
Google Maps API, V2
Adding Where To Your Applications

Scott Davis

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas



Many of the designations used by manufacturers and sellers to distin-

guish their products are claimed as trademarks. Where those designations

appear in this book, and The Pragmatic Programmers, LLC was aware of

a trademark claim, the designations have been printed in initial capital

letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Pro-

grammer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Useful Friday Links

• Source code from this book and

other resources.

• Free updates to this PDF

• Errata and suggestions. To report

an erratum on a page, click the

link in the footer.
Every precaution was taken in the preparation of this book. However,

the publisher assumes no responsibility for errors or omissions, or for

damages that may result from the use of information (including program

listings) contained herein.

To see what we’re up to, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

This PDF publication is intended for the personal use of the individual

whose name appears at the bottom of each page. This publication may not

be disseminated to others by any means without the prior consent of the

publisher. In particular, the publication must not be made available on

the Internet (via a web server, file sharing network, or any other means).

Produced in the United States of America.Bo o ks he lfPr a gm ati c Lovingly created by gerbil #32 on 2006-5-18

http://pragmaticprogrammer.com/titles/sdgmapi2
http://www.pragmaticprogrammer.com


rida ys
Contents

1 Google Maps 1

1.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Here’s the Game Plan . . . . . . . . . . . . . . . . . . 3

2 For Those in a Hurry... 5

2.1 The Simple Map . . . . . . . . . . . . . . . . . . . . . 5

2.2 Adding navigation components . . . . . . . . . . . . . 7

2.3 Setting the initial map type . . . . . . . . . . . . . . . 8

2.4 Creating a Point and an Info Window . . . . . . . . . 10

3 The Excruciating Details 12

3.1 Core Objects . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Map Controls . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 User Data . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 AJAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Core Objects 14

4.1 GMap2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 GLatLng . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 GLatLngBounds . . . . . . . . . . . . . . . . . . . . . 16

5 Map Control Objects 20

5.1 Panning . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Zooming . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Changing the Map Type . . . . . . . . . . . . . . . . . 22

5.4 GOverviewMap . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Putting it all together . . . . . . . . . . . . . . . . . . 23



rida ys
CONTENTS CONTENTS iv

6 User Data Objects 25

6.1 GMarker . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 GIcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Info Windows . . . . . . . . . . . . . . . . . . . . . . . 31

6.4 GPolyline . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Events 39

7.1 GEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 GBrowserIsCompatible . . . . . . . . . . . . . . . . . 42

7.3 GMap Events . . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Event Handlers . . . . . . . . . . . . . . . . . . . . . . 44

7.5 GMarker Events . . . . . . . . . . . . . . . . . . . . . 45

7.6 Simple Examples . . . . . . . . . . . . . . . . . . . . . 46

7.7 A Real-World Example . . . . . . . . . . . . . . . . . . 48

8 AJAX 59

8.1 DHTML and AJAX . . . . . . . . . . . . . . . . . . . . 59

8.2 GXmlHttp . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.3 Geocoder Web Services . . . . . . . . . . . . . . . . . 61

8.4 Revisiting the Real-World Example . . . . . . . . . . 64

9 Where do we go from here? 69

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=iv


rida ys
Chapter 1

Google Maps

The Google Maps API, version 2 (http://www.google.com/apis/maps/)

is a great way to dip your toe into the world of web mapping. You

don’t have to worry about finding and managing your own data,

installing and configuring your own server, or creating your own

cross-browser AJAX mapping framework from scratch. It’s a pro-

grammer’s dream—with a little bit of JavaScript and a few lati-

tude/longitude points, you are off to the races.

It is, however, aimed squarely at programmers. You will be neck-

deep in JavaScript from the get-go. If all you want is a simple map

without having to program it yourself, there is an easier way: Yahoo!

Maps (http://developer.yahoo.net/maps/) provides a simple service

that allows you to pass in an XML list of points and get a fully

rendered map out on the other side. You can give it either lat/long

points or plain old street addresses. Yahoo! handles everything

for you—creating the points on the map, handling pop-up “bubbles”

over your data points, the whole nine yards. You can pass in custom

icons, html links, and descriptive text for each item in the XML. You

get quite a bit of flexibility for a canned application.

The Google Maps API gives you the same functionality as Yahoo!

Maps—pop-up bubbles (called Info Windows in Google-speak), cus-

tom icons, and so on—but you have to be much more deeply involved

in the implementation. After all, Google Maps is an API, not a

finished application. You get all of the pieces, but there is “some

assembly required.”

The upside is that you have much more control of your applica-

tion. You have an event model that you can tap into—you can

http://www.google.com/apis/maps/
http://developer.yahoo.net/maps/


rida ys
CHAPTER 1. GOOGLE MAPS A BRIEF HISTORY 2

react to every click on the map, every drag, every zoom. You have

fine-grained control of your custom icons—the image, the shadow,

even specifying the tie-points to the map and the Info Window. You

have access to terabytes of high-resolution satellite imagery. But

the most important thing is that you have a map component that

can be seamlessly embedded in your own webpage.

1.1 A Brief History

Ahh, living at the speed of the Internet – ain’t it grand?

Google Maps was released in beta on February 7, 2005. The drag-

gable map interface created a sensation. It was a “Wizard of Oz /

Technicolor” moment for most web users. Who knew that a web

application could be that smooth and responsive? For that matter,

who knew that you could even do such a thing in a web browser?

On February 18, 2005, Jesse James Garrett of Adaptive Path pub-

lished a seminal article that gave a name to this new style of web

development: Ajax: A New Approach to Web Applications. Suddenly,

Google Maps wasn’t simply a revolutionary mapping application;

it became the poster-child for all web applications. Tim O’Reilly

(founder of O’Reilly Media, Inc.) coined another phrase, “Web 2.0”,

that helped further define the difference between how web applica-

tions used to behave versus the new “Google Maps” way.

On June 29, 2005, Google released version 1 of their Mapping API.

This allowed us to move from being simply consumers of the maps

to actual producers. (Presumably, it’s the reason you’re reading this

book right now.)

On April 3, 2006, Google released version 2 of the Mapping API.

Report erratum

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=2


rida ys
CHAPTER 1. GOOGLE MAPS HERE’S THE GAME PLAN 3

While this new version brought many exciting new features to the

table (increased zoom levels, additional map controls, and the ability

to overlay your own imagery on the map), it also broke compatibil-

ity with the previous version. As you read articles on the web or

browse code examples, be wary of the date of publication. If you

don’t specifically see “v2” featured prominently, chances are good

that the code simply won’t work as advertised. This book has been

upgraded to allow you to take full advantage of the latest release,

version 2.

Now that you know the history of the API, let’s dive right in with

some code examples.

1.2 Here’s the Game Plan

We’ll start with a quick walk-through to satisfy the Attention-Deficit

Disorder crowd. Then we’ll swing back around cover each compo-

nent in excruciating detail.

I encourage you to play with the maps, live, as you read along. Dizzy
http:// www.mapmap.org/ googlemaps/ examples.html

Gillespie once said that “reading about music is like dancing about

architecture”—it loses something in the translation. Google Maps

practically beg to be played around with. You can also download

the code and run the examples on your own server.
http:// www.mapmap.org/ googlemaps/ downloads.html

If you choose to go that route, you need to get a free key from Google

at http://www.google.com/apis/maps/signup.html. This key is tied

to the public URL of your webserver plus a subdirectory name. For

example, the key used in the examples is bound to my server, run-

ning at http://www.mapmap.org/googlemaps. If you try to run the

code on your server without changing the key, you’ll be greeted by a

Report erratum

http://www.mapmap.org/googlemaps/examples.html
http://www.mapmap.org/googlemaps/examples.html
http://www.mapmap.org/googlemaps/downloads.html
http://www.mapmap.org/googlemaps/downloads.html
http://www.google.com/apis/maps/signup.html
http://www.mapmap.org/googlemaps
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=3


rida ys
CHAPTER 1. GOOGLE MAPS HERE’S THE GAME PLAN 4

friendly alert box from Google reminding you to apply for your own

key.

Before we get too far, we should cover the lawyerly stuff. Google

provides the Google Maps API for free, and in return they require

that your resulting application is free as well. You can use it for

commercial purposes, but you cannot charge your users to view the

map. You can password protect access to it only if passwords are

free and issued to anyone who asks for one. For more information,

see http://www.google.com/apis/maps/faq.html.

Report erratum

http://www.google.com/apis/maps/faq.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=4


rida ys
Chapter 2

For Those in a Hurry...

Sometimes the quickest way to learn a new API is to see some code

in action. In later chapters we’ll talk about what this code is actually

doing in greater detail. For now, let’s just dive in.

2.1 The Simple Map

Let’s take a look at the simplest possible Google Map application.

File 1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=xyz"

type="text/javascript"></script>

</head>

<body>

<div id="map" style="width: 500px; height: 400px"></div>

<script type="text/javascript">

var map = new GMap2(document.getElementById("map"));

//zoom levels 0-17+, 0 == world

map.setCenter(new GLatLng(39.754286, -104.994637), 16);

</script>

</body>

</html>

Let’s examine the interesting parts of the code:

• The <script> tag imports the Google Maps library. This is

where you place your key.

• The <div> tag is the placeholder for your map. It can be named

http://media.pragprog.com/titles/sdgmapi2/code/code/1a.html


rida ys
CHAPTER 2. FOR THOSE IN A HURRY... THE SIMPLE MAP 6

Figure 2.1: The simplest possible Google Maps application.

anything you’d like—we named it “map” (clever, eh?). In the

CSS styling, we defined the size of the map in pixels.

• new GMap2() creates the map. In the constructor of the GMap2

object, we pass in the <div> using DOM.

• map.setCenter(), as the name implies, centers the map on a

particular latitude/longitude point. It also zooms into the level

specified. Google uses a 17 point scale; zoom level 0 will show

you the entire world, zoom level 17 is zoomed into the street

level.

See Figure 2.1 for the resulting map.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=6


rida ys
CHAPTER 2. FOR THOSE IN A HURRY... ADDING NAVIGATION COMPONENTS 7

Figure 2.2: Adding map controls to your map.

2.2 Adding navigation components

Now let’s add some simple components to the map that will allow us

to zoom and change the map type, as shown in Figure 2.2 .

File 2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=xyz"

type="text/javascript"></script>

</head>

<body>

<div id="map" style="width: 500px; height: 400px"></div>

<script type="text/javascript">

Report erratum

http://media.pragprog.com/titles/sdgmapi2/code/code/2a.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=7


rida ys
CHAPTER 2. FOR THOSE IN A HURRY... SETTING THE INITIAL MAP TYPE 8

var map = new GMap2(document.getElementById("map"));

map.setCenter(new GLatLng(39.754286, -104.994637), 16);

map.addControl(new GLargeMapControl());

map.addControl(new GMapTypeControl());

</script>

</body>

</html>

Let’s examine the interesting parts of the code:

• The GLargeMapControl allows the user change the zoom level

of the map.

• The GMapTypeControl allows the user to flip between the Map,

Satellite, and Hybrid views.

2.3 Setting the initial map type

In addition to letting the user change map types, you can set the

initial type programmatically.

File 3<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=xyz"

type="text/javascript"></script>

</head>

<body>

<div id="map" style="width: 500px; height: 400px"></div>

<script type="text/javascript">

var map = new GMap2(document.getElementById("map"));

map.setCenter(new GLatLng(39.754286, -104.994637), 16);

map.addControl(new GLargeMapControl());

map.addControl(new GMapTypeControl());

Report erratum

http://media.pragprog.com/titles/sdgmapi2/code/code/3a.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=8


rida ys
CHAPTER 2. FOR THOSE IN A HURRY... SETTING THE INITIAL MAP TYPE 9

Figure 2.3: Changing the MapType of your map.

// map.setMapType(G_NORMAL_MAP);

// map.setMapType(G_SATELLITE_MAP);

map.setMapType(G_HYBRID_MAP);

</script>

</body>

</html>

Let’s examine the interesting parts of the code:

• map.setMapType() sets the default view of the map: one of

G_NORMAL_MAP, G_SATELLITE_MAP, or G_HYBRID_MAP.

See Figure 2.3 for the resulting map.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=9


rida ys
CHAPTER 2. FOR THOSE IN A HURRY... CREATING A POINT AND AN INFO WINDOW 10

Figure 2.4: Adding user data to your map.

2.4 Creating a Point and an Info Window

In this final example, we’ll create a point on the map and display an

Info Window (see Figure 2.4 ).

File 4<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=xyz"

type="text/javascript"></script>

</head>

<body>

<div id="map" style="width: 500px; height: 400px"></div>

<script type="text/javascript">

Report erratum

http://media.pragprog.com/titles/sdgmapi2/code/code/5a.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=10


rida ys
CHAPTER 2. FOR THOSE IN A HURRY... CREATING A POINT AND AN INFO WINDOW 11

var map = new GMap2(document.getElementById("map"));

var coorsFieldPoint = new GLatLng(39.754286, -104.994637);

map.setCenter(coorsFieldPoint, 16);

map.addControl(new GLargeMapControl());

map.addControl(new GMapTypeControl());

map.setMapType(G_HYBRID_MAP);

//create marker, add to map overlay

var coorsFieldMarker = new GMarker(coorsFieldPoint);

map.addOverlay(coorsFieldMarker);

//create Info Window (html)

var coorsFieldHtml = '<b>Coors Field</b>,<br /> home of the ' +

'<a href="http://www.coloradorockies.com">Rockies</a>';

coorsFieldMarker.openInfoWindowHtml(coorsFieldHtml);

</script>

</body>

</html>

Let’s examine the interesting parts of the code:

• We could have passed an anonymous point as the first param-

eter to map.setCenter(). Instead we created a GLatLng called

coorsFieldPoint that can be reused later in the code.

• new GMarker() creates a “pushpin” for coorsFieldPoint.

• map.addOverlay() adds the GMarker to the map.

• We create a variable that holds an arbitrary string of HTML.

Then we display an Info Window on the GMarker using the

HTML string from the previous line.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=11


rida ys
Chapter 3

The Excruciating Details

Now that you have a better idea of what can be done with the Google

Maps API, let’s go back and look at things in greater details. We have

only scratched the surface up to this point.

The Google Maps API is made up of 20 basic objects. The objects

fall into five categories: Core, Map Controls, User Data, Events, and

AJAX.

3.1 Core Objects

The core objects are the basic building blocks of a map.

• GMap2

• GLatLng

• GLatLngBounds

3.2 Map Controls

Map Control objects allow the user to manipulate the map.

• GLargeMapControl

• GSmallMapControl

• GSmallZoomControl

• GMapTypeControl

• GScaleControl

• GOverviewMapControl

• GControlPosition

• GSize



rida ys
CHAPTER 3. THE EXCRUCIATING DETAILS USER DATA 13

• GMapType

3.3 User Data

User Data objects allow the developer to add custom data to the

map.

• GMarker

• GIcon

• GInfoWindowTab

• GPolyline

3.4 Events

Event objects allow the developer to react to user actions, such as

drags and clicks.

• GEvent

3.5 AJAX

AJAX objects allow the developer to make asynchronous calls to web

services and update the display without having to refresh the entire

page.

• GXmlHttp

• GXml

• GDownloadUrl

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=13


rida ys
Chapter 4

Core Objects

The Core objects are the basic building blocks of your map. While

you may not use AJAX or work with GEvents in every application,

you’d be hard pressed to avoid using these elements.

4.1 GMap2

A GMap2 object, not surprisingly, is your map. You can have as
GMap2

many GMap2s as you’d like on your page.

The GMap2 constructor has one required argument—container.
When Google upgraded their API from v1 to
v2, they claimed that is was “designed to be
99% backwards-compatible with the previous
version of the API”. While that’s a nice thought,
the reality of the situation is many things
changed. Many things... (See the 6 page
upgrade document for details.)

One of the most significant changes was the
move from a GMap object to a GMap2.
Although the original GMap is preserved in the
new API, all of the cool stuff requires you to use
a GMap2. And more than a simple name
change, Google changed the constructor as
well as many of the key methods hanging off of
it.

If you see code examples that use the GMap

object, chances are good that they are a bit
long in the tooth. Caveat emptor.

This is an HTML div. The id attribute of the div is the unique name

of the map. By default, the GMap2 uses the size of the div specified

in the style attribute to determine the size of the map.

<div id="map" style="width: 800px; height: 500px"></div>

<script type="text/javascript">

var map = new GMap2(document.getElementById("map"));

</script>

If you’d like more than one map on your page, simply give the divs

unique ids. (You can also add a GOverviewMapControl to achieve

the same effect as our example here. We’ll look at custom controls

in the next chapter.)

<div id="overviewMap" style="width: 200px; height: 125px"></div>

<div id="detailMap" style="width: 800px; height: 500px"></div>

<script type="text/javascript">

var overviewMap = new GMap2(document.getElementById("overviewMap"));

var detailMap = new GMap2(document.getElementById("detailMap"));

</script>

http://www.google.com/apis/maps/documentation/upgrade.html


rida ys
CHAPTER 4. CORE OBJECTS GLATLNG 15

4.2 GLatLng

The maps we’ve defined up to this point are missing two critical

pieces: the center point and the zoom level. Without these two addi-

tional pieces of information, the maps cannot be rendered.

A GLatLong object is a single Latitude/Longitude point. A common
GLatLong

point of confusion (no pun intended) is the proper order of the ordi-

nates. In mathematics, we’re used to (x,y) ordering. That is a (lon-

gitude, latitude) point, geographically speaking. So GLatLong points

are really (y,x) ordered. Later in the book, we talk about GPoints that

refer to a specific pixel location on the screen. GPoints use conven-

tional (x,y) ordering. Confused yet? Yeah, me too.

The other order of business we need to take care of is the zoom level

of the map. The zoom level is an integer ranging from 0-18, where

18 is zoomed in to the street level. A zoom level of 1 displays the

whole world if your map size is set to width: 550px; height: 525px.

Zoom level 0, interestingly enough, zooms you out to the place where

you can see several world maps stitched together at the interna-

tional date line. Why on Earth would you want to see several world

maps at once? It boils down to the trickiness of displaying a round

world on a flat map.

If you are looking at your home town on a globe, you can spin

the globe and eventually get back to the same place. On a flat

map, this isn’t as easy. To allow the users to “spin” the flat map—

continue panning in the same direction and eventually get back to

the same place—Google stitched together several duplicate flat maps

to approximate the effect. Zoom level 1 shows you the middle map.

Zooming out past that shows you the duplicate map on either side.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=15


rida ys
CHAPTER 4. CORE OBJECTS GLATLNGBOUNDS 16

(Neat trick, if you ask me...)

The map.setCenter( ) method should be used to initialize your GMap.

After the map has been rendered for the first time, you can continue

to use map.setCenter( ) with both arguments, or adjust the prop-

erties independently using map.setCenter( ) with a single GLatLng

and map.setZoom( ) with an integer zoom value. To query the map

for the current state of these properties, use map.getCenter( ) and

map.getZoom( ).

<div id="overviewMap" style="width: 200px; height: 125px"></div>

<div id="detailMap" style="width: 800px; height: 500px"></div>

<script type="text/javascript">

overviewMap = new GMap2(document.getElementById("overviewMap"));

detailMap = new GMap2(document.getElementById("detailMap"));

//NOTE: This is the geographic center of the US

var usCenterPoint = new GLatLng(39.833333, -98.583333);

overviewMap.setCenter(usCenterPoint, 1);

detailMap.setCenter(usCenterPoint, 7);

</script>

4.3 GLatLngBounds

The GLatLngBounds object represents the geographic size of our
GLatLngBounds

map. (“Bounding Box” is a common cartographic term used to

describe the size of a map.) It is a two element array of GLatLngs.

The first element is the lower-left corner of the map; the second one

is the upper-right corner.

The physical size of the map doesn’t change—it is defined by the

style attribute of the HTML div. But the geographic bounds of the

map are constantly changing. Each time you pan, you are looking

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=16


rida ys
CHAPTER 4. CORE OBJECTS GLATLNGBOUNDS 17

at a new bounding box. Even if your center point doesn’t change,

when you zoom in or out your bounding box changes. Recall that

map.getCenter( ) returns a GLatLng. A complementary method, named

map.getBounds( ), returns a GLatLngBounds object.

This example brings everything together that we’ve discussed up to

this point. (See Figure 4.1, on page 19 for the resulting map, or go to

http://www.mapmap.org/googlemaps/debug-1.html to play with it

live.) As you pan and zoom around, click the Get Map Info button to

see how the values change. You can click the Reset Map button to

return it to its initial state.

File 5<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=2&key=xyz"

type="text/javascript"></script>

<script type="text/javascript">

var map = "";

var usCenterPoint = new GLatLng(39.833333, -98.583333);

var worldCenterPoint = new GLatLng(0,0);

var initialCenterPoint = usCenterPoint;

var initialZoomLevel = 4;

var initialMapType = G_NORMAL_MAP;

</script>

</head>

<body onLoad="initMap()">

<input type="button" name="Refresh" value="Get Map Info"

onClick="getMapInfo()" />

<input type="button" name="Reset" value="Reset Map"

onClick="resetMap()" />

<div id="mapInfo">Map Info:</div>

Report erratum

http://www.mapmap.org/googlemaps/debug-1.html
http://media.pragprog.com/titles/sdgmapi2/code/code/debugunhbox voidb@x kern z@ char `discretionary {-}{}{}1a.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=17


rida ys
CHAPTER 4. CORE OBJECTS GLATLNGBOUNDS 18

<div id="map" style="width: 800px; height: 500px"></div>

<!-- If you set the initialZoomLevel to 1 and the initialCenterPoint to -->

<!-- worldCenterPoint, this map displays the entire world perfectly: -->

<!-- <div id="map" style="width: 550px; height: 525px"></div> -->

<script type="text/javascript">

function initMap()

{

map = new GMap2(document.getElementById("map"));

map.addControl(new GLargeMapControl());

map.addControl(new GMapTypeControl());

resetMap();

}

function getMapInfo()

{

var output = "<b>Map Info:</b><br />";

output = output +

"getZoom:[" + map.getZoom() + "]<br />";

output = output +

"getCenter:[" + map.getCenter() + "]<br />";

output = output +

"getBounds:[" + map.getBounds() + "]<br />";

mapInfo = document.getElementById("mapInfo");

mapInfo.innerHTML = output;

}

function resetMap()

{

map.setCenter(initialCenterPoint, initialZoomLevel);

map.setMapType(initialMapType);

}

</script>

</body>

</html>

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=18


rida ys
CHAPTER 4. CORE OBJECTS GLATLNGBOUNDS 19

Figure 4.1: Working with Core Objects

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=19


rida ys
Chapter 5

Map Control Objects

Now that we have our basic map (or maps) in place, let’s provide the

user a way to interact with it.

5.1 Panning

Every GMap2 that you place on the page has dragging enabled by

default. You can use map.enableDragging() and map.disableDragging()

to control this programmatically. You can also query for the current

dragging state using map.draggingEnabled(). This will return true if

the map is draggable.

Why would you want to disable arguably the coolest feature of a

Google Map? In the Overview/Detail map example, you might want

to freeze the overview map in place while allowing the detail map

to be moved around freely. Or maybe you are just a control freak.

Either way, the choice is yours to decide if your map is draggable or

not.

5.2 Zooming

In the quest for simplicity, the developers of Google Maps decided

not to make the mouse multi-modal. In other words, dragging with

the left mouse button will always pan the map. To give your users

the ability to zoom the map, you must add a zoom component to the

map.

The API provides three choices for zoom controls. The traditional

one used on maps.google.com is a GLargeMapControl object. This
GLargeMapControl



rida ys
CHAPTER 5. MAP CONTROL OBJECTS ZOOMING 21

object shows the full 18 levels of zoom on a slider with plus and

minus buttons on the top and bottom. (There is a set of pan buttons

above the zoom slider.) The slider, in addition to being clickable,

provides a nice, simple visual cue as to what your current zoom

level is.

If you prefer a more compact widget, the GSmallMapControl object
GSmallMapControl

offers the plus/minus zoom buttons without the slider. It also pro-

vides a set of pan buttons.

The smallest possible zoom widget is the GSmallZoomControl. This
GSmallZoomControl

object only displays the plus/minus buttons—no zoom slider, no

pan controls.

To add a zoom control widget to your map, use map.addControl(new
For the really ambitious, you can subclass
GControl and create your own custom map
control. For more information and a nice code
example, see the Google Documentation.

GLargeMapControl()), substituting GSmallMapControl() or GSmallZoom-

Control() as appropriate. You can add all three at once, but they

overlap each other in both functionality and screen real estate. They

appear along upper left side of your map. Bear in mind that the pan

controls work even if you have disabled dragging on your map.

The GLargeMapControl widget gives users a visual cue as to how

far they are zoomed in. Traditionally, print maps offer the user a

similar indicator in the form of a scale that shows inches or cen-

timeters in relation to miles or kilometers. The GScaleControl pro-
GScaleControl

vides this functionality. While it isn’t an interactive widget like the

others we’ve discussed so far, it is added to the map using the same

map.addControl( ).

map.addControl( ) accepts an optional GControlPosition, allowing you
GControlPosition

to place the control anywhere on the map you’d like. GControlPosi-

tion takes two arguments: an anchor and an offset. The anchor can

be one of four constant values:

Report erratum

http://www.google.com/apis/maps/documentation/
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=21


rida ys
CHAPTER 5. MAP CONTROL OBJECTS CHANGING THE MAP TYPE 22

• G_ANCHOR_BOTTOM_LEFT

• G_ANCHOR_BOTTOM_RIGHT

• G_ANCHOR_TOP_LEFT

• G_ANCHOR_TOP_RIGHT

The offset is a GSize, which is an (x,y) pair that creates an invisible
GSize

rectangle. In the case of a GSize, x equals the width of the box; y

equals the height.

map.addControl(new GLargeMapControl());

map.addControl(new GScaleControl(),

new GControlPosition(G_ANCHOR_BOTTOM_RIGHT,

new GSize(20,20)));

5.3 Changing the Map Type

Another way that users can interact with the map is by changing

the map type. The default map type, called Map mode, is a simple

line drawing. There are two more map types available: Satellite

and Hybrid. Satellite mode shows imagery over the area instead of

line drawings. Hybrid mode superimposes the Map mode over the

Satellite mode, giving you the best of both worlds.

You can adjust the map type using map.setMapType(map_type), where

map_type can be G_NORMAL_MAP, G_SATELLITE_MAP, or G_HYBRID_MAP.

Or you can display the GMapTypeControl widget in the upper right
GMapTypeControl

corner using

map.addControl(new GMapTypeControl())

You can use map.getCurrentMapType( ) to determine the current map.

It returns a GMapType object. To display the name of the current
GMapType

map type, use mapType.getName( ).

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=22


rida ys
CHAPTER 5. MAP CONTROL OBJECTS GOVERVIEWMAP 23

alert( map.getCurrentMapType().getName() );

5.4 GOverviewMap

The API offers one last type of built-in control: a GOverviewMap. As
GOverviewMap

the name suggests, this provides a tiny overview map of your main

map. It is fully interactive – if you drag the OverviewMap, it pans the

main map as well. To add one to the screen, use map.addControl(new

GOverviewMap());.

5.5 Putting it all together

Let’s put everything together in another map. (See Figure 5.1, on the

next page, for the resulting map, or play with it online.) The getMap-
http:// www.mapmap.org/ googlemaps/ debug-2.html

Info( ) function has been updated to include the dragging state and

current map type. There are additional buttons along the top that

allow you to exercise the various methods we discussed in this sec-

tion: Toggle Dragging, Cycle Zoom Control, Toggle MapType Control,

Cycle Map Type, and Cycle Scale Location. Choose View/Source in

your browser to see the source code.

Report erratum

http://www.mapmap.org/googlemaps/debug-2.html
http://www.mapmap.org/googlemaps/debug-2.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=23


rida ys
CHAPTER 5. MAP CONTROL OBJECTS PUTTING IT ALL TOGETHER 24

Figure 5.1: Manipulating the Map

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=24


rida ys
Chapter 6

User Data Objects

Now that you feel comfortable working with a “stock” map, let’s look

at adding your own custom data. The API allows you to add points

and lines (GMarkers and GPolylines, respectively). You can also

customize the appearance of your GMarker by creating a GIcon.

6.1 GMarker

In the Core Objects section, we introduced the GLatLng. A GLatLng

stores a Latitude / Longitude coordinate, but it doesn’t offer you a

way to visualize it on a map. A GMarker is the way to add GLatLngs
GMarker

to the map for display purposes. The GMarker constructor takes a

GLatLng as the only required argument.

Once we have the marker, we need to tell the map to display it;

map.addOverlay(myMarker) should do the trick. (Objects that you

superimpose over the map are called Overlays.) You can remove the
Overlays

marker using map.removeOverlay(myMarker). To remove all overlays,

use map.clearOverlays( ).

var myPoint = new GLatLng(38.898748, -77.037684);

var myMarker = new GMarker(myPoint);

map.addOverlay(myMarker);

Theoretically a map can support an unlimited number of markers,

but anecdotal evidence suggests that performance starts to slow

down significantly after a hundred or so markers. (File under, “Doc,

it hurts when I do this.”)



rida ys
CHAPTER 6. USER DATA OBJECTS GICON 26

Figure 6.1: The default GIcon with an Info Window

6.2 GIcon

The default icon used for a GMarker gives your map a distinct

Google Maps look and feel, as Figure 6.1 shows. You can, how-

ever, substitute your own GIcon for a more personalized touch. But

before we get into the API details of how to specify a custom GIcon,

we should talk about how to get a suitable image to use.

Your icon must be a PNG file. Any size will do, but anything more

than 20-30 pixels square will begin to look too big in relation to the

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=26


rida ys
CHAPTER 6. USER DATA OBJECTS GICON 27

Figure 6.2: Notice the Google favicon in the URL bar.

rest of the map. The default marker is 20x34 pixels.
http:// www.google.com/ mapfiles/ marker.png

I don’t know about you, but I became a programmer due to a marked

lack of artistic skills. The idea of hand-drawing my icons makes me

feel positively nauseous. Luckily, there are a wealth of images out

there that are just the right size. I’m speaking of favicons, those little
favicons

custom icons that show up in the URL bar and bookmark menu as

you go from website to website. (See Figure 6.2 .)

Report erratum

http://www.google.com/mapfiles/marker.png
http://www.google.com/mapfiles/marker.png
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=27


rida ys
CHAPTER 6. USER DATA OBJECTS GICON 28

Nearly every commercial website out there has a custom favicon.

You can usually download them directly from the root of the website.

For example, Google’s blue “G” can be found at in their site’s top-

level directory at http://www.google.com/favicon.ico. If you can’t

find a site’s favicon in the root, do a View/Source and look for a tag

in the header such as <link rel="shortcut icon" href="/favicon.ico"/>.
For more information on favicons, see Wikipedia.

I’m not suggesting that you should download website favicons and

use them without asking permission—they are copyrighted mate-

rial, after all—but we can use them as an inspiration for what we

are trying to accomplish. Favicons are the perfect size for GIcons: by

definition they are 16x16. And since they are so prevalent, there are

a number of free utilities and websites that make it easy to create

them.

The one that I use most often is http://www.html-kit.com/favicon.

It allows you to upload an image of any size, in nearly any file for-

mat, and download the resulting 16 x 16 favicon in a zip file. The

favicon is nice, but we need PNGs for the Google Map API. Luckily,

in addition to the favicon.ico file, you get a 16 x 16 PNG preview

image in the extra folder of the zip. Voila! Google Maps-ready icons

in a can.

In my quest for quick and easy icons, I’ve also gotten quite handy

with a command-line graphics program called ImageMagick. No,
http:// www.imagemagick.org

“command-line graphics program” is not an oxymoron. It allows me

to do image manipulation from where I feel most comfortable – at the

blinking cursor of a black and white terminal window. ImageMagick

is open source (so the price is right) and available on all of the major

platforms (Mac, Linux, and Windows, among others).

You can use the identify command to get the exact pixel size of any

Report erratum

http://www.google.com/favicon.ico
http://en.wikipedia.org/wiki/Favicon
http://www.html-kit.com/favicon
http://www.imagemagick.org
http://www.imagemagick.org
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=28


rida ys
CHAPTER 6. USER DATA OBJECTS GICON 29

image (identify foo.gif). You can then use the convert command to

change formats and optionally scale the image. If you already have

a favicon (and permission to use it), convert favicon.ico mylogo.png

will get it into the proper format. To resize images as you change

formats, use the scale parameter (convert -scale 16x16 bigimage.tiff

tinyimage.png).

Now that we have a suitable image, let’s incorporate it into our map.

First, define a GIcon. Then, the constructor of a GMarker takes an

optional GIcon argument after the required GLatLng.

var myIcon = new GIcon();

myIcon.image = "http://www.mapmap.org/googlemaps/google.png";

myIcon.iconSize = new GSize(16,16);

var myMarker = new GMarker(myPoint, myIcon);

map.addOverlay(myMarker);

The GIcon can be further customized in a number of ways. You

can use icon.shadow and icon.shadowSize to add, umm, shadows to

your icon. The Google Maps graphic designers have an incredibly

keen eye for detail when it comes to shadows. Go back and take a

look at a Google Map with overlays on it (for example, Figure 6.1, on

page 26). Can you see the subtle drop shadow to the right of both

the marker and the Info Window?

I am generally satisfied with matte custom icons in my maps. (Or

I used the following ImageMagick command
to create the shadow image.

convert -shear 45 -charcoal 1 \

-resize 32x16! -background none \

google.png google_shadow.png
should I say lucky to have them at all?) But for the sake of com-

pleteness, here are two examples of GIcons with shadows. The first

one is the default values for a GIcon. The second is a custom icon,

shadows and all. For a really classy shadow, I could play with the

Alpha channel to adjust the transparency of the image as well. (I’ll

leave that as an exercise for the artists out there who are, as we

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=29


rida ys
CHAPTER 6. USER DATA OBJECTS GICON 30

speak, shaking their heads in shame at my pathetic attempt at artis-

tic integrity.)

var defaultIcon = new GIcon();

defaultIcon.image = "http://www.google.com/mapfiles/marker.png";

defaultIcon.iconSize = new GSize(20,34);

defaultIcon.shadow = "http://www.google.com/mapfiles/shadow50.png";

defaultIcon.shadowSize = new GSize(37,34);

var myIcon = new GIcon();

myIcon.image = "http://www.mapmap.org/googlemaps/google.png";

myIcon.iconSize = new GSize(16,16);

myIcon.shadow = "http://www.mapmap.org/googlemaps/google_shadow.png";

myIcon.shadowSize = new GSize(32,16);

There is one last thing we need to discuss as far as custom icons

are concerned – anchors. When it comes to “X marks the spot”, we

need to give the map a hint as to which part of the GIcon should sit

over the GLatLng. The icon.iconAnchor property represents the exact

pixel of the icon that should match up with the point on the map.

The upper left corner of the icon is (0,0). The default GIcon looks

like it hits map right about bottom-center, or (10,34).

If we are going to be attaching Info Windows to our GIcons, we

also need to specify the icon.infoWindowAnchor property. The default

GIcon attaches the Info Window at top-center, or (10,0). (Again, see

Figure 6.1, on page 26.)

var defaultIcon = new GIcon();

defaultIcon.image = "http://www.google.com/mapfiles/marker.png";

defaultIcon.iconSize = new GSize(20,34);

defaultIcon.shadow = "http://www.google.com/mapfiles/shadow50.png";

defaultIcon.shadowSize = new GSize(37,34);

defaultIcon.iconAnchor = new GPoint(10,34);

defaultIcon.infoWindowAnchor = new GPoint(10,0);

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=30


rida ys
CHAPTER 6. USER DATA OBJECTS INFO WINDOWS 31

6.3 Info Windows

Now that our GIcon knows where to anchor an Info Window, let’s

pop one up.

The API treats Info Windows slightly differently than GMarkers in

several ways. While you can have as many GMarkers on the map

as you like, the API limits you to displaying a single Info Window

at a time. If you add a GMarker offscreen, the map doesn’t scroll

to display it. If you open an Info Window offscreen, the map pans

smoothly until the Info Window comes into view.

As with dragging earlier, you can control the ability of the map to

display Info Windows using the methods map.enableInfoWindow( )

and map.disableInfoWindow( ). To check the current state, use the

method map.infoWindowEnabled( ).

Info Windows are not first-class objects that you can instantiate and

leave laying around. Instead, you must call one of several openIn-

foWindow( ) methods on either a map or a GMarker.

An Info Window requires a point and a payload. If openInfoWindow( )

is called on a GMarker, the point is implied. If it is called on a

map, you must specify it. The payload can be either an HTML

DOM element or a string containing HTML (map.openInfoWindow( )

or map.openInfoWindowHtml( ), respectively).

The easiest way to get started is to just pop up an Info Window at

an arbitrary point on the map. Since the map provides a convenient

getCenter( ) method, we can use that to begin. openInfoWindowHtml( )

has two required arguments: the point and the HTML string.

var center = map.getCenter();

var coords = "Center point: (" + center.lat() + ", " + center.lng() + ")";

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=31


rida ys
CHAPTER 6. USER DATA OBJECTS INFO WINDOWS 32

map.openInfoWindowHtml(center, coords);

If you’re thinking to yourself that the coords variable doesn’t look

much like HTML, well, you’re right. Despite the name, you can

pass openInfoWindowHtml( ) a plain old string and it will get rendered

faithfully. We’ll play with embedding HTML tags in our string in just

a minute.

Theoretically, map.openInfoWindow( ) looks more generic. In reality,

it probably should’ve been named map.openInfoWindowDom( ). For

us to accomplish the same thing as above, we have to create a DOM

textNode object to hold the string:

map.openInfoWindow(somePoint,

document.createTextNode("This is my string"));

Opening an Info Window directly on a GMarker is pretty straightfor-

ward.

var myMarker = new GMarker(myPoint, myIcon);

map.addOverlay(myMarker);

myMarker.openInfoWindowHtml("Hey, check this out!");

Starting with v2 of the API, you can pop up tabbed Info Windows

using openInfoWindowTabs( ) and openInfoWindowTabsHtml( ). To do so,

simply create an array of GInfoWindowTabs. (See Figure 6.3, on the
GInfoWindowTab

following page.)

var geoCenter = map.getCenter(); //returns a GLatLng

var geoBounds = map.getBounds(); //returns a GLatLngBounds

var geoTabText = "Center point: (" + geoCenter.toUrlValue() + ")";

geoTabText += "<br />";

geoTabText += "Bounds: (" + geoBounds.getSouthWest().toUrlValue() + ")";

geoTabText += ", (" + geoBounds.getNorthEast().toUrlValue() + ")";

var pixelCenter = map.fromLatLngToDivPixel(geoCenter); // returns a GPoint

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=32


rida ys
CHAPTER 6. USER DATA OBJECTS INFO WINDOWS 33

Figure 6.3: New to v2: tabbed Info Windows.

var pixelBounds = map.getSize(); //returns a GSize

var pixelTabText = "Center point: " + pixelCenter.toString();

pixelTabText += "<br />";

pixelTabText += "Bounds: " + pixelBounds.toString();

var tabs = [

new GInfoWindowTab("geo", geoTabText),

new GInfoWindowTab("pixel", pixelTabText)

];

map.openInfoWindowTabsHtml(geoCenter, tabs);

By default, the first tab in the array is displayed. To override this,

pass in a GInfoWindowOptions object to openInfoWindowTabsHtml( ) as
GInfoWindowOptions

the last argument. The selectedTab property is the index of the tab

in array notation (the first element is 0, the second is 1, etc.).

var tabs = [

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=33


rida ys
CHAPTER 6. USER DATA OBJECTS INFO WINDOWS 34

new GInfoWindowTab("geo", geoTabText),

new GInfoWindowTab("pixel", pixelTabText)

];

var opts = new Object();

opts.selectedTab = 1;

map.openInfoWindowTabsHtml(geoCenter, tabs, opts);

In addition to text-based Info Windows, you can display a graphi-

cal Info Window that shows a zoomed-in mini map over the point.

(Think of it as a digital magnifying glass.) showMapBlowup( ) is avail-

able on both maps and markers. By default, it uses a zoomLevel

of 17 and the current mapType. You can override these values by

passing in a GInfoWindowOptions.

There is no GInfoWindowOptions object, really.
You cannot instantiate it. (Notice in the code
example that we create a plain old new
Object().) It is given a proper name for
documentation purposes only. Technically, you
don’t even have to bother with creating a
named object; just pass in properties on an
anonymous object in the function call.

map.addOverlay(googleMarker);

var opts = new Object();

opts.zoomLevel = 14;

opts.mapType = G_SATELLITE_MAP;

googleMarker.showMapBlowup(opts);

//NOTE: rather than creating a separate opts object,

// you can pass in an anonymous object

googleMarker.showMapBlowup({zoomLevel:14, mapType:G_SATELLITE_MAP});

Take a look at http://www.mapmap.org/googlemaps/debug-3.html

to see this in action. The Cycle Google Marker button shows you

a default and custom GIcon over Google’s headquarters. The Cycle

Info Windows button shows you an Info Windows on the map, an

Info Window on a GMarker, and a Map Blowup. (See Figure 6.4, on

the next page.)

Report erratum

http://www.mapmap.org/googlemaps/debug-3.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=34


rida ys
CHAPTER 6. USER DATA OBJECTS GPOLYLINE 35

Figure 6.4: A GIcon showing a Map Blowup Info Window.

6.4 GPolyline

To wrap up this chapter, lets talk about GPolylines. These are the
GPolyline

lines used by maps.google.com to display your turn-by-turn driving

directions. Even though it may sound a bit strange to the untrained

ear initially, “polyline” is technically the correct term. A line is a

straight line with two end points. A polyline has multiple vertices,

allowing our map element to zig-zag as expected.

To build a GPolyline, simply pass it an array of GLatLngs in the

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=35


rida ys
CHAPTER 6. USER DATA OBJECTS GPOLYLINE 36

constructor. If you would like to tweak the appearance, you can

pass in three optional arguments: color, weight, and opacity. Color

is the same RGB hex string you use in traditional web development.

(There are many nice webpages that list hex RGB values, such as

this one.) Weight is an integer value; the higher the number, the
http:// www.hypersolutions.org/ pages/ rgbhex.html

thicker the line. Opacity is a decimal value that specifies the trans-

parency of the line. 1 is fully opaque. 0 is fully transparent. For

50% opacity, use 0.5.

var myPoints = new Array(denver, santaFe, lasVegas, sanFrancisco);

var myLine = new GPolyline(myPoints);

map.addOverlay(myLine);

var myFancyPoints = new Array(denver, saltLakeCity, portland, seattle);

var myFancyLine = new GPolyline(myFancyPoints, "#FF0000", 10, 0.5);

map.addOverlay(myFancyLine);

Go to http://www.mapmap.org/googlemaps/debug-4.html to see GPoly-

lines in action. The "Cycle Lines" button allows you to see a simple

polyline and a styled example. (See Figure 6.5, on the following

page.)

In most browsers, polylines are rendered on the Google servers and

passed down to the browser as an overlay. If you are using Microsoft

Internet Explorer, you can have the browser render polylines client-

side. Doing so will improve your performance. Include the following

snippet of code to have IE use native VML rendering:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:v="urn:schemas-microsoft-com:vml">

<head>

<style type="text/css"> v\:* { behavior:url(#default#VML); } </style>

</head>

Report erratum

http://www.hypersolutions.org/pages/rgbhex.html
http://www.hypersolutions.org/pages/rgbhex.html
http://www.mapmap.org/googlemaps/debug-4.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=36


rida ys
CHAPTER 6. USER DATA OBJECTS GPOLYLINE 37

Figure 6.5: GPolylines on a map.

Even if you get past all of the geo-geek jargon we’ve thrown at you up

to this point, the GPolyline might still end up breaking your heart.

People who want to display a polyline that follows the underlying

roads like, “Plot my driving route from Denver to Las Vegas using

Interstate 70” will be disappointed. This level of functionality is

simply not provided by the current API. You are given the mechanics

to draw lines on your map, but not the underlying intelligence agent.

Maps.google.com allows you to perform simple “Point A to Point B”

queries and display a route. While this is quite useful, it would be

Report erratum

http://maps.google.com
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=37


rida ys
CHAPTER 6. USER DATA OBJECTS GPOLYLINE 38

great if the API allowed us to leverage this base functionality to do

more complicated actions. The website MapsOnUs lets you create
http:// www.mapsonus.com/

a driving plan that goes from Point A to Point B with intermediate

stopping points along the way. Even if the Google Maps API didn’t

provide this level of functionality initially, making routes first class

objects like GMarkers would allow us to instantiate several of them

and display them simultaneously on the map. (Perhaps in the next

release of the API, eh?)

Starting with v2 of the API, Google has given us the capabilities to

begin this process. Just like the GControl object that allows you to

create your own custom map control, v2 introduces the new GOv-

erlay object. Creating your own overlay (such as a routing overlay)
GOverlay

is entirely possible now, but it’s not for the faint of heart. For more

information and some source code, see the Google Documentation.

Report erratum

http://www.mapsonus.com/
http://www.mapsonus.com/
http://www.google.com/apis/maps/documentation/
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=38


ri da ys
Chapter 7

Events

At this point, we now have all of the building blocks in place. You

can create a map. You can put up controls that allow the user to

change the basic characteristics of the map. You can add custom

objects like points, lines, and Info Windows. But these last two

sections – Events and AJAX – are what really (excuse the pun) put

Google on the map of mapping websites.

When Google Maps was first released, it wasn’t the first mapping site

on the web. MapQuest, Yahoo Maps, and MSN Maps had all been

around for years. The model was well understood – type in your

address, click submit, and then print out your static map. Panning

was a “click, then wait for the screen to refresh” affair.

What Google Maps brings to the table was an amazing level of inter-

activity. You are inexorably drawn to mess around with a Google

map – drag it around, flip on satellite imagery, zoom in and out.

With the stock JavaScript event model available to you, coupled with

the custom events on the map and map objects, you can continue

that level of deep interactivity in a customized way.

7.1 GEvent

The event model allows you to react to the user – do something

customized when they click on the map, add points to the map from

an HTML form, etc. The map object is just one of many objects

on your page. Using standard JavaScript coupled with the Google

Maps API, you can bridge your custom HTML and your custom map



rid a ys
CHAPTER 7. EVENTS GEVENT 40

by having a table click place something on the map, or a map click

insert something into a table.

If you’ve done JavaScript programming in the past, you may be

familiar with the “old school” way of event handling:

<select onchange='doSomethingElse()'>

<button onclick='doSomething()'>

The onWhatever attributes assign a single event listener to specific

element events. The Google Maps API uses the more modern method

of programmatically adding event listeners to elements. Moving

from onWhatever attributes to event listeners, in addition to making

your code more loosely coupled, allows you to associate more than

one listener to the same event.

You can tap into the Google event model using static methods on

the GEvent object:
GEvent

var clickListener = GEvent.addListener(map, "click", doSomething());

GEvent.removeListener(clickListener);

The GEvent object does something very nice for us—it normalizes

the JavaScript event model across browsers. Browsers like Firefox

and Opera use the standard DOM event model. Internet Explorer

uses a proprietary, incompatible model. It is common practice for

web developers to bridge the gap between disparate browsers by

writing their own normalization methods:

function registerListener(domElement, event, listener, captureEvent)

{

//Normalize event registration across all browsers

//1. Mozilla/Opera, 2. IE, 3. Other

if(domElement.addEventListener){

domElement.addEventListener(event, listener, captureEvent);

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=40


rid a ys
CHAPTER 7. EVENTS GEVENT 41

return true;

}

else if(domElement.attachEvent){

return domElement.attachEvent('on'+ event, listener);

}

else{

domElement['on'+ event] = listener;

return true;

}

}

Notice that this code doesn’t check on the browser—it checks on the

availability of the function call. The code snippet

if (domElement.addEventListener)

says, “If you (the current browser I’m running in right now) under-

stand this call, then go ahead and do something interesting.” Sim-

ilarly, detaching an event listener can be accomplished in a cross

browser fashion using the following code:

function unregisterListener(domElement, event, listener, captureEvent)

{

//Normalize event registration across all browsers

//1. Mozilla/Opera, 2. IE, 3. Other

if(domElement.removeEventListener){

domElement.removeEventListener(event, listener, captureEvent);

return true;

}

else if(domElement.detachEvent){

return domElement.detachEvent('on'+ event, listener);

}

else{

domElement['on'+ event] = "";

return true;

}

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=41


rid a ys
CHAPTER 7. EVENTS GBROWSERISCOMPATIBLE 42

}

The GEvent object encapsulates this type of behavior so that we,

I should point out that there are plenty of open
source JavaScript frameworks out there that
take care of these mundane details for you out
of the box. Prototype is one popular example.
http://www.ajaxian.com is a great resource for
keeping up with this fast-moving market
segment. I purposely chose to limit our focus to
the Google Maps JavaScript framework in this
book – learning one framework at a time is
enough, wouldn’t you say?

the developers, don’t have to account for which browser we’re run-

ning in by using additional code. Until all vendors decide to become

conformant to the specification, it’s nice that the API can compen-

sate for us.

7.2 GBrowserIsCompatible

On a similar note, the Google Maps API offers us a method to check

whether the browser is compatible:

if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));

map.setCenter(myPoint, 1);

}

We haven’t been wrapping our code in this call for readability rea-

sons (and because all modern browsers are supported), but it’s nice

to know that this level of introspection is available to us by both

native JavaScript and the Google Maps API.

7.3 GMap Events

Some of the events on the map object are simple events—they don’t

return any values, they just fire a notification.

drag( )

Sent continuously while the user is dragging the map.

dragstart( )

Sent when the user begins dragging the map.

Report erratum

http://prototype.conio.net
http://www.ajaxian.com
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=42


rid a ys
CHAPTER 7. EVENTS GMAP EVENTS 43

dragend( )

Sent when the user stops dragging the map.

infowindowopen( )

Sent when an Info Window is diplayed.

infowindowclose( )

Sent when an Info Window is closed.

maptypechanged( )

Sent when the map is switched between Map, Satellite, and

Hybrid modes.

Other map events return additional information. The zoomend event,

for example, returns the previous and current zoom levels.

click(overlay, point)

Sent when the map is clicked on. If the user clicks on a

GMarker or other overlay object, that object is returned. If

an open area of the map is clicked, the lat/long point of the

click is returned.

zoomend(previousZoomLevel, currentZoomLevel)

Sent when the user changes the zoom level of the map.

addoverlay(overlay)

Sent when a new overlay is added to the map. The added over-

lay is returned.

removeoverlay(overlay)

Sent when an overlay is removed from the map. The removed

overlay is returned.

clearoverlays( )

Sent when all overlays are removed from the map.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=43


rid a ys
CHAPTER 7. EVENTS EVENT HANDLERS 44

mousemove(latlng)

Sent continuously when the mouse is in motion. The lat/long

of the cursor is returned.

mouseout(latlng)

Sent when the mouse is moved off of the map. The lat/long of

the cursor is returned.

mouseover(latlng)

Sent when the mouse is moved on to the map. The lat/long of

the cursor is returned.

7.4 Event Handlers

Events can either be passed to functions or handled by function

closures. A function closure is similar to an anonymous inner class

in Java. If the event handling code isn’t more than a couple of lines

and doesn’t need to be reused, a closure is a quick and dirty way to

code the behavior.

var dragListener = GEvent.addListener(map, "drag", function() {

document.getElementById("output").innerHTML =

map.getCenter().toUrlValue();

} );

var clickListener = GEvent.addListener(map,

"click",

function(overlay, point) {

handleMapClick(overlay, point);

} );

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=44


rid a ys
CHAPTER 7. EVENTS GMARKER EVENTS 45

7.5 GMarker Events

GMarkers also have events that you can listen for. Earlier, you saw

that you could pop up an Info Window by either adding it to a map

or to a GMarker. If you add it to the map, you have to provide the

coordinates; if you add it to a marker, the point is implicit. The

same idea applies to events: if you register a click listener on the

map, the listener passes back the overlay or the point in the event.

If you register a click listener on a point, the event doesn’t have any

associated arguments because you know explicitly which overlay

was clicked.

click( )

Sent when the marker is single-clicked.

dblclick( )

Sent when the marker is double-clicked.

mouseover( )

Sent when the mouse moves over the marker.

mouseout( )

Sent when the mouse moves off of the marker.

infowindowopen( )

Sent when the corresponding Info Window is diplayed.

infowindowclose( )

Sent when the corresponding Info Window is closed.

remove( )

Sent when the marker is removed from the map.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=45


rid a ys
CHAPTER 7. EVENTS SIMPLE EXAMPLES 46

Figure 7.1: Adding pushpins to your Google Map.

7.6 Simple Examples

See http://www.mapmap.org/googlemaps/debug-5.html for an exam-

ple of map events in action (it looks a bit like Figure 7.1 ).

Notice that we added a “Cycle Pushpins” button. If you press the

button once, it allows you to add a new GMarker by clicking on

the map. Pressing the button a second time adds a second listener

that displays the coordinates of the click at the top of the screen.

Pressing the button a third time turns off both listeners and clears

all of the markers.

Report erratum

http://www.mapmap.org/googlemaps/debug-5.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=46


rid a ys
CHAPTER 7. EVENTS SIMPLE EXAMPLES 47

//events

var pushpinsCycle = 0;

var clickListener;

var clickListener2;

function cyclePushpins()

{

switch(pushpinsCycle)

{

//turn on event listener

case 0:

pushpinsCycle++;

clickListener = GEvent.addListener(map, "click",

function(overlay, point) {

pushpin(overlay, point);

} );

document.getElementById("mapInfo").innerHTML =

"Click anywhere on the map to display a pushpin.";

break;

//turn on another event listener

case 1:

pushpinsCycle++;

clickListener2 = GEvent.addListener(map, "click",

function(overlay, point) {

showCoords(overlay, point);

} );

document.getElementById("mapInfo").innerHTML =

"Click anywhere on the map to display a pushpin "

+ "<b><i>with coordinates</i></b>.";

break;

//turn off event listener

case 2:

pushpinsCycle = 0;

GEvent.removeListener(clickListener);

GEvent.removeListener(clickListener2);

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=47


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 48

map.clearOverlays();

document.getElementById("mapInfo").innerHTML =

"All click listeners have been removed.";

break;

}

}

function pushpin(overlay, point)

{

if (overlay) { map.removeOverlay(overlay); }

else if (point) { map.addOverlay(new GMarker(point)); }

}

function showCoords(overlay, point)

{

var output = "";

if(point){

output += "(" + point.toUrlValue() + ")";

}

document.getElementById("mapInfo").innerHTML = output;

}

7.7 A Real-World Example

Let’s look at a more robust application. The beginning of it is online

at http://www.mapmap.org/googlemaps/cities-nomap.html. (See

Figure 7.2, on the following page.) There are two basic elements

on the page: a form for data entry and an HTML table to display the

results. Type values in the form and press the Add City button – the

data should appear in the table. If you press the delete button on

the table row, the row should disappear.

Now before you get too upset about having to type in Lat/Long

points by hand, just settle down. Once we add a little AJAX to our

Report erratum

http://www.mapmap.org/googlemaps/cities-nomap.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=48


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 49

Figure 7.2: Using Javascript to add form data to the table

application, you’ll be able to type in a city and have a web service fill

in the coordinates for you. For that matter, once we add a map to

our application, you’ll be able to click on the map and have it fill in

the coordinates for you. For now, we just want to exercise the plain

old HTML and JavaScript.

Let’s walk through the application. The first thing we do is register

the addCity() function as an event listener for the Add City button.

The pageInit( ) function is essentially our JavaScript constructor for

the page—we wait until the entire HTML page is loaded, and then

run the pageInit( ) function.Waiting for the entire page to load helps avoid
strange lifecycle issues across browsers—some
browsers try to run the event listener code
before the HTML elements exist, causing the
application to fail silently. <script type="text/javascript">

&ldots;

function pageInit()

{

registerListener(document.getElementById("addCityButton"),

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=49


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 50

"click", addCity, false);

}

registerListener(window, "load", pageInit, false);

</script>

Next, let’s examine the addCity( ) function. When the user clicks the

Add City button, we pull the data out of the HTML form via getCity-

Bean( ) and pass it to the addToTable( ) and addToArray( ) functions.

function addCity()

{

var cityBean = getCityBean();

addToTable(cityBean);

addToArray(cityBean);

}

The getCityBean( ) method takes advantage of a little JavaScript magic.

We create a new generic Object and then add attributes to it on the

fly. Each document.getElementById( ) method grabs input data from

the HTML form.

<div id="formSection">

<form id="cityForm" >

City: <input type="text" name="city" id="city"/>

State: <input type="text" name="state" id="state" size="2" maxlength="2"/>

Latitude: <input type="text" name="latitude" id="latitude">

Longitude: <input type="text" name="longitude" id="longitude"/>

<input type="button" name="AddCity" value="Add City" id="addCityButton"/>

</form>

</div>

function getCityBean()

{

var cityBean = new Object();

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=50


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 51

cityBean.city = document.getElementById("city").value;

cityBean.state = document.getElementById("state").value;

cityBean.latitude = document.getElementById("latitude").value;

cityBean.longitude = document.getElementById("longitude").value;

cityId++;

cityBean.id = "city" + cityId;

return cityBean;

}

Once our data is gathered together in a convenient bucket, we pass

it to addToTable( ) to update the table display.

Notice that the table has an empty <tbody>

element. While rarely used when hand-editing
tables in HTML, each table technically has an
implicit <thead>, <tbody>, and <tfoot>

section. If you plan to use JavaScript to
programmatically add and remove data from
your HTML tables, it is best to explicitly create
them and give them a unique id. When
adding a row directly to a table element, most
browsers do the right thing and add it to the
<tbody>. Safari, on the other hand, does
exactly what you ask it to do and adds the row
to the table—above the <thead> section.

<div id="tableSection">

<table border="1">

<tr id="cityHeader">

<td>Delete</td>

<td>City</td>

<td>State</td>

<td>Latitude</td>

<td>Longitude</td>

</tr>

<!-- Note: if tbody is not used, Safari adds new rows above the header -->

<tbody id="cityTable"></tbody>

</table>

</div>

function addToTable(cityBean)

{

var tbl = document.getElementById("cityTable");

var newRow = tbl.insertRow(tbl.rows.length);

newRow.id = cityBean.id;

var deleteCell = newRow.insertCell(0);

var deleteButton = document.createElement("input");

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=51


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 50

"click", addCity, false);

}

registerListener(window, "load", pageInit, false);

</script>

Next, let’s examine the addCity( ) function. When the user clicks the

Add City button, we pull the data out of the HTML form via getCity-

Bean( ) and pass it to the addToTable( ) and addToArray( ) functions.

function addCity()

{

var cityBean = getCityBean();

addToTable(cityBean);

addToArray(cityBean);

}

The getCityBean( ) method takes advantage of a little JavaScript magic.

We create a new generic Object and then add attributes to it on the

fly. Each document.getElementById( ) method grabs input data from

the HTML form.

<div id="formSection">

<form id="cityForm" >

City: <input type="text" name="city" id="city"/>

State: <input type="text" name="state" id="state" size="2" maxlength="2"/>

Latitude: <input type="text" name="latitude" id="latitude">

Longitude: <input type="text" name="longitude" id="longitude"/>

<input type="button" name="AddCity" value="Add City" id="addCityButton"/>

</form>

</div>

function getCityBean()

{

var cityBean = new Object();

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=52


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 53

Figure 7.3: Adding cities to the map

method—we get the cityId from the row, and call deleteFromTable(cityId)

and deleteFromArray(cityId).

OK, now let’s add in the map. (See Figure 7.3 , or http://www.mapmap.org/googlemaps/cities-

Most of the code should be familiar to you from previous examples.

All we’re doing is taking our lat/long point from the HTML form and

constructing a GMarker out of it.

Our addToCity( ) function now has an addToMap(cityBean) function in

addition to addToTable(cityBean) and addToArray(cityBean).

Report erratum

http://www.mapmap.org/googlemaps/cities-map1.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=53


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 54

function addToMap(cityBean)

{

var point = new GLatLng(cityBean.latitude, cityBean.longitude);

cityBean.marker = new GMarker(point);

map.addOverlay(cityBean.marker);

}

When we delete a city, we also call deleteFromMap( ).

function deleteFromMap(cityId)

{

var position = findById(cityId);

if(position > -1) {

var cityBean = cityList[position];

map.removeOverlay(cityBean.marker);

map.closeInfoWindow();

}

}

Just to show off, we add an event listener to each cell in the table

that opens an Info Window on the map when the user moves their

mouse over the row. We tweak the addToTable( ) function to register

the event listeners.

function addToTable(cityBean)

{

var tbl = document.getElementById("cityTable");

var newRow = tbl.insertRow(tbl.rows.length);

newRow.id = cityBean.id;

var deleteCell = newRow.insertCell(0);

var deleteButton = document.createElement("input");

deleteButton.type = "button";

deleteButton.name = "Delete";

deleteButton.value = "Delete";

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=54


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 53

Figure 7.3: Adding cities to the map

method—we get the cityId from the row, and call deleteFromTable(cityId)

and deleteFromArray(cityId).

OK, now let’s add in the map. (See Figure 7.3 , or http://www.mapmap.org/googlemaps/cities-

Most of the code should be familiar to you from previous examples.

All we’re doing is taking our lat/long point from the HTML form and

constructing a GMarker out of it.

Our addToCity( ) function now has an addToMap(cityBean) function in

addition to addToTable(cityBean) and addToArray(cityBean).

Report erratum



rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 52

deleteButton.type = "button";

deleteButton.name = "Delete";

deleteButton.value = "Delete";

registerListener(deleteButton, "click", deleteCity, false);

deleteCell.appendChild(deleteButton);

var cityCell = newRow.insertCell(1);

cityCell.appendChild(document.createTextNode(cityBean.city));

var stateCell = newRow.insertCell(2);

stateCell.appendChild(document.createTextNode(cityBean.state));

var latitudeCell = newRow.insertCell(3);

latitudeCell.appendChild(document.createTextNode(cityBean.latitude));

var longitudeCell = newRow.insertCell(4);

longitudeCell.appendChild(document.createTextNode(cityBean.longitude));

}

Adding the new cityBean to an array is painfully simple compared

to the previous addToTable( ) code. Since JavaScript arrays grow

dynamically, our method is a one-liner.

function addToArray(cityBean)

{

cityList[cityList.length] = cityBean;

}

The deleteCity( ) function can be called from any row in the table

that has a Delete button. The process is the reverse of the addCity( )

Report erratum

http://www.mapmap.org/googlemaps/cities-map2.html
http://www.mapmap.org/googlemaps/cities-map2.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=56


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 57

break;

//turn off event listener

case 1:

pushpinsCycle = 0;

GEvent.removeListener(clickListener);

button.value = buttonOff;

break;

}

}

When the map listener is engaged, the pushpin( ) function gets called

each time the user clicks on the map. Notice that we do nothing if

an overlay is clicked on. Since we’re presumably trying to add new

cities to the map, clicking on an existing city is simply ignored. If an

empty area of the map is clicked, a point is returned by the event.

We capture the lat/long from the point, construct a new cityBean,

and fill in the HTML form with our new data. From there, the user

can fill in the City and State information and click on the addCity

button to commit their changes.

function pushpin(overlay, point)

{

if(point){

var cityBean = new Object();

cityBean.city = "";

cityBean.state = "";

cityBean.latitude = point.lat();

cityBean.longitude = point.lng();

populateForm(cityBean);

}

}

In a production application, I’d probably hide all of that gory lat/long

stuff from my delicate, fragile end users. For the current audience, I

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=57


rid a ys
CHAPTER 7. EVENTS A REAL-WORLD EXAMPLE 58

made the assumption that if you have made it this far into the book,

you’re tough enough to handle some exposed internals.

We’ll revisit this application one more time to add the lookup service.

But in order do that, we need to add the final aspect of the Google

Maps API to our toolkit—AJAX.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=58


rid a ys
Chapter 8

AJAX

What makes Google Maps so impressive from a technology perspec-

tive is how cleverly it takes advantage of the full constellation of

client-side JavaScript tricks. These techniques have been around

since the late 1990s, but up until 2005 no one had assembled all

of them into a single web application. Google Maps is the “perfect

storm” of client-side web technologies.

8.1 DHTML and AJAX

DHTML (short for Dynamic HTML) is nothing more than an umbrella
DHTML

term for combining the JavaScript event model with CSS position-

ing. It is the secret sauce that allows you to drag objects around

in the middle of the web page. DHTML had been little more than a

“stupid browser trick”—a solution looking for a problem—until the

folks at Google decided that it was the most natural way to interact

with a map. Before that, DHTML had been mostly relegated to pull-

down menus—visually interesting, but hardly core functionality.

And while the rich UI experience is what initially grabs most people,

how the data gets to the browser behind the scenes is given little

thought. AJAX (Asynchronous JavaScript and XML) is arguably
AJAX

the unsung hero of Google Maps. It is what breaks the us out of

the coarse-grained “click on the map, wait for the entire page to

refresh” experience. It is quite literally multithreading for the World

Wide Web. It allows us to make a series of micro requests instead of

a single, large macro request.

In Google Maps, every time you click on a GMarker to pop up an

http://maps.google.com


rid a ys
CHAPTER 8. AJAX GXMLHTTP 60

Info Window you are making an AJAX request back to the server.

Notice that the whole screen doesn’t refresh—the information just

pops up seamlessly. In our previous Info Window example, the data

lives locally with the page. Using AJAX, we can access much more

information than what would be reasonable to download all at once.

We can send down little pieces of data as the user request it, all

behind the scenes.

So DHTML is an umbrella term for the combination of JavaScript

events and CSS postioning. AJAX is the umbrella term for the com-

bination of JavaScript events and the XMLHttpRequest object. (For
XMLHttpRequest

a short explanation of AJAX, see Dynamic HTML and XML. For a

http:// developer.apple.com/ internet/ webcontent/ xmlhttpreq.html more detailed treatment of the subject, see Pragmatic Ajax.)

http:// www.pragmaticprogrammer.com/ titles/ ajax/ index.html

8.2 GXmlHttp

Even though the XMLHttpRequest object is present in all major

browsers, it is implemented in slightly incompatible ways. Just like

the JavaScript event model earlier, it is usually up to the web devel-

oper to normalize the AJAX model across browsers:

//1. Mozilla, Safari, et al

//2. IE

var req;

if (window.XMLHttpRequest) {

req = new XMLHttpRequest();

}

else if (window.ActiveXObject) {

req = new ActiveXObject("Microsoft.XMLHTTP");

}

Report erratum

http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://www.pragmaticprogrammer.com/titles/ajax/index.html
http://www.pragmaticprogrammer.com/titles/ajax/index.html
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=60


rid a ys
CHAPTER 8. AJAX GEOCODER WEB SERVICES 61

The GXmlHttp object normalizes the AJAX event model across browsers
GXmlHttp

for us:

var req = GXmlHttp.create();

8.3 Geocoder Web Services

Even though the GXmlHttp object comes to us via the Google Maps

API, there is nothing intrinsically “mappy” about it. You can use the

object to make any AJAX call you would like.

We’re going to use it to look up the lat/long point for a given city. We

could download the entire database of cities and their corresponding

points each time the page is loaded, but that isn’t exactly the most

optimal solution. A better solution is to leave this list on a server

somewhere and only pull down the data we need via a web services

request.

We could implement a web service ourselves, but why reinvent

A complete list of worldwide cities and their
coordinates runs about 137MB. A copy can be
downloaded and used for free from
http://www.maxmind.com/download/worldcities. the wheel? There are plenty of services out there just waiting to

be used. Queries that return lat/long points are called geocoders.

geocoders
The Google Maps API doesn’t expose their geocoder to us, but the

GXmlHttp object allows us to make a call to the geocoder of our

choice.

If you are trying to geocode a full street address, you could use

geocoder.us. A simple RESTful web service request like this
http:// geocoder.us

http://geocoder.us/service/rest?address=1600+Pennsylvania+

Ave%2C+Washington+DC

returns a well-formed XML document like this (a newline was added

to make the description tag fit the page):

Report erratum

http://www.maxmind.com/download/worldcities
http://geocoder.us
http://geocoder.us
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=61


rid a ys
CHAPTER 8. AJAX GEOCODER WEB SERVICES 62

<rdf:RDF

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

xmlsn:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<geo:Point rdf:nodeID="aid59834990">

<dc:description>1600 Pennsylvania Ave NW,

Washington DC 20502</dc:description>

<geo:long>-77.037684</geo:long>

<geo:lat>38.898748</geo:lat>

</geo:Point>

</rdf:RDF>

The geocoder.us service is free. It is based on free data provided

by the US Census Bureau. In addition to the RESTful interface

demonstrated here, geocoder.us offers SOAP, XML-RPC, and even

CSV (comma-separated value) interfaces. The limitation, of course,

is that the US Census Bureau doesn’t provide data for addresses

outside of the US. The geocoder.us interface also doesn’t allow you to

query based on just the city—you must provide a full street address.

Don’t worry. Another free geocoder is available at brainoff.com/worldkits.
http:// brainoff.com/ worldkit/ geocoder/ rest/

As the URL indicates, the brainoff.com geocoder isn’t limited to just

domestic US requests. Making a simple query like this

http://brainoff.com/geocoder/rest?city=London,UK

returns a well-formed XML document like this:

<rdf:RDF

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

xmlsn:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<geo:Point>

<geo:long>-0.1166667</geo:long>

<geo:lat>51.5</geo:lat>

</geo:Point>

</rdf:RDF>

Report erratum

http://brainoff.com/worldkit/geocoder/rest/
http://brainoff.com/worldkit/geocoder/rest/
http://brainoff.com/geocoder/rest?city=London,UK
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=62


rid a ys
CHAPTER 8. AJAX GEOCODER WEB SERVICES 63

Yahoo also offers a free geocoder service. You need to sign up for a
http:// developer.yahoo.com/ maps/ rest/ V1/ geocode.html

free application ID just as we did with Google. After that, you are off

to the races. The query

http://api.local.yahoo.com/MapsService/V1/geocode?

appid=mapmap.org&amp;city=Denver&amp;state=CO

gives you this:

<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:maps"

xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">

<Result precision="city">

<Latitude>39.739109</Latitude>

<Longitude>-104.983917</Longitude>

<Address></Address>

<City>DENVER</City>

<State>CO</State>

<Zip></Zip>

<Country>US</Country>

</Result>

</ResultSet>

As you might have guessed by now, a RESTful web service accepts

requests in the form of simple name/value pairs and returns well-

formed XML. (See Wikipedia’s article on REST for more information.)
http:// en.wikipedia.org/ wiki/ Representational _State_Transfer

You can certainly make SOAP requests via AJAX as well, but you

have jump through many more hoops than doing simple string con-

catenation. (There’s an example here.) And why would you subject
http:// www-128.ibm.com/ developerworks/ webservices/ library/ ws-wsajax/

yourself to that much extra work if you didn’t need to? (There’s a

reason why people say that SOAP is the EJB of the XML world, but

that’s a discussion for another day....)

But even with the simplicity of RESTful web services, there’s a catch.

For security reasons, AJAX requests must be made to the same

Report erratum

http://developer.yahoo.com/maps/rest/V1/geocode.html
http://developer.yahoo.com/maps/rest/V1/geocode.html
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www-128.ibm.com/developerworks/webservices/library/ws-wsajax/
http://www-128.ibm.com/developerworks/webservices/library/ws-wsajax/
http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=63


rid a ys
CHAPTER 8. AJAX REVISITING THE REAL-WORLD EXAMPLE 64

domain as the domain of the parent page. Since our page came from

www.mapmap.org, all AJAX requests must go back to mapmap.org

as well. So how do we get around this limitation? Simple: we just

proxy the request on our server. This could be done in the server-

side language of your choice—here is how I implemented it using a

single JSP and the <c:import> tag from the JSTL.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core_rt" %>

<% response.setContentType("text/xml"); %>

<c:import url="http://api.local.yahoo.com/MapsService/V1/geocode">

<c:param name="appid" value="mapmap.org" />

<c:param name="city" value="${param.city}" />

<c:param name="state" value="${param.state}" />

</c:import>

If I make this request:

http://www.mapmap.org/googlemaps/city-ws-proxy.jsp?

city=Denver&amp;state=CO

it will simply peel off the city and state parameters, make the request

to the real web service on my behalf, and return the XML document.

8.4 Revisiting the Real-World Example

So how do we string all of this together? Here’s the user story: we

would like the user to be able to type in a city and state in the

HTML form and have the corresponding lat/long points magically

appear. To accomplish this, we’ll provide a Lookup Coordinates for

City button that extracts the field data from the form and makes

an AJAX call to our proxied web service behind the scenes. We’ll

parse the lat and long elements from the returned XML document

and populate the appropriate fields in the HTML form.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=64


rid a ys
CHAPTER 8. AJAX REVISITING THE REAL-WORLD EXAMPLE 65

From there, it’s no different than if the user had typed in the coor-

dinates by hand. They can click on the Add City button to commit

the new data to the map, or simply ignore the returned data. If a

city isn’t found, the coordinates are left blank.

We are able to accomplish all of this in a single function:

function lookupCity()

{

var cityBean = getCityBean();

var query = "city-ws-proxy.jsp";

query += "?city=" + cityBean.city;

query += "&state=" + cityBean.state;

var request = GXmlHttp.create();

request.open("GET", query, true);

request.onreadystatechange = function() {

if(request.readyState == 0) { errorOut("readyState 0 = uninitialized"); }

else if(request.readyState == 1) { errorOut("readyState 1 = loading"); }

else if(request.readyState == 2) { errorOut("readyState 2 = loaded"); }

else if(request.readyState == 3) { errorOut("readyState 3 = interactive");

else if(request.readyState == 4) {

errorOut("readyState 4 = complete, status=" + request.status +

" (" + request.statusText + ")");

if(request.status == 200)

{

var responseDoc = request.responseXML;

var root = responseDoc.documentElement;

var latitudeNode = root.getElementsByTagName("Latitude")[0];

cityBean.latitude = GXml.value(latitudeNode);

var longitudeNode = root.getElementsByTagName("Longitude")[0];

cityBean.longitude = GXml.value(longitudeNode);

populateForm(cityBean);

}

}

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=65


rid a ys
CHAPTER 8. AJAX REVISITING THE REAL-WORLD EXAMPLE 66

}

request.send(null);

}

The first three lines build the string for the RESTful request. The

next lines create the GXmlHttp and use a closure for event handling.

(We could have just as easily created a separate function to handle

the AJAX lifecycle.) The very last line of the function sends the

request.

Looking now at the actual event handler, we see that an AJAX

request can be in one of five possible states. The state that we’re

most interested in is 4, which means the request is complete and

we have a response. An AJAX request is a full-fledged HTTP request,

right down to the status code it returns. We can use request.status

to see the numeric value (200 is OK, 404 is File Not Found, etc.),

and request.statusText for the description.

But, more importantly, the request object gives us two ways to get at

the payload. request.responseText returns the document as a simple

string. Since we know that the response we’re going to get from the

web service is well-formed XML, we can use request.responseXML to

get it back as a DOM object. We’ve been using DOM all along to

manipulate our HTML document; we can use the same syntax to

parse out the XML document.

Since the elements in our XML data do not have id attributes, we

cannot use document.getElementById( ) as we have been in previous

examples. We use the more generic document.getElementsByTagName( ),

which returns an array of elements. (Notice that method name for

ids is singular; the method name for tags is plural.) Since we know

that the first value returned is the one we’re interested in, we can

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=66


rid a ys
CHAPTER 8. AJAX REVISITING THE REAL-WORLD EXAMPLE 67

hardcode [0] into the function call.

Now that we have the XML node in hand, we need to crack the

nut to get at the sweet chewy data on the inside. We could use

DOM syntax to get at it, but instead we take advantage of the GXml
GXml

object included in the Google Maps API. GXml.value( ) is a conve-

nience method that returns the value of the child textNode. Now

that our cityBean has values for the coordinates (or empty strings

if the query was unsuccessful), we call populateForm( ) to add the

values to the HTML form.

Make sense? Good. Because in v2 of the API, there is an even

simpler way to accomplish this. GDownloadUrl takes care of all of
GDownloadUrl

the lifecycle logic for us.

function lookupCityShortcut()

{

var cityBean = getCityBean();

var query = "city-ws-proxy.jsp";

query += "?city=" + cityBean.city;

query += "&state=" + cityBean.state;

GDownloadUrl(query, function(data, status) {

if(status == 200)

{

var responseDoc = GXml.parse(data);

var root = responseDoc.documentElement;

var latitudeNode = root.getElementsByTagName("Latitude")[0];

cityBean.latitude = GXml.value(latitudeNode);

var longitudeNode = root.getElementsByTagName("Longitude")[0];

cityBean.longitude = GXml.value(longitudeNode);

populateForm(cityBean);

}

else

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=67


rid a ys
CHAPTER 8. AJAX REVISITING THE REAL-WORLD EXAMPLE 68

{

errorOut("Bad things happened. status=" + status);

}

});

request.send(null);

}

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=68


rid a ys
Chapter 9

Where do we go from
here?

Now that you have the basics of Google Maps under your belt, all

you have to do now is do something creative with your new-found

skills. The combination of mapping and freely available data via

web services can yield all sorts of interesting applications. These

are being called “Google Maps Mashups” by the cool kids on the

’net.

You could put your skills to civic-minded use. For example, the site

http://www.chicagocrime.org/ allows you to see all of the crimes in

Chicago on a map.

You could put your skills to more practical use. The application at

http://www.housingmaps.com/ takes a list of homes for sale from

http://www.craigslist.org and puts them on a map.

Or you could be completely frivolous with your new-found skills.

http://hotmaps.frozenbear.com/ takes pictures of pretty men or

women from http://www.hotornot.com and shows you who lives in

your neighborhood.

As you can see, the possibilities are limitless. You can go quite a

long way with nothing but web services and the free Google Maps

API.

If, however, you hit the limit of what the free API can offer, you

still have options. Coming in early 2006, the Pragmatic Press will

publish Pragmatic GIS. It is an exploration of setting up your own,

in-house Google Maps. We discuss setting up a complete GIS infras-

tructure using nothing but free and open source software and data.

From client-side libraries to Java APIs. From spatial databases to

http://www.chicagocrime.org/
http://www.housingmaps.com/
http://www.craigslist.org
http://hotmaps.frozenbear.com/
http://www.hotornot.com


rid a ys
CHAPTER 9. WHERE DO WE GO FROM HERE? CHAPTER 9. WHERE DO WE GO FROM HERE? 70

geographically enable web servers. Until then, enjoy your time with

Google Maps.

Report erratum

http://books.pragprog.com/titles/sdgmapi2/errata/add?pdf_page=70


Pragmatic Fridays
Timely and focused PDF-only books. Written by experts for people who need infor-

mation in a hurry. No DRM restrictions. Free updates. Immediate download. Visit

our web site to see what’s happening on Friday!

More Online Goodness
Google Maps API

Source code from this book and other resources. Come give us feedback, too!

Free Updates

Visit the link, identify your book, and we’ll create a new PDF containing the latest

content.

Errata and Suggestions

See suggestions and known problems. Add your own. (The easiest way to report

an errata is to click on the link at the bottom of the page.

Join the Community

Read our weblogs, join our online discussions, participate in our mailing list, inter-

act with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

Check out the latest pragmatic developments in the news.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/fridays
http://pragmaticprogrammer.com/titles/sdgmapi2
http://books.pragprog.com/titles/sdgmapi2/reorder
http://books.pragprog.com/titles/sdgmapi2/errata
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
www.pragmaticprogrammer.com/catalog

	Google Maps
	A Brief History
	Here's the Game Plan

	For Those in a Hurry...
	The Simple Map
	Adding navigation components
	Setting the initial map type
	Creating a Point and an Info Window

	The Excruciating Details
	Core Objects
	Map Controls
	User Data
	Events
	AJAX

	Core Objects
	GMap2
	GLatLng
	GLatLngBounds

	Map Control Objects
	Panning
	Zooming
	Changing the Map Type
	GOverviewMap
	Putting it all together

	User Data Objects
	GMarker
	GIcon
	Info Windows
	GPolyline

	Events
	GEvent
	GBrowserIsCompatible
	GMap Events
	Event Handlers
	GMarker Events
	Simple Examples
	A Real-World Example

	AJAX
	DHTML and AJAX
	GXmlHttp
	Geocoder Web Services
	Revisiting the Real-World Example

	Where do we go from here?

