
Rapid GUI Development with QtRuby

Caleb Tennis

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

BOOKLEET ©

Many of the designations used by manufacturers and sellers to distin-

guish their products are claimed as trademarks. Where those designations

appear in this book, and The Pragmatic Programmers, LLC was aware of

a trademark claim, the designations have been printed in initial capital

letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Pro-

grammer, Pragmatic Programming, Pragmatic Bookshelf and the linking

g device are trademarks of The Pragmatic Programmers, LLC. Qt® is a

registered trademark of Trolltech in Norway, the United States and other

countries.

Useful Friday Links

• Source code from this book and

other resources.

• Free updates to this PDF

• Errata and suggestions. To report

an erratum on a page, click the

link in the footer.

Every precaution was taken in the preparation of this book. However, the

publisher assumes no responsibility for errors or omissions, or for dam-

ages that may result from the use of information (including program list-

ings) contained herein.

To see what we’re up to, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

This PDF publication is intended for the personal use of the individual

whose name appears at the bottom of each page. This publication may not

be disseminated to others by any means without the prior consent of the

publisher. In particular, the publication must not be made available on the

Internet (via a web server, file sharing network, or any other means).

Produced in the United States of America.

Bookshelf
Pragmatic Lovingly created by gerbil #40 on 2006-11-11

BOOKLEET ©

http://www.trolltech.com/
http://pragmaticprogrammer.com/titles/ctrubyqt
http://books.pragprog.com/titles/ctrubyqt/reorder
http://books.pragprog.com/titles/ctrubyqt/errata
http://www.pragmaticprogrammer.com

F ridays

Contents

1 Introduction 1

1.1 Frameworks . 1

1.2 Our Assumptions . 2

1.3 Acknowledgements . 3

2 About Qt 4

2.1 A Little History . 5

2.2 Versions . 6

2.3 Where to get Qt . 7

2.4 How to install Qt from source 8

2.5 Installation Issues . 10

2.6 Exploring the toolkit 11

3 About QtRuby 13

3.1 Language Bindings . 13

3.2 I smell SMOKE . 14

3.3 Installing QtRuby . 14

3.4 Installation Issues . 18

4 Get Your Feet Wet 19

4.1 Your first program . 19

4.2 Objects and Widgets and Parents, oh my! 21

4.3 The Qt Object Model 26

4.4 Other initialization items 30

4.5 The Qt::Application class 31

4.6 Summary . 33

BOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=iii

F ridays

CONTENTS CONTENTS iv

5 Take the Plunge 34

5.1 Your First Custom Widget 34

5.2 Widget Geometry . 36

5.3 Understanding Layouts 38

5.4 Automating a task . 45

5.5 Signals and Slots . 47

5.6 Slot Senders . 57

5.7 Summary . 58

6 Sink or Swim 59

6.1 Event Methods . 59

6.2 Event Filters . 63

6.3 The Main Event . 65

6.4 The Event Loop . 66

6.5 Event posting . 68

6.6 Summary . 69

7 Home Stretch 70

7.1 Qt Modules . 70

7.2 QtRuby tools . 72

7.3 Taking Advantage of Ruby 75

7.4 Disposing of Widgets 76

7.5 Debugging a QtRuby Application 77

8 Korundum 80

8.1 Installing Korundum 80

8.2 Using Korundum . 81

8.3 DCOP—Interprocess Communication 82

8.4 Summary . 87

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=iv

F ridays

CONTENTS CONTENTS v

A Event Method Map 88

B Resources 89

B.1 Web Resources . 89

B.2 Bibliography . 90

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=v

F ridays

Chapter 1

Introduction

1.1 Frameworks

Creating a graphical application with a scripting language isn’t new.

TCL, a popular scripting language of the early 1990s has Tk, a

graphical extension using the Motif libraries. For years, these tool-

kits were the defacto standard for creating GUI applications both

easily and quickly.

It’s probably no surprise that Ruby comes with libraries that sup-

port TCL and Tk.

But, as time moves on, tools come onto the scene that provide new

features that users want. The GUI framework Qt is one such tool,

built and refined over many years of use. Today, Qt is a powerhouse

framework, providing a top notch interface for building applications

on all three major computing platforms.

Qt and Ruby—A Lovely Marriage

We believe that Qt provides the perfect mix of features for creating

robust GUI applications. We also believe that extending the use of

Qt into the Ruby domain gives us incredible power to create high

quality applications.

The choice of which toolkit to use is a personal one. For some devel-

We recommend you check out Qt’s excellent
online documentation.

opers, there is as much passion in the choice of toolkit as there is in

their choice of Ruby, Perl, or Python. When starting out with a new

framework like QtRuby, we recommend that you investigate all the

possible competing options before making any decisions.

BOOKLEET ©

http://tcl.sourceforge.net
http://tcl.sourceforge.net
http://www.opengroup.org/openmotif
http://tcl.sourceforge.net
http://tcl.sourceforge.net
http://doc.trolltech.com/3.3/
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=1

F ridays

CHAPTER 1. INTRODUCTION OUR ASSUMPTIONS 2

Other GUI/Ruby framework combinations are:

• FXRuby (for the FOX toolkit)

• wxRuby (for wxWidgets)

• Ruby/Gnome2 (for GTK)

• RubyCocoa (for Cocoa)

1.2 Our Assumptions

In this book, we assume that you have some familiarity with Ruby—

that you understand and read Ruby code and can follow examples

in the book. If not, pick up a copy of Programming Ruby [TFH05].

We do not assume you have familiarity with Qt, although, a moder-

ate amount of familiarity will be a plus. For this, we recommend C++

GUI Programming with Qt 3 [BS04], which is also freely available on

the web (see Appendix B, on page 89).

We also assume you’re comfortable with your platform—Linux or

Mac—and that you are able to follow some of the instructions on

installing the software. We’ve attempted to make it as easy as pos-

sible, but some troubleshooting on your part may be required if

something doesn’t work right.

Last, we assume that you will follow through the examples as they

are presented. Unfortunately, we don’t have the space or time to

discuss every aspect of the toolkit. However, after learning the fun-

damentals presented within, we feel confident that you will have

enough understanding of QtRuby to feel comfortable learning more

on your own.

Report erratumBOOKLEET ©

http://www.fxruby.org
http://www.fox-toolkit.com
http://wxruby.sourceforge.net
http://www.wxwidgets.org
http://ruby-gnome2.sourceforge.jp
http://www.gtk.org
http://rubycocoa.sourceforge.net/doc
http://developer.apple.com/cocoa
http://pragmaticprogrammer.com/titles/ruby
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=2

F ridays

CHAPTER 1. INTRODUCTION ACKNOWLEDGEMENTS 3

1.3 Acknowledgements

First, thanks to the developers who were responsible for QtRuby

and SMOKE: Richard Dale, Ashley Winters, Germain Garand, David

Faure, and others.

Thanks to the developers at Trolltech who produce Qt and provide

the GPL version to the open source community.

Thanks to the two Pragmatists, Andy and Dave, who provided input,

editing, and suggestions on the book.

Thanks to the Ruby community for being helpful and friendly to new

comers who tend to ask the same questions over and over again.

Finally, thanks to my wife, Anna, who put up with many evenings

of her husband paying more attention to this book than to her.

Report erratumBOOKLEET ©

http://developer.kde.org/language-bindings/smoke/index.html
http://www.gnu.org/copyleft/gpl.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=3

F ridays

Chapter 2

About Qt

If you are already familiar with Qt and installing it on your system,

you can skip ahead to Chapter 3, About QtRuby, on page 13.

Qt, by Trolltech, is a cross-platform GUI toolkit, written in C++.

The original authors of Qt chose the name
based on the Xt, the X toolkit. The Q was used
instead because it looked nice in Emacs font.

Some of the main selling points of Qt are:

• Cross Platform—Qt is available for Windows, Mac, and Unix. Qt

follows the mantra: write once, compile anywhere. You literally

only have to write one program that, after being compiled, will

run on any supported platform.

• Modular—The toolkit comes with many modular, extensible

components, such as the SQL, threading, and networking mod-

ules. While not all of these extra components are directly GUI

related, they are very helpful for adding functionality within

GUI programs while maintaining the cross platform nature of

the toolkit.

• Open Source—Qt is licensed under the GPL. The source code is

fully available and completely free. Trolltech benefits by having

a large user base which can report feedback and provide source

code patches for bugs found in the toolkit.

• Binary Compatibility—When a new version of the Qt toolkit is

released, it won’t alter the way your existing programs func-

tion. You can drop the latest version of Qt in place and benefit

from bug fixes and feature additions without worry that some-

thing in your program will stop working properly.

BOOKLEET ©

http://www.trolltech.com
http://www.gnu.org/copyleft/gpl.html
http://www.trolltech.com
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=4

F ridays

CHAPTER 2. ABOUT QT A LITTLE HISTORY 5

2.1 A Little History

Qt was born in 1991 as a product to aid in GUI application develop-

ment. In 1996, student Matthias Ettrich began using Qt as a basis

for the KDE project—an opensource Unix desktop environment. By

1997, the popularity of KDE and Qt was growing, but concerns

about Qt licensing issues were also starting to develop by members

of the open source community.

Some people involved within the open source community worried

about the direction of the Unix desktop. Qt was the Unix desktop’s

main toolkit, so having it controlled by a commercial entity worried

many people. In 1998, the GNOME project was started to create an

alternative desktop that would be more compatible with the goals of

open source software.

Licensing

In response to the community’s moves, Trolltech licensed Qt under

the QPL, an open source license. However, the Free Software Foun-

dation, the figurehead of the open source movement, did not regard

the QPL as being compatible with the GPL, its standard open source

license of the time.

In 2000, Qt 2.2 was released under a dual QPL/GPL license which

allowed the author using the toolkit to decide which of the licenses

they wanted their application to fall under. With Qt 2.2, a fully GPL

compatible Qt was available for Unix. Since then, Trolltech has also

released versions of Qt under the GPL for Mac, starting with 3.1.2,

and for Windows, starting with 4.0.0.

Current releases of Qt are licensed under a dual commercial/GPL

license structure. This means that Qt is freely available, with full

Report erratumBOOKLEET ©

http://www.kde.org
http://www.kde.org
http://www.gnome.org
http://www.trolltech.com
http://www.trolltech.com/licenses/qpl.html
file:www.fsf.org
http://www.trolltech.com/licenses/qpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.trolltech.com/licenses/qpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.trolltech.com
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=5

F ridays

CHAPTER 2. ABOUT QT VERSIONS 6

source code, on each of the three major platforms under the GPL.

This also means that any software written using the Qt libraries

must abide by the GPL.

A non-GPL commercial option also exists, allowing customers to

purchase a license from Trolltech so that software written using

the toolkit can be licensed by the author. However, the source code

between the GPL and commercial versions of Qt is the same.1

Philosophy

It’s not our intention to dicuss the philosophy of software licensing

in this book. Instead, we want to make you aware of the licensing

options of Qt and let you decide what works best for you. Before

beginning any QtRuby project, we encourage you to research your

Qt license (GPL,QPL, or commercial) and what implications it may

have on your project.

2.2 Versions

Qt is classified by its major version number, with 4 being the most

recently released. Below the major version is a minor version num-

ber, like 4.0, and a patch level number, such as 4.0.0. Patch level

releases are done periodically to fix bugs that have been found in

the code. 4.0.1 represents the next patch level release from 4.0.0.

Minor version releases are done less frequently and usually involve

larger additions to the library, such as the addition of a new class.

1There are some subtle differences, but for the most part there is no difference

in the commercial and GPL versions.

Report erratumBOOKLEET ©

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.trolltech.com
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.trolltech.com/licenses/qpl.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=6

F ridays

CHAPTER 2. ABOUT QT WHERE TO GET QT 7

Qt releases with the same major version number are binary com-

patible. This means that you can drop in a later released version of

the toolkit, and your programs will continue to function as before

without the need to recompile them. You also may be able to drop

in an earlier version of the same major release without problems, as

long as your program doesn’t make use of any functionality added

between the two releases.

The 4.0 version of Qt was released on June 28, 2005. Because of big

changes between the previously released 3.3 series many existing

applications are still using the older, more mature version 3 of the

library. Because of this, we will focus solely on the major version

3 series of Qt. We hope to provide an updated revision of the book

once Qt 4 becomes more widely adopted and the QtRuby bindings

fully support it.

2.3 Where to get Qt

Qt can be installed using your system’s package management tools,

our you can download and build it from the source (see Section 2.4,

How to install Qt from source, on the following page).

Linux/Unix

Many Linux distributions come with Qt. Check your package man-

agement system to see what version of Qt is installed or available to

be installed. You will also need any development packages (such as

qt-devel) to be installed as well. On Linux, Qt relies on the X11 win-

dow management system, which must be installed and configured.

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=7

F ridays

CHAPTER 2. ABOUT QT HOW TO INSTALL QT FROM SOURCE 8

Mac OS X

Mac OS X users who use an automated installation manager such

as Fink should install Qt from there. Fink users will most likely want

to install all qt3 packages.

2.4 How to install Qt from source

If you’re an open source junkie like us, you probably want to install

Qt from the source code. It’s actually pretty easy.

The first step is to download the source from the Trolltech web site

and unpack the file.

Next, you need to use the configure program to set up the build.

There are many configuration items, which are viewable using the

-help option to configure:

When installing Qt manually, you must already
have a window system installed. Windows and
Mac users should be fine, but Linux/Unix users
will need the X11 window system.

user@localhost ~/qt $./configure -help

Usage: configure [-prefix dir] [-buildkey key] [-docdir dir]

[-headerdir dir] [-libdir dir] [-bindir dir] [-plugindir dir]

[-datadir dir] [-translationdir dir] [-sysconfdir dir] [-debug]

[-release] [-no-gif] [-qt-gif] [-no-sm] [-sm] [-qt-zlib]

[-system-zlib] [-qt-libjpeg] [-system-libjpeg] [-qt-libpng]

[-system-libpng] [-qt-libmng] [-system-libmng] [-no-thread]

[-thread] [-no-nis] [-nis] [-no-cups] [-cups] [-no-largefile]

[-largefile] [-version-script] [-no-stl] [-stl] [-no-ipv6]

[-ipv6] [-Istring] [-lstring] [-Lstring] [-Rstring]

[-disable-<module>] [-with-<module setting>]

[-without-<module setting>] [-fast] [-no-fast]

Report erratumBOOKLEET ©

http://www.trolltech.com/products/qt/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=8

F ridays

CHAPTER 2. ABOUT QT HOW TO INSTALL QT FROM SOURCE 9

Many of the options are documented below this output, but as

you can see there are a lot of options to choose from. Luckily, Qt

attempts to be smart about which options it chooses and in many

cases will attempt to auto detect if certain options can be used or

not.

We recommend that you use the defaults unless you explicitly know

which settings are of value to you.

user@localhost ~/qt $./configure

This is the Qt/X11 Open Source Edition.

You are licensed to use this software under the terms of either

the Q Public License (QPL) or the GNU General Public License (GPL).

Type 'Q' to view the Q Public License.

Type 'G' to view the GNU General Public License.

Type 'yes' to accept this license offer.

Type 'no' to decline this license offer.

Do you accept the terms of either license?

At this point you should make sure you understand any implica-

tions which may be involved with the presented licenses. Type yes to

continue.

Eventually, Qt will stop configuring and should tell you that it’s time

to start compiling. Typing make will start the compilation process.

The most popular compiler for building Qt is
GCC, but C++ compilers built by other vendors
are supported as well.

Qt is now configured for building. Just run /usr/bin/gmake.

To reconfigure, run /usr/bin/gmake confclean and configure.

user@localhost ~/qt $ make

Report erratumBOOKLEET ©

http://gcc.gnu.org
http://www.trolltech.com/developer/compilers/
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=9

F ridays

CHAPTER 2. ABOUT QT INSTALLATION ISSUES 10

Finally, when it’s done, Qt needs to be installed. If during configure

time you specified an installation prefix (using the -prefix) switch,

then you can run make install now to install Qt to that location

Alternatively, you can simply leave everything as is and move the

entire Qt directory to the desired installation location.

The installation location is a bit of a personal preference. For Linux,

we like to put Qt in /usr/local/qt. For OS X, we recommend /Devel-

oper/Qt.

user@localhost ~/qt $ cd ..

user@localhost ~ $ sudo mv qt /usr/local/qt

user@localhost ~ $

It’s important to make sure that after Qt is installed the libraries

in the lib subdirectory are added to the dynamic linker search path.

In Linux, this can be done in the /etc/ld.so.conf file or by using the

LD_LIBRARY_PATH environment variable. With Mac OS, using the DYLD_LIBRARY_PATH

will work as well.

It’s also important that the programs in the bin subdirectory are

added to the executable path. This is done with the PATH environment

variable.

We recommend you take a look at the INSTALL file in the Qt package. It

On OS X, it has been reported that the
configure switch -thread is required when
building Qt.

has some important information in it about these installation mat-

ters.

2.5 Installation Issues

Many things can go wrong when installing a new software package,

especially one that is as encompassing as Qt. It’s impossible to plan

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=10

F ridays

CHAPTER 2. ABOUT QT EXPLORING THE TOOLKIT 11

for every eventuality, but here are some pointers to help you try and

troubleshoot what may have happened.

• Identify what phase you were in when the trouble happened.

Did you get Qt unarchived? Did the problem occur after you

typed make? What kind of output did you see?

• Make sure you didn’t make a spelling mistake when running

the commands. Misspelling an option passed to configure could

cause a problem. Likewise, running mkae instead of make is

problematic. Be aware of any spurious error messages that

could have come up.

• Did you specify an option to configure that isn’t valid for your

system? Perhaps you need to specify a different value. Some

options, like -thread, may be required if some of your underlying

libraries that Qt links against (X11, for example) are also built

as threaded.

• Did the build process die during the make stage? Try to find

the error message that caused the failure. Sometimes the build

process dies because different library versions are found dur-

ing compile time than were found during configure time. Other

times, the compiler itself has a bug and may cause a segmen-

tation fault. We’ve also seen the compiler die simply because

the computer was overheating during the compile process.

2.6 Exploring the toolkit

The Qt library is in the lib directory under your Qt installation prefix.

If Qt was built non-threaded, the library name is something like

libqt.so.3.3.5. If it is built threaded, the libraryname is libqt-mt.so.3.3.5.

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=11

F ridays

CHAPTER 2. ABOUT QT EXPLORING THE TOOLKIT 12

Additionally, there’ll be soft links that point to these libraries with

various version formats.

Executables that come with Qt are in the bin directory in the instal-

lation prefix. Some of the commonly used applications are:

• assistant—A tool for searching the Qt API reference files and

program documentation

• designer—A graphical program for designing GUI interfaces

• linguist—A GUI tool for handling internationalization of Qt appli-

cations

• moc—A C++ code parser that translates special Qt specific exten-

sions into C++ code.

• qmake—A Makefile generator based on project (.pro) files.

• uic—A tool for converting .ui files created by designer into C++

files.

Qt also comes with many examples and plugins (in directories named

examples and plugins) to make programming as painless as possible.

Because it’s impossible to explore all of the features Qt has to offer

in this book, we recommend you spend some time looking at the

demos, examples, and other available files to see all of the possibil-

ities that exist for writing your application.

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=12

F ridays

Chapter 3

About QtRuby

3.1 Language Bindings

Language bindings for libraries are very popular. They give freedom

to you, the author, to use highly desired features within that library

with the flexibility of the programming language of your choice. In

fact, one reason we like Ruby so much is its intrinsic capability to

extend the language from C libraries.

Creating a language binding to C++ libraries, like Qt, is difficult.

Really difficult. Trust us, you’re better off not knowing the specifics.

There are a couple of general reasons that make it so hard.

• Name mangling—In C, every function has a clear and concise

name which gets tucked away inside of the library. In C++,

objects can have multiple functions with the same name. Vir-

tual methods also have the same name as their ancestors. To

work around this, in a C++ library names are mangled so that

every function gets a unique name within the library. Further-

more, different compilers may implement name mangling in

different ways.

• Templates—The C++ feature of templates, while very powerful,

are also very tricky to implement in a compiler. Different com-

pilers offer varying levels of support for template implemen-

tation. Encapsulating that functionality within a wraparound

language proves to be a difficult operation.

• Qt extensions—Qt C++ code is extended by the MOC, which

creates some extra C++ code that automatically gets compiled

BOOKLEET ©

http://en.wikipedia.org/wiki/Name_mangling
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=13

F ridays

CHAPTER 3. ABOUT QTRUBY I SMELL SMOKE 14

in with your application. Because of its additional MOC code, a

one-size-fits-all C++ wrapper would have a hard time working

with Qt.

Some tools make the process easier. The most popular C++ bind-

ing generator, SWIG, provides a powerful set of tools for creating

bindings in a number of languages. Unfortunately, some of the spe-

cialized aspects of Qt listed above are beyond what SWIG is capable

of handling autonomously. Luckily, there is a tool that can help us.

3.2 I smell SMOKE

The SMOKE utility creates a wrapper library for all of the Qt (and

SMOKE reportedly stands for Scripting Meta
Object Kompiler Engine.

optionally KDE) method calls. SMOKE works by parsing the header

files of the installed Qt libraries, and generates code which can call

each of the methods in the Qt classes. In other words, SMOKE is the

go-between between Ruby and Qt.

Other Qt language bindings, including PerlQt, use SMOKE as well.

3.3 Installing QtRuby

Some Linux distributions, such as Debian and Gentoo, come with

the ability to automatically install QtRuby using their respective

repository installation programs. For example, on Gentoo Linux,

installing QtRuby is as easy as typing emerge qtruby. In other distri-

butions, QtRuby may be distributed under the kdebindings package.

For manual installation, the current version of QtRuby is available

at http://rubyforge.org/projects/korundum. We recommend down-

loading the most recent version (1.0.11 as of this writing).

Report erratumBOOKLEET ©

http://www.swig.org
http://www.swig.org
http://developer.kde.org/language-bindings/smoke/index.html
http://developer.kde.org/language-bindings/smoke/index.html
http://www.kde.org
http://developer.kde.org/language-bindings/smoke/index.html
http://developer.kde.org/language-bindings/smoke/index.html
file:perlqt.sourceforge.net
http://developer.kde.org/language-bindings/smoke/index.html
http://www.debian.org
http://www.gentoo.org
http://rubyforge.org/projects/korundum
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=14

F ridays

CHAPTER 3. ABOUT QTRUBY INSTALLING QTRUBY 15

You should download the Korundum package if you wish to use the

KDE library bindings. The Korundum package contains QtRuby, so

there’s no need to download both. See Chapter 8, Korundum, on

page 80 for more information on how to use Korundum.

After unpacking the file, the QtRuby needs to be configured. To show

a list of configurable options, use:

~/qtruby> ./configure --help

Building on Linux

On Linux, we configured QtRuby like this:

~/qtruby> ./configure --with-smoke="qt" \

--with-qt-dir=/usr/qt/3 --prefix=/usr

Your configuration items may vary based on where Qt is installed (-

If the configure script does not exist in your
source package, it can be created by using
the command make -f Makefile.cvs.

-with-qt-dir) and where SMOKE will be installed (--prefix). You may also

have additional options.

If all goes well, you should see a positive note to that effect and a

prompt to begin the build process:

Good - your configure finished. Start make now

~/qtruby> make

The build process starts by first generating the SMOKE bindings for

Qt. After this, the QtRuby specific code is compiled. When complete,

you simply need to install the files.

~/qtruby> sudo make install

Building on Mac

On the Mac, we configured QtRuby like this:

Report erratumBOOKLEET ©

http://www.kde.org
http://developer.kde.org/language-bindings/smoke/index.html
http://developer.kde.org/language-bindings/smoke/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=15

F ridays

CHAPTER 3. ABOUT QTRUBY INSTALLING QTRUBY 16

~/qtruby> ./configure --with-qt-dir=/Developer/qt \

--enable-mac --prefix=/usr

Your configuration items may vary based on where Qt is installed (-

-with-qt-dir) and where SMOKE will be installed (--prefix). You may also

have additional options.

If all goes well, you should see a positive note to that effect and a

prompt to begin the build process. After this point, we followed the

steps outlined in the INSTALL file.

~/qtruby> cd smoke/qt

~/qtruby/smoke/qt> perl generate.pl

~/qtruby/smoke/qt> qmake -makefile

~/qtruby/smoke/qt> make

...

~/qtruby/smoke/qt> sudo make install

We also build the rest of the package, again using the steps high-

lighted in the INSTALL file.

~/qtruby/smoke/qt> cd ../..

~/qtruby> cd qtruby/rubylib/qtruby

~/qtruby/qtruby/rubylib/qtruby> ruby extconf.rb \

--with-qt-dir=/Developer/qt --with-smoke-dir=/usr \

--with-smoke-include=../../../smoke

~/qtruby/qtruby/rubylib/qtruby> make

...

~/qtruby/qtruby/rubylib/qtruby> sudo make install

...

~/qtruby/qtruby/rubylib/qtruby> cd ../../..

~/qtruby> cd qtruby/rubylib/designer/rbuic

~/qtruby/qtruby/rubylib/designer/rbuic> qmake -makefile

~/qtruby/qtruby/rubylib/designer/rbuic> make

...

Report erratumBOOKLEET ©

http://developer.kde.org/language-bindings/smoke/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=16

F ridays

CHAPTER 3. ABOUT QTRUBY INSTALLING QTRUBY 17

~/qtruby/qtruby/rubylib/designer/rbuic> sudo make install

...

~/qtruby/qtruby/rubylib/designer/rbuic> cd ../uilib

~/qtruby/qtruby/rubylib/designer/uilib> ruby extconf.rb \

--with-qt-ruby-include=/../../qtruby \

--with-qt-dir=/Developer/qt

~/qtruby/qtruby/rubylib/designer/uilib> make

...

~/qtruby/qtruby/rubylib/designer/uilib> sudo make install

Verifying the installation

To ensure that QtRuby was correctly installed, we can use irb to

verify that Ruby is able to properly find the library.

~> irb

irb(main):001:0> require 'Qt'

=> true

irb(main):002:0>

On Mac OS, if QtRuby cannot link against the Qt library it will gen-

erate a runtime error:

dyld: NSLinkModule() error

dyld: Library not loaded: libqt-mt.3.dylib

Referenced from: /usr/lib/ruby/. . ./qtruby.bundle

Reason: image not found

Trace/BPT trap

On Linux, it generates a similiar error:

libqt-mt.so.3: cannot open shared object file:

No such file or directory - /usr/lib/ruby/. . ./qtruby.so

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=17

F ridays

CHAPTER 3. ABOUT QTRUBY INSTALLATION ISSUES 18

3.4 Installation Issues

Much like installing Qt, things can go wrong during this process.

Here are a few points to try and help you through.

• If the error happened during the configure portion of the installa-

tion, make sure none of your arguments were misspelled. Also

make sure that specified items exist. For example, if you spec-

ified the location of Qt, make sure that Qt is indeed installed in

that directory.

• If the error happened during the make portion of the instal-

lation, see if it’s repeatable. We’ve seen errors due to buggy

compilers. We’ve also seen them happen when the system is

being overused and things get too hot. Faulty hardware, such

as bad RAM, can also cause compiler faults.

• If the error happened during the require ’Qt’ check, make sure

that QtRuby is installed in your Ruby directory. For us, that

directory is /usr/lib/ruby/site_ruby/1.8. There should be a Qt subdi-

rectory and a Qt.rb file. Also, in your platform specific subdirec-

tory, such as i686-linux or darwin-powerpc8.0, there should

be a qtruby.so. This library links against the Qt library, so mak-

ing sure that the Qt library is accessible to the dynamic library

loader is important.

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=18

F ridays

Chapter 4

Get Your Feet Wet

Instead of going through the routine of trying to learn the arcane

details of QtRuby before using it, let’s jump straight into an exam-

ple.

4.1 Your first program

Fire up your favorite text editor, and type in this program:

Ê require 'Qt'

Ë app = Qt::Application.new(ARGV)

Ì label = Qt::Label.new("Hello World", nil)

Í label.resize(150, 30)

Î app.setMainWidget(label)

Ï label.show()

Ð app.exec()

Then, try executing it.

~> ruby ex_hello_world.rb

If all went well, your program should popup something like Fig-

ure 4.1 .

Figure 4.1: Hello World Example

BOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=19

F ridays

CHAPTER 4. GET YOUR FEET WET YOUR FIRST PROGRAM 20

Let’s take a closer, line-by-line, look.

By using the setCaption() method on your main
widget, you can change the text that appears
in the window title bar of your application.

Ê First, we load the QtRuby library.

We typically pass Ruby’s ARGV array of
command line arguments to the Qt::Application

initializer because QtRuby applications have
built in support for command line switches that
can alter the behavior of the program.

Ë Next, we create a Qt::Application object. Qt::Application is the foun-

dation for all Qt programs. It handles all of the important behind-

the-scenes details that are vital to our program running prop-

erly.

Ì Creates a new Qt::Label object, and sets its text to Hello World.

The nil argument will be explained shortly.

Í Resize the label to 150 pixels wide by 30 pixels tall to make

sure the text is all visible.

Î Assigns the label as the main widget of the application.

Ï Make the label visible.

Calling exec() is also known as starting the
event loop.

Ð Finally, we tell the application to start its processing.

Comparing to C++

For comparison, the equivalent C++ code is:

#include <qapplication.h>

#include <qlabel.h>

int main(int argc, char **argv)

{

QApplication app(argc, argv);

QLabel label("Hello world!", 0);

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html#setCaption
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#QApplication
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qapplication.html#exec
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=20

F ridays

CHAPTER 4. GET YOUR FEET WET OBJECTS AND WIDGETS AND PARENTS, OH MY! 21

label.resize(150, 30);

app.setMainWidget(&label);

label.show();

return app.exec();

}

Being the very astute reader you are, what fundamental differences

did you notice between the two code styles?

Most importantly, you should have noticed the class names are

slightly different. In the Qt world, all of the classes begin with the

letter Q, like QApplication. The Ruby equivalent, however, lives in the

Qt namespace, and as such, the Q is dropped. Thus, QApplication

becomes Qt::Application. This convention holds true for all QtRuby

classes.

From this point on, we will try to stick with the Qt::Classname naming

QtRuby classes are all in the Qt namespace
(Qt::). You also drop the initial Q from the Qt
classname counterpart.

style when referring to classes, unless we are referring to something

that is Qt specific. Sometimes when we go deep into the Qt library,

we’ll need to use the QClass syntax instead.

Now that your feet are wet, let’s wade a little deeper into the frame-

work.

4.2 Objects and Widgets and Parents, oh my!

We’ve created our first QtRuby program and highlighted a couple

of necessities. We’re ready to go a little deeper, but first we need to

understand a little more about the basics of Qt.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=21

F ridays

CHAPTER 4. GET YOUR FEET WET OBJECTS AND WIDGETS AND PARENTS, OH MY! 22

Qt::Object

Qt::Widget

Qt::Label

Figure 4.2: Qt::Label Inheritance Diagram

Fundamentals

The fundamental class in QtRuby is the Qt::Object. This object con-

tains many of the settings and properties that are needed in most of

the classes we will be using.

Directly inheriting from Qt::Object is the Qt::Widget class. Qt::Widget is

Qt::Object is a common base class for other
items in QtRuby that aren’t GUI widgets, but
may need some of the same base properties.

the base class for all GUI items, like sliders, text boxes, and labels.1

In fact, the Qt::Label class we used in the example on page on page 19

inherits from Qt::Widget.

The Qt::Widget class by itself is rather boring. We like to think of it

as a blank canvas on which we can make a more interesting type of

widget. Luckily for us, many of the commonly used types of widgets

have already been created as part of the framework, such as the

1In general, any GUI object is referred to generically as a widget

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=22

F ridays

CHAPTER 4. GET YOUR FEET WET OBJECTS AND WIDGETS AND PARENTS, OH MY! 23

Figure 4.3: Qt::Label, Qt::SpinBox and Qt::TextEdit

Qt::Label, Qt::SpinBox, and Qt::TextEdit (screenshot on Figure 4.3).
Qt::Widget is a good base class to use to make more

sophsticated widgets. As seen in the previous code example, the way to bring a widget alive

is to initialize it with a call to new(). For example, this code creates

a new Qt::Widget instance:
Most widgets have multiple initializers taking different

arguments lists. widget = Qt::Widget.new(nil)

Object ancestry

But what is this mysterious parameter we’ve been passing to the

Classes derived from Qt::Widget must have a
Qt::Widget based parent.

Classes derived from Qt::Object only need a
Qt::Object derived parent, which includes
Qt::Widget.

initializer, you ask? It’s the parent argument. Every time you create

a new widget, you tell that widget who its parent widget is. Option-

ally, by passing nil, you’re telling the widget it has no parent.

w1 = Qt::Widget.new(nil) # No parent

w2 = Qt::Widget.new(w1) # w1 is parent

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qspinbox.html
http://doc.trolltech.com/3.3/qtextedit.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qwidget.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=23

F ridays

CHAPTER 4. GET YOUR FEET WET OBJECTS AND WIDGETS AND PARENTS, OH MY! 24

toplevelwidget

child_1 child_2

Some Text child_3

Figure 4.4: More Complex Inheritance Hierarchy

Parentless widgets are called top level widgets.

Here’s a slightly more complex example, shown diagramatically in

Figure 4.4

Line 1 # Create a widget with no parent

- toplevelwidget = Qt::Widget.new(nil)

- # Create children of the toplevelwidget

- child_1 = Qt::TextEdit.new(toplevelwidget)

5 child_2 = Qt::ComboBox.new(toplevelwidget)

- # Create a grandchild of the toplevelwidget

- child_3 = Qt::Label.new("Some Text", child_1)

How the family fits together

A parent widget owns its children. Child widgets become contained

A widget can be given a new parent using the
reparent() method.

within the physical geometry of the parent. Thus, if the parent gets

destroyed, disposed of, or hidden, its children will also suffer the

same fate. This feature is very valuable. We can create child widgets

knowing that as long as they have a parent they will be cared for. If

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html#reparent
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=24

F ridays

CHAPTER 4. GET YOUR FEET WET OBJECTS AND WIDGETS AND PARENTS, OH MY! 25

child child

Parent widget

Figure 4.5: A parent widget with two contained children

this wasn’t the case, we could potentially have lots of spare widgets

floating (literally) around.

For example, if you destroyed the toplevelwidget from line 2 above, you

can be assured that child_1 and child_2 are destroyed. child_3 would

also be destroyed, since its parent, child_1, was destroyed.

Why parents and children?

You may be wondering the logic behind having to specify a parent

when creating a new instance of a widget. It turns out that this

methodology fits the GUI model very well.
The parent/child model allows us to create objects and then

not worry about their ownership. After creation, QtRuby

handles all of the details for us.

The common convention is to have one top level widget for the appli-

cation of which all the other widgets are children or grandchildren

(or great grandchildren. . .). The top level widget for the application

can be the blank canvas of a Qt::Widget or a more complex application

interface like a Qt::MainWindow.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qmainwindow.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=25

F ridays

CHAPTER 4. GET YOUR FEET WET THE QT OBJECT MODEL 26

The parent/child relationship is also used by Qt to help with the

physical layout of the windows in the application, something we’ll

see more of Section 5.3, Understanding Layouts, on page 38.

Naming widgets

As well as the parent argument, Qt::Object-based initializers also

accept an optional name argument. It is passed in immediately after

the parent, like this:

widget = Qt::Widget.new(parent_widget, "Fred")

The name can also be specified using the setName() method.

widget = Qt::Widget.new(parent_widget) # Nameless

widget.setName("Fred")

Widgets whose names are not specified receive the name unnamed.
We find that in practice, naming your widgets isn’t all that

important.

We recommend using Ruby’s object introspection methods

over their QtRuby counterparts if possible, as they’re

notably faster. For example, we benchmarked Ruby’s

class() method as four times faster than Qt::Object’s

className() method.

As we’ll see in the next section, there are ways to search groups

of widgets by name, which is a reason why authors may choose

to name their widgets. Another reason is that debugging and intro-

spection tools can provide valueable insight when widgets have names.

If your program has 100 Qt::Labels in it, and one of them was causing

the program to crash, knowing the name of which one can help you

track down the bug much faster.

4.3 The Qt Object Model

Through the heavily used base class Qt::Object, Qt provides a valu-

able set of introspection methods that can be used to query infor-

mation about objects and their families. Many of these methods are

fundamental to Ruby applications, but remember that Qt is a C++

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html#setName
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qobject.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=26

F ridays

CHAPTER 4. GET YOUR FEET WET THE QT OBJECT MODEL 27

toolkit and as such some of these ideas are not central to that lan-

guage.

First, Qt::Object provides a className() method that returns the name

of the class. Ruby provides the same information via the class() call.

irb(main):001:0> w = Qt::Widget.new(nil)

irb(main):002:0> w.className

=> "Qt::Widget"

irb(main):003:0> w.class

=> Qt::Widget

Object types are also queryable via the isA() and inherits() methods.

isA() returns true if the object is an instance of the class. inherits()

returns true if the object has some inheritance back to the provided

class.

irb(main):004:0> w.isA("Qt::Widget")

=> true

irb(main):005:0> w.isA("Qt::Object")

=> false

irb(main):006:0> w.isA("QWidget")

=> false

irb(main):007:0> w.isA("QObject")

=> false

irb(main):008:0> w.inherits("Qt::Widget")

=> true

irb(main):009:0> w.inherits("Qt::Object")

=> true

irb(main):010:0> w.inherits("QWidget")

=> true

irb(main):011:0> w.inherits("QObject")

=> true

Note that in the previous example, inherits() returns true for both

QObject and Qt::Object syntax. In previous versions of QtRuby, this

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html#className
http://doc.trolltech.com/3.3/qobject.html#isA
http://doc.trolltech.com/3.3/qobject.html#inherits
http://doc.trolltech.com/3.3/qobject.html#isA
http://doc.trolltech.com/3.3/qobject.html#inherits
http://doc.trolltech.com/3.3/qobject.html#inherits
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=27

F ridays

CHAPTER 4. GET YOUR FEET WET THE QT OBJECT MODEL 28

Qt::Object

Qt::Widget

clas
sNa

me
()

"Qt
::W
idg
et"

is
A
("
Q
t::
W
id
ge
t"
)

tr
ue

isA
("Q
t::O
bject")

false

inherits("QObject")

true

Figure 4.6: Widget Inheritance Methods

was not the case; inherits() only returned true if you used the Qt style

naming convention. Be careful of this fact if you are not using the

most recent version available of QtRuby.

Studying the Family

We can also inspect a widget’s relatives. The parent() and children()

methods return the widget’s direct ancestors.
Note: The output from the irb interpreter has been

formatted a little so its easier to read. irb(main):013:0> w = Qt::Widget.new(nil)

irb(main):014:0> w2 = Qt::Widget.new(w)

irb(main):015:0> w3 = Qt::Widget.new(w)

irb(main):017:0> w2.parent == w

=> true

irb(main):016:0> w.children

=> [w2, w3]

The children() method returns the widget’s children in the order in

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#inherits
http://doc.trolltech.com/3.3/qtobject.html#parent
http://doc.trolltech.com/3.3/qobject.html#children
http://doc.trolltech.com/3.3/qobject.html#children
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=28

F ridays

CHAPTER 4. GET YOUR FEET WET THE QT OBJECT MODEL 29

parent

child child

parent()

children()

Figure 4.7: Parent and Children method calls

which they were created as children of the widget. The children()

method returns only direct children of the parent, not grandchil-

dren.

To explicitly search for a child, you can use the child() method. The

syntax is child(name, inheritsClass = nil, recursiveSearch = true).

Search all children and grandchildren

for a child named "Editor"

obj = w.child("Editor")

Search all children and grandchildren

for a Qt::LineEdit named "Editor"

obj = w.child("Editor", "Qt::LineEdit")

Search only direct children

for a child "Editor"

obj = w.child("Editor", nil, false)

Search only direct children

for a Qt::LineEdit named "Editor"

obj = w.child("Editor", "Qt::LineEdit", false)

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#children
http://doc.trolltech.com/3.3/qobject.html#child
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=29

F ridays

CHAPTER 4. GET YOUR FEET WET OTHER INITIALIZATION ITEMS 30

The child() method returns the first child found fitting the search

criteria. To query for multiple children, the queryList() method can be

used. The syntax is queryList(inheritsClass = nil, objName = nil, regexpMatch =

true, recursiveSearch = true)

irb(main):004:0> w = Qt::Widget.new(nil)

irb(main):005:0> w2 = Qt::Widget.new(w,"Widget")

irb(main):006:0> w3 = Qt::Widget.new(w,"Widget3")

irb(main):007:0> w4 = Qt::Widget.new(w,"Foo")

irb(main):012:0> w.queryList("Qt::Widget")

=> [w2, w3, w4]

irb(main):013:0> w.queryList("Qt::Widget","Widget")

=> [w2, w3]

irb(main):013:0> w.queryList("Qt::Widget","Widget", false)

=> [w2]

4.4 Other initialization items

Notice line 7 from the example on page 24.

child_3 = Qt::Label.new("Some Text", child_1)

The initialization of the Qt::Label class also includes a string literal to

set the label’s value. This is very common practice with Qt widgets—

many have initializers which can take extra arguments to seed ini-

tial settings of the widget. One thing to note: the parent argument

usually comes after these initial value arguments.

Indeed, we also could have written:

child_3 = Qt::Label.new(child_1)

child_3.setText("Some Text")

You can also pass a block to the object initializer if preferred.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#child
http://doc.trolltech.com/3.3/qobject.html#queryList
http://doc.trolltech.com/3.3/qlabel.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=30

F ridays

CHAPTER 4. GET YOUR FEET WET THE QT::APPLICATION CLASS 31

child_3 = Qt::Label.new(child_1) { setText("Some Text") }

4.5 The Qt::Application class

In Section 4.1, Your first program, on page 19, we briefly discussed

the necessity of a Qt::Application class. Let’s examine this a little fur-

ther.

Qt::Application is the heart of the QtRuby application. It handles most
Qt::Application has a number of global application

properties that may be of interest.
of the underlying details that make up a GUI application—things

like maintaining a common look and feel amongst widgets, manag-

ing an interprogram clipboard, mouse cursor settings, and interna-

tionalization of user visible text. It also talks with the window system
With a few exceptions, every QtRuby program must have

one instance of the Qt::Application class. Because of its

importance, the Qt::Application object must be created

before any other GUI related object.

and dispatches events to the widgets in the program.

The Qt::Application object is the first QtRuby object your program

should initialize. Otherwise, your application most likely will abort.

irb(main):001:0> require 'Qt'

=> true

irb(main):002:0> w = Qt::Widget.new(nil)

QPaintDevice: Must construct a QApplication before a QPaintDevice

user@localhost ~ $

irb(main):001:0> require 'Qt'

=> true

irb(main):002:0> app = Qt::Application.new(ARGV)

=> #<Qt::Application:0xb6aa095c name="irb">

irb(main):003:0> w = Qt::Widget.new(nil)

=> #<Qt::Widget:0xb6a9d914 name="unnamed">

Starting the Event Loop

After the Qt::Application instance has been created, you can initialize

the widgets that make up the program.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=31

F ridays

CHAPTER 4. GET YOUR FEET WET THE QT::APPLICATION CLASS 32

After the program has been completely set up, you call the exec()

method of the Qt::Application object. The exec() method starts the

event loop processing of the application. The event loop waits for
Note: it’s OK to define custom widgets before creating your

Qt::Application instance—just don’t try to initialize one.
GUI events to happen and processes them accordingly. For exam-

ple, it might see that a keyboard button was pressed and attempt

to send the information about the button press event to the widget

which is interested in receiving it.

The exec() method only returns when the mainWidget of the applica-

tion is destroyed or Qt::Application’s exit() is called.
The exec() method returns the Qt::Application exit()

code. app = Qt::Application.new(ARGV)

widget = Qt::Widget.new(nil)

app.setMainWidget(widget)

app.exec

We only get to this point if widget gets

destroyed, meaning our application is

closing.

Event driven programming

Many programmers, even experienced ones, struggle the first time

they write a GUI application. Most GUI applications have event driven

flow, which differs from the linear flow that most common program-

ming languages are written in.

In a QtRuby application, the event loop handles all of the process-

ing of information. Prior to starting the event loop (using the exec()

method of the Qt::Application class), we specify the types of events we

are interested in and what to do when these events happen. In the

most basic form, this is handled by signal and slot connections as

described in Section 5.5, Signals and Slots, on page 47.

We’d like to stress that once the event loop has started, there is

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qapplication.html#exec
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#exec
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#exec
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#exit
http://doc.trolltech.com/3.3/qapplication.html#exec
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#exit
http://en.wikipedia.org/wiki/Event-driven_programming
http://doc.trolltech.com/3.3/qapplication.html#exec
http://doc.trolltech.com/3.3/qapplication.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=32

F ridays

CHAPTER 4. GET YOUR FEET WET SUMMARY 33

no real direct control over what’s happening. That is, we don’t have

a section of Ruby code that is looping over and over again like in

a linear flow program. Instead, we predefine the processing we’d

like to have happen when events occur and we let the event loop

take care of looking for these events and dispatching them to us

accordingly.

We’ll see examples of how this works shortly.

Well, it seems like we’ve been pretty thorough in our discussion on

the basics of Qt’s widgets. When you’re ready, let’s tie together what

we’ve learned.

4.6 Summary

• All QtRuby widgets inherit from the base class Qt::Widget. This

in turn inherits from Qt::Object.

• All QtRuby widgets fit into an overall family tree structure.

Child widgets are contained within the physical geometry of

the parent. Destruction of a widget causes all of its descen-

dants to be destroyed as well.

• Every QtRuby program needs one and only one Qt::Application

instance. It must be created before any GUI widgets are initial-

ized.

• The application event loop starts with a call to Qt::Application’s

exec() method. The method only returns when the main appli-

cation widget is destroyed.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#exec
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=33

F ridays

Chapter 5

Take the Plunge

As we discussed in the last chapter, widgets are the building blocks

of GUI applications. With QtRuby, we can use widgets from the

toolkit and combine them into more complex widgets, encapsulating

their functionality.

5.1 Your First Custom Widget

Let’s take a look at a more complicated program, in which we create

When creating your own widget classes, it is
important to remember not to give them
names in the Qt namespace, such as
Qt::MyWidget. While not technically wrong,
classes you create in this namespace could
conflict with existing classes already in the
namespace, causing erratic program
behavior.

our own custom widget. See if you can figure out what’s going on.

require 'Qt'

class MyWidget < Qt::Widget

def initialize(parent=nil)

super(parent)

@label = Qt::Label.new(self)

@button = Qt::PushButton.new(self)

@layout = Qt::VBoxLayout.new(self)

@layout.addWidget(@label)

@layout.addWidget(@button)

@clicked_times = 0

@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")

@button.setText("My Button")

end

end

a = Qt::Application.new(ARGV)

mw = MyWidget.new

a.setMainWidget(mw)

mw.show

BOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=34

F ridays

CHAPTER 5. TAKE THE PLUNGE YOUR FIRST CUSTOM WIDGET 35

a.exec

Some of the concepts discussed before are repeated in this code.

However, there’s some new stuff. First, note that we create a new

widget, MyWidget, from an existing widget class.

class MyWidget < Qt::Widget

When creating a new GUI widget, it is important to inherit from a

base QtRuby widget class such as Qt::Widget. By doing so, we gain

the built in methods and properties that all widgets should have,

such as a size.
Since our goal is to make a new widget that is the

combination of a couple of other widgets, we base our

widget off of Qt::Widget. If we wanted to extend an

already existing widget, we could have based our new class

directly off of it instead.

In the next part, we define the initialization code for our widget.

def initialize(parent=nil)

super(parent)

@label = Qt::Label.new(self)

@button = Qt::PushButton.new(self)

@layout = Qt::VBoxLayout.new(self)

The first thing we do in our initializer is make a call to super(). This

step is very important. Calling super() explicitly runs the initializer

in our inherited class (Qt::Widget in this case). Setup code defined

within our base class initializer will only be executed with a call to

super().
Note: Supplying the argument list to super() is optional in

Ruby, as long as the superclass has the same argument list

as the subclass.

We also create some child widgets in our MyWidget class. In this case,

we are creating a Qt::Label, Qt::PushButton, Qt::VBoxLayout.

When creating new widgets, we pass self as their parent argument.

Okay, we fibbed a little. Some items that get
used from the toolkit aren’t technically
widgets. In the example above, Qt::Label and
Qt::PushButton are both widgets, because they
inherit from the Qt::Widget class. However, items
such as the Qt::VBoxLayout class don’t inherit from
Qt::Widget (because they don’t need to).

This tells each of the new widgets that their parent is the instance

of the widget currently being defined.

In the next section, we add our child widgets to the layout:

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qvboxlayout.html
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qvboxlayout.html
http://doc.trolltech.com/3.3/qwidget.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=35

F ridays

CHAPTER 5. TAKE THE PLUNGE WIDGET GEOMETRY 36

@layout.addWidget(@label)

@layout.addWidget(@button)

We put our widgets into the layout because we want to make use of

the layout’s ability to automatically resize and maintain our widgets

within the program boundaries.

Finally, we put a few finishing touches on our widgets:

@clicked_times = 0

@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")

@button.setText("My Button")

Both the Qt::Label and Qt::PushButton classes have setText() methods

that, well, set the text displayed on the widget.

With our MyWidget widget class fully defined, we can finally create a

Qt::Application to display the widget on screen.

In these examples, we could have gotten
away with not creating a layout, but the
widgets would not change size if we resized
the application window and they may have
overlapped each other. This is usually not
desirable behavior.

a = Qt::Application.new(ARGV)

mw = MyWidget.new

a.setMainWidget(mw)

mw.show

a.exec

Finally, we can run the code and see our program pop up a window

like that in Figure 5.1, on the following page

5.2 Widget Geometry

Qt::Widget classes provide several functions used in dealing with the

widget geometry. The methods width() and height() return the width

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qlabel.html#setText
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html#width
http://doc.trolltech.com/3.3/qwidget.html#height
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=36

F ridays

CHAPTER 5. TAKE THE PLUNGE WIDGET GEOMETRY 37

Figure 5.1: Screenshot of Example 2

and height of the widget, in pixels. The width and height values do

not take into account a window frame which may surround a top

level widget.

The method size(), which returns a Qt::Size object, contains the same

information encapsulated inside of a Qt::Size object.

Another method, geometry() returns a Qt::Rect object containing both

the widget’s size and relative position within its parent. The position

is defined in x and y coordinates, with x being the pixel distance

from the left side of the parent and y being the pixel distance from

the top of the parent.

Other methods include: x(), y(), and pos() which also return the wid-

Since some methods take into account
window frame geometry (for top level widgets)
and others don’t, we recommend reading
over Qt’s Window Geometry documentation. It
also includes tips on how to save and restore a
widget’s geometry between application
sessions.

get’s relative position from within its parent. These methods, how-

ever, do take into account a window frame if the widget happens to

be a top level widget.

Changing Geometry

It is possible to move a widget around within its parent using the

methods move(int x,int y) and move(Qt::Point). You can also resize a wid-

get using the methods resize(int x,int y) and resize(Qt::Size).

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html#size
http://doc.trolltech.com/3.3/qsize.html
http://doc.trolltech.com/3.3/qsize.html
http://doc.trolltech.com/3.3/qwidget.html#geometry
http://doc.trolltech.com/3.3/qrect.html
http://doc.trolltech.com/3.3/qwidget.html#x
http://doc.trolltech.com/3.3/qwidget.html#y
http://doc.trolltech.com/3.3/qwidget.html#pos
http://doc.trolltech.com/3.3/geometry.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=37

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 38

widget

x(), y()

height()

width()
size()

geometry()

pos()

Figure 5.2: Widget Geometry

To perform both operations at the same time, use the methods set-

Geometry(int x,int y,int h, int w) or setGeometry(Qt::Rect).

5.3 Understanding Layouts

As we’ve seen, we can set the widget size and position within its par-

ent manually. However, manual geometry management of widgets is

tough. Each application is only given a select amount of screen real

estate to work with and each widget in that application has to have

its geometry managed. If a parent widget gets resized smaller, for

example, at least one child will need to be resized as well, or some

clipping of the child will occur.

Fortunately, QtRuby comes with a rich set of layout management

classes which greatly simplify this task.

The class Qt::Layout is at the heart of layout management. Qt::Layout

provides a very robust interface for management of widget layout.

In many cases, there is no need for the complex interface provided

by Qt::Layout. For the simpler cases, QtRuby provides three conve-

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlayout.html
http://doc.trolltech.com/3.3/qlayout.html
http://doc.trolltech.com/3.3/qlayout.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=38

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 39

Qt::HBoxLayout Qt::VBoxLayout

Qt::BoxLayout Qt::GridLayout

Qt::Layout

Figure 5.3: Layout class inheritance diagram

nience classes based on Qt::Layout: Qt::HBoxLayout, Qt::VBoxLayout, and

Qt::GridLayout.

The Qt Layout Classes guide gives some more
insight into the use of these classes. Layout classes

The BoxLayout classes handle laying out widgets in a straight line

(vertically with Qt::VBoxLayout or horizontally with Qt::HBoxLayout). To

utilize a BoxLayout class, simply create an instance of whichever lay-

out is desired and use its addWidget() method to add widgets into the

layout.

Alternatively, the Qt::GridLayout allows you to place widgets into a grid

as shown in Figure 5.4, on the next page.

w = Qt::Widget.new(nil)

gl = Qt::GridLayout.new(3,4) # 3 rows by 4 columns

put w into the first row and column

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlayout.html
http://doc.trolltech.com/3.3/qhboxlayout.html
http://doc.trolltech.com/3.3/qvboxlayout.html
http://doc.trolltech.com/3.3/qgridlayout.html
http://doc.trolltech.com/3.3/layout.html
http://doc.trolltech.com/3.3/qvboxlayout.html
http://doc.trolltech.com/3.3/qhboxlayout.html
http://doc.trolltech.com/3.3/qlayout.html#addWidget
http://doc.trolltech.com/3.3/qgridlayout.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=39

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 40

w

Qt::GridLayout

Figure 5.4: Qt::GridLayout Example

gl.addWidget(w, 0, 0)

Sublayouts

Layouts can also have sublayouts contained within them. For exam-

ple this code creates a sublayout as shown on Figure 5.5, on the

following page.

@layout = Qt::HBoxLayout.new

@sublayout = Qt::VBoxLayout.new

@w1 = Qt::Widget.new

@w2 = Qt::Widget.new

@w3 = Qt::Widget.new

@sublayout.addWidget(w1)

@sublayout.addWidget(w2)

@layout.addLayout(@sublayout)

@layout.addWidget(@w3)

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=40

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 41

@w1

@w2

@w3

@layout

@sublayout

Figure 5.5: Layout and Sublayout Example

In Figure 5.6, on the next page we demonstrate why sublayouts

are convenient. On the left side we created a Qt::VBoxLayout con-

taining three Qt::CheckBoxes. Then we nested this layout inside of

a Qt::HBoxLayout and also put in a Qt::Dial. As you can see, the sublay-

out allows us to group related items together in a logical way and

maintain the size and spacing policies we desire.

Layout properties

All layouts have two fundamental properties, margin and spacing.

These are shown on Figure 5.7, on page 43. Spacing represents the

pixel space between each of the items within the layout. Margin rep-

resents an outer ring of pixel space surrounding the layout. Both are

settable properties using the setMargin() and setSpacing() methods.

In lieu of adding a widget or a sublayout into a Qt::Layout, there are

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qvboxlayout.html
http://doc.trolltech.com/3.3/qcheckbox.html
http://doc.trolltech.com/3.3/qhboxlayout.html
http://doc.trolltech.com/3.3/qdial.html
http://doc.trolltech.com/3.3/qlayout.html#setMargin
http://doc.trolltech.com/3.3/qlayout.html#setSpacing
http://doc.trolltech.com/3.3/qlayout.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=41

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 42

Figure 5.6: A Layout with a Nested Sublayout

some other interesting additions. addSpacing() allows you to add a

fixed amount of space directly in the widget. addStretch() adds a

stetchable space in the widget.

Sizing up the situation
We highly recommend using the layout classes over manual

manipulation of widget geometry. Layouts only define the placement of objects, not the space that they

are allotted. From an outside perspective it may seem as though

all of the widgets should take up a proportionate amount of space

based on how many other widgets are in the layout. This layout

style, though, is not always ideal.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlayout.html#addSpacing
http://doc.trolltech.com/3.3/qlayout.html#addStretch
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=42

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 43

Qt::HBoxLayout

widget widget widget

spacing()margin()

Figure 5.7: Layout Margin and Spacing

Enter Qt::SizePolicy. This class, which is also a settable property of

Qt::Widget (using the setSizePolicy() method), contains the information

a widget uses to determine the amount of space it will take up inside

a layout. When coupled with all of the other widgets in the layout,

the SizePolicies are all calculated and a final overall layout is achieved.

Each size policy utilizes a calculated geometry called a sizeHint(). The

sizeHint()is a method built into Qt::Widget which calculates the rec-

ommended size of the widget. A sizeHint() is calculated based on the

design of the widget. For example, a Qt::Label’s sizeHint() is calculated
The sizeHint() method returns a Qt::Size object, which is

nothing more than an encapsulated set of width and height

properties.

based on the text that is written on the label. This is to help ensure

that all of the text always fits on the Qt::Label.

irb(main):001:0> require 'Qt'

=> true

irb(main):002:0> app = Qt::Application.new(ARGV)

=> #<Qt::Application:0xb6adfb24 name="irb">

irb(main):003:0> Qt::Label.new("Blah",nil).sizeHint

=> #<Qt::Size:0xb6adc44c width=30, height=17>

irb(main):004:0> Qt::Label.new("BlahBlahBlahBlahBlah",nil).sizeHint

=> #<Qt::Size:0xb6ad86bc width=142, height=17>

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qsizepolicy.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html#setSizePolicy
http://doc.trolltech.com/3.3/qwidget.html#sizeHint
http://doc.trolltech.com/3.3/qwidget.html#sizeHint
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html#sizeHint
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qwidget.html#sizeHint
http://doc.trolltech.com/3.3/qwidget.html#sizeHint
http://doc.trolltech.com/3.3/qsize.html
http://doc.trolltech.com/3.3/qlabel.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=43

F ridays

CHAPTER 5. TAKE THE PLUNGE UNDERSTANDING LAYOUTS 44

The above shows that a sizeHint() for a Qt::Label is dependent on the

text being displayed on the label.

There are seven types of size policies:

Fixed

Minimum

Maximum

Preferred

Minimum-
Expanding

Expanding

Ignored

sizeHint()

sizeHint()

none

none

sizeHint()

none

none

sizeHint()

none

sizeHint()

none

none

none

none

sizeHint()

sizeHint()

sizeHint()

sizeHint()

all available space

sizeHint(), will expand
as necessary

all available space

Preferred
Qt::SizePolicy

Minimum
Size

Maximum

These Qt::SizePolicy types are set independently for both the horizontal

and vertical directions.

In Figure 5.8, on the next page we show two different ways of sizing

widgets within the same layout. On the left side, we set the ver-

tical Qt::SizePolicy of each of the contents to MinimumExpanding, which

equalizes the spacing of all of the widgets. On the right, we set the

Qt::SizePolicy of the two widgets to Preferred, which only takes up the

amount of space the widget internally calculates that it needs. The

spacer at the top has a Qt::SizePolicy of Expanding, which allows it to

take up the rest of the space available in the layout.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html#sizeHint
http://doc.trolltech.com/3.3/qlabel.html
http://doc.trolltech.com/3.3/qsizepolicy.html
http://doc.trolltech.com/3.3/qsizepolicy.html
http://doc.trolltech.com/3.3/qsizepolicy.html
http://doc.trolltech.com/3.3/qsizepolicy.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=44

F ridays

CHAPTER 5. TAKE THE PLUNGE AUTOMATING A TASK 45

Figure 5.8: Same Layout, Two Different Size Policies

5.4 Automating a task

In our example program at the beginning of the chapter there was

an initialization of the text on @label to how many times the button

has been clicked.

@clicked_times = 0

@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")

@button.setText("My Button")

But, any further clicks on the button do not change the text of label.

Using QtRuby’s concept of signals and slots, we can change this

behavior.
Note: We could have avoided these calls to setText() by

using the initializers that set the text for us. The first step is to define a method in our MyWidget class that handles

updating the label text each time the button gets clicked.

def button_was_clicked

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=45

F ridays

CHAPTER 5. TAKE THE PLUNGE AUTOMATING A TASK 46

@clicked_times += 1

@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")

end

What we want to do next is call this method any time that @button

is clicked. Widget events, like the clicking of @button, are referred to

as widget signals. The reactionary methods that we want to happen

when these signals take place are called slots. By connecting these

signals and slots together, we can automate the process of having

@label update its text.

Before we get too far into signals and slots, let’s go back to our pro-

Slots are nothing more than ordinary methods
that we’ve specified as being QtRuby slots
using the slots call. In Qt programs, slots get
connected to signals in order to automate
tasks. See Section 5.5, Signals and Slots, on the
following page for more details.

gram to see just how easy using them really is. In order to take

advantage of the automation, we need to define exactly what is a

signal and what is a slot. Since our @button widget is a built in

Qt::PushButton, its clicked() signal is already defined for us. However,

the slot we will be connecting it to, button_was_clicked() has not been

defined as a slot. A simple line in our MyWidget class handles that

for us:

slots 'button_was_clicked()'

And last, in the MyWidget initializer, we need to connect the signal

and slot together:

connect(@button, SIGNAL('clicked()'),

self, SLOT('button_was_clicked()'))

When put all together, our final program looks like this:

require 'Qt'

class MyWidget < Qt::Widget

slots 'button_was_clicked()'

def initialize(parent=nil)

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qpushbutton.html#clicked
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=46

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 47

super(parent)

@label = Qt::Label.new(self)

@button = Qt::PushButton.new(self)

@layout = Qt::VBoxLayout.new(self)

@layout.addWidget(@label)

@layout.addWidget(@button)

@clicked_times = 0

@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")

@button.setText("My Button")

connect(@button, SIGNAL('clicked()'),

self, SLOT('button_was_clicked()'))

end

def button_was_clicked

@clicked_times += 1

@label.setText("The button has been clicked " +

@clicked_times.to_s + " times")

end

end

a = Qt::Application.new(ARGV)

mw = MyWidget.new

a.setMainWidget(mw)

mw.show

a.exec

5.5 Signals and Slots

The example from the previous section showed how the connection

C# users will find that Qt’s signals and slots are
very similiar to delegates from that language.

of signals and slots can be harnessed to create dynamic applica-

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=47

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 48

tions. In this section, we will explore the concept of signals and

slots even further.

Signals are triggers that happen in response to some kind of event.

A widget whose signal has been activated is said to be emitting its

signal. Usually, signals are emitted when a very simple event has

occured, such as the clicking of a button. Most widgets emit multiple

types of signals to inform other widgets that an event has occurred.

For example, a Qt::LineEdit, which is a one line text editor, emits sig-

nals when the text has changed, the return key was pressed, some-

one selects text with the mouse, or when the widget loses focus (see

Figure 5.9, on the next page).

Some signals convey all of their information within their names.

Losing focus means that the mouse was
clicked elsewhere in the application or a
keyboard shortcut was used that gave another
widget the focus

The returnPressed() signal from the Qt::LineEdit, for example, explains

exactly what happened (the return key was pressed) when that sig-

nal is emitted. Other signals, like Qt::LineEdit’s textChanged() signal,

tell us that the text has changed, and also contain the text that has

changed in the signal.

This extra signal information is passed as an argument to the sig-
The QString class is Qt’s internal string class. QtRuby

handles the conversion between Qt’s QString and Ruby’s

String automatically.

nal. In this case, the method signature is textChanged(const QString &).

When the signal gets emitted, this extra information goes with it.

Slots, the things we connect signals to, are ordinary methods within

An emitted signal that is connected to no slots
simply vanishes into thin air.

a widget class. Defining these methods as slots creates the ability to

use signals to activate these slot methods automatically.

Signals and Slots—The Connection

Signals and slots are connected together using the connect() method

defined in the Qt::Object class. The syntax of the connect() is:

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlineedit.html
http://doc.trolltech.com/3.3/qlineedit.html#returnPressed
http://doc.trolltech.com/3.3/qlineedit.html
http://doc.trolltech.com/3.3/qlineedit.html
http://doc.trolltech.com/3.3/qlineedit.html#textChanged
http://doc.trolltech.com/3.3/qstring.html
http://doc.trolltech.com/3.3/qstring.html
http://doc.trolltech.com/3.3/qobject.html#connect
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html#connect
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=48

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 49

returnPressed()

QtRuby Application

Text Qt::LineEdit

lostFocus()

selectionChanged()

textChanged(const
QString &)

Figure 5.9: Qt::LineEdit signals

connect(object_with_signal, SIGNAL('signalName()'),

object_with_slot, SLOT('slotName()'))

This syntax works as long as the connect() method is being used

The code snippets in this section demonstrate
the syntax of making signal and slot
connections. Remember, as we discussed in
Chapter 4, Get Your Feet Wet , on page 19, a
full Qt program will need a few more things set
up (such as an instance of the Qt::Application

class).

from within an object that inherits from Qt::Object. To make connec-

tions outside of a Qt::Object class, the method must be called more

explicitly:

Qt::Object::connect(object_with_signal, SIGNAL('signalName()'),

object_with_slot, SLOT('slotName()'))

The most basic form of connection is between a signal and slot

that have no arguments. For example, the following code causes

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#connect
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=49

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 50

@lineedit

Text

@button

@lineedit

clicked() clear()

Figure 5.10: Simple Slot Connection

a Qt::LineEdit to clear when a Qt::PushButton is clicked (as seen in Fig-

ure 5.10).

If you misspell a signal or slot name during
connection QtRuby will generate a runtime
error message on the application’s standard
error file descriptor.

@button = Qt::PushButton.new

@lineedit = Qt::LineEdit.new

Qt::Object::connect(@button, SIGNAL('clicked()'),

@lineedit, SLOT('clear()'))

Signals and slots with arguments connect in the exact same way, as

long as their arguments are of the same type (as seen in Figure 5.11,

on the following page).

@lineedit = Qt::LineEdit.new

@label = Qt::Label.new

Qt::Object::connect(@lineedit,

SIGNAL('textChanged(const QString &)'),

@label,

SLOT('setText(const QString &)'))

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlineedit.html
http://doc.trolltech.com/3.3/qpushbutton.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=50

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 51

@lineedit

Text

textChanged(const QString &) setText(const QString &)

@lineedit

New Text

Text

New Text

@label

@label

Figure 5.11: Slot Connection with Arguments

Note that in the above example, the SIGNAL and SLOT arguments

are listed using the Qt style syntax like textChanged(const QString &)

and not the QtRuby style syntax like textChanged(const Qt::String) . This

detail is very important. While QtRuby handles the conversion of

Qt’s QString to Ruby’s String automatically, the definition of signals,

slots, and the connection of the two must utilize the Qt style syntax.

This is a QtRuby limitation, and is anticipated to be fixed in a later

release of the toolkit.

When connecting signals and slots, the Qt style
syntax (not the QtRuby style syntax) is used.
The method names and arguments are passed
as strings wrapped by either SIGNAL() or SLOT().

More advanced connections

Another feature of signals and slots is the ability to connect a signal

to more than one slot. Consider this code (the resulting structure is

outlined in Figure 5.12, on the next page):

@lineedit_1 = Qt::LineEdit.new

@lineedit_2 = Qt::LineEdit.new

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qlineedit.html#textChanged
http://doc.trolltech.com/3.3/qlineedit.html#textChanged
http://doc.trolltech.com/3.3/qstring.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=51

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 52

@lineedit_1

New Text

setText(const QString &)

@lineedit_2

New Text New Text

@label

setText(const QString &)

textChanged(const QString &)

Figure 5.12: Signal to Multiple Slot Connection

@label = Qt::Label.new

Qt::Object::connect(@lineedit_1,

SIGNAL('textChanged(const QString &)'),

@label,

SLOT('setText(const QString &)'))

Qt::Object::connect(@lineedit_1,

SIGNAL('textChanged(const QString &)'),

@lineedit_2,

SLOT('setText(const QString &)'))

One caveat to multiple slot connections is that there is no defined

order in which the slots are executed. That is, the order in which you

make the connections is not guaranteed to be the order in which the

slots are called.

It’s also okay to connect a signal to another signal (as shown on

When a signal is emitted, the order that the
connected slots are executed in is arbitrary.

Figure 5.13, on the following page).

@lineedit_1 = Qt::LineEdit.new

@lineedit_2 = Qt::LineEdit.new

@label = Qt::Label.new

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=52

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 53

@lineedit_1

New Text

setText(const QString &)

@lineedit_2

New Text New Text

@label

textChanged(const QString &)

textChanged(const QString &)

Figure 5.13: Signal to Signal Connection

Qt::Object::connect(@lineedit_1,

SIGNAL('textChanged(const QString &)'),

@lineedit_2,

SIGNAL('textChanged(const QString &)'))

Qt::Object::connect(@lineedit_2,

SIGNAL('textChanged(const QString &)'),

@label,

SLOT('setText(const QString &)'))

This syntax allows one signal to trigger another signal, which then

would trigger any slots connected to the second signal.

You can even connect to a slot which takes fewer arguments:

@lineedit = Qt::LineEdit.new

@bar = Qt::StatusBar.new

Qt::Object::connect(@lineedit,

SIGNAL('textChanged(const QString &)'),

@bar,

SLOT('clear()'))

The information that would normally be passed via the signal argu-

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=53

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 54

@button

clicked() setText(const QString &)

Label Text

@label

Figure 5.14: Slot Connection with mis-matched arguments

ment is discarded.

However, the opposite is not true:

@button = Qt::PushButton.new

@label = Qt::Label.new

This doesn't work

Qt::Object::connect(@button, SIGNAL('clicked()'),

@label, SLOT('setText(const QString &)'))

The above code generates the following error which is displayed dur-

ing runtime:

QObject::connect: Incompatible sender/receiver arguments

Qt::PushButton::clicked() --> Qt::Label::setText(const QString &)

Disconnecting Signals and Slots

Signal/slot connections can also be disconnected via the same syn-

tax:

@button = Qt::PushButton.new

@bar = Qt::StatusBar.new

Qt::Object::connect(@button, SIGNAL('clicked()'),

@bar, SLOT('clear()'))

Perform a disconnection

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=54

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 55

Qt::Object::disconnect(@button, SIGNAL('clicked()'),

@bar, SLOT('clear()'))

Tying it all together

The power with signals and slots lies in their flexibility. Signals can

be used from existing widgets, or created in new widgets. New slots

can be made in custom widgets that mask internal child widgets.

Most importantly, these signals and slots cross widget boundaries

and allow us to encapsulate child widgets through a parent widget

interface.

Let’s see it in action. Consider this class:

class MyTimer < Qt::Widget

signals 'tripped_times_signal(int)'

slots 'timer_tripped_slot()'

def initialize(parent)

super(parent)

@timer = Qt::Timer.new(self)

@label = Qt::Label.new(self)

@tripped_times = 0

connect(@timer, SIGNAL('timeout()'),

self, SLOT('timer_tripped_slot()'))

Make the timer trip every second (1000 milliseconds)

@timer.start(1000)

end

def timer_tripped_slot()

@tripped_times += 1;

@label.setText("The timer has tripped " +

@tripped_times.to_s + " times")

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=55

F ridays

CHAPTER 5. TAKE THE PLUNGE SIGNALS AND SLOTS 56

MyTimer < Qt::Widget

The Timer...

@label

timer_tripped_slot

@timer

tripped_times_signal(int)

ti
m
e
o
u
t(
)

setT
ext(

)

emit

Figure 5.15: Custom Widget with Signals and Slots

emit tripped_times_signal(@tripped_times)

end

end

In this example, we create a Qt::Timer that gets activated every second

(1000 milliseconds). Each time @timer is activated, its timeout() signal
Qt::Timer is a very convenient class for repeatedly calling a

slot at a certain frequency. In most cases, a Qt::Timer can

be accurate to 1 millisecond.

is emitted. We’ve connected the timeout() signal to the timer_tripped_slot()

slot. This slot updates the text on the label to reflect the total num-

ber of times the timer has tripped. The slot also emits the tripped_times_signal(),

telling how many times the timer has tripped. The MyTimer does not

make use of the tripped_times_signal() signal, but an external class

might use that information by connecting the signal to one of its

slots. We highlight this code example on Figure 5.15 .

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qtimer.html
http://doc.trolltech.com/3.3/qtimer.html#timeout
http://doc.trolltech.com/3.3/qtimer.html
http://doc.trolltech.com/3.3/qtimer.html
http://doc.trolltech.com/3.3/qtimer.html#timeout
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=56

F ridays

CHAPTER 5. TAKE THE PLUNGE SLOT SENDERS 57

5.6 Slot Senders

Sometimes during a slot it is useful to know how the slot got started.

The sender() returns the Qt::Object which was responsible for the slot

call. The sender() method only works for a slot when it was activated

by a signal—manually calling the slot does not work.

Consider the following code:

require 'Qt'

class SignalObject < Qt::Object

signals 'mySignal()'

def initialize(parent=nil)

super(parent)

end

def trigger

emit mySignal()

end

end

class SlotObject < Qt::Object

slots 'mySlot()'

def initialize(parent=nil)

super(parent)

end

def mySlot

puts "Slot called by #{sender.class}"

end

end

sig = SignalObject.new

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#sender
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html#sender
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=57

F ridays

CHAPTER 5. TAKE THE PLUNGE SUMMARY 58

slot = SlotObject.new

Qt::Object::connect(sig, SIGNAL('mySignal()'),

slot, SLOT('mySlot()'))

Now look at the effects on the sender() method in a slot when it’s

activated by a signal:

irb(main):001:0> sig.trigger

Slot called by SignalObject

versus when it’s called manually:

irb(main):002:0> slot.mySlot

Slot called by NilClass

5.7 Summary

• Custom widgets should inherit from base class Qt::Widget.

• Widgets have a two-dimensional geometry. This geometry can

be set manually or handled automatically through layouts.

• Widgets define signals that are emitted when certain spon-

taneous events occur. They also define slots which are reac-

tionary methods that can be connected to these signals.

• Widget slots can use the sender() method to find out how they

were activated.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#sender
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qobject.html#sender
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=58

F ridays

Chapter 6

Sink or Swim

At this point, we’ve really tackled most of the concepts needed to

make a robust QtRuby application. However, there’s still a bit more

to do.

6.1 Event Methods

Our earlier discussion about event driven programming led into the

concept of signals and slots. But there’s more to events than just

signal emission. Remember, in the GUI world, events are the under-

lying paradigm of the program operation.

It turns out that many of the these GUI events are so important that

they are handled in a much more direct way than just as an emitted

signal. Instead, there are event methods which are directly called

within a Qt::Widget object.

Qt::Widget based classes have many specialized
event methods for handling most of the
common events that can happen in a GUI
application. See Appendix A, on page 88 for
an overview.

One event from start to finish

For the moment, let’s look at one type of event: the mouse press.

When a mouse button is pressed the following series of things hap-

pens:

Obviously, the mouse press event has to happen within the

geometry of our application. Clicking the mouse elsewhere

on the screen has no effect on our program.

1. The window system recognizes the mouse press, and passes

the mouse information to the QtRuby application.

2. The application uses the information to create a Qt::MouseEvent

object, containing information about which button was pressed

and the location of the mouse when the button was pressed.

BOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qmouseevent.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=59

F ridays

CHAPTER 6. SINK OR SWIM EVENT METHODS 60

Mouse
Click

Qt::Application

Qt::MouseEvent
Qt::Widget

mousePressEvent

Figure 6.1: A Mouse Event delivered to a Qt::Widget

3. The application then determines which widget the mouse was

directly on top of when the button was pressed. It dispatches

the Qt::MouseEvent information to this widget’s mousePressEvent()

method.

4. The widget chooses what do to at this point. It can act on this

information, or can ignore it. If it ignores the information, the

Qt::MouseEvent then gets sent on to the parent of the widget, to

be acted upon.

5. The Qt::MouseEvent continues up the hierarchy until a widget

accepts the event, or it reaches the top level and cannot go any

further.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qmouseevent.html
http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qmouseevent.html
http://doc.trolltech.com/3.3/qmouseevent.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=60

F ridays

CHAPTER 6. SINK OR SWIM EVENT METHODS 61

An Example of Qt::MouseEvent

require 'Qt'

class MouseWidget < Qt::Widget

def initialize(parent=nil)

super(parent)

@button = Qt::PushButton.new("PushButton", self)

@layout = Qt::VBoxLayout.new(self)

@layout.addWidget(@button)

@layout.addStretch(1)

end

def mousePressEvent(event)

if(event.button == Qt::RightButton)

Qt::MessageBox::information(self,"Message",

"You clicked the widget")

else

event.ignore

end

end

end

app = Qt::Application.new(ARGV)

mw = MouseWidget.new

app.setMainWidget(mw)

mw.show

app.exec

In this example the MouseWidget has implemented the mousePressEv-

ent(Qt::MouseEvent) method, meaning that it wishes to handle this

mouse event internally (see Figure 6.2, on the next page).

The MouseWidget checks the mouse button that was pressed to start

the event—if it was the right (as opposed to the left) button, then

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=61

F ridays

CHAPTER 6. SINK OR SWIM EVENT METHODS 62

Figure 6.2: MousePressEvent Override Snapshot

it pops up a message. Otherwise, it ignores the event, which then

would get passed on to the parent (if there was one).
When creating a custom event method, such as

mousePressEvent(), it’s important to remember that you

are overriding the base class method with your own. If your

goal is not to replace the base class functionality, but to

extend it, then you must be sure to call the base class event

method from within your event method.

The mousePressEvent() only gets invoked for presses in the empty space

of the MouseWidget, however. Notice that the MouseWidget also con-

tains a Qt::PushButton, but if that Qt::PushButton gets pressed, it has its

own internal handling of the mousePressEvent(), and the MouseWidget

never sees a mousePressEvent().

More methods

Obviously, there are more event classes than just Qt::MouseEvent.

Qt::Widget also has specialized handlers for these events. We’ve cre-

ated a chart to overview the event methods and handlers available

in QtRuby in Appendix A, on page 88

We’ve seen how to create event methods that are invokeded auto-

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qmouseevent.html
http://doc.trolltech.com/3.3/qwidget.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=62

F ridays

CHAPTER 6. SINK OR SWIM EVENT FILTERS 63

matically when certain events happen. Another powerful aspect of

the QtRuby toolkit is the ability to install event filters between objects.

6.2 Event Filters

Event filters allow objects to listen in to and intercept events from

other objects. To create an event filter, we use the installEventFilter()

method that is part of Qt::Object.

object_to_be_filtered.installEventFilter(intercepting_object)

With this syntax, all of object_to_be_filtered’s events get sent directly

to intercepting_object’s eventFilter().

The eventFilter() method has two arguments, the Qt::Object that is

being filtered and the Qt::Event that was received. With this infor-

mation, the eventFilter() method can intercept the event and perform

the desired action.

If eventFilter() returns true, the event is considered to have been suc-

cessfully intercepted. Otherwise, the event will continue to propogate

through the normal event handling chain. We show the event filter

logic on Figure 6.3, on the next page.

Here’s an example of an event filter:

require 'Qt'

class MouseFilterWidget < Qt::Widget

def initialize(parent=nil)

super(parent)

@button = Qt::PushButton.new("PushButton", self)

@layout = Qt::VBoxLayout.new(self)

@layout.addWidget(@button)

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#installEventFilter
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html#eventFilter
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qevent.html
http://doc.trolltech.com/3.3/qobject.html#eventFilter
http://doc.trolltech.com/3.3/qobject.html#eventFilter
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=63

F ridays

CHAPTER 6. SINK OR SWIM EVENT FILTERS 64

New

Event
Widget

eventFilter Filtering widget
yes

Widget
intercept

event?

no

no

Event

Handler

Event

Handler

yes

Figure 6.3: Event Filter Flow

@layout.addStretch(1)

Override events for the button

@button.installEventFilter(self)

end

def eventFilter(obj,event)

if(obj == @button && event.type == Qt::Event::MouseButtonPress)

if(event.button == Qt::RightButton)

Qt::MessageBox::information(self,"Message",

"You right clicked the button")

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=64

F ridays

CHAPTER 6. SINK OR SWIM THE MAIN EVENT 65

return true

end

end

end

end

app = Qt::Application.new(ARGV)

mw = MouseFilterWidget.new

app.setMainWidget(mw)

mw.show

app.exec

This code installs an event filter on a Qt::PushButton referenced by

@button. The eventFilter() method then checks if we’ve received a but-

ton press for the @button and if it’s the right mouse button, display a

message. Otherwise, event handling occurs as normal. This means

that a left button click results in the same thing that would normally

happen—the button accepts the click.

6.3 The Main Event

The event methods we’ve seen so far are specialized event meth-

ods that get called for specific types of events. Qt::Object also has a

generic event method, which handles the dispatching of the special-

ized events. This method, aptly named event(), can also be overrid-

den to provide customized behavior. Qt::Widget overrides this method

to handle GUI related events.

Thus, the overall logic of a widget’s event handling is as follows:

Which event methods to override is up to you.
The specialized event methods are higher level
and easier to implement, but less flexible than
the low level event().

1. A new event (Qt::Event) is created, and gets passed to the event()

method.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qpushbutton.html
http://doc.trolltech.com/3.3/qobject.html#eventFilter
http://doc.trolltech.com/3.3/qobject.html
http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qevent.html
http://doc.trolltech.com/3.3/qobject.html#event
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=65

F ridays

CHAPTER 6. SINK OR SWIM THE EVENT LOOP 66

2. Assuming that the default event() method has not been over-

ridden, Qt::Widget’s event() method is executed. Otherwise, the

custom event() method is called.

3. The default event() checks for any installed event filters, and

sends the event to the filter if installed.

4. If the event is intercepted, then we’re done. Otherwise, event()

determines what type of Qt::Event it’s processing, and converts

the Qt::Event into the a new class (such as Qt::MouseEvent).

5. The proper specialized event method then gets called (in this

case, that’s mousePressEvent()).

6.4 The Event Loop

When a new event occurs, the QtRuby application does not act on

it immediately. Instead, the event goes into a waiting queue. The

mandatory Qt::Application object is the keeper of this event queue.

Periodically, Qt::Application checks this queue and dispatches the pend-

ing events to their proper places. These events are referred to as

asynchronous events. This cycle of storing the events and then act-

ing on them is referred to as the event loop.

A typical QtRuby program has only one thread of execution. This

One advantage to posting events in the event
loop is that repeated events, such as multiple
repaint requests, are folded into one event. This
saves processing time.

means that when the Qt::Application is ready to act on the queued

events, it must dispatch all of them to the proper objects before it

can come back to handle the next batch. Ideally, this process hap-

pens very quickly. If, however, your program has some computa-

tionally intensive code, such as the opening of a large file, this could

lead to a slowdown of the event loop processing.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qwidget.html
http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qobject.html#event
http://doc.trolltech.com/3.3/qevent.html
http://doc.trolltech.com/3.3/qevent.html
http://doc.trolltech.com/3.3/qmouseevent.html
http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=66

F ridays

CHAPTER 6. SINK OR SWIM THE EVENT LOOP 67

If your application spends a large amount of time handling a cer-

tain event it may become unresponsive to other events that occur

later. To a user of a GUI program, this unresponsiveness is highly

undesirable. For example, if you click on the mouse, you want the

receiving widget to act relatively fast. Waiting a few seconds for the

widget to respond to the mouse click is usually unacceptable.

Maintaining a Responsive Application

There are a few ways to keep the application responsive. One is

to use threads. In the Qt world, it is possible to create a separate

thread of execution using a QThread. Unfortunately, a compatible
An alternative is to use Ruby’s Thread class and break the

operation into multiple threads of control.
Qt::Thread class doesn’t exist in the QtRuby toolkit. We hope that a

future version of QtRuby will include one.

Another common method of maintaining a responsive application is

to break the intensive computation up into smaller segments and

use a Qt::Timer to periodcally trigger a slot that does a small amount

of the work. This method keeps the application responsive to events

and also allows a good portion of work to continue on in the back-

ground.

Bad

def someSlot()

really_expensive_computation()

end

Better

timer = Qt::Timer.new(self)

connect(timer, SIGNAL('timeout()'), self, SLOT('someSlot()'))

timer.start(100) # Trigger the timer every 100 milliseconds

def someSlot()

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qthread.html
http://doc.trolltech.com/3.3/qthread.html
http://doc.trolltech.com/3.3/qtimer.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=67

F ridays

CHAPTER 6. SINK OR SWIM EVENT POSTING 68

small_portion_of_expensive_computation()

end

6.5 Event posting

Sometimes we want to generate our own events to send to other

objects. The easiest way uses Qt::Application’s postEvent() method. This

takes the event and receiver that you define and puts the event in

the event queue.

button = Qt::PushButton.new(nil)

Construct a Qt::MouseEvent

event = Qt::MouseEvent.new(

Qt::Event::MouseButtonPress,

Qt::Point.new(0,0),

Qt::LeftButton,

0)

Send the event to button, asynchronously

Qt::Application::postEvent(button,event)

Continue on - the mouse event will be sent later

The event loop takes control of the event once you post it. Thus, any

event you construct and send to an object via postEvent() becomes the

property of the event loop. You shouldn’t attempt to use the same

event again. Construct a new event, if necessary.

It’s also possible to synchronously send an event directly to another

object using the sendEvent() method. This works just like postEvent(),

except there is no delay—the event is handled immediately.

Send the event to button, synchronously

Qt::Application::sendEvent(button,event)

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#postEvent
http://doc.trolltech.com/3.3/qapplication.html#postEvent
http://doc.trolltech.com/3.3/qapplication.html#sendEvent
http://doc.trolltech.com/3.3/qapplication.html#postEvent
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=68

F ridays

CHAPTER 6. SINK OR SWIM SUMMARY 69

At this point, button has already received the mouseEvent

sendEvent() returns a boolean value specifying whether the object

accepted the event or not.

postEvent() is favored over sendEvent(), because it allows the event sys-

tem to work asynchronously.

6.6 Summary

• Widgets have a collection of event methods (mousePressEvent(),

resizeEvent(), . . .) that get called when these certain events hap-

pen to the widget.

• Widgets can choose to ignore events, in which case the event

gets sent on to the widget’s parent.

• Widgets can intercept and filter events that were destined to go

to other widgets.

• New events can be posted directly into the event queue. They

can be created both synchronously and asynchronously.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qapplication.html#sendEvent
http://doc.trolltech.com/3.3/qapplication.html#postEvent
http://doc.trolltech.com/3.3/qapplication.html#sendEvent
http://doc.trolltech.com/3.3/qwidget.html#mousePressEvent
http://doc.trolltech.com/3.3/qwidget.html#resizeEvent
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=69

F ridays

Chapter 7

Home Stretch

7.1 Qt Modules

Qt comes with a set of extra modules also available through QtRuby.

Some of these modules are not directly GUI related, but useful func-

tions for many GUI applications.

There is an overlap of functionality between these Qt modules and

the libraries and modules that come with Ruby. In some instances,

it may make more sense to use the Ruby libraries instead of the Qt

ones. In other cases, the QtRuby classes may integrate easier with

your QtRuby application, because of their built in signal and slot

methods.

Network Module

The network module simplifies network programming. There are

three levels of classes available in the module.

• Low level—classes such as Qt::Socket and Qt::ServerSocket, a TCP

client and TCP server, respectively.

• Abstract Level—abstract classes such as Qt::NetworkOperation and

Qt::NetworkProtocol that can be used to create subclasses that

implement network protocols.

• Passive Level—classes such as Qt::Url which handles URL pars-

ing and decoding.

BOOKLEET ©

http://doc.trolltech.com/3.3/modules.html
http://doc.trolltech.com/3.3/network.html
http://doc.trolltech.com/3.3/qsocket.html
http://doc.trolltech.com/3.3/qserversocket.html
http://doc.trolltech.com/3.3/qnetworkoperation.html
http://doc.trolltech.com/3.3/qnetworkprotocol.html
http://doc.trolltech.com/3.3/qurl.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=70

F ridays

CHAPTER 7. HOME STRETCH QT MODULES 71

SQL Module

The SQL module provides a database-neutral way of handling com-

mon SQL database operations: updates, inserts, and selects, and so

on.

In order to be able to handle connections of a specific database, Qt

has to be configured for that database during its initial setup. This

is specified as a configure option, as noted in Section 2.4, How to

install Qt from source, on page 8. This also requires database drivers

to be present at configuration time.

XML Module

Qt provides interfaces to two XML parsers:

• SAX2—an event-based standard for XML parsing, and

• DOM—a mapping of XML to a tree structure

OpenGL Module

OpenGL is a standard API for creating three-dimensional objects. Qt

provides a set of classes that support OpenGL drawing from within

an appliation.

OpenGL support must be specified as a configure option, as noted in

Section 2.4, How to install Qt from source, on page 8. This requires

that the OpenGL libraries be present at configuration time.

Canvas Module

The Canvas module provides a two-dimensional blank canvas on

which primitive geometric and text drawing structures can be cre-

ated to form complex pictures.

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/sql.html
http://doc.trolltech.com/3.3/xml.html
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://doc.trolltech.com/3.3/canvas.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=71

F ridays

CHAPTER 7. HOME STRETCH QTRUBY TOOLS 72

Other GUI related modules

Qt also provides a number of GUI related modules:

• Iconview. Qt::IconView visualizes multiple items in icon form.

• Table. Qt::Table displays and edits tabular data.

• Workspace. Qt::Workspace can contain a number of windows.

7.2 QtRuby tools

QtRuby comes with a number of additional tools which can help you

create custom GUI applications.

QtRuby UIC

One facet of Qt is Qt Designer, a GUI application that allows you to

design custom widgets graphically.

Qt Designer generates .ui (user interface) files, which are XML files

describing the widget properties. Qt’s build system uses these .ui

files to generate valid C++ code that gets compiled into the project.

The Qt utility that does this is uic, or User Interface Compiler.

QtRuby comes with the rbuic utility to generate Ruby code out of .ui

For GUI program design, we also recommend
checking out Kommander, a graphical
program similiar to Qt Designer.

files. To generate QtRuby code from a .ui file, use this syntax:

$ rbuic mywidget.ui -o mywidget.rb

You can use the -x switch to direct rbuic to generate the code to han-

dle the creation of the Qt::Application.

$ rbuic mywidget.ui -x -o mywidget.rb

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/iconview.html
http://doc.trolltech.com/3.3/qiconview.html
http://doc.trolltech.com/3.3/table.html
http://doc.trolltech.com/3.3/qtable.html
http://doc.trolltech.com/3.3/workspace.html
http://doc.trolltech.com/3.3/qworkspace.html
http://quanta.sourceforge.net/main2.php?snapfile=snap02
http://doc.trolltech.com/3.3/qapplication.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=72

F ridays

CHAPTER 7. HOME STRETCH QTRUBY TOOLS 73

Figure 7.1: Screenshot of Qt Designer

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=73

F ridays

CHAPTER 7. HOME STRETCH QTRUBY TOOLS 74

This generates the Ruby code, and adds the following to the end of

the file:

if $0 == __FILE__

a = Qt::Application.new(ARGV)

w = MyWidget.new

a.setMainWidget(w)

w.show

a.exec

end

With this code in place, you’re got a Ruby application that’s ready

to run:

$ ruby mywidget.rb

QtRuby API lookup

The rbqtapi command will look up methods available for a class in

the QtRuby API.

$ rbqtapi QTimer

QTimer* QTimer::QTimer()

QTimer* QTimer::QTimer(QObject*)

QTimer* QTimer::QTimer(QObject*, const char*)

void QTimer::changeInterval(int)

const char* QTimer::className() const

...

It’s also possible to search for classes containing certain method

names using the -r option.

$ rbqtapi -rsetName

void QColor::setNamedColor(const QString&)

void QDir::setNameFilter(const QString&)

QDomNode QDomNamedNodeMap::setNamedItem(const QDomNode&)

QDomNode QDomNamedNodeMap::setNamedItemNS(const QDomNode&)

void QFile::setName(const QString&)

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=74

F ridays

CHAPTER 7. HOME STRETCH TAKING ADVANTAGE OF RUBY 75

void QObject::setName(const char*)

void QSqlCursor::setName(const QString&)

...

7.3 Taking Advantage of Ruby

So far, in all of our discussion about QtRuby we’ve attempted to

keep the syntax as close to pure Qt as possible. We’ve done this to

keep the interface and examples similiar to what they would be had

they been written in C++.

Now we’re going to present some Ruby specific extensions to the

language.

Qt object properties are typically written to using the setProperty-

Name() syntax. For example, the Qt::Application class has the method

setMainWidget() which we’ve used in many previous examples

QtRuby simplifies this a little bit by allowing you to use the more

Rubylike propertyName = syntax. This means that:

app = Qt::Application.new(ARGV)

app.setMainWidget(widget)

becomes:

app = Qt::Application.new(ARGV)

app.mainWidget = widget

Similiarly, methods with names beginning is or has can be changed

into the more idiomatic predicate method form:

widget = Qt::Widget.new(nil)

widget.isTopLevel and puts "Widget is top level"

widget.hasMouse and puts "Mouse is over widget"

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qapplication.html
http://doc.trolltech.com/3.3/qapplication.html#setMainWidget
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=75

F ridays

CHAPTER 7. HOME STRETCH DISPOSING OF WIDGETS 76

becomes:

widget = Qt::Widget.new(nil)

puts "Widget is top level" if widget.topLevel?

puts "Mouse is over widget" if widget.mouse?

Note that you can use either style in your QtRuby programs. The

first style is more Qt like while the second is more Ruby like.

Your Choice of Case

As you may have noticed, Qt class methods use the camel case nam-

ing convention, with the first word always being lower case.

QtRuby also provides an interface (via Ruby’s method_missing() func-

tionality) to use an all lowercase notation with underscores between

the words. For example, the following two lines of code are equiva-

lent.

widget.someLongMethodName # Qt way

widget.some_long_method_name # ok in QtRuby

7.4 Disposing of Widgets

In a native C++ Qt program, widgets are created using the operator

new, similiar to Ruby’s new() initializer. However, since C++ lacks

automatic memory management, it also has a delete operator which

can destroy objects. Ruby has no such command, instead relying

on garbage collection to remove objects which are no longer being

referenced.
Note: The dispose() method is local to QtRuby and is not

available in the Qt toolkit. While this usually “just works,” there are times when it is valuable to

be able to destroy objects that are not lined up for garbage collection.

QtRuby provides this ability with the dispose methods.

Report erratumBOOKLEET ©

http://en.wikipedia.org/wiki/CamelCase
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=76

F ridays

CHAPTER 7. HOME STRETCH DEBUGGING A QTRUBY APPLICATION 77

To free an object, use the dispose() method. You can also use the

disposed?() method to see if an object has been disposed.

@parent = Qt::Widget.new(nil)

@child = Qt::Widget.new(@parent)

Dispose the parent

@parent.dispose

@child should be disposed if @parent was

@child.disposed? and puts "Child disposed"

7.5 Debugging a QtRuby Application

When things don’t quite work right, you sometimes need the abil-

ity to view a little deeper within the goings-on of the toolkit to see

exactly what is going wrong. QtRuby provides some debugging meth-

ods for this.

The most common problem by far is the unresolved method error:

irb(main):001:0> require 'Qt'

=> true

irb(main):002:0> app = Qt::Application.new(ARGV)

=> #<Qt::Application:0xb6b1795c name="irb">

irb(main):005:0> w1 = Qt::Widget.new("blah", nil)

ArgumentError: unresolved constructor call Qt::Widget

This error happens when you attempt to call the method (in our

case, the initializer) with an argument list not recognized by QtRuby.

To diagnose this, you can turn on more extensive debugging output
Turning on QtRuby debugging output can be very handy if

you get runtime errors about missing methods. The output

shows possible candidates and how QtRuby decides which

methods to call.

by setting the variable Qt.debug_level. The debug levels are:

• Off

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=77

F ridays

CHAPTER 7. HOME STRETCH DEBUGGING A QTRUBY APPLICATION 78

• Minimal

• High

• Extensive

irb(main):007:0> Qt.debug_level = Qt::DebugLevel::High

=> 2

irb(main):008:0> w1 = Qt::Widget.new("MyWidget", nil)

classname == QWidget

:: method == QWidget

-> methodIds == []

candidate list:

No matching constructor found, possibles:

QWidget* QWidget::QWidget()

QWidget* QWidget::QWidget(QWidget*, const char*)

QWidget* QWidget::QWidget(QWidget*)

QWidget* QWidget::QWidget(QWidget*, const char*, Qt::WFlags)

setCurrentMethod()

ArgumentError: unresolved constructor call Qt::Widget

The output shows that Qt::Widget has four forms of initializer, none

of which fit the syntax we were trying.

Debug Channels

QtRuby also has a number of debug channels which can be turned

on or off. These let you look into the toolkit at runtime.

• QTDB_NONE—No debug information

• QTDB_AMBIGUOUS—unused

• QTDB_METHODMISSING—unused

• QTDB_CALLS—show method call information

• QTDB_GC—show garbage collection information

• QTDB_VIRTUAL—display virtual method override information

• QTDB_VERBOSE—unused

Report erratumBOOKLEET ©

http://doc.trolltech.com/3.3/qwidget.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=78

F ridays

CHAPTER 7. HOME STRETCH DEBUGGING A QTRUBY APPLICATION 79

• QTDB_ALL—Turn on all debug channels

These debug channels are set using:

Qt::Internal::setDebug(Qt::QtDebugChannel::QTDB_VIRTUAL)

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=79

F ridays

Chapter 8

Korundum

The KDE project is an open source Unix desktop environment. As

discussed in Section 2.1, A Little History, on page 5, it is heavily

based on Qt.

Many aspects of KDE are extensions of things available in Qt, so

there are many Qt widgets that have been extended in KDE. Korun-

dum provides a set of Ruby bindings to these additional classes. In

other words, QtRuby is to Qt as Korundum is to KDE.

8.1 Installing Korundum

You need the Korundum package, available from the same location

as QtRuby.

First, the KDE libraries must be installed. This can be accomplished

in a very simliar manner to the installation of Qt as described in

Section 2.4, How to install Qt from source, on page 8. KDE is readily

available from most Linux distributions and from Fink on Mac OS.

KDE can be installed from source as well. To find out how to install

KDE, we recommend the excellent documentation at http://www.kde.org/downloa

Second, SMOKE must be configured to generate bindings for KDE.

One of the configuration options described in Section 3.3, Installing

QtRuby, on page 14 was --with-smoke="qt". This needs to be changed to

--with-smoke="qt kde". Alternatively, the whole option can be dropped,

as building bindings for both Qt and KDE is the default behavior.

Finally, generate the Korundum bindings in the same way as you

did for QtRuby.

BOOKLEET ©

http://www.kde.org
http://www.kde.org
http://www.kde.org
http://www.kde.org
http://www.kde.org
http://www.kde.org
http://www.kde.org
http://www.kde.org/download/
http://developer.kde.org/language-bindings/smoke/index.html
http://www.kde.org
http://www.kde.org
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=80

F ridays

CHAPTER 8. KORUNDUM USING KORUNDUM 81

8.2 Using Korundum

Although using the Korundum classes is as easy as using QtRuby

classes, you’ll need to change your programs slightly.

1. Change require ’Qt’ to require ’Korundum’.

2. KDE classnames go into the KDE namespace, and the initial

K is dropped. For example, the class KPopupMenu becomes

KDE::PopupMenu.

3. Use KDE::Application instead of Qt::Application.

KDE::Application requires a little bit more setup than Qt::Application.

about = KDE::AboutData.new("appname", "MyProgramName", "1.0")

KDE::CmdLineArgs.init(ARGV, about)

app = KDE::Application.new()

w = KDE::DateTimeWidget.new

app.setMainWidget(w)

w.show

app.exec

As you can see, the KDE::Application class requires the initialization

of KDE::AboutData and the KDE::CmdLineArgs classes.

KDE classes

KDE comes with a large number of classes, grouped into libraries.

Some of these are:

• kdeui—Widgets that provide standard user interface elements.

• kdecore—Classes that aren’t widgets, but are very useful to

GUI programs.

• kio—A library of easy-to-use file management related classes.

Report erratumBOOKLEET ©

http://www.kde.org
http://www.kde.org
http://developer.kde.org/documentation/library/3.4-api/kdeui/html/classKPopupMenu.html
http://developer.kde.org/documentation/library/3.4-api/kdeui/html/classKPopupMenu.html
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKApplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKApplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKApplication.html
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKAboutData.html
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKCmdLineArgs.html
http://developer.kde.org/documentation/library/3.4-api/kdeui/html/classes.html
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classes.html
http://developer.kde.org/documentation/library/3.4-api/kio/html/classes.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=81

F ridays

CHAPTER 8. KORUNDUM DCOP—INTERPROCESS COMMUNICATION 82

• khtml—HTML rendering classes

• DCOP—A library for interprocess communication among KDE

programs. We describe DCOP in more detail in the next section.

8.3 DCOP—Interprocess Communication

DCOP allows our Korundum programs to call remote methods in

other Korundum (or KDE) programs.

To make a method callable by DCOP, define it in the same way we

KDE comes with a command line utility dcop

that can be used to inspect and call DCOP
methods in a running application.

defined a regular Qt slot.

require 'Korundum'

class MyWidget < KDE::Dialog

k_dcop 'QSize mySize()'

def initialize(parent=nil, name=nil)

super(parent,name)

end

def mySize()

return size()

end

end

In this case, we used the k_dcop declaration to make the mySize()

method remotely callable. We can then initialize and run the widget.

about = KDE::AboutData.new("app1", "MyApplication", "1.0")

KDE::CmdLineArgs.init(ARGV, about)

a = KDE::Application.new()

w = MyWidget.new

a.dcopClient.registerAs("app1",false)

a.setMainWidget(w)

Report erratumBOOKLEET ©

http://developer.kde.org/documentation/library/3.4-api/khtml/html/classes.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classes.html
http://www.kde.org
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://www.kde.org
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://www.kde.org
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=82

F ridays

CHAPTER 8. KORUNDUM DCOP—INTERPROCESS COMMUNICATION 83

app1

MyWidget

mySize()

dcopserver

app2

ref

call("mySize()")

640x384

Figure 8.1: DCOP Remote Method Call

w.show

a.exec

In a second program, we can attempt to call this remote method.

require 'Korundum'

about = KDE::AboutData.new("app2", "App2", "1.0")

KDE::CmdLineArgs.init(ARGV, about)

a = KDE::Application.new()

ref = KDE::DCOPRef.new("app1", "MyWidget")

res = ref.call("mySize()")

puts "W: #{res.width} H: #{res.height}"

$ ruby ex_korundum_size_remote.rb

>>>> W: 640 H: 384

We illustrate this example in figure Figure 8.1 .

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=83

F ridays

CHAPTER 8. KORUNDUM DCOP—INTERPROCESS COMMUNICATION 84

What’s going on here

What’s we’re seeing here is a lot of behind-the-scenes magic. First,

applications wishing to use DCOP are considered DCOP clients and

need to register with the DCOP server (which runs automatically

after the KDE desktop starts). Clients can communicate with each

other via message calls which get sent to the server and dispatched

to the appropriate destination client. Some messages are one-way;

they are sent and the client continues without waiting for a reply.

Others are sent by clients who await a reply.

The KDE::Application class provides the method dcopClient() which

returns a DCOPClient client connection to the server. The client can

attach() to or, detach() from the server. It can also change its regis-

tration information with registerAs().

Objects within an application can use the DCOPObject object to create

By default, a client attaches to the DCOP
server with the name of appname + "-" + pid.
This allows multiple applications with the same
name to utilize the DCOP server. Changing the
registered name is as simple as using the
registerAs() method of DCOPClient class.

an interface via the DCOPClient for remote method calls. By using the

k_dcop syntax, this DCOPObject interface is automatically created for

us.

Finally, remote applications can use DCOPRef to create a connection

to a remote DCOPObject. The DCOPRef initializer has two arguments,

the name of the application to connect to (as was specified by the

DCOPClient registerAs() method), and the remote object to connect to

(as specified by the objId() of the DCOPObject.

The DCOPRef class can then use call() to call remote functions.

ref = DCOPRef.new("appname","objname")

ref.call("someFunction") # objname.someFunction

ref.call("someFunction()") #objname.someFunction

ref.call("someFunction()","arg") # objname.someFunction(arg)

Report erratumBOOKLEET ©

http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://www.kde.org
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKApplication.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPClient.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPObject.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPClient.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPClient.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPObject.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPRef.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPObject.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPRef.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPClient.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPObject.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/classDCOPRef.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=84

F ridays

CHAPTER 8. KORUNDUM DCOP—INTERPROCESS COMMUNICATION 85

For methods that have no return value, there is the send() method.

ref = DCOPRef.new("appname","objname")

ref.send("someFunction","arg") # objname.someFunction(arg)

DCOP Signals

DCOP has signals, just like Qt. We can make remote signal/slot con-

nections in a very similiar manner. Consider the following program:

require 'Korundum'

class SignalWidget < KDE::Dialog

k_dcop_signals 'void mySizeSignal(QSize)'

slots 'timerSlot()'

def initialize(parent=nil, name=nil)

super(parent,name)

t = Qt::Timer.new(self)

connect(t, SIGNAL('timeout()'), self,

SLOT('timerSlot()'))

t.start(5000)

end

def timerSlot

puts "emitting signal"

emit mySizeSignal(size())

end

end

about = KDE::AboutData.new("appname",

"MyApplication", "1.0")

KDE::CmdLineArgs.init(ARGV, about)

a = KDE::Application.new()

w = SignalWidget.new

a.dcopClient.registerAs("appname",false)

a.setMainWidget(w)

Report erratumBOOKLEET ©

http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=85

F ridays

CHAPTER 8. KORUNDUM DCOP—INTERPROCESS COMMUNICATION 86

w.show

a.exec

The corresponding remote application:

require 'Korundum'

class SlotWidget < KDE::Dialog

k_dcop 'void mySlot(QSize)'

def initialize(parent=nil, name=nil)

super(parent,name)

end

def mySlot(size)

puts "mySlot called #{size}"

dispose

end

end

about = KDE::AboutData.new("remote",

"Remote", "1.0")

KDE::CmdLineArgs.init(ARGV, about)

a = KDE::Application.new()

w = SlotWidget.new(nil)

w.connectDCOPSignal("appname","SignalWidget",

"mySizeSignal(QSize)", "mySlot(QSize)",

false)

a.setMainWidget(w)

a.exec

In executing these two programs, the follow logic occurs:

1. We create the SignalWidget. Every five seconds its internal timer

calls its slot timerSlot(), which emits the DCOP signal mySizeSig-

nal().

2. We create the SlotWidget in a separate application. We a DCOP

Report erratumBOOKLEET ©

http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=86

F ridays

CHAPTER 8. KORUNDUM SUMMARY 87

slot called mySlot() and connect SignalWidget’s signal to this slot.

3. We run the program and watch as every five seconds the DCOP

signal and slots get activated.

8.4 Summary

• Applications using KDE classes must use KDE::Application

instead of Qt::Application.

• DCOP provides an interface for calling remote methods in run-

ning applications.

Report erratumBOOKLEET ©

http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://www.kde.org
http://developer.kde.org/documentation/library/3.4-api/kdecore/html/classKApplication.html
http://doc.trolltech.com/3.3/qapplication.html
http://developer.kde.org/documentation/library/3.4-api/dcop/html/index.html
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=87

F ridays

Appendix A

Event Method Map

Qt::Object

Events

Tablet

Drawing

Drag

and

Drop

Qt::TabletEvent

Qt::ResizeEvent

Qt::DragEnterEvent

Qt::HideEvent

Qt::ShowEvent

Qt::DragMoveEvent

Qt::DragLeaveEvent

Qt::DropEvent

Qt::PaintEvent

Qt::CloseEvent

Qt::CustomEvent

Qt::TimerEvent

Qt::ChildEvent

customEvent

childEvent

timerEvent

tabletEvent

dropEvent

dragLeaveEvent

dragMoveEvent

dragEnterEvent

paintEvent

hideEvent

showEvent

closeEvent

resizeEvent

Input

Method
Qt::KeyEvent

imEndEvent

imComposeEvent

imStartEvent

Tablet

Keyboard

Qt::TabletEvent

Qt::KeyEvent

tabletEvent

Event Type

Mouse

Qt::MouseEvent

mouseReleaseEvent

mouseMoveEvent

mouseDoubleClickEvent

mousePressEvent

Qt::Event

leaveEvent

enterEvent

Qt::WheelEvent wheelEvent

keyReleaseEvent

keyPressEvent

Event Class Event Method Event Type Event Class Event Method

BOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=88

F ridays

Appendix B

Resources

B.1 Web Resources

Qt

Trolltech’s homepage

KDE

KDE homepage

KDE Ruby Bindings Homepage

Brief introduction to QtRuby and Korundum

Qt Documentation

Online documentation for Qt and utilities

QtRuby Online Tutorial

Learn Qt and QtRuby online with this 14 step tutorial

QtRuby/Korundum at RubyForge

Rubyforge download site for QtRuby

C++ GUI Programming with Qt 3

Link to book website, with freely downloadable PDF.

BOOKLEET ©

http://www.trolltech.com
http://www.kde.org
http://developer.kde.org/language-bindings/ruby
http://doc.trolltech.com/3.3/
http://developer.kde.org/language-bindings/ruby/tutorial/tutorial.html
http://rubyforge.org/projects/korundum/
http://www.phptr.com/title/0131240722
http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=89

F ridays

APPENDIX B. RESOURCES BIBLIOGRAPHY 90

B.2 Bibliography

[BS04] Jasmin Blanchette and Mark Summerfield. C++ GUI Pro-

gramming with Qt 3. Prentice Hall, Englewood Cliffs, NJ,

2004.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Pro-

gramming Ruby: The Pragmatic Programmers’ Guide. The

Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, second edition, 2005.

Report erratumBOOKLEET ©

http://books.pragprog.com/titles/ctrubyqt/errata/add?pdf_page=90

Pragmatic Fridays
Timely and focused PDF-only books. Written by experts for people who need infor-

mation in a hurry. No DRM restrictions. Free updates. Immediate download. Visit

our web site to see what’s happening on Friday!

More Online Goodness
QtRuby

Source code from this book and other resources. Come give us feedback, too!

Free Updates

Visit the link, identify your book, and we’ll create a new PDF containing the latest

content.

Errata and Suggestions

See suggestions and known problems. Add your own. (The easiest way to report an

errata is to click on the link at the bottom of the page.

Join the Community

Read our weblogs, join our online discussions, participate in our mailing list, inter-

act with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

Check out the latest pragmatic developments in the news.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

BOOKLEET ©

http://pragmaticprogrammer.com/fridays
http://pragmaticprogrammer.com/titles/ctrubyqt
http://books.pragprog.com/titles/ctrubyqt/reorder
http://books.pragprog.com/titles/ctrubyqt/errata
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
www.pragmaticprogrammer.com/catalog

	Introduction
	About Qt
	A Little History
	Versions
	Where to get Qt
	How to install Qt from source
	Installation Issues
	Exploring the toolkit

	About QtRuby
	Language Bindings
	I smell SMOKE
	Installing QtRuby
	Installation Issues

	Get Your Feet Wet
	Your first program
	Objects and Widgets and Parents, oh my!
	The Qt Object Model
	Other initialization items
	The Qt::Application class
	Summary

	Take the Plunge
	Your First Custom Widget
	Widget Geometry
	Understanding Layouts
	Automating a task
	Signals and Slots
	Slot Senders
	Summary

	Sink or Swim
	Event Methods
	Event Filters
	The Main Event
	The Event Loop
	Event posting
	Summary

	Home Stretch
	Qt Modules
	QtRuby tools
	Taking Advantage of Ruby
	Disposing of Widgets
	Debugging a QtRuby Application

	Korundum
	Installing Korundum
	Using Korundum
	DCOP---Interprocess Communication
	Summary

	Event Method Map
	Resources
	Web Resources
	Bibliography

