
Google Web Toolkit
Taking the pain out of Ajax

Ed Burnette

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distin-

guish their products are claimed as trademarks. Where those designations

appear in this book, and The Pragmatic Programmers, LLC was aware of

a trademark claim, the designations have been printed in initial capital

letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Pro-

grammer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Useful Friday Links

• Source code from this book and

other resources.

• Free updates to this PDF

• Errata and suggestions. To report

an erratum on a page, click the

link in the footer.

Every precaution was taken in the preparation of this book. However, the

publisher assumes no responsibility for errors or omissions, or for dam-

ages that may result from the use of information (including program list-

ings) contained herein.

To see what we’re up to, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

This PDF publication is intended for the personal use of the individual

whose name appears at the bottom of each page. This publication may not

be disseminated to others by any means without the prior consent of the

publisher. In particular, the publication must not be made available on the

Internet (via a web server, file sharing network, or any other means).

Produced in the United States of America.

Bookshelf
Pragmatic Lovingly created by gerbil #17 on 2006-11-28

http://pragmaticprogrammer.com/titles/ebgwt
http://books.pragprog.com/titles/ebgwt/reorder
http://books.pragprog.com/titles/ebgwt/errata
http://www.pragmaticprogrammer.com

F ridays

Contents

1 Introduction 1

1.1 Life before GWT . 1

1.2 What GWT does for you 3

1.3 About this book . 3

2 Getting Started 5

2.1 Supported platforms 5

2.2 Installing . 5

2.3 Create scaffolding . 6

2.4 Running and debugging 7

3 Hosted vs. Web Mode 11

3.1 Hosted mode . 11

3.2 Web mode . 13

3.3 Obfuscation . 15

3.4 Deployment . 16

4 User Interface 17

4.1 Tying into HTML . 17

4.2 Entry point . 19

4.3 Events . 20

4.4 Widgets . 21

4.5 Panels . 28

5 Remote Procedure Calls 32

5.1 Where does your code live? 32

5.2 Calling remote code 33

5.3 Why a new protocol? 33

5.4 GWT RPC basics . 34

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=iii

F ridays

CONTENTS CONTENTS iv

5.5 Serialization . 39

6 History and Bookmarks 43

6.1 The History Token . 43

6.2 History Listener . 44

6.3 How it Works . 44

6.4 Example . 45

7 JavaScript Native Interface 48

7.1 Declaring a Native Method 48

7.2 How it Works . 49

7.3 Calling JSNI from Java 49

7.4 Calling Java from JSNI 50

7.5 Example . 52

8 Internationalization (I18N) 55

8.1 Constants, Messages, and Dictionary 55

8.2 Creating the properties file 56

8.3 Creating the accessor class 58

8.4 Referring to messages 59

8.5 Making module changes 59

8.6 Running the example 60

9 Java Emulation 62

9.1 Language subset . 62

9.2 Library subset . 65

9.3 Supported packages 66

9.4 Regular Expressions 68

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=iv

F ridays

Chapter 1

Introduction

The Google Web Toolkit (GWT) was unveiled to an unsuspecting

public on May 18th, 2006 at the annual JavaOne conference in San

Francisco. The premise behind GWT is simple: make Ajax1 develop-

ment easier by hiding browser incompatibilities from the program-

mer and allowing the developer to work in a familiar Java develop-

ment environment.

The announcement was one of the highlights of the conference and

interest continues to grow. Developers have used GWT technology

in everything from games to mortgage calculators. The gwtPowered

community site lists over 130 examples, articles, widgets, and other

resources. Why has the Google Web Toolkit become such a hot

topic?

If you’ve ever written a non-trivial Ajax application before, then I’m

sure you can sympathize with the need to make the process easier.

If not, then a little background is in order.

1.1 Life before GWT

Dynamic web applications are typically written in several differ-

ent languages across two or more tiers. On the client side (the

part running in the browser), you have HTML markup of course,

1 The term Ajax was famously coined in February 2005 by Jesse James Garrett.

Originally it was an acronym for Asynchronous Javascript And Xml. The technol-

ogy has actually been around for a few years—for example it was used in Outlook

Web Access in 2000—but didn’t get much attention until Google popularized it

with applications such as GMail and Google Maps.

http://www.gwtpowered.org
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=1

F ridays

CHAPTER 1. INTRODUCTION LIFE BEFORE GWT 2

plus you have some logic written in JavaScript to perform tasks

like client-side validation and manipulation of the HTML document

object model (DOM).

Unfortunately, slight differences in the JavaScript language between

JavaScript is a red-headed step-child of a
language that first appeared in the Netscape
browser in 1995 as a way to script Java
applets. It was adopted by Microsoft in the
following year, becoming the de-facto
standard for scripting inside the browser.
Despite having Java in its name, it bears little
resemblance to that language. The closest
thing to JavaScript would be... well actually
there’s nothing quite like JavaScript. Some
would count that as a good thing.

browsers, along with major differences in the DOM, make coding

these clients a bit like walking through a mine field. Various libraries

such as Dojo and Prototype were created to smooth out the rough

edges but JavaScript/browser programming is still something of a

black art. Some developers have abandoned HTML and JavaScript

altogether in favor of Flash or other alternatives.

On the server side you have a web server tier and optionally a data

tier. Commodity web servers such as Apache, Tomcat, Lighttpd,

and IIS host your application logic, which is written in Java, PHP,

Ruby, C#, Klingon (ok, maybe not Klingon), or other languages.

JavaScript is not used on the server except by a few masochists.

Data services are provided by databases such as MySQL, Oracle,

Sql Server, and so forth. Often the actual database is hidden behind

an Object/Relational (O/R) layer such as Hibernate.

Although this architecture is very flexible, its complexity makes it

hard to manage. Frameworks such as Ruby on Rails grew up to

reduce the complexity on the server side. Other frameworks like

Java Server Faces (JSF) and Microsoft Atlas try to standardize and

provide built-in implementations of client-side operations such as

validation. However, substantial dynamic web applications are still

much harder to write than the traditional desktop applications they’re

supposed to replace.

Report erratum

http://dojotoolkit.org
http://www.rubyonrails.org
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=2

F ridays

CHAPTER 1. INTRODUCTION WHAT GWT DOES FOR YOU 3

1.2 What GWT does for you

Google Web Toolkit unifies client and server code into a single appli-

cation written in one language: Java. This has many advantages.

For one thing, far more developers know Java than JavaScript or

Flash. Another reason is that Java is blessed with an abundance of

developer tools such as Eclipse, NetBeans, and IDEA. GWT lets you

create a web application in much the same way as you would create

a Swing application—creating visual components, setting up event

handlers, debugging, and so forth—all within a familiar IDE.

By standardizing on one language you can share code on the client

and server. For example you can run the same validation code—

once on the client for immediate feedback, and once on the server

for maximum security. You can even move code between tiers as you

refactor your application to adapt to changing requirements.

GWT also abstracts the browser’s DOM, hiding differences between

browsers behind easy to extend object-oriented UI patterns. This

helps make your code portable over all supported browsers.

If this sounds too good to be true, well, it is a little bit. You still

have to be careful not to introduce browser-specific dependencies.

As tech guru Joel Spolsky likes to say, all abstractions are leaky.

Occasionally you may have to delve into CSS/DOM/JavaScript to

address browser quirks in non-trivial programs. But with GWT this

is the exception rather than the rule.

1.3 About this book

This book provides you with a thorough introduction to the Google

Web Toolkit. From installation, through your first application, to UI

Report erratum

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=3

F ridays

CHAPTER 1. INTRODUCTION ABOUT THIS BOOK 4

components and Remote Procedure calls, you’ll learn the ins and

outs of the framework. Some knowledge of Java programming and

HTML is assumed, but you don’t have to be an expert in web pro-

gramming.

History

This section lists all the updates made to the first edition of this

book.

• P1.1 (27nov2006): Updated for GWT 1.2.22. Added I18N chap-

ter.

• P1 (11sep2006): Updated for GWT 1.1.10.

• P0 (23aug2006): Original for GWT 1.1.0.

Ok, enough talk—let’s get started with your first GWT application!

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=4

F ridays

Chapter 2

Getting Started

Getting started developing with Google Web Toolkit is easy. In this

chapter I’ll show you how to set up a few things, and then you can

jump right in and create a working application using the scaffolding

GWT provides.

2.1 Supported platforms

Development of GWT applications is supported on Windows, Linux,

and MacOSX (as of GWT 1.2). All the examples in this book were

done on Windows.

GWT applications may be deployed in web servers running on any

operating system, and viewed on any modern desktop browser (IE6,

IE7, Firefox, Opera, and so on).

2.2 Installing

Before you start coding you need to install Java, an IDE, and GWT

itself.

Java 1.4.2+

First you need a copy of Java. Although GWT works with Java 1.4.2

and newer, you might as well get the latest Sun JDK 5.0 or 6.0

update from the Sun download site To verify you have the right

version, run this command from your shell window:

C:\> java -version

java version "1.5.0_07"

http://java.sun.com/javase/downloads
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=5

F ridays

CHAPTER 2. GETTING STARTED CREATE SCAFFOLDING 6

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_07-b03)

Java HotSpot(TM) Client VM (build 1.5.0_07-b03, mixed mode, sharing)

Sun has a taken a page from Microsoft’s
playbook and bundled their NetBeans IDE in
the 5.0 JDK. However this is sometimes an older
version of the JDK, and this kind of bundling
should be discouraged anyway. Fortunately,
you can still get just the plain JDK without
NetBeans and save yourself 70MB of extra
downloading at the same time. Unless you
really want NetBeans of course.

Eclipse

Second, you need a copy of the Eclipse IDE. While you can use

other Java IDEs such as NetBeans or IDEA, the Google developers

use Eclipse and so do I, so that’s what I’ll be using for the remainder

of this book. Go to the Eclipse downloads page, pick 3.2 (or later),

and then get the Eclipse package for your platform (Windows, Linux,

Mac, etc.). You can either get the full SDK (the one that has all the

sources and programmer documentation), or for a smaller download

you can just get the Platform Runtime Binary plus the JDT Runtime

Binary.

For an easier Eclipse download experience, you could try the Eclipse

on demand site, sponsored by Yoxos, or Easy Eclipse, sponsored by

nexB.

GWT

Next, download the Google Web Toolkit SDK (1.2.22 or later). Unzip

the Google Web Toolkit onto your machine. No special install is

needed. Now you’re ready to create your first project.

2.3 Create scaffolding

At a command prompt, run these commands (substituting the appro-

priate paths for your system):

C:\> mkdir c:\gwt-projects\MyProject

Report erratum

http://www.eclipse.org/downloads
http://www.eclipseondemand.com
http://www.easyeclipse.org
http://code.google.com/webtoolkit
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=6

F ridays

CHAPTER 2. GETTING STARTED RUNNING AND DEBUGGING 7

C:\> cd c:\gwt-projects\MyProject

C:\gwt-projects\MyProject> projectCreator -eclipse MyProject

Created directory C:\gwt-projects\MyProject\src

Created file C:\gwt-projects\MyProject\.project

Created file C:\gwt-projects\MyProject\.classpath

C:\gwt-projects\MyProject> applicationCreator -eclipse MyProject\

com.xyz.client.MyApp

Created directory C:\gwt-projects\MyProject\src\com\xyz

Created directory C:\gwt-projects\MyProject\src\com\xyz\client

Created directory C:\gwt-projects\MyProject\src\com\xyz\public

Created file C:\gwt-projects\MyProject\src\com\xyz\MyApp.gwt.xml

Created file C:\gwt-projects\MyProject\src\com\xyz\public\MyApp.html

Created file C:\gwt-projects\MyProject\src\com\xyz\client\MyApp.java

Created file C:\gwt-projects\MyProject\MyApp.launch

Created file C:\gwt-projects\MyProject\MyApp-shell.cmd

Created file C:\gwt-projects\MyProject\MyApp-compile.cmd

The projectCreator and applicationCreator commands are two shell scripts

that are supplied as part of GWT, so you’ll need to specify the path

to them or add the GWT directory to your system PATH variable.

projectCreator builds the scaffolding for a generic GWT project, and

applicationCreator adds a simple GWT application that you can build

upon. MyProject, MyApp, and com.xyz are just example names; you can

use anything you want. However the .client part of the package name

is important; we’ll come back to that later.

2.4 Running and debugging

At this point you’re ready to try out the application.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=7

F ridays

CHAPTER 2. GETTING STARTED RUNNING AND DEBUGGING 8

Figure 2.1: Hello world GWT application

Running outside Eclipse

First, let’s run the app outside of the IDE by using one of the handy

shell scripts that the scaffolding provided:

C:\gwt-projects\MyProject> MyApp-shell

If everything is working correctly two windows will appear: The GWT

development shell (this is kind of like a console window) and a web

browser window. See Figure 2.1

Verify the application works by clicking the Click me button—the

text Hello World! will appear. Congratulations, you’ve just created

and run your first GWT application.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=8

F ridays

CHAPTER 2. GETTING STARTED RUNNING AND DEBUGGING 9

Figure 2.2: GWT project in Eclipse

Running inside Eclipse

Now close the two GWT windows, start up Eclipse, and import this

project into your workspace (File → Import → Existing Projects Into Work-

space). The project will build, and if all is successful you will end

up with something like Figure 2.2 .

Now select Run → Debug..., and click on the launch configuration titled

MyApp (under Java Application). Then click on Debug. The two GWT

windows should appear again, just like in Figure 2.1, on the preced-

ing page

Debugging

Ok, now for the neat part. Leave the application running and switch

back to the Eclipse window. Set a breakpoint in the onClick() method

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=9

F ridays

CHAPTER 2. GETTING STARTED RUNNING AND DEBUGGING 10

Figure 2.3: Setting a breakpoint

in MyApp.java by double-clicking the gutter area next to the line (see

Figure 2.3).

Then switch to the application window and click the Click me but-

ton again. Eclipse will stop at the line in your Java code where you

put the breakpoint. You can single step, examine variables, and so

forth.

Hmm, that’s Java code, yet you’re writing an Ajax application that

will eventually be deployed in pure JavaScript. All the power of your

Java development environment—Eclipse, the debugger, refactoring,

source management, and so on—is suddenly available in the Ajax

world. Can you begin to see the potential of this technology? In the

next chapter we’ll take a look behind the curtain to reveal how the

magic is done.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=10

F ridays

Chapter 3

Hosted vs. Web Mode

In the previous chapter, when you invoked a GWT application you

were using what Google calls hosted mode. Hosted mode is only used

during development. When in production, your application will be

running in web mode. Before going any further in using GWT you

need to understand the difference between the two. Note that as of

this writing, hosted mode is only available on Windows and Linux.

3.1 Hosted mode

Think of hosted mode as training wheels for your GWT application.

It’s a hybrid development environment unique to GWT that lets your

code run as real Java code, but still inside a browser. Execution in

hosted mode is controlled by the Google Web Toolkit development

shell (the background window in Figure 2.1, on page 8).

The development shell is actually an Eclipse Rich Client application,

consisting of the shell console, a tomcat server, and one or more

hosted browsers.

The hosted browser (the front window in Figure 2.1) has two connec-

tions back to the development shell. One is just a regular http con-

nection to get the web pages, .css files, images, and other resources.

All these are handled by the embedded Tomcat server using a servlet

called com.google.gwt.dev.shell.GWTShellServlet.

The second connection is a back-door that intercepts all interactions

inside the hosted browser and routes them not to JavaScript but to

Java code in the shell. That Java code in turn calls your real client

Java code, which was compiled to bytecode by your IDE. The exact

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=11

F ridays

CHAPTER 3. HOSTED VS. WEB MODE HOSTED MODE 12

Figure 3.1: How a GWT page is loaded in hosted mode

details of how this is done are hidden in the shell code, which is not

open source.

Figure 3.1 shows how a page is loaded in hosted mode:

Joe Asks. . .

Is GWT open source?

The short answer is yes. All the libraries and
JavaScript you need to deploy your code are
covered under the Apache license. Two
development time pieces – the development
shell and the Java to JavaScript compiler – are
not open source at this time. But according to
GWT tech leader Bruce Johnson, even these
parts may be opened in the future.

1. The Shell program opens a hosted browser window, which loads

MyApp.html.

2. MyApp.html loads gwt.js with a <script> tag.

3. gwt.js scans MyApp.html and parses out the <meta name=’gwt-

module’> to get the module name.

4. GWT reads the module file (MyApp.gwt.xml) to find the name of

the EntryPoint class (MyApp).

5. The MyApp class is instantiated and its onModuleLoad() method

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=12

F ridays

CHAPTER 3. HOSTED VS. WEB MODE WEB MODE 13

is called. Your application begins.

6. Your application code makes calls into the GWT user library

(gwt-user.jar), which is also Java code.

7. Code in gwt-user.jar manipulates the hosted browser’s DOM to

add UI components to the web page, and redirects all browser

events back to the Java application code using special hooks

in the browser.

Because real Java code is running, you can use Java tools like the

Eclipse debugger, findbugs, pmd, JUnit, and so forth. It’s almost as

if you were developing a rich client program with Swing or SWT

because it’s Java end-to-end.

Once you’ve debugged and unit tested your code the next step is to

compile it into a form that can be run inside a regular browser (not

one that has been hijacked by the development shell). That’s where

web mode comes in.

3.2 Web mode

When you click the Compile/Browse button in the hosted browser,

the GWT compiler translates your .client package into JavaScript and

opens a normal web browser to view the application. At this point

pages are still served by the shell’s Tomcat instance, but they could

just as easily come from the file system or a normal web server.

Another way to invoke the GWT compiler is with the shell script pro-

vided by the scaffolding (MyApp-compile). You could also write an Ant

script to do it if you prefer. For example to maintain the gwtpow-

ered.org site I have an ant script that does the compile and then

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=13

F ridays

CHAPTER 3. HOSTED VS. WEB MODE WEB MODE 14

copies everything to my hosting provider. You can find the source at

http://code.google.com/p/gwtpowered.

However you invoke it, the GWT compiler combines your code with

a JavaScript version of the GWT API (the equivalent of gwt-user.jar) in

one JavaScript file. This code and several supporting files are placed

in the www directory inside your project. Everything from your public

directory is copied there as well. The table below explains what all

the files do:

The GWT compiler actually creates several
different browser-specific versions of compiled
JavaScript code, for several different classes of
browsers (IE, Firefox, etc.). Google calls these
cache files. The filenames use long
unguessable hex codes. Only one of these is
loaded, depending on your browser.

The .cache file is cached by the client to
improve load time for future visits. When the
app is modified and recompiled the .cache file
name will be different so the browser will
download it again. Any old .cache files will be
ignored.

Future versions of GWT might create more or
fewer of these cache files. As support for new
browsers is added to GWT, all you have to do is
recompile your application with the newer
compiler to support them

Filename Description

long-hex-name.cache.html Compiled JavaScript

long-hex-name.cache.xml Implementation defined

module-name.nocache.html Cache file selection

gwt.js Common GWT bootstrap code

history.html Contents of history IFrame

MyApp.html Main page, copied from public

tree*.gif +/- images used by the Tree widget

The flow of execution during a page load in web mode (see Fig-

ure 3.2, on the following page) is a bit different than in hosted mode.

Here’s a breakdown of what happens:

1. The web browser loads MyApp.html.

2. MyApp.html loads gwt.js with a <script> tag.

3. gwt.js scans MyApp.html and parses out the <meta name=’gwt-

module’> to get the module name.

4. gwt.js modifies the page to include an <iframe> that causes the

source file module-name.nocache.html to be loaded.

Report erratum

http://code.google.com/p/gwtpowered
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=14

F ridays

CHAPTER 3. HOSTED VS. WEB MODE OBFUSCATION 15

Figure 3.2: How a GWT page is loaded in web mode

5. JavaScript inside the file module-name.nocache.html looks at the

browser’s userAgent field to determine what kind of browser the

user is running (IE6, Mozilla, Opera, etc.). Then it selects the

correct code (cache file) for that browser type and redirects the

<iframe> there.

6. The JavaScript equivalent of your onModuleLoad() method is

executed, and the rest of your application goes from there.

Manipulations to the browser DOM are performed with ordi-

nary dynamic HTML calls in the compiled JavaScript.

3.3 Obfuscation

By default, the GWT Java to JavaScript compiler will produce obfus-

cated output. Code that has been obfuscated is smaller than human-

readable code, and is harder to reverse-engineer. It’s very difficult to

debug, though. Should you ever need to debug the JavaScript that

GWT produces, you can turn off obfuscation with command line

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=15

F ridays

CHAPTER 3. HOSTED VS. WEB MODE DEPLOYMENT 16

parameters on the GWT compiler (for example as arguments to the

MyApp-compile.cmd script). Use the -style pretty option to produce good

looking output with readable names and indentation. To see full

Java types as part of the names, use the -style detailed option instead.

3.4 Deployment

All the examples up to now have been dependent on the hosted

shell’s Tomcat server to serve up all the application’s files. However

in web mode they can be delivered by any web server or even (for

testing) the local file system. To try this out, copy the entire www

directory to another location in your file system and bring up a reg-

ular browser on your starting HTML page. The application should

work exactly the same as before.1

For simple programs like this there is no interaction with the server

because none of your code is running there. We’ll see some more

complicated programs in Chapter 5, Remote Procedure Calls, on

page 32 that do require more than copying a directory, but for now

let’s see what fun we can have with GWT’s user interface compo-

nents.

1History doesn’t work on the local file system in IE6. But why are you using IE

anyway?

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=16

F ridays

Chapter 4

User Interface

One thing you’ll notice when developing a GWT application is that

it’s much like developing a desktop application with Swing, SWT,

or even Visual Basic. You create controls such as buttons, lists,

and tables, you add them to parents, and you interact with them

via listeners. You lay them out in a certain arrangement and try to

make it look nice at any font size and screen resolution. The main

difference is that your GWT app will appear in a web browser, so

there has to be an HTML page involved somewhere.

Traditional web applications are structured as a series of HTML

pages with some kind of navigation between them. For example you

might have an inventory page, an ordering page, and a confirma-

tion page. In a GWT application, however, you stay on one page the

whole time. Instead of changing web pages, you change the contents

of the one page to reflect the current state. For example you might

have three different panels for inventory, ordering, and confirmation

within the page, and show only one at any given time. This gives the

user a smoother, more responsive experience compared to the old

way.

4.1 Tying into HTML

If you look in your project under src/com/xyz/public you’ll find a file

called MyApp.html. This is the canvas in which the GWT user interface

will be hosted.

Every GWT application lives inside a single HTML page. It could

be a static page like this one, or a page generated with a server-

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=17

F ridays

CHAPTER 4. USER INTERFACE TYING INTO HTML 18

side framework like JSP, Struts, Ruby on Rails, etc.. To keep things

simple we’ll just look at static pages for the rest of this book.

The fact that MyApp.html is in the public directory means it will be

copied verbatim into the final deployment area on the server (see

Section 3.2, Web mode, on page 13). If you have any images, style

sheets, etc., then they need to go somewhere in this same directory.

Near the top of the HTML page is a required meta tag that associates

this page with a GWT module.

Download MyProject/src/com/xyz/public/MyApp.html

<meta name='gwt:module' content='com.xyz.MyApp'>

A GWT module is a collection of client-side application code and

resources you supply. The module named com.mycompany.MyApp

is defined in the module file src/com/mycompany/MyApp.gwt.xml.

Download MyProject/src/com/xyz/MyApp.gwt.xml

<module>

<!-- Inherit the core Web Toolkit stuff. -->

<inherits name='com.google.gwt.user.User' />

<!-- Specify the app entry point class. -->

<entry-point class='com.xyz.client.MyApp' />

</module>

Here you can see the name of your Java class. Logically, when the

HTML page is loaded, GWT looks up the meta tag, reads the xml file

to get the class name, and starts calling code in the EntryPoint class.

As of GWT 1.1 you can also have GWT inject .css files and other

resources with module directives.

Report erratum

http://media.pragprog.com/titles/ebgwt/code/MyProject/src/com/xyz/public/MyApp.html
http://media.pragprog.com/titles/ebgwt/code/MyProject/src/com/xyz/MyApp.gwt.xml
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=18

F ridays

CHAPTER 4. USER INTERFACE ENTRY POINT 19

4.2 Entry point

Your entry point class (MyApp) extends the EntryPoint interface and

provides one method: onModuleLoad(). This method is responsible for

constructing your GWT app’s user interface.

Download MyProject/src/com/xyz/client/MyApp.java

/**

* This is the entry point method.

*/

public void onModuleLoad() {

final Button button = new Button("Click me");

final Label label = new Label();

//...

The scaffolding code creates two GWT user interface elements, a

Button and a Label. These are examples of GWT widgets, which are

similar to widgets in other Java GUI libraries like Swing and SWT.

See Section 4.4, Widgets, on page 21 for a list of widgets supplied

by GWT.

If you go back and look at the HTML file, near the bottom it refer-

ences two placeholders for dynamic content:

Download MyProject/src/com/xyz/public/MyApp.html

<table align=center>

<tr>

<td id="slot1"></td><td id="slot2"></td>

</tr>

</table>

Note the id=’s given to these cells, slot1 and slot2. In the Java code

these two slots are referenced by their id=s and filled in with the

Button and the Label you just created:

Report erratum

http://media.pragprog.com/titles/ebgwt/code/MyProject/src/com/xyz/client/MyApp.java
http://media.pragprog.com/titles/ebgwt/code/MyProject/src/com/xyz/public/MyApp.html
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=19

F ridays

CHAPTER 4. USER INTERFACE EVENTS 20

Download MyProject/src/com/xyz/client/MyApp.java

// Assume that the host HTML has elements defined whose

// IDs are "slot1", "slot2". In a real app, you probably would not want

// to hard-code IDs. Instead, you could, for example, search for all

// elements with a particular CSS class and replace them with widgets.

//

RootPanel.get("slot1").add(button);

RootPanel.get("slot2").add(label);

A RootPanel just wraps an HTML element on the page. They are

created on demand. This code gets a RootPanel for each of the two

<td> elements referenced by id=, and then adds the GWT widgets

inside them.

This table defines how the widgets are laid out on the screen.

Joe Asks. . .

What about memory leaks?

If you’ve done any Ajax programming before,
you might be wondering about how the
listeners get cleaned up, how leaks are
prevented, and so on. You’re only wondering
that because you’ve learned this is a real
hassle in JavaScript programming, especially in
certain browsers. Well, stop biting your nails. As
long as you follow its rules, GWT will take care
of all that. Trust me.

A better way to define widget layout is to use a Panel. GWT pan-

els are just widgets that can contain one or more other widgets,

and arrange them in some predefined way. For example, you could

have created a HorizontalPanel, added the button and label to that,

and then added the panel to the RootPanel of the page (e.g., Root-

Panel.get().add(hPanel)). See Section 4.5, Panels, on page 28

for a list of panels predefined in the Google Web Toolkit user library.

4.3 Events

A web app would be pretty boring if you couldn’t interact with it, so

now let’s look at the final ingredient—making that button do some-

thing. If you were programming a Swing app you would add a click

listener on your JButton. In GWT, you do basically the same thing.

Download MyProject/src/com/xyz/client/MyApp.java

button.addClickListener(new ClickListener() {

public void onClick(Widget sender) {

Report erratum

http://media.pragprog.com/titles/ebgwt/code/MyProject/src/com/xyz/client/MyApp.java
http://media.pragprog.com/titles/ebgwt/code/MyProject/src/com/xyz/client/MyApp.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=20

F ridays

CHAPTER 4. USER INTERFACE WIDGETS 21

if (label.getText().equals(""))

label.setText("Hello World!");

else

label.setText("");

}

});

When the user clicks on the button, the onClick() method is called.

The logic here could do anything, but in this case it just toggles the

text of the Label widget to either be blank or say "Hello World!". See

Figure 2.1, on page 8 for how the final application looks.

Joe Asks. . .

Do I still have to worry about browser differ-
ences in CSS?

After several years of abysmal CSS support in
browsers we’ve now worked our way up to
"adequate". Although GWT tries to hide
differences between browsers, style sheets are
still subject to different interpretations by
browser writers. So the best advice is to keep it
simple, rely on GWT layouts instead of CSS
positioning, and test on different browsers.

4.4 Widgets

This section provides a list of most of the widgets built-in to GWT.

For each widget, a description of what the widget does is provided,

along with common methods you’ll need to call. Many widgets include

an image showing what the widget might look like. Of course, the

actual display will depend on the user’s browser and operating sys-

tem. For information on laying out widgets on the page see Sec-

tion 4.5, Panels, on page 28.

Colors, fonts, and other style information should be kept in stan-

dard Cascading Style Sheets (CSS). Often a widget will predefine

a CSS class name for you (shown here after the description), but

you can also add your own class names to the widget and reference

either name in your .css files.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=21

F ridays

CHAPTER 4. USER INTERFACE EVENTS 20

Download MyProject/src/com/xyz/client/MyApp.java

// Assume that the host HTML has elements defined whose

// IDs are "slot1", "slot2". In a real app, you probably would not want

// to hard-code IDs. Instead, you could, for example, search for all

// elements with a particular CSS class and replace them with widgets.

//

RootPanel.get("slot1").add(button);

RootPanel.get("slot2").add(label);

A RootPanel just wraps an HTML element on the page. They are

created on demand. This code gets a RootPanel for each of the two

<td> elements referenced by id=, and then adds the GWT widgets

inside them.

This table defines how the widgets are laid out on the screen.

Joe Asks. . .

What about memory leaks?

If you’ve done any Ajax programming before,
you might be wondering about how the
listeners get cleaned up, how leaks are
prevented, and so on. You’re only wondering
that because you’ve learned this is a real
hassle in JavaScript programming, especially in
certain browsers. Well, stop biting your nails. As
long as you follow its rules, GWT will take care
of all that. Trust me.

A better way to define widget layout is to use a Panel. GWT pan-

els are just widgets that can contain one or more other widgets,

and arrange them in some predefined way. For example, you could

have created a HorizontalPanel, added the button and label to that,

and then added the panel to the RootPanel of the page (e.g., Root-

Panel.get().add(hPanel)). See Section 4.5, Panels, on page 28

for a list of panels predefined in the Google Web Toolkit user library.

4.3 Events

A web app would be pretty boring if you couldn’t interact with it, so

now let’s look at the final ingredient—making that button do some-

thing. If you were programming a Swing app you would add a click

listener on your JButton. In GWT, you do basically the same thing.

Download MyProject/src/com/xyz/client/MyApp.java

button.addClickListener(new ClickListener() {

public void onClick(Widget sender) {

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=22

F ridays

CHAPTER 4. USER INTERFACE WIDGETS 23

show() method to open the dialog and the hide() method to make it go

away.

CSS Style Rules:

• .gwt-DialogBox { }

• .gwt-DialogBox .Caption { }

FileUpload

A widget that wraps an input file element. Can only be used inside a

FormPanel. Set the name of the input element that will be submitted

to the server using the setName() method.

FlexTable and Grid

A table that can contain text, HTML, or any type of widget. FlexTable

creates cells on demand and can be ragged (i.e., each row can con-

tain a different number of cells). Grid always has the same, fixed

size.

Use the setText(), setHTML(), or setWidget() method to add cell items, and

getCellFormatter() to customize the appearance of the cells. Cells in a

FlexTable can span multiple rows or columns.

Frame and NamedFrame

A widget that wraps an HTML <iframe> element, which can con-

tain an arbitrary web site. Note that if you are using History (see

Chapter 6, History and Bookmarks, on page 43), any browser his-

tory items generated by the Frame will interleave with your applica-

tion’s history. Use the constructor or the setUrl() method to set the

web page address.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=23

F ridays

CHAPTER 4. USER INTERFACE WIDGETS 24

CSS Style Rules: .gwt-Frame {}

HTML

A widget that can contain arbitrary HTML. If you only need simple

text, then use the Label widget instead. Inserting HTML, especially if

it contains user-supplied data, can lead to potential security issues

with cross-site scripting if you’re not careful.

CSS Style Rules: .gwt-HTML { }

Image

A widget that displays the image at a given URL. Use the constructor

or the setUrl() method to specify the image address. You can also use

addLoadListener() to be notified when the image is done loading (or an

error occurs).

CSS Style Rules: .gwt-Image { }

Hyperlink

A widget that serves as an internal hyperlink, i.e., a link to another

state of the running application. When clicked, it will create a new

history frame using History.newItem(), but without reloading the page.

To create a hyperlink to another page (for example, a different site),

use the HTML widget instead.

CSS Style Rules: .gwt-Hyperlink { }

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=24

F ridays

CHAPTER 4. USER INTERFACE WIDGETS 25

Label

A widget that contains arbitrary text, not interpreted as HTML. It

supports word wrapping and arbitrary horizontal alignment. Use

the setText() method to change the text.

CSS Style Rules: .gwt-Label { }

ListBox

A widget that presents a list of choices to the user, either as a list

box or as a drop-down list. Add items with the addItem() method,

and set the height of the box with setVisibleItemCount(). If you set the

height to 1, that turns it into a drop-down list. To tell which item(s)

are selected call the getSelectedIndex() or isItemSelected() methods.

CSS Style Rules: .gwt-ListBox { }

MenuBar and MenuItem

A standard menu bar widget. A menu bar can contain any number

of menu items, each of which can either fire a Command or open a

cascaded menu bar. Use the addItem() method to add things to the

menu bar.

CSS Style Rules:

• .gwt-MenuBar { the menu bar itself }

• .gwt-MenuItem { menu items }

• .gwt-MenuItem-selected { selected menu items }

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=25

F ridays

CHAPTER 4. USER INTERFACE WIDGETS 26

PasswordTextBox

Identical to a regular text box, except that the input is visually

masked by the browser to prevent casual eavesdropping.

CSS Style Rules: .gwt-PasswordTextBox { }

RadioButton

A mutually-exclusive selection radio button widget. Call the addClick-

Listener() method to be notified when the user clicks on it, and call

the isChecked() method to see if it’s checked or not.

TabBar

A horizontal bar of folder-style tabs, most commonly used as part

of a TabPanel. Call the addTab() method to add items to the bar,

and addTabListener() to get notifications before (onBeforeTabSelected())

or after (onTabSelected()) a tab is selected.

CSS Style Rules:

• .gwt-TabBar {the tab bar itself }

• .gwt-TabBarFirst {the left side spacer of the bar}

• .gwt-TabBarRest {the right side spacer of the bar}

• .gwt-TabBarItem {tabs}

• .gwt-TabBarItem-selected {additional style for selected tabs}

TextArea

A text box that allows multiple lines of text to be entered. Set the size

of this area with the setCharacterWidth() and setVisibleLines() methods.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=26

F ridays

CHAPTER 4. USER INTERFACE WIDGETS 27

Call getCursorPos(), getSelectionLength(), and getSelectedText() to learn about

the currently selected text. You can also move the cursor position

or set the selection range programmatically. Call the addKeyboardLis-

tener() method to be notified of (and possibly suppress) key presses.

CSS Style Rules: .gwt-TextArea { }

TextBox

A text box that allows a single line of text to be entered. Set the

size of this area with the setVisibleLength() method. Call getCursorPos(),

getSelectionLength(), and getSelectedText() to learn about the currently

selected text. You can also move the cursor position or set the selec-

tion range programmatically. Call the addKeyboardListener() method to

be notified of (and possibly suppress) key presses.

Tree and TreeItem

A standard hierarchical tree widget. The tree contains a hierarchy

of TreeItem objects that the user can open, close, and select. Call the

addItem() method on Tree to add items to the root of the tree. Items

can either be HTML strings or TreeItem objects containing nested

branches of the tree. Call the addItem() method on TreeItem to add

a nested item.

CSS Style Rules:

• .gwt-Tree {the tree itself }

• .gwt-TreeItem {a tree item}

• .gwt-TreeItem-selected {a selected tree item}

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=27

F ridays

CHAPTER 4. USER INTERFACE PANELS 28

4.5 Panels

A panel is a widget that contains other widgets (including other

panels). You use them to layout widgets in grids, decks, rows, or

columns. This section describes the panels which are built-in to

GWT. See also Section 4.4, Widgets, on page 21.

AbsolutePanel

An absolute panel positions all of its children absolutely (in CSS,

position: absolute), allowing them to overlap. Widgets are positioned

in the document coordinate space. Note that this panel will not

automatically resize itself to allow enough room for its absolutely-

positioned children. It must be explicitly sized in order to make room

for them.

DeckPanel

A panel that displays all of its child widgets in a ’deck’, where only

one can be visible at a time. All children reside simultaneously in

the browser’s memory, which could have memory implications for

large decks.

Call the add() method to add a widget to the deck, and showWidget()

to make a particular one visible. DeckPanel is used for the body of

TabPanel.

DockPanel

A panel that lays its child widgets out "docked" at its outer edges,

with the central widget taking up the remaining space. Use the add()

method to place widgets at the edges. You can also set the horizontal

and vertical alignment of individual cells.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=28

F ridays

CHAPTER 4. USER INTERFACE PANELS 29

Note that this panel has some order dependent behavior. For exam-

ple, if WEST is added first it will get the upper left corner, but if NORTH

is added first it will get the upper left corner.

FlowPanel

A panel that formats its child widgets using the default HTML layout

behavior. Use the add() method to add a new child widget to the

panel. Set the CSS rule display: inline on child widgets to make them

flow horizontally in a FlowPanel.

FocusPanel

A simple panel that makes its contents focusable, and adds the

capability to process mouse and keyboard events. Use the construc-

tor or setWidget() method to set the panel’s widget.

FormPanel

A panel that wraps its contents in an HTML <form> element. A

FormPanel may only contain these elements: TextBox, PasswordTextBox,

RadioButton, CheckBox, TextArea, ListBox, FileUpload. Use the setName() method

on the containing elements to associate them with a form field passed

to the server. Use setAction() to set the URL used to submit the form,

and the submit() method to actually submit the form. Call addFormHan-

dler() to get notified when the form is about to be submitted (cance-

lable) or when submission is complete.

HorizontalPanel

A panel that lays all of its widgets out in a single horizontal column.

Use the add() method to place widgets in the panel. You can also set

the horizontal and vertical alignment of individual cells.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=29

F ridays

CHAPTER 4. USER INTERFACE PANELS 30

Tip: set the alignment property before adding children so you don’t

have to set it on each child.

HTMLPanel

A panel that contains HTML with replaceable parts. Use the con-

structor to set the initial HTML string. Inside that string some ele-

ments have the id= attribute, allowing you to use the add() method to

attach child widgets to those identified elements. When constructing

the HTML string you should use the createUniqueId() method, because

no two elements in a document should have the same id.

PopupPanel

A popup panel can "pop up" over other widgets. It overlays the

browser’s client area (and any previously-created popups). To use,

create a new class that extends PopupPanel, and call the setWidget()

method in the constructor. Call the show() method to display the

popup and the hide() method to remove it. If you’d like to preview

(and possibly suppress) keyboard events before they are passed to

any other widget, override the onKeyDownPreview(), onKeyPressPreview(),

or onKeyUpPreview() methods.

ScrollPanel

A simple panel that wraps its contents in a scrollable area. Use the

constructor or the setWidget() function to define the widget to wrap.

StackPanel

A panel that stacks its children vertically, displaying only one at a

time, with a header for each that the user can click to display it. Use

the add() method to add a widget and its header to the stack.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=30

F ridays

CHAPTER 4. USER INTERFACE PANELS 31

CSS Style Rules:

• .gwt-StackPanel {the panel itself }

• .gwt-StackPanelItem {unselected items}

• .gwt-StackPanelItem-selected {selected items}

TabPanel

A composite of TabBar and DeckPanel that shows a tabbed set of wid-

gets. Only one of the widgets is visible at any given time, depending

on which tab is selected. To use, create a new class that extends

TabPanel, and call the add() method to add each widget to the panel.

Implement onBeforeTabSelected() to preview (and possibly suppress)

tab selection events, or the onTabSelected() method to get notified

after the fact.

VerticalPanel

A panel that lays all of its widgets out in a single vertical column.

Use the add() method to place widgets in the panel. You can also set

the horizontal and vertical alignment of individual cells.

Tip: set the alignment property before adding children so you don’t

have to set it on each child.

This chapter has covered the basics you need to know to create GWT

user interfaces. In the next chapter we’ll delve into another powerful

feature of GWT that lets your client and server side code talk to each

other: Remote Procedure Calls.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=31

F ridays

Chapter 5

Remote Procedure Calls

For years, developers have struggled to find the perfect place for

their code to run. Should it run on a server where it can be cen-

trally controlled and secured, or should it run closer to the user

on their desktop to take advantage of local processing power and

interactivity? GWT lets part of your application run in both places,

with seamless communication between them using Remote Proce-

dure Calls (RPC).

5.1 Where does your code live?

Fat client applications, i.e., traditional desktop applications, run com-

pletely on the user’s desktop. An example of this would be Microsoft

Word. The application is installed on the user’s machine, and all

files produced live there too.

Thin client applications take the opposite approach. They run on

some shared server machine, and the desktop is only used for the

user interface. Most web applications fall into this category, for

example Ebay and Amazon. Nothing is installed on the desktop

except for a standard viewer (the web browser).

There are various other technologies that fit somewhere in between

(rich, smart, client/server, etc.). Ajax applications in general, and

GWT in particular, fall into a class called Rich Internet Applications

(RIA). Some of the application code runs on the client desktop and

some runs on a server machine.

Like thin client apps, RIA’s don’t require anything to be installed

on the desktop other than a standard web browser. But like fat

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=32

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS CALLING REMOTE CODE 33

clients, the user interface can be fairly rich and interactive, taking

advantage of some of the processing power on the desktop.

Joe Asks. . .

How do I access standard web services?

Web services are APIs that are exposed by one
program (on a server) and consumed by
another, possibly independent program. These
APIs are programming language independent,
and are generally based on XML or JSON
(JavaScript Object Notation).

GWT does support calling these APIs from your
client side code. However usually it’s better to
make the calls from your server side code
instead. The reasons include:

1. Standard web service wire protocols
tend to be rather verbose (the worst
offender being SOAP), requiring more
code and more CPU time to support on
the client.

2. JavaScript only allows calls back to the
server that originated the JavaScript
code. Thus if the web service lives on a
different server (for example, at Amazon,
EBay, or Google) it would have to go
through some kind of HTTP proxy anyway
to hop-scotch its way to the destination.

5.2 Calling remote code

Any time you have code running in two different places you’ll need

a way for them to communicate with each other. The simplest way

is through a remote procedure call.

For our purposes, a remote procedure call is simply a way the client

can execute some logic on the server and get a result back. For

example, you might need to retrieve the current mortgage rate, or

look up the map coordinates of an address. RMI, .NET Remoting,

SOAP, REST, and XML-RPC are all remote procedure call protocols

that you might be familiar with.

GWT doesn’t use any of those.

5.3 Why a new protocol?

The first reason that GWT has its own protocol is that calls from

the browser are asynchronous. That’s the A in Ajax, remember? You

make a request, and it may (or may not) give you back a response

sometime in the future. While the request is pending, a GWT appli-

cation needs to go about its business and adapt to not having that

data as best it can.

For example, when you click on a message in GMail, the client

requests the text of the message from the server and writes the

string Loading... in the corner of your browser window. If you get

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=33

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS GWT RPC BASICS 34

tired of waiting for the server, you can click on the back button, or

select another message, or click on one of your other browser tabs.

However, the UI is not locked up as it would be with a synchronous

call. While GMail isn’t written using GWT (currently), the idea is the

same.

Second, GWT’s RPC needs to be simple. The browser downloads all

your client code the first time the user starts your application, and

if it’s more than 100K or so then people will notice a pause. Besides,

JavaScript running in the browser tends to be fairly slow. So imple-

menting a complex protocol like SOAP might just be too much code

to download and too slow to be practical.

Finally, JavaScript doesn’t support Java-style serialization or dynamic

class loading so GWT’s RPC can’t rely on that. Since none of the

existing protocols satisfied all these requirements efficiently, Google

invented their own. Fortunately the implementation is open source

so you can adapt it easily to meet your needs if necessary.

GWT’s RPC wire protocol is not documented. Although you could

figure it out from the source code, I recommend you don’t do that

because it can change without notice. GWT is designed so that your

client and server sides are deployed at the same time, as two halves

of the same application. If you need a protocol that will remain

unchanged across releases then you should not use the GWT RPC.

5.4 GWT RPC basics

GWT is Java centric: Java on the client (converted into JavaScript

for browser deployment) and Java on the server (running as a stan-

dard Java servlet). Although it’s possible to use a different language

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=34

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS GWT RPC BASICS 35

on the server side (such as PHP, python, or Ruby), you’re fighting

the design principles of GWT if you do that. So go with the flow, and

just use Java everywhere.

The first step in making a remote procedure call is defining a tem-

plate that describes the call. Unfortunately you’re going to have to

do this three times: once on the server, once on the client, and once

in an interface that they both share. GWT uses a standard naming

convention to connect them all.

Suppose your client needs to check the price of a stock symbol.

Tool support is available to make this a bit
easier. For example, GWT Designer from
Instantiations and the GWT wizard in IDEA 6.0
let you define the procedure call once, then
generate the boilerplate code for you.

To prevent chatty communication, you should allow it to request

the price of several stocks at once. So, you’ll need a method that

takes an array of symbol names, and returns an array of doubles.

Let’s stick that method in an interface called StockService. The three

interfaces or classes you need to define are:

Name Location Purpose

interface StockService client and server Describes the service

(its signature)

class StockServiceImpl server Actual code goes here

interface StockServiceAsync client Lets you call the ser-

vice

The only object here with any meat on it is the StockServiceImpl class,

so let’s look at that one first. If you’re following along in Eclipse you

should create a new RpcExample project using the regular scaffolding

(or just download the samples for this book). Then add this class to

the com.xyz.server package, because it will live on the server:

Download RpcProject/src/com/xyz/server/StockServiceImpl.java

public class StockServiceImpl extends RemoteServiceServlet

implements StockService {

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/server/StockServiceImpl.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=35

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS GWT RPC BASICS 36

public double[] getPrices(String[] symbols) {

double[] result = new double[symbols.length];

for (int i = 0; i < symbols.length; i++) {

result[i] = getPrice(symbols[i]);

}

return result;

}

}

For this demonstration let’s just say that all stocks are priced at

$400 and go up $1 every time we check the market (wow, I wish

I’d bought some Sun stock when it was $4 a share). This will help

illustrate another point later:

Download RpcProject/src/com/xyz/server/StockServiceImpl.java

private double price = 400.0;

private synchronized double getPrice(String symbol) {

// Real code would retrieve the prices here

return price++;

}

Back on the client side, here’s the EntryPoint class for the test pro-

gram. It should look pretty familiar by now, except for a few minor

changes to implement the ClickListener interface and change the type

of the label widget:

Download RpcProject/src/com/xyz/client/RpcExample.java

public class RpcExample implements EntryPoint, ClickListener {

private Button button = new Button("Click me");

private HTML label = new HTML();

public void onModuleLoad() {

button.addClickListener(this);

RootPanel.get("slot1").add(button);

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/server/StockServiceImpl.java
http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/RpcExample.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=36

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS GWT RPC BASICS 37

RootPanel.get("slot2").add(label);

}

// ...

}

When the button is clicked, the onClick() method is called. This is

where you actually do the call to the server:

Download RpcProject/src/com/xyz/client/RpcExample.java

private String[] symbols = { "GOOG", "MSFT", "SUNW" };

public void onClick(Widget sender) {

// (1) Create the client proxy. Note that although you are

// creating the service interface proper, you cast the

// result to the async version of the interface. The cast

// is always safe because the generated proxy implements

// the async interface automatically.

StockServiceAsync service = (StockServiceAsync) GWT

.create(StockService.class);

// (2) Specify the URL at which our service implementation is

// running. Note that the target URL must reside on the same

// domain and port from which the host page was served.

ServiceDefTarget endpoint = (ServiceDefTarget) service;

endpoint.setServiceEntryPoint(GWT.getModuleBaseURL() + "prices");

// (3) Create an async callback to handle the result.

AsyncCallback callback = new AsyncCallback() {

public void onSuccess(Object result) {

double[] prices = (double[]) result;

updatePrices(symbols, prices);

}

public void onFailure(Throwable caught) {

// do some UI stuff to show failure

}

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/RpcExample.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=37

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS GWT RPC BASICS 38

};

// (4) Make the call. Control flow will continue immediately

// and later 'callback' will be invoked when the RPC completes.

service.getPrices(symbols, callback);

}

}

See the references to StockServiceAsync and StockService in the first

In a real application you’d probably want to
do the first 3 steps once and save the results.
These objects can be reused for the actual
call.

step? These interfaces can be derived manually or through some

kind of tool (e.g., a Ruby script) from the StockServiceImpl class as

follows:

Download RpcProject/src/com/xyz/client/StockServiceAsync.java

public interface StockServiceAsync {

void getPrices(String[] symbols, AsyncCallback callback);

}

Download RpcProject/src/com/xyz/client/StockService.java

public interface StockService extends RemoteService {

double[] getPrices(String[] symbols);

}

Now look at step 3 of the onClick() method. When the getPrices() method

completes (assuming it does), then the onSuccess() method in your

AsyncCallback is executed. This turns around and calls a method

called updatePrices(), which changes the user interface to show the

result. Here’s the definition of that method:

Download RpcProject/src/com/xyz/client/RpcExample.java

private void updatePrices(String[] symbols, double[] prices) {

String html = "";

for (int i = 0; i < symbols.length; i++) {

html += symbols[i] + ": " + prices[i] + "
";

}

label.setHTML(html);

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/StockServiceAsync.java
http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/StockService.java
http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/RpcExample.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=38

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS SERIALIZATION 39

}

When you run this program and click the button nothing happens.

The hosted shell will show an error message:

[TRACE] The development shell servlet received a request for

'prices' in module 'com.xyz.RpcExample'

[WARN] Resource not found: prices

That’s because we haven’t deployed the servlet code yet. In Web

mode you need to deploy the StockServiceImpl servlet to your container,

for example Tomcat. See your servlet container’s documentation for

how to do that. In Hosted mode it’s much easier. All you need to do

is add this to your module definition (RpcExample.gwt.xml):

Download RpcProject/src/com/xyz/RpcExample.gwt.xml

<!-- Specify the servlet class. -->

<servlet path="/prices" class="com.xyz.server.StockServiceImpl" />

Now restart your application (click Refresh in the hosted browser),

and you should see something like Figure 5.1, on the next page.

Server-based State

Every time you click the button, the prices increment, even if you

do it from a different browser. That’s because there is one servlet

instance shared by all clients. To have different state for different

users you’ll need to implement some kind of session id, perhaps a

random number passed around to all the RPC routines.

5.5 Serialization

In the previous example you passed a few strings and got back

some doubles in response. Under the covers, this data transparently

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/RpcExample.gwt.xml
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=39

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS SERIALIZATION 40

Figure 5.1: RPC example using fake stock prices

underwent serialization, a conversion from Java objects to bytes,

and back to Java objects on the other side.

Like RMI and .NET Remoting, you are not just limited to primitive

types. Any type that is serializable can be passed as a parameter

or returned as a result from a remote call. Remember though that

GWT’s idea of serializable is different from Java’s idea of serializable.

A type is "GWT serializable" if it:

• is primitive, such as char, byte, short, int, long, boolean, float, or

double;

• is a primitive wrapper (Character, Byte, etc.)

• is String or Date

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=40

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS SERIALIZATION 41

• is an array of serializable types (including arrays of arrays)

• is a user defined class that contains only serializable fields, or

• implements the IsSerializable marker interface

Most simple types and classes you will want to use will automati-

cally be serializable, for example:

Download RpcProject/src/com/xyz/client/Rect.java

public class Rect implements IsSerializable {

private int height;

private int width;

// Must have a zero-arg constructor, or no constructor

public Rect() {

}

public void setHeight(int height) {

this.height = height;

}

// ...

}

Collection classes such as Set, List, Map, and HashMap are trickier;

you have to use a special annotation in the JavaDoc to tell the GWT

compiler what kind of objects will be in the Collection.1 For example,

Download RpcProject/src/com/xyz/client/MyClass.java

public class MyClass implements IsSerializable {

/**

* This field is a Set that must always contain Strings.

*

* @gwt.typeArgs <java.lang.String>

1If GWT ever supports generics this will become easier.

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/Rect.java
http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/client/MyClass.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=41

F ridays

CHAPTER 5. REMOTE PROCEDURE CALLS SERIALIZATION 42

*/

public Set setOfStrings;

}

Similarly, to annotate parameters and return types:

Download RpcProject/src/com/xyz/server/MyService.java

public interface MyService extends RemoteService {

/**

* The first annotation indicates that the parameter named 'c' is

* a List that will only contain Integer objects. The second

* annotation indicates that the returned List will only contain

* String objects (notice there is no need for a name, since it

* is a return value).

*

* @gwt.typeArgs c <java.lang.Integer>

* @gwt.typeArgs <java.lang.String>

*/

List reverseListAndConvertToStrings(List c);

}

In the next chapter we’ll change gears a bit to tackle a pesky client-

Here’s a word of advice when using remote
procedure calls: use them sparingly. Make as
few calls as you can, and fetch the minimum
amount of data you need to fetch on each
call. Be mindful of both the CPU usage on your
server, and the amount of data you’re sending
across the wire. This is just common sense, but
it’s easy to forget when you’re just trying to get
your application to work.

side problem: handling the Back button.

Report erratum

http://media.pragprog.com/titles/ebgwt/code/RpcProject/src/com/xyz/server/MyService.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=42

F ridays

Chapter 6

History and Bookmarks

Ever since the first version of NCSA Mosaic was released, web browsers

have been blessed with a Back button. Its function was pretty clear

when all we had were static HTML pages, but when dynamic web

applications appeared, it caused all kinds of headaches.

Bookmarks (sometimes called Favorites) are a particular problem for

Ajax apps because the user is interacting with a single web page,

and thus many different sections, or states, of the application all

have the same URL.

Fortunately GWT solves both of these problems.

6.1 The History Token

The secret to handing the Back button and allowing the user to save

useful bookmarks is the history token. The history token is just a

string that you make up to store whatever state you want it to store.

For example, you could use it to store the name of current tab of

a multi-tabbed page, or it you could encode some kind of complex

state in it.

Google doesn’t document the maximum length of the history token,

but I recommend keeping it short, say under 100 characters.

The current history token is changed when the user clicks on a

Hyperlink object, or the Back or Forward button in the browser. You

can also change the history token programmatically by calling the

methods History.newItem(), History.back(), or History.forward().

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=43

F ridays

CHAPTER 6. HISTORY AND BOOKMARKS HISTORY LISTENER 44

6.2 History Listener

So how do you know when the history token changes? By registering

a listener of course. Declare a class that implements HistoryListener and

its onHistoryChanged() method, then pass it to History.addHistoryListener().

Many people just use their EntryPoint class for this purpose. All listen-

ers are cleaned up when the application exits.

When the application first starts (when onModuleLoad() is called), the

history listener is not called. This gives you a chance to see if there is

an initial token or not, perform any special initialization you might

need, and then call onHistoryChanged() yourself.

Joe Asks. . .

Does this mess up regular web anchors?

Web anchors like and
corresponding links like
do not affect the GWT history stack. However
you should avoid using them in a GWT
application. If the user bookmarked a URL with
a web anchor, when they reloaded that page
GWT would interpret the anchor as a history
token. It would pass the token to your listener,
which wouldn’t know how to handle it. If you
really want to change states, use the Hyperlink

class instead.

6.3 How it Works

To the user, the history token appears in the browser address bar

as part of the URL, as in http://www.gwtpowered.org/#Xyzzy. If

the user browses to that address, the GWT application is loaded and

can call History.getToken() to see what it’s supposed to do.

Internally, history is managed by a special <iframe> tag that you

put in your application’s HTML page. The GWT scaffolding script

adds this for you automatically:

Download HistoryProject/src/com/xyz/public/HistoryExample.html

<!-- OPTIONAL: include this if you want history support -->

<iframe id="__gwt_historyFrame" style="width:0;height:0;border:0"></iframe>

The browser’s Back and Forward buttons simply keep a stack of

URLs that you have visited. By carefully manipulating this stack,

Report erratum

http://media.pragprog.com/titles/ebgwt/code/HistoryProject/src/com/xyz/public/HistoryExample.html
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=44

F ridays

CHAPTER 6. HISTORY AND BOOKMARKS EXAMPLE 45

GWT makes it correspond to the history tokens that have been set

by your application.

As you’ve probably guessed by now, bookmarks just fall out of this

implementation because they record the full URL (including any-

thing after the #). You can also publish the URLs in articles or books

as I’ve done above.

6.4 Example

This example shows how to handle the initial token, set up an event

listener, and process events.

Download HistoryProject/src/com/xyz/client/HistoryExample.java

public class HistoryExample implements EntryPoint, HistoryListener {

private Label lbl = new Label();

public void onModuleLoad() {

// Create three hyperlinks that change the application's

// history.

Hyperlink link0 = new Hyperlink("link to foo", "foo");

Hyperlink link1 = new Hyperlink("link to bar", "bar");

Hyperlink link2 = new Hyperlink("link to baz", "baz");

// If the application starts with no history token, start it

// off in the 'baz' state.

String initToken = History.getToken();

if (initToken.length() == 0)

initToken = "baz";

// onHistoryChanged() is not called when the application first

// runs. Call it now in order to reflect the initial state.

onHistoryChanged(initToken);

Report erratum

http://media.pragprog.com/titles/ebgwt/code/HistoryProject/src/com/xyz/client/HistoryExample.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=45

F ridays

CHAPTER 6. HISTORY AND BOOKMARKS EXAMPLE 46

// Add widgets to the root panel.

Panel panel = new VerticalPanel();

panel.add(lbl);

panel.add(link0);

panel.add(link1);

panel.add(link2);

RootPanel.get().add(panel);

// Add history listener

History.addHistoryListener(this);

}

public void onHistoryChanged(String historyToken) {

// This method is called whenever the application's history

// changes. Set the label to reflect the current token.

lbl.setText("The current history token is: " + historyToken);

}

}

When you run this it will show the current token plus three hyper-

links that let you set the token (see Figure 6.1, on the following

page). Try clicking on the links and the Back and Forward buttons

to satisfy yourself that it works as you’d expect.

Like many Ajax features, GWT makes history easy by hiding all the

JavaScript code that is necessary to implement it. But as any pro-

grammer knows, sometimes you’ll have to pop the hood and get your

hands dirty. The next chapter will show you how.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=46

F ridays

CHAPTER 6. HISTORY AND BOOKMARKS EXAMPLE 47

Figure 6.1: History example

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=47

F ridays

Chapter 7

JavaScript Native Inter-
face

Sometimes when you’re writing Java code (especially if you’re doing

systems programming) you find that you have to get closer to the

metal and run code outside the Java virtual machine. For exam-

ple, you might need to access a code library that’s in a different

language. To do that in Java, you would declare a method as native

and then provide the implementation of that method in another lan-

guage, such as C. This is called the Java Native Interface (JNI).

You can do the same thing with GWT Java code on the client, except

instead of C code, the native language for the browser is JavaScript.

That’s how Google came up with the name JavaScript Native Inter-

face (JSNI).

7.1 Declaring a Native Method

To declare a native method in JSNI, use Java’s standard native key-

word just like you would with JNI. In JNI, the native C code is in

a separate file, compiled separately and dynamically loaded at run

time. In JSNI, the native JavaScript code is embedded directly in

your Java source in a specially formatted comment:

Download JSNIProject/src/com/xyz/client/Alert.java

public class Alert {

public static native void alert(String msg) /*-{

$wnd.alert(msg);

}-*/;

}

A JSNI comment block begins with /*-{ and ends with }-*/.

http://media.pragprog.com/titles/ebgwt/code/JSNIProject/src/com/xyz/client/Alert.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=48

F ridays

CHAPTER 7. JAVASCRIPT NATIVE INTERFACE HOW IT WORKS 49

As this example shows, when accessing the browser’s window and

document objects from JSNI, you must reference them as $wnd and

$doc, respectively. Your compiled script runs in a nested frame, and

$wnd and $doc are automatically initialized to correctly refer to the

host page’s window and document instead of the frame.

7.2 How it Works

As described in Section 3.2, Web mode, on page 13, the GWT com-

piler converts the client half of your Java program into JavaScript.

So normally, when the compiler sees a method declaration, code

inside the braces has to go through some kind of translation pro-

cess. If it’s a native method, however, the compiler’s job is easier.

All it has to do is copy the JavaScript native code directly into the

compiled result.

If you’ve used Microsoft’s Visual C++ or the GNU C++ compiler, the

effect is much like inline assembler code, except with a much higher

level language than assembler.

Since JavaScript is interpreted, any errors in the JavaScript code

won’t be evident until run-time.

7.3 Calling JSNI from Java

Calling a JSNI method from Java1 is no different than calling a reg-

ular Java method. Here’s an example:

1When I refer to calling to and from Java code on the client, what I really

mean is JavaScript code that has been compiled from your Java code in the .client

package. But you knew that, right?

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=49

F ridays

CHAPTER 7. JAVASCRIPT NATIVE INTERFACE CALLING JAVA FROM JSNI 50

Download JSNIProject/src/com/xyz/client/JSNIExample.java

button1.addClickListener(new ClickListener() {

public void onClick(Widget sender) {

Alert.alert("clicked!");

}

});

The caller can’t really tell if the method is native or not. This gives

you some flexibility in changing your mind later about how the

method is implemented.

7.4 Calling Java from JSNI

Going the other way is a little trickier. For example, suppose you

pass an object to a JSNI method and you need to access a field or

call a method in that object. You’ll need to know how the GWT com-

piler mangles the Java field and method names so you can access

them from your own JavaScript code.

Accessing Java fields

Object Oriented purists would say that you shouldn’t access fields

of a Java class directly because it makes it harder to change the

implementation of that class later. But hey, we’re writing native code

here so we can cut a few corners. The syntax for accessing a Java

field is:

obj.@class::field

where:

obj is the object instance being referenced. For static variables,

leave off the instance expression and the trailing period.

Report erratum

http://media.pragprog.com/titles/ebgwt/code/JSNIProject/src/com/xyz/client/JSNIExample.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=50

F ridays

CHAPTER 7. JAVASCRIPT NATIVE INTERFACE CALLING JAVA FROM JSNI 51

class is the fully-qualified name of the class in which the field is

declared (or a subclass thereof).

field is the name of the field being accessed.

Invoking Java methods

Calling methods uses a syntax similar to accessing fields, except you

must also supply the signature of the method you’re calling. The

reason for that is that Java methods can be overloaded, i.e., two

methods can have the same name but take different parameters.

The syntax is:

obj.@class::method(sig)(args)

where:

obj is the object instance being referenced. For static methods,

omit the instance expression and the trailing period.

class is the fully-qualified name of the class in which the method is

declared (or a subclass thereof).

method is the name of the method being called.

sig is the internal Java method signature (see Section 7.4, Method

signatures).

args is the actual argument list passed to the method.

Method signatures

JSNI method signatures are exactly the same as JNI method signa-

tures except that the method return type is left off. That’s because

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=51

F ridays

CHAPTER 7. JAVASCRIPT NATIVE INTERFACE EXAMPLE 52

it’s not needed to figure out which overloaded method you’re refer-

ring to. The following table shows these type signatures:

Type Signature Java Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

Lfully-qualified-class; fully-qualified-class

[type type[]

For example, the Java method:

long f (int n, String s, int[] arr);

has the following type signature:

(ILjava/lang/String;[I)

Figure 7.1, on the next page shows the specific rules for how values

passing in and out of JSNI code must be treated.

7.5 Example

This code shows some examples of accessing Java fields and meth-

ods from within JSNI. It demonstrates passing numbers, strings,

booleans, and Java objects into JavaScript. It also shows how a

JavaScript method can make a method call on a Java object that

was passed in.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=52

F ridays

CHAPTER 7. JAVASCRIPT NATIVE INTERFACE EXAMPLE 53

Java type How it appears to JavaScript code

a Java numeric primitive a JavaScript numeric value, as in var x

= 42;

String a JavaScript string, as in var s = "my

string";

boolean a JavaScript boolean value, as in var b

= true;

JavaScriptObject a JavaScriptObject that must have orig-

inated from JavaScript code, typically

as the return value of some other JSNI

method

Java array an opaque value that can only be passed

back into Java code

any other Java Object an opaque value accessible through spe-

cial syntax

Figure 7.1: Type Rules

Download JSNIProject/src/com/xyz/client/J2JS.java

public class J2JS {

/** Pass a Java numeric primitive */

public static void testJ2JSNumeric() {

int x = 42;

jsNumeric(x);

}

private static native void jsNumeric(int x) /*-{

$wnd.alert("x is " + x);

}-*/;

/** Pass a Java String */

public static void testJ2JSString() {

Report erratum

http://media.pragprog.com/titles/ebgwt/code/JSNIProject/src/com/xyz/client/J2JS.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=53

F ridays

CHAPTER 7. JAVASCRIPT NATIVE INTERFACE EXAMPLE 54

String s = "my string";

jsString(s);

}

private static native void jsString(String s) /*-{

$wnd.alert("s is " + s);

}-*/;

/** Pass a boolean */

public static void testJ2JSBoolean() {

boolean b = true;

jsBoolean(b);

}

private static native void jsBoolean(boolean b) /*-{

$wnd.alert("b is " + b);

}-*/;

/** Pass an arbitrary Java Object */

public static void testJ2JSObject() {

MyJavaObject obj = new MyJavaObject();

jsObject(obj);

}

private static native void jsObject(MyJavaObject obj) /*-{

$wnd.alert("Calling getText(): " + obj.@MyJavaObject::getTextAt(I)(3));

}-*/;

}

If you look at the source code for GWT you’ll see that much of it is

defined in terms of JSNI. Most GWT programmers will never need to

define JSNI methods themselves, but it’s nice to know the feature is

there if you need it.

The next chapter discusses how to prepare your program for sup-

porting national languages.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=54

F ridays

Chapter 8

Internationalization
(I18N)

Internationalization (i18n for short) is the process of adding a frame-

work to support different national languages to your program. Local-

ization (l10n) occurs when you use that framework to customize the

program for each language. National language support is only going

to get more important over time as internet usage grows in countries

like China, India, and Brazil. Luckily GWT provides full and flexible

support as of version 1.1.10 of the toolkit.

Even if your application is not intended for a global audience, it

pays to put all your human readable text in one place. You can more

easily spell check your messages and ensure consistency between

them if they’re all in the same file. It also lets non-programmers

change the messages to correct grammatical errors or trademark

usages without having to modify the code.

The standard Java way to accomplish this is through resource bun-

dles and property files. GWT lets you use these familiar concepts in

your web applications as well.

8.1 Constants, Messages, and Dictionary

GWT provides four alternatives for localized text:

Constants

This type can only be used for text that has no substitutions,

such as field labels or the names of menu items. It can also be

used for numbers, Booleans, and Maps.

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=55

F ridays

CHAPTER 8. INTERNATIONALIZATION (I18N) CREATING THE PROPERTIES FILE 56

ConstantsWithLookup

This is the same as the Constants interface except you can look

up a constant with a dynamic string (more on this later).

Messages

These are general purpose strings that can include placehold-

ers for substitutions.

Dictionary

The most flexible but least efficient of all the choices, the Dictio-

nary interface supports dynamically specifying the locale.

Constants, ConstantsWithLookup, and Messages are more efficient than

Dictionary because the locale can be determined ahead of time and

compiled into the application. The GWT compiler produces a differ-

ent .cache.html file for each locale, and the appropriate version is

loaded at run time. Constants and Messages gain a little more efficiency

by pruning resources that aren’t actually used in the program.

The Messages interface is the best choice for most applications, so

the rest of this chapter will show you how to use that. The API for

the other interfaces is similar, and it’s possible to use more than

one style in the same application.

8.2 Creating the properties file

For this chapter we’ll start with a simple program and convert it

to use Messages instead of hard-coded strings. Here is the original

program:

Download I18NProject/src/com/xyz/client/I18NOrig.java

public class I18NOrig implements EntryPoint {

private Button m_clickMeButton;

Report erratum

http://media.pragprog.com/titles/ebgwt/code/I18NProject/src/com/xyz/client/I18NOrig.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=56

F ridays

CHAPTER 8. INTERNATIONALIZATION (I18N) CREATING THE PROPERTIES FILE 57

public void onModuleLoad() {

RootPanel rootPanel = RootPanel.get();

{

m_clickMeButton = new Button();

rootPanel.add(m_clickMeButton);

m_clickMeButton.setText("Click me!");

m_clickMeButton.addClickListener(new ClickListener() {

public void onClick(Widget sender) {

Window.alert("Hello, GWT World!");

}

});

}

}

}

The first step is to find all the strings and copy them into a proper-

ties file. Use the standard name=value format. Comments (for exam-

ple, notes to translators) start with a pound sign (#). Placeholders

for substitution parameters are specified with {0}, {1}, and so forth.

Here is the properties file for the converted program:

Download I18NProject/src/com/xyz/client/AppMessages.properties

m_clickMeButton_text=Click me!

m_helloAlert_text=Hello, {0} World!

The file will be needed on the client so put it in the com.xyz.client

package. This is the default language file, which will be in English (or

your native language). To provide translations for other languages,

use ISO language and country code suffixes, for example "_fr" for

French or "_fr_CA" for Canadian French. Here’s the French version:

Download I18NProject/src/com/xyz/client/AppMessages_fr.properties

m_clickMeButton_text=Cliquez-moi!

m_helloAlert_text=Bonjour, Monde de {0}!

Report erratum

http://media.pragprog.com/titles/ebgwt/code/I18NProject/src/com/xyz/client/AppMessages.properties
http://media.pragprog.com/titles/ebgwt/code/I18NProject/src/com/xyz/client/AppMessages_fr.properties
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=57

F ridays

CHAPTER 8. INTERNATIONALIZATION (I18N) CREATING THE ACCESSOR CLASS 58

8.3 Creating the accessor class

If you’re familiar with standard Java messages you know they’re

accessed by string. To get the translated message you call a function

and pass it the key string, for example getString("m_clickMeButton_text").

There are two problems with this approach. First, the message keys

may be as long as or longer than the message values. Second, if you

make a mistake in the message key it can’t be caught until run time.

To address these problems and make the web application as small

as possible, GWT tweaks the way messages work. Instead of refer-

ring to the message using a string, you refer to it using a Java

method. This requires you to create a new Java class that has a

method corresponding to each message in your properties file. Here

is the class for this simple example:

Download I18NProject/src/com/xyz/client/AppMessages.java

package com.xyz.client;

import com.google.gwt.i18n.client.Messages;

public interface AppMessages extends Messages {

String m_clickMeButton_text();

String m_helloAlert_text(String toolkit);

}

Note that there is only one accessor class, no matter how many

Maintaining the accessor class by hand is error
prone but luckily tool support is available. For
example the GWT Designer from Instantiations
can take care of many of these housekeeping
chores, including finding and extracting
localizable strings, and keeping all the files in
sync with each other.

languages you support in your application.

Report erratum

http://media.pragprog.com/titles/ebgwt/code/I18NProject/src/com/xyz/client/AppMessages.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=58

F ridays

CHAPTER 8. INTERNATIONALIZATION (I18N) REFERRING TO MESSAGES 59

8.4 Referring to messages

The next step is to replace the static strings with references to your

new messages in the code. After getting a reference to the acces-

sor class using GWT.create, you call the new methods to retrieve the

message text. Here’s the finished version:

Download I18NProject/src/com/xyz/client/I18N.java

public class I18N implements EntryPoint {

private static final AppMessages MESSAGES = (AppMessages) GWT

.create(AppMessages.class);

private Button m_clickMeButton;

public void onModuleLoad() {

RootPanel rootPanel = RootPanel.get();

{

m_clickMeButton = new Button();

rootPanel.add(m_clickMeButton);

m_clickMeButton.setText(MESSAGES.m_clickMeButton_text());

m_clickMeButton.addClickListener(new ClickListener() {

public void onClick(Widget sender) {

Window.alert(MESSAGES.m_helloAlert_text("GWT"));

}

});

}

}

}

8.5 Making module changes

Two minor changes are needed to your module file to complete the

transition. First, you need to tell GWT that you are inheriting func-

tionality from the I18N module, and second, you need to define

Report erratum

http://media.pragprog.com/titles/ebgwt/code/I18NProject/src/com/xyz/client/I18N.java
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=59

F ridays

CHAPTER 8. INTERNATIONALIZATION (I18N) RUNNING THE EXAMPLE 60

which languages you have provided translations for. Here is the final

modules file after these changes have been made:

Download I18NProject/src/com/xyz/I18N.gwt.xml

<module>

<inherits name="com.google.gwt.user.User"/>

<entry-point class="com.xyz.client.I18N"/>

<inherits name="com.google.gwt.i18n.I18N"/>

<extend-property name="locale" values="fr,de" />

</module>

8.6 Running the example

Now it’s time to try out the sample. Run it in hosted mode first. If

you’ve imported the I18NProject sample project in Eclipse, select Run

→ Debug..., and click on the launch configuration titled I18NProject

(under Java Application). Then click on Debug. The default (English)

version should appear.

To try the French version, edit the URL in the browser to add the

suffix ?locale=fr. Press return and the page should refresh, showing

French instead of English. Click on the button to see French text in

the dialog (see Figure 8.1, on the following page).

Another way to select the locale is to embed it as a meta tag in the

HTML file, for example

<meta name='gwt:property' content='locale=ja_JP'>

This could be handy if the HTML was dynamically generated on the

server, for example by a JSP file, based on session settings.

Some developers argue that internationalization should be done from

the start of a project, while others say it should be saved until the

Report erratum

http://media.pragprog.com/titles/ebgwt/code/I18NProject/src/com/xyz/I18N.gwt.xml
http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=60

F ridays

CHAPTER 8. INTERNATIONALIZATION (I18N) RUNNING THE EXAMPLE 61

Figure 8.1: French locale

end. In practice it doesn’t really matter. Given maintenance releases

and newer versions, "the end" is never really the end. Converting an

existing project to use message bundles is fairly quick and painless,

especially if you have good tool support.

The next chapter discusses the language and library subsets imple-

mented by GWT on the client side.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=61

F ridays

Chapter 9

Java Emulation

Although your entire GWT application can be written in Java, parts

of it are translated into JavaScript for execution in the client browser.

This has a couple of big implications:

1. Code targeted to the client must limit itself to the subset of the

Java language that is supported by Google’s Java to JavaScript

translator.

2. In addition, code running in the client can only use a subset

of Java Runtime Environment (JRE) library routines that have

been ported to JavaScript.

Once you get used to them, these restrictions won’t be as bad as

you might think at first. It’s a bit like writing mobile Java appli-

cations, where you have to limit yourself to a certain profile like

MIDP. Through JSNI (see Chapter 7, JavaScript Native Interface, on

page 48), you can also extend the library with native JavaScript code

to round out any areas that you might find missing.

9.1 Language subset

The GWT Java to JavaScript translator parses your source code just

like a Java compiler would, but instead of compiling it into bytecode,

the translator outputs JavaScript code.

Despite having Java in its name, the JavaScript language is actually

quite different than Java. For example, it doesn’t use classes or type

checking. However it’s flexible enough that a large subset of the Java

1.4 language can be emulated.

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=62

F ridays

CHAPTER 9. JAVA EMULATION LANGUAGE SUBSET 63

If you use a language feature that isn’t supported by GWT, then your

code may work fine in hosted mode, but when you run the Java to

JavaScript compiler to prepare for web mode you will get an error.

Language level

GWT compiles Java source that is compatible with J2SE 1.4.2 or

earlier. Java 5 language features such as enhanced for loops, gener-

ics, and annotations, are not supported in the current version, but

may be supported in the future.

Intrinsic types

byte, char, short, int, long, float, double, Object, String, and arrays are sup-

ported. However, there is no 64-bit integral type in JavaScript, so

variables of type long are mapped onto JavaScript double-precision

floating point values. To ensure maximum consistency between hosted

mode and web mode, Google recommends that you use int variables.

Exceptions

try, catch, finally and user-defined exceptions are supported as nor-

mal, although Throwable.getStackTrace() is not supported for web mode.

Assertions

The GWT compiler parses Java assert statements, but it does not emit

JavaScript code for them. Asserts are processed in hosted mode, if

enabled as a VM argument.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=63

F ridays

CHAPTER 9. JAVA EMULATION LANGUAGE SUBSET 64

Multithreading and synchronization

JavaScript interpreters are single-threaded, so while GWT silently

accepts the synchronized keyword, it has no real effect. Synchronization-

related library methods are not available, including Object.wait(), Object.notify(),

and Object.notifyAll().

Reflection

For maximum efficiency, GWT compiles your Java source into a

monolithic script, and does not support subsequent dynamic load-

ing of classes. This and other optimizations preclude general sup-

port for reflection. It is possible to query an object for its class name

using GWT.getTypeName().

Finalization

JavaScript does not support object finalization during garbage col-

lection, so GWT isn’t able to be honor Java finalizers in web mode.

Most Java experts advise you not to use finalizers anyway, so this

is no great loss.

Strict floating-point

The Java language specification precisely defines floating-point sup-

port, including single-precision and double-precision numbers as

well as the strictfp keyword. GWT does not support the strictfp keyword

and can’t ensure any particular degree of floating-point precision in

translated code, so you may want to avoid calculations in client-side

code that require a guaranteed level of floating-point precision.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=64

F ridays

CHAPTER 9. JAVA EMULATION LIBRARY SUBSET 65

9.2 Library subset

GWT supports a relatively small subset of the JRE library for code

targeted to the client. One reason is that the JRE libraries are huge,

and another is that many of those features are not supported within

the JavaScript sandbox. So forget about file I/O, for example—that

has to be done on the server.

Here are some specific areas in which GWT emulation differs from

If you use a library feature that isn’t supported
by GWT, then your code will appear to compile
correctly in your IDE but when you try to run it in
hosted mode you’ll get an error in the
development shell. So run early and often to
catch these problems from the beginning.

the standard Java runtime. For more information on specific classes

and methods, see Section 9.3, Supported packages, on the following

page.

Regular expressions

The syntax of Java regular expressions is similar, but not identical,

to JavaScript regular expressions. So, you’ll probably want to be

careful to only use Java regular expressions that have the same

meaning in JavaScript. See Section 9.4, Regular Expressions, on

page 68 for a subset supported by both.

Serialization

Java serialization relies on a few mechanisms that are not available

in compiled JavaScript, such as dynamic class loading and reflec-

tion. As a result, GWT does not support standard Java serialization.

Instead, GWT has a RPC facility (described in Chapter 5, Remote

Procedure Calls, on page 32) that provides automatic object serial-

ization to and from the server for the purpose of invoking remote

methods.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=65

F ridays

CHAPTER 9. JAVA EMULATION SUPPORTED PACKAGES 66

9.3 Supported packages

For client code, GWT implements a subset of the java.lang and

java.util packages from JRE 1.4. This section lists the classes

and interfaces that are supported, along with any notes on their

use.

As new versions of GWT come out, this list is
likely to change. For example Google might
add support for some JRE 5.0 and 6.0 methods
and classes at some point. But there is plenty of
functionality already supported, and an
argument can be made for keeping the subset
small so the JavaScript download size will be
small.

java.lang package

These are the supported classes and interfaces for the java.lang

package:

Classes:

Boolean, Byte, Character, Class, Double(1), Float(1), Integer, Long(1), Math,

Number, Object, Short, String(2), StringBuffer, and System.

Notes:

1. Avoid using as a map key (performance).

2. Regular expressions vary from the standard implementation

(see Section 9.4, Regular Expressions, on page 68).

Errors and Exceptions:

ArrayStoreException, AssertionError, ClassCastException, Error, Exception, IllegalArgu-

mentException, IllegalStateException, IndexOutOfBoundsException, NegativeAr-

raySizeException, NullPointerException, NumberFormatException, RuntimeExcep-

tion, StringIndexOutOfBoundsException, Throwable(1), and UnsupportedOpera-

tionException.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=66

F ridays

CHAPTER 9. JAVA EMULATION SUPPORTED PACKAGES 67

Notes:

1. Stack traces are not currently supported.

Interfaces:

CharSequence, Cloneable, and Comparable.

java.util package

These are the supported classes and interfaces for the java.util

package:

Classes:

AbstractCollection, AbstractList, AbstractMap, AbstractSet, ArrayList, Arrays, Col-

lections, Date, HashMap, HashSet, Stack, and Vector(1).

Notes:

1. Does not check for index validity.

Errors and Exceptions:

EmptyStackException, NoSuchElementException, and TooManyListenersException.

Interfaces:

Collection, Comparator, EventListener, Iterator, List, Map, RandomAccess, and

Set.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=67

F ridays

CHAPTER 9. JAVA EMULATION SUPPORTED PACKAGES 66

9.3 Supported packages

For client code, GWT implements a subset of the java.lang and

java.util packages from JRE 1.4. This section lists the classes

and interfaces that are supported, along with any notes on their

use.

As new versions of GWT come out, this list is
likely to change. For example Google might
add support for some JRE 5.0 and 6.0 methods
and classes at some point. But there is plenty of
functionality already supported, and an
argument can be made for keeping the subset
small so the JavaScript download size will be
small.

java.lang package

These are the supported classes and interfaces for the java.lang

package:

Classes:

Boolean, Byte, Character, Class, Double(1), Float(1), Integer, Long(1), Math,

Number, Object, Short, String(2), StringBuffer, and System.

Notes:

1. Avoid using as a map key (performance).

2. Regular expressions vary from the standard implementation

(see Section 9.4, Regular Expressions, on page 68).

Errors and Exceptions:

ArrayStoreException, AssertionError, ClassCastException, Error, Exception, IllegalArgu-

mentException, IllegalStateException, IndexOutOfBoundsException, NegativeAr-

raySizeException, NullPointerException, NumberFormatException, RuntimeExcep-

tion, StringIndexOutOfBoundsException, Throwable(1), and UnsupportedOpera-

tionException.

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=68

F ridays

CHAPTER 9. JAVA EMULATION REGULAR EXPRESSIONS 69

Boundary matchers

Expression Meaning

ˆ (caret) Beginning of line. (As far as I can tell, multi-line mode

is not supported.)

$ End of line

\b Word boundary

\B Non-word boundary

Quantifiers

Expression Meaning

* Zero or more. All matches are greedy.

+ One or more

? Zero or one

{n} Exactly n times

{n,} n or more times

{n,m} Between n and m times inclusive

Miscellaneous

Expression Meaning

. Any character

(x) Capturing group

(?:x) Non-capturing group

x(?=y) Zero-width positive look-ahead. (Extra credit if you

know what this means.)

x(?!y) Zero-width negative look-ahead

x |y Either x or y

\n Back reference to captured group. (Don’t use ’\0’

because its meaning is different in Java and

JavaScript.)

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=69

F ridays

CHAPTER 9. JAVA EMULATION REGULAR EXPRESSIONS 70

By following a few simple restrictions described in this chapter, you

can pretend that your Java code is running directly in the browser.

Code can be shared between the client and server halves of your

program, so you don’t have to implement the same algorithms in

two different languages.

Well, that wraps it up for this book on the Google Web Toolkit. I

hope you’ve found it to be helpful. Now quit reading and go create

something great!

Report erratum

http://books.pragprog.com/titles/ebgwt/errata/add?pdf_page=70

Pragmatic Fridays
Timely and focused PDF-only books. Written by experts for people who need infor-

mation in a hurry. No DRM restrictions. Free updates. Immediate download. Visit

our web site to see what’s happening on Friday!

More Online Goodness
GWT

Source code from this book and other resources. Come give us feedback, too!

Free Updates

Visit the link, identify your book, and we’ll create a new PDF containing the latest

content.

Errata and Suggestions

See suggestions and known problems. Add your own. (The easiest way to report an

errata is to click on the link at the bottom of the page.

Join the Community

Read our weblogs, join our online discussions, participate in our mailing list, inter-

act with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

Check out the latest pragmatic developments in the news.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/fridays
http://pragmaticprogrammer.com/titles/ebgwt
http://books.pragprog.com/titles/ebgwt/reorder
http://books.pragprog.com/titles/ebgwt/errata
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
www.pragmaticprogrammer.com/catalog

	Introduction
	Life before GWT
	What GWT does for you
	About this book

	Getting Started
	Supported platforms
	Installing
	Create scaffolding
	Running and debugging

	Hosted vs. Web Mode
	Hosted mode
	Web mode
	Obfuscation
	Deployment

	User Interface
	Tying into HTML
	Entry point
	Events
	Widgets
	Panels

	Remote Procedure Calls
	Where does your code live?
	Calling remote code
	Why a new protocol?
	GWT RPC basics
	Serialization

	History and Bookmarks
	The History Token
	History Listener
	How it Works
	Example

	JavaScript Native Interface
	Declaring a Native Method
	How it Works
	Calling JSNI from Java
	Calling Java from JSNI
	Example

	Internationalization (I18N)
	Constants, Messages, and Dictionary
	Creating the properties file
	Creating the accessor class
	Referring to messages
	Making module changes
	Running the example

	Java Emulation
	Language subset
	Library subset
	Supported packages
	Regular Expressions

