 23–24

Law of Demeter, 75–76

Lazy languages, 51, 56

Legacy systems

“Last mile” problem and, 17

automation and, 20

versionless software and, 24

Lentz, Tiffany, 81–88

Leroy’s Lorries case study, 127–140

data classification in, 129–134

domain model of, 127–128

navigation in, 134–140

transfers, 127f

users, 129f

Liabilities, consumer-driven contracts

and, 119–120

Lisp, 50–51, 58

vs. Ruby, 25

Lists, 43–45

Literal collections (maps and lists),

41–46

Literal hash, 42

Literal values and properties, 151–152

M
Macrodefs, 146–148

Maps, 42

Meetings, iteration managers and,

86–87

Meetings, performance testing and, 205

Metadata

.NET and, 123

domain-specific, 122

Method chaining, 31–33

vs. parameters, 36

Method missing, 47

Methods

class, 31–33

indentation of, 72–73

poorly hung, 63

variable argument, 45–46

Mingle, 69

Mixins, 66

Mock objects, 67

N
Name-value pairs, 43

.NET, 123

Nonfunctional requirements

automated testing of, 21–22

Nonfunctional testing, 192

OBJECT -ORIENTED DESIGN 224 REFACTORING

O
Object-oriented design, 70–80

abbreviations, 76–77

class collections and, 79

dots per line, 75–76

else keyword, 73–74

encapsulation of data, 79–80

entities, 77

getters/setters properties, 79

indentation of methods, 72–73

instance variables, 77–78

primitives and strings, 74

rules for, 71

Object-oriented languages, 51

Objects, 31–37

class methods and chaining, 31–33

Expression Builder and, 33–36

Orchard, David, 109

P
Pantazopoulos, Stelios, 89

Paradigms, 53–54

Parameters vs. method chaining, 36

Parsons, Rebecca J., 49–59

Performance testing, 191, 202–218

communication and, 215–216

defined, 202–203

meetings and, 205

process of, 216–218

requirements gathering, 203–208

testing, 208–214

testing vs. production environment,

210–212

testing, database size for, 212

Pipeline build, 174, 178f

Playback testing, 20

Polyglot programming, 60–69

blank parameters, checking for,

63–64

future of, 69

Jaskell and, 64–67

overview of, 61

reading files and, 61–63

testing Java and, 67–69

Polymorphism, 66

Poorly hung methods, 63

Poppendieck, Mary, 83

Poppendieck, Tom, 83

Primitives, 74

Procedural languages, 50

Process, performance testing and,

216–218

Production environment, 196

Production verification, 193

Production vs. design, 22–23

Programming languages, see Computer

languages

Project tracking tool, 69

Project vital signs, 89

budget burn-down, 96f, 95–97

current state of implementation, 97f,

98f, 97–99

defined, 89–90

delivery quality, 94f, 94–95

vs. information radiators, 90

vs. project health, 90

scope burn-up and, 91f, 91–93

team perceptions and, 99f, 100

Prolog, 52, 58

Properties, moving outside target, 163

Provider contracts, 111–114

characteristics of, 114

R
Reading files with Groovy, 61–63

Real-time summary, see Project vital

signs

Refactoring, 142–171

taskname attribute, 166–167

build files, 143–144

CI publishers and, 168

declarations, 150

defined, 142

dependencies, 151

deployment code, 156–157

descriptions vs. comments, 156

directories, centralizing, 167

elements and antlibs, 157–159

elements, reusing, 161–163

environment variables, 152

Exec vs. Apply, 168

filtersfile, 152–153

internal targets, 167

library definitions and filesets,

159–160

literal values and properties,

151–152

location attribute, 164

macrodef, 146–148

move target to wrapper build file,

154–156

REGRESSION TESTING 225 TESTING

name and description catalog,

144–170

path and option scripts, moving,

164–166

properties files, 153–154

properties, moving outside target,

163

runtime properties, 160–161

target naming, 169–170

targets, extracting, 148–149

when to, 143

Regression testing, 192

Release candidates, 175–176

Reports and metrics, 198

Requirements gathering, 203–208

Robinson, Ian, 101

Royle, Mike, 127

Ruby, 58

anonymous classes (structs) in, 47

duck typing and, 55

evaluation context and, 40

identifiers and, 30

as language, 51

literal hash in, 42

symbols in, 30

Runtime properties, 160–161

S
Scala, 58

Schema versioning, 104–109

Schematron, 110–111

Scheme, 58

Scope burn-up, 91f, 91–93

Security, 172

Sequential context, 29

Sequential languages, 56

Service-level agreements,

consumer-driven contracts and,

119

Service-oriented architecture, 101

breaking changes and, 109–111

evolving a service and, 103–104

overview of, 101–102

schema versioning and, 104–109

Set-Based Concurrent Engineering, 86

Simpson, Julian, 142–171

Single-click software release, see

Continuous integration

Software

design improvements, 70–71

“Last mile” problem, 15–24

SQL, 52

Staging environment, 195

Static languages, 50

Static typing, 55

Statically typed languages, 51

Strict languages, 56

Strings, 74

Strongly typed, 55

Structs, 47

System integration environment, 194

T
Targets

enforcing names of, 167

extracting, 148–149

naming, 169–170

Team capacity, 85

Teams, perceptions of, 99f, 100

Technical Architecture Group, W3C,

104

Test analysis, 199

Test scripting, 200

Test-driven design (TDD), 22

Test-driven development (TDD), 187

Testing

acceptance tests, 177

automation and, 20

bug counts, 94f, 94–95

commit tests, 175

continuous integration and, 180–181

data validation, 190

database size for, 212

environments, 193–196

exploratory, 189

functional, 188

integration, 189

Java, 67–69

“Last mile” problem and, 21–22

life cycle in waterfall vs. agile

projects, 185f, 184–186

nonfunctional, 192

of nonfunctional requirements,

21–22

number of cases needed, 213

in parallel, 22

performance, 191, 208–214

playback, 20

vs. production environment,

210–212

production verification, 193

regression, 192

THIRD-PARTY INTERFACES 226 WEIRICH

user acceptance, 190

Third-party interfaces, 212

Thomas, Dave, 48

Threading, 64

Throughput, 203–208

Tools, project, 197

Tuples, 66

Turing completeness, 53

Type characteristics, 54–55

Type interference, 55

U
Unit testing, 187

User acceptance testing, 190

V
Variable argument methods, 45–46

Variables

context, 29

in DSL, 30

environment, 152

vs. identifiers, 30

instance, 77–78

Version control systems, 175

Versionless software, 23–24

Vingrys, Kristan, 183

W
W3C Technical Architecture Group on

versioning strategies, 104

Wall-clock testing, 21

Waterfall vs. Agile test strategy

data validation, 190

environments, testing, 193–196

exploratory testing, 189

functional testing, 188

integration testing, 189

issue management, 196

nonfunctional testing, 192

performance testing, 191

production verification, 193

regression testing, 192

reports and metrics for, 198

test types, 187

testing roles for, 199f, 199–201

tools for, 197–198

unit testing, 187

user acceptance testing, 190

Waterfall vs. agile test strategy, 183

testing life cycle, 185f, 184–186

Web service–level agreements, 119

Weirich, Jim, 41, 48

	Contents
	Introduction
	Solving the Business Software ``Last Mile''
	The Source of the ``Last Mile'' Problem
	Understanding the Problem
	Solving the ``Last Mile'' Problem
	People
	Automation
	Design for Automated Testing of Nonfunctional Requirements
	Decouple Design from Production Environment
	Versionless Software

	One Lair and Twenty Ruby DSLs
	My Lair Example
	Using Global Functions
	Using Objects
	Using Closures
	Evaluation Context
	Literal Collections
	Dynamic Reception
	Final Thoughts

	The Lush Landscape of Languages
	Introduction
	The Specimens
	The Variety of Varieties
	The Tree of Life for Languages
	That's All Very Interesting, But Why Should You Care?

	Polyglot Programming
	Polyglot Programming
	Reading Files the Groovy Way
	JRuby and isBlank
	Jaskell and Functional Programming
	Testing Java
	Polyglot Programming the Future

	Object Calisthenics
	Nine Steps to Better Software Design Today
	The Exercise
	Conclusion

	What Is an Iteration Manager Anyway?
	What Is an Iteration Manager?
	What Makes a Good Iteration Manager?
	What an Iteration Manager Is Not
	The Iteration Manager and the Team
	The Iteration Manager and the Customer
	The Iteration Manager and the Iteration
	The Iteration Manager and the Project
	Conclusion

	Project Vital Signs
	Project Vital Signs
	Project Vital Signs vs. Project Health
	Project Vital Signs vs. Information Radiator
	Project Vital Sign: Scope Burn-Up
	Project Vital Sign: Delivery Quality
	Project Vital Sign: Budget Burn-Down
	Project Vital Sign: Current State of Implementation
	Project Vital Sign: Team Perceptions

	Consumer-Driven Contracts: A Service Evolution Pattern
	Evolving a Service: An Example
	Schema Versioning
	Breaking Changes
	Consumer-Driven Contracts

	Domain Annotations
	Domain-Driven Design Meets Annotations
	Case Study: Leroy's Lorries
	Summary

	Refactoring Ant Build Files
	Introduction
	Ant Refactoring Catalog
	Summary
	References
	Resources

	Single-Click Software Release
	Continuous Build
	Beyond Continuous Build
	Full Lifecycle Continuous Integration
	The Check-in Gate
	The Acceptance Test Gate
	Preparing to Deploy
	Subsequent Test Stages
	Automating the Process
	Conclusion

	Agile vs. Waterfall Testing for Enterprise Web Apps
	Introduction
	Testing Life Cycle
	Types of Testing
	Environments
	Issue Management
	Tools
	Reports and Metrics
	Testing Roles
	References

	Pragmatic Performance Testing
	What Is Performance Testing?
	Requirements Gathering
	Running the Tests
	Communication
	Process
	Summary

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

