

What readers are saying about

TextMate: Power Editing for the Mac

This is not just a book, but a doorway to higher dimensional text edit-

ing! By the third chapter I was completely switched over to TextMate

from Vim. The book provided everything I needed to take full advan-

tage of all that TextMate offers. This book rocks, and James is my new

hero.

Ernest Obusek

Software Engineer, Network Appliance, Inc.

This book is outstanding. Without saying it, James has made the case

for TextMate quickly becoming the interface for 90% of what any OS

X user will ever need to do. I’ve read a substantial amount of material

concerning both OS X and TextMate, but by Chapter 3, James had

blown me away. By the end of Chapter 5 . . . wow. This is some power-

ful stuff.

Stephen Hargrove

System Administrator

As an Emacs junkie, it takes considerable persuasion for me to even

consider using another editor. This book did the job, and now I use

TextMate regularly. The chapters on the various built-in automations,

scripting and snippets are invaluable. Ruby on Rails and other coding

enthusiasts will also find that this book provides ample coverage of

programming oriented tasks.

Jon Mountjoy

Director, MemeStorm Ltd.

I’ve been using TextMate for months and I thought I knew everything

it could do. I was surprised to discover many editing tricks and key-

commands that I had completely missed. James did a terrific job mak-

ing this book an essential asset for even a seasoned TextMate user.

Michael Gregoire

Owner/Creator, nvzion.com and blocSonic.com

TextMate is like an onion. It seems like such a simple thing when you

first see it, then you start peeling back layers and suddenly discover

the richness that lies underneath. This book peels the onion that is

TextMate, revealing the awesome power underneath. It has become

my Swiss-army chainsaw, flexible enough for everything and powerful

enough for anything.

Neal Ford

Application Architect, ThoughtWorks

A thorough, practical reference for anyone who ever wondered if there

was more to life than Dreamweaver.

Benjamin Jackson

Technical Director, INCOMUM Design and Concept

This beautifully written text brings the power of TextMate to some-

one who does not know any programming language. Each page reveals

hidden, indispensable tricks that improve work flow, which is what

the TextMate philosophy is all about.

Jenny Harrison

Professor of Mathematics, UC Berkeley

TextMate
Power Editing for the Mac

James Edward Gray II

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-3-X

ISBN-13: 978-0-9787392-3-2

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, January, 2007

Version: 2007-2-23

http://www.pragmaticprogrammer.com

“James enjoys playing chess

and loves his mother very much.”

For Nicole and Payden, a sister and brother so cool

they make me look good, and the Payne women

who remain my biggest fans.

Contents
1 Introduction 12

1.1 A Brief History of TextMate 12

1.2 In These Pages . 14

1.3 The Mac Keyboard and Mouse 15

1.4 Installing TextMate and Tools 17

1.5 The Editing Window . 19

I Editing 21

2 Projects 22

2.1 Creating a Project . 22

2.2 Moving between Files . 24

2.3 Shortcuts for Creating Projects 25

2.4 Folder References . 26

3 Power Editing 29

3.1 Moving Around . 29

3.2 Making Selections . 33

3.3 Editing . 36

4 Find and Replace 45

4.1 Without Using a Regular Expression 45

4.2 Mixing in Regular Expressions 50

II Automations 58

5 Built-in Automations 59

5.1 The TODO Bundle . 59

5.2 The HTML and CSS Bundles 62

5.3 The Ruby Bundle . 65

5.4 The Rails Bundle . 67

CONTENTS 10

5.5 The Subversion Bundle 69

5.6 The Math Bundle . 72

5.7 The Markdown Bundle 73

5.8 The Blogging Bundle . 77

5.9 The Mail Bundle . 78

5.10 The Text Bundle . 79

5.11 The Source Bundle . 80

5.12 The TextMate Bundle . 81

6 Snippets 83

6.1 Basic Snippets . 83

6.2 Tab Stops . 86

7 Macros 97

7.1 The Macro Editor . 100

8 Commands 103

8.1 Shell Commands . 103

8.2 TextMate Commands . 105

8.3 Drag Commands . 115

9 Automation Tips and Tricks 117

9.1 Building Bundle Menus 117

9.2 TextMate’s Environment Variables 119

9.3 Useful Shell Commands 124

9.4 Using TextMate’s Document Parsing 129

9.5 bash Support Functions 131

9.6 Ruby Support Libraries 133

9.7 Hooking Into Save Operations 134

9.8 Streaming Command Output 136

9.9 Building Interactive Commands 139

9.10 Compound Automations 142

III Languages 145

10 Language Grammars 146

10.1 The JSON Data Language 146

10.2 Language Grammar Reference 167

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=10

CONTENTS 11

11 Preferences and Themes 176

11.1 Preferences . 176

11.2 Themes . 182

12 Beyond This Book 186

Index 188

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=11

Chapter 1

Introduction
You probably spend most of your day reading and writing text in one

form or another. Programmers write text in arcane languages with un-

usual rules. Web developers produce HTML and CSS files by the pound,

and those are just another flavor of plain old text. Even Ph.D. candi-

dates tend to generate massive amounts of text that can be typeset

using LATEX or similar tools.

Now think about it: If you take the time to learn enough to trim even

a few steps off your daily workflow, that’s going to add up to be a big

win in very little time. The great news is that you can probably save a

lot of work with just a little knowledge. This book is full of timesaving

techniques that pay off immediately.

So, which text editor should you learn? This is a heated topic in com-

puter geek circles. Those on each side of the famous vi versus emacs

debate are religious about their choice. You can use what you want,

but I’ve worked with a few editors now, and TextMate is the right fit

for me. In this short book, I’ll show you how to automate much of your

daily workflow and try to make a true TextMate believer out of you too.

1.1 A Brief History of TextMate

TextMate was created by Allan Odgaard in 2004 while he was waiting

to start a new job. After a couple of months of work, he announced the

first release of the editor. It was a little slim.

There were no preferences to set, and you couldn’t print with it. Less

than two years later, TextMate was awarded the Apple Design Award

A BRIEF HISTORY OF TEXTMATE 13

for Best Developer Tool. As I write this introduction, TextMate has reg-

istered users in the tens of thousands. People have certainly started to

take note of the little editor. It even has preferences and can print these

days. Allan never quite made it to that other job, but instead spends

his time improving TextMate for us users.

What has made TextMate so successful in such a short time is that

it combines the power of Unix with the accessibility of Mac OS X. The

many Unix tools are a powerful addition to the user’s tool belt. Unix

editors such as vi and emacs have been enormously successful because

they tie in so well to these tools. For Mac users, though, these editors

have painfully foreign interfaces.

TextMate really makes a great effort to expose these helpers to the user

from a Mac-friendly interface. The automations really shine for this.

You can wrap a few operations useful for a common task together and

package them in a single menu item or keystroke. This helps users

create tailored enhancements to TextMate for each domain with which

they need to work.

Even better, TextMate makes it easy to share these specialized automa-

tions with others. That has given birth to a vibrant open source–like

community sharing their TextMate enhancements, though the appli-

cation itself remains proprietary. Today the official TextMate Subver-

sion repository holds more than 125 groupings of automations and

languages maintained by dozens of developers.

You can even download tools to work with spreadsheet data1 or screen-

plays2 in the editor. Odds are good TextMate already covers at least

some of your needs, and for the situations where it doesn’t, you can

train it yourself.

That’s what this book is all about. I’ll show you how to use the built-in

automations and teach you how to take your editing to the next level

by building your own. You’ll get the raw power of Unix, filtered for Mac

user consumption.

1. http://skiadas.dcostanet.net/afterthought/2006/04/20/more-spreadsheets-in-textmate/

2. http://ollieman.net/code/screenwriting/textmate/

http://skiadas.dcostanet.net/afterthought/2006/04/20/more-spreadsheets-in-textmate/
http://ollieman.net/code/screenwriting/textmate/
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=13

IN THESE PAGES 14

1.2 In These Pages

Going forward, I will cover a subset of TextMate capabilities that can

turn anyone into a power user. Different users need to learn differ-

ent features, though, so I’ve tried to lay out the information so you

can conveniently get to what you need. This book details editing tips,

automations, and TextMate’s knowledge of languages:

Editing

In this part of the book, I will cover basic text editing with Text-

Mate. Chapters include information for working with TextMate

projects, editing text with an emphasis on moving around and

making selections, and using regular expressions for super find-

and-replace operations.

Though these are the basics, they build a foundation for working

with TextMate’s automations, and I’ll sneak in enough tricks to

help you impress your geek friends.

Automations

Here we will delve into the heart of TextMate. I’ll show you how to

use the most popular automations included with the application.

You will get a lot of mileage out of these tools, I promise.

From there, this part turns to building your own automations so

you can customize how TextMate helps you work. I’ll show you

how to build snippets to insert bits of customizable content into

any document, how to record and replay your way past repetitive

changes with macros, and how to introduce intelligent behaviors

into TextMate with commands. This part closes with some tips

from the automation pros.

Languages, preferences, and themes

The last leg of our journey provides detailed coverage of how to

teach TextMate to read new languages and how to build themes

to support them. I will also cover how to tweak TextMate’s smart

editing features.

This is your chance to fit your pet dialects into the TextMate mold,

allowing you to build custom automations targeted specifically at

the needs of the language.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=14

THE MAC KEYBOARD AND MOUSE 15

Along the way you will also find the following:

Menu References

When describing TextMate’s features I will often need to refer to

commands selected from the menus. I will use a common short-

hand for this, so when you see Edit � Find � Find, that means that

you should select Find from the Find submenu in the Edit menu.

My hope is that the shorthand is actually more natural, since it

displays the items in the order you need to select them.

Live code

Most of the examples used in this book come from a bundle of

automations I built while writing the book. You can download3

this bundle and play with the examples inside TextMate. If you

see a marker line like the one that follows at the top of a listing in

the book, that means you can find the code in the download:

Download language_grammars/json.textmate

constant = {

name = 'constant.language.json';

match = '\b(?:true|false|null)\b';

};

If you’re reading the PDF version of this book and if your PDF

viewer supports hyperlinks, you can click the marker, and the

code should appear in a browser window. Some browsers (such

as Safari) might mistakenly try to interpret some of the code as

HTML. If this happens, view the source of the page to see the real

source code.

Joe Asks...

Joe, the mythical developer, sometimes pops up to ask questions

about stuff I talk about in the text. I answer these questions as I

go along.

Before you jump right into playing with the editor, I need to cover one

last convention used in this book.

1.3 The Mac Keyboard and Mouse

To really learn TextMate, you must break down and learn a set of key-

board shortcuts. It will change the way you work, I promise. TextMate

3. From http://www.pragmaticprogrammer.com/titles/textmate/code.html

http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://www.pragmaticprogrammer.com/titles/textmate/code.html
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=15

THE MAC KEYBOARD AND MOUSE 16

will show you the keystrokes in several parts of the interface. Here’s

your cheat sheet:4

C The Control or Ctrl key.

E The Option or Alt key.

B The Shift key.

D The Command key. This always has an Apple logo on the key.

A The Tab key.

P Not an actual key. This back-tab is produced when pressing Tab

while holding the Shift key.

F The Return key.

I The Enter key—Fn plus Return on a laptop without a dedicated

key.

J The Delete or Backspace key.

U The Del key—Fn plus Delete on my laptop keyboard. This is often

referred to as forward delete.

K The Escape or Esc key.

� The left arrow key.

� The right arrow key.

� The up arrow key.

� The down arrow key.

Q The Page Up key—Fn plus the up arrow on my laptop keyboard.

R The Page Down key—Fn plus the down arrow on my laptop key-

board.

S The Home key—Fn plus the left arrow on my laptop keyboard.

T The End key—Fn plus the right arrow on my laptop keyboard.

V The Help key. This key is not available on laptop keyboards.

You should know three other facts about Mac keyboard shortcuts as

they are displayed both in TextMate and in this book. First, keyboard

shortcuts with letters are always shown with the capital letter for easier

identification, but you only need to add a B to the keystroke if the

symbol is actually displayed in the keyboard shortcut. For example,

C R doesn’t require a B even though the R shown is capitalized, but

CB R would because you see the symbol.

Along similar lines, symbol-based keystrokes such as C < may not dis-

play a needed B. On some keyboards, that action involves two keys,

but on my U.S. key layout I need a B to type a < character. Thus, for

me the keystroke is actually CB <.

4. If you would like to be able to type these glyphs yourself, refer to the documentation

at http://macromates.com/blog/archives/2006/07/10/multi-stroke-key-bindings/.

http://macromates.com/blog/archives/2006/07/10/multi-stroke-key-bindings/
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=16

INSTALLING TEXTMATE AND TOOLS 17

A third tip to make note of is that laptop users trying to use keyboard

shortcuts involving the function keys may actually adjust their screen

brightness instead. When this happens, you can add the Fn key to the

keystroke to get it to activate. However, the operating system seems to

have a glitch regarding these keystrokes that sometimes requires you

to press the Fn key after any other modifier keys. So if the TextMate

keystroke is D F2, you might need to press D, then Fn, and then F2.

If you get tired of this finger dance and don’t mind relegating bright-

ness adjustment to the Fn-enhanced keystroke, there is a checkbox

for this in the Keyboard tab of the Keyboard & Mouse panel of System

Preferences, available from the Apple menu.

I will also cover how to use the mouse with TextMate. Most Apple

machines still ship with a one-button mouse. You could always right-

click on Mac OS X with a one-button mouse by holding down the C key

and clicking. In this book, two-button-mouse users should translate a

click into left-click and C-click into right-click.

1.4 Installing TextMate and Tools

If you don’t already have TextMate installed, drop by the TextMate web-

site http://macromates.com/, click the Download link in the top-right

position of the sidebar, and drag the application out of the archive you

downloaded and onto your Mac’s Applications directory. Installing Text-

Mate is really that easy, but keep reading for details on a few more

helpers you can add.

When you first launch a recent version of TextMate, it should open

an Enhanced Terminal Usage dialog box, offering to install the mate

command-line tool. If you missed that dialog box, you can always get

back to it by choosing Help � Terminal Usage. Either way, I highly recom-

mend doing the install. The mate tool is described in the sidebar on the

following page; I’ll show you more tricks with it as we move along.

You don’t want to miss one other install. If you haven’t already, select

Bundles � TextMate � Install “Edit in TextMate”. This installs an input man-

ager, which will allow you to edit the content of other applications, such

as Mail and Safari,5 using TextMate. Try it: Open Safari, browse to

http://google.com/, place your caret in the search box, trigger Edit � Edit

in TextMate (CD E), type a search topic, and save (D S) and close (D W)

5. This works only for Cocoa applications.

http://macromates.com/
http://google.com/
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=17

INSTALLING TEXTMATE AND TOOLS 18

Command-Line TextMate

Though TextMate is a modern Mac application with a nice user
interface, it can interact flawlessly with Unix tools accessed from
the Terminal. The bridge is the mate command-line tool.

Adding mate to commands will cause TextMate to activate and
allow you to create or edit some content, which can be further
processed by other commands. To edit a file in TextMate, just
invoke mate file_name_here. You can also pipe content into a
TextMate window for you to work with. For example, this com-
mand shows a directory listing in TextMate: ls | mate.

Another great feature of mate is its ability to wait on you to edit
and return the content to the calling process. This allows you to
use it as a standard Unix editor by adding the -w flag. For exam-
ple, my bash .profile file (loaded each time I start a new session
in the Terminal) contains the following lines that allow me to
use TextMate as my editor for version control commit messages,
and much more:

export EDITOR="mate -w"
export CVSEDITOR="mate -w"
export SVN_EDITOR="mate -w"

There’s more to the mate command, so be sure to read the
built-in Help by typing mate -h in the Terminal.

the TextMate document to push the content back to Safari. TextMate

isn’t a lot of help for content this size, but imagine editing wiki pages

or long emails. It’s worth the effort to memorize that keyboard shortcut

for these occasions.

A final step I recommend taking to set up TextMate is to “live on the

edge.” Many pieces of software offer “edge” releases nowadays for those

who like being the first to explore new features. Often these releases are

only lightly tested and still pretty fragile. TextMate is evolving fast now,

though, with a decent focus on refinement. This means the cutting-

edge versions usually have more bug fixes and are actually safer. I think

that’s worth being hassled for a few seconds every couple of days by the

automatic upgrade system. If you agree, you can turn it on by select-

ing TextMate � Preferences (D ,), clicking the Software Update icon, and

changing the Watch For menu to Cutting-Edge.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=18

THE EDITING WINDOW 19

If You Already Had TextMate Installed

It is possible to download extras for TextMate, and it’s common for

people to do this. Unfortunately, this sometimes hides some built-in

enhancements if you forget to keep the add-ons up-to-date. Therefore,

I recommend you do not install any extras you don’t need.

This book deals only with items included in a regular TextMate install,

and I don’t begin to cover all of it. TextMate itself has a lot of function-

ality, so be sure it in fact doesn’t meet your needs before you decide to

add on to it.

If you have downloaded any extras and you have trouble with the steps

in this book, I recommend returning to a default TextMate install.6

If you still cannot find some item I refer to in the Bundles menu, you

probably have it disabled. You can check what TextMate is currently

loading by choosing Bundles � Bundle Editor � Show Bundle Editor (CED B)

and clicking the Filter List button at the bottom of that dialog box. Feel

free to disable any languages you don’t usually work with,7 but see

Chapter 5, Built-in Automations, on page 59 for some details about what

I find useful.

If you are in need of something missing from the default install, Get-

Bundle is the safest and easiest tool to use to add on to TextMate.

See http://macromates.com/blog/archives/2006/08/21/getting-more-bundles/

for more information.

1.5 The Editing Window

When you are past all the installing, you should be greeted by the edit-

ing window when you launch TextMate. You will spend plenty of time

interacting with this window, so it’s worth recognizing the various parts

of it. Use Figure 1.1, on the following page, as a reference.

Aside from the typical Mac window elements such as the Close, Minimize,

and Maximize buttons in the title bar and the scroll bar down the right

side, a TextMate window has two unique elements. First, the bar that

runs down the left side of the window is known as the gutter. In the

6. See http://macromates.com/wiki/Troubleshooting/RevertToDefaultBundles.
7. Do mind the warning at the bottom of the dialog box about the bundles that should

not be disabled, though.

http://macromates.com/blog/archives/2006/08/21/getting-more-bundles/
http://macromates.com/wiki/Troubleshooting/RevertToDefaultBundles
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=19

THE EDITING WINDOW 20

Figure 1.1: The editing window

figure you can see the Soft Wrap indicator dots there. You can configure

exactly what shows up in the gutter through View � Gutter.

Second, the bottom of the editing window contains a control bar with

various items. The first panel gives a readout of the current caret posi-

tion in the document (line and column position). Following that, you

have a set of four pop-up menus.

The first is the language menu that you can use to set the language

for the current document. This influences TextMate’s syntax highlight-

ing, among other features. The second menu is the automation menu,

which is just a shortcut for reaching most of the items in the Bundles

menu. Users tend to access this menu via CK, use the arrow keys

to navigate, and press F to make a selection. The third menu is for

controlling TextMate’s tab behaviors described in Section 3.3, Working

with Tabs, on page 43, and the fourth is the symbol menu described in

Section 3.1, Moving to a Line, Symbol, or Bookmark, on page 31.

Now that you know what these elements are called, it’s time to find out

what you can accomplish with them!

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=20

Part I

Editing

Chapter 2

Projects
I’m assuming you are familiar with text editors. You know how to create

a new file and open existing files. You know how to cut and paste and

print your document. Most of this book will be devoted to showing you

the power that TextMate gives you for authoring and editing files, but

in this chapter I thought I’d start with something most editors don’t do:

working with projects.

TextMate allows you to create a project of related files and work with

them as a group. Since most nontrivial projects will involve manipulat-

ing several files, this can be a real boon to helping you manage them.

2.1 Creating a Project

It’s not hard to get started with TextMate’s projects. You can just create

a blank project and add to it as needed. Select File � New Project (CDN).

The blank project window will include a big hint for the next step, and,

as it says, you can just drag files and folders into the project drawer.

Try this with any files you have handy. As you drop them in the drawer,

they will become part of a file listing displayed in the drawer.

You are free to arrange the list of files in the project drawer by drag-

ging them into the desired order with the mouse. You can also create

groups for the files using the folder button at the bottom of the project

drawer or by D-clicking several files and selecting Group Selected Files

from the action menu at the bottom of the project drawer, as shown in

Figure 2.1, on the next page. The file order and groups are strictly for

your reference.

CREATING A PROJECT 23

Figure 2.1: Grouping project files

You can control the side of the window on which the project drawer is

displayed. It defaults to appearing on the left, but you can move it with

these steps:

1. Select View � Hide Project Drawer (CEDD), if the drawer is currently

visible.

2. Move the project window close enough to the edge of the screen so

the drawer doesn’t have room to open on the side you don’t want

it on.

3. Bring the drawer back with View � Show Project Drawer (CEDD).

TextMate will remember your drawer side preference, as long as new

windows have room to open it on the favored side.

When you have the project the way you want it, choose File � Save Project

(CD S). This action causes TextMate to save a file of project details. You

will be able to reload this file at any time in the future to have TextMate

restore the files of the project, which files you had open, and project-

specific settings. Furthermore, TextMate will remember if you quit with

a saved project open and will reopen it for you to resume working with

when you relaunch TextMate.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=23

MOVING BETWEEN FILES 24

2.2 Moving between Files

The main point of placing files in a project is to quickly have access to

those files. You can use the mouse to open as many files as you need

to open. A single-click opens the file in TextMate, as long as TextMate

believes the file is a text file. It will look for known text extensions or

scan the first 8KB of a file to see whether it is valid UTF-8 text (a super-

set of ASCII) to determine this.

If you need to correct TextMate’s guess about a file, just highlight it in

the project drawer, and choose Treat Files with “ext” Extension as Binary/Text

from the action menu at the bottom of the project drawer. TextMate will

remember this setting for the file type in the future. Double-clicking a

file will open it in the default application for files of that type, which

may not be TextMate.

You can navigate the project drawer completely by using your keyboard

as well. Use CA to toggle the keyboard focus between the editing win-

dow and the project drawer. When the drawer has the focus, use � and

� to move the selection up and down the drawer. You can press � to

expand folder or group listings and � to collapse them. When you have

reached the file you want to open, a simple F is equivalent to a single-

click of the mouse. You can also tap the spacebar with a selection in

the project drawer to expose an in-place editor for renaming the file.

The previously described system for opening files is fine when you are

browsing. When you know where you want to go, you can use a faster

and better way, which I’ll teach you now.

When you want to move to a file you know the name of, start by opening

the Navigation � Go to File dialog box. Definitely spend the effort to learn

the keyboard shortcut for this one; it is D T for “To.” This dialog box

lists every file in your project sorted with the most recently used files

at the top of the list. This makes it a fast means to switch back and

forth between a few files. You can use the � and � arrows to move the

selection and F to dismiss the dialog box and open the selected file.

What makes this dialog box even more powerful, though, is the ability

to type an abbreviation that TextMate can use to filter the file list. The

letters you type do not need to be together in the filename, so you can

generally just use the first letter of each word. For example, to match

pitches_controller_test.rb, I would use pct, as I do in Figure 2.2, on the

following page. TextMate will even remember which abbreviations you

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=24

SHORTCUTS FOR CREATING PROJECTS 25

Figure 2.2: Filename matching

use to select files in the project, adapting to your work needs when you

adjust a match with the arrow keys.

Project files open in tabs of the project window. You can switch between

tabs at any time using D 1 to move to the leftmost tab, using D 2 to

move to the tab to the right of that, and using all the way up to D 9 to

move to the ninth tab from the left. Alternately, you can use ED� to

move to the tab left of the currently active tab or ED� to move right.

You can even use the mouse to drag tabs into the desired order to make

this access more convenient, as shown in Figure 2.3, on the next page.

If you are working with a language that has header files, such as C, you

will want to learn one more file navigation shortcut. You can use ED �

to cycle between all files with an identical base name (not counting an

extension) as the file open in the current tab. A new tab will be created

to hold the switched-to file, if it wasn’t already open. For example, if a

project contains widget.h and widget.c, you could move between these

two files with just this keystroke.

2.3 Shortcuts for Creating Projects

Dragging files and folders onto TextMate by hand is just one way to

create a project. An oft-used shortcut is to drag the files and fold-

ers directly onto the TextMate application icon, be it at the installed

location or in your Dock. This opens or activates TextMate, creates a

project, and immediately populates it with the dropped files and folders.

Be warned that TextMate will not remind you to save projects created

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=25

FOLDER REFERENCES 26

Figure 2.3: Dragging tabs

this way when closed, so save the project right after you open it if you

want to keep it.

A third way to create projects comes in handy when working with the

Terminal. If you feed the mate command multiple filenames, one or

more folders, or a shell glob, it will create a project containing the indi-

cated items. For example:

mate . # a project of the current directory

mate a.txt b.txt # a project of two files

mate *.csv # a project of CSV files in the current directory

2.4 Folder References

TextMate supports two kinds of projects. You created the first type early

in this chapter when you dragged in a group of files without regard to

their organization on your disk. The other sort of project preserves the

file system hierarchy. You get this type of project when you place folders

in a project.

The folders in a project are references to the actual objects on the disk.

This has two effects. First, TextMate will rescan the folders whenever

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=26

FOLDER REFERENCES 27

the application regains focus, updating the contents in case they have

changed. The second benefit is that the folder button at the bottom of

the project drawer creates actual folders on the hard disk. New folders

are created inside the currently selected folder in the project drawer.

With these changes, you can generally handle editing and file manage-

ment operations inside TextMate and skip a few trips to the Finder. For

this reason, I tend to favor TextMate projects based on folder references.

Taking this one step further, I think you will find it’s often beneficial to

have a single top-level folder containing the whole project. The TODO

command expects this setup, and it makes it easier to do project-wide

commits and updates using the Subversion commands, both of which

I will talk more about in Chapter 5, Built-in Automations, on page 59.

Projects with files and groups, on the other hand, tend to be good for

times when you need to work with only a few files from various loca-

tions or when you want to rearrange the hierarchy without affecting the

actual disk layout. For these reasons, such projects are often ideal for

some scratch work. When I need to work with just the XML files in one

directory of my project for a time or when I need to organize a bunch

of files so I can see what needs changing, I build a files-and-groups

project.

With either kind of project, you can use Rename or Remove Selected

Files from the action menu at the bottom of the project drawer. Rename

changes the actual file, and Remove Selected Files gives you the choice to

move the file to the Trash or just remove the file from the project.

Both project types also support creating new files using the file button

at the bottom of the project drawer. If you are using folder references,

the file will be created in the selected folder. File projects will prompt

you for a location to save the file.

Limiting Folder References

You also have the ability to limit files and folders included in the folder

references of your project. This option is not available for the groups

you create in file projects, since you can limit those by hand. To adjust

the listing, select a top-level folder reference in the project drawer, and

click the information button in the lower-right corner of the drawer, as

shown in Figure 2.4, on the next page.

The two patterns listed here are regular expressions matched against

the full file path to determine whether it should be included in the

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=27

FOLDER REFERENCES 28

Figure 2.4: Folder reference patterns

project listing.1 By default, only matched files will be listed, but if the

first character of the pattern is an exclamation mark, everything but

the matched files will be listed. The default pattern excludes directories

such as version control directories, but you may want to customize it

to your needs. For example, you could exclude a vendored copy of the

Ruby on Rails framework by adding |rails just before |CVS in the default

pattern. You will spend a lot more time playing with regular expressions

in Section 4.2, Mixing in Regular Expressions, on page 50.

You can modify the defaults TextMate uses for these patterns in the Ad-

vanced pane of TextMate’s TextMate � Preferences dialog box (D ,). Click

the Folder References tab, and then modify the patterns to suit your

needs. Existing projects will not be affected by changes made here.

That covers file management in TextMate. The editor makes it easy to

treat the files of your project as a whole and manage them without

frequent trips to the Finder. To have files, though, you need to create

the content for them in the first place, and that’s what the next chapter

is all about.

1. The Save as Absolute Path checkbox on this dialog has no effect for folder references

which are always stored as such.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=28

Chapter 3

Power Editing
The main function of a text-editing program is to allow you to enter and

change document content. I will talk a lot more about how TextMate can

help you enter content when we get to automations, but this chapter is

all about manipulating text.

TextMate provides a great deal of support for moving around your docu-

ment content, selecting text, and making intelligent changes. Becoming

familiar with these functions can save you so much time for tasks you

will face daily.

3.1 Moving Around

When you’re not typing, odds are good that you’re trying to get the caret

to the right place to do some more typing. TextMate provides many

shortcuts for moving around, and it’s definitely worth committing at

least some of these to memory.

It’s true that you can always use the mouse to drop the caret right

where you need it, but this turns out to be tedious and slow. It’s silly to

take your hands off the keyboard, use the mouse to position the caret,

and then settle back into your typing stance when it’s likely you could

have executed the whole process from the keyboard faster. I will start

with trivial caret movement sequences you probably already know:

Keystroke Caret Movement

� Up one line

� Down one line

� Left one character

� Right one character

MOVING AROUND 30

Figure 3.1: Moving to the end of the column

I’m sure those didn’t surprise you, but the truth is that the simple

arrows have many variations. For example, adding a D will move by

lines or even to the document boundaries:

Keystroke Caret Movement

D � Beginning of document

D � End of document

D� Beginning of line (unaware of wrapped content)

D� End of line (unaware of wrapped content)

For smaller movements, you can use E:

Keystroke Caret Movement

E � Beginning of column

E � End of column

E� Beginning of word

E� End of word

These column descriptions are a little tricky to grasp. When you have

columns of text, you can use these shortcuts to skip all the way to the

beginning or end of a column in a single keystroke. See Figure 3.1 for

an example. Notice how the caret moves all the way from “first” to “data”

as I press E � in that image.

Experiment with E� and E�. They can be helpful for moving around

and making selections, which I will discuss shortly. If you often work

with source code, try the variant that uses C instead of E and that

moves between CamelCaseWords and snake_case_words.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=30

MOVING AROUND 31

For the emacs fans, TextMate also supports some bindings you will find

familiar:

Keystroke Caret Movement

C P Up one line

C N Down one line

C B Left one character

C F Right one character

C A Beginning of line (aware of wrapped content)

C E End of line (aware of wrapped content)

C V Page down

A final reason to get into the habit of using these movement functions

is that the majority of them work in other Mac applications such as

Mail and Safari. Learn them once, and use them everywhere.

Moving to a Line, Symbol, or Bookmark

If you are trying to get to a specific location, chances are TextMate has

a shortcut that can at least get you close. For example, you can move

straight to any line by number using D L. Just enter the line number in

the box, and press F to go there.

Being able to reach a line is great, when you know the number, but

that isn’t always practical. However, many of the document types Text-

Mate can edit have some imposed structure. Markdown documents

have header levels, for example, and source code generally involves

function or method definitions. TextMate’s language grammars make

note of these elements so shortcuts can be provided to return to them

as needed.

To access the symbol list via the mouse, use the pop-up menu in the

lower-right corner of the editing window. Just click the header, class,

method, or function to which you want to return. You can see an exam-

ple of this in Figure 3.2, on the following page.

Of course, real TextMate pros would never resort to using the mouse for

simple movement. To move to a symbol using the keyboard, use BD T

to open the Go to Symbol dialog box from the Navigation menu. This

dialog box uses the same matching algorithm described in Section 2.2,

Moving between Files, on page 24. For example, you could enter swr

to match save_without_revision(). Once your choice is highlighted, F will

take you straight there.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=31

MOVING AROUND 32

Figure 3.2: Symbol pop-up menu

If neither of those helps you get where you need to go, you can set your

own bookmarks. To bookmark the current line, you can press D F2 or

click the bookmark column of the gutter, as shown in Figure 3.3, on

the following page. You must have the bookmark display active to see

them in the document gutter, represented as little stars, and you can

toggle this using the View � Gutter � Bookmarks (ED B). Once you have

bookmarks set, you can cycle through them forward (F2) and backward

(B F2).

Folding Sections of Code

Although folding isn’t directly a technique for moving the caret around

your document, it’s much easier to make moves when you don’t need

to go through any extra content.

When you’re working with structured content TextMate understands,

you will often see folding arrows in the left margin of the editing window.

Make sure View � Gutter � Foldings is checked for these to appear.

You can collapse the sections delimited by the up and down folding

arrows by clicking a arrow or by pressing F1 with the caret anywhere

between them in the document content. When you trigger a folding,

TextMate will reduce the lines of content to a single line with an ellipsis

marker at the end. The folding arrows will also be replaced with a single

right-facing arrow.

If you need a glimpse of the hidden content, try mousing over the ellip-

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=32

MAKING SELECTIONS 33

Figure 3.3: Setting a bookmark

sis marker, as shown in Figure 3.4, on the next page. When you are

ready to have the content back, just click the right-facing folded arrow

with the mouse, or press F1 with the caret on the folded line.

You can perform mass foldings and unfoldings using the commands

under View � Toggle Foldings at Level or their keyboard equivalents. De-

pending on the document type, you can often use ED 2 or ED 3 to

reduce the document to a high-level overview. Practice a little with the

commands here to get a feel for how they might be of use to you. You

can also fold or unfold a tree of nested arrows by holding down the E

key as you click a folding arrow.

3.2 Making Selections

When you are ready to edit text, a common first step is to select it.

With the selection you can move the content, search inside it, or filter it

through commands. That’s why TextMate makes selecting any amount

of text as easy as possible.

First I’ll tell you the good news: Everything you just learned about

movement also applies to selections. If you hold down B while using

the movement shortcuts (except for emacs bindings), a selection will be

created, extended, or retracted from the place where the caret was to

the location to which it moved. For example, to select a line (without

the trailing newline), you could use the following:

1. Press D� to move the caret to the end of the line.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=33

MAKING SELECTIONS 34

Figure 3.4: Folded tooltip

2. Press BD� to move to the beginning of the line, creating a selec-

tion from the end to the beginning.

If two steps is one too many for you, you could always reduce it to

a single keystroke, as described in Chapter 7, Macros, on page 97.

Even better, though, TextMate includes some built-in selection short-

cuts including one that does the current line (with trailing newline) on

BD L. My personal favorite of these is the current Word selector (C W).

A unique option among the built-in selectors is TextMate’s Current Scope

selector (CE B). This works by moving forward and backward from the

caret position until the language grammar for the current document

dictates that the scope would change. You can often use this to select

language-specific elements. For example, you might use the scope se-

lector to grab the contents of a string literal in a programming language

as I do in Figure 3.5, on the next page.

You can find all the built-in selectors under Edit � Select. Take some

time to explore the choices there so you know what’s available to you

the next time you need to make a selection.

Column Selections

In addition to traditional selections, TextMate allows you to work with

rectangular selections or column selections. You can make a column

selection by holding E while you drag out a selection with the mouse,

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=34

MAKING SELECTIONS 35

Figure 3.5: Select current scope

or you can toggle the normal/column mode of an existing selection by

pressing E or choosing Edit � Change to Column Selection.

You can do anything with a column selection you can with a regular

selection, such as running the contents through a command. You can

also type normally to replace all lines of the column selection with the

same content. Here’s an example that shows how to quickly generate a

list of names:

1. Create a new TextMate document by choosing File � New. (DN).

2. Enter some first names, each on a separate line. I used JimF,

MarshaF, JamesF, DanaF, and AndrewF.

3. Press D � to return to the beginning of the document.

4. Make a selection to the end of the column with BE �. It won’t look

like you grabbed the whole column with this move, but because

you have the newline character of the next-to-last line, the selec-

tion does extend to the beginning of the last line. The difference

will become clear in the next step.

5. Switch into column selection mode by tapping E. You should now

have a zero-width selection down the front of the lines.

6. Enter a last name such as Gray, followed by a comma and space.

This will be added to all the lines of the column selection.

To leave column selection mode, move the caret to a new line.

Be warned, column selections can be surprising when used on soft-

wrapped lines. Unlike some editors, TextMate does support column

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=35

EDITING 36

selections with View � Soft Wrap (EDW) enabled. However, a column

selection will not treat wrapped content as a new line in the selection.

You can see which lines are wrapped by looking for the dot in the left

gutter of the editing window as long as View � Gutter � Soft Wrap Indica-

tors is on. See Figure 3.7, on page 42, for a look at the soft wrap dots

and how a column selection across soft-wrapped lines looks.

3.3 Editing

After you get the caret where you need it and select some content, it’s

time to make changes. I’ll cover how to use find and replace inside a

selection in Chapter 4, Find and Replace, on page 45 and how to call on

powerful transformations in Chapter 8, Commands, on page 103. How-

ever, if your needs are simple, TextMate has the usual set of helpers.

Inserting New Content

TextMate has two features that are just invaluable when entering con-

tent. You’ll want to get familiar with both the completion and autopaired

characters features.

Completion is something you can really get a lot of mileage out of, and

I need to teach you only one key. Every chance you get, start typing the

first few letters of something, and press K. You can use this to finish off

variables, methods, tags, or any other name already in your document.

In addition, many grammars provide a default set of common comple-

tions for that language. This is an important habit for programmers to

get into because it dramatically reduces typos.

When there is more than one completion choice, you just keep pressing

K to cycle through them. TextMate sorts the completion order so that

matches close to your caret come up sooner, which often give it accurate

results with just a couple of clicks. If you go sailing past your desired

completion, you can return to it with BK, which reverses the cycle.

For example, let’s say you are programming some manner of server. You

need type a long but informative variable name such as idle_connections

only the first time you use it. From then on you can try the far shorter

idlK. Depending on how many constructs in your code start with those

three letters, you might need to add an extra K or two to get to the

desired variable, but TextMate’s sorting of matches should keep the

key count low. By using this technique you can guarantee you will

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=36

EDITING 37

Figure 3.6: Wrapping a selection in paired characters

not debug a misspelled variable name. That doesn’t just apply to pro-

gramming either; consider all the hard-to-spell names you’ve typed in

documents over the years.

You can find the commands for completion under Edit � Completion, but

this is one of those features that just makes so much more sense from

the keyboard. Trust me, this is the best excuse you’ve ever had to wear

out that K key.

You’ve probably already run into the autopaired characters feature of

TextMate if you’ve used it for any amount of time. In most cases, when

you enter a (, TextMate also adds the closing) but leaves your caret

between them. When you reach the end, you can overtype the) to get

past it or use the end-of-line commands described in the Section 5.11,

The Source Bundle, on page 80. This feature works with many com-

monly paired characters including quotes. Specific languages provide

different paired characters, such as the helpful CSS pair that recog-

nizes when you type a colon and adds the closing semicolon.

Another terrific way to take advantage of paired characters is with selec-

tions. If you type an opening character when some text is selected,

the character will be placed at the beginning of the selection, and the

matching end character will be inserted just after the selection. You can

see an example of this in Figure 3.6, where I use the feature to override

operator precedence. It’s easy to become so fond of this feature that you

are constantly destroying content in less intelligent applications.1

1. Undo is your friend when this phase sets in! Of course, the more editing you do in

TextMate, the less you will run into this problem.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=37

EDITING 38

Moving Text

You will often need to shift contents slightly in one direction. Text � Move

Selection has commands for this:

Keystroke Caret Movement

CD � Move selection up (works on current line when nothing is

selected)

CD � Move selection down (works on current line when nothing

is selected)

CD� Move selection left one character

CD� Move selection right one character

Along similar lines, TextMate makes it easy to adjust the indent level of

a selection of lines using some commands found in the Text menu:

Keystroke Indentation Change

D [or EP Decrease selection indent (works on current line when

nothing is selected)

D] or EA Increase selection indent (works on current line when

nothing is selected)

ED [Reindent selection based on current language grammar

rules (works on current line when nothing is selected)

Cut, Copy, and Paste

Another means to move text around is to use commands such as Cut,

Copy, and Paste from the Edit menu. These commands are common in

the majority of software these days, but TextMate gives this standard

concept a twist by adding a clipboard history. Let’s play around with

this a little so you can get a feel for it:

1. Create a new TextMate document (DN).

2. Enter these three lines of text:
Line three.

Line one.

Line two.

3. So you can reorder them correctly, add them to the clipboard his-

tory in reverse order. Go to the first line of the document (D �),

select the line (BD L), and cut it to the clipboard (D X). Do the

same with the bottom line (�, BD L, then D X) and, finally, the

last line of the document (�, BD L, then D X).

4. Now you can paste them in order. Paste the last line you added

to the history with D V. Now you want to paste the previous item

from the clipboard history, and you can do that with BD V. Use

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=38

EDITING 39

BDV one last time to get the third line, and you should be looking

at the lines in proper order.

Don’t panic if you don’t end up adding lines to the clipboard history

in the perfect order. TextMate has that covered too. When you press

CEDV or select Edit � Paste from History, TextMate will open a list of

everything in the clipboard history. You then just use the arrow keys to

navigate to what you want to paste and F to drop it in. If you change

your mind, K will dismiss the list.

An important fact to remember about pastes is that TextMate reindents

them by default to match the current indention level of the document.

This saves you some additional cleanup most of the time, but for the

instances where you don’t want the content altered there is Paste Without

Re-indent. You can find this command by pressing C while the Edit menu

is open, or you can just activate it directly from the keyboard with

CD V. If this feature bothers you, you can disable it in the Text Editing

pane of TextMate’s Preferences dialog box (D ,).

Editing Multiple Lines at Once

This next feature always elicits “How did you do that?” questions from

people watching over my shoulder. Aside from its party trick value,

though, it is genuinely useful at times.

TextMate will allow you to edit multiple lines at the same time. You can

use this feature to insert new content or remove old content. This often

comes in handy when working with list data.

To show this feature off properly, you need a little content to play with.

That sounds like a good excuse to use TextMate to generate some.

Why don’t you create a simple web page, listing computers you might

use TextMate on? You will leverage TextMate’s built-in HTML automa-

tions to quickly construct some tags and fill them with content. You

can read more about the tools used here in Section 5.2, The HTML and

CSS Bundles, on page 62. Follow along now:

1. Create a new TextMate document with D N.

2. Switch the language of the working document to HTML by pressing

CEB H.

3. Now add some basic document structure. Type doctypeA, and

press 2 to choose HTML 4.01 (Transitional). Add the required root

tag by typing html and pressing C <. Then press F to give you

some more room for content.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=39

EDITING 40

4. Now you need header material. Type headA, and fill in the title

of Apple Products. Now press � twice, and add a F to make room

for the body.

5. You can create the body section just as you did the root tag: type

body, press C <, and add a F to split the tags.

6. Let’s throw a header tag in the page. You’ll switch tag creation

strategies now and start with C <. So, type h1 for the tag name,

press A to jump into the content, and enter Computers TextMate

Runs On:. Then use DF twice to bypass the closing tag and give

you some more room.

7. You’re ready for the list. Start it off with C <, type ul for the tag

name, use A to skip to the content, and add a F to get a blank

line. Forget about tags for a moment, and enter these lines:

Mac mini

iMac

Mac Pro

Macbook

Macbook Pro

You need to select those computers so you can wrap them in tags.

Start by grabbing the bottom one. With your caret right at the end

of Macbook Pro, press BE� twice. You can now grab the rest of

the rows using BE �. Add a final BE� to keep the spacing even.

You can now summon all of the missing tags with CBD W.

8. Time to check your hard work with CED P.

I’ll talk a lot more about how you just generated more than 500 bytes

of content with a little more than 100 keystrokes in Chapter 5, Built-in

Automations, on page 59, but for now let’s modify the new page. Say

you decided from the preview that it would be nice to know whether a

listed machine was a desktop or laptop computer. Here’s how I would

add the designations:

1. Press BD L to select the current line (the first computer in our

list). Hold down B so you can extend the selection, and tap �

twice to grab the other two desktops.

2. Select Edit Each Line in Selection from the Text menu with EDA.

3. Press E� twice to slide in front of the end tags, and enter a space

followed by (desktop).

4. Use the same steps to add a space followed by (laptop) to the

bottom two lines.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=40

EDITING 41

As you just saw, Edit Each Line in Selection allows you to add to or remove

from multiple lines of content at once. It’s similar in function to a

column selection, save that the content doesn’t need to be perfectly

aligned. This generally makes it good for inserting content toward the

end of a series of lines as you just did.

Changing Case

I’m sure you’re used to adjusting the case of words from time to time.

As usual, TextMate makes this a trivial task, often not even requiring

a selection. Here are the shortcuts to the relevant commands in the

Convert submenu of the Text menu:

Keystroke Case Change

C U Uppercase selection (works on current word when noth-

ing is selected)

CB U Lowercase selection (works on current word when noth-

ing is selected)

CE U Title case each word of the selection (works on current

line when nothing is selected)

C G or CE G Reverse the case of the selection (C G works on the next

character, and CE G works from the caret to the end of

the next word when nothing is selected)

Editing Modes

TextMate supports two additional editing modes that can be useful

when you are working with fixed-width data or ASCII diagrams. The

modes are Freehanded Editing and Overwrite Mode, and you can find

them under Edit � Mode.

When you toggle on Freehanded Editing mode (ED E), TextMate will allow

you to place the caret freely with keyboard arrow movement or a mouse

click. You can place it beyond the ends of lines or in the middle of

tabs. If you insert content, TextMate will add the needed whitespace to

support the content at that location.

Note that this mode is always enabled when you are working with a

column selection so you can extend them beyond the ends of lines. If

you want to toggle this mode for a single mouse click, hold down E

while you click.

The other editing mode, Overwrite Mode (EDO), changes how TextMate

behaves when the caret is in the middle of existing content. You can

recognize when this mode is active because the caret will be a flat bar

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=41

EDITING 42

Figure 3.7: Reformat paragraph

under your typed content, instead of the regular insertion bar. Instead

of inserting text between characters as it usually does, TextMate will

replace the characters above the caret as you type. This is useful to

avoid shifting later content in the line when you must replace text.

These modes can cause some automations to behave abnormally. If you

see strange results when trying to activate commands, make sure these

modes are turned off. They are intended for hand-editing only.

Alignment

You will find that TextMate supports the traditional suite of alignment

operations with the Align submenu of the Text menu. In addition, the

Text menu contains three helpful commands to fix imperfect align-

ments:

Keystroke Hard Wrap Change

C Q Reformats the current paragraph

C J Reformats and justifies the current paragraph

CE Q Unwraps the current paragraph by removing any newline

characters it contains

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=42

EDITING 43

Figure 3.8: The Tab menu

The term reformat refers to the whitespace of the content, as far as

these commands go. Spacing is normalized, and hard line breaks are

added to wrap the content. The justify command will add extra spacing

to align the right margin of the content as well.

When combined with column selections, these commands can adjust

the wrap or even the indention of your content. The process is simple:

Make a column selection inside the text for the dimensions you want to

restrict the end result to and trigger Text � Reformat Paragraph (C Q). Your

content will be rearranged to fit your selection, as shown in Figure 3.7,

on the previous page.

Working with Tabs

You can change the current tab size using the menu embedded in the

lower frame of the editing window or even enable the use of Soft Tabs.

You can see this menu in Figure 3.8. When Soft Tabs are active, Text-

Mate will still pretend you are inserting or moving past tabs, but the

document will actually contain spaces when saved to disk. These set-

tings will be remembered for all documents of the current language

type.

TextMate also has a Smart Tab feature you have probably encountered.

When you press A at the beginning of a line, a number of tabs needed

to match the indent level of the previous line will actually be inserted.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=43

EDITING 44

Should you need to switch to or from tabs, use Text � Convert � Spaces to

Tabs and Text � Convert � Tabs to Spaces. These commands work with the

selection when there is one or with the entire document when nothing

is selected.

Spelling

TextMate has the standard set of spelling commands under Edit �

Spelling, including the popular Check Spelling as You Type (ED ;).2 Even

here, though, TextMate sneaks in an effective shortcut. When your cur-

sor is in the middle of a misspelled word, you can open the contextual

menu (as if you had clicked the mouse while holding C) with E F2. From

here you can use the arrow keys and F to make corrections from the

list of suggested spellings.

emacs Key Bindings

Just as you saw with the movement shortcuts, TextMate also supports

some common emacs editing key bindings. Here’s the list:

Keystroke Edit

C D Deletes the character to the right of the caret.

C T Transposes the characters on either side of the caret,

when there is no selection. A selection of characters will

be reversed character by character and a selection of lines

reversed line by line. You can find this command in the

Convert submenu of the Text menu.

C K “Kills” all text to the end of the line.

C Y Yanks text back from the “kill” buffer.

C O Inserts a newline without moving the caret.

Again, these emacs bindings work in many Mac applications. Try them

the next time you are writing an email with Apple’s Mail program.

The tools described in this chapter are invaluable for focused editing in

a single file, and I expect you will use them often. When you need to

make more sweeping changes, though, possibly even in multiple files,

you’ll want a strong collection of search features. TextMate has them,

and they’re up next.

2. This command is known to slow down TextMate’s performance, especially when used

with long lines of text. If you must work with long lines, shut this off, and check the

spelling manually with the other commands in the Spelling submenu of the Edit menu.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=44

Chapter 4

Find and Replace
When editing text, there’s no greater ally than a good set of find-and-

replace tools. Filling in two quick fields and clicking a button to make

a change throughout a document or even in multiple documents is

far more efficient than hunting down each instance and making the

change by hand. Regular expressions, a mini-language for describing

find-and-replace operations, have become popular in text editors, Unix

command-line tools, and other pieces of software used to change text.

Regular expressions are surrounded by an aura of mystery in the minds

of many. I kid you not when I say that some of my colleagues are awed

by those of us who can completely rework text with our mystical expres-

sions. Some are outright afraid to try to learn what the expressions

mean. To many, they are quite a mystery.

Now I’m going to let you in on a big secret: Getting started with regu-

lar expressions is easy. I’ve seen non–computer scientists master the

basics in one evening. This chapter will take you through those initial

steps. You will be amazed at the power you have just a few pages from

now.

Regular expressions will help you locate and transform portions of your

work, based on semi-intelligent patterns. Before you can put them to

use, though, you need to examine TextMate’s tools for searching, which

can be helpful in their own right.

4.1 Without Using a Regular Expression

I’ll get to regular expressions in just a moment, but you can perform

several tasks in TextMate without them. A largely undocumented fea-

WITHOUT USING A REGULAR EXPRESSION 46

ture of TextMate is Forward Incremental Search. Mac users are prob-

ably more familiar with the term live search from applications such as

iTunes, and in truth I think of this feature as a visual quick scan.

Scanning

Let’s jump right into an example of how to use this. TextMate comes

with complete release notes describing what is new and what has

changed in each version of the editor. Suppose you wanted to read

about the new features:

1. Select Help � Release Notes. This opens the list in a regular Text-

Mate editing window.

2. Click C S, and watch what happens to the bottom of the editing

window when you do. The control bar that usually holds line and

column counts along with language, automation, tab, and symbol

menus will be replaced with a text-entry field.

3. Enter [new] in the exposed field. As soon as you begin to type,

TextMate will start a selection. When you have entered the first

character, the first bracket of the document will be selected. When

you add the second character, TextMate will move the selection

forward to select the first occurrence of the pair. Note that this

scan is not case-sensitive, although scans will be when you mix

case in the search string.

4. Press C S a few more times to skip ahead in the document to sub-

sequent matches.

5. Press CB S to go backward in a document to a previous match.

6. When you are finished experimenting, press F or K to once again

hide the scanning field.

See Figure 4.1, on the next page, for an example of how this plays out.

As you can see, this is helpful for quickly scanning through document

content.

The Find Dialog Box

You can summon TextMate’s find-and-replace dialog box by selecting

Edit � Find � Find or by pressing D F. This dialog box works similarly to

the one in many other Mac applications when the Regular Expression

box is not checked.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=46

WITHOUT USING A REGULAR EXPRESSION 47

Figure 4.1: Scanning search

You enter some text to locate in the Find field and optionally some text

to replace it with in the Replace field. Because A will jump you between

fields and F will trigger the search, you cannot enter these characters

directly. If you need them, use EA and EF instead. Also note that you

can expand the size of these fields with the arrow button to the right of

the Replace field when you need to enter a lot of text. You can use the

blue menu buttons at the end of each field to select recent entries.

Before you start a search, you can toggle the modifier checkboxes using

the mouse or their ED R, ED I, and ED W keyboard shortcuts. I will

be talking a lot about the Regular Expression box soon, but Ignore

Case causes the search to treat uppercase and lowercase characters as

equal and the Wrap Around box will cause the search to return to the

beginning of the document when it reaches the end.

When you have your search defined, you can fire it off with the buttons

at the bottom of the window. For a simple find, use F to trigger the

Next button. Alternately, you can use Previous to search backward from

the current caret location. I’m not a big fan of the Replace or Replace

& Find buttons. The former is confusing in function, and the latter is

better used outside the dialog box, which I will talk about in a moment.

If you need to perform a Replace All, use the leftmost button or the key

equivalent, which is CD F. You can even expose a (Replace All) In Selec-

tion button by holding down B, or you can just trigger that operation

with CBD F. It can be helpful to click the Σ (a summation operator in

math) button to the right of the Find field before using the Replace All

buttons. It will show a count in the dialog box of how many matches it

finds. See Figure 4.2, on the following page for an example.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=47

WITHOUT USING A REGULAR EXPRESSION 48

Figure 4.2: Counting matches

It’s important to note that this process can often be driven from the

keyboard without ever opening the dialog box; you just need to press

the key equivalents for the commands in the Edit � Find. Use D E to place

the current selection in the Find field,1D G to find the next occurrence,

and ED F to replace the selected occurrence and locate the next, for

example. You can also use BD E to place the current selection, or an

empty string if there is no selection, in the Replace field.

Find in Project

When you want to make changes to many files at once, you can access

a similar dialog box by selecting Edit � Find � Find in Project (BD F). Most

of the controls here work just as they did for the find-and-replace dialog

box, although the dialog itself looks somewhat different.

After setting up your search details, use F to kick off the find process.

TextMate will find all matches in your project and show them in the

lower half of the dialog box. You can click any of these matches to go to

the match in the indicated file.

One great element of a project search is your choice for replacement.

After a project find, you can use the Replace All button to make the

change in each place shown. However, if you need to handpick the

replacements, you can do that as well. Select matches in the lower

half of the window using the mouse. You can hold B while you click to

select entire ranges or D to add or remove individual matches. When

1. This handy trick works in most Mac applications, not just TextMate. It’s also helpful

to know that these applications share a find clipboard, so using D E in one really updates

them all.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=48

WITHOUT USING A REGULAR EXPRESSION 49

Figure 4.3: Replace Selected button

you have selected all the matches you want to change, click the Replace

Selected button to change just those. You can see this process in action

in Figure 4.3.

Searching an entire project can take time. If you are interested only

in matching certain files, it’s often a good idea to limit the search to

just those files. You can do this in TextMate using a new project. Fill

it with the files you are interested in, do the search, and then discard

the project. You can often build these projects quickly with the help of

mate. For example, if I want to build a project of just the Ruby source

code files in the lib and test directories, I navigate to the directory just

above those with the Terminal and enter this:

$ find {lib,test} -name '*.rb' -print0 | xargs -0 mate

You can do the same with the mouse, if you prefer. Just drag a col-

lection of selected files or folders down to the Dock, and drop them on

TextMate’s icon. This tells TextMate to build a new project containing

just what you dropped.

When the project opens, I can perform my project search and then close

the project. This limits the search to only where I need it and generally

speeds things up.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=49

MIXING IN REGULAR EXPRESSIONS 50

4.2 Mixing in Regular Expressions

You’ve now seen the two Find dialog boxes and how to use them in

regular operations. You also saw that both dialog boxes included the

Regular Expression checkbox, and when you flip that switch, you will

now be conducting searches in a whole new language.

TextMate uses the Oniguruma regular expression engine. This is a full-

featured and fast library for working with regular expressions. If you

are familiar with the PCRE engine, you will be glad to know that they

have similar capabilities and syntax.

In a regular expression, the characters you type describe what you are

searching for so that TextMate can locate it for you. You are able to

specify things such as the kinds of characters you want to find, how

many of them, and possible alternatives you will accept in a match. You

provide this description using characters that have special meanings

within a regular expression.

Special Characters

In fact, you already know more than you might think about regular

expressions. A few characters have special meaning in the expression,

but everything else matches just as it would in a regular search. Put

another way, most characters match themselves. An E in a regular

expression will match a capital E literally.

Here are the special characters inside an expression:

\ . [] ^ $? * + { } () |

All other characters retain their regular meanings when used in a reg-

ular expression. That means the expression James will locate my name,

<p> will match paragraph tags in HTML, and 4 - 2 = 3 will check the

document for one possible erroneous math expression.

Should you need to use a special character as a literal match in a regu-

lar expression, just precede the character with a backslash (\) to escape

it. Using this, you could hunt through a document for all payments of

exactly 100 U.S. dollars with the expression \$100.

You are welcome to use literal tabs and newline characters in an expres-

sion, but it’s often easier to enter them as \t or \n to keep the expression

compact and avoid triggering controls on TextMate’s Find dialog boxes.

These shortcuts work in TextMate’s replacement strings as well.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=50

MIXING IN REGULAR EXPRESSIONS 51

Character Classes

Sometimes you don’t want to match exact characters. Sometimes any

one of a list of characters will do, and in a regular expression you can

use a character class to specify this.

Character classes are surrounded with brackets ([...]), and they indicate

all the characters you will accept where they occur in the match. For

example, the expression [aeiou] will match a single English vowel, the

expression [\t] will match a space or tab character, and the expression

[cbr]at will find the animals cat, bat, or rat.

It’s important to note that the latter expression will not find the entire

word brat. It would only select the rat inside the word, leaving the b

untouched. Character classes just match one letter but give multiple

choices for what that letter can be.

Most special characters listed in Section 4.2, Special Characters, on

the preceding page revert to their regular meanings inside a character

class. The expression [$()|] will match a dollar sign, an opening or clos-

ing parenthesis, or a vertical bar. Inside character classes, the caret (∧),

hyphen (-), and backslash (\) have special meanings.

Instead of listing what’s acceptable in a character class, you are allowed

to list what is not acceptable. If the first character of a character class

is a caret (∧), the meaning is reversed, and it will match anything not

listed. Therefore, the expression [∧aeiou] will match the first nonvowel

character it finds. That might be a consonant; a whitespace character

such as a space, tab, or newline; a Greek letter; some symbol; or any-

thing else. If you need to use a literal caret (∧) in a character class,

place it anywhere but as the first character, or escape it with a leading

backslash (\).

Character classes can include ranges of characters. To provide a range,

give the first character in the sequence, a hyphen (-), and the final char-

acter of the sequence. The three most common uses of this are to match

the following:

[a-z] Any lowercase English letter

[A-Z] Any uppercase English letter

[0-9] Any digit

You can have multiple ranges in a class, so the expression [a-zA-Z]

matches lowercase and uppercase letters. Ranges work based on the

ordering of characters in the current encoding, so I don’t recommend

using them for anything other than letters or numbers. If you need to

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=51

MIXING IN REGULAR EXPRESSIONS 52

use a literal hyphen (-) in a character class, make it the first charac-

ter of the class, or escape it with a leading backslash (\). Remember to

escape brackets ([]) by proceeding them with a backslash (\) if you are

trying to include literal brackets in a character class.

Finally, you can use several shortcut character classes in a regular

expression without the brackets:

. Any character except a newline

\s Any whitespace character including space, tab, and newline

\S Any nonwhitespace character

\w A word character, equivalent to [a-zA-Z0-9_]

\W A nonword character, equivalent to [^a-zA-Z0-9_]

\d A digit, equivalent to [0-9]

\D A nondigit, equivalent to [^0-9]

You can even use all of those except the period (.) inside a character

class to combine with other characters. For example, [\w’] matches a

word character or apostrophe, and [\d,] matches a digit or comma.

Anchors

Regular expressions can be pretty generous in what they accept. For

example, the expression ship will match ship, ships, worship, and a lot

more. Anything containing that sequence of letters is a match.

What if you really wanted just the word ship, though? You could add

a space to either end of the expression, and that would keep it from

matching words such as ships and worship. However, if the word ship

is the very first thing in a document, it won’t have a space in front of it,

and you would fail to match it.

In regular expressions, you can solve these problems with anchors.

Here’s a list of the commonly used anchors:

^ Matches at the beginning of any line

$ Matches at the end of any line

\b Matches between \w\W or \W\w sequences and at the beginning

or end of document

\B Matches anywhere \b does not

\A Matches at the beginning of the input

\Z Matches at the end of the input or just before the final newline

\z Matches at the end of the input

Note that these are all zero-width assertions that do not consume any

characters of the input. They simply restrict where a match can occur.

You now have the information you need to improve the earlier attempt

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=52

MIXING IN REGULAR EXPRESSIONS 53

to match just the word ship. Using the word boundary assertion, you

can modify the expression to \bship\b. Similarly, you could match a

digit at the end of the line with \d$ and check to see whether a TextMate

document begins with a Unix shebang line using \A#!.

Quantifiers

So far I’ve talked a lot about specifying what you want to match. An

equally common concern of regular expressions is how much of it you

want to match. For that, I need to talk about the quantifiers. Here’s the

list:

? Zero or one

* Zero or more

+ One or more

{n} Exactly n

{n,} At least n

{,n} No more than n

{n,m} At least n, but no more than m

In the previous list, n and m represent positive integers.

You place the quantifier after the element you want to repeat, so [aeiou]+

matches one or more vowels, \d{5} matches five consecutive digits, and

\bships?\b matches ship or ships.

All quantifiers are greedy by default, which means they will consume

as many characters as they can without causing the match to fail. I’ll

now show an example of that:

1. Create a new TextMate document (DN).

2. Enter the content abbcbbbbbc.

3. Place your cursor at the beginning of the document (D �), and open

the Find dialog box (D F).

4. Switch to Regular Expression if needed (ED R), and enter the expres-

sion a.+c in the Find field.

5. Click Next (F) to perform the search.

TextMate should select the entire line, skipping over the first c to con-

sume as many characters as possible. That’s what I mean by greedy.

Try the same experiment one more time, but use a pattern of a.+?c

instead. Now TextMate should select only to the first c. Adding a ques-

tion mark (?) to the end of a quantifier modifies it to match the fewest

possible characters.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=53

MIXING IN REGULAR EXPRESSIONS 54

It’s important to remember that the quantifiers affect only the element

just before them in the expression. This means that the expression ho+

will match ho, hoo, hooo, and so on, but it will not match hoho. For

that, you need another tool.

Grouping and Capturing

Parentheses ((...)) serve two purposes in a regular expression. First, they

group elements. Using that information, you could build an expression

that matches repeating words instead of just characters. For example,

the expression (ho)+ matches ho, hoho, hohoho, and so on. Similarly,

you could shorten an expression to match a typical IP address:

Without grouping: \b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b

With grouping: \b\d{1,3}(\.\d{1,3}){3}\b

The other feature of parentheses ((...)) is to capture sections of a match.

This is commonly used in replacement strings to insert pieces of the

match inside the new string. Let’s see an example of this in action:

1. Create a new document (D N).

2. Type Gray,James.

3. Move to the beginning of the document (D �), and open the Find

dialog box (D F).

4. Make sure you are in Regular Expression mode (ED R).

5. Enter the expression (\w+),\s*(\w+) in the Find field, and set the

Replacement to {:first => "$2", :last => "$1", :full => "$2 $1"}.

6. Trigger the change with the Replace All button (CD F).

The expression dissects the name, and TextMate uses the captures in

the replacement string to properly identify the first and last names. It

also combines the captures to create a full name.

As you just saw, you can access the contents of parenthetical captures

in a replacement string with the variables $1, $2, and so on. $1 points

to the leftmost capture, $2 points to the capture following that one from

left to right, $3 points to the next one, and so on. Therefore, you could

use an expression such as ∧(([∧:\n]+):(.+))$ to match email-style headers

and later access the entire line in $1, the header name in $2, and the

header contents in $3.

You can even access captures from earlier in the match inside the

match itself. You do this using back references, which are similar to

replacement variables but with a backslash (\) in front of the numeral.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=54

MIXING IN REGULAR EXPRESSIONS 55

For example, if you need a single- or double-quoted string in a doc-

ument, you might use a pattern such as (["’]).*?\1. This will match

“James” or ‘James’ but not “James’ since the second quote is a back

reference to the first matched quote.

If you want to group some elements but don’t need to capture them,

you can use a slight variation of the parentheses ((?:...)). For example, to

match a run of words, you might use something like ((?:\w+\s*)+). The

individual words are not captured by that expression, but the entire

phrase will be in $1 as usual.

Alternation

Another option of regular expressions is to specify choices of what can

appear at a given point in the expression using alternation. Each option

can be a complete subexpression, allowing for more complex choices

than a class of characters. Choices are separated with a vertical bar

(|). Thus, you can move through your document by runs of word and

nonword characters by running a find for the expression \w+|\W+ and

using D G to jump to each successive match.

Unlike most regular expression operators, the vertical bar (|) does not

apply to just the previous element of the match. It applies to the entire

subexpression before and after. In other words, the expression

TODO[:,]\s*|- -\S.* will match a TODO tag followed by a colon or comma

and some optional whitespace, or it will match two hyphens followed

by some content. Notice how the second half has nothing to do with a

TODO tag. You can limit the alternation operation using grouping, so

we could fix the previous expression to what was more likely intended

with TODO([:,]\s*|- -)\S.*.

For example, you may want to match a quoted string that can con-

tain nested quotes, as long as they are escaped. This means the string

could contain nonquote, nonbackslash characters; escaped quotes (\");

or escaped literal backslashes (\\). You can express those options with

alternation ("(\\\\|\\"|([∧"\\]+))+").

Advanced Features

This book isn’t big enough for me to cover all the advanced features

supported by Oniguruma,2 but I want to hit a few highlights before I

wrap this up.

2. See the official documentation at http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt if

you want to learn more.

http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=55

MIXING IN REGULAR EXPRESSIONS 56

First, you will want to be aware that regular expressions have modes.

Two of the most common modes to use are the mode for case-insensitive

matching and the mode for multiline processing. You can turn these

on for a portion of your expression by wrapping your subexpression

in (?i:...) for case-insensitive matching or (?m:...) for multiline matching.

The effect of the former is just what you expect from the name; the

expression (?i:james) will match james, James, JAMES, or even jAmEs.

For the latter mode, the period (.) is modified to match any character,

including newlines. Using that, the expression (?m:.{10}) matches the

first ten characters, even if they span multiple lines. I’ll discuss a third

mode in Section 10.1, Documenting a Grammar, on page 151.

Another powerful feature of some regular expression engines, includ-

ing Oniguruma, is look-around assertions. These are zero-width asser-

tions that allow you to peek forward or backward in the input without

consuming characters. You might use this to verify that some input is

present but keep it out of the matched data. For example, the expres-

sion (?<=)(?m:.*?)(?=) will match simple list item tags in an HTML

document, selecting only the content of the tag, not the tag itself. Here’s

a complete list of the look-around assertions:

(?=...) Look-ahead

(?!...) Negative look-ahead

(?<=...) Look-behind

(?<!...) Negative look-behind

TextMate has a few additional features for replacement strings. You

can change the case of text in a replacement string by using case fold-

ings. This is quite useful when you use the variables to access content

from the match. To uppercase or lowercase the next character in the

replacement, use \u or \l. To affect a run of characters, surround them

in \U...\E or \L...\E. For example, I can use the expression \b(?i:(james))\b

to find my first name in any state of capitalization, and I can use this

replacement \u\L$1\E string to ensure that it is title cased after the

replacement.

The other feature TextMate exposes in replacement strings is the abil-

ity to do conditional replacement. You can optionally add content to the

replacement if a capture variable contains any matched data. The syn-

tax for this is to wrap the replacement text in (?n:...) where n is the

match group number to check for content. If the group holds any text,

the section will be inserted; otherwise, it is discarded. You might use

this to prepare a phrase for use as a variable name in a programming

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=56

MIXING IN REGULAR EXPRESSIONS 57

language using an expression such as (\w+)|(\W+) and a replacement

of (?1:\L$1\E)(?2:_). That turns the title of this book, TextMate: Power

Editing for the Mac, into textmate_power_editing_for_the_mac.

The search tools round out our exploration of what you can accomplish

with TextMate. The real power of TextMate, though, comes from what

it can accomplish for you. The next part of this book is all about that.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=57

Part II

Automations

Chapter 5

Built-in Automations
Soon you will learn to build any TextMate automation your heart desi-

res, but first let’s get a feel for what is possible by working with some

of the built-in automations. TextMate currently ships with more than

thirty bundles—a convenient grouping of related automations. In this

chapter, you will look at bundles for different languages and activities.

I don’t have space to cover all of them in detail, but I will hit the high-

lights of many of the most popular bundles.

Bundles are directories of related files packaged on your hard drive.

However, from day to day, you will interact with bundles from inside

TextMate using either the Bundles menu or the shortcut automation

menu with the small gear icon at the bottom of every editing window.

Use CK to open the gear menu, navigate with the arrow keys, and

select an item by pressing F.

It’s important to know that bundle contents are available only when

an editing window is open. This is a limitation of TextMate, even for

commands that don’t need a specific file on which to operate. If you go

into the Bundles menu and find everything disabled, you probably just

need to open a file. This issue will be addressed in a future version of

TextMate.

5.1 The TODO Bundle

The TODO bundle consists of only two commands: Help and Show TODO

List. The Help command describes Show TODO List. It’s common for bun-

dles to include a Help command like this, so be sure to look for them

when you are exploring on your own. Take a moment to read that brief

text now, and then I’ll show you some additional tricks.

THE TODO BUNDLE 60

Figure 5.1: Show TODO List output

The Show TODO List command (CBT) is where the action is. When invoked,

all files in the current project (or the current file if working outside a

project) are saved, and TextMate starts scanning for tags. The tags the

command looks for can have a couple of formats:

TODO Don't forget this.

TODO, Play with the TODO bundle.

TODO: Finish this book!

It’s also important to note that the tag doesn’t have to be the first thing

on the line. That allows you to hide TODO items in the comments of a

programming language. For example:

TODO: add the feature the client is paying us for here

The command isn’t limited to TODO tags either:

FIXME: Don't forget that you broke this...

FIX ME: and this.

CHANGED: The FIXME tag has been changed to also catch FIX ME.

When invoked, these tags are located, sorted by type, color-coded, and

hyperlinked back to the line of the file where they were found. The

result appears in TextMate’s HTML output window. You can see what I

mean in Figure 5.1, which shows the output of the tag examples in this

chapter.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=60

THE TODO BUNDLE 61

Joe Asks. . .

What Happens When My Brain Is Full?

I’m sure you remember that spirited pep talk I gave early in the
book about learning your keyboard shortcuts, and I really do
mean that. Everyone has their limit of what they can effectively
remember, though, and no matter what your limit is, this chap-
ter will likely exceed it. I cover twelve bundles in these pages,
and that’s just a fraction of what comes with TextMate. That’s
a lot of automations, and I throw around keyboard shortcuts
for all of them. Keep the shrink bills low, and be selective about
what you actually commit to memory.

First, you may not need all these bundles. If you never build web
applications with Rails, for example, feel free to skip that bun-
dle. Don’t skip TODO, Math, Text, Source, or TextMate, though,
because I think they might surprise you.

Next, when you do find a bundle worth committing to mem-
ory, decide what level of attention it deserves. Is this a I-will-
use-it-five-times-an-hour batch of commands? OK, spend the
effort learning the keyboard shortcuts. However, you can still
get mileage out of a bundle without knowing the shortcut. I
use the TODO bundle often, but I had to look up the keyboard
shortcut to add it to this chapter. That’s just because the TODO
hunting mode of my workflow is a mousy action, so I don’t need
to memorize the shortcut. Decide when you can and can’t get
away with the same.

Also, be sure to notice the patterns in TextMate’s shortcuts. They
are there on purpose. C Q is always reformat in the current con-
text; D B and D I are bold and italics anywhere that makes
sense; I is continue list, comment, or whatever; and CED P

is how you get a preview. The bundles have a lot more patterns
than that. Learn them once, and use them everywhere.

Finally, you can hunt for a command just as I’ve trained you to
do for files and symbols. CD T will open a dialog box with the
now-famous name-matching algorithm for bundle commands.
Use as needed, but if you go after the same command three
times in one day, I say it’s time to learn that shortcut!

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=61

THE HTML AND CSS BUNDLES 62

The TODO bundle is helpful with what you have seen so far, but the

real power lies in how easily you can add your own tags to the mix. For

example, the company I work for often embeds notes to the developers

in the source code we write. A note is always tagged by the intended

developer’s first name. I can modify the Show TODO List command to pick

up those notes with a few easy steps:

1. Open the Bundle Editor (CED B).

2. Click the folding arrow to the left of the TODO bundle’s name to

expose the bundle’s contents.

3. Click Show TODO List so you can see the source in the Edit Com-

mand box.

4. Add a line like the following in the $tags = [...] definition right at

the beginning of the script:
{ :label => "Developer Notes",

:color => "#0090C8",

:regexp => /JAMES[-\s,:]+(\w.*)$/i },

That will find the developer note tags used by my company, as long as

they are addressed to me. I’ve added the ability to place hyphens after

the tag as well, since we tend to do just that. These tags will turn a light

blue, but you could modify the HTML color code to get your favorite hue.

Here’s a sample note from my company found by the addition we made

to the command:

JAMES--Would you call Derek and explain what this code does?

5.2 The HTML and CSS Bundles

The HTML bundle is TextMate’s most popular bundle. So many people

need to create a quick web page, and HTML is an easy markup language

to learn. Even still, the markup can get repetitive, and we humans tend

to make mistakes when dealing with such languages—well, only those

humans who don’t use TextMate as their editor, that is.

If you are going to learn only one command from the HTML bundle,

definitely make it Insert Open/Close Tag (With Current Word). I’m not exag-

gerating when I say that command, available in any document via C <,

is 90% of what you need to write HTML, XHTML, or even XML quickly

and effectively. I wrote this book primarily with that one command.

You can use Insert Open/Close Tag in two ways. First, you can type a

tag name—html, div, or a, for example—and then trigger the command.

The tag name will be transformed into an open and close tag pair. This

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=62

THE HTML AND CSS BUNDLES 63

Figure 5.2: Insert Open/Close Tag

command is super smart, knowing to handle words like br and img with

a single tag. It also always tries to drop your caret in the most logical

place you need to be next. See Figure 5.2, and note the caret positions.

The other way to use the command is equally handy. Just invoke it

with no word to the left of the caret, and it will generate and insert an

open and close tag pair snippet. You can then type a name for the tag

that will update both ends of the pair. Feel free to add tag attributes as

needed, and know that they will not be copied to the closing tag. When

you are ready, just press A to jump into the content portion of the tag.

Experiment a little with both forms before reading on so you can get a

good feel for the command. The two uses are handy in different con-

texts, and you are well armed if you know both.

Two other commands are helpful for quickly building tags: Wrap Selec-

tion in Open/Close Tag (CBW) and Wrap Each Selected Line in Open/Close

Tag (CBDW). They both do what their names suggest, adding open and

close tag pairs in front of and behind the entire selection or at the start

and end of each line in the selection. You can then type a tag name that

will be mirrored to all inserted instances. These commands are nice for

naturally typing several paragraphs or list items without stopping to

worry about syntax and then marking them up after the fact.

Of course, the HTML bundle has many other commands. Among them

are some snippets for inserting tags that commonly need a little extra

baggage you don’t want to have to type all the time. Good examples are

Head, Style, and Script. Try typing headA in an HTML document to

see what I mean. It will insert a content-type tag and set you up to edit

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=63

THE HTML AND CSS BUNDLES 64

the document title. You trigger the other two snippets I mentioned the

same way (styleA or scr iptA), and all snippets of this kind are available

in the Insert Tag submenu of the HTML bundle.

I just don’t have the room to explain all the excellent helpers hiding in

the HTML bundle, but I’ll close this section with a few more quick tips:

• Wrap Selection as Link (CB L) works like the other wrap commands

I discussed, but it will use the clipboard contents as the uniform

resource locator (URL) for the link, assuming the clipboard con-

tains a single line of text.

• For effortless linking, select the link text, and trigger Lookup Selec-

tion on Google and Link (CBD L). This command uses Google’s “I’m

Feeling Lucky” to find the first match in the search list and builds

a hyperlink to that site.

• Type doctypeA at the beginning of your document to select one

of those hard-to-remember statements.

• Type D & for a menu of several useful commands involving entity

and URL escapes.

• The common Mac shortcuts D B and D I work in HTML documents

to create strong and em(phasis) tags.

• Use Window � Show Web Preview (CED P) to check the result of

your markup work with live updating, or use the Open Document in

Running Browser(s) and Refresh Running Browser(s) (D R) commands in

the HTML bundle to manage an external preview.

• Use Validate Syntax (W3C), available via CBV, to ensure that your

markup is free from errors.

You can see an example using several of the HTML automations to build

a web page with minimal effort in Section 3.3, Editing Multiple Lines at

Once, on page 39.

Adding Style

TextMate makes the CSS bundle available when you’re editing a style

sheet or even if you are just inside a style tag in an HTML document.

CSS is not complex enough to require a powerful command suite like

the HTML bundle has, but the bundle still has some useful snippets.

The hard part of CSS work, in my opinion, is remembering all the com-

binations of what goes after a given identifier. For example, after the

margin identifier, you can put one argument to set all four margins;

two to set vertical and horizontal margins; or four to set top, right, bot-

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=64

THE RUBY BUNDLE 65

tom, and left individually. Just to write that last sentence, though, I

had to look up the order. I never remember it.

That’s how TextMate can help you with CSS work. It remembers all

the combinations. To get it to remind you, just trigger the menus. You

can do that by typing a word like background, border, font, list, mar-

gin, padding, or text, followed by A in a style sheet or style tag. The

menu will have all the common choices, and inserting one will include

placeholders that prompt you for what to fill in at each point.

If you also have as much trouble remembering HTML color codes as I

do, you will be happy to hear that the CSS bundle covers those too. You

can choose Bundle � CSS � Insert Color (BD C), and TextMate will display

the standard Mac color chooser and allow you to make a choice. The

color you select is converted to the expected string of six hexadecimal

digits with a leading number sign and inserted at the caret position.

5.3 The Ruby Bundle

Because TextMate’s own automations use Ruby heavily, TextMate has

great support for the language via a full set of automations in the Ruby

bundle.

The first thing you need in Ruby support is a way to run your scripts.

TextMate ships with the RubyMate runtime environment invoked by

Bundles � Ruby � Run (D R in any Ruby document). This hands your code

off to Ruby and displays program output in TextMate’s HTML output

window. Before the hand-off, though, TextMate modifies the standard

Ruby environment to include some nice tie-ins to the graphical user

interface (GUI). TextMate arranges to be notified of uncaught excep-

tions and hyperlinks the stack trace output back to the lines of your

file. STDIN is also modified, so a call to gets() will trigger a GUI dialog

box that sends your input down to the script. The environment even

detects when you are running tests so it can color-code those results

and hyperlink errors and failures.

RubyMate is great for running entire scripts, but Rubyists, spoiled by

the ease of IRb, often want to evaluate some little snippet and see the

results. You could switch to the Terminal and use IRb itself, but Text-

Mate provides another option. When you run Bundles � Ruby � Execute

and Update ‘# =>’ Markers, TextMate filters the selected code, or the entire

document in the event of no selection, through a script. That script

updates # => markers you have placed at the ends of lines with the

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=65

THE RUBY BUNDLE 66

results of that expression. You can insert such a marker using a snip-

pet bound to #A. The script will also annotate errors and show content

printed to STDOUT. This is powerful tool for quick localized debugging or

testing. For example, filtering the following code through the command:

RUBY_VERSION # =>

data = %w[one two three four five]

results = data.select { |n| n[0] == ?t } # =>

yields the following:

RUBY_VERSION # => "1.8.4"

data = %w[one two three four five]

results = data.select { |n| n[0] == ?t } # => ["two", "three"]

The majority of the Ruby bundle focuses on writing code, not running

it. Many snippets exist for building Ruby code quickly. The good news

is that the tab triggers follow mnemonic patterns to make them easier

to remember.

When you are ready to create a new Ruby class or module, just press

claA or modA for a menu of common skeletons. You can use a similar

trigger for methods on defA, or you can use the variations defsA for a

class or module method and deftA for a test method. The tab triggers

rA, wA, and rwA are shortcuts for Ruby’s attr_reader(), attr_writer(), and

attr_accessor() helpers. The snippets continue all the way down to sim-

ple language constructs available on triggers such as i fA, caseA, and

whileA. Get into the habit of using these, and you will never need to

type end again.

Probably the most widely used Ruby snippets are in the iterator fam-

ily of snippets. Again, the tab triggers follow patterns to make them

easy to remember. Specifically, one-word iterators are available via the

first three letters of the word, so in jA will trigger inject(), and t imA will

trigger times(). The exception is each(), which uses the common abbre-

viation for the word eaA. If the iterator has more than one word, add

the first letter of each additional word to the trigger, so sorbA activates

sort_by() and eawiA activates each_with_index(). Though they may seem

odd now, you will learn the patterns pretty fast with practice and will

seldom need to look up snippet triggers again.

Note that all the snippets use the braces syntax and that there are no

snippets for the “bang” variations. You can use two commands inside

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=66

THE RAILS BUNDLE 67

an iterator body to change it to the desired variation: Add ! to Method in

Line (C !) and Toggle ’do ... end’ / ’{ ... }’ (C {).

TextMate provides a similar suite of snippets for unit testing. You can

build a skeleton test case file with tcA or a test suite file with tsA. All

the assertions work just like the iterators, building off the base of asA

for assert(), so you can trigger assert_in_delta() with asidA, for example.

Two facts to know about the automations in the Ruby bundle are that

some of them insert requires for the needed standard library files when

triggered, unless your document already has the require, of course,

and some are based on fictional method names to make them easier to

remember. You can suppress the autorequire behavior by adding - to

the tab trigger. Both easA and eas-A will insert an each_slice() snip-

pet, but the first will make sure the current document requires the enu-

merator library. Examples of fictional methods include map_with_index(),

class_from_name(), and word_wrap(), which all insert common idioms of

Ruby code to handle these operations.

Finally, the bundle provides Documentation for Word (C H) for easy access

to Ruby’s built-in documentation. Just place your caret in the word you

want to look up, and then trigger the command for a hyperlinked HTML

response.

5.4 The Rails Bundle

The Rails core team has done a good job of advertising TextMate in its

screencasts, so it’s not surprising that TextMate has become a favored

choice for building Rails applications. Attracting all those Rails devel-

opers has also attracted some terrific automations for the Rails bundle.

To use the Rails bundle, you need to give TextMate the hint that you

are a Rails developer. You need to do this because Rails files look like

regular Ruby files to TextMate. When you have a Ruby file open, glance

down at the language menu embedded in the bottom of the editing

window. If that menu says Ruby, the Rails bundle isn’t yet active. To

kick it into gear, select Ruby on Rails from that same menu. In Rails mode,

you have access to all the Ruby goodies plus the entire Rails bundle.

For an added boost to TextMate Rails development, I recommend instal-

ling the TextMate Footnotes plugin. This plugin will add links to the

pages of your application under development mode that you can click

to jump right to that file in TextMate for editing. There are also links to

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=67

THE RAILS BUNDLE 68

display the parameters and session inline in the page. All are helpful

and won’t affect your code when it is running in production mode.

To ask TextMate to add this functionality to your Rails project, open

your project, select Bundles � Rails � Install Plugin (C | and press 2), type

footnotes into the plugin search field, and click the Go button (F).

Then click the download arrow button to the far right of the TextMate

Footnotes match to install the plugin.

The Rails bundle includes timesaving automations for working with

each layer of a Rails application. With models, the bundle has many

snippets for validations and association methods such as has_one() and

belongs_to(). You can find these snippets in the Models submenu of the

Rails bundle. They have mnemonic tab triggers similar to those in the

Ruby bundle.

My favorite feature of the Rails bundle’s model layer is the support for

migrations. Here again you have some snippets for quick entry, but the

tab triggers are well thought out to maximize productivity. To see what

I mean, assume you have a typical create table migration started with

the following:

create_table :favorites do |t|

end

Now you’re ready to add a handful of columns, so you put your caret in

the table block and type mcccA to trigger Create Several Columns:

create_table :favorites do |t|

t.column :user_id, :integer

mccc

end

Notice how that snippet sets up entry and drops in the trigger again

for the next column. There is even a tab stop right after that mccc, so

you will naturally end up there. When you are about to enter the last

column, just tap J a couple of times, and add an ol before triggering

the snippet. This mcolA trigger will open a menu of column creation

choices from which you can select Create Column in Table by pressing 9.

Then you won’t have the trailing snippet trigger to clean up.

A couple of the migrations are even smarter. Drop/Create Table (mtabtA,

choice 6) and Remove/Add Column (mcolA, choice 8) will insert regular

snippets for the change, with special triggers at the end to kick off

macros. When the macros are triggered, your db/schema.rb file will be

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=68

THE SUBVERSION BUNDLE 69

scanned by the bundle for the details of the table or column changed.

Those details are reinserted as the migration’s down() action so the

table or column will be restored to its former state.

With views, the shortcut to master is C >. When you trigger that snip-

pet, you get <%= %>; however, pressing it again accesses a command

that switches the tag to <% %>. This pair of automations is actually

located in the Ruby bundle, but they are commonly used to edit the

RHTML files of Rails projects.

Another nice view helper is Create Partial from Selection (CBH). You can

use it, as the name implies, to separate a selection of code into a new

partial file and insert a render() call to that file, but that’s not all. If

you invoke it without a selection, it will read all partial render() calls in

the current document and inline the full partial just below each call.

You can edit the contents of these documents and trigger the command

again to return them to their files. See Figure 5.3, on the next page, for

an example of how this plays out.

Controller work in the Rails bundle benefits from nice snippets for

renders and redirects. Again, the triggers are mnemonic, and you can

explore these snippets under Bundles � Rails � Controllers. Don’t miss the

params[...] (C P) and session[...] (C J) snippets in the top-level of the Rails

bundle, because single-keystroke access is nice for those terms you

type repeatedly.

Another challenge with Rails development is quickly navigating to the

file you need to edit now. The Rails bundle adds some terrific shortcuts

for this. I recommend committing one to memory. EBD � will open a

menu where you can select to jump to a Controller, Helper, Functional Test,

Unit Test, View, or more. That makes getting around a breeze with just

one shortcut to remember. Be sure to look in the Go To submenu of the

Rails bundle, though, for other interesting navigation commands.

5.5 The Subversion Bundle

Most people have come to understand the value of version control, and

if you’re going to use version control these days, Subversion is a popular

choice.1 When you have a Subversion repository checked out, TextMate

has a bundle of features that can help you get the most out of it.

1. If you are not yet familiar with Subversion, Pragmatic Version Control Using Subversion

by Mike Mason (Pragmatic Bookshelf, 2005) is a great way to get started.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=69

THE SUBVERSION BUNDLE 70

Figure 5.3: Editing partials inline

As I said, you still need to handle the initial checkout before TextMate

can help you with a repository. Luckily, that’s just one command you

need to feed the Terminal:

$ svn --username your.name.here checkout repository.url.here

After you have a checkout, just drag the top-level repository folder onto

TextMate to create a project. This is a standard TextMate project just

like the ones discussed in Chapter 2, Projects, on page 22. However,

because this project is a Subversion checkout, you have access to the

Subversion commands2 for the files and directories contained within.

2. If TextMate has trouble locating your installed copy of Subversion, you can guide it to

the binary by setting the TM_SVN variable to the path of the executable. See Section 9.2,

TextMate’s Environment Variables, on page 119, for details on how to set environment

variables inside TextMate.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=70

THE SUBVERSION BUNDLE 71

Figure 5.4: Subversion menu

Let’s examine where you can find those commands and what they will

do for you. All the Subversion commands are mapped to the same

keystroke, CB A, so that triggers a nice menu of choices. You can see

what this menu looks like in Figure 5.4.

These commands work just as they do when interacting with Subver-

sion in the Terminal, but you get to do everything from the comfort

of TextMate. Commands that need input from you to operate will dis-

play GUI windows when invoked. For example, Commit will open a win-

dow that accepts your commit message and allows you to change the

files included in the commit, and Diff with Revision will show a window

that allows you to select the version to which to compare the current

file. Many commands show their output using TextMate’s HTML output

window.

Commands that require file selections to work on use the files and

directories selected in the project drawer. Therefore, if you want to

update the entire project to the newest revision, make sure the top-

level directory is selected in the project drawer.

Probably the biggest advantage of using the TextMate bundle over the

shell is that the Diff commands pipe their results into a new TextMate

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=71

THE MATH BUNDLE 72

document that will be syntax highlighted by the Diff bundle.3 This

makes it a lot easier to tell what is being added or removed.

Remember that the bundle isn’t consulted when you use the project

drawer to rename or delete some file. This can get you out of sync with

the repository, which would add the missing files back with the next

update. It’s best not to use those features of TextMate when working

with Subversion repositories.

5.6 The Math Bundle

Quick and dirty calculations are something we all do frequently. Sure,

you can load Calculator, do the math, and bring back the results, but

there’s really no need for the context shift.

If you want to know the answer to a simple math question, such as

how many seconds there are in a day, just ask TextMate. First, enter a

formula:

60 * 60 * 24

Next, you can open the Math bundle’s contextual menu with CB C (for

“calculate”). Just as it was with Subversion, this is one-stop shopping

for all things in the Math bundle. Now, the result you get depends on

the command you choose. For example, picking Evaluate Line gives you

the following:

60 * 60 * 24 = 86400

If you prefer to replace the calculation with the result, you could instead

choose Evaluate and Replace Expression. If the calculation might use dec-

imals and you prefer to have a whole-number result, use Evaluate and

Replace Expression (Rounded).

The replacement versions are terrific for scaling some number inline

without having to do any thinking. Just multiply or divide by the de-

sired scale, select the formula, and let TextMate worry about the math.

So far you have been examining commands working on the current

line. They will also work on a selection, if there is one, which allows you

3. You can also use the Diff bundle to compare local files, of course. Explore that bun-

dle’s menu for the commands that do this.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=72

THE MARKDOWN BUNDLE 73

to evaluate subexpressions using the previous commands. Selections

really shine with the middle three commands of the menu, though.

As an example, say you have a simple list of farm animals:

6 cows

2 sheep

1 Perl programmer

10 chickens

You don’t have any math symbols here, but TextMate is not stymied by

such trivialities. If you want to count the animals, by golly, you can!

If you select those lines in TextMate, call up the calculate menu, choose

Add Numbers in Selection, and type a label for the new number, you get

the following:

6 cows

2 sheep

1 Perl programmer

10 chickens = 19 farm animals

Notice how the command just found the numbers in the lines and didn’t

need any math operations to guide the process.

This is great for doing quick sums, and the sister command Subtract

Numbers in Selection handles the opposite operation. Don’t forget to try

these commands on columnar selections, as described in Section 3.2,

Column Selections, on page 34.

5.7 The Markdown Bundle

I mentioned earlier that the whole world is writing web pages now, but

the great news is that you don’t always need HTML to do it. A few

higher-level languages simplify building at least some web page con-

tent. Markdown is one such language, focusing on a natural and read-

able syntax even before it’s marked up.4

4. You can find more details about Markdown at the official site:

http://daringfireball.net/projects/markdown/.

http://daringfireball.net/projects/markdown/
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=73

THE MARKDOWN BUNDLE 74

Here’s a trivial example of a Markdown document:

Download builtin_automations/example.markdown

Markdown Example

================

This is a simple paragraph containing markup for *italics* and **bold**. It

also includes a couple of hyperlinks: [The Pragmatic Programmers][pragprog] and

[TextMate][].

[pragprog]: http://www.pragmaticprogrammer.com/

[textmate]: http://macromates.com/

> We can insert quoted text just like this.

or even include

code, poetry, or

anything else that is preformatted

Lists

Markdown also supports lists, of course. You can have unordered:

* application

* library

* framework

or ordered:

1. first

2. second

3. third

You can even nest:

1. Editing

1. Projects

2. Moving Around

3. Find and Replace

2. Automations

1. Built-In Automations

2. Snippets

3. Macros

4. Commands

This is easy syntax to get the hang of, but the bundle can still provide

plenty of help when you want to edit Markdown. If you don’t know or

remember all the Markdown syntax, use the Syntax Cheat Sheet (C H in a

Markdown document) to brush up on it.

http://media.pragprog.com/titles/textmate/code/builtin_automations/example.markdown
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=74

THE MARKDOWN BUNDLE 75

Now that you know the syntax and are ready to write, I’ll point out

some of my favorite shortcuts. First type your headers as usual, and

then use Level 1 [setext] (=A) and Level 2 [setext] (-A) on the following line

to underline the whole thing.

Another great help is that the bundle provides D I and D B for italics

and bold, just like you would expect from a word processor. You can

use those when you are ready to enter new content or with a selection

to which to apply the markup.

Another big help is with lists. Inside any list item, just press I to cre-

ate a new list item. For numbered lists, this will increase the count

normally. You can also use BI to start a new sublist.

The Lookup Selection on Google and Link feature of the HTML bundle is

also available in Markdown. To build a hyperlink off the first match in

a Google search, select your link text, and trigger the command with

CBD L. The link will be returned in Markdown syntax.

As you are working, remember that you can see the rendered HTML

output anytime with the Preview command (CED P). If you are finished

and want the end result in HTML form, you can use Convert Document

to HTML (CB H).

Here’s the resulting output from the example at the beginning of this

section (I also hit it with the Tidy command of the HTML bundle to

make it look nice):

Download builtin_automations/example.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"><head>

<title>Markdown to HTML</title>

</head><body>

<h1 id="markdown_example">Markdown Example</h1>

<p>

This is a simple paragraph containing markup for italics and

bold. It also includes a couple of hyperlinks:

The Pragmatic Programmers

and TextMate.

</p>

<blockquote>

<p>We can insert quoted text just like this.</p>

</blockquote>

http://media.pragprog.com/titles/textmate/code/builtin_automations/example.html
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=75

THE MARKDOWN BUNDLE 76

<pre>

<code>or even include

code, poetry, or

anything else that is preformatted

</code>

</pre>

<h2 id="lists">Lists</h2>

<p>Markdown also supports lists, of course. You can have unordered:</p>

application

library

framework

<p>or ordered:</p>

first

second

third

<p>You can even nest:</p>

Editing

Projects

Moving Around

Find and Replace

Automations

Built-In Automations

Snippets

Macros

Commands

</body></html>

If you’re a fan of the enhanced MultiMarkdown syntax, you will find

that all the automations I just discussed work there too; in addition,

the extra output options are available in the MultiMarkdown submenu of

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=76

THE BLOGGING BUNDLE 77

this bundle. If you prefer a more developer-centric language such as

Textile, you’ll be happy to hear that there is a bundle for that too, and

several of the shortcuts described earlier work the same in that syntax.

5.8 The Blogging Bundle

Once you get hooked on TextMate automations, it will be hard to con-

vince yourself to edit text in anything else. Luckily, you seldom need

to do so. Blogging is a great example. If your blog supports the meta-

Weblog API like Movable Type (MT), WordPress, and Typo do, odds are

TextMate can talk to it. I’ll show you how to give it a shot.

First, you need to tell TextMate where to find your blog. Don’t worry,

that’s not hard at all. Just choose Bundles � Blogging � Setup Blogs. It will

open the configuration file the bundle commands use to do their work.

You need to place a line in this file depending on your type of blog. For

example:

MT Blog Name http://username@domain.com/mt/mt-xmlrpc.cgi#1

WordPress Blog Name http://username@domain.com/blog/xmlrpc.php

Typo Blog Name http://username@domain.com/backend/xmlrpc

Then, after adding the right URL, you should be able to test the con-

nection. To do so, choose Bundles � Blogging � Fetch Post. You will be

prompted for a password if this is your first connection attempt, but

the bundle will remember it for future access. If you get a dialog box

containing a menu of recent posts, you’re all set. Select one to open so

you can see what they look like. Note the headers up top and the post

content below that.

Now you are free to edit the post you just opened and activate Post to

Blog (CD P) to update it on your host. More often, though, you’ll prob-

ably want to create new posts. To do that, create a new blog post from

one of the provided templates. You can find those under File � New From

Template � Blogging. Just select the format your blog is set to receive

posts in: Markdown, Textile, HTML, or plain text.

In the new document you will see a place to give your post a title. You

may want to add other headers for this post as well; the Blogging bundle

has snippets and commands for this in the Headers submenu. The one I

often add to a new post is Category (catA) so the post will appear in the

correct blog category. It can fetch a category list from your blog and will

give you a dialog box of choices for the post. You can add this header

multiple times, specifying a new category each time, to place the post

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=77

THE MAIL BUNDLE 78

in multiple locations. The Category dialog box will do this for you, if you

make multiple selections by D-clicking the names.

When your headers are set, it’s time to create the blog post body. You

can create a summary for your post above that funny divider line in

the template and place extended content below the divider, or you can

remove the divider altogether and type the full post to be used both

on the post page and in post listings. Remember that you have access

to all the TextMate automations for the language type you selected, so

don’t forget to use all those great shortcuts!

If you want images in the post, just drag them onto your document at

the correct insertion point. The image will be uploaded to your blog, and

a URL will be dropped into the document to reference it. If you want to

rename the image on upload, hold down the E key during the drag.

As usual for TextMate, you can preview your post with the Preview com-

mand (CED P). When you have things as you want them, uploading is

as simple as triggering Post to Blog (CD P). This action will update the

post document with all the header information of the post. You can edit

this document and repost, if you notice any errors.

5.9 The Mail Bundle

If you edit your blog posts in TextMate, it’s only a short step to want-

ing to edit your email in the same place. This is probably overkill for

a quick one-line response message, but when you are editing bigger

messages, it’s nice to have access to all of TextMate’s editing tools and

automations. You will still need a mail client to handle the retrievals

and send messages, but if you installed Edit in TextMate as I suggested in

Section 1.4, Installing TextMate and Tools, on page 17, you’re only one

keystroke away from doing the actual editing in your favorite editor.

This requires a Cocoa mail client, such as Apple’s Mail.

When you want to edit a message in TextMate, just place your caret in

the message body, and then trigger Edit � Edit in TextMate (CD E). Your

message will be moved to the editor where you can add whatever you

like. When you’re done, just save the message, and it will be updated

in the email client application from which it was pulled.

If your message comes from Apple’s Mail program, TextMate should

assign the proper syntax. If you use a different program, just select Mail

from the language menu at the bottom of the editing window. The Mail

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=78

THE TEXT BUNDLE 79

Hidden Commands

Not all commands are in the menus. The Text bundle has a nice
command attached to I that you can trigger inside any URL
to open it in your web browser. The Source bundle has its own
command on I that will continue a line comment in source
code on the next line.

These commands don’t make much sense except when trig-
gered with a keyboard shortcut, so they don’t have menu pres-
ences. I’ll show you how to find hidden commands in Sec-
tion 9.1, Building Bundle Menus, on page 117.

syntax is an extension of the Markdown syntax, so you can use every-

thing I described in Section 5.7, The Markdown Bundle, on page 73, in

addition to the commands I am about to cover.

This bundle has only a handful of shortcuts, but they can be a real

boon when cleaning up email messages. First, know that you can use

D ' and ED ' to increase or decrease the current quote level just as you

can in Apple’s own Mail program.

The other big wins here are the Reformat Quoted Text (C Q) and Unwrap

Paragraphs (CB Q) commands. With the former you can rewrap lines

beginning with one or more levels of email quoting. With the latter you

can strip hard line breaks from message content. Both problems should

be familiar to anyone who has spent time manually correcting emails.

5.10 The Text Bundle

TextMate also includes a bundle for general text transformation that

can be useful no matter what kind of document you are editing. I’ll tell

you about two automations I use from that bundle all the time.

First, when you are writing up your five-star review of this book for

Slashdot,5 be sure to remember that Slashdot likes a minimum of 800

words. Instead of counting those by hand, I recommend using the Statis-

tics for Document (Word Count) command of the Text bundle. You can trig-

ger that at any time with CB N, and when you do, TextMate will open

5. http://slashdot.org/

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=79

THE SOURCE BUNDLE 80

Figure 5.5: Word count tooltip

a tooltip with line, word, and byte (characters for ASCII documents)

counts. For an example of what this looks like, see Figure 5.5.

Another not-to-miss feature of the Text bundle is the handy Lorem ipsum

snippet for generating instant content. It’s common to know that you

will need some text in a document but not yet know what that text

might be. You can generate placeholder text in TextMate by typing

loremA, which will conjure up the following:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint

occaecat cupidatat non proident, sunt in culpa qui officia deserunt

mollit anim id est laborum.

The previous text is a tool of the publishing and graphical design indus-

tries that is used to shift focus away from content and to the presen-

tation. It approximates a typical character distribution for English and

thus makes natural placeholder content.

That’s not all there is to the Text bundle; I encourage you to go pok-

ing around in there for more goodies. I regularly use Remove Unprintable

Characters in Document, Delete Line, and Duplicate Line, which all do what

their names imply. There are also handy snippets for inserting a copy-

right notice or the current date.

5.11 The Source Bundle

Another general bundle included with TextMate holds automations for

manipulating source code. If you use TextMate for programming, you

will definitely want to commit at least two of these helpers to memory.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=80

THE TEXTMATE BUNDLE 81

If you’ve worked with code for any amount of time, you have experi-

enced the need to comment and uncomment sections of code. It’s a

pretty fundamental need of programming. The Comment Line/Selection

command of this bundle, available in any language via D /, handles

both sides of the process. Select the text to comment or uncomment,

and trigger the command to toggle the presence of comment markers

based on the current language.

Another shortcut of this bundle deals directly with an oddity of working

with all this automation. During automation-assisted editing, it’s quite

common to finish creating a line of code but have your caret still be in

the middle of that line. When that happens, you can use the Move to EOL

automations to skip ahead. My favorite is bound to DF, which will hop

to the end of the line and press F for you (to create a new line). If you

are using a language requiring a line terminator, such as the common

semicolon, use BDF instead, and TextMate will insert the terminator

before pressing F.

Play around a bit with the other shortcuts in this bundle to see whether

any catch your eye. I find Toggle Single/Double Quotes (C ") and everything

in the Insert Escaped submenu to be pretty handy when dealing with

programming language strings.

5.12 The TextMate Bundle

TextMate also includes a set of automations useful for interacting with

the application itself. I will introduce some of these later when they

are helpful to what I am discussing at the time, but a few of these

commands are too useful to wait.

Sharing documents over the internet without losing formatting is a

problem most of us have faced. You can’t really copy and paste sig-

nificant content into an instant message, email message, or IRC client

with much success because often limits exist on message size and the

formatting is generally lost. A solution for this that has recently become

popular is to use a pasting service and then just send the link for the

document to the intended recipient. TextMate will do this for you.

To try this, open any document you have been working on, select a por-

tion of it you don’t mind sharing publicly on the internet, and activate

the Paste Selection Online command (CEB V). TextMate will present you

with a dialog box that allows you to select where to send the link to the

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=81

THE TEXTMATE BUNDLE 82

document. You are free to make multiple selections while holding down

the D key. Since you are just testing this here, choose Open in Browser.

You should be taken to your document’s location on the pasting service.

Take a look around, because a lot of benefit is packed into that one

little command. If you were working with a document type TextMate

recognized, your paste should retain its syntax highlighting. Viewers of

the paste can even use the menu to select a TextMate theme in order to

color the document. Your lines will be numbered as well, and, of course,

there is a link to download the content.

Taking a step back, you have other options for where you can send

pastes. The dialog box should include any IRC channels you are cur-

rently in if you use Colloquy6 as your client. You should also be able

to send the link to any of your instant messaging contacts if you use

iChat or Adium7 for a client. If none of that works for you, though, just

choose Send to Clipboard, then paste the link wherever you need it.

Now, if you need to place document content in a web page of your

own, you will want to get to know the Create HTML from Document, Create

HTML from Document with Line Numbers, and Create CSS from Current Theme

commands. They function exactly as advertised by their names, “HTM-

Lifying” your document content into an instant web page. Try these

commands too so you can see for yourself: Open any document that

TextMate will syntax highlight, select Create HTML from Document with

Line Numbers, and, after the new web page source pops up, see how it

looks with TextMate’s built-in Show Web Preview (CED P).

As you can see, TextMate has tools for your specific focus, no matter

what it is. The truth is that I haven’t covered even a fourth of what

is available in this chapter, but you should now be more equipped to

explore the bundles of interest to you. Sooner or later, though, you will

realize that you can take all this wonderful automation to the next level

if you can fine-tune it to your unique needs. You’re now ready to see

how to do exactly that.

6. http://colloquy.info/

7. http://adiumx.com/

http://colloquy.info/
http://adiumx.com/
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=82

Chapter 6

Snippets
Snippets are the simplest form of automation in TextMate. They’re kind

of like having a high-tech version of my grandmother available to you at

all times. You see, whenever I mention an interest to my grandmother

or tell her about something I did, it triggers her Snippet Reflex (patent

pending). From that point on whenever she reads anything related in

the newspaper, in a magazine, or off the back of a grocery bag, she clips

the item and mails it to me.

With my grandmother, the mention of an interest is a trigger, and the

resulting action is getting an article about it. This simple association of

a trigger and a response is exactly what TextMate’s snippets are. That’s

right, every copy of TextMate ships with my poor grandmother bun-

dled up inside, and if you mention something to her, she will mail the

complete article right into your document post-haste. Luckily, it doesn’t

take longer to build most snippets than it does to mention things to my

grandmother, so the savings in your work can be quite significant.

6.1 Basic Snippets

Enough talk, let’s build some snippets! First, you need to create a bun-

dle called Pragmatic Examples. See Chapter 5, Built-in Automations, on

page 59, for a definition of what a TextMate bundle is. You’ll use this

new bundle as your workspace. It will hold the examples you will play

with in these next few chapters plus any extra experiments you want

to try on your own. You can later refer to this bundle to remember the

tricks you’ve learned, or you can easily toss it out when you don’t need

it anymore.

BASIC SNIPPETS 84

Figure 6.1: Creating a new bundle

Here’s how to create your own bundle:

1. Open the Bundle Editor by choosing Bundles � BundleEditor � Show

Bundle Editor (CED B).

2. Open the + menu in the lower-left corner of the Bundle Editor, and

choose New Bundle.

3. Give your test bundle the name Pragmatic Examples.

Let’s start with a trivial snippet that saves me time every day. I’m in

the habit of using my full name on pretty much everything, because

my name is just a little too common. Now, I don’t want to type James

Edward Gray II all the time. It’s too long, and I know I would make

errors. That’s why I have a snippet for my name, which you can see in

Figure 6.2, on the next page. In this snippet, the trigger is typing in my

initials followed by a tab, and the action is that my entire name appears

in the document. It’s my grandmother all over again.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=84

BASIC SNIPPETS 85

Figure 6.2: My name snippet

Create a new snippet inside the Pragmatic Examples bundle. While you

are still in the Bundle Editor, try this:

1. Highlight your new bundle on the left side of the Bundle Editor.

Clicking the name Pragmatic Examples will do that.

2. Open the + menu in the lower-left corner of the Bundle Editor, and

choose New Snippet.

3. Type your full name as the name for this snippet.

You now have a blank snippet to use. Well, it’s not completely blank.

Check out the cheat sheet that comes with the snippet-in-the-making.

It’s a reminder of all the special syntax you can use in your new snippet.

Go ahead and replace the cheat sheet text with your full name, which

will be inserted when you trigger the snippet. Then set Activation to

Tab Trigger, and put your initials in that field. Close the Bundle Editor

so TextMate will save your work, and play with your new snippet by

entering your initials into a document and pressing A. Tab triggers are

always used this way. You type the trigger and then press A. The full

word to the left of the caret will then be replaced with the contents of

the snippet.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=85

TAB STOPS 86

There is not much to this shortcut, but I can type JEG2A in any doc-

ument and have it expanded into my full name. That saves me fifteen

keystrokes every time I type my name and prevents 100 percent of the

typos I used to make when typing it in full. If I misspell the trigger, it is

obvious to me when it doesn’t expand, and I then just correct it.

Many TextMate users would probably set the tab trigger to “James”—

that would be fine too. The thinking there is that you can just start

typing what you want and then expand it into the complete piece of

text. This is often a great idea and is a natural way to work.

Sometimes, though, I use a mnemonic trigger instead, like “JEG2”—I

use that as a shortcut for my name all the time, so it is easy for me

to remember. Also, if I use my standard shortcut somewhere and then

decide I want to switch it to my full name, it’s just one keystroke to

change my mind.

Either way, you will generally want to use tab triggers for snippets. Key

equivalents require more effort to remember and thus are better suited

for actions you want TextMate to take instead of bits of text to insert.

Tab triggers, on the other hand, flow naturally from document content,

making them ideal for most insertions.

Before I show you any fancy snippet tricks, I’ll add one final point about

plain-text insertion: The replacement text doesn’t always have to be

longer than the trigger. For example, I also have the inverse snippet

that truncates my full name down to the initials. I don’t use that as

often as the first snippet, but it still comes in handy.

6.2 Tab Stops

It’s common in many text-editing tasks to want to enter several pieces

of different information all in the same skeleton format. For example,

the header of a web page (just an HTML text file) often looks similar

among all the pages of the site, but you might need to tweak the title

of each page in that header.1 In TextMate, you handle these variations

with tab stop variables.

Let’s say you want to keep a simple text file of contact information.

Perhaps your company is not yet big enough to warrant the cost and

training time for a contact management software package, and the text

1. There is a snippet in the default HTML bundle for this: Head.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=86

TAB STOPS 87

Figure 6.3: A contact information snippet

format combined with some trivial scripts give you all the flexibility you

need. See Figure 6.3 for a snippet you might use in this case.

The new element here is the addition of the funny-looking $1 style

variables. You can use these variables to help TextMate hop the caret

around a snippet as if it were a form, allowing the user to fill in the

blanks. You still get the inserted text, but now you can move the caret

from tab stop to tab stop (using the A key, of course) in the order of

the variable numbers. You can even go backward in the form to correct

mistakes (using P). See Figure 6.4, on the next page, for an example of

how this plays out in usage.

Before I move on to the next feature of snippets, I’ll talk a little more

about where they end. Do you notice that $0 tab stop at the end of the

previous example? It’s a little different from the other tab stops. First,

it is always the last tab stop in the list. If you defined $1, $2, and $3 in

a snippet, then $0 would be tabbed to after $3. The other special quirk

about $0 is that the snippet form magic ends as soon as you tab to it.

Reaching the end of a snippet has two effects. First, you can no longer

A or P between the fields, which is the downside. The upside is that

you do regain access to tab triggers for activating other snippets. For

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=87

TAB STOPS 88

Figure 6.4: Using tab stops to enter a contact

that reason, you often want to set $0 as the tab stop for the main con-

tent portion of a snippet so you can use other snippets when you get

there. Don’t worry if your placement of $0 leaves the caret in the middle

of a line or document. The user can always jump the caret around easily

enough with the techniques described in Section 3.1, Moving Around,

on page 29.

If you do not include a $0 variable and the last thing in your snippet is

not a tab stop, TextMate adds an implicit $0 to the tail end of the snippet

upon insertion. Even if you have a tab stop followed by whitespace

(including a newline character) at the end, TextMate will add a $0. If

the last thing in your snippet is a tab stop variable, it assumes the $0

snippet-ending behavior.

Placeholders

If you refer to Figure 6.4, you will see that with the contact snippet I

knew what to enter at each point, because of the labels at the beginning

of each line. At times, though, what to enter may not be so obvious.

Also, sometimes what you enter doesn’t change too often and you’d like

a reasonable default with the option to change it as needed. TextMate

has an answer for both of these instances; it’s called placeholders.

Placeholders are default text inserted at that tab stop. After the snippet

is triggered and the user tabs to that stop, the default text is selected.

From there the user can move on to the next field or start typing to

replace the default with the needed text. This also allows you to give

names to tab stops to remind users what belongs in that space.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=88

TAB STOPS 89

Figure 6.5: The Ruby bundle class snippet

See Figure 6.5 for an example of a placeholder snippet from the Ruby

bundle that comes with TextMate. You can trigger that snippet by mak-

ing sure you are in a Ruby document and entering classA. When it

appears, the ClassName default text will be selected, as shown in Fig-

ure 6.6, on the next page. Pressing A again tells TextMate you are fine

with the default and skips you into the next tab stop to create the class

body. In this case, though, the default isn’t useful since you are proba-

bly trying to build a unique Ruby class. The text does provide you with

a nice reminder of what you should enter there, though, including the

CamelCase-style convention for Ruby class names.

This snippet is also a good example of the special $0 variable in action.

A class body can be large and involved, so you want the user to have

access to all the Ruby snippets when coding it. That’s why I used $0

here. You can tab to it, and then the snippet ends.

Let’s dig into one more snippet of the Ruby bundle for another great

placeholder trick. Specifically, you need to know that placeholders can

be nested, like this:

:${1:key} => ${2:"S{3:value}"}${4:, }

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=89

TAB STOPS 90

Figure 6.6: The ClassName placeholder

Figure 6.7: Using nested tab stops

When building a Ruby Hash, it’s common to use a quoted string as the

second half of a pair. Of course, it is about equally common to use a

variable, which would not need the quotes. This snippet can handle

either case. When you reach the second tab stop, the quotes and con-

tent will be selected, and you can type in a variable name or any Ruby

expression. However, if you do want a quoted string, tab one more time

to select just the content inside the quotes and replace that instead.

(See Figure 6.7.) It’s important to note here that you could reverse the

order if you prefer. If the $2 variable held the inner content and the $3

variable held that plus the quotes, you would reach the inner string

first and could A to expand the selection to include the quotes.

Mirroring and Transformations

Being able to use the tab stop variables is certainly helpful and adding

placeholders for defaults or reminders are even better, but TextMate

takes the variable trick one step further.

Working with text formats can be repetitive. You often need to place

some piece of text in multiple places, and you can do that in your snip-

pets with mirroring.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=90

TAB STOPS 91

Figure 6.8: A contact snippet with login generation

Referring to the earlier contact snippet example, let’s say you also want

to generate a login for your website for each contact you work with. This

is a job for mirroring, and you can see it in action in Figure 6.8, where

a login is generated by combining the contact’s first and last names

around a period.

Notice how the variables $1 and $2 are in there twice now? The first

time they appear is where the entry will actually take place. All other

occurrences are mirrors. They will duplicate the contents of what is

entered at the first occurrence, as you type even. Isn’t that cool?

Now what would be even better is if you could modify the generated

login to be a bit shorter and not require the user to type capital letters.

Oh, and you can! TextMate calls that a transformation, which is a mirror

with minor adjustments. Transformations, like much of TextMate, are

powered by the regular expression engine. If you can remember all the

way back to Section 4.2, Mixing in Regular Expressions, on page 50,

you’re all set. To generate easier-to-type logins, just change the login

line of the last snippet to this:

Login: ${1/^.*?(\w).*$/\L$1/}.${2/^.*?(\S+).*$/\L$1/}

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=91

TAB STOPS 92

This time I am transforming the variables before they are duplicated.

You can see that the variable syntax changes slightly, allowing you to

place a regular expression between the first two forward slashes and the

replacement expression between the last two. In other words, transfor-

mations always have the form ${#/expression/replacement/} where # is the

variable you want to change, expression is the regular expression used

to find the content you want to change, and replacement is the text with

which to replace the match.

In the login example, the transformation for the $1 isolates the first

word character from whatever is before and after it and then replaces

the entire contents of the variable with just that character, in lower-

case. The replacement for the $2 variable is similar, but it locates the

first run of nonwhitespace characters (a word) and uses just that in

the replacement, again in lowercase. That will ensure I just get gray

if I enter my last name as Gray II. The replacements are made on the

variables before they are displayed.

If you are using simple mirrors, the first occurrence of the variable is

the actual placement. However, the variable can be preceded by trans-

forms that will be skipped over when the user tabs. For an example

of how this might be useful, see Figure 6.9, on the next page, where a

proper ID is set for the HTML header tag based on the header typed.

The /g modifier at the end of that transform performs a “global” search

and replace. When you add that option, the change will be made in

every place the expression matches instead of just in the first match.

This is a common modifier for transform operations.

If you want a regular mirror but would rather the tab stop be to a

later variable, give the later variable some default text or use a reg-

ular expression on the first variable that replaces nothing, like this:

${1/\A(?!)//}. Remember that the mirroring and transformation magic

stops along with the tab stop functionality as soon as the user reaches

the final tab stop (usually $0).

Getting Snippet Data from TextMate and the Shell

The following two features aren’t used as commonly, but you may still

find uses for them from time to time. First, TextMate maintains several

variables that are available inside snippets (and other automations).

Probably the most common one to use in snippets is $TM_SELECTED_TEXT.

That variable holds the current selection, when there is one.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=92

TAB STOPS 93

Figure 6.9: An HTML header snippet with ID generation

I said earlier that most snippets should use tab triggers, and when you

activate a tab trigger, it’s impossible for there to be a selection (because

you just typed the trigger and pressed A). $TM_SELECTED_TEXT won’t help

you there. However, that’s only one way to activate a snippet. You can

always select a snippet from the Bundles menu, even if it has a tab trigger

assigned. You might also decide this is a special snippet that deserves

a key equivalent instead of a tab trigger. In either case, there could be

a selection, and when there is, you can use $TM_SELECTED_TEXT to get it.

Let’s build a pretty curly quotes example for HTML. You will bind it

to a key equivalent of C " and allow it to be activated from the menu

with a selection you would like to quote. You can see the snippet in

Figure 6.10, on the following page.

As you can see, I just used the variable contents as the default place-

holder. When there’s no selection, the content will be empty, and the

user can type what they want. If there was a selection, though, the

quote entities will be added around it.

See Section 9.2, TextMate’s Environment Variables, on page 119, for a

complete list of the TextMate variables.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=93

TAB STOPS 94

Figure 6.10: A curly quotes snippet for HTML

One last way to get data for a snippet is to shell out for it. You can

make calls to any Unix shell commands inside a snippet, dumping the

results into the output. Probably the most common use for this is to

fetch the current date or time using the date command. For example,

adding ‘date +%Y-%m-%d‘ in a snippet will fetch a date similar in form

to 2006-06-04. You can shell out to any Unix command you like. See

Section 9.3, Useful Shell Commands, on page 124 for a list of oft-used

commands.

Limiting Snippet Scope

I have been playing fast and loose with the Scope Selector field so far,

yet all the snippets have just worked. If you don’t specify a scope, Text-

Mate makes the snippet available globally. Sometimes, that’s handy. I

want to be able to use my name snippet everywhere, for example. How-

ever, there are also good reasons to limit the scope. I’ll talk a little about

those now.

There are two great reasons to limit scope. First, you have only so many

keys on your keyboard. Although you can use the modifier keys to gen-

erate quite a few combinations, you eventually run out of good keys.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=94

TAB STOPS 95

Figure 6.11: Examining TextMate’s scope

The other reason is related but still unique. In short, just because you

use some tab trigger or key equivalent for one kind of document doesn’t

mean you don’t want to use it in another kind of document. Wouldn’t

it be nice to be able to make TextMate recognize which context you are

currently in and take the most appropriate action based on that, even if

several automations share the same activation? That’s exactly why you

use TextMate’s Scope Selector.

Now the first thing you need is the ability to find out what scope you

are currently in. This helps you decide what to limit a snippet to.

The TextMate bundle includes a command for this called simply Show

Scope (CB P). Try opening some document format TextMate recognizes,

hopping the caret around to elements colored differently by the syn-

tax highlighting2 and activating the Show Scope command. You will see

tooltips describing the hierarchy, like the one in Figure 6.11.

Selecting a scope for the snippet to be active in is as easy as you might

guess. You limit the snippet to working inside strings with string or

inside Ruby code with source.ruby. When TextMate resolves them, the

more specific target beats a less specific one. So, a string.quoted snippet

will be chosen over a string snippet with the same activation, assuming

you are in the scope text.xml meta.tag.xml string.quoted.double.xml. Notice

also that you need to give a prefix of only the actual scope you would

like to match. All scopes starting with what you specify will have the

snippet available.

2. Scopes are used for this too, and I’ll discuss that more in Chapter 11, Preferences and

Themes, on page 176.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=95

TAB STOPS 96

You aren’t limited to a single scope specifier either. Try using source.ruby

string to match string scopes but only those inside Ruby source code

files. You can be as specific as you need. If you need to support multiple

scopes, just separate them with a comma: string, comment. Even more

fun, you can subtract scopes. For example, let’s say you have a snippet

you would like to be available only in the content or nontag portions of

an XML document. You can target that by targeting the XML scope and

subtracting out the tag scope: text.xml - meta.tag.xml.

Snippets can take the sting out of repetitive data entry, and they take

only moments to set up. That makes them well worth the effort to learn.

When you’re ready to shave repetitive editing steps off your workload,

though, you will need a new tool. I’ll talk about that next.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=96

Chapter 7

Macros
Editing text documents is often repetitive work. We all eventually run

into a task that requires the same series of steps to be done over and

over again. In TextMate, you can build macros for this.

TextMate’s macro engine is like a high-powered, text-editing video re-

corder. You can just press Record, do some editing, and then hit Stop.

Once you have a macro recorded, you can rewind and play it again

to repeat the edits as needed. So far your macro is only in temporary

memory. If you create another macro, you will lose the first one. If the

macro could be useful to you in the long-term, you are welcome to

pull the video out of the machine and label it so you can find it again

whenever you need it.

Let’s build a macro so you can see one in action. Follow along with me

as I build this one:

1. Create an empty TextMate document by choosing File � New (DN).

2. Type a number into the document so you have some content to

use. I used 9999.

3. Turn on macro recording with Bundles � Macros � Start Recording

(EDM). A red recording light should begin flashing in the lower-

right corner of the editing window.

4. Take a deep breath and relax. I know this seems like a silly step,

but I always feel like I’m under pressure when I start record-

ing a macro. You’re not. There’s no time limit, and TextMate will

patiently wait on you to think through how to proceed. It will

remove any pauses you make when it replays the macro. Take

your time.

CHAPTER 7. MACROS 98

5. Select the current word with C W, and move to the end of that

word by tapping �. You were probably already at the end of the

number, but using this trick to find the end makes your macro

work even when the caret is in the middle of a number.

6. Type a + followed by a 1.

7. Now you need to select the math expression you created. Hold

down B so you can select as you move the caret, and tap � twice.

The first tap should select the 1, and the second will grab the +.

Now you need the entire number that was there to begin with; you

can select that by holding down B to select, holding down E to

move word by word, and tapping � one last time. You should now

have the whole expression selected.

8. Let’s do some math, TextMate style. Hit CB C to open the calcu-

lation menu, and choose Evaluate and Replace Expression (you can

just press 2 for this).

9. To finish, tap � to jump back to the end of our number.

10. Choose Bundles � Macros � Stop Recording (EDM). The red record-

ing light should stop flashing.

You are now armed with a macro. Try running it a few more times

on your number by choosing Bundles � Macros � Replay Last Recording

(BD M). Place your caret in different places inside the number as you

do this. Your number should climb each time the macro is triggered.

Currently the macro is just a scratch macro. You have access to it

because it is the last one you recorded, but you would lose it if you

recorded another one. You can use this process to repeat some content-

specific operations a few times without worrying about the need to save

the macro. If the macro is generally useful, though, you will want to

keep it. Here’s how to save what you just created:

1. Choose Bundles � Macros � Save Last Recording (CD M).

2. Type a meaningful name for your macro such as Increment Num-

ber.

3. Give the macro a key equivalent if you like. I used C +.

4. If TextMate didn’t add the macro to your Pragmatic Examples bun-

dle, click the macro’s name in the listing on the left side of the

Bundle Editor, drag it onto the bundle you want to save it in, and

drop it.

With your macro saved, you should be able to jump into your budget

files, click random numbers, and bang on your assigned key equivalent

to rapidly increase the amounts of cash you are spending and receiving.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=98

CHAPTER 7. MACROS 99

That simple macro used native TextMate functions for selecting and

moving, typing new content, and using a command from the Math bun-

dle. I even used keyboard shortcuts to trigger them. As you can see, you

can record most tasks you do when editing documents by using Text-

Mate’s macros. Exceptions exist, though.

If you triggered a command that requested input via a dialog box, Text-

Mate would have no way to know what you fed the script and thus

would not be able to re-create the result. TextMate also does not track

changes you make in the project drawer, such as renaming files, and

it has no way to track what you do in external programs. Most regular

editing tasks work fine, though.

The rule of thumb is that changes that happen in the editing window

are recorded. Typing and deleting clearly change the content of the edit-

ing window, so they work fine. Moving the caret around or making a

selection is at least changing the caret in the editing window, so that

counts. You can use Find and Replace commands and most automa-

tions, whether they ship with TextMate or you created them.

Let’s look at one more example macro and one more feature that macros

can take advantage of. Here are the steps to create a Fetch Web Page

Source macro similar to the View Source command in most browsers:

1. Create an empty TextMate document (DN).

2. Type a web page URL into the document, but omit the “http://”

protocol identifier. I used the URL of the Ruby Quiz site I run,

rubyquiz.com.

3. Begin recording a macro (ED M).

4. Select the URL line by using D� to move to the end of the line

and then pressing BD� to drag a selection to the beginning of

the line.

5. Now you need to fix the URL. Open the Find dialog box (D F). Enter

the Find pattern as ∧(?!http://) and the Replace pattern as http://,

and make sure Regular Expression is checked. Make the replace-

ment in the current selection with CBD F. Press D W to dismiss

the Find dialog box. This will add the protocol, if the link doesn’t

already have one.

6. The URL is fixed, so let’s take it from a harmless little address to a

full-fledged command. Press D X to cut the link and place it on the

clipboard, type require "open-uri"; open(", paste the URL back with

D V, and finish off the command by typing ") { |page| page.read }.

rubyquiz.com
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=99

THE MACRO EDITOR 100

7. Let’s ask TextMate to run our mini-Ruby program now and drop

the results right into the editing window. Choose Bundles �

Ruby � Execute Line as Ruby (CB E). You need to have an active Inter-

net connection for this step, and it may take a moment to run. You

will know it is finished when the source of the web page appears

below the command.

8. You should remove your scratch work, so you need to get the caret

back there. Press D � to return to the beginning of the document,

open the Find dialog box with D F, enter a Find pattern of ∧require

"open-uri";, and press F to hunt down the command. Select Bun-

dles � Text � Delete Line (CB K).

9. Stop macro recording (ED M).

When you save this macro in the Bundle Editor, note that the Use Local

Clipboard While Executing Macro checkbox is selected. You place the URL

on the clipboard at one point during the macro’s execution. If this

option were deactivated, running the macro could surprise the user by

replacing whatever was previously on the clipboard. With the option,

your scratch work won’t even be noticed by the user, and users gener-

ally appreciate that.

7.1 The Macro Editor

As you probably noticed when you were saving macros, the Bundle

Editor does not allow you to edit the macros you have recorded.

Without a built-in editor, you don’t want to be writing macros from

scratch; however, I find that I commonly get most of the steps perfect

and just need to make minor adjustments. For example, I may find

an edge condition while using the macro that it could handle if I just

changed a regular expression used in it. I’ve also run into situations

where I used Filter Through Command and needed to change the shell

command I passed the text through. Building a new macro just to make

these changes is tedious and error-prone.

Instead, you can use TextMate as the editor. Macros are stored on your

hard drive as XML documents, which is a text format you can edit. All

you have to do is find the file and open it.

TextMate should keep automations you created or edited in the folder

~/Library/Application Support/TextMate/Bundles. Inside that directory there

will be one or more .tmbundle folders that hold the automations for the

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=100

THE MACRO EDITOR 101

Macro Memory

Another reason you might find yourself wanting to edit a macro
is to update its memory. When a macro uses a snippet, it dupli-
cates the snippet inside the macro file. This is a defensive action
taken by TextMate so it will still be able to run the macro, even if
the snippet is removed. The downside is that the macro will not
notice future changes you make to the snippet.

If you update the snippet down the road and want the macro
to evolve as well, use the macro editor technique to update
the snippet copy.

named bundle.1 Given that, you want to look inside Pragmatic Exam-

ples.tmbundle. Files will be split into folders based on the type of auto-

mation they contain. We’re interested in macros for now, so you want

the Macros folder.

Putting all of that together, let’s edit a macro. Say you want to create

a Double Number macro. The Increment Number macro you already

have is close, so let’s just work forward from that. Here’s how to do it:

1. Open the Bundle Editor using Bundles � Bundle Editor � Show Bundle

Editor (CED B).

2. Open the Pragmatic Examples bundle, and highlight the Incre-

ment Number macro.

3. Click the ++ button in the middle of the three action buttons in

the lower-left corner of the Bundle Editor to make a copy of your

macro.

4. Type Double Number to name the new macro, and switch the key

equivalent to something like C *.

That’s all you can do in the Bundle Editor, so close it. Now you need to

open the macro you created so you can edit it. Choose File � Open, and

navigate to ~/Library/Application Support/TextMate/Bundles/Pragmatic Exam-

ples.tmbundle/Macros/Double Number.tmMacro. Open that file.

As I said before, this is just an XML file, so you should be able to browse

through it to make out the steps you executed earlier.

1. If you are following along in Mac OS X’s Finder, they won’t look like folders; however,

you can C-click a bundle and choose Show Package Contents to peek inside.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=101

THE MACRO EDITOR 102

The two you are currently interested in are in this bit of the file:

Download macros/double_number_before.tmMacro

<dict>

<key>argument</key>

<string>+</string>

<key>command</key>

<string>insertText:</string>

</dict>

<dict>

<key>argument</key>

<string>1</string>

<key>command</key>

<string>insertText:</string>

</dict>

That’s where I had you type + and 1 in the original macro. If you change

those to * and 2, you will have made a doubler. Here’s the new version

of that section of the macro file:

Download macros/double_number_after.tmMacro

<dict>

<key>argument</key>

<string>*</string>

<key>command</key>

<string>insertText:</string>

</dict>

<dict>

<key>argument</key>

<string>2</string>

<key>command</key>

<string>insertText:</string>

</dict>

Close the macro file since you are done in there. Now you need to get

TextMate to notice the external change to the file, so just choose Bun-

dles � Bundle Editor � Reload Bundles. This causes TextMate to reread all

the bundles as it does when it launches.

That should put you back in business with a number-doubling macro.

Try it. Open a file with some numbers, click inside numbers you want

to change, and trigger the macro.

The ability to record and replay your work allows you to do the tedious

edits just once and leave the rest to TextMate. There’s no denying

how helpful that can be. However, when inserting snippets and run-

ning macros, TextMate is just copying you. Sometimes that’s not quite

enough and you’ll find you need a little intelligence in your automated

assistance. I’ll tell you how to get it now.

http://media.pragprog.com/titles/textmate/code/macros/double_number_before.tmMacro
http://media.pragprog.com/titles/textmate/code/macros/double_number_after.tmMacro
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=102

Chapter 8

Commands
The term command confusingly refers to two different things in Text-

Mate. First, TextMate has terrific integration with the Unix environment

in Mac OS X. You can take advantage in many ways of all the Unix tools

you have installed, which are generally referred to as shell commands.

TextMate also has a type of automation called a command. These often

take advantage of shell commands to do their work but are really enti-

ties unto themselves. These commands are a little more capable than

snippets and macros, but they require more knowledge to implement.

This chapter addresses both types of commands.

If you are not too savvy with a Unix terminal or you are not a program-

mer, the following is probably going to feel like wading into the deep

end of the pool. You may want to skim and skip as needed in this chap-

ter and the next. Not everyone uses these higher-level automations in

TextMate.

8.1 Shell Commands

One of the key ideas that has made Unix operating systems so success-

ful is the idea that many small pieces specializing in one little task can

work together to perform powerful tasks. Mac OS X ships with all the

classic Unix tools, and you can call on them when needed.

You can invoke shell commands in several ways. In Section 6.2, Get-

ting Snippet Data from TextMate and the Shell, on page 92, you already

examined one way to use them inside snippets. Another common usage

is to fetch information from the shell while you are creating a document.

SHELL COMMANDS 104

As an example, the following shell command asks ps to give you a listing

of the currently active processes, which is fed to head via a Unix pipe

(the | character) to trim the output to the top-ten processes:

ps -acux | head -n 11

Run that by typing the line into a TextMate editing window and clicking

C R with your caret somewhere on that line. This invokes Text � Execute

Line Inserting Result, and TextMate will dump the command’s output right

into your document.

You can even use shell commands to reach full languages, such as

Perl and Python, of course. If you want to call out to Ruby, though,

TextMate has a nice shortcut. Just enter some Ruby code on a line, and

trigger Execute Line as Ruby from the Ruby bundle (CB E). For example,

the following will generate a nicely formatted random number from 1 to

100,000:

rand(100_000).to_s.reverse.gsub(/\d{3}/, '\0,').reverse

The Ruby executor is quite clever. It will inline the final results of the

line executed, unless the code prints output. This allows you to use

methods such as printf() to format output when needed. Also, if the

result of the final line is a Ruby data structure, such as an Array or Hash,

the command uses inspect() to show the Ruby code for the structure.

This means you can use code to write more code.

Both of the previous commands work with a selection as well, should

you need to run multiline commands.

Another way to use shell commands is to filter all or part of the current

document through some commands to modify the text. For example,

Mac OS X 10.4 and newer ship with a template language filter com-

mand for ERb (Embedded Ruby).

ERb allows you to mix Ruby expressions right into any document you

are writing. Using ERb is simple: Any line starting with a % is treated

as Ruby code and discarded from the output. You can use this to loop

over output lines and set variables. You can also enter Ruby expres-

sions between <%= %> delimiters, which will be evaluated, stringified,

and inserted into the output. These two helpers make it possible to

generate a lot of complex content with just a little code and template

material.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=104

TEXTMATE COMMANDS 105

Here’s an example that uses ERb to generate a calendar for the current

month. Enter the following code into a new TextMate document:

Download commands/erb_calendar.txt

% first = Date.civil(Date.today.year, Date.today.month, 1)

% last = (first >> 1) - 1

Calendar for <%= Date::MONTHNAMES[Date.today.month] %>, <%= Date.today.year %>

+----------+----------+----------+----------+----------+----------+----------+

| Sunday | Monday | Tuesday | Wednesday| Thursday | Friday | Saturday |

% (([nil] * first.wday) + (first..last).to_a).each_slice(7) do |week|

% week << nil while week.size < 7

+----------+----------+----------+----------+----------+----------+----------+

<%= week.map { |d| d ? "| %02d " % d.day : "| " } %>|

| | | | | | | |

| | | | | | | |

| | | | | | | |

% end

+----------+----------+----------+----------+----------+----------+----------+

That may not look like much yet, but you can easily turn it into a full

calendar. Choose Text � Filter Through Command (ED R). Note that I am

speaking of the top-level Text menu here, not the Text submenu of the

Bundles menu. See Figure 8.1, on the following page to learn where this

command lives.

Enter erb -r date -r enumerator as the command, set up the rest of the

dialog box as I have in Figure 8.2, on page 107, and click Execute. I will

talk more about those input and output settings shortly, but for now

the important point to notice is that I am feeding the document through

a shell command and using the results to generate a new document.

For a brief introduction to some popular shell commands, see Sec-

tion 9.3, Useful Shell Commands, on page 124.

8.2 TextMate Commands

The other kind of command in TextMate is a TextMate command, which

is another form of automation like the snippets and macros I have

already covered. Like shell commands, TextMate commands take input,

munge the data around, and spit out some output. TextMate com-

mands generally use shell commands.

Commands allow you to introduce some logic into your TextMate auto-

mations. This opens up all manner of possibilities for semi-intelligent

assistance. For example, both the HTML and Markdown bundles have

http://media.pragprog.com/titles/textmate/code/commands/erb_calendar.txt
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=105

TEXTMATE COMMANDS 106

Figure 8.1: Text menu

a Lookup Word on Google and Link command, which uses Google’s “I’m

Feeling Lucky” feature to hyperlink your text. Try it:

1. Create a new TextMate document (DN).

2. Switch the document language to Markdown (press CEB M, and

select Markdown).

3. Type this: TextMate.

4. Trigger the lookup command (CBD L). This step requires a con-

nection to the internet, but you can see that the insertion is a bit

smarter than what you can do with a simple snippet.

To give you an idea of how to build a TextMate command, let’s put one

together. I work with a lot of Rails projects in my job, and I am always

searching the many files of a project for some term. Most of the time

I am looking for data only in Ruby source code files, but running the

search in TextMate checks everything in the project, which can take a

few seconds. Furthermore, I include Rails itself in the project but do

not want that code to match during my searches. Let’s build a tightly

focused Ruby search command.

To get started, open the Bundle Editor by choosing Bundles � Bundle Edi-

tor � Show Bundle Editor (CED B), select your Pragmatic Examples bun-

dle, and select New Command from the + menu in the lower-left corner

of the window. I named the command Rails Quick Scan.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=106

TEXTMATE COMMANDS 107

Figure 8.2: Filter Through Command

Enter the following code into the Command(s) field:

Download commands/quick_scan.sh

echo "${TM_SELECTED_TEXT:-$TM_CURRENT_WORD}" \

| pbcopy -pboard find

cat <<END_HEAD_HTML

<html><head>

<title>Quick Scan Results</title>

</head><body>

<h1>Matches</h1>

END_HEAD_HTML

LINK='\3<\a><\/li>'

find "${TM_PROJECT_DIRECTORY:-$TM_DIRECTORY}" \

\(-name "*.rb" -or -name "*.rhtml" -or \

-name "*.rxml" -or -name "*.rjs" \) -or \

\(-path './vendor' \! -prune \) \

| xargs grep -n ‘pbpaste -pboard find‘ \

| sed -E 's/^(\/?([^:\/]+\/)+([^:]+)):([0-9]+):.+$/'"$LINK"'/'

cat <<END_FOOT_HTML

</body></html>

END_FOOT_HTML

http://media.pragprog.com/titles/textmate/code/commands/quick_scan.sh
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=107

TEXTMATE COMMANDS 108

Figure 8.3: Rails quick scan results

If you don’t want to type that command without TextMate’s wonder-

ful editing tools, remember that you can use Edit in TextMate (CD E) to

open the Command(s) field in a regular TextMate editing window. This

assumes you took my install advice in Section 1.4, Installing TextMate

and Tools, on page 17.

Finish the command by setting Input to None and Output to Show as

HTML. You should also specify a scope selector of source.ruby. Feel free

to assign a key equivalent if you like.

If you have a Rails project around, try this command. Place your caret

inside a method name or another word you would like to search for, and

trigger the command by selecting it from the Pragmatic Examples sub-

menu of the Bundles menu or by using the key equivalent you assigned.

You should see the search results window shortly. If you don’t have a

Rails project, you will have to settle for Figure 8.3.

Now I’ll cover several points about the Rails Quick Scan command.

First, unless you specify otherwise, TextMate commands are assumed

to be bash shell scripts. That makes it easy to string together a bunch of

shell commands as I have done here: cat to write some output, pbcopy

and pbpaste to place the search on the find clipboard, find to locate the

Ruby files, grep to determine which files match, and sed to clean up the

results.

Another point to notice here is that I have used some TextMate environ-

ment variables as I did in Section 6.2, Getting Snippet Data from Text-

Mate and the Shell, on page 92. They work nearly the same here except

that you can see I needed an extra - after the : for default values. This

is just the way bash works. You also want to be sure to quote variables

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=108

TEXTMATE COMMANDS 109

when working with bash scripts so their contents are not separated on

whitespace like the shell is prone to do. For a list of TextMate environ-

ment variables and their uses, see Section 9.2, TextMate’s Environment

Variables, on page 119.

Finally, let’s talk about a little about input and output. This command

didn’t need TextMate to pass it any input, because it was able to pull the

needed information from the environment variables. For output, I used

TextMate’s powerful Show as HTML option. This has many advantages,

including the ability to use hyperlinks back to TextMate as I have done

here. When you click one of those links, TextMate will take you to the

referenced line of the referenced file where you should see your match.

Command Input and Output

Whether you are using Filter Through Command or building a TextMate

command, you need to tell TextMate what to send the command for

input and what to do with the output the command generates. You

have quite a few choices for both, each with unique strengths.

It’s important to make sure TextMate sends you just what you need

for your command. Any extra data just makes the command harder to

build. Let TextMate do as much of the work getting the input as you

can, before your code takes over.

With a command selected in the Bundle Editor, you can see one or

two drop-down menus for setting a command’s input. The left menu is

always present and represents your first choice, so to speak. This menu

is also the same set of input choices offered by Filter Through Command.

Here are brief descriptions for the options you can select:

None

If you set this option, no input is sent to the command. Some

commands pull the information they need from TextMate’s envi-

ronment variables, GUI dialog boxes presented to the user, or files

on the hard disk. It’s also possible that the output generated is not

based on any kind of input. In these cases, you can tell TextMate

that the command does not require input.

Selected Text/Selection

With this option, the contents of the current selection are sent

to the command’s standard input. Because there may not be a

selection when the command is run, selecting this option exposes

a fallback menu (for TextMate commands only).

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=109

TEXTMATE COMMANDS 110

Entire Document/Document

This option sends the entire contents of the current file being

edited to the command. When a command performs wholesale

changes to the document contents or needs to see large portions

of the document to know what needs to be done, this is how you

pass the needed information.

If you are working with a TextMate command and choose Selected Text

as your primary input option, you will expose the fallback menu. This

menu tells TextMate what to send your command when there is no

selection at the time the command is triggered. Anything sent as a

backup choice counts as selected, for the purposes of output options

that replace the selected text. Here are the fallback options:

Document

The entire document is sent to the command’s standard input

stream.

Line

The complete line the caret is on is sent to the command, without

a terminating line-end character.

Word

The run of word characters the caret is immediately before, imme-

diately after, or inside of is sent to the command.

Character

The character to the right of the caret is sent to the command.

Scope

This option can be a powerful means to work with TextMate con-

tent. When triggered, TextMate will search forward and backward

from the caret for the first point where the scope of the document

would change. Everything inside those boundaries is sent to the

command. This makes it possible to write commands that deal

with things such as XML tag content or literal string declarations

in source code files, because their delimiters will introduce a new

scope.

For another way to access document content with TextMate scop-

ing information, see Section 9.4, Using TextMate’s Document Pars-

ing, on page 129.

Nothing

The command does not receive any input from TextMate.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=110

TEXTMATE COMMANDS 111

It’s important to remember that even with a fallback specified, it’s pos-

sible for your command to receive no input. A document or line can be

empty, the caret may not be touching a word, and so on.

If you set a fallback selection, you can take advantage of another Text-

Mate nicety. If your command name includes text such as “Fallback/

Selection,” TextMate will adjust the command name when it is used in

menus. When no text is selected in the editing window, the word before

the slash appears. If there is a selection, TextMate will use the word

Selection. For example, the Text bundle includes a command called

Duplicate Line/Selection, but if you go into the menu to find it, you will

see either Duplicate Line or Duplicate Selection depending on whether a

selection appears in the editing window.

TextMate commands also have an input-related feature at the top of the

Bundle Editor. Using the Save drop-down menu, you can specify that

the current file, or even all files in the project, are saved to the hard disk

before the command is run. This is important for commands such as

Show TODO List that need to scan the files to do their work. Turning this

option on can make sure the files you scan are up-to-date. Users prefer

to have control over when they save files, though, so I recommend using

this option sparingly and only when you truly need it.

The other half of the equation is getting data back from a command

and specifying what exactly you want TextMate to do with it. You can

define this for TextMate commands in the Bundle Editor with the Output

drop-down menu. When you are working with Filter Through Command,

you can find these settings on the right half dialog box.

Take some time to consider your output options when building a com-

mand because it can dramatically affect how useful the command is to

you in the long run. Are you filtering content and wanting to replace

the old with the new, are you generating new content altogether, or

do you just need to see some information before you continue editing?

Each of these scenarios has multiple options. Here’s a breakdown of

the different options:

Discard

Selecting this causes TextMate to ignore any output generated by

the command. This isn’t a common choice but might be useful for

commands that have side effects such as creating files on the hard

disk to be edited.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=111

TEXTMATE COMMANDS 112

Replace Selected Text/Replace Selection

The user’s current selection is replaced by the generated output.

Remember that fallback selections will be replaced when using

this option.

Replace Document

For commands that rewrite the entire document, this option al-

lows a command to replace the contents of the editing window.

Insert as Text

Instead of replacing some part of the document, command output

is simply inserted at the caret location using this option.

Insert as Snippet

This is a powerful choice that makes all the snippet tools avail-

able to the output a command inserts. This allows commands to

programmatically introduce tab triggers where they are needed.

Commands often use this option merely to set where the caret ap-

pears in the output by adding a $0 (or ${0} to be safe when you

are unsure whether it will appear with other digits) at the desired

location. Commands that generate snippet output need to remem-

ber to escape special snippet characters such as $ and ‘ in their

output.

Insert as Snippet has other advantages as well. First, it will replace a

selection if there is one, just as Replace Selected Text does. Further-

more, TextMate will reindent inserted snippet content to match

the current indent level of the document in which it is placed.

Show as HTML

TextMate’s HTML output window is a high-powered display tool.

Output can use any combination of HTML and CSS to present

the user with pleasantly formatted results. Commands using this

option should just print a complete web page to their standard

output stream.

One advantage of this output format is the ability to hyperlink

to files. With a properly composed link, you can ask TextMate to

open the named file in an editor window or just bring the file to

the front if it was already open. You can even take the user right

to a line in the file if desired. TextMate links are easy enough

to build; just create a typical HTML link with a URL of the form

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=112

TEXTMATE COMMANDS 113

txmt://open?url=file:// followed by the complete path to the file (URL

escaped). If you would like to target a line in the file, add &line=

followed by a line number after the file path.

When building HTML commands for TextMate, it is sometimes

helpful to see the source markup that was rendered. TextMate

has a View Source command in the View menu to help developers

with this, and it has the same keyboard shortcut Safari uses for

the same feature: ED U.

For more advantages of the HTML output window, see Section 9.8,

Streaming Command Output, on page 136 and Section 9.9, Build-

ing Interactive Commands, on page 139.

Show as Tool Tip

This is an unobtrusive option for commands that just need to

briefly flash a little feedback in front of the user. All generated

output will appear in a tooltip near the current caret location. The

tooltip fades as soon as the user returns to editing.

Create New Document

With this option selected, a new editing window is created, and

all output from the command is used as the initial content for

this window. This is generally used by commands that convert

from one document format to another, allowing the user to do

whatever is needed with the converted content while holding on to

the original material.

Using Ruby or Another Scripting Language

bash is nice when you just need to pipe some data through commands.

It also elegantly handles stream redirection. Whenever I start needing

moderately complex logic for a command, though, I would rather use a

scripting language. Luckily, you can do just that.

If the first line of a TextMate command is a shebang line, the following

code can be in the language understood by the indicated interpreter. In

other words, you can write a TextMate command in Perl if the first line

is as follows:

#!/usr/bin/env perl

I generally use the following to ask for Ruby and turn on warnings:

#!/usr/bin/env ruby -w

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=113

TEXTMATE COMMANDS 114

As an example, let’s look at a full TextMate command written in Ruby.

This example comes again from my Rails work, but it’s liable to be

helpful to anyone who works with YAML files. In Rails it’s common to

write test fixtures, which are really just arrays of hashes in a YAML file

format. I got tired of repeating all the keys and having to generate the

Rails ID fields, so I asked TextMate to do it for me:

Download commands/build_fixtures.rb

#!/usr/bin/env ruby -w

require "#{ENV["TM_SUPPORT_PATH"]}/lib/dialog"

count = Dialog.request_string(:prompt => "How many fixtures do you need?",

:button1 => "OK").to_i

fields = Dialog.request_string(:prompt => "Please enter non-id fields " +

"separated by commas:",

:button1 => "OK").split(/,\s*/)

puts "---"

count.times do |i|

puts "name_me:"

puts " id: #{i + 1}"

puts fields.map { |f| " #{f.strip}:" }

end

Dump that code into the body of a new command. I called my version

Build YAML Fixtures. Set Input to Selected Text or Entire Document, and set

Output to Replace Selected Text. You should also give the command a

scope selector of source.yaml. As always, feel free to assign a key equiv-

alent.

To test-drive this command, create an empty YAML document, and trig-

ger the command. Feed the first dialog box that shows up a positive

integer and the second one some field names such as login, password,

email. At that point the command should spit out a skeleton YAML

structure you could fill in as needed.

Aside from the language change, this example has another interesting

aspect. It loads one of the TextMate support libraries and uses that

to fetch information from the user via GUI dialog boxes. TextMate has

several of these support libraries you are free to use, and you can read

more about them in Section 9.5, bash Support Functions, on page 131

and Section 9.6, Ruby Support Libraries, on page 133.

http://media.pragprog.com/titles/textmate/code/commands/build_fixtures.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=114

DRAG COMMANDS 115

Figure 8.4: Markdown Source drag command

8.3 Drag Commands

TextMate has another kind of command you can create in the Bundle

Editor called a drag command. You activate a drag command when you

drag and drop a file onto a TextMate document and the file matches

one of the types handled by the drag command.

Drag commands work like regular commands, save that they do not

receive input. They can access the dropped file using environment vari-

ables. Drag commands are also limited to one kind of output: Insert as

Snippet.

To give an example of where they can be useful, I’ll tell you about my

Markdown Source drag command. I frequently write about source code,

so it’s common for me to drag code files into documents I’m editing.

TextMate will insert the contents at the drop point normally, but with

Markdown source needs to be indented so it will format correctly. To

handle that, I built a drag command that indents the source for me.

You can see the entire command in Figure 8.4.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=115

DRAG COMMANDS 116

This command just inserts each line of the dropped file into the current

document after prepending four spaces to it. Note that the command

does escape the document content, since you must insert it as a snip-

pet. The escaping is handled with another TextMate support library.

Commands are powerful tools for those who want to go all the way down

the rabbit hole of automation. You may not need to go this far, or at

least not too often, but a well-designed command can certainly help the

workflow move forward. This is the final form of TextMate automation.

I’ve covered a lot of ground with them, so I’ll next give you a few more

general automation tips before you should consider the subject closed.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=116

Chapter 9

Automation Tips and Tricks
You now know how to build three kinds of automations for TextMate,

but you can still learn a lot of tricks for using them effectively. You will

pick these up over time as you create automations, but I’ll jump-start

your learning process by showing you some favorite techniques used

by the TextMate gurus. This material can take you above the novice

automator ranks and give you the ability to build powerful custom tools

to handle your unique workflow.

You may not ever need some of these tips, and you certainly won’t need

them all at once. I recommend skimming this chapter to get an idea

of what’s covered and then referencing the material later when you are

trying to accomplish a related task. I’ve tried to lay out the information

to support this pattern of usage.

9.1 Building Bundle Menus

No one wants to scan through a menu hunting for the automation that

does what they need. As a bundle grows, selecting automations from

one long list becomes tedious. For that reason, TextMate gives you the

ability to organize a bundle’s menu with submenus and dividers.

You access the menu-building interface by choosing Bundles � Bundle

Editor � Show Bundle Editor (CED B) and clicking the name of the bundle

you want to organize. The Menu Structure box contains all the items in

the bundle in their menu order and layout. Excluded Items serves two

purposes, which will become clear as you move forward through this

chapter.

BUILDING BUNDLE MENUS 118

Figure 9.1: Bundle menu structure

Here are the changes you can make to the menu structure:

• Reorder automations as they will appear in the Bundles menu by

dragging the automation name and dropping it where you want it

to be listed.

• Add dividers to a menu by dragging the divider line from Excluded

Items and dropping it into position.

• Create a new submenu by dragging the New Group label out of

Excluded Items and dropping it in the menu for which you want

to create a submenu.

• Rename a menu item, including newly created submenus, by

double-clicking the item name to expose the editor and typing a

new name.

• Unfold a submenu so you can arrange its contents by clicking

the triangle just to the left of the submenu’s name until it points

straight down.

Try organizing your Pragmatic Examples bundle to get the hang of these

features. You should pick it up in no time. You can see an example of

my menu structure in Figure 9.1.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=118

TEXTMATE’S ENVIRONMENT VARIABLES 119

You can also drag automations from Menu Structure into Excluded

Items. This will hide them so they do not appear in the Bundles menu.

You can still activate automations in Excluded Items using the item’s

key equivalent or tab trigger. You may want to stick items in here that

make sense to activate only via the keyboard (as opposed to using the

Bundles menu). Just make sure the user has some way of knowing that

the item is there at all. You can also use Excluded Items to depreciate

automations you plan to remove from the bundle down the line.

Remember that the point of a good menu structure is to guide the user

right to what they want to find. Users are lazy and impatient, so make

sure the menus divide the available automations into a logical grouping

of an easily digested size.

9.2 TextMate’s Environment Variables

Both snippets and commands have access to a collection of environ-

ment variables when they run. TextMate sets up most of these variables

for you, but you are free to set your own variables and use them in your

automations.

To set a variable that will be used in all automations, add the variable’s

name and value to the Shell Variables list under TextMate � Preferences

(D ,). You can reach the list by clicking the Advanced icon at the top of

the preferences window and then selecting the Shell Variables tab, as

shown in Figure 9.2, on the following page.

You can also set project-level variables used only for automations run

on the files of that project. To reach the semi-hidden interface for this,

select View � Show Project Drawer (CEDD) unless it is already visible,

make sure nothing is selected in the drawer (click the whitespace if you

need to deselect items), and click the i button in the lower-right corner

of the project drawer.

The SQL bundle is a great example of how these variables might be

useful to you. I have TM_DB_SERVER set to mysql in my TextMate prefer-

ences, so the bundle knows which database I favor. Then, inside each

database-oriented project I work with, I set MYSQL_USER to my login

name for MySQL (defaults to your Mac OS X login name), MYSQL_PWD

to my password, and MYSQL_DB to the database I am working with.1

1. If you are a Postgres fan, consult Bundles � SQL � Help for details on how to set up that

database server.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=119

TEXTMATE’S ENVIRONMENT VARIABLES 120

Figure 9.2: Setting an environment variable

With that set up, I can select any SQL query in my project and choose

Bundles � SQL � Execute Selection as Query (CBQ) to have TextMate dis-

play the results. That’s a convenient way to reality check database con-

tents while you work without needing to leave TextMate.

Here’s a list of the variables TextMate maintains for you and sugges-

tions about how you might use them:

TM_BUNDLE_SUPPORT

When you write a small command, it’s fine to crack open the Bun-

dle Editor, jot down some code, and try it. More complicated com-

mands require better organization, though, and you might want

to share some code or other resources among a group of related

commands. TextMate supports this through this variable.

If the bundle a command is called from contains a top-level Support

folder, this variable will point to that folder. You can use this to

locate the needed external resources.

For example, to use an external library in a bundle you are build-

ing, create a Support/lib directory in the bundle, add the library you

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=120

TEXTMATE’S ENVIRONMENT VARIABLES 121

need to this directory, and require the library in your command

with code similar to this Ruby example:

require "#{ENV['TM_BUNDLE_SUPPORT']}/lib/external_library"

Another perk of the Support folder is that Support/bin is added to

the path while a command executes. This ensures that you don’t

even need this variable to reach external programs, as long as you

place them in this folder.

TM_SUPPORT_PATH

The TextMate application also contains a Support folder including

several programs, code libraries, and other resources useful in

developing automations. This variable always points to the root of

that directory, so you can load TextMate’s GUI dialog box support

library with the following line of Ruby:

require "#{ENV["TM_SUPPORT_PATH"]}/lib/dialog"

Again, the bin directory of this folder is added to the path while a

command executes. This allows you to shell out to bundled com-

mands, including CocoaDialog, Markdown.pl, Textile.rb, and more,

from any automation.

TM_CURRENT_LINE
TM_CURRENT_WORD
TM_SELECTED_TEXT

These variables function just like the fallback menu equivalents

for command input described in Section 8.2, Command Input and

Output, on page 109. Environment variables do have a size limit,

which can cause the data in these variables to be truncated in

extreme cases. Therefore, it’s better to have these sent to your

command as input.

TM_SCOPE

This is the scope the caret is currently inside. The Show Scope

command of the TextMate bundle prints the contents of this vari-

able as a tooltip.

TM_LINE_INDEX
TM_LINE_NUMBER

These variables are indices into the document being edited.

TM_LINE_INDEX is a zero-based count to the current caret location in

the line. This variable is aware of the line encoding and thus will

count multibyte characters correctly. TM_LINE_NUMBER is the line of

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=121

TEXTMATE’S ENVIRONMENT VARIABLES 122

the document the caret is currently on, counting from one. In a

Ruby command that is sent the document as input, you could use

code like the following to examine the text around the caret:

doc = ARGF.readlines

line_no = ENV['TM_LINE_NUMBER'].to_i

line = doc[line_no - 1]

line_i = ENV['TM_LINE_INDEX'].to_i

puts "Line before caret: #{line[0...line_i]}"

puts "Line after caret: #{line[line_i..-1]}"

TM_INPUT_START_LINE
TM_INPUT_START_LINE_INDEX

These variables provide offsets describing where the input sent to

your command began in the document. Among other uses, you

can use them to locate the caret’s position inside the input you

received using code like the following:

set line and col with the indices for the caret in the input

line = ENV['TM_LINE_NUMBER'].to_i - ENV['TM_INPUT_START_LINE'].to_i

col = ENV['TM_LINE_INDEX'].to_i

if ENV['TM_LINE_NUMBER'].to_i == ENV['TM_INPUT_START_LINE'].to_i

col -= ENV['TM_INPUT_START_LINE_INDEX'].to_i

end

TM_COLUMN_NUMBER
TM_COLUMNS

You can use these variables to find the current column location of

the caret (counting from one) and the number of columns available

in the editing window, assuming Soft Wrap is active. You might

prefer TM_COLUMN_NUMBER to the previously mentioned TM_LINE_

INDEX in places where you want to know exactly where the caret

is. For example, if you are trying to find the indent level where

the command is triggered, TM_LINE_INDEX may tell you that you

are two characters in, but if those characters happen to be tabs,

TM_COLUMN_NUMBER holds exactly how far into the line you are,

accounting for the current tab size.

TM_TAB_SIZE
TM_SOFT_TABS

If you need to mimic user settings for indention in some command

output, these two variables are helpful. TM_TAB_SIZE will tell you

the current size of a tab in the editing window, and TM_SOFT_TABS

will tell you whether those tabs are being represented as actual

tab characters (variable set to NO or unset) or as the equivalent

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=122

TEXTMATE’S ENVIRONMENT VARIABLES 123

number of spaces (a YES setting). Since you can’t count on what

TM_SOFT_TABS will be when tabs are used, always test for the YES

value.

TM_DIRECTORY
TM_PROJECT_DIRECTORY
TM_FILEPATH

You can use these variables to locate the directory containing the

currently active file, the top-level project directory for the project

containing the file, and the current file itself. It’s important to note

that these variables may not be set. The user may not have a

project open, and the current document may not yet be saved to

the disk.

If you need document content, it’s better to set up the command

input to send you what you need than to try to read it using these

variables. The user may have unsaved changes that wouldn’t be

reflected in the disk file. Still, these variables can be useful for

fetching information from the file system or manipulating files

based on their location. See Section 9.7, Hooking Into Save Opera-

tions, on page 134 for details about a kind of command that might

need these variables.

TM_SELECTED_FILE
TM_SELECTED_FILES

You can use these variables to find out what is currently selected

in the project drawer, assuming the user is working with a project

and there is currently a selection of files and folders in the drawer.

The singular variable gives only the path to the first selected item,

and the second gives a shell-escaped listing of all currently selec-

ted files. If you would like to get these files into an Array inside a

Ruby command, use the following code:

require "shellwords"

selected = Shellwords.shellwords(ENV["TM_SELECTED_FILES"])

TM_DROPPED_FILE
TM_DROPPED_FILEPATH
TM_MODIFIER_FLAGS

This family of variables is populated only during the execution of

a drag command. You use these variables as your primary means

of interacting with the dropped file.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=123

USEFUL SHELL COMMANDS 124

TM_DROPPED_FILE holds a relative path to the file from TM_DIRECTORY.

I find it easier to work with an absolute path most of the time, and

you can find that in TM_DROPPED_FILEPATH.

When a file is dragged onto a TextMate document, the user may

choose to hold down one or more modifier keys on the keyboard.

If your command needs to react to these keys, you can find out

what was held with the variable TM_MODIFIER_FLAGS. The variable

holds a string like "SHIFT|CONTROL|OPTION|COMMAND", assuming all

options are pressed. To check for an option using Ruby, you can

write this:

if ENV["TM_MODIFIER_FLAGS"].include? "OPTION"

handle option key pressed here

else

handle option key not pressed here

end

If you would like to spot-check the variables your command will be

passed when invoked, run the Show TM_* Variables command in the

TextMate submenu of the Bundles menu in place of the command you

would have run. A tooltip will appear with the name and contents of

the variables that would have been passed to your command.

9.3 Useful Shell Commands

Between the files stored on the hard drive and what the operating sys-

tem itself knows, a lot of data is available to snippets and commands.

Shell commands are the gateway to that data, and learning how to use

them can really give a boost to your text-editing abilities.

For example, signing any generated content with the name of the cur-

rent user is as easy as shelling out to the Directory Service utility to get

the name, and you can throw in a call to sed to clean it up:

dscl . read /Users/$USER realname | sed -E 's/^realname: +//'

Mac OS X ships with hundreds of applications accessible from the shell.

I couldn’t begin to tell you what they all do, but here are a handful of

commands that are handy to know when editing text, manipulating

files, working with the operating system, or even just for learning about

other commands:

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=124

USEFUL SHELL COMMANDS 125

cat

This utility outputs files given as arguments or the data it receives

on STDIN. You could use this to insert content directly into Text-

Mate documents with commands such as cat /usr/share/dict/words.

curl

If you want to manage some network communication from the

command line, curl is your best friend. It knows most popular pro-

tocols including HTTP and FTP. You can use this to check the

availability of a network resource (curl -I http://rubyquiz.com), fetch

the entire resource (curl http://rubyquiz.com), download files (curl -

O http://media.pragprog.com/titles/textmate/code/textmate-code.tgz),

or fill out web forms:

curl -d 'command=sum+1+2+3+4+5' -g -L http://yubnub.org/parser/parse

echo

Use this to generate a line of content just by passing the line as a

command-line argument. For example, use echo ’A line to output’.

This command is also a handy way to find the current value of a

TextMate environment variable: echo $TM_FILEPATH.

find

This shell command will walk a file hierarchy and return the path

to all files matching certain criteria. You could use this to get a list

of all Ruby files below the current directory, for example, with a

call such as find . -name *.rb.

fmt

You can use this formatter to wrap lines at a specified length. This

can be helpful in TextMate to restrict command output to a given

width: cat unwraped_document.txt | fmt -w 80.

grep

By feeding grep a regular expression, you can restrict output to

only the lines of a file or STDIN that match the provided expression.

For example, use cat todo_list.txt | grep -E ’∧ *TODO’.

Use the -v switch to invert the results to show the unmatched

lines. This can be a slick way to prune document content with

Filter Through Command (ED R).

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=125

USEFUL SHELL COMMANDS 126

Unix Regular Expressions

Many shell commands can use regular expressions. I often use
them with find, grep, and sed.

Be warned, though—the regular expressions these commands
accept are not as powerful as TextMate’s regular expression
engine. Passing an -E flag to these commands will activate their
“extended” syntax, which is pretty close to what I covered for
TextMate.

Avoid using shortcut character classes such as \d and
advanced features such as look-arounds and conditional
replacements. The basic elements are the same, though.

You can learn more by feeding Terminal the command man

re_format.

head

tail

These tools are for looking at the first n lines of a file or STDIN

(cat email.txt | head -n 4) or the last n lines (cat error.log | tail -n 10).

Just pass the number of lines needed after the -n switch. These

commands are often used to examine document headers or the

latest entries of log files.

When you are working with something like a log, you may be more

interested in the newest lines, which are generally at the end of

the stream. In this case, the -r switch supported by tail to reverse

the lines is helpful to know.

iconv

Use this tool to convert files of one encoding to another. You pass

iconv from and to encoding names with command-line switches:

iconv -f ISO_8859-1 -t UTF-8 old_file.txt.

man

This command will open the manual pages for other shell com-

mands. You probably won’t use this in TextMate too much, but

you can use it to look up documentation for all the commands

covered here and more. Just name the command you would like

to read the documentation for in the call: man curl.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=126

USEFUL SHELL COMMANDS 127

mdfind

mdls

You can use this pair of commands to perform Spotlight searches

from the command line. To see all the metadata associated with

a given file, just hand the filename to mdls with a call like mdls

stock_report.doc.

To perform full Spotlight searches, you need mdfind. You can use

that tool to perform simple searches among all metadata fields,

as the Spotlight tool in the menu bar does, with calls such as

mdfind Rails. You can also perform searches targeting specific fields

of metadata with calls such as mdfind "kMDItemFSName == ’test.rb’".

osascript

This tool will allow you to communicate with Apple’s AppleScript

environment and through that give instructions to many Mac ap-

plications. For example, you could play the current system sound

with osascript -e beep.

pbcopy
pbpaste

You can use these commands to place data on and retrieve data

from Mac OS X’s paste board, known to most users as the clip-

board. You could add a line to the clipboard with this:

echo 'http://www.pragmaticprogrammer.com/' | pbcopy

and later fetch it back with pbpaste.

Mac OS X has a separate clipboard for search patterns used in

Find dialog boxes. These commands can affect that clipboard with

the -pboard find option. You may want to use this to generate

search patterns for the TextMate Find dialog box.

These commands default to the default encoding of the system

(MacRoman for Western users), so you should switch to UTF-8

before using these commands for any non-ASCII content. You can

make the change by having your command execute the following

before you call pbcopy or pbpaste:

export __CF_USER_TEXT_ENCODING=$UID:0x8000100:0x8000100

Tempting though it may be, do not stick that line in your shell

start-up scripts. It can cause some programs to misbehave.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=127

USEFUL SHELL COMMANDS 128

perl

php
python

You’ve seen me using Ruby just about everywhere in this book

because that’s my scripting weapon of choice. I use it often when

shelling out to introduce moderately complex logic. Of course, if

you’re a fan of another scripting language, such as those listed

previously, you can use it to do the same.

sed

This is a terrific tool for quick data transformations. sed supports

many options for changing the input passed through it including

regular expression search and replace: echo "I have three dogs and

two cats." | sed -E ’s/[AEIOUaeiou]/X/g’.

sort

You can use this command to order a collection of lines from

a file or STDIN. Commands may need this to provide a human

with friendly ordering of command output. For example, use sort

names.txt.

tee

A poor man’s backup, this command can duplicate a Unix stream.

It is usually used to dump some data to a file and continue pro-

cessing: echo ’∧config=.+’ | tee find_pattern.txt | pbcopy -pboard find.

touch

This tool is actually intended to update a file’s modification time

so tools such as compilers will examine the file again. It sees at

least as much use, though, in creating blank files. This might be

helpful to TextMate commands wanting to initialize some directory

structure with files to be edited: touch plugin.rb test.rb.

uniq

This command will remove duplicate adjacent lines from a file or

STDIN. This is helpful when you generate a lot of data but need only

a single entry for each line. Since it catches only adjacent lines,

you generally want to sort the data first to bring like lines together:

cat event_days.txt | sort | uniq.

uuidgen

This command is helpful anytime you need to generate a unique

ID. Different computers and different times of execution will affect

the ID generated, so it’s safe to count on them being unique.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=128

USING TEXTMATE’S DOCUMENT PARSING 129

xargs

It’s common to programmatically build up arguments to a shell

command and have xargs pass them on to the command in ques-

tion. xargs will separate STDIN on whitespace and forward each

chunk of data it finds as an argument to the named utility. For

example, you could use this to build a find command that will

match a name pattern currently on the clipboard with pbpaste

-pboard find | xargs find . -name.

xxd

If you want to make sense of a binary data file, this tool is often

invaluable. xxd will create a hex dump for the passed file, which

you can then examine in an editor such as TextMate: xxd codex.umz

| mate.

9.4 Using TextMate’s Document Parsing

You’ve already seen how TextMate can send all manner of input to the

commands you write; but instead of getting raw text, you can also ask

TextMate to tell you how it parses the text. This can make it easier to

find the pieces of a document you need to see, since TextMate breaks

them down for you. I’ll now show you how this works.

First, let’s create a command that just returns the input it receives and

set that input to be the entire document. You can place the output in

a new window. The body of the command is one word: cat. Open any

document, run your new creation, and verify that TextMate makes a

duplicate of the document in a new window.

Not impressed yet? Just wait until you see my next trick....

To activate parsed input, you must make a change to the actual com-

mand file on your hard disk. You’ll use the same technique as in Sec-

tion 7.1, The Macro Editor, on page 100.

I named my command Show Parsed Input, so I have to edit the file

~/Library/Application Support/TextMate/Bundles/Pragmatic Examples.tmbundle

/Commands/Show Parsed Input.tmCommand. Just choose File � Open and

navigate to the document.

To change the behavior of the command, add these two magic lines just

before the closing </dict> tag:

<key>inputFormat</key>

<string>xml</string>

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=129

USING TEXTMATE’S DOCUMENT PARSING 130

These lines adjust a hidden setting for the command. By setting it to

xml, you tell TextMate that you are prepared to receive extra information

with the passed text, in the form of XML markup.

Save the file, close it, and ask TextMate to reread it by choosing Bun-

dles � Bundle Editor � Reload Bundles.

Open any document that TextMate will syntax highlight, and run your

command one more time. This time you should receive your document

content decorated in XMLish markup showing the scopes into which

TextMate has divided the document. I say “XMLish” because the scope

names don’t make good XML tag names. However, the document con-

tent is properly escaped, and you can easily turn it into something you

can work with using this Ruby code:

xml = ARGF.read.gsub(/<(.*?)>/) do |tag|

if tag.size == 2 then ""

elsif tag[1] == ?/ then "</scope>"

else "<scope name='#{$1}'>"

end

end

Once you have a structure like that, you can load an XML library and

hunt down what you want with XPath searches. Here’s a sample com-

mand that uses TextMate’s ability to parse Ruby source code to present

the user with an outline of classes and the methods they contain:

Download automation_tips_and_tricks/show_class_structure.rb

#!/usr/bin/env ruby -w

require "rexml/document"

xml = ARGF.read.gsub(/<(.*?)>/) do |tag|

if tag.size == 2 then ""

elsif tag[1] == ?/ then "</scope>"

else "<scope name='#{$1}'>"

end

end

doc = REXML::Document.new(xml)

met, cla = "entity.name.function.ruby", "entity.name.type.class.ruby"

doc.elements.each("//scope[@name='#{met}' or @name='#{cla}']") do |tag|

if tag.attributes["name"] == cla

puts tag.text

else

puts " " + tag.text

end

end

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/show_class_structure.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=130

BASH SUPPORT FUNCTIONS 131

Open the Bundle Editor (CED B), create a new command with that code

in the Command(s) field, set Input to Entire Document, and set Output to

Create New Document. It needs to be scoped to source.ruby, and you will

need to open the command file TextMate saves to the hard disk to add

the XML input lines.

Once you have it set up, try running it on some Ruby libraries. Mac

OS X ships with standard Ruby libraries you can use. For example, try

running it on /usr/lib/ruby/1.8/set.rb.

9.5 bash Support Functions

Before TextMate runs a bash command, it triggers an internal script to

set up the environment for you. This does some nice things, such as

setting up the path as I described in Section 9.2, TextMate’s Environ-

ment Variables, on page 119. It also defines a handful of functions you

can use in your command.

First, require_cmd will allow you to check whether a shell command is

in the path and thus available for use. If the shell command is not

found, an error is reported to the user, and your command aborts. It’s

a good idea to call this before using a shell command that does not

ship with Mac OS X so you can make sure the user has installed it. You

may even want to check for commands that don’t ship with all versions

of the operating system, just in case the user has a different version.

If you wanted to check for mysqldump, for example, before using it to

dump a database table into an SQL file, you would enter this:

require_cmd mysqldump

Another family of useful functions are those that allow you to change

the output type of your command. It’s common for commands to check

the conditions they were run under and then bail out with an error mes-

sage if a requirement is missing. You don’t need to create a new docu-

ment just to show a small error message, even if that is the command’s

regular output. In such a case, you can change the output format with

something like this:

exit_show_tool_tip "Sorry, this command only works between 8 AM and 5 PM."

The user will see your message, as a tooltip in this case, and the com-

mand will exit. This works for all commands except those set to HTML

output, so remember to switch to HTML instead of away from it.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=131

BASH SUPPORT FUNCTIONS 132

Figure 9.3: Syntax checker

Here’s the complete list of exit functions corresponding to the available

command outputs:

• exit_discard

• exit_replace_text

• exit_replace_document

• exit_insert_text

• exit_insert_snippet

• exit_show_html

• exit_show_tool_tip

• exit_create_new_document

TextMate doesn’t usually reflect changes to files and directories in the

project drawer after a command runs, but you can use another function

to get around that. If your command creates, moves, or deletes files and

directories, end it with a call to rescan_project so TextMate will pick up

the changes.

Finally, if you want to output the themed HTML pages used by so many

of TextMate’s commands (see Figure 9.3, for a peek at such styling),

you can load another file to gain access to the support functions.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=132

RUBY SUPPORT LIBRARIES 133

Here’s a skeleton command to get you started with styled HTML output:

Download automation_tips_and_tricks/styled_html.sh

source "$TM_SUPPORT_PATH/lib/webpreview.sh"

html_header "Header Goes Here" "Subheader Here"

echo "<p>Your content goes here...</p>"

cat <<END_PRE | pre

you can

even include

<escaped> content

using the

pre helper

END_PRE

html_footer

9.6 Ruby Support Libraries

TextMate also includes several Ruby support libraries. You will find

some of the same functions, and more, offered in bash within these

libraries. To load any of the Ruby helpers, you need to make sure the

directory they are located in is in the path. To do that, add the following

line to the top of your script (before require statements):

$LOAD_PATH << "#{ENV["TM_SUPPORT_PATH"]}/lib"

The Ruby equivalents to the bash functions for changing command out-

put modes are in the exit_codes.rb library. You can require it normally

after modifying the path as I described previously and then call any

of the exit methods listed in Section 9.5, bash Support Functions, on

page 131, on the TextMate module loaded by the code.

You will also find Ruby equivalents to the styled HTML helpers in

web_preview.rb. The methods have the same names as their bash coun-

terparts. See Section 9.7, Hooking Into Save Operations, on the next

page for an example using both of these libraries.

Another helpful Ruby library is escape.rb. It loads a handful of methods

that you can filter Strings through to escape them for various uses. The

provided methods are as follows:

e_sh()

Returns an escaped version of the passed argument that can be

safely used in the shell (as a single term).

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/styled_html.sh
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=133

HOOKING INTO SAVE OPERATIONS 134

e_sn()

Returns an escaped version of the passed argument that has all

special characters for TextMate snippets escaped.

e_as()

Returns an escaped version of the passed argument that can be

safely used in an AppleScript string.

e_url()

Returns a URL-escaped version of the passed argument.

htmlize()

Escapes the HTML entities in the passed argument and switches

line endings to
 tags, as described in Section 9.8, Streaming

Command Output, on page 136. This method also adds some spe-

cial whitespace handling to ensure that the document formatting

is preserved when you place the content inside <pre style="white-

space: normal;">...</pre> tags.

Another good Ruby add-on is textmate.rb. It loads several methods,

but probably the most helpful are TextMate.each_text_file() and TextMate.

selected_files(). The former will yield each text file of the current project

to a block you provide, similar to the each() iterator that Rubyists are

so used to using. The latter returns an Array of the files and directories

selected in the project drawer.

Additionally, TextMate ships with bundled copies of some favorite Ruby

libraries including bluecloth.rb, Builder.rb, redcloth.rb, and rubypants.rb.

9.7 Hooking Into Save Operations

Some applications give you hooks for running code on certain built-in

operations. Save is a common target for extra functionality, because

people always want to perform clever tasks such as copying a file to a

server when it changes. Officially, TextMate doesn’t provide any tools

for this, but all the pieces are there if you just adjust your thinking

enough to see how they fit together—well, for the Save command when

triggered by the keyboard at least.

The trick is simple enough once someone explains it. You can hook into

Save with the following formula:

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=134

HOOKING INTO SAVE OPERATIONS 135

1. Create a new command that will hold your post-Save code.

2. Set the command’s Save field to Current File.

3. Scope the command as tightly as possible so it will affect only the

saves you really want it to affect.

4. Give the command a key equivalent of D S.

TextMate will honor your key equivalents over its own predefined key-

board shortcuts, so the previous actually overrides the regular Save

functionality. However, we told the command to save before it does any-

thing else, which restores the overridden functionality with the added

bonus that the code in the command runs just after the save.

Here’s an example to show what you might do with something like this.

The following command will syntax check a Ruby file whenever you

save it. When found, you will be shown the errors Ruby reported in

your syntax. This won’t catch all the problems, of course, but it does

make a nice early-warning system. See Figure 9.3, on page 132, for an

example error listing. Follow the previous steps to set up a command

called Check Ruby Syntax and scope it to source.ruby. Finally, dump this

code in as the body of the command:

Download automation_tips_and_tricks/save_hook.rb

#!/usr/bin/env ruby -w

$LOAD_PATH << "#{ENV["TM_SUPPORT_PATH"]}/lib"

require "exit_codes"

require "web_preview"

require "escape"

check = ‘ruby -c 2>&1‘

if check.include? "Syntax OK"

puts check

else

file = ENV["TM_FILEPATH"]

check = htmlize(check)

check.gsub!(/(^|
)-:(\d+):\s+([\w\s]+)/,

"\\1\\3")

html_header("Syntax Checker", "Ruby")

puts <<END_HTML

<h1>Errors Located in Your File</h1>

<pre style="white-space: normal;">#{check}</pre>

END_HTML

html_footer

TextMate.exit_show_html

end

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/save_hook.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=135

STREAMING COMMAND OUTPUT 136

That command needs the document as input, and it should have its

output set to a tooltip. In truth, it uses the tooltip only when the code

is OK. If there are errors, it will ask TextMate to switch to the HTML

display so it can present a hyperlinked error list. You always want to

switch to HTML like this when you need it, because you can’t switch

away from HTML output. Once TextMate displays the HTML window,

you’re committed.

This command is also a pretty good example of just how much work

you can get done with TextMate’s support libraries, described in Sec-

tion 9.6, Ruby Support Libraries, on page 133. Automation is all about

getting TextMate to do as much as possible for you, even when writing

the automations yourself. Remember to use the tools available to you.

9.8 Streaming Command Output

Some commands take a little time to run, and you don’t want the user

to be left waiting until everything is finished to see what happened. You

deal with this by streaming output to users as it is available so they

can follow the progress of the command. TextMate commands can do

this using the Show as HTML output option, but you can use a couple

of tricks when streaming output.

The good news is that streaming is pretty automatic when using Show

as HTML. The output will usually just appear in the window as it

becomes available. To see how this works, create a new command with

Input set to None and Output set to Show as HTML, and then enter the

following code as the body of the command:

Download automation_tips_and_tricks/streaming.rb

#!/usr/bin/env ruby -w

STDOUT.sync = true # flush output as we write it

puts <<END_HTML_START

<html><head>

<title>A Streaming Command</title>

</head><body>

<p>This should appear as soon as the command starts...</p>

END_HTML_START

sleep 1 # pause for one second

puts " <p>This should appear one second later...</p>"

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/streaming.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=136

STREAMING COMMAND OUTPUT 137

sleep 2 # pause for two seconds

puts <<END_HTML_END

<p>Finally, this should appear about three second into execution.</p>

</body><html>

END_HTML_END

When you run that command, the sentences should appear in their

self-described time frame.

You can see that I really didn’t need to do anything special to get Text-

Mate to stream this content. I did have to add the magic STDOUT.sync =

true line to prevent Ruby from buffering my output, making sure it was

sent to TextMate immediately, but TextMate showed the output as it

arrived.

One special case where output is not streamed as you might expect is

inside <pre> ... </pre> tags. Change your command body to the follow-

ing code so you can see this:

Download automation_tips_and_tricks/pre.rb

#!/usr/bin/env ruby -w

STDOUT.sync = true # flush output as we write it

puts <<END_HTML_START.strip

<html><head>

<title>Pre Tags Don't Stream Content by Default</title>

</head><body>

<pre>This should appeas as soon as the command starts...

END_HTML_START

sleep 1 # pause for one second

puts "This should appear one second later..."

sleep 2 # pause for two seconds

puts <<END_HTML_END

Finally, this should appear about three seconds into execution.</pre>

</body><html>

END_HTML_END

When you run that command, all the output should show up right at

the end of execution. However, you can make a minor change to get it

working correctly again.

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/pre.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=137

STREAMING COMMAND OUTPUT 138

Note the addition of the break tags to the ends of the preformatted text

lines in the following code:

Download automation_tips_and_tricks/streaming_pre.rb

#!/usr/bin/env ruby -w

STDOUT.sync = true # flush output as we write it

print <<END_HTML_START.strip

<html><head>

<title>Streaming Lines in Pre Tags</title>

</head><body>

<pre>This should appear as soon as the command starts...

END_HTML_START

sleep 1 # pause for one second

print "This should appear one second later...
"

sleep 2 # pause for two seconds

puts <<END_HTML_END

Finally, this should appear about three seconds into execution.</pre>

</body><html>

END_HTML_END

I also switched to using print() instead of puts() for this code so they

wouldn’t have an added line end that would double the spacing. The

HTML display will stream preformatted content when it runs into these

break tags. Because of this, a common trick of TextMate commands

is to run a substitution over output that will appear inside
 tags

to replace line endings with break tags. You can do this in Ruby with

gsub("\n", "
").

You can use a variation of this trick when you want to stream incom-

plete lines. Change the code for our streaming command one last time

to the following:

Download automation_tips_and_tricks/streaming_pre_chars.rb

#!/usr/bin/env ruby -w

STDOUT.sync = true # flush output as we write it

print <<END_HTML_START.strip

<html><head>

<title>Streaming Characters in Pre Tags</title>

</head><body>

<pre>Loading...

END_HTML_START

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/streaming_pre.rb
http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/streaming_pre_chars.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=138

BUILDING INTERACTIVE COMMANDS 139

10.times do

print "><br style='display: none'>"

sleep 1 # pause for one second

end

print "
"

puts <<END_HTML_END

Loaded.</pre>

</body><html>

END_HTML_END

When you run this version, the progress indicator characters should

appear one second apart, even though the line hasn’t ended. You can

see that I’m feeding break tags to the HTML window to keep it stream-

ing, but the style attribute keeps them from showing up in the end

result.

9.9 Building Interactive Commands

The more you work with TextMate commands, the more interactive you

will want to make them. It’s a natural process that makes them more

flexible by allowing them to respond to your current needs. TextMate

offers a couple of options for interacting with the user.

Using Dialog Boxes

The Ruby support library dialog.rb is a wrapper over the CocoaDialog

application that is bundled with TextMate.2 Using the methods pro-

vided by this library, you can display GUI dialog boxes to the user and

receive their responses. Here’s a list of the methods you can call on the

Dialog module and the dialog boxes they display:

request_string()

Call this method to present the user with a single input field and

receive their String response.

request_file()
request_files()

The singular method will present the user with a File dialog box

and allow them to choose a file. The plural version is the same, but

2. See http://macromates.com/screencast/intro_to_tm_dialog.mov for an introduction to a dif-

ferent way to build dialog boxes for TextMate, using Apple’s Interface Builder application.

All of the Dialog methods are being converted to use this new tool, so stick to the support

library and your code will be future proof.

http://macromates.com/screencast/intro_to_tm_dialog.mov
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=139

BUILDING INTERACTIVE COMMANDS 140

the user is allowed to make multiple selections. You will receive the

selected paths in a returned Array.

request_secure_string()

This method presents the user with a password input box and

returns the password entered.

request_item()

This method allows the user to choose from an array of items you

pass in the :itemsHash key, via a drop-down menu. The selected

item is returned.

request_confirmation()

This dialog box allows you to ask the user a simple yes/no ques-

tion, often used to verify that an operation is OK. The return value

will be either true or false.

All these methods accept a hash of options as their only parameter.

Generally, you will want to set the dialog box :title and add some text

explaining what to do with :prompt. You may also want to change the

contents of :button1 and :button2. You may pass any other options sup-

ported by CocoaDialog, though. Those are described in the documenta-

tion at http://cocoadialog.sourceforge.net/documentation.html.

By default these methods return the user’s answer when the OK button

is clicked (:button1) and nil when the Cancel button (:button2) is clicked.

Another way to use these methods is to pass a block to the dialog box

call, in which case the code will be run if the user clicks the OK but-

ton (:button1), and the typical return value will be passed to your block

instead. When a block is given, the Cancel button raises Ruby’s Syste-

mExitException, which results in a clean exit unless rescued.

You can see an example using dialog box calls in Section 8.2, Using

Ruby or Another Scripting Language, on page 113.

Dynamic HTML

Another tool for building interactive commands is provided to those

using the HTML output option. TextMate makes a TextMate object avail-

able to JavaScript code run inside HTML output. This object has an

isBusy property that you can set to true or false to toggle the display of a

busy wheel in the upper-right corner of the window.

http://cocoadialog.sourceforge.net/documentation.html
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=140

BUILDING INTERACTIVE COMMANDS 141

The TextMate object also provides a system() method, which is similar to

the method of the same name provided to Dashboard widgets. Using

this method, you can run shell commands or call out to your own

scripts for further processing. Here’s an example command (Input: None,

Output: Show as HTML) that provides a mini-shell inside TextMate’s HTML

output window:

Download automation_tips_and_tricks/mini_shell.sh

source "$TM_SUPPORT_PATH/lib/webpreview.sh"

html_header "TextMate Mini Shell" "bash"

cat <<END_SHELL

<h1>Enter shell commands below:</h1>

<pre><code id="shell"></code></pre>

<script language="JavaScript">

function run_command() {

var s = document.getElementById('shell');

var com = document.f.com.value;

s.innerHTML = s.innerHTML + "$ " + safe(com) + "
";

document.f.com.value = "";

var res = TextMate.system(com, null).outputString;

s.innerHTML = s.innerHTML + safe(res).replace(/\n/g, "
");

window.location.hash = "input_form";

}

function safe(str) {

return str.replace(/&/g, "&").replace(/</g, "<").replace(/>/g, ">");

}

</script>

<form id="input_form" name="f"

onsubmit="javascript: run_command(); return false" action="#">

<input maxlength="2048" size="55" name="com" value="">

<input value="Run" type="submit">

</form>

END_SHELL

html_footer

The second argument to system() allows you to control whether the com-

mand is executed synchronously or asynchronously. Typically, Text-

Mate commands will want to pass null for synchronous execution that

waits on the command to complete. For more details on this issue, see

Apple’s documentation of the Dashboard equivalent.3

3. http://developer.apple.com/documentation/AppleApplications/Conceptual/Dashboard_ProgTopics/Articles/CommandLine.html

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/mini_shell.sh
http://developer.apple.com/documentation/AppleApplications/Conceptual/Dashboard_ProgTopics/Articles/CommandLine.html
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=141

COMPOUND AUTOMATIONS 142

9.10 Compound Automations

Each type of TextMate automation has certain strengths. Snippets can

move the caret around using tab stops. Macros can make complex

selections using movement commands or regular expressions. Com-

mands can do complex processing using a scripting language. But what

if you need all three?

The good news is that TextMate automations can work together. A

macro can run commands, and commands can deliver their output

as snippets. Using these tools together, it’s possible to make intelligent

automations. Let’s try one now.

In this example, we will build an automation that allows you to type a

conversion statement such as “120 minutes to seconds” into TextMate

that will be replaced with the result (“7,200 seconds” in this case).

The first step is to write a Ruby script for handling the conversion.

That’s not hard at all. Here’s my offering that uses a website to do the

actual conversion:

Download automation_tips_and_tricks/convert.rb

#!/usr/bin/env ruby -w

require "open-uri"

query = ARGV.shift || STDIN.read

exit if query.nil? or query.empty?

open("http://www.convort.com/?q=#{URI.escape(query)}") do |page|

res = page.read.scan(/<h1>\s*(\d[\d,]*(?:\.\d+)?\s+\w+)\s*<\/h1>/).last.last

print res + "${0}"

end

Save that code into a file called convert.rb.

Notice that I wrote that script so it was easy to test outside TextMate. I

passed it command-line arguments to make sure I had it working, but it

can read from STDIN instead, which I will use to interact with TextMate.

This command does return a trivial snippet, which will ensure the caret

lands at the end of the result, allowing the user to keep typing.

The next step is to get this command working with TextMate. First I

need to put it somewhere TextMate can see it, which in Unix terms

means it needs to be in your PATH. To find your options for that, launch

TextMate, run Text � Filter Through Command (ED R), and feed it the com-

mand echo "$PATH" | ruby -e ’puts ARGF.read.split(":")’ with Input set to None

http://media.pragprog.com/titles/textmate/code/automation_tips_and_tricks/convert.rb
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=142

COMPOUND AUTOMATIONS 143

and Output set to Show as Tool Tip. Any of the directories shown in the

tooltip will work. I recommend /usr/local/bin if it’s in your PATH, and you

should be able to move the file there by navigating to it in the Termi-

nal, typing sudo mv convert.rb /usr/local/bin/, and giving the system an

admin password. Also make sure the file can be executed by giving the

Terminal the line chmod +x /usr/local/bin/convert.rb.

You are now ready to build a macro that uses the command. With this

macro, you will select the text to be converted and filter it through the

command to get the desired results. It’s important to note that you

probably could filter the entire document through the command, make

the change, and replace the document content. This is a bad idea for a

couple reasons. It makes the command more complicated, and it forces

TextMate to reparse the document (syntax highlighting may flash). It’s

better to work with just what you need instead. Here’s how I built the

macro:

1. Open a new TextMate document by selecting File � New, and add

the example content by typing this: 120 minutes to seconds.

2. Begin macro recording by selecting Bundles � Macros � Start Record-

ing (ED M).

3. Hold down B to select as you move and E to move word by word,

and then tap � four times. That should select the amount, the

from unit, the word to, and the to unit.

4. Call up Text � Filter Through Command (ED R). Set the command to

convert.rb, Input to Selection, and Output to Insert as Snippet. Click the

Execute button. After a slight pause for the page read (you need

an active internet connection for this step), you should see your

converted units appear.

5. Stop macro recording by selecting Bundles � Macros � Stop Record-

ing (ED M).

You can now try your new toy. Type a few conversions, and trigger

the macro for each one with Bundles � Macros � Replay Last Recording

(BD M). The program is pretty smart handling even abbreviations such

as “50 km to miles.”

If you decide you like this macro, you can save it to your Pragmatic

Examples bundle as you did in Chapter 7, Macros, on page 97. If you

do save the macro, you should move convert.rb into the bundle with it.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=143

COMPOUND AUTOMATIONS 144

If you place it in the Support/bin directory of the bundle that holds the

macro, the macro will be able to find it when it runs.

If you’ve made it this far, the hope is that you’ve learned features of

TextMate, your Mac, and even Unix. You should definitely consider

yourself a power user now. You can sure take what you’ve learned and

start automating yourself right out of work. There’s more to learn about

TextMate, though, for the truly adventurous. In the next part of the

book, I will explore what TextMate knows about text formats and talk

about how to enhance that knowledge.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=144

Part III

Languages

Chapter 10

Language Grammars
The languages TextMate understands are described in grammar files,

stored in the bundles. The languages TextMate knows are just the

result of the grammar files it ships with plus any you have installed or

created. TextMate knows most common computer languages right out

of the box. Make a new grammar describing a language, and TextMate

will learn the language you describe.

Textmate recognizes elements of a language by reading the grammar

for that language. Using a grammar, TextMate can color elements and

manage settings and automations for the elements of that language,

just as it does for all those languages it knows when you install it.

To learn how all of that works, you will teach TextMate how to recognize

the structure of a new language in this chapter.

If TextMate already knows the languages you need to use it with and

you are happy with how they work, you can safely skip this chapter

and the next. Many users never find themselves needing to add new

languages because TextMate already knows what they need.

10.1 The JSON Data Language

At the time of this writing, I’m not aware of any publicly available JSON

language grammar for TextMate. I do know there have been requests

for such a file, though. Let’s build one.1

1. The grammar developed in this chapter was later added to the official TextMate bun-

dles repository.

THE JSON DATA LANGUAGE 147

JSON is a small data exchange format, similar to YAML. It defines a

minimal set of data types such as numbers and strings, plus two more

complex containers: object and array. An array is an ordered sequence

of elements, and an object is a collection of name and value pairs. Here

are a handful of JSON construct examples:

true # a constant

42 # a number

"JSON" # a string

[1, 2, "three"] # an array of values

[1, 2, [3, 4]] # a nested array

{"one" : 1, "false" : false} # an object of name/value pairs

I added the previous comments in a fictitious syntax. JSON doesn’t

have comments in the language.

I’ll show how to teach TextMate to break down these constructs, which

leads me to the first step of building a grammar: finding some lan-

guage syntax documentation. Building a grammar is all about knowing

what’s allowed at any given point in a language file. Do not rely on your

memory. When you are building a grammar, keep the documentation

handy—even for languages you know well.

JSON’s syntax is explained beautifully at http://json.org/. Please take a

moment to look over that document so you will better understand what

you are creating here and so you will see the kind of documentation

you want to hunt down when you are building a language grammar.

Creating a New Grammar

Armed with the proper knowledge, you are ready to build a grammar.

Now you need to get TextMate ready! Here are the steps to prepare it:

1. Create a new TextMate document by selecting File � New (D N).

2. Enter just true for the document content. This is a valid, if sparse,

JSON file, and you need to start somewhere.

3. Save your new document by choosing File � Save (D S), and give it

a name of example.json.

This gives you a minimal JSON document to get started with. Note that

TextMate still believes this document is plain text, as you can see in

Figure 10.1, on the next page. It doesn’t yet know what JSON is, be-

cause you haven’t told it. The document is still devoid of color for this

same reason. TextMate doesn’t yet know how to syntax highlight it.

http://json.org/
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=147

THE JSON DATA LANGUAGE 148

Figure 10.1: Plain-text language

Here’s how you create a grammar file:

1. Open the Bundle Editor by selecting Bundles � Bundle Editor � Show

Bundle Editor (CED B).

2. Highlight your Pragmatic Examples bundle by clicking the name.

3. Create a JSON grammar by selecting New Language from the +

menu in the lower-left corner of the Bundle Editor. Type JSON to

name your grammar.

As you can see, TextMate gave you some boilerplate grammar syntax to

help you get started. Let’s set a few quick elements:

1. Change the source.untitled example scopeName to source.json, cre-

ating a unique scope for the new language. TextMate convention

has you placing grammars in two top-level scopes, one for text and

one for source. TextMate creator Allan Odgaard jokes that your

language is text if it looks good with View � Soft Wrap (ED W) acti-

vated, and everything else is source. A more scientific rule of thumb

is to say that you should use source if the grammar defines a form

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=148

THE JSON DATA LANGUAGE 149

Figure 10.2: A JSON scope

of quoted string and should use text if it does not. The reason-

ing here is that you will want source code–style handling in string

constructs, such as making sure that an apostrophe isn’t doubled

when you type it. JSON does define strings, so it’s source. Mark-

down does not and looks good with Soft Wrap, so it is text.

2. Between the parentheses labeled fileTypes, add a ’json’ so TextMate

will recognize files ending in .json as JSON files. You could list

multiple options here, separated by commas, but in this case you

need only one. Note that even though JSON is a legal subset of

JavaScript, you would not want to add a ’js’, since it could interfere

with the main JavaScript grammar that comes with TextMate.

3. Finally, set Activation to Key Equivalent, and set the keystroke to

CEB J. This is a TextMate convention, and your grammars should

always use the same three modifier keys along with the first letter

of the language name.

Close the Bundle Editor so TextMate will save the grammar file and put

it into effect. It still needs a lot of work, but you’ll get to that soon.

In your example file, use your new keystroke (CEB J) to switch to the

JSON language grammar. You will need to select JSON from the menu

of J-languages TextMate pops up, if it’s not the only J-language you

have enabled. The language menu at the bottom of the window should

now label the document correctly as JSON. Select Bundles � TextMate �

Show Scope (CB P), and TextMate will tell you that you are now inside

the scope you just created. You can see these fruits of your labor in

Figure 10.2.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=149

THE JSON DATA LANGUAGE 150

The First Rule

With a basic grammar in place, you are ready to create rules. Grammars

are collections of rules that divide the document syntax into scopes.

For the first rule, let’s tackle the easiest element of the JSON language.

JSON allows for three special constants: true, false, and null. These ele-

ments are common to almost all languages in some form, so it’s useful

to be able to represent them in the data language. You need to add a

rule that identifies these three words.

Like so many things in TextMate, grammar rules are based on regu-

lar expressions. You should be getting pretty comfortable with regular

expression syntax by now, but remember that, when in doubt, you can

always refer to Section 4.2, Mixing in Regular Expressions, on page 50.

An expression to match three words is not hard to conjure. You can use

alternation to allow for the words and flank them with word boundary

anchors to ensure you don’t find them as part of a larger word.

The other half of the rule you need is the scope to be assigned to these

words. TextMate convention is for you to use constant.language.json in

this case. That may seem backward to how you would instinctually

assign the scope, expecting json to be at the front. However, if you wrote

scopes like that, you would need special handling for every single lan-

guage TextMate knows. You would have to deal with the json scope, ruby

scope, and so on. By reversing it, you can instead work with language

elements that are often universal, such as a constant. If you want to

add special handling for JSON constants, you can choose to target the

longer scope.

Now that it’s planned out, it’s time to add the rule:

1. Open the Bundle Editor (CED B).

2. Navigate to your JSON grammar, click the language name to make

it active, and place your caret inside the Edit Language: “JSON”

box.

3. Use Edit in TextMate2 to move the grammar into a regular TextMate

editing window (CD E). The editor should recognize the content

and assign it the Language Grammar type, but if it doesn’t, you

can force the change with CEB L.

4. There are two example rules in the default grammar created for

you by TextMate. You will see these in the patterns = (...) section,

2. I show how to install this tool in Section 1.4, Installing TextMate and Tools, on page 17.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=150

THE JSON DATA LANGUAGE 151

each rule delimited by {...}. Go ahead and remove the larger second

rule, but keep the first one to edit, since it’s already almost exactly

what you need.

5. Modify the first rule to match the words you are looking for, and

assign your scope. Here’s the rule I used:

Download language_grammars/simple_json.textmate

{ name = 'constant.language.json';

match = '\b(true|false|null)\b';

},

6. Save (D S) and close (D W) the grammar document. This will update

the content in the Bundle Editor.

7. You can put the new grammar into effect by closing the Bundle

Editor, but TextMate provides a shortcut since grammar work is

generally a lot of back and forth with the Bundle Editor. Just click-

ing the Test button will put your grammar into action immediately.

Don’t be surprised if TextMate makes minor formatting changes to

your grammar at this point or in the future. Whenever the gram-

mar is saved, TextMate normalizes the document format.

At this point, your JSON document most likely got a splash of color!

TextMate should now recognize and syntax highlight the word true. It

will do more than that. Change our sample content to the following:

[true, false, null]

Notice how TextMate recognizes the words as you enter them. You can

also use Show Scope (CB P) to examine the scope TextMate assigns to

these terms.

The brackets and commas are elements of another JSON construct not

yet recognized, an array. Because these elements are not matched by a

rule, they do not have scopes or styling.

Documenting a Grammar

One rule down. TextMate will now identify JSON’s constants, which

allows them to be syntax highlighted and targeted in automations and

preferences. Let’s tackle another element. This rule is more involved, so

you’ll need some new tricks to manage it.

The next rule you should deal with is the one to handle numbers. You

want TextMate to recognize JSON’s numbers and scope them appro-

priately, again for syntax coloring, automations, and preferences. You

http://media.pragprog.com/titles/textmate/code/language_grammars/simple_json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=151

THE JSON DATA LANGUAGE 152

need to translate that syntax diagram for numbers found on the JSON

documentation page and assign another TextMate standard scope.

Doing those two things, I end up with a rule that looks like this:

{ name = 'constant.numeric.json';

match = '-?(?:0|[1-9]\d*)(?:\.\d+(?:[eE][+-]?\d+)?)?';

},

Yikes! Though it’s pretty much a direct translation of the diagram,

that’s one ugly expression. I had to struggle my way through build-

ing it, testing it a few times along the way, and I’m sure it’s no picnic

for you to read. At some point, I’ll probably return to this grammar to

make changes, and it’s almost certain I’ll forget how this works by then.

The solution is a mode for regular expressions I’ve yet to discuss. Using

the extended mode for regular expressions, you can embed whitespace

and comments inside a regular expression to clarify how it functions.

Inside a (?x:...) pattern, the regular expression engine ignores whites-

pace, and a # character turns the rest of the line it’s on into a comment,

which the engine also ignores.

You don’t need to match whitespace in this expression, but when you

do, you’ll often use the \s character class shortcut anyway, so losing

space characters isn’t too significant. Here’s how I would use extended

mode to clean up the scary new rule:

Download language_grammars/simple_json.textmate

{ name = 'constant.numeric.json';

comment = 'handles integer and decimal numbers';

match = '(?x: # turn on extended mode

-? # an optional minus

(?:

0 # a zero

| # ...or...

[1-9] # a 1-9 character

\d* # followed by zero or more digits

)

(?:

\. # a period

\d+ # followed by one or more digits

(?:

[eE] # an e character

[+-]? # followed by an option +/-

\d+ # followed by one or more digits

)? # make exponent optional

)? # make decimal portion optional

)';

},

http://media.pragprog.com/titles/textmate/code/language_grammars/simple_json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=152

THE JSON DATA LANGUAGE 153

Note that I slipped a comment element in there in addition to the expres-

sion comments. This is another helpful tool for documenting your work

in grammar files.

Now, when you go to enter that rule into your growing grammar file, you

can use another helpful shortcut. Language grammar files are edited in

a property list file format. The syntax3 can be slightly tedious to work

with, so it’s really best to let TextMate write most of it for you. You’ll find

snippets for this in the Bundles � TextMate � Language Grammar Snippets.

Open the grammar file in a TextMate editing window as you did before,

and place your caret just after the last rule you entered. Add a comma

to separate the current rule from the one you intend to add, and then

type matA to trigger the Rule- –Match snippet. The snippet will start you

in the name, and you can A to the match when you are ready.

When you’re done with the new rule, expand the JSON example data

with some numbers so you can see TextMate pick them up:

[true, false, null, 10, 123.45, 0.1e-23]

TextMate’s Language Parser

You’re ready to add JSON’s strings into the mix, but to get that right,

I need to show you a little about how TextMate’s parser works. For

example, change the sample JSON content to the following:

"a JSON string"

Now, let’s introduce a naive rule to match the JSON string:

{ name = 'string.quoted.double.json';

match = '"[^"]*"';

},

I’m ignoring the escaping issues at the moment, but this rule does seem

to identify the string just fine. The problem comes when you try a trick-

ier JSON string, even without escapes. Switch the sample string to this:

"a

multiline

JSON

string"

The current string rule does not match this legal JSON string. However,

if you think about it, the regular expression should match. It looks for

zero or more nonquote characters surrounded by a pair of quotes, and

3. http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists/Articles/OldStylePListsConcept.html#//apple_ref/doc/uid/20001012

http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists/Articles/OldStylePListsConcept.html#//apple_ref/doc/uid/20001012
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=153

THE JSON DATA LANGUAGE 154

the newlines you added are nonquote characters. Don’t take my word

for it, though. Open the Edit � Find � Find dialog box (D F), and perform

a search for the same regular expression. It will match the string.

What you’re running into here is a quirk of TextMate’s language parser.

TextMate has to reparse a portion of the document for every single

change you make in order to keep the syntax highlighting and scopes

current. Now if TextMate rescanned the entire document each time you

pressed a key, performance would nose-dive, and you would like the

editor a lot less. To avoid that, all document parsing works one line at

a time. Make sure you understood what I just said, because this is key

to making TextMate grammars. You cannot write a grammar rule that

works with multiple lines of content at once.

That rule does mean it’s impossible to perfectly scope some language

constructs with TextMate, but that’s a reasonable trade-off for accept-

able performance. It’s also not as big a problem as you might think. I

will show you the TextMate way to tame the tricky string in spite of this

limitation.

Language grammars have a second kind of rule that specifies where

something begins and where it ends. The beginning expression and

end expression are still bound by the one-line-rule individually, but

they may occur any number of lines apart. Here’s a rewrite of the string

rule to use the second rule type:

{ name = 'string.quoted.double.json';

begin = '"';

end = '"';

},

You can enter that rule with another of the grammar snippets, this one

triggered with begA. Enter the rule’s scope; press A; enter the begin

pattern, A; and finish up by entering the end pattern.

As soon as that rule is in place, TextMate will recognize the multi-

line string you have been using. You’re not quite finished with strings,

though. You need to handle escapes. Here’s one more sample string you

can enter in your JSON file:

"a\nJSON string\nwith \"escapes\""

The current rule doesn’t handle that too gracefully, prematurely end-

ing the string at the first escaped quote. Another great feature of the

begin/end rules is that they can specify a set of patterns matched only

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=154

THE JSON DATA LANGUAGE 155

inside their content.4 Even better, an element matched by one of these

inner elements is consumed and thus not available as the end match.

That’s exactly what you need here.

Return to editing the JSON grammar, put your caret just after the semi-

colon terminating the string’s end pattern, press F, and type patA.

Here’s the pattern you need to add:

patterns = (

{ name = 'constant.character.escape.json';

match = '(?x: # turn on extended mode

\\ # a literal backslash

(?: # ...followed by...

["\\/bfnrt] # one of these characters

| # ...or...

u # a u

[0-9a-fA-F]{4} # and four hex digits

)

)';

}

);

The addition of that rule will have TextMate parsing any legal JSON

string you care to throw at it. However, it is good grammar etiquette to

scope the string delimiters in case automations need to identify them.

Let’s add that.

When you enter an expression for a grammar rule, you can make cap-

tures inside that expression normally. You can then use another feature

of rules to assign scopes to just those captures. Here are the additions

for the string rule:

beginCaptures = { 0 = {

name = 'punctuation.definition.string.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.string.end.json'; }; };

As you can see, you can specify scopes for beginCaptures and endCap-

tures separately. You identify capture groups by numbers, just as you

would with the replacement variables of the Find dialog box. In this case,

though, since you want to scope the entire match, you can save yourself

the trouble of adding parentheses to set 1 and just use the 0 shortcut

to scope the entire match.

4. In fact, you must nest patterns to match anything inside a begin/end rule. Outer rules

do not match inside these rules.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=155

THE JSON DATA LANGUAGE 156

For a quick final touch, you can drop in another escaping rule to help

catch typos. This isn’t strictly needed, but users of the JSON grammar

will benefit when the syntax highlighting calls out their mistakes imme-

diately. Since the earlier rule covered all legal escapes, slotting this

catchall beneath it handles everything else that looks like an escape:

{ name = 'invalid.illegal.unrecognized-string-escape.json';

match = '\\.';

}

For reference, the complete rule for JSON strings is as follows:

Download language_grammars/simple_json.textmate

{ name = 'string.quoted.double.json';

begin = '"';

end = '"';

beginCaptures = { 0 = {

name = 'punctuation.definition.string.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.string.end.json'; }; };

patterns = (

{ name = 'constant.character.escape.json';

match = '(?x: # turn on extended mode

\\ # a literal backslash

(?: # ...followed by...

["\\/bfnrt] # one of these characters

| # ...or...

u # a u

[0-9a-fA-F]{4} # and four hex digits

)

)';

},

{ name = 'invalid.illegal.unrecognized-string-escape.json';

match = '\\.';

},

);

},

);

The Pattern Repository

You’re doing well with the basic JSON language elements. Now you

need to focus on the array and object constructs, which can contain

other language elements. When grammars get recursive, the pattern

repository is a great tool for keeping things straight.

TextMate grammars can have a pattern repository, which is just a col-

lection of named patterns. At any point in the grammar, you may refer

to the patterns in the repository by name.

http://media.pragprog.com/titles/textmate/code/language_grammars/simple_json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=156

THE JSON DATA LANGUAGE 157

The idea here is that arrays can contain all the elements you have

already built, and you definitely don’t want to duplicate all that work.

Instead, you can move your patterns out of the patterns section and into

the repository assigning names for them as you do. Here’s a start for the

repository definition, which you can enter with the repA snippet:

repository =

{ constant = { };

number = { };

string = { };

};

Add that just after the top-level patterns definition in your grammar.

Now you want to move your rules inside those blank definitions. For

example, constant should end up looking like this:

Download language_grammars/json.textmate

constant = {

name = 'constant.language.json';

match = '\b(?:true|false|null)\b';

};

Individual rules are great, but you really want to group them into a

single element as the JSON documentation does. The documentation

uses the term value so I will too, for clarity. The value definition needs

to wrap the previous elements, and you can accomplish that with the

include property for language grammars. Break in the incA snippet to

build up this new definition for the repository:

value =

{ comment = "the 'value' diagram at http://json.org";

patterns = (

{ include = '#constant'; },

{ include = '#number'; },

{ include = '#string'; },

);

};

You can use the include directive to access a few different elements.

When you want a repository definition, as shown here, you just use

the name of the definition preceded by a number sign. Now you have a

single definition that includes all three of the previous rules.

That leads to the question of what to do with the chopped-up patterns

section for the grammar itself. Well, I’m happy to report that it can get

a whole lot smaller, thanks to the repository:

http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=157

THE JSON DATA LANGUAGE 158

Download language_grammars/json.textmate

patterns = ({ include = '#value'; });

That completes you reorganization effort, and your JSON grammar

should be back to working order if you want to check it. You didn’t

add any functionality this time, but you set things up good for arrays

and objects.

Nested Rules

With the repository populated, a rule to isolate arrays isn’t too different

from the rule you built for strings. You can use a begin/end rule based

on the enclosing brackets. Here’s the new rule to add to the repository:

array =

{ name = 'meta.structure.array.json';

begin = '\[';

end = '\]';

beginCaptures = { 0 = {

name = 'punctuation.definition.array.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.array.end.json'; }; };

};

The meta scope used here is the TextMate convention for marking up

larger portions of a document. These scopes aren’t generally styled but

are commonly used in limiting the scope of automations.

The patterns contained within an array aren’t much more work. The

value definition takes care of the majority of the legal values, and then

you just need a rule for the comma separator. After spending this whole

chapter bouncing back and forth between the similar JSON and prop-

erty list documents, though, I was making some silly mistakes and

decided to add a rule to help catch them. Here’s the pattern list I used:

Download language_grammars/json.textmate

patterns = (

{ include = '#value'; },

{ name = 'punctuation.separator.array.json';

match = ',';

},

{ name = 'invalid.illegal.expected-array-separator.json';

match = '[^\s\]]';

},

);

Don’t let that invalid rule fool you into thinking this is a strict grammar.

The invalid rule still won’t catch plenty of mistakes, such as multiple

http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=158

THE JSON DATA LANGUAGE 159

Figure 10.3: Separator typo flagged illegal

commas without a value between them. It does flag some simple errors,

though, like the one shown in Figure 10.3.

Note that I embedded a description of the error flagged in the scope that

matched it. This could be useful to automations that report or even try

to correct errors. You may also want to style some errors differently,

so it’s nice to be able to target the specific cases. You need to add one

more line to the value definition patterns to kick-start the array rule:

Download language_grammars/json.textmate

{ include = '#array'; },

Try the definition by changing the JSON content to something like this:

[1, "a \"JSON\" sting", null, [4, true, "another string"]]

TextMate will pick up on the recursive definition here, since the gram-

mar allows it. You can see how the scopes nest in Figure 10.4.

Peeking at the Document

Supporting the JSON object type is similar to the array rule you just

created, but it requires one more technique that comes up regularly in

building grammars. The basic repository definition for objects is similar

to the definition for arrays:

object =

{ name = 'meta.structure.dictionary.json';

comment = 'a JSON object';

begin = '\{';

end = '\}';

beginCaptures = { 0 = {

name = 'punctuation.definition.dictionary.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.dictionary.end.json'; }; };

patterns = ();

};

http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=159

THE JSON DATA LANGUAGE 160

Figure 10.4: Nested scopes

The surprising change in the previous code is that I have elected to

scope the type as a dictionary even though the JSON documentation

refers to the type as an object. This associative array structure of key/

value pairs is common in many programming languages, often called a

hash, hashtable, dictionary, or map. In TextMate grammars, it makes

sense to standardize the scopes so you can work with this construct

the same way in any language. The property list grammar calls it a

dictionary, so I felt it best to reuse that term here.

The only task that remains is to specify the patterns for the object. The

first just needs to cover object keys, and you’ve handled that kind of

include before:

Download language_grammars/json.textmate

{ comment = 'the JSON object key';

include = '#string';

},

The second rule is the challenge. You need a rule to represent object

values. As a reminder, JSON objects have a form like this:

{"one" : 1, "two" : 2, "Three": 3}

Notice how each of the values has a leading colon. That is a hint that

you could use that as a begin pattern. What would you use for the end

pattern, though? Most values end with a trailing comma, but the last

one does not. Now, you will know you are at the last key if you can see

the brace that ends the object. You have to be careful not to consume

that brace, though, since the end rule for object still needs to match it.

The solution is to peek ahead for the brace using the look-ahead feature

of TextMate’s regular expression engine. That allows you to confirm that

there is a brace coming but leave in the content to be matched by the

end pattern for object. Here’s how that rule comes together:

http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=160

THE JSON DATA LANGUAGE 161

Download language_grammars/json.textmate

{ name = 'meta.structure.dictionary.value.json';

begin = ':';

end = '(,)|(?=\})';

beginCaptures = { 0 = {

name = 'punctuation.separator.dictionary.key-value.json'; }; };

endCaptures = { 1 = {

name = 'punctuation.separator.dictionary.pair.json'; }; };

patterns = (

{ comment = 'the JSON object value';

include = '#value';

},

{ name = 'invalid.illegal.expected-dictionary-separator.json';

match = '[^\s,]';

},

);

},

The fancy end pattern is the tricky piece of this puzzle. It looks for

a comma, which it can safely consume, or peeks ahead for the clos-

ing brace. Note that the comma is captured in group 1 when present

and assigned a scope by endCaptures. Again, using the look-arounds as

shown here is one of the secrets to grammar mastery, so make sure

you understand this rule before continuing.

Let’s add one more rule to catch some invalid input, as you did with

array:

Download language_grammars/json.textmate

{ name = 'invalid.illegal.expected-dictionary-separator.json';

match = '[^\s\}]';

},

Finally, you need to insert object into the value definition:

Download language_grammars/json.textmate

{ include = '#object'; },

Folding Markers

I have ignored two top-level grammar elements through this entire dis-

cussion: foldingStartMarker and foldingStopMarker. TextMate uses these

two expressions to decide where to place folding markers in the gut-

ter. The user can use these markers to collapse sections of code, as

discussed in Section 3.1, Folding Sections of Code, on page 32.

http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=161

THE JSON DATA LANGUAGE 162

Joe Asks. . .

How Strict Should My Grammar Be?

Remember the goals of a grammar: to provide syntax highlight-
ing, to control where some settings are active, and to restrict
where certain automations function. Syntax highlighting is an
aid to users and it can certainly be of value to catch errors, but
the goal does not need to be a perfectly accurate language
definition.

For example, in a language such as Java the signature of a
method looks like this:

public static void main(String[] args) { }

However, if you write a rule targeting the entire signature, users
will need to do a lot of typing before they get any feedback
from the syntax highlighting. It would be much better to address
terms such as public, static, and void individually so TextMate
can recognize them as soon as they are entered. This may allow
some illegal combinations, but it’s more likely to help the user
catch simple typos.

On the other hand, if you’re going to write a rule to catch
similar identifiers, such as NSString, NSData, NSArray, and NSDic-

tionary, you should prefer a more specific rule. The expres-
sion ’\bNS(?:String|Data|Array|Dictionary)\b’ will catch more errors
than ’\bNS[A-Z][a-z]+\b’.

Don’t forget to consider the kind of language the grammar is
for as well. A grammar for a free-form markup language such as
Markdown doesn’t need to be very strict, but the grammar for
a data language such as the one we keep using to edit prop-
erty lists needs to be a bit strict to catch more editing errors.
The truth is that the JSON grammar in this chapter is probably a
bit too forgiving, but making it strict complicates the example
beyond the scope of this book.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=162

THE JSON DATA LANGUAGE 163

Building good folding marker expressions is a work of art, but the basic

premise is to construct a start expression to match on any line you

would like to begin a fold and construct a stop expression that matches

lines where the fold would end. The usual one-line-at-a-time limitation

of TextMate’s parser applies, and you have to consider another issue.

TextMate matches the start and stop markers based on indention level,

which must be the same for both. This heuristic works for the majority

of cases and is nothing you have any control over, but just keep that in

mind as you build and test folding expressions.

This is another great place to use regular expression comments to doc-

ument your thinking. Here are the folding expressions I came up with

while playing with examples at http://www.json.org/example.html:

Download language_grammars/json.textmate

foldingStartMarker = '(?x: # turn on extended mode

^ # a line beginning with

\s* # some optional space

[{\[] # the start of an object or array

(?! # but not followed by

.* # whatever

[}\]] # and the close of an object or array

,? # an optional comma

\s* # some optional space

$ # at the end of the line

)

| # ...or...

[{\[] # the start of an object or array

\s* # some optional space

$ # at the end of the line

)';

foldingStopMarker = '(?x: # turn on extended mode

^ # a line beginning with

\s* # some optional space

[}\]] # and the close of an object or array

)';

Probably the best tip I can give you for getting the hang of building good

folding markers is to look over the grammars that ship with TextMate.

You can usually find a language similar to your own and adapt the

expressions to fit. I used the property list expressions as the basis for

these JSON equivalents, for example.

http://www.json.org/example.html
http://media.pragprog.com/titles/textmate/code/language_grammars/json.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=163

THE JSON DATA LANGUAGE 164

The Complete Grammar

Putting everything together, you have built a complete and ready-to-use

JSON grammar. Here’s the complete example grammar:

Download language_grammars/json_full.textmate

{ scopeName = 'source.json';

fileTypes = ('json');

foldingStartMarker = '(?x: # turn on extended mode

^ # a line beginning with

\s* # some optional space

[{\[] # the start of an object or array

(?! # but not followed by

.* # whatever

[}\]] # and the close of an object or array

,? # an optional comma

\s* # some optional space

$ # at the end of the line

)

| # ...or...

[{\[] # the start of an object or array

\s* # some optional space

$ # at the end of the line

)';

foldingStopMarker = '(?x: # turn on extended mode

^ # a line beginning with

\s* # some optional space

[}\]] # and the close of an object or array

)';

patterns = ({ include = '#value'; });

repository = {

array = {

name = 'meta.structure.array.json';

begin = '\[';

end = '\]';

beginCaptures = { 0 = {

name = 'punctuation.definition.array.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.array.end.json'; }; };

patterns = (

{ include = '#value'; },

{ name = 'punctuation.separator.array.json';

match = ',';

},

{ name = 'invalid.illegal.expected-array-separator.json';

match = '[^\s\]]';

},

);

};

http://media.pragprog.com/titles/textmate/code/language_grammars/json_full.textmate
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=164

THE JSON DATA LANGUAGE 165

constant = {

name = 'constant.language.json';

match = '\b(?:true|false|null)\b';

};

number = {

name = 'constant.numeric.json';

comment = 'handles integer and decimal numbers';

match = '(?x: # turn on extended mode

-? # an optional minus

(?:

0 # a zero

| # ...or...

[1-9] # a 1-9 character

\d* # followed by zero or more digits

)

(?:

\. # a period

\d+ # followed by one or more digits

(?:

[eE] # an e character

[+-]? # followed by an option +/-

\d+ # followed by one or more digits

)? # make exponent optional

)? # make decimal portion optional

)';

};

object = {

name = 'meta.structure.dictionary.json';

comment = 'a JSON object';

begin = '\{';

end = '\}';

beginCaptures = { 0 = {

name = 'punctuation.definition.dictionary.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.dictionary.end.json'; }; };

patterns = (

{ comment = 'the JSON object key';

include = '#string';

},

{ name = 'meta.structure.dictionary.value.json';

begin = ':';

end = '(,)|(?=\})';

beginCaptures = { 0 = {

name = 'punctuation.separator.dictionary.key-value.json'; }; };

endCaptures = { 1 = {

name = 'punctuation.separator.dictionary.pair.json'; }; };

patterns = (

{ comment = 'the JSON object value';

include = '#value';

},

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=165

THE JSON DATA LANGUAGE 166

{ name = 'invalid.illegal.expected-dictionary-separator.json';

match = '[^\s,]';

},

);

},

{ name = 'invalid.illegal.expected-dictionary-separator.json';

match = '[^\s\}]';

},

);

};

string = {

name = 'string.quoted.double.json';

begin = '"';

end = '"';

beginCaptures = { 0 = {

name = 'punctuation.definition.string.begin.json'; }; };

endCaptures = { 0 = {

name = 'punctuation.definition.string.end.json'; }; };

patterns = (

{ name = 'constant.character.escape.json';

match = '(?x: # turn on extended mode

\\ # a literal backslash

(?: # ...followed by...

["\\/bfnrt] # one of these characters

| # ...or...

u # a u

[0-9a-fA-F]{4} # and four hex digits

)

)';

},

{ name = 'invalid.illegal.unrecognized-string-escape.json';

match = '\\.';

},

);

};

value = {

comment = "the 'value' diagram at http://json.org";

patterns = (

{ include = '#constant'; },

{ include = '#number'; },

{ include = '#string'; },

{ include = '#array'; },

{ include = '#object'; },

);

};

};

}

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=166

LANGUAGE GRAMMAR REFERENCE 167

10.2 Language Grammar Reference

You may choose to define six top-level language elements for your gram-

mar files. The following is a brief description of the purpose of each key:

scopeName

This is the overall scope assigned to the entire file when this

grammar is in effect. As I explained in Section 10.1, Creating

a New Grammar, on page 147, the grammar should begin with

text or source. It’s also important to note that you should extend

the scopes for specializations of an existing language so all the

automations, settings, and syntax coloring for the existing lan-

guage extend to the specialization. For example, a proprietary XML

format would be scoped text.xml.proprietary-format-name.

fileTypes

This is a list of file extensions for which this grammar should be

in effect. The user can override these rules, but by default this is

how TextMate determines the language for an opened document.

firstLineMatch

An alternate means of establishing a file’s language, this regu-

lar expression is matched against the first line of the document

when it is opened. If it matches, this grammar will be assigned for

the document. This is commonly used to recognize Unix shebang

lines.

foldingStartMarker

foldingStopMarker

As covered in Section 10.1, Folding Markers, on page 161, these

expressions help TextMate locate sections of code that can be

folded by the user.

patterns

This is the list of rules used to parse the document content. See

Section 10.2, Rule Reference, on the next page, for an explanation

of the individual rule elements.

repository

This is an association of named rules usable throughout the gram-

mar. The keys are the names for the individual rules, with the

associated value being the rule itself.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=167

LANGUAGE GRAMMAR REFERENCE 168

Rule Reference

The rules of a language grammar have their own keys with unique

meaning in the context of the rule definitions. The following is a list

of the keys available with descriptions of their usage:

name

This is the name of the scope applied to content matched by this

rule. This scope should follow the TextMate conventions detailed

in Section 10.2, Scope Reference, on the following page.

match

This is the regular expression matching the portion of content that

should be assigned this rule’s scope. A rule should contain this

key or begin and end keys, but not both.

begin

end

These are a pair of expressions marking where a rule starts and

stops. A rule should contain both of these keys or the match key.

You can access captured portions of the begin expression in the

end expression using back references. For example, the following

rule matches a do...end pair such as a block in Ruby, but only if

they have the same indent level:

{ name = 'meta.syntax.indented-block';

begin = '^(\s*).*\bdo\b\s*$';

end = '^\1end';

},

patterns

This is a list of subrules matched only between begin and end

patterns.

include

This key references the current grammar, other grammars, or

rules in the repository. To nest the current grammar in a rule, use

this:

{ include = '$self'; }

A grammar nested inside other grammars may nest the current

top-level grammar with the following:

{ include = '$base'; }

You can also reference any currently loaded grammar file by name:

{ include = 'source.json'; }

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=168

LANGUAGE GRAMMAR REFERENCE 169

Finally, you can use this directive to reference patterns from the

repository of this grammar:

{ include = '#array'; }

applyEndPatternLast

If an end expression and a nested rule from patterns will match at

the same character, the end pattern usually gets first crack at the

content. This directive swaps the regular order, giving the nested

rule first shot at the match.

contentName

When provided, this scope name is assigned to all content between

the begin and end patterns.

captures
beginCaptures

endCaptures

These are key/value pairs used to assign scopes to captured por-

tions of the rule expressions. The key is the match variable num-

ber you want to scope the contents of, and the value is an attribute

list with a scope in a name key. Use captures to target groups from

match or as a shortcut to assign the same scope to captures in

begin and end patterns. Alternately, you can target just beginCap-

tures and/or endCaptures:

{ name = 'variable.other.readwrite.class.ruby';

match = '(@@)(\w+)';

captures = {

1 = { name = 'punctuation.definition.variable.class.ruby'; };

2 = { name = 'variable.other.readwrite.class.name.ruby'; };

};

},

disabled

This switch is a tool for solving problems in language grammars.

Just set disabled to 1 to shut off a rule. This can be handy for iso-

lating issues in the grammar. When you have the problem worked

out, just delete the disabled setting to restore the rule.

Scope Reference

TextMate does not enforce any scope-naming rules on you as a gram-

mar creator. However, a set of conventions has formed in the Text-

Mate community to keep new grammars in line with current practices.

Observing these conventions allows you to design intelligent commands

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=169

LANGUAGE GRAMMAR REFERENCE 170

that work for multiple language and ensures that your languages will

work with existing themes. These are the scopes your grammars should

use:

comment

This scope is for comments embedded in your language. Subtypes di-

vide comments by type:

comment.line.double-slash

comment.line.number-sign

comment.line.*

The comment.line subtype is for single-line comments in a lan-

guage. You should always append a description of the comment

character so it can be extracted from the scope by commands.

comment.block

This scope is for multiline comments.

comment.block.documentation

Use this to identify embedded documentation such as Java’s Java-

Doc comments.

constant

A namespace for the unchanging elements of a language. Here’s the list

by subtype:

constant.numeric

Constants that represent numbers: 42, 1.5, 0xFF.

constant.character

Constants that represent characters, such as HTML’s <.

constant.character.escape

Escaped characters, commonly found in the strings of program-

ming languages. Examples include \t, \n, and \141.

constant.language

Constants provided by the language: true, false, nil.

constant.other

Any constant not covered by the previous categories, such as col-

ors in CSS.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=170

LANGUAGE GRAMMAR REFERENCE 171

entity

This scope involves the larger sections of a document: a chapter, a class,

or a tag. Although the entire section will be scoped as a meta subtype,

the entity scope is used for the names and titles of a section.

entity.name.function

The name of a function

entity.name.type.class
entity.name.type.module

entity.name.type.*

The name of a type declaration, such as a class or module

entity.name.tag

The name of a tag in a markup language

entity.name.section

The name of a section or heading

entity.other.inherited-class

The name of a parent class used in the definition of a child class

entity.other.attribute-name

The name of an attribute for a tag

invalid

You should use this scope to flag elements of a language that are mal-

formed or outdated.

invalid.illegal

An illegal piece of syntax, such as a bare & in an XML document.

invalid.deprecated

Use this scope to flag old APIs that should no longer be used.

keyword

You can place keywords not covered by other scopes here. Subtypes are

as follows:

keyword.control

Keywords used in flow control: if, for, return

keyword.operator

For operators that have a textual representation, such as or

keyword.other

All other keywords

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=171

LANGUAGE GRAMMAR REFERENCE 172

punctuation

This is a new categorization for the operators of a language. In addition

to using the following subtypes, you can tack on a trailing .begin or

.end for paired operators, before the language identifier at the end of

the scope:

punctuation.definition

The scope for punctuation used to delimit single objects: an array,

a string, a header, a list, a table

punctuation.section

The scope for punctuation used to delimit a structured section: a

comment, a function, a scope, a quote, a paragraph

punctuation.separator

The scope for punctuation used to separate elements of content:

key/value pairs or arguments

punctuation.terminator

The scope for punctuation used to terminate an element: a state-

ment, a rule, a line

markup

The scope for elements used to mark up text. Categories reflect the

constructs offered by markup popular markup languages:

markup.underline

Text that should be underlined.

markup.underline.link

For external references. Typically URLs.

Links are nested under markup.underline as a convenience for

themes. If no link styling is specified, they will inherit the fairly

standard convention of being underlined.

markup.bold

For text that should be bold or strongly emphasized.

markup.italic

For text that should be italic or emphasized.

markup.heading

For section titles. You can append a nesting level, as in markup.

heading.2.html for HTML.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=172

LANGUAGE GRAMMAR REFERENCE 173

list.numbered

list.unnumbered
list.*

For textual lists, by type.

markup.quote

Quoted, or block-quoted, text.

markup.raw

For text that should be rendered verbatim, such as code listings.

Spell checking is generally disabled in these sections.

markup.other

For all other markup constructs.

meta

This scope is for marking up larger portions of a document, such as

functions or data structure definitions. The scope is not usually styled,

but you can use it to limit the reach of automations.

storage

For types and modifiers:

storage.type

Used to scope storage type identifiers: class, function, int

storage.modifier

The scope for storage modifier identifiers: abstract, final, static

string

Used to mark up a run of character data in most languages. Subtypes

divide string and near-string types:

string.quoted.single

string.quoted.double

string.quoted.triple
string.quoted.other

For quoted strings, by kind of quote used. Triple-quoted strings

are used in Python, and string.quoted.other is for other kinds of

quoting, such as $’shell’ or %q{}.

string.unquoted

For here-docs and here-strings.

string.interpolated

For evaluated strings, such as ‘date‘ or $(pwd).

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=173

LANGUAGE GRAMMAR REFERENCE 174

string.regexp

For regular expression literals.

string.other

For all other string types.

support

This scope address language elements provided by frameworks and

libraries. The categories are as follows:

support.function

For functions provided by frameworks and libraries

support.class

For classes provided by frameworks and libraries

support.type

For types provided by frameworks and libraries, such as C’s type-

defs and structs

support.constant

For constants provided by frameworks and libraries

support.variable

For variables provided by frameworks and libraries

support.other

For any other constructs provided by frameworks and libraries

variable

The scope covering user variable entities. The three types are as follows:

variable.parameter

Used to scope function parameter variables

variable.language

Used to scope reserved variables, such as this or self

variable.other

Used to scope all other variables

It’s more important to spread your language elements out among the

listed scopes than to perfectly model your language’s syntax. If you

lump everything under the keyword scope, your entire language will be

syntax highlighted identically, no matter how true to the syntax you are

being. Also, remember to reuse scope subtypes and work from general

to specific, always slotting the language name on the far right.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=174

LANGUAGE GRAMMAR REFERENCE 175

TextMate ships with a tool you can use to validate the scopes in your

newly created bundle. The script reads syntax files and then prints the

names of any scopes not matching the conventions. You can run the

check by feeding the Terminal:

ruby \

/Applications/TextMate.app/Contents/SharedSupport/Support/bin/validate_bundle.rb \

/path/to/your/bundle

Building new grammars isn’t for everyone and not often needed, but

a rare few of us actually find it fun to twiddle and tweak TextMate’s

core. You should now know whether you are one of us. Even if you’re

not, you can use this knowledge to make changes to TextMate’s editing

behaviors and syntax highlighting. I’ll talk about that next.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=175

Chapter 11

Preferences and Themes
Once a language grammar exists, you are free to use the scopes it

assigns to the contents of your documents. This helps improve your

work environment by customizing TextMate to respond to the way you

think. I talked about how you can and should use scopes to limit the

reach of automations in Section 6.2, Limiting Snippet Scope, on page 94,

but you can use other ways to make TextMate change behavior depend-

ing on the content you are currently editing.

You can use scopes to change two aspects for documents that contain

them. The changes you don’t generally see are called preferences, and

they subtly shift TextMate’s behavior to make your editing jobs that

much easier. The obvious changes occur in syntax highlight coloring

and styles that are managed by themes. This chapter covers how to

modify both of these elements.

11.1 Preferences

You should already be familiar with TextMate � Preferences (D ,), which

you can use to set global TextMate functionality. That’s not what I am

discussing in this chapter. The preferences you create here will be more

tightly focused, altering functionality only at certain places in a certain

kind of document.

Altering a preference will cause TextMate to subtly adjust certain be-

haviors of the editor in the areas you indicate. Given that, a preference

always involves two specifications. The first is a description of the set-

ting you would like to adjust. These descriptions are written in the same

property list format you used to create a grammar file in Chapter 10,

PREFERENCES 177

Language Grammars, on page 146. The second specification for a pref-

erence is where you would like the change to take effect. This is just a

list of scopes, just as you would apply for limiting an automation.

Setting a preference is similar to making a small grammar file. Here’s

the process:

1. Open the Bundle Editor by selecting Bundles � Bundle Editor � Show

Bundle Editor (CED B).

2. Highlight the name of the bundle to which you want to add a

preference. Preference files are usually stored in the same bundle

as the grammar file whose scopes they affect, but this is not a

requirement.

3. Create a preference file by selecting New Preferences from the +

menu in the lower-left corner of the Bundle Editor. Type a name

for your file, which is traditionally the setting it changes: Spell

Checking, Symbol List, and so on.

4. Enter the settings (from the following sections of this chapter) you

would like to change between the empty braces TextMate provides

you.

5. Provide a scope selector that limits the setting change to content

inside the scope or scopes you want to alter. I discuss this process

in Section 6.2, Limiting Snippet Scope, on page 94.

The following sections highlight the preferences currently used by Text-

Mate. I will cover the changes you can make to these settings and how

they will affect TextMate behavior.

Spell Checking

This setting makes TextMate’s spelling checker super smart, and it’s

just a single switch you can flip on and off as needed. By default, the

spelling checker will validate every word in the document, but that’s not

always what you want. Programming and markup languages often have

nonsensical identifiers such as fileno() and DOCTYPE. You don’t want to

see squiggly red lines under terms like that. Because of that, the Source

bundle contains this trivial preference file:

{ spellChecking = 0; }

As you probably guessed, the 0 setting disables spell checking. In con-

trast, you could use 1 to reenable checking.

That file has a scope selector of source, constant, keyword, storage, support,

variable, which covers all the conventional scopes used for the elements

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=177

PREFERENCES 178

of programming languages. However, even that rule isn’t perfect. Pro-

grams commonly contain strings filled with human-readable content,

and you should spell check that. That’s why the Source bundle con-

tains a second spelling preference file scoped to source string.quoted with

these contents:

{ spellChecking = 1; }

This setting restores spell-checking functionality to quoted strings loca-

ted inside the source scope that the last file disabled. You can use this

same setting to ensure the proper parts of your documents are spell

checked.

Paired Characters

Two different settings fall under this category but are closely related:

smartTypingPairs

A list of two character lists. When the first character of any list

is inserted in the indicated scope, TextMate immediately adds the

second character behind the caret, as described in Section 3.3,

Inserting New Content, on page 36.

highlightPairs

A list of two character lists. When the caret is moved over any of

the second characters in these lists, TextMate will highlight the

matching first character of the list for a short time. This helps the

user identify the nesting of these paired characters.

The Text bundle sets the following pairs in an unscoped file, which will

make them available anywhere that doesn’t override the settings:

{ highlightPairs = (

('(', ')'),

('{', '}'),

('[', ']'),

('‘‘', ''''),

('‘', '''),

);

smartTypingPairs = (

('"', '"'),

('(', ')'),

('{', '}'),

('[', ']'),

('‘‘', ''''),

('‘', '''),

);

}

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=178

PREFERENCES 179

Notice the lack of a ("’", "’") smart typing pair. That character is com-

monly typed as an apostrophe and will likely annoy you in pairs. How-

ever, the Source bundle overrides this setting for most places of a

source code file, where it is commonly used to delimit strings.

Symbol List

TextMate maintains a list of symbols in the current document. These

are hotspots in the content you can return to as needed, as discussed

in Section 3.1, Moving to a Line, Symbol, or Bookmark, on page 31. This

preference controls how that list gets populated, and it consists of two

directives:

showInSymbolList

Set this directive to 1 to have the contents of the indicated scope

added to the symbol list.

symbolTransformation

This is a collection of one or more regular expressions used to

transform all symbol list entries before they are added to the list.

Expressions should have the form s/match-exp/replacement/

options, and you separate multiple patterns with semicolons. You

are allowed to add comments to this mini-program using the num-

ber sign.

For example, the Markdown bundle includes a preference file scoped to

text.html.markdown markup.heading.markdown with the following contents:

{ showInSymbolList = 1;

symbolTransformation = "

s/\s*#*\s*\z//g; # strip trailing space and #'s

s/(?<=#)#/ /g; # change all but first # to m-space

s/^#( *)\s+(.*)/$1$2/; # strip first # and space before title

";

}

This ensures that Markdown headers of the form ### My Header ###

are added to the symbol list. Before they are placed there, three regu-

lar expressions remove unneeded formatting characters. The /g option

means “global” and causes TextMate to repeat the match until it fails.

That’s the only option you will ever need to add.

Indentation

When you type an else or an end in a Ruby document, TextMate reduces

the indent of that line one level so it will line up with the correspond-

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=179

PREFERENCES 180

ing if or while. It knows to make these changes thanks to the following

settings:

increaseIndentPattern

This is a regular expression indicating lines that increase the in-

dent pattern. TextMate will increase the indent one level starting

on the line following the match and continue with the new inden-

tion level until you manually change the indent or until it matches

another pattern.

Many programming languages use braces to wrap sections of code,

so a common pattern for this setting is a variation of the following

trivial code:

increaseIndentPattern = '\{';

The actual patterns can be considerably more complex since they

need to account for issues such as comments and the closing

brace possibly being on the same line. Take a peek at the C bun-

dle’s rules for a moderate example.

decreaseIndentPattern

This is a regular expression signaling the end of a series of inden-

ted lines. TextMate decreases the indent level on the matched line

and for all the lines following it.

Again, this is commonly some variation of a closing brace pattern:

decreaseIndentPattern = '\}';

indentNextLinePattern

This pattern functions exactly like increaseIndentPattern, except it

affects only the line immediately following the matched pattern.

Some languages, such as C and Java, allow conditional constructs

that affect only the following statement. For example:

if (...)

...;

These constructs are common targets for indentNextLinePattern.

unIndentedLinePattern

Some lines occur outside the regular document indention and

should, in fact, not even affect the current level of indent. You

can specify a regular expression in this directive to match lines

for TextMate to ignore.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=180

PREFERENCES 181

C preprocessor statements are an ideal target for unIndentedLine-

Pattern, because they break the regular document flow:

...

#if ...

...

#endif

...

Shell Variables

In addition to setting environment variables and project-level variables,

as described in more detail in Section 9.2, TextMate’s Environment Vari-

ables, on page 119, you can set variables that are active only when you

are in certain scopes. This makes automations that use these variables

context-sensitive, since the information they read from the variables

will change depending on where the user is.

Bundles � Source � Comment Line/Selection (D /) uses this feature to read

comment markers for the current language. When you add new bun-

dles to TextMate, you need only to provide a preference file that sets

the comment variables for that language, and the command will work

with the new creation. Here’s that file from the Ruby bundle, scoped to

source.ruby:

{ shellVariables = (

{ name = 'TM_COMMENT_START';

value = '# ';

},

{ name = 'TM_COMMENT_START_2';

value = '=begin

';

},

{ name = 'TM_COMMENT_END_2';

value = '=end

';

},

);

}

Setting variables is a simple matter of assigning to the shellVariables

directive a list of name/value pairs. The name is the variable to set, and

the value is the string content placed in the variable.

This is just one example of variables supported by TextMate out of the

box. Feel free to set your own unique shellVariables and to take advantage

of them in your own automations.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=181

THEMES 182

Completions

I recommended you start wearing out the K key for completions all the

way back in Section 3.3, Inserting New Content, on page 36. By default,

that command builds a word list for the matches based on current

document content. You can customize that with the following settings,

though:

completions

This list of words will be added to the words matched from the

document when a completion is triggered. You can use this to

insert language keywords or common API calls so a user does not

need to type the term before it can be matched.

disableDefaultCompletion

Set this directive to 1 to shut off the regular completion behavior

of adding document matched words to the list.

completionCommand

This super override allows you to provide a shell command to han-

dle completions in any custom manner you choose. Your script

can access the word for completion in the TM_CURRENT_WORD envi-

ronment variable and should return a list of possible completions,

one per line.

The Ruby bundle has a nice example of this in action, with the

following command scoped to meta.require.ruby string.quoted:

{ completionCommand = '#!/usr/bin/env ruby

ptrn = /^#{Regexp.escape ENV["TM_CURRENT_WORD"].to_s}[^.]+\..+/

puts($LOAD_PATH.inject([]) do |res, path|

res + Dir.new(path).grep(ptrn) { |file| file[/^[^.]+/] }

end.sort.uniq)'; }

The scope limits this command to being triggered when a comple-

tion is attempted inside a Ruby require string. It returns a list of

files in the load path matching the current word. This allows you

to type reqA followed by strK to require "stringio".

11.2 Themes

Once a grammar file has divided a document into scopes, TextMate can

syntax highlight the various elements. Your current theme handles the

decision of which color to make each element.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=182

THEMES 183

Figure 11.1: Theme list sheet

To view your current theme or change to a new theme, select Text-

Mate � Preferences (D ,), and click the Fonts & Colors tab. The name

of your current theme appears in the pop-up menu at the top of that

panel, and you can switch to a new theme just by selecting a different

name with that menu.

Using this panel, you can also create your own themes from scratch.

This allows you to customize the visual rendering of your documents.

To create a new theme, choose Edit Theme List from the theme name menu

to display the sheet shown in Figure 11.1. You can add a new theme

using the + button in the lower-left corner of this sheet, but it’s often

much easier to choose a well-defined theme such as Twilight, click the

++ button to copy the theme, and edit to taste. Either way, you should

immediately type a name for your new theme.

When you are done editing the theme list, dismiss the sheet by clicking

the Okay button; you can then begin editing your new theme. Editing

themes works much like creating preferences. At the top of the theme

panel, you can set default colors for six elements of the document: Fore-

ground, Background, Selection, Invisibles, Line Highlight, and Caret.

In the table below that, you can add elements that optionally override

the Foreground (FG) and Background (BG) colors for specific scopes.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=183

THEMES 184

Figure 11.2: Removing a color

Elements may also be any combination of bold (B), italic (I), and under-

lined (U).

To create a new element, follow these steps:

1. Click the + button just below the element list.

2. Type a name for the element. Names should generally be the piece

of syntax targeted. You should include the document type if this

is not a catchall rule.

3. Click the FG or BG color wells if you want to set either shade.

You will be presented with the standard Mac OS X color dialog

box from which you can make a choice. TextMate will honor the

opacity slider, should you choose to adjust it.

4. Click any combination of the B, I, and U buttons to turn on those

style changes. A blue button is active, while clear is off. Just click

the button again to toggle its state if you make a mistake.

http://books.pragprog.com/titles/textmate/errata/add?pdf_page=184

THEMES 185

5. Enter a scope selector for this style, just as you would for an auto-

mation or preference file. Only the assigned scopes will be affected.

Remember that a more specific scope such as string.quoted.double

is always selected over a less specific scope such as string.quoted.

If you make a mistake, you can always remove an element by clicking

the name once to highlight it and then clicking the - button beneath

the element table. If you want to remove an FG or BG color you set,

click and drag the color chit until the cursor changes to display a puff

of smoke, and then release the button. You can see this process in

Figure 11.2, on the previous page.

If you want to share a theme you created or locate new themes to try on

your documents, visit the UserSubmittedThemes page of the TextMate

wiki at http://macromates.com/wiki/Themes/UserSubmittedThemes. Double-

clicking any .tmTheme file you have downloaded will install it in Text-

Mate and make it the active theme.

With this knowledge of how to change TextMate’s special behaviors and

outward appearance, you have come to the end of what I can teach

you in this little book. There’s always more to learn, though, so before

I close, I’ll recommend some other resources.

http://macromates.com/wiki/Themes/UserSubmittedThemes
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=185

Chapter 12

Beyond This Book
The hardest part of learning new skills is getting familiar with the jar-

gon associated with them. Congratulations, you’re now past that for

TextMate. Now that you speak the language, you can talk to others

who know the same language. You can start to take advantage of two

additional resources available to learn more about the editor. The first

is TextMate itself.

Now that you are comfortable with TextMate terminology, try browsing

Help � TextMate Help (D ?). The documentation is more for reference and

is less example-driven than this text, but you should be ready for that

now. The search functionality also makes it valuable for looking up

quick answers to questions you may have.

TextMate will continue to evolve after this book is published, and you

will be able to get documentation for that too. When you update to a

new version, the editor will list the changes. It’s a good habit to get

into reading these items, because it’s the best way to find out about

new features. You can access the list for reference anytime you want by

selecting Help � Release Notes.

The other sources of knowledge hidden in the editor are the bundles

themselves. Some smart individuals have spent a lot of time developing

the HTML, Objective-C, Ruby, and Rails bundles, just to name a few.

You now know enough to look over these snippets, macros, commands,

grammars, and preferences. I promise you’ll learn powerful new tricks

as you do.

When you get tired of speaking with inanimate objects, it’s time to join

the TextMate community. We’re a lively bunch and are always inter-

ested in pushing TextMate to new limits.

CHAPTER 12. BEYOND THIS BOOK 187

Here are the usual hangouts where you can find us:

• The TextMate community keeps up a wiki.1 The wiki pages have a

lot of great resources such as links to cheat sheets; you can find

them at http://macromates.com/wiki/Main/UsefulResources.

• You can find instructions for joining the TextMate mailing list at

http://lists.macromates.com/mailman/listinfo/textmate.

• Visit the ##textmate2 IRC channel on Freenode (irc.freenode.net)

to speak with TextMate creator Allan Odgaard, me, and the other

TextMate regulars.

You can also learn a lot by following Allan Odgaard’s TextMate blog at

http://macromates.com/blog/ and keeping up with the screencast feed at

http://macromates.com/screencasts.

I look forward to seeing you in the community. Be sure to send a hello

my way.

1. http://macromates.com/wiki

2. Yes, that’s two number signs, not a typo. Freenode policy requires the extra character

to signify that TextMate is not free software.

http://macromates.com/wiki/Main/UsefulResources
http://lists.macromates.com/mailman/listinfo/textmate
irc.freenode.net
http://macromates.com/blog/
http://macromates.com/screencasts
http://macromates.com/wiki
http://books.pragprog.com/titles/textmate/errata/add?pdf_page=187

Index
Symbols
! in TextMate, 28, 67

$0 variable, 89, 112

/g modifier, 92

/g option, 179

<% %>, 69

<%=%>, 69, 104

[] brackets, 51

=> command, 66

% and ERb, 104

A
Adium, 82n

Alignments, 42f, 42–43

Alternation, 55

Anchors, 52–53

Apple Design Award, 13

applyEndPatternLast, 169

Arrays, 147, 159

Autocomplete, see Completion

Automation menu, 20

Automations

bash support functions, 131–133

building bundle menus, 118f,

117–119

Built-in, 59–82

Blogging bundle, 77–78

HTML and CSS bundle, 63f, 62–65

Mail bundle, 78–79

Markdown bundle, 73–77

Math bundle, 72–73

Rails bundle, 67–69, 70f

Ruby bundle, 65–67

Source bundle, 80–81

Subversion bundle, 71f, 69–72

Text bundle, 79, 80f, 79–80

TextMate bundle, 81–82

TODO bundle, 60f, 59–62

commands for, 103–116

drag, 115f, 115–116

shell, 103–105, 106, 107f

textmate, 108f, 105–114

compound, 142–144

document parsing, 129–131

environment variables, 120f,

119–124

folder where saved, 101

interactive commands, building,

139–141

macro editor, 100–102

macros, 97–102

Ruby support libraries, 133–134

save operations, hooking into, 132f,

134–136

shell commands, 124–129

snippets, 83–96

streaming command output,

136–139

Autopaired characters, 37

and selecting text, 37f, 37

B
Back references, 55

Backslash (\), 50

and back references, 55

and character classes, 52

bash, 113

bash support functions for, 131–133

commands, 132

outputs, 131

Ruby libraries, 133

begin, 168

Begin/end rule, 155, 160

beginCaptures, 169

Blogging bundle, 77–78

adding new posts, 77

Category dialog, 78

Fetch Post, 77

BOOKMARKS 189 COMMENT

headers, 77

images, adding, 78

Preview, 78

setup, 77

Bookmarks, 32

setting, 33f

Brackets [], 51

Building bundle menus, 117–119

example of, 118

Excluded Items, 119

options, 118

structure of, 118f

Built-in automations, 59–82

Blogging bundle, 77–78

HTML and CSS bundles, 63f, 62–65

Mail bundle, 78–79

Markdown bundle, 73–77

Math bundle, 72–73

Rails bundle, 67–69, 70f

Ruby bundle, 65–67

Source bundle, 80–81

Subversion bundle, 71f, 69–72

Text bundle, 79, 80f, 79–80

TextMate bundle, 81–82

TODO bundle, 60f, 59–62

Bundle Editor, 101, 102

Bundles

Blogging, 77–78

getting more, 19

HTML and CSS, 63f, 62–65

Mail, 78–79

Markdown, 73–77

Math, 72–73

organizing into menus, 117–119

overview of, 59

Pragmatic Examples, 118

Rails, 67–69, 70f

remembering, 61

Ruby, 65–67

saving macros in, 98

and snippets, 83, 84f

Source, 80–81

as source of knowledge, 186

SQL, 120

Subversion, 71f, 69–72

Text, 79, 80f, 79–80

TextMate, 81–82

TODO, 60f, 59–62

C
Calculator, 72

Calendar example, 105

CamelCase, 89

CamelCaseWords, 30

captures, 169

Carets, 29–31

and character classes, 51

column and word movement, 30f, 30

keystrokes for emac, 31

line and character movement, 29

line and document movement, 30

Case foldings, 56

Case, changing, 41

cat, 125

Category dialog, 78

Changing case, 41

Character classes, 51–52

and backslashes, 52

brackets in, 51

and caret, 51

and hyphens, 51

and ranges, 51

shortcuts, 52

and special characters, 51

Character option, 110

Check spelling, 44

class, 89

ClassName placeholder, 90f

Clipboard history, 38, 39

CocoaDialog, 140

Colloquy, 82n

Colors, 184f, 184

Columns

math in, 73

movement through, 30f, 30

and Rails bundle, 68

selections, 35

and soft wrapped lines, 36

Commands, 103–116

interactive, building

using dialog boxes, 139–140

drag, 115f, 115–116

hidden, 79

interactive, building, 139–141

dynamic HTML, 140–141

overview of, 103

shell, 103–105, 106, 107f

textmate, 108f, 105–114

see also Environment variables, see

also Streaming command output;

Interactive commands

comment, 170

COMPLETION 190 FIND AND REPLACE

Completion, 36

commands for, 37

completionCommand, 182

completions, 182

DisableDefaultCompletion, 182

completionCommand, 182

completions, 182

Compound automations, 142–144

example, conversation statement,

142

macro, building, 143

Conditional replacement, 57

constant, 170

Constants, in JSON, 150

Content, entering, 36–37

autopaired characters, 37

completion, 36, 37

contentName, 169

Conversation statement example, 142

Copy and paste, 38–39

Create HTML from Document, 82

Create New Document option, 113

CSS bundle, 62–65

adding style with, 64

Insert Open/Close Tag, 63f

menus for, 65

curl, 125

Current Scope selector, 34, 35f

Cut, copy and paste, 38–39

Cutting-edge, 18

D
Dashboard equivalent website, 141

decreaseIndentPattern, 180

Dialog Boxes, 139–140

Directory listing command, 18

disabled, 169

DisableDefaultCompletion, 182

Discard option, 111

doctype, 39, 64

Document option, 110

Document parsing, 129–131

activating, 129

and XPath searches, 130

Documents, sharing over internet, 81

Drag commands, 115–116

activating, 115

Markdown Source, 115f, 115

uses for, 115

Dragging tabs, 26f

Dynamic HTML, 140–141

E
e_as(), 134

e_sh(), 133

e_sn(), 134

e_url(), 134

echo, 125

Edge releases, 18

Edit Each Line, 40

Edit in TextMate, 17, 108

Editing

freehanded, 41–43

multiple lines at once, 39–41

overwrite, 42

spelling, 44

tabs, 43f, 43–44

Editing window, 20f, 19–20

gutter in, 19

menus in, 20

emacs, bindings supported by

TextMate, 31, 44

Embedded Ruby (ERb), 104

end, 168

endCaptures, 169

Entire Document option, 110

entity, 171

Environment Variables, 108, 119–124

list of, 120

project-level, 119

setting, 119, 120f

Escape, 50

for JSON language grammar, 154

for typos, 156

for URLs, 64

escape.rb, 133

Evaluate and Replace Expression, 72

Evaluate Line, 72

Exclamation mark, 28

Excluded Items, 119

exit_codes.rb, 133

F
Fetch Web Page Source macro, 99, 100

Files

moving between, 25f, 24–25

navigating with Rails bundle, 69

opening, 24

renaming, 27

fileTypes, 167

Filter Through Command, 105, 107f

find, 125

Find and replace, 45–57

FIND DIALOG BOX 191 INCREASEINDENTPATTERN

and Find dialog box, 48f, 46–48

and Find in Project, 49f, 48–49

overview of, 45

and regular expressions, 50–57

advanced features of, 55–57

alternation, 55

anchors in, 52–53

character class in, 51–52

grouping and capturing, 54–55

quantifiers, 53–54

special characters in, 50

scanning, 46, 47f

Find dialog box, 48f, 46–48

Find in Project, 49f, 48–49

firstLineMatch, 167

fmt, 125

Fn and laptops, 17

Folder references, 28f, 26–28

hierarchy, 26

limiting, 27

Folding code, 32–33, 34f

Folding markers, 161–163, 167

foldingStartMarker, 167

foldingStopMarker, 167

Fonts and colors, 184

Footnotes plugin, 68

Forward Incremental Search, 46

Freehanded editing, 41

Freenode, 187

G
Google Lookup Selection, 75

Grammars, 146–175

editing, 153

JSON data language, 146–164

building, 148f, 147–149

complete grammar for, 164–167

construct examples, 147

documenting, 151–153

example rules, 151

folding markers and, 161–163

key equivalent for, 149

nested rules and, 159f, 158–159,

160f

parsing, 153–156

repositories, 156–158

rules for, 150–151

scope for, 149f

syntax for, 147

language reference, 167–175

fileTypes, 167

firstLineMatch, 167

foldingStartMarker, 167

foldingStopMarker, 167

patterns, 167

repository, 167

scopeName, 167

scopes, 170–175

JSON data language

and numbers, 151

overview of, 146

rules, 168

saving, 151

JSON data language

and source, 149

strictness with, 162

grep, 125

Grouping and capturing, 54–55

Grouping project files, 23f

Gutter, 19, 32

H
Hard wrap changes, 42

head, 40, 64, 126

HELP command, 59

Help menu, 186

Hidden commands, 79

highlightPairs, 178

History of TextMate, 12–13

Hooks for save operations, 134–136

formula for, 134

syntax checker, 132f

HTML, 39

bundle for, 62

dynamic, 140–141

and output display, 136

show as option, 112

and streaming, 138

and TextMate bundle, 82

HTML bundle, 62–65

commands for, 63, 64

Insert Open/Close Tag, 63f

tips for using, 64

and URLs, 64

htmlize(), 134

Hyphens and character classes, 51

I
iconv, 126

Ignore case, 47, 48f

include, 168

increaseIndentPattern, 180

INDENTATION 192 MACROS

Indentation, 38, 180–181

decreaseIndentPattern, 180

increaseIndentPattern, 180

IndentNextLinePattern, 180

unIndentedLinePattern, 180

IndentNextLinePattern, 180

Insert as Snippet option, 112

Insert as Text option, 112

Insert Open/Close Tag, 62, 63f

Installation, 17–19

Interactive commands, building,

139–141

using dialog boxes, 139–140

dynamic HTML, 140–141

invalid, 171

J
JSON data language, 146–164

building a grammar for, 148f,

147–149

complete grammar for, 164–167

construct examples, 147

escape for typos, 156

example rules, 151

and folding markers, 161–163

grammar, documenting, 151–153

grammar, strictness with, 162

key equivalent for, 149

and nested rules, 159f, 158–159,

160f

and numbers, 151

object types in, 159

overview of, 147

and pattern repositories, 156–158

and regular expressions, 150

rules for, 150–151

scope for, 149f

and source, 149

strings, 153–156

syntax for, 147

K
Key equivalents, 86

for grammars, 149

vs. keyboard shortcuts, 135

for Save command, 135

Key/value pairs, 160

Keystrokes, 15–17

for caret movement, 29, 31

for changing case, 41

cheat sheet for, 16n

for emacs bindings, 44

for hard wrap changes, 42

for indentation change, 38

and laptops, 17

for moving text, 38

for project drawer, 24

keyword, 171, 174

L
Language grammar reference, 167–175

fileTypes, 167

firstLineMatch, 167

foldingStartMarker, 167

foldingStopMarker, 167

patterns, 167

repository, 167

rules, 168

scopeName, 167

scopes, 170–175

top-level elements, 167

Language menu, 20

Language parser, 153–156

and begin/end rule, 155

limitations of, 154

Languages, see Grammars

Laptops, 17

Libraries, for Ruby support, 133–134

Line option, 110

Lines

editing multiple, 39–41

moving to, 31

Live Search, see Forward Incremental

Search

Login, generating, 91f, 91

Look-around assertions, 56

Lorem ipsum snippet, 80

Lowercase, 41

and replacement strings, 56

M
m, as quantifier, 53

Mac

keystrokes in, 15–17

mouse for, 17

Macros, 97–102

building, 97, 143

and Bundle Editor, 101

directory where saved, 101

and editing window, 99

Fetch Web Page Source, 99, 100

Macro Editor, 100–102

MAIL BUNDLE 193 PLACEHOLDERS

memory, 101

naming, 98

numbers doubling, 102

overview of, 97

Replay Last Recording, 98

saving, 98

scratch, 98

Start Recording, 97

Stop Recording, 98

Mail bundle, 78–79

editing, 78

requirements for, 78

shortcuts, 79

Mailing list, 187

man, 126

Markdown bundle, 73–77

document example, 74

and Google Lookup Selection, 75

italics and bold, 75

and lists, 75

output example, 75

Syntax Cheat Sheet, 74

website for, 73

Markdown headers, 179

Markdown Source Drag Command,

115f

Markdown Source drag command, 115

Markers, folding, 161–163, 167

markup, 172

match, 168

mate command-line tool, 17, 18, 26

and building projects, 49

directory listing command, 18

help for, 18

Math bundle, 72–73

Add Numbers, 73

Evaluate and Replace Expression, 72

Evaluate Line, 72

mdfind, 127

mdls, 127

menu references

shorthand, 15

Menus, see Building bundle menus

meta, 173

metaWeblog API, 77

Migrations, support for, 68

Mirroring and Transformations, 90–92

HTML header snippet, 93f

login, generating, 91f, 91

login, modifying, 91

modifiers for, 92

transformations, form of, 92

and variables, 92

Modes, 56

Mouse, 17

Move to EOL, 81

Moving around, 29–33

to bookmarks, 32, 33f

folding code, 32–33, 34f

to a line, 31

to a symbol, 31, 32f

Moving text, 38

N
n, as quantifier, 53

name, 168

Name snippet, 85f

Nested rules, 159f, 158–159, 160f

None option, 109

Nothing option, 110

O
Objects, 147

defined, 159

values, 160

Odgaard, Allan, 12, 187

Oniguruma, 50, 55n

osascript, 127

Overwrite mode, 42

P
Paired characters, 178–179, see

Auto-paired characters

highlightPairs, 178

smartTypingPairs, 178, 179

Paragraphs, reformatting, 42f

Parentheses

for grouping, 55

in regular expressions, 54

Parsing documents, see Document

parsing

Paste, 38–39

Pattern repository, 156–158

patterns, 167, 168

pbcopy, 127

pbpaste, 127

perl, 128

php, 128

Placeholders, 88–90

ClassName, 90f

nested tab stops, 90f

PLAIN TEXT LANGUAGE 194 RUBY BUNDLE

from Ruby bundle, 89f

Plain text language, 148f

Pragmatic Examples (bundle example),

84

Preferences, 176–182

altering, 177

completions, 182

indentation, 180–181

overview of, 176

paired characters, 178–179

setting, 177

shell variables, 181

specifications for, 177

spell checking, 177–178

symbol list, 179

prints(), 138

Project drawer

and commands in Subversion

bundle, 71

moving, 23

navigating with keystrokes, 24

Project window and tabs, 25

Project-level variables, 119

Projects, 22–28

creating, 23f, 22–23

defaults for, 28

with files and groups, 27

folder references, 28f, 26–28

getting started, 22

limiting folder references in, 27

moving between files, 25f, 24–25

project drawer, moving, 23

regular expressions in, 28

saving, 23

shortcuts, 26f, 25–26

TODO command, 27

punctuation, 172

puts(), 138

python, 128

Q
Quantifiers, 53–54

Question mark and quantifiers, 53

Quick Scan command, 108

R
Rails bundle, 67–69

Create Partial, 69

Editing Partials Inline, 70f

file navigation and, 69

and Footnotes plugin, 68

layers, working with, 68

migrations support and, 68

setting up, 67

views shortcut, 69

Rails Quick Scan command, 108

Recording macros, 97

Reformat Quoted Text, 79

Regular expressions, 50–57

advanced features of, 55–57

case foldings, 56

conditional replacement, 57

look-around assertions, 56

modes, 56

and Oniguruma, 55n

alternation, 55

anchors in, 52–53

and back references, 55

character classes in, 51–52

and grammar rules, 150

grouping and capturing, 54–55

and Oniguruma, 50

overview of, 45, 50

parentheses in, 54

quantifiers, 53–54

special characters in, 50

in Unix, 126

and whitespace, 152

Release Notes, 46, 186

Rename, 27

Replace

see also Find and replace

Replace All button, 47, 48f

grouping and capturing, 54

Replace Document option, 112

Replace field, 47

Replace Selected button, 49f

Replace Selected Text option, 112

Replay Last Recording, 98

Repository, 156–158

repository, 167

request_confirmation(), 140

request_file(), 140

request_files(), 140

request_item(), 140

request_secure_string(), 140

request_string(), 139

require_cmd, 131

Ruby and placeholder snippets, 89

Ruby bundle, 65–67

creating classes or modules, 66

focus of, 66

RUBY SEARCH COMMAND 195 SOFT WRAP

GUI dialog, 65

and IRb, 66

Run Script command, 65

and unit testing, 67

Ruby search command, 106

Ruby support libraries, 133–134

escape.rb, 133

exit_codes.rb, 133

requiring, 133

textmate.rb, 134

web_preview.rb, 133

S
Save operations, hooking into, 134–136

formula for, 134

syntax checker, 132f

Scanning, 46, 47f

Scope for snippets, 95f, 94–96

multiple, 96

reasons for limiting, 94

with Scope Selector, 95

Scope option, 110

Scope reference, 170–175

comment, 170

constant, 170

conventions, 170

entity, 171

invalid, 171

keyword, 171, 174

markup, 172

meta, 173

punctuation, 172

storage, 173

string, 173

support, 174

and syntax, 174

validating, 175

variable, 174

Scope Selector, 34, 35f, 95, 108

for spell check, 178

scopeName, 167

Scratch macro, 98

Screenplays, 13n

script, 64

sed, 128

Selected Text option, 109

Selecting text, 33–36

built-in shortcuts for, 34

and columns, 35

Current Scope selector and, 34, 35f

list of names example, 35

and paired characters, 37f, 37

and soft wrap, 36

Separator typo flagged illegal, 159f

Shell commands, 103–105, 124–129

and bash, 131

and calendar example, 105

and ERb, 104, 105

Filter Through Command, 106, 107f

invoking, 103

and languages, 104

Ruby executor and, 104

Text Menu, 106f

Shell out (for data), 94

Shell variables, 181

setting variables, 181

Show as HTML option, 112

Show as Tool Tip option, 113

SHOW command, 59

showInSymbolList, 179

Sigma (summation) button, 47

Slashdot, 79

Smart Tabs, 43

smartTypingPairs, 178, 179

snake_case_words, 30

Snippets, 83–96

$TM_SELECTED_TEXT, 92, 94f

and ClassName placeholder, 90f

contact information, 87f

creating bundles, 83, 84f

curly quotes example, 94f

ending, 87

and HTML header with ID

generation, 93f

and key equivalents, 86

limiting scope of, 95f, 94–96

Lorem ipsum, 80

and macros, 101

mirroring and transformations,

90–92

for names, 85f

and nested tab stops, 90f

and placeholders, 88–90

for repository definition, 157

for Ruby bundle, 66, 89f

shell out for data, 94

tab stops, 87f, 88f, 86–96

and Tab Trigger, 85

variables in, 87

see also Environment variables

Soft Tabs, 43

Soft Wrap, 36

SORT 196 TEXTMATE COMMANDS

sort, 128

Source bundle, 80–81

comment and uncomment sections,

81

Move to EOL, 81

Special characters and character

classes, 51

Spell checking, 177–178

Spelling, 44

Spotlight searches, 127

Spreadsheet data, 13n

SQL bundle, 120

Start Recording, 97

storage, 173

Streaming command output, 136–139

and <pre> ... </pre> tags, 137

and incomplete lines, 138

and Show as HTML, 136

string, 173

strong, 64

style, 64

Subexpressions, 55

Subversion bundle, 69–72

advantages of using, 72

checking out, 70

commands for, 71f, 71

support, 174

Symbol list, 31, 179

showInSymbolList, 179

symbolTransformation, 179

Symbol menu, 20

Symbols

moving to, 31

pop-up menu for, 32f

symbolTransformation, 179

Syntax Cheat Sheet, 74

Syntax Checker, 132f

system(), 141

T
Tab stops, 86–96

and ClassName placeholder, 90f

contact information, 87, 88f

ending, 87

and HTML header snippet with ID

generation, 93f

mirroring and transformations,

90–92

nested, 90f

and placeholders, 88–90

and Ruby bundle class snippet, 89f

Tab Trigger, 85

Tabs, 43–44

menu, 20, 43f

switching between, 25

tail, 126

tee, 128

Terminal, 26

Text bundle, 79, 79

hidden commands, 79

Lorem ipsum snippet, 80

placeholder text, 80

Statistics for Document, 80

Word Count ToolTip, 80f

Text Menu, 106f

Textile, 77

TextMate

community, mailing list for, 187

community, websites for, 187

cutting-edge releases for, 18

default install, returning to, 19

editing window in, 20f, 19–20

emac bindings support, 44

environment variables in, 108

help menu, 186

history of, 12–13

HTML built-in automations, 39

installation of, 17–19

laptops and, 17

live code bundles for, 15n

and Unix applications, 18

UserSubmittedThemes page, 185

TextMate bundle, 81–82

Create HTML from Document, 82

Open in Browser, 82

Paste Selection Online, 82

Send to Clipboard, 82

sharing documents over internet, 81

TextMate commands, 105–114

about, 105

building, 106

environment variables, 108

Input and Output, 108–113

Character option, 110

Create New Document option, 113

Discard option, 111

Document option, 110

Entire Document option, 110

fallback options for, 110–111

Insert as Snippet option, 112

Insert as Text option, 112

Line option, 110

TEXTMATE.RB 197 WEBSITES

None option, 109

Nothing option, 110

options for, 109–110

Replace Document option, 112

Replace Selected Text option, 112

Scope option, 110

Selected Text option, 109

Show as HTML option, 112

Show as Tool Tip option, 113

Word option, 110

input related feature, 111

Lookup Word on Google, 106

Rails Quick Scan, 108

Rails Quick Scan Results, 108f

Ruby search command, 107

and scripting languages, 113–114

and YAML files, 114

textmate.rb, 134

Themes, 182–185

creating new element, 184

editing, 184

list sheet, 183f

overview of, 176

removing a color, 184f

UserSubmittedThemes page, 185

Titlecase, 41

TM_BUNDLE_SUPPORT, 120

TM_COLUMN_NUMBER, 122

TM_COLUMNS, 122

TM_CURRENT_LINE, 121

TM_CURRENT_WORD, 121

TM_DIRECTORY, 123

TM_DROPPED_FILE, 123

TM_DROPPED_FILEPATH, 123

TM_FILEPATH, 123

TM_INPUT_START_LINE, 122

TM_INPUT_START_LINE_INDEX, 122

TM_LINE_INDEX, 122

TM_LINE_NUMBER, 122

TM_MODIFIER_FLAGS, 123

TM_PROJECT_DIRECTORY, 123

TM_SCOPE, 121

TM_SELECTED_TEXT, 121

TM_SELECTED_FILE, 123

TM_SELECTED_FILES, 123

$TM_SELECTED_TEXT, 92, 94f

TM_SOFT_TABS, 123

TM_SUPPORT_PATH, 121

TM_TAB_SIZE, 123

TODO bundle, 59–62

adding your own tags, 62

commands for, 59, 60

list output, 60f

TODO command, 27, 55

touch, 128

Transformations, see Mirroring and

Transformations

Triggers

for snippet example, 84

pneumonic, 86

tab, 85

U
unIndentedLinePattern, 180

uniq, 128

Unit testing and Ruby bundle, 67

Unix and commands, 103

Unix applications, 18

Unix regular expressions, 126

Unwrap Paragraphs, 79

Uppercase, 41

and replacement strings, 56

uuidgen, 128

V
variable, 174

Variables, 87, 89

environment, 108, 120f, 119–124

list of, 120

and mirrors, 92

project-level, 119

setting, 119

shell, 181

in transformations, 92

Version control, see Subversion bundle

Vertical bar (|)

and alternation, 55

View Source command, 113

W
web_preview.rb, 133

Websites

for Adium, 82n

for CocoaDialog, 140

for Colloquy, 82n

for Dashboard equivalent, 141

for Freenode, 187

for getting more bundles, 19

for grammar file syntax, 153n

for JSON syntax, 147

for keystroke glyphs, 16n

for live code bundles, 15n

WORD COUNT TOOLTIP 198 YAML FILES

for Markdown, 73

for Oniguruma features, 55n

for screenplay tools, 13n

for Slashdot, 79

for spreadsheet data tools, 13n

for TextMate community, 187

for TextMate default installation, 19

for TextMate installation, 17

for TextMate mailing list, 187

for UserSubmittedThemes page of

TextMate wiki, 185

Word Count ToolTip, 80f

Word option, 110

Wrap Around button, 47, 48f

Wrap Selection, 63, 64

X
xargs, 129

XML and document parsing, 130

XPath searches, 130

xxd, 129

Y
YAML files, 114

	Contents
	Introduction
	A Brief History of TextMate
	In These Pages
	The Mac Keyboard and Mouse
	Installing TextMate and Tools
	The Editing Window

	Editing
	Projects
	Creating a Project
	Moving between Files
	Shortcuts for Creating Projects
	Folder References

	Power Editing
	Moving Around
	Making Selections
	Editing

	Find and Replace
	Without Using a Regular Expression
	Mixing in Regular Expressions

	Automations
	Built-in Automations
	The TODO Bundle
	The HTML and CSS Bundles
	The Ruby Bundle
	The Rails Bundle
	The Subversion Bundle
	The Math Bundle
	The Markdown Bundle
	The Blogging Bundle
	The Mail Bundle
	The Text Bundle
	The Source Bundle
	The TextMate Bundle

	Snippets
	Basic Snippets
	Tab Stops

	Macros
	The Macro Editor

	Commands
	Shell Commands
	TextMate Commands
	Drag Commands

	Automation Tips and Tricks
	Building Bundle Menus
	TextMate's Environment Variables
	Useful Shell Commands
	Using TextMate's Document Parsing
	bash Support Functions
	Ruby Support Libraries
	Hooking Into Save Operations
	Streaming Command Output
	Building Interactive Commands
	Compound Automations

	Languages
	Language Grammars
	The JSON Data Language
	Language Grammar Reference

	Preferences and Themes
	Preferences
	Themes

	Beyond This Book

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

