

What readers are saying about
Practices of an Agile Developer

The “What It Feels Like” sections are just gold—it’s one thing to tell
someone to do this; it’s quite another to put it into practice and know
you’re doing it right.

Nathaniel T. Schutta
Coauthor, Foundations of Ajax

The book is what I’ve come to expect from the Pragmatic Bookshelf:
short, easy to read, to the point, deep, insightful and useful. It should
be a valuable resource for people wanting to do “agile.”

Forrest Chang
Software Lead

When I started reading Practices of an Agile Developer, I kept thinking,
“Wow, a lot of developers need this book.” It did not take long to real-
ize that I needed this book. I highly recommend it to developers of all
experience levels.

Guerry A. Semones
Senior Software Engineer, Appistry

Practices of an Agile Developer uses common sense and experience to
illustrate why you should consider adopting agile practices on your
projects. This is precisely the kind of real-world, experiential informa-
tion that is most difficult to glean from a book.

Matthew Johnson
Principal Software Engineer

I was familiar with some of the practices mentioned since I own other
books from the Pragmatic Bookshelf, but this book brings a lot of
those ideas together and presents them in a clear, concise, organized
format. I would highly recommend this book to a new developer or to
a development team that wanted to get “agile.”

Scott Splavec
Senior Software Engineer

With agile practices spreading across the industry, there is a growing
need to understand what it really means to be “agile.” This book is a
concise and practical guide to becoming just that.

Marty Haught
Software Engineer/Architect, Razorstream

Maybe you have heard before about agile methodologies and have
been asking yourself, what things can I do to improve my work each
day? My answer would be to read this book and let the angels inside
whisper in your ears the best personal practices you can embrace.

David Lázaro Saz
Software Developer

This is a remarkably comprehensive yet targeted and concise overview
of the core practices of agility. What I like best about this book is that
it doesn’t promote a specific agile methodology but rather ties together
the practices common to each methodology into a coherent whole.
This is required reading for anyone hungering for a faster, more reli-
able way to develop wickedly good software.

Matthew Bass
Software Consultant

The perfect sequel to The Pragmatic Programmer!

Bil Kleb
Research Scientist, NASA

Practices of an Agile Developer
Working in the Real World

Venkat Subramaniam

Andy Hunt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 Venkat Subramaniam and Andy Hunt.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-8-X

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, March 2006

Version: 2006-3-20

http://www.pragmaticprogrammer.com

To our families and their inexhaustible patience.

fwÊf frlwfÊ fwÊgit fwÊwßdÊ

epwÊf mjwÊFjÊ jf.

 jpUf;Fws;-391

“Learn thoroughly what you learn;
let your conduct be worthy of what is learnt.”
Verse 391 from Thirukural, Collection of 1330 noble couplets
Thiruvalluvar, poet and philosopher, 31 B.C.

Almost every wise saying
has an opposite one,

no less wise,
to balance it.

―George Santayana

Contents
1 Agile Software Development 1

2 Beginning Agility 10
1. Work for Outcome . 12
2. Quick Fixes Become Quicksand 15
3. Criticize Ideas, Not People 18
4. Damn the Torpedoes, Go Ahead 23

3 Feeding Agility 26
5. Keep Up with Change . 28
6. Invest in Your Team . 31
7. Know When to Unlearn 34
8. Question Until You Understand 37
9. Feel the Rhythm . 40

4 Delivering What Users Want 43
10. Let Customers Make Decisions 45
11. Let Design Guide, Not Dictate 48
12. Justify Technology Use 52
13. Keep It Releasable . 55
14. Integrate Early, Integrate Often 58
15. Automate Deployment Early 61
16. Get Frequent Feedback Using Demos 64
17. Use Short Iterations, Release in Increments 69
18. Fixed Prices Are Broken Promises 73

5 Agile Feedback 76
19. Put Angels on Your Shoulders 78
20. Use It Before You Build It 82
21. Different Makes a Difference 87
22. Automate Acceptance Testing 90
23. Measure Real Progress 93
24. Listen to Users . 96

CONTENTS xiv

6 Agile Coding 98
25. Program Intently and Expressively 100
26. Communicate in Code . 105
27. Actively Evaluate Trade-Offs 110
28. Code in Increments . 113
29. Keep It Simple . 115
30. Write Cohesive Code . 117
31. Tell, Don’t Ask . 121
32. Substitute by Contract 124

7 Agile Debugging 128
33. Keep a Solutions Log . 129
34. Warnings Are Really Errors 132
35. Attack Problems in Isolation 136
36. Report All Exceptions . 139
37. Provide Useful Error Messages 141

8 Agile Collaboration 146
38. Schedule Regular Face Time 148
39. Architects Must Write Code 152
40. Practice Collective Ownership 155
41. Be a Mentor . 157
42. Allow People to Figure It Out 160
43. Share Code Only When Ready 162
44. Review Code . 165
45. Keep Others Informed . 168

9 Epilogue: Moving to Agility 170
9.1 Just One New Practice . 170
9.2 Rescuing a Failing Project 171
9.3 Introducing Agility: The Manager’s Guide 172
9.4 Introducing Agility: The Programmer’s Guide 174
9.5 The End? . 175

A Resources 176
A.1 On the Web . 176
A.2 Bibliography . 179

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=xiv

No matter how far down the wrong road
you’ve gone, turn back.

Turkish proverb

Chapter 1

Agile Software Development
That Turkish proverb above is both simple and obvious—you’d think it
would be a guiding force for software development. But all too often,
developers (including your humble authors) continue down the wrong
road in the misguided hope that it will be OK somehow. Maybe it’s close
enough. Maybe this isn’t really as wrong a road as it feels. We might
even get away with it now and then, if creating software were a linear,
deterministic process—like the proverbial road. But it’s not.

Instead, software development is more like surfing—it’s a dynamic,
ever-changing environment. The sea itself is unpredictable, risky, and
there may be sharks in those waters.

But what makes surfing so challenging is that every wave is different.
Each wave takes its unique shape and behavior based on its locale—a
wave in a sandy beach is a lot different from a wave that breaks over a
reef, for instance.

In software development, the requirements and challenges that come
up during your project development are your waves—never ceasing and
ever-changing. Like the waves, software projects take different shapes
and pose different challenges depending on your domain and applica-
tion. And sharks come in many different guises.

Your software project depends on the skills, training, and competence
of all the developers on the team. Like a successful surfer, a successful
developer is the one with (technical) fitness, balance, and agility. Agility
in both cases means being able to quickly adapt to the unfolding situ-
ation, whether it’s a wave that breaks sooner than expected or a design
that breaks sooner than expected.

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 2

The Agile Manifesto

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

Copyright 2001, the Agile Manifesto authors

See agilemanifesto.org for more information.

The Spirit of Agility

So what is agility, exactly, and where did this whole agile software
development movement come from?

In February 2001, seventeen interested persons (including Andy) got
together in Snowbird, Utah, to discuss an emerging trend of what was
loosely being called lightweight processes.

We had all seen projects fail because of ponderous, artifact-heavy, and
results-light processes. It seemed like there should be a better way to
look at methodology—a way to focus on the important stuff and de-
emphasize the less important stuff that seemed to take up a lot of valu-
able time with little benefit.

These seventeen folks coined the term agile and published the Agile
Manifesto to describe a refocused approach to software development:
an approach that emphasizes people, collaboration, responsiveness,
and working software (see the sidebar on this page for the introduc-
tion to the manifesto).

The agile approach combines responsive, collaborative people with a
focus on demonstrable, concrete goals (software that actually works).
That’s the spirit of agility. The practical emphasis of development shifts

Report erratum

agilemanifesto.org
http://books.pragprog.com/titles/pad/errata/add?pdf_page=2

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 3

from a plan-based approach, where key events happen in individual,
separate episodes, to a more natural, continuous style.

It’s assumed that everyone on the team (and working with the team)
are professionals who want a positive outcome from the project. They
may not necessarily be experienced professionals yet, but they possess
a professional attitude—everyone wants to do the best job they can.

If you have problems with absenteeism, slackers, or outright saboteurs,
this is probably not the approach for you. You’ll need something more
heavy-handed, slower, and less productive. Otherwise, you can begin
developing in the agile style.

That means you don’t leave testing to the end of the project. You don’t
leave integration to the end of the month or stop gathering requirements
and feedback as you begin to code.

Continuous
development, not
episodic

Instead, you continue to perform all these
activities throughout the life cycle of the
project. In fact, since software is never really
“done” as long as people continue to use it, it’s
arguable that these aren’t even projects any-
more. Development is continuous. Feedback is continuous. You don’t
have to wait for months to find out that something is wrong: you find
out quickly, while it’s still relatively easy to fix. And you fix it, right
then and there.

That’s what it’s all about.

This idea of continuous, ongoing development is pervasive in agile
methods. It includes the development life cycle itself but also technol-
ogy skills learning, requirements gathering, product deployment, user
training, and everything else. It encompasses all activities, at all levels.

Inject energy
Why? Because developing software is such
a complex activity, anything substantive that
you leave until later won’t happen, won’t hap-
pen well, or will grow worse and fester until it becomes unmanageable.
A certain kind of friction increases, and things get harder to fix and
harder to change. As with any friction, the only way to fight it effec-
tively is to continually inject a little energy into the system (see “Soft-
ware Entropy” in The Pragmatic Programmer [HT00]).

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=3

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 4

Some people raise the concern that agile development is just crisis man-
agement in disguise. It’s not. Crisis management occurs when prob-
lems are left to fester until they become so large that you have to drop
everything else you’re doing to respond to the crisis immediately. This
causes secondary crises, so now you have a vicious cycle of never-
ending crisis and panic. That’s precisely what you want to avoid.

Instead, you want to tackle small problems while they are still small,
explore the unknown before you invest too much in it, and be prepared
to admit you got it all wrong as soon as you discover the truth. You need
to retool your thinking, your coding practices, and your teamwork. It’s
not hard to do, but it might feel different at first.

The Practice of Agility

A useful definition of agility might be as follows:

Agile development uses feedback to make constant
 adjustments in a highly collaborative environment.

Here’s a quick summary of what that means in practice and what life
on an agile team looks like.

It’s a team effort. Agile teams tend to be small or broken up into several
small (ten or so people) teams. You mostly work very closely together,
in the same war room (or bull pen) if possible, sharing the code and
the necessary development tasks. You work closely with the client or
customer who is paying for this software and show them the latest
version of the system as early and as often as possible.

You get constant feedback from the code you’re writing and use auto-
mation to continuously build and test the project. You’ll notice that the
code needs to change as you go along: while the functionality remains
the same, you’ll still need to redesign parts of the code to keep up.
That’s called refactoring, and it’s an ongoing part of development—code
is never really “done.”

Work progresses in iterations: small blocks of time (a week or so) where
you identify a set of features and implement them. You demo the iter-
ation to the customer to get feedback (and make sure you’re headed in

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=4

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 5

the right direction) and release full versions to the user community as
often as practical.

With this all in mind, we’re going to take a closer look at the practices
of agility in the following areas:

Chapter 2: Beginning Agility. Software development is all in your
head. In this chapter, we’ll explain what we mean by that and
how to begin with an agile mind-set and good personal practices
as a firm foundation for the remainder of the book.

Chapter 3: Feeding Agility. An agile project doesn’t just sit there. It
requires ongoing background practices that aren’t part of devel-
opment itself but are vitally important to the health of the team.
We’ll see what needs to be done to help keep your team and your-
self growing and moving forward.

Chapter 4: Delivering What Users Want. No matter how well written,
software is useless if it doesn’t meet the users’ needs. We’ll take
a look at practices and techniques to keep the users involved,
learn from their experience with the system, and keep the project
aligned with their real needs.

Chapter 5: Agile Feedback. Using feedback to correct the software
and the development process is what keeps an agile team on
course where others might flounder and crash. The best feed-
back comes from the code itself; this chapter examines how to get
that feedback as well as how to get a better handle on the team’s
progress and performance.

Chapter 6: Agile Coding. Keeping code flexible and adaptable to meet
an uncertain future is critical to agile success. This chapter out-
lines some practical, proven techniques to keep code clean and
malleable and prevent it from growing into a monster.

Chapter 7: Agile Debugging. Debugging errors can chew through a
lot of time on a project—time you can’t afford to lose. See how to
make your debugging more effective and save time on the project.

Chapter 8: Agile Collaboration. Finally, an agile developer can be
only so effective; beyond that, you need an agile team. We’ll show
you the most effective practice we’ve found to help jell a team
together, as well as other practices that help the team function
on a day-to-day basis and grow into the future.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=5

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 6

An Agile Toolkit

Throughout the text, we’ll refer to some of the basic tools that
are in common use on agile projects. Here’s a quick introduc-
tion, in case some of these might be new to you. More infor-
mation on these topics is available from the books listed in the
bibliography.

Wiki. A Wiki (short for WikiWikiWeb) is a website that allows
users to edit the content and create links to new content
using just a web browser. Wikis are a great way to encour-
age collaboration, because everyone on the team can
dynamically add and rearrange content as needed. For
more on Wikis, see The Wiki Way [LC01].

Version control. Everything needed to build the project—all
source code, documents, icons, build scripts, etc.—needs
to be placed in the care of a version control system. Sur-
prisingly, many teams still prefer to plop files on a shared
network drive, but that’s a pretty amateurish approach.
For a detailed guide to setting up and using version con-
trol, see Pragmatic Version Control Using CVS [TH03] or
Pragmatic Version Control Using Subversion [Mas05].

Unit testing. Using code to exercise code is a major source
of developer feedback; we’ll talk much more about
that later in the book, but be aware that readily avail-
able frameworks handle most of the housekeeping details
for you. To get started with unit testing, there’s Prag-
matic Unit Testing in Java [HT03] and Pragmatic Unit Test-
ing in C# [HT04], and you’ll find helpful recipes in JUnit
Recipes [Rai04].

Build automation. Local builds on your own machine, as well
as centrally run builds for the whole team, are completely
automated and reproducible. Since these builds run all
the time, this is also known as continuous integration. As
with unit testing, there are plenty of free, open-source and
commercial products that will take care of the details for
you. All the tips and tricks to build automation (including
using lava lamps) are covered in Pragmatic Project Auto-
mation [Cla04].

Finally, you can find a good reference to tie these basic envi-
ronmental practices together in Ship It! [RG05].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=6

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 7

The Devil and Those Pesky Details

If you’ve flipped through the book, you may have noticed that the intro-
duction section of the tips features a small woodcut of the devil himself,
tempting you into bad and careless habits. They look like this:

“Go ahead, take that shortcut. It will save you time, really. No
one will ever know, and you can be done with this task and
move on quickly. That’s what it’s all about.”

Some of his taunts may seem absurd, like something out of Scott
Adams’s Dilbert cartoons and his archetypical “pointy-haired boss.”
But remember Mr. Adams takes a lot of input from his loyal readers.

Some may seem more outlandish than others, but they are all legiti-
mate lines of thought that your authors have heard, seen in practice,
or secretly thought. These are the temptations we face, the costly short-
cut we try anyway, in the vain hope of saving time on the project.

To counter those temptations, there’s another section at the end of each
practice where we’ll give you your own guardian angel, dispensing key
advice that we think you should follow:

Start with the hardest. Always tackle the most difficult
problems first, and leave the simple one towards the end.

And since the real world is rarely that black-and-white, we’ve included
sections that describe what a particular practice should feel like and
tips on how to implement it successfully and keep it in balance. They
look like this:

What It Feels Like

This section describes what a particular practice should feel like. If
you aren’t experiencing it this way, you may need to revise how you’re
following a particular practice.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=7

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 8

Keeping Your Balance

• It’s quite possible to overdo or underdo a practice, and in these
sections we’ll try to give you advice to keep a practice in balance,
as well as general tips to help make it work for you.

After all, too much of a good thing, or a good thing misapplied, can
become very dangerous (all too often we’ve seen a so-called agile project
fail because the team didn’t keep a particular practice in balance). We
want to make sure you get real benefits from these practices.

By following these practices and applying them effectively in the real
world—with balance—you’ll begin to see a positive change on your
projects and in your team.

You’ll be following the practices of an agile developer, and what’s more,
you’ll understand the principles that drive them.

Acknowledgments

Every book you read is a tremendous undertaking and involves many
more people behind the scenes than just your lowly authors.

We’d like to thank all the following people for helping make this book
happen.

Thanks to Jim Moore for creating the cover illustration and to Kim
Wimpsett for her outstanding copyediting (and any remaining errors
are surely the fault of our last-minute edits).

A special thanks to Johannes Brodwall, Chad Fowler, Stephen Jenkins,
Bil Kleb, and Wes Reisz for their insight and helpful contributions.

And finally, thanks to all our reviewers who graciously gave their time
and talent to help make this a better book: Marcus Ahnve, Eldon
Alameda, Sergei Anikin, Matthew Bass, David Bock, A. Lester Buck
III, Brandon Campbell, Forrest Chang, Mike Clark, John Cook, Ed
Gibbs, Dave Goodlad, Ramamurthy Gopalakrishnan, Marty Haught,
Jack Herrington, Ron Jeffries, Matthew Johnson, Jason Hiltz Laforge,
Todd Little, Ted Neward, James Newkirk, Jared Richardson, Frédérick
Ros, Bill Rushmore, David Lázaro Saz, Nate Schutta, Matt Secoske,
Guerry Semones, Brian Sletten, Mike Stok, Stephen Viles, Leif Wick-
land, and Joe Winter.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=8

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 9

Venkat says:
I would like to thank Dave Thomas for being such a wonderful mentor.
Without his guidance, encouragement, and constructive criticism this
book would have stayed a great idea.

I’m blessed to have Andy Hunt as my coauthor; I’ve learned a great
deal from him. He is not only technically savvy (a fact that any prag-
matic programmer out there already knows) but has incredible expres-
sive power and exceptional attitude. I have admired the Pragmatic Pro-
grammers in every step of making of this book—they’ve truly figured
and mastered the right set of tools, techniques, and, above all, attitude
that goes into publishing.

I thank Marc Garbey for his encouragement. The world can use more
people with his sense of humor and agility—he’s a great friend. My
special thanks to the geeks (err, friends) I had the pleasure to hang
out with on the road—Ben Galbraith, Brian Sletten, Bruce Tate, Dave
Thomas, David Geary, Dion Almaer, Eitan Suez, Erik Hatcher, Glenn
Vanderburg, Howard Lewis Ship, Jason Hunter, Justin Gehtland, Mark
Richards, Neal Ford, Ramnivas Laddad, Scott Davis, Stu Halloway, and
Ted Neward—you guys are awesome! I thank Jay Zimmerman (a.k.a.
agile driver), director of NFJS, for his encouragement and providing an
opportunity to express my ideas on agility to his clients.

I thank my dad for teaching me the right set of values, and to you, Mom,
for you’re my true inspiration. None of this would have been possible
but for the patience and encouragement of my wife, Kavitha, and my
sons, Karthik and Krupakar; thank you and love you.

Andy says:
Well, I think just about everyone has been thanked already, but I’d like
to thank Venkat especially for inviting me to contribute to this book.
I wouldn’t have accepted that offer from just anyone, but Venkat has
been there and done that. He knows how this stuff works.

I’d like to thank all the good agile folks from the Snowbird get-together.
None of us invented agility, but everyone’s combined efforts have cer-
tainly made it a growing and powerful force in the modern world of
software development.

And of course, I’d like to thank my family for their support and under-
standing. It has been a long ride from the original The Pragmatic Pro-
grammer book, but it has been a fun one.

And now, on with the show.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=9

He who chooses the beginning of a road
chooses the place it leads to.

Harry Emerson Fosdick

Chapter 2

Beginning Agility
Traditional books on software development methodology might start
with the Roles you’ll need on a project, followed by the many Artifacts
you need to produce (documents, checklists, Gantt charts, and so on).
After that you’ll see the Rules, usually expressed in a somewhat “Thou
Shalt...” format.1 Well, we’re not going to do any of that here. Welcome
to agility, where we do things a bit differently.

For instance, one popular software methodology suggests you need to
fulfill some thirty-five distinct roles on a project, ranging from architect
to designer to coder to librarian. Agile methods take a different tack.
You perform just one role: software developer. That’s you. You do
what’s needed on the team, working closely with the customer to build
software. Instead of relying on Gantt charts and stone tablets, agility
relies on people.

Software development doesn’t happen in a chart, an IDE, or a design
tool; it happens in your head. But it’s not alone. There’s a lot of other
stuff happening in there as well: your emotions, office politics, egos,
memories, and a whole lot of other baggage. Because it’s all mixed in
together, things as ephemeral as attitude and mood can make a big
difference.

And that’s why it’s important to pay attention to attitude: yours and
the team’s. A professional attitude focuses on positive outcomes for the
project and the team, on personal and team growth, and on success.
It’s easy to fall into pursuing less noble goals, and in this chapter,

1Or the ever popular, “The System shall....”

CHAPTER 2. BEGINNING AGILITY 11

we’ll look at ways to stay focused on the real goals. Despite common
distractions, you want to Work for Outcome (see how beginning on the
next page).

Software projects seem to attract a lot of time pressure—pressure that
encourages you to take that ill-advised shortcut. But as any experi-
enced developer will tell you, Quick Fixes Become Quicksand (see how
to avoid the problem starting on page 15).

Each one of us has a certain amount of ego. Some of us (not nam-
ing names here) have what might be charitably termed a very “healthy”
amount of ego; when asked to solve a problem, we take pride in arriv-
ing at the solution. But that pride can sometimes blind our objectivity.
You’ve probably seen design discussions turn into arguments about
individuals and personalities, rather than sticking to the issues and
ideas related to the problem at hand. It’s much more effective to Criti-
cize Ideas, Not People (it’s on page 18).

Feedback is fundamental to agility; you need to make changes as soon
as you realize that things are headed in the wrong direction. But it’s not
always easy to point out problems, especially if there may be political
consequences. Sometimes you need courage to Damn the Torpedoes,
Go Ahead (we’ll explain when, starting on page 23).

Agility works only when you adopt a professional attitude toward your
project, your job, and your career. Without the right attitude, these
practices won’t help all that much. But with the right attitude, you
can reap the full benefits of this approach. Here are the practices and
advice we think will help.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=11

WORK FOR OUTCOME 12

1 Work for Outcome
“The first and most important step in addressing a problem is
to determine who caused it. Find that moron! Once you’ve
established fault, then you can make sure the problem doesn’t
happen again. Ever.”

Sometimes that old devil sounds so plausible. Certainly you want to
make finding the culprit your top priority, don’t you? The bold answer
is no. Fixing the problem is the top priority.

You may not believe this, but not everyone always has the outcome of
the project as their top priority. Not even you. Consider your first,
“default” reaction when a problem arises.

You might inadvertently fuel the problem by saying things that will
complicate things further, by casting blame, or by making people feel
defensive. Instead, take the high road, and ask, “What can I do to solve
this or make it better?” In an agile team, the focus is on outcomes. You
want to focus on fixing the problem, instead of affixing the blame.

Blame doesn’t fix bugs
The worst kind of job you can have (other than
cleaning up after the elephants at the circus)
is to work with a bunch of highly reactive peo-

ple. They don’t seem interested in solving problems; instead, they take
pleasure in talking about each other behind their backs. They spend
all their energy pointing fingers and discussing who they can blame.
Productivity tends to be pretty low in such teams. If you find your-
self on such a team, don’t walk away from it—run. At a minimum,
redirect the conversation away from the negative blame game toward
something more neutral, like sports or the weather (“So, how about
those Yankees?”).

On an agile team, the situation is different. If you go to an agile team
member with a complaint, you’ll hear, “OK, what can I do to help you
with this?” Instead of brooding over the problem, they’ll direct their
efforts toward solving it. Their motive is clear; it’s the outcome that’s
important, not the credit, the blame, or the ongoing intellectual superi-
ority contest.

You can start this yourself. When a developer comes to you with a
complaint or a problem, ask about the specifics and how you can help.
Just that simple act makes it clear that you intend to be part of the

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=12

WORK FOR OUTCOME 13

Compliance Isn’t Outcome

Many standardization and process efforts focus on measuring
and rating compliance to process on the rationale that if the
process works and it can be proved that you followed it exactly,
then all is right with the world.

But the real world doesn’t work that way. You can be ISO-9001
certified and produce perfect, lead-lined life jackets. You fol-
lowed the documented process perfectly; too bad all the users
drowned.

Measuring compliance to process doesn’t measure outcome.
Agile teams value outcome over process.

solution, not the problem; this takes the wind out of negativism. You’re
here to help. People will then start to realize that when they approach
you, you’ll genuinely try to help solve problems. They can come to you
to get things fixed and go elsewhere if they’re still interested in whining.

If you approach someone for help and get a less than professional
response, you can try to salvage the conversation. Explain exactly
what you want, and make it clear that your goal is the solution, not
the blame/credit contest.

Blame doesn’t fix bugs. Instead of pointing fingers, point
to possible solutions. It’s the positive outcome that counts.

What It Feels Like

It feels safe to admit that you don’t have the answer. A big mistake feels
like a learning opportunity, not a witch hunt. It feels like the team is
working together, not blaming each other.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=13

WORK FOR OUTCOME 14

Keeping Your Balance

• “It’s not my fault” is rarely true. “It’s all your fault” is usually
equally incorrect.

• If you aren’t making any mistakes, you’re probably not trying hard
enough.

• It’s not helpful to have QA argue with developers whether a prob-
lem is a defect or an enhancement. It’s often quicker to fix it than
argue about it.

• If one team member misunderstood a requirement, an API call,
or the decisions reached in the last meeting, then it’s very likely
other team members may have misunderstood as well. Make sure
the whole team is up to speed on the issue.

• If a team member is repeatedly harming the team by their actions,
then they are not acting in a professional manner. They aren’t
helping move the team toward a solution. In that case, they need
to be removed from this team.2

• If the majority of the team (and especially the lead developers)
don’t act in a professional manner and aren’t interested in moving
in that direction, then you should remove yourself from the team
and seek success elsewhere (which is a far better idea than being
dragged into a “Death March” project [You99]).

2They don’t need to be fired, but they don’t need to be on this team. But be aware
that moving and removing people is dangerous to the team’s overall balance as well.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=14

QUICK FIXES BECOME QUICKSAND 15

2 Quick Fixes Become Quicksand
“You don’t need to really understand that piece of code; it seems
to work OK as is. Oh, but it just needs one small tweak. Just
add one to the result, and it works. Go ahead and put that in;
it’s probably fine.”

We’ve all been there. There’s a bug, and there’s time pressure. The
quick fix seems to work—just add one or ignore that last entry in the
list, and it works OK for now. But what happens next distinguishes
good programmers from crude hackers.

The crude hacker leaves the code as is and quickly moves on to the
next problem.

The good programmer will go to the next step and try to understand
why that +1 is necessary, and—more important—what else is affected.

Now this might sound like a contrived, even silly, example, except that
it really happened—on a large scale. A former client of Andy’s had
this very problem. None of the developers or architects understood the
underlying data model of their domain, and over the course of several
years the code base became littered with thousands of +1 and -1 correc-
tions. Trying to add features or fix bugs in that mess was a hair-pulling
nightmare (and indeed, many of the developers had gone bald by then).

But like most catastrophes, it didn’t get like that all at once. Instead,
it happened one quick fix at a time. Each quick fix—which ignored the
pervasive, underlying problem—added up to a swamp-like morass of
quicksand that eventually sucked the life out of the project.

Beware of land mines
Shallow hacks are the problem—those quick
changes that you make under pressure with-
out a deep understanding of the true problem
and any possible consequences. It’s easy to fall prey to this tempta-
tion: the quick fix is a very seductive proposition. With a short enough
lens, it looks like it works. But in any longer view, you may as well
be walking across a field strewn with land mines. You might make it
halfway across—or even more—and everything seems fine. But sooner
or later....

As soon as that quick hack goes in, the clarity of the code goes down.
Once a number of those pile up, clarity is out the window, and opacity

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=15

QUICK FIXES BECOME QUICKSAND 16

Andy Says. . .
Understand Process, Too

Although we’re talking about understanding code, and espe-
cially understanding code well before you make changes to
it, the same argument holds for your team’s methodology or
development process.

You have to understand the development methodology in use
on your team. You have to understand how the methodology
in place is supposed to work, why things are the way they are,
and how they got that way.

Only with that understanding can you begin to make changes
effectively.

takes over. You’ve probably worked places where they say, “Whatever
you do, don’t touch that module of code. The guy who wrote it is no
longer here, and no one knows how it works.” There’s no clarity. The
code is opaque, and no one can understand it.

You can’t possibly be agile with that kind of baggage. But some agile
techniques can help prevent this from happening. We’ll look at these in
more depth in later chapters, but here’s a preview.

Don’t code in isolation
Isolation is dangerous; don’t let your devel-
opers write code in complete isolation (see
Practice 40, Practice Collective Ownership, on

page 155). If team members take the time to read the code
that their colleagues write, they can ensure that it’s readable and
understandable—and isn’t laced with arbitrary “+1s and -1s”. The more
frequently you read the code, the better. These ongoing code reviews
not only help make the code understandable but they are also one of
the most effective ways of spotting bugs (see Practice 44, Review Code,
on page 165).

Use unit tests
The other major technique that can help pre-
vent opaque code is unit testing. Unit testing
helps you naturally layer the code into man-

ageable pieces, which results in better designed, clearer code. Further
into the project, you can go back and read the unit tests—they’re a

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=16

QUICK FIXES BECOME QUICKSAND 17

kind of executable documentation (see Practice 19, Put Angels on Your
Shoulders, on page 78). Unit tests allow you to look at smaller, more
comprehensible modules of code and help you get a thorough under-
standing by running and working with the code.

Don’t fall for the quick hack. Invest the energy to keep
code clean and out in the open.

What It Feels Like

It feels like the code is well lit; there are no dark corners in the project.
You may not know every detail of every piece of code or every step of
every algorithm, but you have a good general working knowledge. No
code is cordoned off with police tape or “Keep Out” signs.

Keeping Your Balance

• You need to understand how a piece of code works, but you don’t
necessarily have to become an expert at it. Know enough to work
with it effectively, but don’t make a career of it.

• If a team member proclaims that a piece of code is too hard for
anyone else to understand, then it will be too hard for anyone
(including the original author) to maintain. Simplify it.

• Never kludge in a fix without understanding. The +1/-1 syndrome
starts innocently enough but rapidly escalates into an opaque
mess. Fix the problem, not the symptom.

• Most nontrivial systems are too complex for any one person to
understand entirely. You need to have a high-level understand-
ing of most of the parts in order to understand what pieces of the
system interact with each other, in addition to a deeper under-
standing of the particular parts on which you’re working.

• If the system has already become an opaque mess, follow the
advice given in Practice 4, Damn the Torpedoes, Go Ahead, on
page 23.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=17

CRITICIZE IDEAS, NOT PEOPLE 18

3 Criticize Ideas, Not People
“You have a lot invested in your design. You’ve put your heart
and soul into it. You know it’s better than anyone else’s. Don’t
even bother listening to their ideas; they’ll just confuse the
issue.”

You’ve probably seen design discussions that get out of hand and
become emotionally charged—decisions get made based on whose idea
it was, not on the merits of the ideas themselves. We’ve been in meet-
ings like that, and they aren’t pleasant.

But it’s only natural. When Lee presents a new design, it’s easiest to
say, “That’s stupid” (with the clear implication that Lee is stupid as
well). It takes a little more effort to elaborate, “That’s stupid; you forgot
to make it thread-safe.” And it actually takes real effort and thought to
say the far more appropriate, “Thanks, Lee. But I’m curious, what will
happen when two users log on at the same time?”

See the difference? Let’s look at common responses to an obvious error:

• Dismiss the person as incompetent.

• Dismiss the idea by pointing out the obvious flaw.
• Ask your teammate to address your concern.

The first choice is a nonstarter. Even if Lee is a complete bozo and
couldn’t program his way out of a paper bag, pointing that out isn’t
going to advance his education any and will likely dissuade Lee from
offering any more ideas in the future. Choice two is at least more
focused, but it doesn’t help Lee that much and could well backfire on
you. Lee may well respond to the accusation of unsafe threading with
something clever: “Oh, it doesn’t need to be multithreaded. Because
this is executing in the context of the Frozbot module, it’s already run-
ning in its own thread.” Ouch. Forgot about that Frozbot thing. Now
you feel stupid, and Lee is annoyed that you thought he was a bozo.

That leaves choice three. No accusation, no judgment, just a simple
clarification. It lets Lee identify the problem himself, instead of having
it thrown in his face.3 It’s the start of a conversation, not an argument.

3That’s a great technique in general: ask a leading question that allows someone to
figure out the problem for themselves.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=18

CRITICIZE IDEAS, NOT PEOPLE 19

Venkat Says. . .
Keep It Professional, Not Personal

Years ago, on my first day on the job as a system administrator,
a senior admin and I were working on installing some software. I
accidentally pushed a button bringing down the server. Within
seconds, several frustrated users were knocking on the door.

My mentor earned my trust and respect when—instead of
pointing fingers—he said, “Sorry, we’re trying to find what went
wrong. The system should be up in a few minutes.” I learned an
important and unforgettable lesson.

In the tight confines of a development team, that small amount of polite-
ness and courtesy goes a long way to help keep the team focused on the
pure merits of an idea, not on distractions of personal politics. We all
are capable of generating excellent, innovative ideas, and we are all
equally capable of proposing some real turkeys.

If there’s a substantial risk that your idea will be ridiculed or that you’ll
lose face for suggesting it, you won’t be inclined to offer another sug-
gestion. Ever. And that’s a real problem: a good software development
effort, and a good design, requires a lot of creativity and insight. The
whole project benefits when people with different ideas and concerns
share and merge those ideas into something larger than any individual
contributor could offer.

Negativity kills
innovation

Negative comments and attitudes kill innova-
tion. Now, we’re not suggesting that you and
your team should hold hands and sing “Kum-
baya” during your design meetings. It would
slow the meeting down, for one thing. But you need to keep your focus
on solving problems rather than trying to prove whose idea is better.
Having only one highly talented person on a team is merely ineffective,
but it’s much worse to have a few clashing heads who refuse to work
together. Productivity and innovation quickly dies on those teams.

We all have some good ideas and some bad ideas, and everyone on the
team needs to feel free to express them. Even if your idea is not fully
taken up, it may help shape the solution. Don’t be afraid of being criti-

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=19

CRITICIZE IDEAS, NOT PEOPLE 20

The Communal Camel

Group design can be very effective, but some of the best inno-
vations come from single minds—individuals with a strong vision.
If you’re the one with the vision, you need to be extremely
respectful of others’ potential contributions. You’re the gate-
keeper. You need to hold to the vision, but you need to be
mindful and incorporate good new ideas even if they weren’t
yours originally.

At the other end of the spectrum is the lackluster committee
that has to reach consensus on each and every design deci-
sion. When building a horse, such a committee tends to create
a camel instead.

We’re not suggesting you limit yourself to design by consensus,
but you shouldn’t be held hostage by a chief architect who is
deaf to new ideas. What we are suggesting is that you remem-
ber Aristotle’s observation:

“It is the mark of an educated mind to be able to entertain a
thought without accepting it.”

cized. Remember, everyone who became an expert started somewhere.
In the words of Les Brown, “You don’t have to be great to get started,
but you have to get started to be great.”

Here are some particular techniques that can help:

Set a deadline. If you’re having a design meeting, or are just hav-
ing trouble getting to a solution, set a hard deadline such as
lunchtime or the end of the day. That kind of time boxing helps
keep the team moving and keeps you from getting too hung up on
an endless ideological debate. And try to be (dare we say) prag-
matic about it: there may not be a best answer, just a more suit-
able solution. A deadline helps you make the hard choices so you
can move on.

Argue the opposite. Each member of the team should realize that
there are always trade-offs involved. One way to be objective about
an issue is to argue enthusiastically for it—and then passionately

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=20

CRITICIZE IDEAS, NOT PEOPLE 21

against it.4 The goal is to pick a solution that has the most pros
and the fewest cons, and this is a good way to collect as many
pros and cons as you can. It also helps take some of the emotion
out of the process.

Use a mediator. At the start of a meeting, pick a mediator who will
act as the decision maker for that session. Each person should
be given an opportunity to present ideas and opinions on various
aspects of the problem. The mediator is there to make sure every-
one gets a chance to be heard and to keep the meeting moving
forward. The mediator can prevent prima donnas from dominat-
ing the meeting and can step in to remedy thoughtless remarks.

It’s easiest to step back and monitor the meeting when you aren’t
actively participating in the discussion itself, so the mediator
should concentrate on mediating, not contributing ideas (and ide-
ally shouldn’t have a vested interest in the project’s timeline). And
of course, while technical skills aren’t strictly required for this
task, people skills are.

Support the decision. Once a solution is picked (by whatever means),
each team member should switch gears and give their complete
cooperation in seeing it through to implementation. Everyone has
to keep in mind that the goal is to get the project working to meet
your customers’ needs. It doesn’t matter to the customer whose
idea it was—they care only that the application works and that it
meets their expectations. It’s the outcome that counts.

Design (and life, for that matter) is full of compromises. A winning
team is the one that realizes this fact. Working together with the team
unemotionally takes effort, but exhibiting such maturity among your
team members won’t go unnoticed. This is an area where leading by
example pays off—the practice is contagious.

Criticize ideas, not people. Take pride in arriving at a
solution rather than proving whose idea is better.

4See “Debating with Knives” at http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Random/FishBowl.rdoc.

Report erratum

http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Random/FishBowl.rdoc
http://books.pragprog.com/titles/pad/errata/add?pdf_page=21

CRITICIZE IDEAS, NOT PEOPLE 22

What It Feels Like

It feels comfortable when the team discusses the genuine merits and
possible drawbacks of several candidate solutions. You can reject solu-
tions that have too many drawbacks without hurt feelings, and imper-
fect (but still better) solutions can be adopted without guilt.

Keeping Your Balance

• Always try to contribute a good idea, but don’t be upset if your
ideas don’t make it into the product. Don’t add extra cruft to an
existing good idea just to add your own input.

• The real debate usually ends up on how realistic the negative
points are. It’s easy to slam an idea you’re biased against by rais-
ing negatives that might not ever happen or that aren’t realistic.
If this starts happening, ask whether the problem has ever hap-
pened before and how often it came up.

In other words, it’s not enough to say, “We can’t adopt that strat-
egy because the database vendor may go out of business,” or “The
users would never accept that idea.” You have to also assess
just how likely that scenario really is. If you have to prototype
or research to back up or refute a position, do so.

• Before setting out to find the best solution, it might be a good idea
to make sure everyone agrees on what best means in this context.
The best thing for developers may not be the best for users, and
vice versa.

• There is no absolute best, only better. Despite the popularity of
the term, there is no such thing as “best practices,” only better
practices in a particular situation.

• Being unemotional does not mean you blindly accept any and all
ideas presented. Choose the right words and reasons to explain
why you can’t see the merits of an idea or solution, and ask clari-
fying questions.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=22

DAMN THE TORPEDOES, GO AHEAD 23

4 Damn the Torpedoes, Go Ahead
“When you discover a problem in someone else’s code, just keep
it to yourself. After all, you wouldn’t want to hurt their feelings
or cause trouble. And if that someone else happens to be your
boss, be extra careful, and just follow orders.”

In the fable “Who Will Bell the Cat?” the mice decide to tie a bell around
the neck of the cat so they’d receive advance warning when the cat was
on the prowl. Every mouse agrees that this is an excellent plan. The old
mouse asks, “So, who will volunteer to tie on the bell?” Not surprisingly,
no mouse stepped forward, and the plan was dropped.

Sometimes the best plans fail in the absence of courage. Despite
the dangers—the real and metaphorical torpedoes—you need to charge
ahead and do what’s right.

You’ve just been asked to fix some code written by someone else. The
code is very hard to understand and work with. Should you continue
to work with it, leaving it in a mess at the end? Or should you tell the
boss that the code sucks and should be thrown away?

Maybe it’s cathartic to stomp around telling everyone how bad the code
is, but that’s just complaining, not working on a solution. Instead,
present the pros and cons of working with the code versus rewriting
it. Show—don’t just tell—that it’s more cost effective to throw the code
away and rewrite it. Present reasons that will help your boss (and
colleagues) evaluate the situation, helping them come to the correct
solution.

Now suppose you’ve been working on a particular component for a
while. Suddenly you realize that you’ve been climbing the wrong tree;
you really should redo your work. Naturally, you’re worried about con-
fessing the problem to the rest of your team and asking for more time
or for help.

Rather than trying to cover up the issue, stand up and say, “I now
realize that what I’ve done is not the right approach. Here are some
of the ways I thought of to fix it—if you have more ideas, I’d like to
hear about them—but it’s going to take more time.” You have removed
all heat out of the issue and clearly indicated that you’re interested
in finding a solution. You have asked people to work with you on a
solution—there’s no place for rebuttal. Your team will be motivated to

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=23

DAMN THE TORPEDOES, GO AHEAD 24

Venkat Says. . .
Enforce Good Practices

I was working with an application that sends different types of
files to a server process and was asked to implement code to
save another type of file. That shouldn’t be hard. When I started
digging in, I was shocked to find that the code to handle each
type of file was duplicated. So I followed suit: I copied and
pasted a hundred lines of code, changed two lines in it, and
got it working in minutes—but I felt low. I had violated good
working practices.

I convinced the boss that the code would quickly become
too expensive to maintain and should be refactored. Within
a week, we saw the benefit of that effort when we had to
make some changes to how files were handled—only now, the
change was contained to one place instead of spread all over
the system.

work with you in solving the problem. They may step in and give you
a hand. What’s more, you’ve shown your honesty and courage—you’ve
earned their trust.

You know the right thing that needs to be done—or at least that the
current way is wrong. Have courage to explain your view to the rest of
the team, your boss, or the client. That’s not always easy, of course. It
may be that this will make the project late, offend the project manager,
or annoy the sponsors. You need to press forward and take the correct
approach regardless.

It was Civil War Admiral David Farragut who famously said, “Damn the
torpedoes! Captain Drayton, go ahead! Jouett, full speed!” Yes, there
were mines in the way (called torpedoes at the time), but they had to
get through, so full speed ahead they went.5

It was the right thing to do.

5In fact, Farragut’s full quote is often simplified to the battle cry, “Damn the torpe-
does, full speed ahead!”

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=24

DAMN THE TORPEDOES, GO AHEAD 25

Do what’s right. Be honest, and have the courage to com-
municate the truth. It may be difficult at times; that’s why
it takes courage.

What It Feels Like

Courage doesn’t feel very comfortable, certainly not ahead of time. But
it’s often the only way to remove obstacles that will just grow worse over
time, and you’ll feel relief instead of increasing dread.

Keeping Your Balance

• If you think the sky is falling and the rest of the team disagrees
with you, consider that you might be right and that you haven’t
explained your reasoning well enough.

• If you think the sky is falling and the rest of the team disagrees
with you, consider that they might be right.

• If design or code strikes you as odd, take the time to understand
the reasons why the code is the way it is. If you then find the
solution to be valid but confusing, you may only have to refactor
to make it more meaningful. Don’t start rejecting and rewriting
simply because you can’t understand it right away. That’s not
courage; that’s impatience.

• If your courageous stand is met with resistance by decision mak-
ers who lack the necessary background to understand the situa-
tion, you need to present it to them in terms they will understand.
“Cleaner code” is not likely to motivate businesspeople. Saving
money, getting a good return on investment, avoiding lawsuits,
and increasing the customer base are much better arguments.

• If you’re being pressured to compromise code quality, it might help
to point out that you, as a developer, don’t have the authority to
degrade corporate assets (the overall code base).

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=25

Even if you are on the right track, you will
get run over if you just sit there.

Will Rogers

Chapter 3

Feeding Agility
Agility requires ongoing, background maintenance. As the Will Rogers
quote above illustrates, you need to keep moving. While that was prob-
ably true as seen from the saddle of a horse, it’s especially true for us
programmers.

The software profession is an ever-changing and evolving field;
although a few concepts are timeless, others quickly become obsolete.
Being in the software profession is a bit like being on a treadmill—you
have to keep up with the pace, or you’ll get thrown off.

Who’s going to help you keep up with the pace? Well, in the corporate
world, only one person will look out for your interests—you. It’s up to
you to keep up with change.

Most new technologies are based on existing technologies and ideas.
They’ll add some new things, but the change is incremental. If you
keep up, then handling each new thing is just a matter of recogniz-
ing the incremental change. If you don’t keep up, technology change
will appear sudden and insurmountable. It’s like returning to your
hometown after ten years: you notice a lot of change and may not even
recognize some places. However, the folks who live there, and see small
changes every day, are completely comfortable with it. We’ll look at
ways to Keep Up with Change on page 28.

Investing in keeping yourself up-to-date is a great start, but you also
need to make an effort to Invest in Your Team, and we’ll look at ways to
do that starting on page 31.

CHAPTER 3. FEEDING AGILITY 27

Although learning new technology and new approaches is important,
you’ll need to let go of old, outdated approaches as well. In other words,
you’ll need to Know When to Unlearn (see how, beginning on page 34).

While we’re on the subject of change, it’s important to realize that
your understanding changes over the course of the project. Things you
thought you understood well may not be as clear as you thought. You
need to constantly pursue those odd bits you don’t quite understand,
and we’ll see how and why you should Question Until You Understand
starting on page 37.

Finally, a well-oiled agile project team does many things on a regular,
repeating basis. Once things get rolling, you can Feel the Rhythm, and
we’ll show you the beat on page 40.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=27

KEEP UP WITH CHANGE 28

5 Keep Up with Change
“Technology changes so fast it’s overwhelming. That’s just the
nature of it. Stick to your old job with the language you know;
you can’t possibly keep up.”

“There is nothing permanent except change,” said Heraclitus. That has
been true throughout history, but it’s especially true now. You’re in
an exciting and ever-changing field. If you graduated with a degree in
computer science or some related professional field and thought you
were all done with learning, you were dead wrong.

Suppose you graduated in 1995, a mere ten years ago or so. What
did you know at the time? You probably knew C++ fairly well. You
saw some new language called Java. A concept called design patterns
was gaining interest. There was some talk about something called the
Internet. If you then went into hibernation and resurfaced in 2005,
what you’d see around you would be overwhelming. A year would not
be enough to learn all the new technologies and return to your former
level of proficiency, even within a fairly limited area of technology.

The pace at which technology evolves is incredible; take Java, for
instance. You have the Java language with its series of updated fea-
tures. Then you have Swing, Servlets, JSP, Struts, Tapestry, JSF,
JDBC, JDO, Hibernate, JMS, EJB, Lucene, Spring...; the list goes on.
If you are into Microsoft technology, you have VB, Visual C++, MFC,
COM, ATL, .NET, C#, VB.NET, ASP.NET, ADO.NET, WinForms, Enter-
prise Services, Biztalk.... And don’t forget UML, Ruby, XML, DOM, SAX,
JAXP, JDOM, XSL, Schema, SOAP, web services, SOA; yet again the list
goes on (and we’re starting to run out of short acronyms).

Unfortunately, just having the right skills for the job at hand isn’t suffi-
cient anymore. That job won’t even be available in another few years—it
will be outsourced or outdated, and you’ll be out of a job.1

Suppose you were a Visual C++ or VB programmer, and you saw COM
come out. You spent time learning it (however painful that was), and
you kept up with what distributed object computing is all about. When
XML came out, you took time to learn that. You delved into ASP and

1See My Job Went to India: 52 Ways to Save Your Job [Fow05].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=28

KEEP UP WITH CHANGE 29

understood what it takes to develop a web application. You didn’t
become an expert on each of these technologies, but you didn’t stay
ignorant of them either. Your curiosity led you to find what MVC is and
what design patterns are. You played around with Java a little bit to
see what all the excitement was about.

If you had kept abreast of these technologies, then taking the next step
and learning .NET is really not that big a deal. You didn’t have to
suddenly climb ten floors; you were climbing all along, and you likely
had to step up just one or two floors at the end. If you stayed ignorant
of all these technologies, then climbing up those ten floors would leave
you out of breath at best. It would also take a long time—and all the
while newer technologies would keep coming along.

How can you keep up with the pace? The good news is we have lots
of technologies and facilities available today to help us continue our
education. Here are some suggestions:

Learn iteratively and incrementally. Set aside some time every day
for catching up. It doesn’t have to be long, but it should be regular.
Keep track of concepts you want to learn more about—just jot
down a note when you hear some unfamiliar term or phrase. Then
use your regularly scheduled time to investigate it further.

Get the latest buzz. The Web contains vast resources for learning
about new technology. Read discussion forums and mailing lists
to get a good flavor for the problems people are running into and
the cool solutions they’ve discovered. Pick some well-established
tech blogs and read them regularly—and check out what the top
bloggers are reading (see pragmaticprogrammer.com for current
suggestions).

Attend local user groups. Local user groups exist in many areas for
Java, Ruby, Delphi, .NET, process improvement, OO design,
Linux, Mac, and all manner of other technologies. Listen to the
speakers, and plan on participating in the question-and-answer
sessions afterward.

Attend workshops or conferences. Computer conferences are held
all over the world, and many well-known consultants and authors
conduct workshops and classes. These gatherings can be a great
opportunity to learn directly from the experts.

Report erratum

pragmaticprogrammer.com
http://books.pragprog.com/titles/pad/errata/add?pdf_page=29

KEEP UP WITH CHANGE 30

Read voraciously. Find good books on software development and non-
technical topics (we’d be happy to recommend a few), peer-
reviewed journals and trade magazines, and even mass-media
press (where it’s fascinating to see old news presented as “cutting
edge”).

Keep up with changing technology. You don’t have to
become an expert at everything, but stay aware of where
the industry is headed, and plan your career and projects
accordingly.

What It Feels Like

You feel aware of what’s going on; you know about technologies as
they are announced and adopted. If you had to switch jobs into a new
technology area, you could.

Keeping Your Balance

• Many new ideas never make it to full-fledged, useful technologies.
The same is true for large, popular, well-funded endeavors. Gauge
your effort.

• You can’t be an expert at everything. Don’t try. But once you’re
an expert at a few things, it becomes easier to gain expertise in
selected new areas.

• Understand why a new technology is necessary—what problem is
it trying to solve? Where can it be used?

• Avoid the impulse to convert your application to a newer technol-
ogy, framework, or language just for sake of learning. You still
have to evaluate the merits of a new technology before committing
to it. Writing a small prototype might also be an effective antidote
for overly extreme enthusiasm.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=30

INVEST IN YOUR TEAM 31

6 Invest in Your Team
“Don’t share what you know—keep it to yourself. It’s to your
advantage to be the Smart One on the team. As long as you’re
smart, you can forget about those other losers.”

Your team has developers with different capabilities, experience, and
skills. Each person has different strengths and expertise. That mix
of diverse talents and backgrounds makes it an ideal environment for
learning.

On a team, it’s not enough if you personally know a lot. If other mem-
bers of your team are not as knowledgeable, the team isn’t as effective
as it could be: a well-educated team is a better team.

While working on projects, you need to use terms and metaphors to
clearly communicate your design concepts and intent. If most mem-
bers of your team are not familiar with these ideas, it will be hard for
you to be effective. Also, suppose you’ve taken a course or gone to a
symposium. You generally lose what you don’t use. You need to bring
what you have learned into your team. Share it with the rest of the
team when you get back.

Find areas where you, or someone in your team who is knowledgeable,
can help the rest of the team come up to speed (this has the added
advantage that you can discuss how topics apply specifically to your
applications or projects).

A “brown-bag session” is a great way to share knowledge in a team. Pick
a day of the week, for instance Wednesday (generally any day other than
Monday and Friday works well). Plan to get together over lunch so you
don’t have to worry about running into other meetings or getting special
permission. Keep the cost low by having folks bring their own lunch (in
a brown bag, of course).

Each week, ask one member of your team to lead the discussion. He or
she will present some concepts, demo a tool, or do just about anything
that’s of interest to the team. You can pick a book and go through some
specific sections, items, or practices from it.2 Do whatever works.

2Pragmatic Bookshelf publishers Andy and Dave hear from a lot of folks who have set
up reading groups to go through their books.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=31

INVEST IN YOUR TEAM 32

Is Everyone Better Than You? Good!

Legendary jazz guitarist Pat Methany offers this advice: “Always
be the worst guy in every band you’re in. If you’re the best guy
there, you need to be in a different band. And I think that works
for almost everything that’s out there as well.”

Why is that? If you’re the best on the team, you have lit-
tle incentive to continue to invest in yourself. But if everyone
around you is better than you are, you’ll be keenly motivated
to catch up. You’ll be on top of your game.

Plan to start with the person leading the session that week speaking
for fifteen minutes or so. Then you can open the topic for discussion
so everyone can present their ideas and discuss how the topic might be
relevant to your projects. Discuss benefits, provide examples from your
own applications, and plan to get follow-up information.

These brown-bag sessions can be very valuable. It raises the industry
awareness of the whole team, and you can personally learn a lot from
them as well. Wise managers tend to value team members who raise
the value of other members, so presenting can directly help your career,
as well.

Raise the bar for you and your team. Use brown-bag ses-
sions to increase everyone’s knowledge and skills and help
bring people together. Get the team excited about technolo-
gies or techniques that will benefit your project.

What It Feels Like

It feels like everyone is getting smarter. The whole team is aware of new
technology and starts pointing out how to apply it or points out pitfalls
to watch for.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=32

INVEST IN YOUR TEAM 33

Keeping Your Balance

• Reading groups that go through a book chapter by chapter are
very helpful, but pick good books. Learning XYZ in 7 Days with
Patterns and UML is probably not a good book.

• Not all the topics will be winners or even seem appropriate at the
moment. Pay attention anyway; it wasn’t raining when Noah built
the ark.

• Try to keep it in the team. A catered lunch in the auditorium
with PowerPoint slides loses some of the intimacy and discussion
opportunities.

• Stick to a regular schedule. Constant, small exposure is agile.
Infrequent, long, and drawn-out sessions are not.

• If some team members balk at coming to the lunch, bribe them
with pizza.

• Stretch beyond purely technical books and topics; pertinent non-
technical topics (project estimation, communication skills, etc.)
will help the team as well.

• Brown-bag sessions aren’t design meetings. Overall, you want
to focus on discussing general topics that are relevant to your
application. Solving specific issues is usually better left to a design
meeting.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=33

KNOW WHEN TO UNLEARN 34

7 Know When to Unlearn
“That’s the way you’ve always done it, and with good reason. It
usually works for you just fine. The ways you learned when you
first started are clearly the best ways. Not much has changed
since then, really.”

One of the foundations of agility is coping with change. Given that
change is so constant and pervasive, does it make any sense to keep
applying the same techniques and tools you’ve always used?

No, not really. We’ve spoken at length in this chapter about learning
new technologies and approaches, but remember that you’ll need to do
some unlearning as well.

As technology marches on, things that used to be of paramount impor-
tance fall by the wayside. Not only aren’t they useful anymore, they can
actually harm your effectiveness. When Andy was first programming,
memory overlays were a big deal. You often couldn’t fit the whole pro-
gram in main memory (48KB or so) at a time, so you had to split your
program into chunks. When one chunk was swapped in, some chunk
had to be swapped out, and you couldn’t call functions on one chunk
from the other.

That very real constraint affects your design and coding techniques
dramatically.

Back in the old days (when you could write about the artist known as
Prince without resorting to a bitmap), you had to spend a lot of effort
wringing extra cycles out of the processor by hand-tuning the assembly
language output of the compiler. Can you picture yourself doing that
in the context of some JavaScript or piece of J2EE code?

For most business applications, the technology has changed dramati-
cally from the days of limited memory footprints, manual overlays, and
hand-tuned assembly language.3 But we’ve seen more than a few devel-
opers who never unlearned their old habits (and Prince, by the way, is
once again known just as Prince).

Andy was once shown a piece of code that contained a single large for
loop, written in C. The code inside the loop went on for sixty printed

3This can still the case in some embedded systems development.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=34

KNOW WHEN TO UNLEARN 35

pages. The author “didn’t trust” compiler optimizations and decided on
doing loop unrolling and other tricks himself, by hand. Best of luck
maintaining that mess.

Once upon a time, that might have been an acceptable trade-off. But
not now. Machines and CPU cycles used to be the expensive part;
now they are commodity. Developer time is now the scarce—and
expensive—resource.

And that fact is slowly but surely dawning on people. We’ve seen ten-
man-year J2EE projects go down in flames, only to be replaced with a
month-long hack in PHP that delivers most of the features. Growing
interest in languages such as PHP and web frameworks like Ruby on
Rails (see [TH05]) show that developers are catching on that the old
ways might not be cutting it anymore.

But unlearning can be hard. Many a team has floundered because
management refused to spend $500 on a build machine, preferring
instead to waste tens of thousands of dollars of programmers’ time
chasing down problems that shouldn’t have even come up. That would
have been the right answer when machines cost $500,000, but it’s not
the right answer now.

When learning a new technology, ask yourself whether you’re projecting
too much of the old attitudes and approaches onto the new. Learning
to program in an object-oriented language is fundamentally different
from programming in a procedural language. It’s pretty easy to spot
someone writing C code in Java, for instance, or VB in C# (or Fortran
in anything). When that happens, you’re losing the very advantage you
hoped to gain by moving to the new technology.

Expensive mental
models aren’t
discarded lightly

Old habits are hard to break and even harder
to notice. The first step to unlearning is to real-
ize that you’re using an outdated approach.
That’s the hardest part. The other hardest part
is actually letting go. Mental models and pat-
terns of thought are built and refined at great cost over many years.
One doesn’t discard them lightly.

And it’s not that you really want to discard them completely, either.
The previous memory overlay example is just a special case of manually
maintaining a working set of items from a larger cache. The technique
hasn’t gone away, although that implementation of it has. You don’t

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=35

KNOW WHEN TO UNLEARN 36

want to drill into the brain and snip all those dendrites off. Instead,
you want to use older knowledge in context. Reinvent it and reuse it
where applicable, but make sure you don’t drag along old habits just
out of, well, habit.

It can help if you take care to transition completely to the new envi-
ronment as much as possible. For instance, when learning a new pro-
gramming language, use the new IDE that comes with it instead of the
plug-in that works with your old IDE. Write a completely different kind
of application from the kind you usually write. Don’t use your old lan-
guage tools at all while you’re transitioning. It’s easier to form new
associations and new habits when you have less baggage from the old
habits lying around.

Learn the new; unlearn the old. When learning a new
technology, unlearn any old habits that might hold you
back. After all, there’s much more to a car than just a
horseless carriage.

What It Feels Like

New technology feels a little scary. It feels like you have a lot to learn—
and you do. You can use your existing skills and habits as a base, not
as a crutch.

Keeping Your Balance

• The only difference between a rut and a grave is their dimensions.
Keeping old habits past their expiration date is hazardous to your
career.

• Don’t forget the old habits completely, but use them only when
using the appropriate related technology.

• Take special note of familiar idiosyncrasies in the languages you’ve
worked with, and learn how these are similar or different in newer
languages or versions.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=36

QUESTION UNTIL YOU UNDERSTAND 37

8 Question Until You Understand
“Accept the explanation you’ve been given. If you’re told where
the problem lies, that’s where you look. Don’t waste your time
chasing ghosts.”

The last few tips have talked about improving your skills and those of
your team. Here’s one technique that almost always helps and will help
with design, debugging, and requirements understanding as well.

Suppose there’s a major problem in an application, and they call you
in to fix it. You aren’t familiar with the application, so they try to help
you out, telling you the issue must be in one particular module—you
can safely ignore the rest of the application. You have to figure out
the problem quickly, while working with people whose patience may be
wearing thin.

When the pressure is on like that, you might feel intimidated and
not want to question too deeply what you’ve been told too deeply. To
solve the problem, however, you need a good understanding of the big
picture. You need to look at everything you think may be relevant—
irrespective of what others may think.

Consider how a doctor works. When you’re not well, the doctor asks
you various questions—your habits, what you ate, where it hurts, what
medication you’ve been taking, and so on. The human body is complex,
and a lot of things can affect it. And unless the doctor is persistent, they
may miss the symptoms completely.

For instance, a patient in New York City with a high fever, a rash,
a severe headache, pain behind the eyes, and muscle and joint pain
might be dismissed as having the flu, or possibly the measles. But by
probing for the big picture, the doctor discovers the hapless patient just
returned from a vacation to South America. Now instead of just the flu,
a whole new world of possible diagnoses opens up—including dengue
hemorrhagic fever.

Similarly, in a computer, a lot of issues can affect your application. You
need to be aware of a number of factors in order to solve a problem. It’s
your responsibility to ask others to bear with you—have patience—as
you ask any questions you think are relevant.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=37

QUESTION UNTIL YOU UNDERSTAND 38

Or, suppose you’re working with senior developers. They may have
a better understanding of the system than you. But, they’re human.
They might miss things from time to time. Your questions may even
help the rest of your team clarify their thinking; your fresh perspective
and questions may give others a new perspective and lead them to find
solutions for problems they have been struggling with.

“Why?” is a great question. In fact, in the popular management book
The Fifth Discipline: The Art and Practice of the Learning Organiza-
tion [Sen90], the author suggests asking no fewer than five progressive
“Why?”s when trying to understand an issue. While that might sound
like a policy oriented more toward an inquisitive four-year-old, it is a
powerful way to dig past the simple, trite answers, the “party line,” and
the usual assumptions to get down to the truth of the matter.

The example given in the Fifth Discipline Field Book for this sort of
root-cause analysis involves a consultant interviewing the manager at a
manufacturing facility. On seeing an oil spill on the floor, the manager’s
first reaction is to order it cleaned up. But the consultant asks, “Why
is there oil on the floor?” The manager, not quite getting the program,
blames the cleaning crew for being inattentive. Again, the consultant
asks, “Why is there oil on the floor?” Through a progressive series of
“Whys” and a number of employees across different departments, the
consultant finally isolated the real problem: a poorly worded purchas-
ing policy that resulted in a massive purchase of defective gaskets.

The answer came as quite a shock to the manager and all the other
parties involved; they had no idea. It brought a serious problem to light
that would have festered and caused increasing damage otherwise. And
all the consultant had to do was ask, “Why?”

“Oh, just reboot the system once a week, and you’ll be fine.” Really?
Why? “You have to run the build three times in row to get a complete
build.” Really? Why? “Our users would never want that feature.”
Really? Why?

Why?

Keep asking Why. Don’t just accept what you’re told at
face value. Keep questioning until you understand the root
of the issue.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=38

QUESTION UNTIL YOU UNDERSTAND 39

What It Feels Like

It feels like mining for precious jewels. You sift through unrelated mate-
rial, deeper and deeper, until you find the shining gem. You come to
feel that you understand the real problem, not just the symptoms.

Keeping Your Balance

• You can get carried away and ask genuinely irrelevant questions—
if your car won’t start, asking about the tires probably isn’t going
to help. Ask “Why?” but keep it relevant.

• When you ask “Why?” you may well be asked, “Why do you ask?”
in return. Keep a justification for your question in mind before you
ask the question: this helps you keep your questions relevant.

• Don’t settle for shallow answers. “Because it used to..." is probably
not a good answer.

• “Gee, I don’t know” is a good starting point for more research—not
the end of the line.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=39

FEEL THE RHYTHM 40

9 Feel the Rhythm
“We haven’t had a code review in a long time, so we’re going
to review everything all this week. Also, it’s probably about
time we made a release as well, so we picked three weeks from
Tuesday for a next release.”

On many less-than-successful projects, events happen on an irregular,
haphazard basis. And that sort of random threat can be hard to deal
with; you’re never quite sure what’s going to happen tomorrow or when
the next all-hands-on-deck fire drill is going to occur.

But agile projects have rhythms and cycles that make life easier. For
instance, Scrum protects the team from requirement changes during a
thirty-day sprint. It’s helpful to defer large-scale changes and handle
them all at once.

Conversely, a lot of practices have to happen “all the time,” that is,
throughout the life of the project. It has been said that time is nature’s
way of keeping everything from happening all at once. Well, we need to
take that one step further and keep a couple different rhythms going so
that everything on an agile project doesn’t happen all at once or happen
at random, unpredictable times.

To begin with, consider the day itself. You’d like to end each day
with some resolution, without having anything major hanging over your
head. That’s not always possible, of course, but you can plan on having
all the code you’re working on checked in and tested by the time you
leave. If it’s getting late in the day and the code you’re working on just
isn’t amenable to getting done, perhaps it might be best to erase it and
start over.

Now that sounds like pretty drastic advice, and maybe it is.4 But as
you’re developing in small chunks, it can be helpful to time box yourself
in this manner: if you don’t have a good, working solution by a hard
deadline (e.g., the end of the day), then maybe you should try a new
tack. And it establishes a rhythm; at the end of most days, everything
is checked in and tucked away. You can start the next day fresh and
ready to tackle the next set of difficulties.

4Ron Jeffries tells us, “I wish people had the balls to do that more often.”

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=40

FEEL THE RHYTHM 41

Time Boxing

Agile developers get feedback from many sources: users, team
members, and the code as it’s tested. You use that feedback
to help steer the project. But a very important form of feedback
comes from time itself.

Many agile techniques rely on time boxing—setting a near-
term, hard deadline for an activity that cannot be extended.
You get to choose which other aspect will suffer, but the dead-
line is fixed. You probably don’t know the exact number of time-
boxes that are required to complete the overall task, but each
individual box is short, is finite, and accomplishes a clear goal.

For example, iterations typically run a couple of weeks long.
When the time is up, the iteration is done. That part is fixed—
but the set of features that makes it into that particular iteration
is flexible. In other words, you never slip the date, but you may
slip a feature. Similarly, you may decide to time box a design
meeting. That means at the end of the designated time, the
meeting ends, and the design choices have been made.

A hard deadline forces you to make the hard choices. You
can’t waste time on philosophical discussions or features that
are perpetually 80% done. A time box keeps you moving.

Sharks have to keep swimming, or they die. Software projects
are like sharks in that respect; you need to keep moving with
the best information you have available at the time.

The stand-up meeting (Practice 38, Schedule Regular Face Time, on
page 148) is best held at the same time and in the same place every
day, say around 10 a.m. or so. You start to get into the habit, and you
have everything ready for the meeting at that time.

The biggest rhythm of all is the iteration length (Practice 17, Use Short
Iterations, Release in Increments, on page 69), which should be some-
thing like one to four weeks long. Whatever length you choose, you
should stick with it—a consistent length is important. That regular
rhythm makes it easier to reach decisions and keep the project moving
forward (see the sidebar on this page).

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=41

FEEL THE RHYTHM 42

Tackle tasks before they bunch up. It’s easier to tackle
common recurring tasks when you maintain steady, repeat-
able intervals between events.

What It Feels Like

It feels like consistent, steady rhythm. Edit, run tests and review, over a
consistent iteration length, and then release. It’s easier to dance when
you know when the next beat falls.

Keeping Your Balance

• Plan on having all code checked in and tested by the end of the
day, with no leftovers.

• Don’t let that trick you into working overtime constantly.

• Run the team’s iterations (Practice 17, Use Short Iterations,
Release in Increments, on page 69) at a fixed, regular length. You
may need to adjust the length to find a comfortable value that
works, but then you need to stick with it.

• A regular rhythm that’s too intense will burn you out. Gener-
ally, as you interact with entities outside your team (or outside
the organization), you need to adopt a slower rhythm. So-called
Internet Time is probably too fast to be healthy.

• Regular rhythms make it harder to hide things; and help give you
an excuse to have courage (see Practice 4, Damn the Torpedoes,
Go Ahead, on page 23).

• As with losing weight, a little success is a great motivator. Small,
reachable goals keep everyone moving forward. Make successes
memorable by celebrating them: pizza and beer or a team lunch
can help.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=42

No plan survives contact with the enemy.
Helmuth von Moltke

Chapter 4

Delivering What Users Want
Your customer gives you the requirements and expects you to deliver
an application in a few years. You go off and build the system based
on those requirements and eventually deliver it on time. The customer
looks at it and says it is good. You move on to the next project with
a very happy and loyal customer on your résumé. That’s how your
projects usually go, right?

That’s not the case for most folks. It’s more common to see users act
shocked and/or unhappy. They don’t like what they see, and they want
many changes. They demand features that weren’t in the requirements
they originally gave you. Does that sound more like a typical project?

“No plan survives contact with the enemy,” said von Moltke. The enemy
in this case isn’t the customer, the users, your teammates or manage-
ment. The necessary enemy is change. In warfare, as in software devel-
opment, the situation can change quickly and drastically. Sticking to
yesterday’s plan despite a change in circumstances is a recipe for disas-
ter. You can’t “defeat” change—whether it’s the design, architecture, or
your understanding of the user requirements. Agility—and successful
development—hinges on your ability to identify and adapt to changes.
Only then will we be able to develop on time and within budget, creating
a system that actually meets the users’ needs.

In this chapter we’ll examine practices that lead toward these agile
goals. To begin, we’ll see why it’s important to keep users and
customers involved and Let Customers Make Decisions (starting on
page 45). Design is a fundamental part of software development. You
can’t develop well without it, but you can’t let it become a straitjacket

CHAPTER 4. DELIVERING WHAT USERS WANT 44

either. See how to Let Design Guide, Not Dictate, beginning on page 48.
And speaking of straitjackets, you’ll want to make sure the technol-
ogy you introduce on a project is appropriate. You’ll need to Justify
Technology Use (see how on page 52).

In order to keep your software accessible to users, it needs to be ready—
always. To minimize disruptive changes from integrating new source,
you’ll Integrate Early, Integrate Often (that’s on page 58). And it almost
goes without saying that you don’t want to break existing code; you
want to always Keep It Releasable (that starts on page 55).

You can’t waste any precious development time getting new features
ready for users to look at over and over again, so you’ll Automate
Deployment Early (see how on page 61). By having code always ready
to go and easy to deploy to users, you can Get Frequent Feedback Using
Demos (it’s on page 64). That allows you to release to the world at large
on a more regular basis. You want to Use Short Iterations, Release in
Increments to help stay fresh and close to the evolving user base (we’ll
start talking about that on page 69).

Finally, it can sometimes be difficult to get customers on board with
the agile approach, especially if they demand a fixed-price contract up
front. But the reality is that Fixed Prices Are Broken Promises, and we’ll
see how to work around that starting on page 73.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=44

LET CUSTOMERS MAKE DECISIONS 45

10 Let Customers Make Decisions
“Developers are creative and intelligent and know the most
about the application. Therefore, developers should be mak-
ing all the critical decisions. Anytime the businesspeople butt
in, they just make a mess of things; they don’t understand logic
the way we do.”

Developers must be involved in making design decisions. However, they
shouldn’t make all the decisions on a project, especially the business
decisions.

Take the case of project manager Pat. Pat’s project at a remote site
was on track and within budget—it appeared to be a textbook example
of a stellar project. Pat cheerfully took the code to the client site to
demonstrate but came back crestfallen.

As it turned out, Pat’s business analyst had fielded all the questions
personally, rather than discussing them with the users. Business
owners were not involved in the low-level decisions made throughout
development. The project had a long way to go before completion, and
already it fell short of the users’ needs. The project had to be delayed
and became yet another typical textbook example of project execution
failure.

So you have a choice: either you can let the customers make the deci-
sions now or they’ll go ahead and make the decisions later—at much
greater cost. If you avoid these issues during development, you increase
risk; but by addressing these issues early, you avoid the possibility
of significant design and code rework. You can also avoid mounting
schedule pressure as you approach the project deadline.

For example, suppose you are working on a task. You think up two
ways to implement it. One way is quicker but will limit what the users
can do. The other way will take more time to implement but gives more
flexibility to the users. You are obviously pressed for time (have you
ever seen a project that isn’t?), so should you just go with the first,
quicker option? How do you decide? Toss a coin? Ask a colleague or
your manager?

In one of Venkat’s recent projects that faced a similar problem, the
development manager decided in favor of the first option to save time.
As you might guess, the customer was shocked—and furious—when

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=45

LET CUSTOMERS MAKE DECISIONS 46

these limitations surfaced during beta testing. The resulting rework
cost the team much more money, time, and effort than necessary.

Decide what you
shouldn’t decide

The most important design decision a devel-
oper (and a manager) can make is to decide
what’s not in their hands and to let business
owners make decisions on those issues. You

don’t want to have to make decisions that are business critical by your-
self. After all, it’s not your business. If the issue at hand affects the
behavior of the system, or how it’ll be used, take it to the business
owner. If project leads, or managers, try to make those decisions by
proxy, politely convince them it’s better to take this up with the real
business owners/customers (see Practice 4, Damn the Torpedoes, Go
Ahead, on page 23).

When you talk to the customers, be prepared with the available options.
Present them with the pros and cons and show the potential costs and
the benefits—from the business point of view, not the technical point
of view. Discuss the trade-offs and the impact of the options on the
schedule and budget with them. Whatever decision they make, they’ll
have to live with it, so it’s better that they can make it on an informed
basis. If they want something else later, it’s fair to renegotiate the cost
and time for that change later.

Either way, it’s their decision.

Let your customers decide. Developers, managers, or
business analysts shouldn’t make business-critical deci-
sions. Present details to business owners in a language
they can understand, and let them make the decision.

What It Feels Like

Business applications are developed as a partnership between the busi-
ness owner and the developers. It should feel like a partnership—a
good, honest working relationship.

Keeping Your Balance

• Keep records of decisions and the reasoning behind them. Memory
is notoriously unreliable. An engineer’s journal or log, a Wiki, an

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=46

LET CUSTOMERS MAKE DECISIONS 47

email trail, or an issue-tracking database are all acceptable, but
take care that whatever method you choose doesn’t become too
heavy-weight or burdensome.

• Don’t bug busy businesspeople with trivial low-level details. If it
doesn’t impact their business, it’s trivial.

• Don’t assume a low-level detail doesn’t impact the business. If it
can impact their business, it’s not trivial.

• “I don’t know” is a perfectly acceptable answer from a business
owner. They may not have thought that far ahead yet or may need
to see it in action to evaluate the issue. Advise them the best you
can, and prepare the code for the eventual change.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=47

LET DESIGN GUIDE, NOT DICTATE 48

11 Let Design Guide, Not Dictate
“Design documents should be as detailed as possible so that
any lowly coder can just type in the code. Specify the high-level
details of how objects are related, as well as lower-level details
such as the interaction between objects. Be sure to include
information on the implementations of methods and notes on
their parameters. Don’t forget all the fields of the class. Never
deviate from the design, no matter what you discover while
writing code.”

“Design” is an essential step in the development process. It helps
you understand details of the system, understand interrelationships
between parts and subsystems, and directs you toward an imple-
mentation. Well-established methodologies emphasize design; some of
them, such as the Unified Process, are quite ceremonial about produc-
ing related documents. Project managers and business owners often
become obsessed with the details and want to make sure the system
is fully designed and documented before coding starts. After all, that’s
how you’d manage a bridge or building construction project, isn’t it?

On the other hand, agile methodologies recommend you start cod-
ing very early in the development phase. Does that imply there’s no
design?1 Nope, not at all—it is still important to come up with a good
design. It is essential to develop key diagrams (in UML, for example)
that illustrate how the system will be organized in terms of classes and
interactions. You need to take the time to think about (and discuss)
the trade-offs, benefits, and pitfalls of the various options that come up
during design.

Only then can you arrive at the structure you think should be coded.
If you don’t invest in that sort of thinking up front, you may become
overwhelmed by nasty surprises once you start coding. Even in the
construction analogy, it’s common practice to rough-cut a piece of wood
slightly longer than necessary and carefully trim it down to the final,
perfect fit.

1Refer to Martin Fowler’s article “Is Design Dead?”
(http://www.martinfowler.com/articles/designDead.html) for an excellent
discussion of this topic.

Report erratum

http://www.martinfowler.com/articles/designDead.html
http://books.pragprog.com/titles/pad/errata/add?pdf_page=48

LET DESIGN GUIDE, NOT DICTATE 49

But even with a design in hand up front, some surprises will occur
anyway. Keep in mind that the design you come up with at this stage is
based only on your current understanding of the requirements. All bets
are off once you start coding. Designs, and the code that implements
them, will constantly evolve.

Some project leads and managers think the design should be detailed
enough to simply hand it off to “coders.” They say the coder should not
have to make any decisions but simply translate the design to code.
Personally, neither of your authors would want to be the mere typist in
this type of team. We suspect you wouldn’t either.

Design should be only as
detailed as needed to
implement

What happens if designers craft their ideas in
drawings and throw them across the chasm for
programmers to code (see Practice 39, Archi-
tects Must Write Code, on page 152)? The
programmers will be pressured to code these
designs/drawings exactly as they appear. What if the reality of the sys-
tem and existing code indicates that this received design is not ideal?
Too bad! Time has already been spent on design—there’s no time left
to go back and work on it again. The team soldiers on, implementing
code they know to be wrong. Does that sound stupid? It should, and
yet that’s exactly how some companies choose to operate.

The idea of following a strict requirements-design-code-test sequence of
tasks comes from a waterfall2 mentality, which leads to overly detailed
up-front design. Keeping the detailed, documented design up-to-date
over the life of the project becomes a major undertaking and a huge
investment in time and resources with very little payback. We can do
better than that.

There are two levels of design: strategic and tactical. The up-front
design is strategic: you typically do that when you don’t yet have a
deep understanding of the requirements. That is, it should express a
general strategy but not delve into precise details.

2Waterfall approach has come to mean following the sequential steps of defining the
requirements in detail up front, followed by detailed design, then the implementation,
then the integration, and finally testing (with your fingers crossed). That is not what the
original author recommended; see [Roy70] for details.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=49

LET DESIGN GUIDE, NOT DICTATE 50

Being Exact

“There’s no sense being exact about something if you don’t
even know what you’re talking about.”—John von Neumann

Strategic versus
tactical design

This up-front, strategic level of design
shouldn’t specify the details of methods,
parameters, fields, or the exact sequence of
interaction between objects. That’s left to the

tactical design, and it unfolds only as the project evolves.

A good strategic design should act as a map that will point you in the
right direction. Any design is only a starting point; you’ll continue to
develop and refine it further as you code over the project’s lifetime.

Consider the epic journey of Lewis and Clark3 across the United States
in 1804 Their “design” was to cross the country. But they had no idea
what they would face at any given point in the territory. They knew the
goal and the constraints but not the details of the journey.

That’s an apt analogy for design on a software project. Until you cross
the territory itself, you can’t reliably know what it’s going to be like. So
don’t waste time setting the details of how you’ll ford the river until you
actually get to the riverbank and can evaluate it better. Only then can
you realistically work on a tactical approach.

Instead of starting with a tactical design that focuses on individual
methods or data types, it’s more appropriate to discuss possible class
designs in terms of responsibilities, because that is still a high-level,
goal-oriented approach. In fact, the CRC card design method does just
that. Classes are described in terms of the following:

• Class name

• Responsibilities—what is it supposed to do

• Collaborators—what other objects it works with to get the job done

How can you tell whether a design is good or even adequate? The best
feedback on the nature of design comes from the code. If small changes

3In the small-world department, Andy is related to William Clark.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=50

LET DESIGN GUIDE, NOT DICTATE 51

in requirements remain easy to implement, then it’s a good design. If
small changes cause a large disruption or cause a disruption across a
large swath of the code base, then the design needs improvement.

A good design is a map; let it evolve. Design points
you in the right direction. It’s not the territory itself; it
shouldn’t dictate the specific route. Don’t let the design
(or the designer) hold you hostage.

What It Feels Like

A good design is accurate, but not precise. That is, what it says should
be correct, but it shouldn’t go far as to include details that might change
or that are uncertain. It’s an intent, not a recipe.

Keeping Your Balance

• “No Big Design Up Front” doesn’t mean no design. It just means
don’t get stuck in a design task without validating it with real code.
Diving into coding with no idea of a design is just as dangerous.
Diving into code is fine for learning or prototyping, as long as you
throw the code away afterward.

• Even though an initial design may end up being useless, you still
have to do it: the act of creating the design is invaluable. As U.S.
President Eisenhower said, “The plan is worthless. The planning
is essential.”4 It’s the learning that occurs during the design that’s
valuable, not necessarily the design itself.

• White boards, sketches and Post-it notes are excellent design
tools. Complicated modeling tools have a tendency to be more
distracting than illuminating.

4From a 1957 speech

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=51

JUSTIFY TECHNOLOGY USE 52

12 Justify Technology Use
“You are starting a new project, with a laundry list of new tech-
nology and application frameworks in front of you. This is all
great new stuff, and you really do need to use all of it. Think
how great it will look on your résumé and how high-tech your
new application will be with that great new framework.”

Blindly picking a
framework is like having
kids to save taxes

Once upon a time, co-worker Lisa explained
her proposed application to Venkat: she was
planning on using Enterprise Java Beans
(EJB). Venkat expressed some concern as to
how EJB would be applicable to that particu-

lar project, and Lisa replied, “We’ve convinced our manager that this
is the right way to go, so don’t throw a wrench into it now.” This is a
prime example of “Résumé Driven Design,” where technology is chosen
because it will be nice to use and may improve the programmer’s skill
set. But blindly picking a framework for your project is like having kids
to save on taxes. It just doesn’t work.

Before even thinking about a new technology or framework, identify
what problem you are trying to solve. How you even form the sentence
makes a difference; if you say, “We need technology xyzzy because...,”
then the battle for common sense is already lost. You need to start
off by saying, “It’s too hard to...” or “It takes too long too...” or some-
thing similar. Now that you’ve identified a genuine problem that needs
solving, consider the following:

Does it really solve the problem? OK, this may sound blindingly
obvious, but does the technology actually solve the particular
problem you’re facing? Or, more pointedly, are you relying on
marketing claims or secondhand advice to assess its capabilities?
Make sure it does what you want without any deleterious side
effects; write a small prototype if needed.

Will you be tied to this technology? Some technologies (particularly
frameworks) are a one-way trip. Once you’re committed to them,
there’s no turning back. That lack of reversibility (see [HT00]) can
be fatal later on a project, when conditions have changed. Con-
sider just how open or proprietary the technology is.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=52

JUSTIFY TECHNOLOGY USE 53

What about maintenance costs? Will it end up being more expensive
to maintain this technology over time? After all, the solution
shouldn’t be more expensive than the problem, or you’ve made
a bad investment. One project we know of spends $50,000 a year
on a support contract for a rules engine—but the database has
only thirty rules. That’s pretty expensive overkill.

When you look at a potential framework (or any technology, really),
you may be drawn to the various features it has to offer. Then you
might find yourself justifying the use of the framework based on these
additional features you found. But are those additional features really
needed? It may be that you’re finding problems to fit the solution you
have discovered, much like an impulsive buyer at the checkout counter
(which is exactly why they put that stuff there).

Not long ago Venkat came across a project where Brad, a consul-
tant, had sold management on the use of a proprietary framework.
Venkat saw that, while the framework was certainly interesting, it really
couldn’t be justified on the project.

However, management was convinced they wanted to move forward
with it. Ever polite, Venkat backed out, not wanting to be a stum-
bling block to their progress. A year later, the project was nowhere
near completion—they had spent months writing code to maintain the
framework and modifying their code to fit within it.

Andy had a similar experience where his client wanted to take advan-
tage of open source—all of it, apparently; they had a “new-technology
stew” so thick that they never actually got all the pieces to even work
together.

Don’t build what you
can download

If you find yourself building something fancy
(and in the process developing your own
framework from scratch), then wake up and
smell the smoke. The less code you write, the
less you have to maintain.

For instance, if you have a hankering to develop your own persistence
layer, remember Ted Neward’s remark that “object-relational mapping
is the Vietnam of computer science.” You can spend more time and
effort building only what you need to build for your application—the
domain or application-specific stuff.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=53

JUSTIFY TECHNOLOGY USE 54

Choose technology based on need. Determine your
needs first, and then evaluate the use of technologies for
those specific problems. Ask critical questions about the
use of any technology, and answer them genuinely.

What It Feels Like

A new technology should feel like a new tool that does a better job; it
shouldn’t become your job.

Keeping Your Balance

• Maybe it’s too early in the project to really evaluate your technical
requirements. That’s fine. Perhaps a simple hashtable can stand
in for a database while you’re prototyping and demoing with users.
Don’t rush to decide on a technology if you don’t have enough
experience to make the decision yet.

• Every technology has advantages and drawbacks. Whether it’s
open source or a commercial product, a framework, a tool, or a
language, be aware of the trade-offs that come with it.

• Don’t build what you can readily download. Building everything
you need from the ground up may be necessary, but it is the most
expensive and risky option.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=54

KEEP IT RELEASABLE 55

13 Keep It Releasable
“We just found a showstopper that you need to fix right away.
Stop what you’re doing, and go ahead and make the fix; don’t
bother with the usual procedures. No need to tell anyone else
about it—just get going. Hurry.”

It sounds innocent enough. A critical fix needs to be checked in. It’s a
small thing, and the need is urgent, so you agree to take care of it.

The fix goes smoothly. You check in the code and return to your origi-
nal, high-priority task. Then the screaming begins. Too late, you realize
that a fellow developer has checked in an incompatible change, and now
you’ve rendered the system unusable for everyone. It’s going to take a
lot more work (and time) to get the system back to a releasable state.
Now you’re stuck! You’ll have to tell everyone you can’t deliver the fix
as you promised. And the devil laughs, “Bwahahahaha!”

Now you’re in a bad position: the system is unreleasable. You’ve sud-
denly created risk and created an opportunity for bad things to happen.

In 1836, General Antonio López de Santa Anna, then president of Mex-
ico, charged his way through west Texas, sending General Sam Hous-
ton and his men on the retreat. When Santa Anna reached the banks of
the Buffalo bayou (in southeast Texas), he ordered his troop to rest. The
legend says that he was so confident he did not bother to post sentries.
When General Houston finally decided to charge late that afternoon,
Santa Anna’s army did not even have the time to form up. They lost
this decisive battle, changing Texas forever.5

Checked-in code is
always ready for action

Anytime you are unprepared is the perfect
time for the enemy to strike. Think about
it: how often does your application slip into
a nonreleasable state? Does your code in the
repository appear like Santa Anna’s army on that fateful afternoon—not
in formation and unable to execute at a moment’s notice?

When working in a team, you have to be sensitive to the changes
you make, constantly keeping in mind that you affect and influence
the state of the system and the productivity of the whole team. You

5http://www.sanjacinto-museum.org/The_Battle/April_21st_1836

Report erratum

http://www.sanjacinto-museum.org/The_Battle/April_21st_1836
http://books.pragprog.com/titles/pad/errata/add?pdf_page=55

KEEP IT RELEASABLE 56

wouldn’t tolerate someone littering the kitchen area at the office, so
why would you tolerate someone trashing your project’s code?

There’s a simple workflow to follow to make sure you don’t check in
broken code:

Run your local tests. Begin by making sure the code you’re working
on compiles and passes all of its unit tests. Then make sure all of
the other tests in the system pass as well.

Check out the latest source. Get the latest copy of the source code
from the version control system, and compile and test against
that. Very often, this is where a surprise will show up: someone
else may have made a change that’s incompatible with yours.

Check in. Now that you have the latest version of code compiling and
passing its tests, you can check it in.

Now during that process, you may discover a problem—someone else
may have checked in code that does not compile or pass its tests. When
that happens, let them know right away—and possibly warn the rest of
the team if need be. Or, even better, have your continuous integration
system point it out automatically.

Now that might sound a bit intimidating, but it shouldn’t. Continuous
integration systems are simply applications that check out, build, and
test your code constantly in the background. They are easy enough
to cobble together yourself using scripts, but you get more features
and stability with an existing free, open-source solution. You might
want to take a look at Martin Fowler’s article6 or Mike Clark’s book,
Pragmatic Project Automation: How to Build, Deploy, and Monitor Java
Applications [Cla04], for all the details.

Looking forward a bit, suppose you hear about an upcoming significant
change that may break the system. Don’t just let it happen—take the
warning seriously, and explore ways you can avoid disrupting the sys-
tem when the check-in happens. Consider options that will help you
introduce and transition those changes smoothly so the system is avail-
able for continual testing and feedback as the development proceeds.

Although it’s important to keep the application releasable, it’s not
always that easy. For instance, consider a change to the database

6http://www.martinfowler.com/articles/continuousIntegration.html

Report erratum

http://www.martinfowler.com/articles/continuousIntegration.html
http://books.pragprog.com/titles/pad/errata/add?pdf_page=56

KEEP IT RELEASABLE 57

schema, an external file format, or a message format. Changes such
as these often affect large parts of the application and can render it
unusable until a significant amount of code is changed. However, you
have options to ease that pain.

Version the database schema, the external files, and so on, as well as
the APIs that reference it, so that all related changes can be tested. This
versioning isolates your changes from the rest of the code base so other
aspects of the application can continue to be developed and tested.

You can also branch the code in your version control system to address
these issues (but branch with care; wild branching causes more prob-
lems than it solves. See Pragmatic Version Control Using CVS [TH03]
and Pragmatic Version Control Using Subversion [Mas05] for details).

Keep your project releasable at all times. Ensure that the
project is always compilable, runnable, tested, and ready to
deploy at a moment’s notice.

What It Feels Like

You feel confident that anytime the boss, the chairman of the board,
QA, a customer, or your spouse comes by the office to visit, you can
show them the latest build of the software without hesitation. Your
project is simply always in a ready-to-run, stable state.

Keeping Your Balance

• Sometimes you can’t invest the time and energy needed to keep the
system in a releasable state throughout a major set of changes. If
it would take a month’s effort just to keep the application available
throughout a week’s worth of changes, then go for the week of
downtime. But this should be the exception, not the rule.

• If you must render the system unreleasable for an extended
period, have a branched version (of code and schema) you can
still continue to experiment with—and fall back on. Do not render
the system unreleasable and irreversible as well.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=57

INTEGRATE EARLY, INTEGRATE OFTEN 58

14 Integrate Early, Integrate Often
“Don’t waste time thinking about integrating your code until
the very end of the development phase, or at least until devel-
opment is well underway. After all, why bother integrating code
unless it’s done? You’ll have plenty of time at the end of the
project to integrate code.”

As we’ve said, a main aspect of agility is continuous development, not
episodic. That’s especially necessary when it comes to integrating code
you’ve written with code the rest of the team has been working on.

Most developers would like to postpone integration for several good
reasons. Sometimes the mere thought of working with more code or
another subsystem may be too much to bear right now. It’s easy to
think, “I’m already under pressure to get things done, and the last
thing I need is more work and trouble with other people’s code.” We’ve
also heard excuses such as “I do not have time for that” or “It’s quite an
effort to set that up on my machine, and I don’t want to do that now.”

But integration is one of the major risk areas in product development.
As you let a subsystem grow, unintegrated, you’re exposing yourself to
greater and greater risk—the rest of the world is marching on without
you, and the potential for divergence will just keep increasing. Instead,
it’s easier to address risks as early as you can, while the risk and the
relative pain level remains fairly low. The longer you wait, the more
painful it will be.

In Venkat’s early years in Chennai, India, he used to catch a train to
school. Like any big-city, rush-hour commuter in India, he invariably
had to jump in and out of trains that were already in motion. Now, you
can’t just leap into a moving train from a standing position; there’s a
very painful lesson on the laws of physics to be learned there. Instead,
you first start running alongside the train and then get hold of it while
gaining momentum. Finally you make the leap onto the train.

Software integration is like that. If you continue developing your code
in isolation and one day suddenly jump to integrate, don’t be surprised
at the beating you’ll get. You’ve probably seen this happen on your
projects, where the time toward the end of the development phase
becomes very frustrating. People spend days and nights integrating.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=58

INTEGRATE EARLY, INTEGRATE OFTEN 59

You Can Integrate and Isolate

Integration and isolation are not mutually exclusive; you can
integrate and isolate at the same time.

Use mock objects to isolate the code from its dependencies so
you can test before you integrate. A mock object is a stand-in
for the real object (or subsystem). Just as movie actors have a
stand in to take their place while the crew fiddles with the lights,
a mock object stands in for the real object: it doesn’t offer the
functionality of the real object, but it’s easier to control and can
simulate the desired behavior for testing more easily.

You can unit test your code in isolation using mock objects
instead of immediately integrating and testing with the rest of
the system; as soon as you have some confidence that it works,
then you can integrate it.

The only positive aspect is the free pizza you enjoy while being stuck at
the office.

There’s a tension between the need to isolate and the need to integrate
early. When you develop in isolation, you’ll find development quicker
and more productive, and you can nail down problems more effectively
(see Practice 35, Attack Problems in Isolation, on page 136). But that
doesn’t mean you should avoid or delay integration (see the sidebar
on the current page). You should generally integrate your code at least
several times a day and probably never go longer than two to three days
at most.

Never accept big-bang
integration

By integrating early, you get to see how sub-
systems interact and interoperate, and you
get to evaluate how information is shared and
communicated. The earlier you understand
and address these issues, the less work you’ll have to do fixing them.
That’s true for 3 developers on a 50,000-line code base, and for 5,000
developers on a 30-million-line code base. If instead you postpone inte-
gration, then these issues may turn into difficult tasks that require
significant—and far-reaching—code changes, causing delays and gen-
eral chaos.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=59

INTEGRATE EARLY, INTEGRATE OFTEN 60

Integrate early, integrate often. Code integration is a
major source of risk. To mitigate that risk, start integra-
tion early and continue to do it regularly.

What It Feels Like

When you’re doing it right, integration stops feeling like a separate,
onerous task. It’s just part of the regular code-writing cycle. The prob-
lems that arise are small and easily addressed.

Keeping Your Balance

• Successful integration means that all the unit tests continue to
pass. As per the Hippocratic oath, “First, do no harm.”

• Normally you want to integrate your code with the rest of the team
multiple times per day, say at least five to ten times on an average
day and maybe much more. But there is a point of diminishing
returns if you integrate every single line of code every time you
make a change. If you find yourself spending all your time going
through the motions of integrating code instead of writing code,
you’re doing it too often.

• If you don’t integrate often enough (say you integrate only once a
day, once a week, or worse), you may find you’re spending all your
time working out problems caused by integrating code instead of
writing code. If your integration problems are large, you’re not
integrating often enough.

• For prototypes and experimental code, you may want to work in
isolation and not waste effort on integration. But don’t stay iso-
lated too long; once you learn from the experience, work toward
integration quickly.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=60

AUTOMATE DEPLOYMENT EARLY 61

15 Automate Deployment Early
“It’s OK to install your product manually, especially to QA. You
don’t have to do it all that often, and they are pretty good about
copying all the right files.”

It’s nice that the application works on your machine and for your
favorite developers and testers. But it needs to work well when deployed
on users’ machines as well. If it works on your development server,
that’s fine, but it needs to work in the production environment too.

This means you need to be able to deploy your application onto the
target machines in a reliable and repeatable way. Unfortunately, most
developers tend to ignore deployment issues until the end of the project.
The result is that they often end up deploying with missing dependent
components, missing image files, and improper directory structures.

If a developer changes the directory structure for the application, or gets
creative and shares image directories between different applications,
this might break the installation process. You want to find these kinds
of problems quickly while the change is still fresh in everyone’s minds.
Finding them weeks or months later, especially when getting ready for
an important off-site demo, is no fun.

QA should test
deployment

If you currently install your application for QA
manually, consider taking some time to auto-
mate the process. Do that, and you’ll have the
basis for a fully fledged end-user installation
system ready to go. And by doing it early, you give your QA team a
chance to test both your application and its installation procedures.7

If instead you manually install the application for them, what happens
when the application goes into production? You wouldn’t want to run
around installing the application on every user’s machine or on every
possible server in different locations, even if you do get paid overtime.

Having the automated deployment system in place also makes it eas-
ier to keep up with the changes in dependencies during the life of the

7Make sure they can easily tell what version of software they are running, to avoid
confusion.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=61

AUTOMATE DEPLOYMENT EARLY 62

Andy Says. . .
Delivery from Day One

There are a lot of advantages to having full deployment imme-
diately, instead of waiting for later in the project. In fact, some
projects even set up a full installation environment before Day
One of the project ever starts!

At the Pragmatic Programmers, we were asked to put together
a simple demo for a prospective client—a proof of concept, if
you will. Even though the project itself hadn’t started yet, we
had unit tests, continuous integration, and a Windows-based
installer. This allowed us to deliver the demo simply and eas-
ily: all the client had to do was click a link from our website,
and they could install the demo themselves on a variety of
machines.

Being able to demonstrate that sort of capability even before
the contract is signed sends a powerful, professional message.

project. Perhaps you’ve forgotten to add a required library or compo-
nent to the installation—running the automated installation on an arbi-
trary machine will identify what’s missing quickly. If something is going
to break because of missing components or incompatible libraries, you
want those problems to surface sooner rather than later.

Deploy your application automatically from the start.
Use that deployment to install the application on arbitrary
machines with different configurations to test dependen-
cies. QA should test the deployment as well as your appli-
cation.

What It Feels Like

It should feel invisible. Installing and/or deploying your product should
be easy, reliable, and repeatable. It just happens.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=62

AUTOMATE DEPLOYMENT EARLY 63

Keeping Your Balance

• You may have certain prerequisites for your product: a certain
version of Java or Ruby, external database, or OS. If it makes
a difference—and would result in a tech support call—check for
necessary dependencies as part of the install process.

• Installers should never destroy user data without asking the user’s
permission.

• Deploying an emergency bug fix should be easy, especially in a
production server environment. You know it will happen, and you
don’t want to have to do it manually, under pressure, at 3:30 a.m.

• The user should always to be able to remove an installation safely
and completely—especially in a QA environment.

• If maintaining the install script is getting harder, that may be an
early warning sign of support costs (and/or bad design decisions).

• When you combine your continuous integration system and a pro-
duction CD or DVD burner, you can automatically produce a com-
plete, labeled disc of your software with each build. Anyone who
wants the latest build can just take the disc from the top of the
pile and install it.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=63

GET FREQUENT FEEDBACK USING DEMOS 64

16 Get Frequent Feedback Using Demos
“It’s not your fault; the problem lies with our customers—those
pesky end users and clients. They always come up with so
many changes, way past the deadline. They should just figure
out what they want once and for all and then give us require-
ments so we can implement the system to their satisfaction.
That’s how it ought to work.”

Requirements are as
fluid as ink

Oftentimes you might hear that people want to
“freeze” requirements.8 It turns out that real-
world requirements are as fluid as ink itself.
You can’t freeze requirements any more than

you can freeze markets, competition, learning, evolution, or growth.
And even if you tried, you’d almost certainly freeze the wrong ones. If
you mistakenly expect your customers to give you solid, well-defined
requirements before the start of your project, be prepared for major
disappointment.

Nobody’s minds or perspectives are frozen in time, especially not your
project’s customers. Even after they tell you what they want, their
ideas and their expectations continue to evolve—especially once they
begin to use portions of the new system and start to realize its impact
and possibilities. That’s just human nature.

As humans, we get better at what we do—whatever that is—slowly and
incrementally. So your customers, after giving you the requirements,
will be constantly figuring out ways to get better at using the features
they asked you to implement. If all you do is take their initial require-
ments and implement them, you will certainly not be anywhere close
to satisfying their requirements by the time of delivery—the require-
ments will have changed. You’re exposing yourself to one of the biggest
risks in software development: you’ve produced what they asked for,
not what they’ve come to want. The result? Surprise, shock, and dis-
appointment, instead of satisfaction.

Years ago in a numerical analysis course, Venkat was asked to simulate
the trajectory of a spacecraft using some partial differential equations.

8Edward V. Berard noted, “Walking on water and developing software from a specifi-
cation are easy if both are frozen.”

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=64

GET FREQUENT FEEDBACK USING DEMOS 65

Long interval
between

adjustments

Short interval
between

adjustments

Bad
guess

Actual position
Better
guess

Figure 4.1: Computed trajectory of a spacecraft

The program worked by figuring out the position at time t+δ based on
the position at time t. The program’s plotted trajectory looked some-
thing like the dashed line shown in Figure 4.1 .

Notice the estimated position of the spacecraft was a long way away
from where it was in reality; gravitational effects on the spacecraft’s
velocity did not just happen at each of the positions we decided to cal-
culate. Instead, the effects of gravity happened all the time; it was
continuous, rather than discrete. By ignoring the effects between the
points, we kept adding errors to the calculation, and our spacecraft
ended up in the wrong place.

Reducing the iteration interval (the value of δ) and running the calcula-
tions again reduced the overall error. This time the estimated position
(shown by the solid line) was much closer to the actual position.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=65

GET FREQUENT FEEDBACK USING DEMOS 66

Imagine your customer’s expectations are like the actual position of the
spacecraft. Your success in software development is based on how close
you end up to your customer’s expectations. The discrete positions you
calculate are opportunities to show the customer what you have done
so far. These are the times when you get their input and feedback. This
feedback then changes the direction you take when you set off on the
next leg of the journey.

It’s pretty easy to see that the larger the gap between when you get
their requirements and the time you show them what you’ve done, the
further off course you’ll be.

At regular, consistent intervals, such as at the end of an iteration, meet
with your customers, and demonstrate the features and functionality
you’ve completed so far.

If you consult with your customers frequently, getting their input as
you develop, everyone benefits. Your customers are more aware of the
progress you’re making. As a result, they are able to refine the require-
ments, first in their minds and then, by giving feedback, in yours. They
are able to steer you based on their evolving understanding and expec-
tations, and you are able to program closer to their actual needs. The
customer can prioritize the tasks in the context of the progress you’ve
made and the available time and budget.

Is there downside to seeking frequent feedback in shorter iteration
cycles? In the spacecraft trajectory program, it took longer for the pro-
gram to run when δ was decreased. You may be wondering if using
shorter iterations will slow things down and delay your project.

Think of it this way: imagine getting all the way to the end of a two-year
project only to realize that you and your customer had a fundamental
disconnect when it came to a key requirement. You thought back orders
were handled one way, but your customer meant something totally dif-
ferent. Now, two years later, you’ve produced a system that’s a million
lines of code away from the one the customer wanted. Undoing a goodly
portion of two years worth of effort is going to be expensive, to say the
least.

Instead, imagine you had shown them demonstrations of the system as
you went along. Two months into the project they say, “Wait a minute;
that’s not what a back order is supposed to do.” This triggers a panic

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=66

GET FREQUENT FEEDBACK USING DEMOS 67

Andy Says. . .
Keep a Project Glossary

Inconsistent terminology is a major cause of requirements mis-
understandings. Businesses have a tendency to attach very
specific, important meaning to what appears to be common,
innocent-sounding words.

I’ve seen this happen quite often: programmers on the team
will use different terminology than the users or businesspeo-
ple, and the resulting “impedance mismatch” causes bugs and
design errors.

To avoid these sorts of issues, keep a project glossary. It should
be publicly accessible, perhaps on an intranet website or Wiki.
It almost sounds trivial—it’s just a list of terms and their defini-
tions. But it helps to make sure you are actually communicating
with the users.

Throughout the project, choose appropriate names for pro-
gram constructs—classes, methods, modules, variables, and so
on—from the glossary, and check to make sure the definitions
continue to match the users’ expectations.

meeting: you review the requirements and assess the changes needed.
It’s a small price to pay to avoid a disaster.

Get feedback often. If your iteration cycle is quarterly or annually
(which is too long), reduce it to weekly or biweekly. Proactively get cus-
tomer feedback on the features and functionality you are implementing.

Develop in plain sight. Keep your application in sight (and
in the customers’ mind) during development. Bring cus-
tomers together and proactively seek their feedback using
demos every week or two.

What It Feels Like

After some start-up period, you should settle into a comfortable groove
where the team and the customer enjoy a healthy, creative relationship.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=67

GET FREQUENT FEEDBACK USING DEMOS 68

Track Issues

As the project progresses, you’ll get a lot of feedback—
corrections, suggestions, change requests, feature enhance-
ment, bug fixes, and so on. That’s a lot of information to keep
track of. Random emails or scribbled sticky notes don’t cut
it. Instead, log all this material into a tracking system, perhaps
using a web interface. See Ship It! [RG05] for details.

Surprises should become rare, and the customer should feel they have
an appropriate level of control over the direction of the project.

Keeping Your Balance

• When you first propose this method of working with the customer,
they may balk at the thought of so many “releases.” It’s important
that they understand these are internal releases (demos) for their
own benefit and aren’t necessarily targeted for distribution to the
entire user community.

• Some clients may feel that daily, weekly, or even biweekly sessions
are too much for them to handle. After all, they already have full-
time jobs.

Be respectful of their time. If the customer is comfortable with
only monthly sessions, then monthly it is.

• Some customer’s staff may be assigned to participate in your demo
sessions as their full-time job. They’d like nothing better than
hourly feedback and demos. While that may work out great, you
might find that’s too much for you to handle and still produce any
code for them to see! Scale it back so that you meet when you’re
really done and have something to show.

• The demo is intended for customers to give you feedback and help
steer the project. It is not supposed to agitate or annoy them
because of lack of functionality or stability. If it’s not stable, don’t
show it. Set the expectations about functionality early and clearly:
let the customers know that they are looking at an application
under development, not a final, finished product.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=68

USE SHORT ITERATIONS, RELEASE IN INCREMENTS 69

17 Use Short Iterations, Release in Increments
“We’ve got this beautiful project plan with all the tasks and
deliverables scheduled for the next three years. When we
release the product then, we’ll capture the market!”

The Unified Process and the agile methodologies both prescribe iter-
ative and incremental development.9 With incremental development,
you develop application functionality in several small groups at a time.
Each round of development builds on the functionality of the previ-
ous one and adds features that enhance the product’s value. You can
release or demo the product at that point.

Iterative development is where you carry out the various tasks of
development—analysis, design, implementation, testing, and seeking
feedback—in small, repetitive cycles, called iterations.

The end of an iteration marks a milestone. However, the product may
or may not be available at that time for real use. An increment of the
product is complete when, at the end of an iteration, you are ready
to release it for real use, along with resources to support, train, and
maintain. Each increment generally includes many iterations.

Show me a detailed
long-term plan, and I’ll
show you a project
that’s doomed

According to Capers Jones, “...Large system
development is a very hazardous undertak-
ing.” Large projects are more likely to fail.
They generally do not follow an iterative and
incremental development plan, or the length
of the iterations is too long. (For a good dis-
cussion on iterative and evolutionary development, and evidence of its
correlation to risk, productivity, and defects, refer to Agile and Iterative
Development: A Manager’s Guide [Lar04].) Larman argues that software
development is not predictive manufacturing but inventive in nature. A
project that is scheduled years before a customer puts the application
to real use is most certainly doomed.

9But then again, all diet plans suggest you should eat less and exercise more. But
each plan’s advice on how to achieve those goals varies widely.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=69

USE SHORT ITERATIONS, RELEASE IN INCREMENTS 70

The idea of tackling a large project by taking small steps is key to an
agile approach. Large leaps increase your risk; small steps help you
maintain your balance.

You can find many examples of iterative and incremental development
around you. Consider the XML specifications from the World Wide
Web Consortium: Document Type Definitions (DTDs), which define the
structure and vocabulary of XML documents, were released as part
of the original specification. Although DTDs solved the issues at the
time of their design, actual usage brought to light a number of limita-
tions and problems. Based on user feedback and further understand-
ing, more effective second-generation solutions for defining document
structures, such as Schema, were created. Had they waited to come
up with something superior to start with, we might not have seen XML
become dominant—we got experience and insight by releasing early.

Most users would rather have good software today than wait for supe-
rior software a year later (see “Good Enough Software” in The Pragmatic
Programmer: From Journeyman to Master [HT00]). Identify core features
that’ll make the product usable, and get them into production—into the
hands of the real users—as soon as possible.

Depending on the nature of the product, releasing an increment may
take weeks, or perhaps months. But if you’re looking at delivering in
a year or two, you should reevaluate and replan. You may argue that
building complex software takes time and that you can’t produce a large
software application incrementally. If that’s the case, then don’t pro-
duce one large application! Build it in smaller, useful pieces—that is,
follow incremental development. Even NASA used iterative and incre-
mental development to create the complex software for its space shuttle
(See Design, Development, Integration: Space Shuttle Primary Flight Soft-
ware System [MR84]).

Ask the users what features are essential to make the product usable.
Don’t be distracted by all the nice features you might possibly have,
and don’t aim for the most glamorous user interface you can envision.

You want to get an application into users’ hands quickly for a number
of reasons: by getting it into the hands of users, you generate revenue,
and it’s easier to legitimize the efforts to continue funding the product.
Feedback from the users helps us understand what they really care
about and what should be written next. You may learn that some fea-

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=70

USE SHORT ITERATIONS, RELEASE IN INCREMENTS 71

Increment
1-6 Months

Iteration
1-4 Weeks

Local
Build

Release

Demo &
Exercise

Check-in

Multiple
times
per day

Figure 4.2: Nested agile development cycles

tures you thought were important are not anymore—we all know how
volatile the marketplace is. Release your application soon, because it
might not even be relevant later.

Having short iterations and smaller increments helps developers stay
focused. If you are told you have a year to complete a project, in your
mind you see something a long time off. It is hard to have the drive
needed to focus when something is so far away. Our society prizes
instant gratification—we want results quickly, and we like seeing things
take shape sooner than later. That isn’t necessarily bad; it is actually
good if it can be turned into productivity and positive feedback.

Figure 4.2 shows the relationship between the major cycles in an agile
project. The ideal duration for each increment is a few weeks to a few
months, depending on the size of the project. Within the development
cycle for each increment, you should use short iterations (no longer

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=71

USE SHORT ITERATIONS, RELEASE IN INCREMENTS 72

than a couple of weeks). End each iteration with a demo, and place a
working copy of the product in the hands of select customers who will
provide feedback.

Develop in increments. Release your product with mini-
mal, yet usable, chunks of functionality. Within the devel-
opment of each increment, use an iterative cycle of one to
four weeks or so.

What It Feels Like

A short iteration feels sharply focused and productive. You have a solid,
well-defined goal in sight, and you meet it. A firm deadline forces you
to make the hard decisions, and no issues are left open or unresolved
for very long.

Keeping Your Balance

• Determining an appropriate iteration length is a critical question
of balance. Andy had a client who firmly believed that iterations
should be exactly four weeks in length, because that’s what they
had read. But the team was dying at that pace; they couldn’t
develop the code and tend to their ongoing maintenance responsi-
bilities. The solution was to use a four-week iteration separated by
one week of maintenance work and then begin the next iteration.
There’s no rule that iterations have to be back to back.

• If there’s not enough time in each iteration, then the tasks are too
large or the iteration is too short (on average; don’t change just
one iteration because of oddball circumstances). Feel the rhythm.

• If there is a disconnect between the users’ needs and the fea-
tures of the release, then perhaps the iteration was too long. As
users’ needs, technology, and our understanding of the require-
ments change over time, those changes need to be reflected in the
release. If you find yourself still working on old notions and stale
ideas, then perhaps you waited too long to make adjustments.

• An incremental release must be usable and provide value to cus-
tomers. How do you know what they’ll find valuable? Ask them.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=72

FIXED PRICES ARE BROKEN PROMISES 73

18 Fixed Prices Are Broken Promises
“We have to deliver a fixed bid for this project. We don’t have all
the details yet but need to put a bid in. I need an estimate for
the whole team by Monday, and we’ll have to deliver the whole
project by the end of the year.”

Fixed-price contracts present a problem to an agile team. We’ve been
talking all along about working in a continuous, iterative, and incre-
mental fashion, and now someone comes along and wants to know
ahead of time how long it will take and how much it will cost.

From the customer’s point of view, this is all perfectly reasonable. They
work like this to get buildings built, parking lots paved, and so on.
Why can’t software be more like an established industry—say, building
construction?

Maybe it’s actually a lot like building construction—real building con-
struction, not our image of building construction. According to a 1998
study in the United Kingdom, some 30% of the cost of construction
projects came from rework due to errors.10 This wasn’t because of
changes in requirements, or changes in the laws of physics, but simple
errors. Cutting a beam too short. Making the hole for the window too
large. Simple, familiar mistakes.

A software project is subject to all the simple mistakes plus fundamen-
tal changes to the requirements (no, not a shed, I want a skyscraper!),
huge variability in individual and team performance (20X or more,
depending on whose studies you believe), and of course, the constant
inrush of new technology (from now on, the nails are circular).

A fixed price guarantees
a broken promise

Given the inherent volatility and irrepro-
ducibility of software projects, coming up with
a fixed price ahead of time pretty much guar-
antees a broken promise in the works. What
alternatives do we have? Can we get better at estimation or maybe
negotiate a different sort of a deal?

10Rethinking Construction: The Report of the Construction Task Force, Department for
Transport Local Government and the Regions, 01 Jan 1998, Office of the Deputy Prime
Minister, London, England

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=73

FIXED PRICES ARE BROKEN PROMISES 74

Depending on your environment, you may be able to do either. If you
absolutely, positively have to provide a price up front (for a government
contract, say), then you may want to investigate some heavy-duty esti-
mation techniques such as COCOMO or Function Point analysis. But
these aren’t particularly agile techniques, and they don’t come for free.
If the project is substantially similar to other projects you’ve done with
this same team, you’re certainly in better shape: developing a simple
website for one customer will be pretty much the same as the next.

But many projects aren’t like that. Most projects involve business
applications that vary tremendously from one client to the next. The
projects of discovery and invention need to be treated much more col-
laboratively. Perhaps you can offer a slightly different arrangement.
Try proposing the following steps:

1. Offer to build an initial, small, useful portion of the system (in
the construction analogy, perhaps just the garage). Pick a small
enough set of features such that this first delivery should take no
more than six to eight weeks. Explain that not all the features
will make it in but that enough will be delivered so that the users
could actually be productive.

2. At the end of that first iteration, the client has two choices: they
can agree to continue to the next iteration, with the next set of
features; or, they can cancel your contract, pay you only for the
few weeks worth of work you’ve done, and either throw it away or
get some other group to take it and run with it.

3. If they go ahead, you’re in a better position to forecast what you
can get done during the next iteration. At the end of the next
iteration, the client still has those same two choices: stop now, or
go on to the next.

The advantage to the client is that the project doesn’t “go dark.” They
get to see progress (or lack of it) early on. They are always in control
and can pull the plug at any time, with no contractual penalty. They
are in control of what features go in first and exactly how much money
they are spending. Overall, the client is facing much less risk.

And you’re doing iterative and incremental development.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=74

FIXED PRICES ARE BROKEN PROMISES 75

Estimate based on real work. Let the team actually work
on the current project, with the current client, to get realis-
tic estimates. Give the client control over their features and
budget.

What It Feels Like

Your estimates will change throughout the project—they aren’t fixed.
But you’ll feel increasingly confident that you can forecast the amount
accomplished with each iteration better and better. Your estimates
improve over time.

Keeping Your Balance

• If you aren’t comfortable with the answer, see if you can change
the question.

• If you are developing in a plan-based, nonagile environment, then
you might want to consider either a plan-based, nonagile develop-
ment methodology or a different environment.

• If you refuse to give any estimation before finishing a first iteration,
you may lose the contract to someone else who gives an estimate,
however unrealistic their promise may be.

• Being agile doesn’t mean “Just start coding, and we’ll eventually
know when we’re done.” You still need to give a ballpark estimate,
with an explanation of how you arrived at it and the margin of
error given your current knowledge and assumptions.

• If you’re in a position where none of this is an option and you
simple have to work to a fixed price, you need to develop really
good estimation skills.

• You might also consider a fixed price per iteration set in the con-
tract while leaving the number of iterations loose, perhaps deter-
mined by ongoing work orders (a.k.a. “Statement of Work”).

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=75

One test is worth a thousand expert
opinions.

Bill Nye, The Science Guy

Chapter 5

Agile Feedback
In an agile project, we’re always seeking feedback in order to make
many small, continuous adjustments. But where does all this feedback
come from?

In the previous chapter, we talked about working closely with users—
getting good feedback from them and acting on it. In this chapter,
we’ll talk primarily about getting feedback in other ways. As Bill Nye
observes, tests of any sort are definitive; we’ll implement that idea to
ensure that you always know the state of your project’s health and
don’t have to guess.

Many projects get into trouble when the code base gets out of hand.
Bug fixes beget more bugs, which beget more bug fixes, and the whole
pile of cards comes crashing down. What we need is a constant
monitor—a constant source of feedback to make sure the code base
hasn’t deteriorated and continues to work at least as well as it did yes-
terday, if not even better. We’ll see how to Put Angels on Your Shoulders
to watch out for your code starting on page 78.

But that won’t stop you from designing an interface or an API that’s
cumbersome or hard to use correctly. For that, you’ll need to Use It
Before You Build It (which starts on page 82).

But of course, just because it works for one unit test on your machine
doesn’t automatically mean it will work the same on any other machine.
See why Different Makes a Difference, starting on page 87.

Now that you have decent APIs and clean code, it might be a good idea
to ensure that code actually produces the results the users expect. You

CHAPTER 5. AGILE FEEDBACK 77

can Automate Acceptance Testing to make sure the code is correct—and
stays that way. We’ll take a look at that on page 90.

Everyone wants to see progress on a project, but it’s easy to go astray
by watching misleading indicators or to fall prey to the false authority
of a pretty Gantt or PERT chart or a nice calendaring tool. Instead, you
want to Measure Real Progress, and we’ll show you how on page 93.

Although we talked about working with users to get feedback during
development, there’s another time—long after the product has been
released—when you need to once again Listen to Users, and we’ll
explain starting on page 96.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=77

PUT ANGELS ON YOUR SHOULDERS 78

19 Put Angels on Your Shoulders
“You can’t justify the time and effort it takes to write unit tests.
It will just delay the project. You’re a darn good programmer
anyway—unit tests are just a waste of time, and we’re already
in a crunch.”

Code changes rapidly. Every time your finger hits the keyboard, the
code has changed. Agility is all about managing change, and the code
is the one thing that probably changes the most.

To cope with that, you need constant feedback about the health of the
code: does it do what you intend? Did that last change break anything
unexpectedly? What you need is the equivalent of an angel looking over
your shoulder, constantly making sure everything is OK. To do that,
you need automated unit tests.

Coding feedback
Now, some developers are put off by the idea of
unit testing; after all, it has that testing word
in it, and surely that’s somebody else’s job.

Just ignore the name for now, and consider this to be an excellent
coding feedback technique.

Think how most developers have typically worked with code in the past:
you write a little code and then stick in a few print statements to see the
value of a few key variables. You run the code, maybe from a debugger
or maybe from a few lines of a stub program. You look at the results
manually, fix any problems that come up, then throw the stub program
away or exit the debugger, and move on to the next item.

Agile-style unit testing takes that same, familiar process and kicks it
up a notch. Instead of throwing the stub code away, you save it, and
continue to run it automatically. Instead of manually inspecting the
interesting variables, you write code to check for specific values.

Since the code to test a variable for a specific value (and keep track
of how many tests you ran, and so on) is pretty common, you can
use standard frameworks to help with the low-level housekeeping
of writing and organizing tests. There’s JUnit for Java, NUnit for
C#/.NET, HttpUnit for testing web servers, and so on. In fact, there’s
an xUnit framework for just about every language and environment
you can imagine. Most of these are listed at and available from
http://xprogramming.com/software.htm.

Report erratum

http://xprogramming.com/software.htm
http://books.pragprog.com/titles/pad/errata/add?pdf_page=78

PUT ANGELS ON YOUR SHOULDERS 79

Be Sure of What You’re Testing

Reader David Bock shares the following story with us:

“I was recently working on a module of a much larger project,
converting the build from Ant to Maven. This was solid, well-
tested code that was in use in production. I was working
away, late into the evening, and everything was going well. I
changed part of the build process, and all of a sudden, I had
a failing unit test. I spent some time trying to figure out why
my change would make a test fail but eventually gave up and
rolled it back. The test still failed. I went digging into the test,
and I found that the failure was in a test on a utility for calculat-
ing times; specifically, it was returning an instance of Date set to
noon tomorrow. I looked at the test and found that it was taking
the time of the test execution and using that as a parameter to
the test. The method had a stupid off-by-one error so that if you
called the method between 11 p.m. and midnight, it would
actually return noon of the same day, not tomorrow.”

Important lessons from this story:

• Make sure your tests are repeatable. Using the current
date or time as a parameter makes the test sensitive to the
time it is run, using the IP address of your machine makes
it sensitive to which machine it’s run on, and so on.

• Test your boundary conditions. 11:59:59 and 0:00:00 are
good choices for time.

• Never allow failing tests. In the previous case, one test was
failing all the time, but because there were two dozen fail-
ing tests that went up or down by a few every day natu-
rally, no one noticed the one pseudo-random failure.

Once you have a few unit tests, automate them. That is, run the unit
tests on your code every time you compile or build. Think of the results
of the unit test as being equivalent to the compiler itself—if the code
doesn’t pass its unit tests (or doesn’t have unit tests), it’s just as bad
as if it didn’t compile.

Next, arrange for a build machine to sit in the background, constantly
getting the latest version of your source code, compiling it, running the
unit tests, and letting you know immediately if anything has gone awry.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=79

PUT ANGELS ON YOUR SHOULDERS 80

The combination of local unit tests, run with every compilation, and
the continuous build machine compiling and running the unit tests,
creates the angel on your shoulder. If something breaks you’ll know
about it right away—when it’s easiest (and cheapest) to fix.

With unit tests in place, acting as regression tests, you’re now free
to refactor the code base at will. You can rewrite and redesign code
and experiment as needed: the unit tests will ensure that you haven’t
broken anything accidentally. That’s a very powerful freedom; you don’t
have to code as if “walking on eggshells.”

Unit testing is one of the more popular agile practices, and as a result, a
lot of books and other materials can help you get started. If you’re new
to the idea, take a look at Pragmatic Unit Testing (in both Java [HT03]
and C# [HT04] versions). For a more in-depth, recipe-based approach,
check out JUnit Recipes [Rai04].

To hook up automation for unit tests (and a number of other useful
things), see Pragmatic Project Automation: How to Build, Deploy, and
Monitor Java Applications [Cla04]. Although it’s focused primarily on
Java, equivalent tools exist for .NET and other environments.

If you’re still looking for reasons to get started with unit testing, here
are just a few:

Unit testing provides instant feedback. Your code gets exercised
repeatedly. As you change and rewrite your code, the test cases
will check that you haven’t broken any existing contract. You can
quickly identify and fix any problems.

Unit testing makes your code robust. Testing helps you think
through the behavior of the code, exercising the positive, negative,
and exceptional cases.

Unit testing can be a helpful design tool. As we’ll see in Practice 20,
Use It Before You Build It, on page 82, unit testing can help you
achieve a pragmatic and simpler design.

Unit testing is a confidence booster. You’ve tested your code and
exercised its behavior for a variety of different conditions; this will
give you confidence when faced with new, high pressure tasks on
tight deadlines.

Unit tests can act as probes when solving problems. Unit tests act
like the oscilloscope probes you’d use to test printed circuit

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=80

PUT ANGELS ON YOUR SHOULDERS 81

boards. You can quickly take a pulse of the inner workings of
the code when a problem arises. This gives you a natural way to
pinpoint and solve problems (see Practice 35, Attack Problems in
Isolation, on page 136).

Unit tests are reliable documentation. When you start learning a
new API, any unit tests for it can serve as accurate, reliable docu-
mentation.

Unit tests are a learning aid. As you begin to use a new API, you can
start by writing tests against that API to facilitate your learning.
These learning tests not only help you understand the behavior of
the API but also help you quickly find any incompatible changes
that might be introduced later.

Use automated unit tests. Good unit tests warn you
about problems immediately. Don’t make any design or
code changes without solid unit tests in place.

What It Feels Like

You rely on having unit tests. Code without tests makes you feel
uncomfortable as if you were teetering on a high wire without a net.

Keeping Your Balance

• Unit testing is an investment. Invest wisely. Testing accessors or
trivial methods is probably not time well spent.

• Many of the excuses people use to avoid unit testing really point
to design flaws in the code. Usually, the louder the protest, the
worse the design.

• Unit testing is only as effective as your test coverage. You might
want to look at using test coverage tools to give you a rough idea
of where you stand.

• More tests don’t automatically mean better quality: tests have to
be effective. If tests never catch anything, maybe they aren’t test-
ing the right things.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=81

USE IT BEFORE YOU BUILD IT 82

20 Use It Before You Build It
“Go ahead and complete all of your library code. There’s plenty
of time later to see what people think of it. Just throw the code
over the wall for now. I’m sure it’s fine.”

Many successful companies live by the slogan “Eat your own dog food.”
In other words, to make your product the best it can be, you need to
actively use it yourself.

Fortunately, we’re not in the dog-food business. But we are in the
business of creating and calling APIs and using interfaces. That means
you need to actually use your own interface before foisting it on the rest
of the world. In fact, you need to use the interface that you’re designing
before you even implement the code behind it. How is that possible?

Write tests before writing
code

Using the technique known as Test Driven
Development (TDD), you write code only after
writing a failing unit test for that code. The
test always comes first. Usually, the test case

fails either because the code under test doesn’t yet exist or because it
doesn’t yet contain the necessary logic to allow the test to pass.

By writing the tests first, you’re looking at your code from the perspec-
tive of a user of the code, not of the implementer. And that makes a
big difference; you’ll find that you can design more usable, consistent
interfaces because you have to use them yourself.

In addition, writing tests before writing code helps eliminate overly com-
plicated designs and lets you focus on really getting the job done. Con-
sider the following example of writing a program that allows two users
to play tic-tac-toe.

As you start to think about designing code for the game, you might
think of classes such as TicTacToeBoard, Cell, Row, Column, Player, User,
Peg, Score, and Rules. Let’s start with the TicTacToeBoard class, which
represents the tic-tac-toe board itself (in terms of the core game logic,
not the UI).

Here’s a possible first test for the TicTacToeBoard class, written in C#
using the NUnit test framework. It creates a board and asserts that the
game is not already finished.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=82

USE IT BEFORE YOU BUILD IT 83

[TestFixture]

public class TicTacToeTest

{

private TicTacToeBoard board;

[SetUp]

public void CreateBoard()

{

board = new TicTacToeBoard();

}

[Test]

public void TestCreateBoard()

{

Assert.IsNotNull(board);

Assert.IsFalse(board.GameOver);

}

}

The test fails because the class TicTacToeBoard doesn’t exist—you’ll get a
compilation error. You’d be pretty surprised if it passed, wouldn’t you?
That can happen—not often, but it does happen. Always make sure
your tests fail before they pass in order to flush out potential bugs in
the test. Let’s implement that class:

public class TicTacToeBoard {

public bool GameOver {

get {

return false;

}

}

}

In the GameOver property we’ll return false for now. In general, you
want to write the least code necessary to get the test to pass. This is
a kind of lie—you know that the code is incomplete. But that doesn’t
matter, because later tests will force you to come back and add func-
tionality.

What’s the next step? First you have to decide who’s going to start, so
let’s set up the first player. We’ll start with a test for setting the first
player:

[Test]

public void TestSetFirstPlayer() {

// what should go here?

}

At this point, the test is forcing you to make a decision. Before you can
finish it, you have to decide how you’re going to represent players in

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=83

USE IT BEFORE YOU BUILD IT 84

the code and how to assign them to the board. Here’s one idea:

board.SetFirstPlayer(new Player("Mark"), "X");

This tells the board that the player Mark will be using the peg X.

While this will certainly work, do you really need the Player class or the
first player’s name? Perhaps, later, you might need to keep track of
who the winner is. But that’s not an issue right now. The YAGNI1 (You
Aren’t Gonna Need It) principle says that you should not implement a
feature until something needs it. At this point, there is no force that
indicates you need the Player class.

Remember, we haven’t written the SetFirstPlayer() method in the TicTac-

ToeBoard class and we haven’t written the Player class. We’re still just
trying to write a test. So let’s assume the following code to set the first
player:

board.SetFirstPlayer("X");

This conveys the notion that the first player’s peg is X. It’s also sim-
pler than the first version. However, this version has an implicit risk:
passing in an arbitrary character to SetFirstPlayer() means you’ll have to
add code that checks whether the parameter is either O or X, and you’ll
need to work out what to do when it isn’t. So let’s simplify even further.
We’ll have a simple flag to say whether the first player is an O or an X.
Knowing that, we can now write our unit test:

[Test]

public void TestSetFirstPlayer() {

board.FirstPlayerPegIsX = true;

Assert.IsTrue(board.FirstPlayerPegIsX);

}

We can write the FirstPlayerPegIsX() as a boolean property and set it to the
desired value. This looks simple and easy to use as well—much easier
than dealing with the complexity of using the Player class. Once the test
is written, you can get it to pass by implementing the FirstPlayerPegIsX

property in the TicTacToeBoard class.

See how we started out by having a whole Player class and ended up
simply using a boolean value? This simplification came about by testing
first, before writing the underlying code.

1Coined by Ron Jeffries

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=84

USE IT BEFORE YOU BUILD IT 85

Now remember, the point isn’t to throw out good design practices and
code everything as a large set of booleans! The point is to figure out
what is the minimum amount of effort required to implement a given
feature successfully. Overall, we programmers tend to err so much in
the other direction—needlessly overcomplicating things—that it’s very
useful to try to err in the other direction.

It’s easy to simplify code by eliminating classes that you haven’t written
yet. By contrast, once you have written code, you may feel compelled
to keep that code and continue working with it (even if it’s long past its
expiration date).

Good design doesn’t
mean more classes

When you design and develop object-oriented
systems, you probably feel compelled to use
objects. There’s a tendency to think that OO
systems should be made of objects, and we
sometimes force ourselves to create more and more classes of objects—
whether they are really needed or not. Adding gratuitous code is always
a bad idea.

TDD makes you go through the exercise of thinking about how you’ll
use the code before you get a chance to write it (or at least before you go
too far into the implementation). This forces you to think about usabil-
ity and convenience and lets you arrive at a more pragmatic design.

And of course, design isn’t finished right at the beginning. You will
continuously add tests, add code, and redesign the class over its life-
time (see Practice 28, Code in Increments, on page 113, for more on this
basic idea).

Use it before you build it. Use Test Driven Development
as a design tool. It will lead you to a more pragmatic and
simpler design.

What It Feels Like

It feels like you always have a concrete reason to write code. You can
concentrate on designing an interface without being overly distracted
by implementation details.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=85

USE IT BEFORE YOU BUILD IT 86

Keeping Your Balance

• Don’t get hung up on Test First vs. Test Before Checking Code
In. Test First improves design, but you always have to Test Before
Checking Code In.

• Every design can be improved.

• Unit tests may not be appropriate when you’re experimenting with
an idea or prototyping. In the unfortunate case that the code does
move forward into a real system, you’ll have to add the tests (but
it’s almost always better to start over from scratch).

• Unit tests alone don’t guarantee a better design, but they make it
easier to create one.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=86

DIFFERENT MAKES A DIFFERENCE 87

21 Different Makes a Difference
“As long as the code works on your machine, that’s OK. Who
cares if it works on some other platform? You don’t have one.”

When a vendor or a co-worker says those immortal words, “Oh, that
won’t make a difference,” you can bet they are wrong. If something is
different, odds are it will make a difference.

Venkat learned this lesson the hard way on a project. A colleague com-
plained that Venkat’s code was failing. But oddly, the situation was
the same as one of the test cases that passed on Venkat’s machine. It
worked on one machine but not on the other.

They finally figured out the culprit was a difference in behavior of a
.NET API on different platforms: Windows XP versus Windows 2003.2

The platform was different—and it made a difference.

They were lucky to discover this problem by accident; otherwise, it may
have been noticed only once the product shipped. Discovering such
problems late can be very expensive—imagine releasing an application
and only then finding out it breaks on one of the platforms you’re sup-
posed to be supporting.

You might ask your QA team to test your application on all supported
platforms. But that may not be the most reliable tack if they’re testing
manually. We need a more developer-oriented approach!

You’re already writing unit tests to exercise your code. Whenever you
modify or refactor your code, you exercise your test cases before you
check in the code. All you have to do now is exercise your test cases on
each supported platform or environment.

If your application is expected to run on different operating systems
(MacOS, Linux, Windows, etc.) or even on different versions of the
same operating system (Windows 2000, Windows XP, Windows 2003,
etc.), you need to test on all of them. If you expect your application
to work on different versions of the Java Virtual Machine (VM) or .NET
common language runtime (CLR), you need to test that as well.

2See Gotcha #74 in .NET Gotchas [Sub05].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=87

DIFFERENT MAKES A DIFFERENCE 88

Andy Says. . .
But It Works on My Machine...

I once had a client who needed better performance from
their OS/2 system, so one of the bolder developers decided
to rewrite the OS/2 operating system scheduler from scratch,
in assembly language.

And it actually worked. Sort of. It worked really well on the orig-
inal developer’s machine, but they couldn’t get it to work on
any other machine. They even went so far as to purchase iden-
tical hardware from the same vendor and load up the same
version of operating system, database, and other tools. No luck
at all.

They tried facing the machines in the same direction, at the
same time of day, with a sacrificial chicken for luck (OK, I’m
making that part up, but the rest is true).

The team eventually abandoned the attempt. Messing with the
undocumented internals of the operating system is most likely
a fragile technique, not an agile one.

Automate to save time
But you probably already feel pressed for time,
so how can you possibly take time to run tests
on multiple platforms as well? Continuous

integration3 to the rescue!

As we saw in Keep It Releasable a continuous integration tool period-
ically fetches the code from your source control system and exercises
it. If any test fails, it notifies the relevant developers. The notification
may be through email, a pager, an RSS feed, or other more creative
approaches.

To test on multiple platforms, you simply set up a continuous integra-
tion system on each. When you or a fellow developer checks in the
code, the tests will be run automatically on each of these platforms.
Imagine being informed of any failures on any platform within minutes
of checking in your code! That’s using your resources wisely.

3Read the seminal article entitled “Continuous Integration” by Martin Fowler at
http://www.martinfowler.com/articles/continuousIntegration.html.

Report erratum

http://www.martinfowler.com/articles/continuousIntegration.html
http://books.pragprog.com/titles/pad/errata/add?pdf_page=88

DIFFERENT MAKES A DIFFERENCE 89

Hardware for build machines costs the equivalent of only a few hours
of developer time. If needed, you can reduce the hardware cost even
further by using products such as VMware or Virtual PC to run different
versions of operating system, VM, or CLR on a single box.

Different makes a difference. Run unit tests on each sup-
ported platform and environment combination, using con-
tinuous integration tools. Actively find problems before they
find you.

What It Feels Like

It feels like unit testing, only more so—it’s unit testing across multiple
worlds.

Keeping Your Balance

• Hardware is cheaper than developer time. But if you have a large
number of supported platforms and configurations, you may need
to be selective as to which ones you actively test in-house.

• Bugs that exist on all platforms may be spotted only because of
stack layout differences, word-endian differences, etc., so even if
you have fewer clients on Solaris than Linux, you still want to test
on both.

• You don’t want to be bombarded with five notifications for
one error (that’s like double taxation and contributes to “email
fatigue”). Either lower the frequency of the integration build on
all but one main platform/configuration to give you enough time
to fix the main build if it breaks or roll up the errors in a single
convenient report.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=89

AUTOMATE ACCEPTANCE TESTING 90

22 Automate Acceptance Testing
“All right, so your unit tests verify your code does what you
think it should. Ship it. We’ll find out if it’s what the customers
want soon enough.”

You’ve worked with the users to develop the features they want, but
now you need to make sure the data they’re getting is correct—or at
least correct from their point of view.

Andy was on a project a few years ago where their industry standard
considered 12 a.m. as the last minute of the day, and 12:01 a.m. as the
first minute of the new day (typically, business and computer systems
consider 11:59 p.m. as the last minute of the day and 12 a.m. as the
beginning of a new day). That small detail made a huge difference when
it came to acceptance testing—things just wouldn’t add up otherwise.

Critical business logic needs to be tested independent of the rest of the
application, and the users need to approve the results.

But you don’t want to drag the users in to check your results with
every unit test. Instead, you want to automate the comparison of your
customers’ expectations with your actual implementation.

One wrinkle makes these sorts of acceptance tests different from usual
unit tests. You’d like the users to be able to add, update, and modify
their data as needed, without having to learn to write code. You have a
couple of ways to go about that.

Andy has used a number of schemes that relied on data in flat files that
users could edit directly. Venkat recently did something similar using
an Excel spreadsheet. Depending on your environment, you may have
something that’s already a natural fit with your users (be it data in a
flat file, an Excel spreadsheet, a database, or another form). Or, you
might consider an existing tool that does most of this for you already.

FIT,4 the Framework for Integrated Testing, is a helpful technology that
makes it easier to use HTML tables as a mechanism to define and com-
pare test cases and values.

4http://fit.c2.com.

Report erratum

http://fit.c2.com
http://books.pragprog.com/titles/pad/errata/add?pdf_page=90

AUTOMATE ACCEPTANCE TESTING 91

Venkat Says. . .
Getting Acceptance Data

One customer was using a pricing model he had developed
in Excel. We wrote tests that compared the output of our
project’s pricing code with the output from his Excel spread-
sheet and then corrected our logic and formulas as necessary.
This gave everyone confidence that critical business logic for
pricing was correct and gave the customer the ability to easily
modify acceptance criteria.

Using FIT, the customer defines a new feature with examples of its
use. The customers, testers, and developers (based on the examples)
then create tables that describe the possible input and output values
for the code. The developer can then create test fixtures that compare
the examples in the FIT tables with the output of the code being devel-
oped. The result of the tests—successes and failures—is displayed in
an HTML page, making it easy for the users to see.

If your domain experts give you algorithms, calculations, or equations,
provide them with a way of testing your implementation in isolation
(see Practice 35, Attack Problems in Isolation, on page 136). Make those
tests part of your test suite—you want to make sure you continue to
provide the correct answers throughout the life of the project.

Create tests for core business logic. Have your customers
verify these tests in isolation, and exercise them automati-
cally as part of your general test runs.

What It Feels Like

It feels like cooperative unit testing: you’re still writing the tests, but
someone else is providing you the answers.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=91

AUTOMATE ACCEPTANCE TESTING 92

Keeping Your Balance

• Not all customers can give you correct data. If they had correct
data already, they wouldn’t need the new system.

• You may discover previously unknown bugs in the old system (be
it computer or manual) or genuine issues that didn’t exist before.

• Use the customer’s business logic, but don’t get bogged down doc-
umenting it extensively.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=92

MEASURE REAL PROGRESS 93

23 Measure Real Progress
“Please use your time sheets to report your progress. We’ll use
these for project planning. Always fill in 40 hours each week,
regardless of how much you really worked.”

The passage of time (which is usually way too fast) provides great feed-
back: what better way to determine whether you’re on schedule than
to see how long it’s actually taking you, as opposed to what you had
estimated?

Ah, but you say you’re already tracking that, using time sheets. Unfor-
tunately, in most corporations, time sheets are intended for payroll
accounting and are not really meant to measure progress of work in
software projects. If you worked sixty hours, for example, your boss
probably asked you to fill in only forty hours in the time sheet—that’s
what accounting wants to see. Time sheets rarely represent the real-
ity of work completed and therefore aren’t useful for project planning,
estimation, or measuring performance.

Focus on where you’re
going

Even without time sheets, some developers
have difficulties focusing on reality. Have you
ever heard a developer report that he’s 80% on
a task? Day after day and week after week, still
80% done? That’s not a useful measure at any rate; it’s like being 80%
true (unless you’re a politician, true and false are boolean conditions).
Instead of trying to calculate some bogus percentage of “doneness,” try
to determine how much work you have left. If you initially estimated
the task to be 40 hours and after 35 hours you think there’s another
30 hours of work, then that’s the important measurement (honesty is
important here; there’s no sense in trying to hide the obvious).

When you do finally finish the task, keep track of how long it really
took. Odds are, it probably took longer than you originally estimated.
That’s OK; just make a note of it for next time. For the next task you
have to estimate, adjust your estimate based on this experience. If
you underestimated a two-day task, and it took six, you were short by
a factor of three. Unless there were unusual circumstances, maybe
you should multiply your next estimate by three. You’ll zig-zag around
for awhile, under- and overestimating your effort, but over time, your

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=93

MEASURE REAL PROGRESS 94

Andy Says. . .
Accounting for Time

My sister-in-law once worked for a large, international consul-
tancy. They had to account for their time in six-minute incre-
ments throughout the day, every day.

They even had a code to track the time spent filling in the form
to track your time. But instead of being 0, 9999, or some easy-to-
remember code, it was the very convenient 948247401299-44b.

This is why you don’t want the accounting department’s rules
and constraints to leak out and spill over into the project.

estimates will converge, and you’ll get a better sense of how long a given
task will take.

It’s also helpful to measure progress by keeping the road ahead very
visible. The best way to do that is by using a backlog.

A backlog is just a list of tasks that still need to be completed. When
a task is completed, it’s removed from the backlog (logically; physi-
cally you might just cross it off or mark it as done to leave a list of
accomplishments). As new tasks are introduced, they are prioritized
and added to the backlog. You can have a personal backlog, a backlog
for the current iteration, and a backlog for the project as a whole.5

With the backlog, you always know the next most important thing on
which to work. As your estimation skill improves over time, you’ll get a
better and better idea of how long it might take as well.

It’s a powerful technique to keep track of your real progress.

Measure how much work is left. Don’t kid yourself—or
your team—with irrelevant metrics. Measure the backlog of
work to do.

5For more details on using backlogs and The List as a personal and project manage-
ment tool, see Ship It! [RG05].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=94

MEASURE REAL PROGRESS 95

Sprints in Scrum

In the Scrum method [Sch04], each iteration is known as a sprint
and lasts 30 days. The sprint backlog holds tasks scheduled
for the current iteration; it also shows the estimated number of
hours left to complete each task.

On a daily basis, each team member updates the estimate of
the number of hours they need to finish a task. At any point, if
the total number of hours for all the tasks exceeds the number
of hours left, then tasks have to be moved to the next iteration.

If there are more hours left in the month than estimated hours,
then you can add tasks back in. Customers love it when you do
that.

What It Feels Like

You feel comfortable that you know what has been done, what’s left,
and what your priorities are.

Keeping Your Balance

• Six-minute units are too fine-grained and aren’t agile.

• Week-long or month-long units are too coarse-grained and aren’t
agile either.

• Focus on functionality, not the calendar.

• If you’re spending so much time keeping track of how much time
you’re spending that you aren’t spending enough time working on
the project, then you’re spending too much time keeping track of
how much time you’re spending. Get it?

• In a forty-hour work week, not all forty hours are available for you
to write code for the project. Meetings, phone calls, email, and
other related activities can take a substantial amount of time.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=95

LISTEN TO USERS 96

24 Listen to Users
“Users are always complaining. It’s not your fault; they’re just
too stupid to read the stinkin’ manual. It’s not a bug; they just
don’t understand. They should know better.”

Andy once worked for a large company that developed products for
high-end Unix workstations. This wasn’t the sort of environment where
you could just run setup.exe or pkgadd to install the software. You had
to copy files and tune various settings on your workstation.

Andy and his team thought everything was going well, until one day
Andy was walking past the tech support area and overheard a support
engineer laughing loudly into the phone: “Oh, it’s not a bug; you made
the same mistake everyone does.” And it wasn’t just this one engi-
neer. The whole department was chuckling at the poor, naïve, stupid
customers.

Apparently there was a situation where you, the hapless customer, had
to go tweak some obscure system file to contain a magic value, or oth-
erwise the application would not run at all. No error message, no crash,
just a big black screen followed by an abrupt exit. Granted, a line in
the installation instructions mentioned this fact, but apparently some
80% of the customers missed that fact and had to instead submit to
abuse via the company’s tech support line.

It’s a bug
As we mention in Chapter 7, Agile Debugging,
on page 128, you want to provide as much
detail as possible when something goes wrong.

A black screen and inexplicable exit doesn’t cut it. But worse, when
this company received real feedback from its users, they laughed at
their stupidity instead of addressing the problem.

Whether it’s a bug in the product, a bug in the documentation, or a
bug in our understanding of the user community, it’s still the team’s
problem, not the user’s.

Then there was the case of the expensive manufacturing shop-floor con-
trol system that none of the users would use. It seems the first step to
using the system was to log on with their name and password, and the
majority of the workers in this plant were illiterate. No one have ever

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=96

LISTEN TO USERS 97

bothered to ask them or get their feedback, so a completely useless sys-
tem was installed. (The developers in question had to retool the entire
GUI to be picture-based at huge expense.)

We go to great lengths to get feedback from code using unit tests and
such, but it’s all too easy to ignore the feedback from users. So not only
do you need to talk to real users (not their managers or a surrogate
such as a business analyst), you need to listen to them.

Even if they sound stupid.

Every complaint holds a truth. Find the truth, and fix the
real problem.

What It Feels Like

You don’t get irate or dismissive of stupid complaints; you can look past
that and see the real, underlying problem.

Keeping Your Balance

• There is no such thing as a stupid user.

• There is such a thing as a stupid, arrogant developer.

• “That’s just the way it is” is not an answer.

• If the code can’t be fixed, perhaps the documentation and training
can be.

• Your users may have read all the documentation and will remem-
ber everything about your application all the time.

But probably not.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=97

Any fool can make things bigger, more
complex, and more violent. It takes a touch
of genius—and a lot of courage—to move in
the opposite direction.

John Dryden,
Epistle X—To Congreve Chapter 6

Agile Coding
When you start on a new project from scratch, the code is easy to
understand and work with. As you progress with your development,
however, you may find the project slowly turns into a monster, eventu-
ally taking more developers and an inordinate amount of effort to keep
it going.

What turns a project that started out so well into a project that becomes
hard to handle? As you worked on the tasks, you probably were
tempted to take some shortcuts to save time. Often, however, a short-
cut helps you only postpone a problem instead of solving it (as we saw
in Practice 2, Quick Fixes Become Quicksand, on page 15). It may come
back to haunt you, and the rest of your team, as the schedule pressure
mounts.

How can you keep the normal pressure in project development from
creating stressful nightmares later? The easiest way is to keep your
code well maintained. A small amount of effort each day while develop-
ing code can help you keep the code from rotting and keep the applica-
tion from becoming hard to understand and maintain.

The practices in this chapter will help you develop code that’s easier to
understand, extend, and maintain for the duration of the project and
beyond. These practices will give you a sanity check to prevent your
code from turning into a monster.

To begin, it’s better to be clear than clever as you Program Intently
and Expressively, starting on page 100. Comments can be helpful or a
dangerous distraction; you should always Communicate in Code (that’s
on page 105). Nothing in engineering comes for free; you have to decide

CHAPTER 6. AGILE CODING 99

what’s more important and what the consequences of each decision
are. You’ll need to Actively Evaluate Trade-Offs (it’s on page 110) to
make the best decisions.

Just as the project develops in increments, you will want to Code in
Increments as well. See how, starting on page 113. When writing code,
it can be very hard to Keep It Simple—in fact, it’s harder to write simple
code than to write nasty, overly complicated code. But it’s worth the
effort, as we’ll see on page 115.

Good object-oriented design principles suggest you should Write Cohe-
sive Code, which we’ll talk about on page 117. An excellent way to
keep your code untangled and clean is to observe the Tell, Don’t Ask
principle, described on page 121. Finally, you can keep your code flex-
ible in an uncertain future by designing the system such that you can
Substitute by Contract, which we’ll look at on page 124.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=99

PROGRAM INTENTLY AND EXPRESSIVELY 100

25 Program Intently and Expressively
“Code that works and is understandable is nice, but it’s more
important to be clever. You’re paid for being smart; show us
how good you are.”

Hoare on Software Design
by C.A.R. Hoare

There are two ways of creating a software design. One way is to make it so
simple that there are obviously no deficiencies. And the other way is to
make it so complicated that there are no obvious deficiencies.

You’ve probably seen a lot of code that’s hard to understand, that’s
hard to maintain, and (worst of all) has errors. You can tell code is bad
when developers circle around it like spectators near a UFO—with the
same mix of apprehension, confusion, and helplessness. What good is
a piece of code if no one can understand how it works?

When developing code, you should always choose readability over con-
venience. Code will be read many, many more times than it is written;
it’s well worth it to take a small performance hit during writing if it
makes the reading easier. In fact, code clarity comes before execution
performances as well.

For instance, if default or optional arguments are going to make your
code less readable, less understandable, or buggier, it would be better
to specify the arguments explicitly, rather than cause later confusion.

When you modify a piece of code to fix a bug or add new feature, try
to approach it systematically. First, you have to understand what the
code does and how it works. Then, you need to figure out what you’re
going to change. You then make your changes and test. The first of
these steps, understanding the code, is often the hardest. If someone
hands you code that’s easy to understand, they’re making your life a
lot easier. Honoring the Golden Rule, you owe it to them to make your
own code easy to read.

One way to make code understandable is to make it obvious to see
what’s happening. Let’s look at some examples:

coffeeShop.PlaceOrder(2);

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=100

PROGRAM INTENTLY AND EXPRESSIVELY 101

Reading the above code, you can probably figure out that we’re placing
an order at a coffee shop. But, what in the world is 2? Does that
mean two cups of coffee? Two shots? Or is it the size of the cup? The
only way for you to be certain is to look at the method definition or the
documentation. This code isn’t easy to understand by reading.

So we add some comments to make the code easier to understand:

coffeeShop.PlaceOrder(2 /* large cup */);

That’s a tad better, but this is an occasion where commenting is used
to compensate for poor code (Practice 26, Communicate in Code, on
page 105).

Java 5 and .NET (among others) have the concept of enumerated val-
ues. Let’s use it. We can define an enum named CoffeeCupSize in C# as
the following:

public enum CoffeeCupSize

{

Small,

Medium,

Large

}

Then we can use it to order coffee:

coffeeShop.PlaceOrder(CoffeeCupSize.Large);

This code makes it obvious that we are placing an order for a large1 cup
of coffee.

As a developer, you should always be asking yourself whether there are
ways to make your code easier to understand. Here’s another one:

Line 1 public int compute(int val)

- {

- int result = val << 1;

- //... more code ...

5 return result;

- }

What’s up with the shift operator in line 3? If you’re an experienced bit
twiddler or familiar with logic design or assembly programming, then
you may have figured that we just multiplied the value in val by 2.

1That’s venti to you Starbucks fans.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=101

PROGRAM INTENTLY AND EXPRESSIVELY 102

The PIE Principle

Code you write must clearly communicate your intent and must
be expressive. By doing so, your code will be readable and
understandable. Since your code is not confusing, you will also
avoid some potential errors. Program Intently and Expressively.

But what about folks who may not have that background—will they
figure that out? Perhaps you have some inexperienced team members
who only recently made a career change into programming. These folks
will scratch their heads until their hair falls out.2 Although the code
may be efficient, it lacks intent and expressiveness.

Shifting to multiply is an example of unnecessary and dangerous per-
formance optimization. result = val*2 is clearer, works, and is proba-
bly even more efficient given a decent compiler (old habits die hard;
see Practice 7, Know When to Unlearn, on page 34). Instead of being
too clever and opaque, follow the PIE principle: Program Intently and
Expressively (see the sidebar on this page).

Violating the PIE principle can go beyond readability or understand-
ability of code—it can affect its correctness. Here’s a C# method that
tries to synchronize calls to the MakeCoffee() method of a CoffeeMaker:

public void MakeCoffee()

{

lock(this)

{

// ... operation

}

}

The author of this method wanted to define a critical section—at most
one thread may execute the code in operation at any instant. To do
that, the writer claimed a lock on the CoffeeMaker instance. A thread
may execute this method only if it can acquire that lock. (In Java, you
would use synchronized instead of lock, but the idea is the same.)

Although the code may look reasonable to any Java or .NET program-
mer, it has two subtle problems. First, the lock is too sweeping, and

2Yeah, that’s not a bald spot; it’s a solar panel for a coding machine....

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=102

PROGRAM INTENTLY AND EXPRESSIVELY 103

second, you are claiming a lock on a globally visible object. Let’s look
at both these issues further.

Assume the coffeemaker can also dispense hot water, for those fans of
a little Earl Gray in the morning. Suppose I want to synchronize the
GetWater() method, so I call lock(this) within it. This synchronizes any
code that uses lock on the CofeeMaker instance. That means you cannot
make coffee and get hot water at the same time. Is that my intent, or
did the lock become too sweeping? It’s not clear from reading the code,
and you, the user of this code, are left wondering.

Also, the MakeCoffee() method implementation claims a lock on the
CoffeeMaker object, which is visible to the rest of the application. What
if instead you lock the CoffeeMaker instance in one thread and then call
the MakeCoffee() method on that instance from another thread? At best
it may lead to poor performance, and at worst it may lead to deadlock.

Let’s apply the PIE principle to this code, modifying it to make it more
explicit. You want to keep more than one thread from executing the
MakeCoffee() method at the same time. So, why not create an object
specifically for that purpose and lock it?

private object makeCoffeeLock = new object();

public void MakeCoffee()

{

lock(makeCoffeeLock)

{

// ... operation

}

}

This code addresses both the concerns we discussed—we rely on an
explicit object to synchronize, and we express our intent more clearly.

When writing code, use language features to be expressive. Use method
names that convey the intent; name method parameters to help readers
understand their purpose. Exceptions convey what could go wrong and
how to program defensively; use them and name them appropriately.
Good coding discipline can help make the code more understandable
while reducing the need for unnecessary comments and other docu-
mentation.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=103

PROGRAM INTENTLY AND EXPRESSIVELY 104

Write code to be clear, not clever. Express your inten-
tions clearly to the reader of the code. Unreadable code
isn’t clever.

What It Feels Like

You feel you—or anyone else on the team—can understand a piece of
code you wrote a year ago and know exactly what it does in just one
reading.

Keeping Your Balance

• What’s obvious to you now may not be obvious to others, or to you
in a year’s time. Consider your coding to be a kind of time capsule
that will be opened in some unknowing future.

• There is no later. If you can’t do it right now, you won’t be able to
do it right later.

• Writing with intent doesn’t mean creating more classes or types.
It’s not an excuse for overabstraction.

• Use coupling that matches the situation: for instance, loose cou-
pling via a hash table is intended for a situation where the compo-
nents really are loosely coupled in real life. Don’t use it for compo-
nents that are tightly coupled, because that doesn’t express your
intent clearly.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=104

COMMUNICATE IN CODE 105

26 Communicate in Code
“Comments should help out when the code is too tangled to
read. Explain exactly what the code is doing, line by line. Don’t
worry about why; just tell us what on Earth it’s doing.”

Programmers generally hate writing documentation. That’s because
most documentation is kept separate from the code and becomes hard
to keep up-to-date. Besides violating the DRY principle (Don’t Repeat
Yourself, in [HT00]), it can lead to misleading documentation, which is
generally worse than none at all.

You need to document your code in two ways: using the code itself and
using comments to communicate noncode issues.

If you have to read through a method in order to understand what it
does, you wind up investing a lot of time and effort before you can
use that method in your own code. On the other hand, a few lines of
comments that describe the behavior of the method can make your life
easier. You quickly learn its intent, what its expectations are, and what
you need to watch out for—saving you a lot of effort.

Don’t comment to
cover up

Should you document all your code? To some
extent, yes. But that doesn’t mean you need
comments for most of the code you write, espe-
cially within the body of your methods. Source
code should be understandable not because it has comments but
because of its elegance and clarity—proper use of variable names, good
use of whitespace, good separation of logic, and concise expression.

Naming is a big deal. The names of program elements are often all the
reader of the code has to go on.3 By using well-chosen names, you
can convey a lot of intent and information to the reader. On the other
hand, using artificial naming schemes (such as the now-rebarbative
Hungarian Notation) can make the code harder to read and under-
stand. These schemes bombard you with low-level data typing infor-

3In The Wizard of Earthsea books, for example, knowing the true name of something
gives one complete power over it. Magical control via naming is a fairly common theme
in literature and mythology and has a similar effect in software.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=105

COMMUNICATE IN CODE 106

mation hard-coded in the names of variables and methods and make
for brittle, inflexible code.

With well-chosen names and clear execution paths, code needs very few
comments. In fact, when Andy and coauthor Dave Thomas wrote the
first book on the Ruby programming language [TH01], they were able to
document virtually the entire language just by reading the code to the
Ruby interpreter. And it was a good thing that the code spoke for itself,
instead of relying on comments: Ruby’s creator, Yukihiro Matsumoto,
is Japanese, and neither Andy nor Dave speak any Japanese beyond
“sukiyaki” and “sake.”

What makes a good name? A good name is one that conveys a lot of
correct information to the reader. A bad name conveys nothing, and a
terrible name conveys incorrect information.

For instance, a method named readAccount() that actually writes
address information to the disk would count as terrible (and yes, that
really happened. See [HT00]).

foo is a great and historically significant temporary variable name, but
it conveys no information as to the author’s intent. Fight the urge to
use cryptic variable names. Cryptic doesn’t necessarily mean short: i

is traditionally used as a loop index variable in many languages, and
s is generally used for a String of some sort. That’s idiomatic in many
languages and, even though short, isn’t necessarily cryptic. Using s for
a loop index variable in those environments would be a really bad idea,
and using indexvar isn’t really any better. You don’t need to belabor the
obvious with verbose variable names.

You’ll encounter the same issues with comments that convey the obvi-
ous, such as //Constructor next to a class constructor. Unfortu-
nately, this kind of comment is very prevalent—usually inserted by
overly helpful IDEs. At best, all it does it add noise to the source code.
At worst, it can end up being incorrect over the course of time.

Many comments just don’t convey anything useful. For instance,
what help do you get from the comment “This method allows you to
passthrough” for the passthrough() method? This kind of comment is
distracting and can easily get out of sync (as when you finally rename
the method to be sendToHost()).

It can be helpful to use comments to set up a road map of sorts to
point readers in the right direction. For each class or module in your

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=106

COMMUNICATE IN CODE 107

code, you can add a short description of its purpose and any special
requirements it has. For each method in the class, you might want to
mention some of the following:

• Purpose: Why does this method exist?

• Requirements (pre-conditions): What inputs do we need, and what
state must the object be in, for this method to work?

• Promises (post-conditions): What state is the object in, and what
values are returned, on successful completion of this method?

• Exceptions: What can go wrong, and what exceptions may be
thrown?

Thanks to tools such as RDoc, javadoc, and ndoc, it’s easy to create
useful, well-formatted documentation directly from comments embed-
ded in your code. These tools take your comments and produce pretty,
hyperlinked HTML output.

Here are excerpts from a piece of documented code in C#. Normal com-
ments are represented by //, and comments intended for documenta-
tion use /// (which is still a legal comment, of course).

using System;

namespace Bank

{

/// <summary>

/// A BankAccount represents a customer' s non-secured deposit

/// account in the domain (see Reg 47.5, section 3).

/// </summary>

public class BankAccount

{

...

/// <summary>

/// Increases balance by the given amount.

/// Requirements: can only deposit a positive amount.

/// </summary>

///

/// <param name="depositAmount">The amount to deposit, already

/// validated and converted to a Money object

/// </param>

///

/// <param name="depositSource">Origination of the monies

/// (see FundSource for details)

/// </param>

///

/// <returns>Resulting balance as a convenience

/// </returns>

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=107

COMMUNICATE IN CODE 108

Figure 6.1: Documentation extracted from code using ndoc

///

/// <exception cref="InvalidTransactionException">

/// If depositAmount is less than or equal to zero, or FundSource

/// is invalid (see Reg 47.5 section 7)

/// or does not have a sufficient balance.

/// </exception>

public Money Deposit(Money depositAmount, FundSource depositSource)

{

...

}

}

}

Figure 6.1 shows the documentation created using ndoc from the com-
ments in the C# code example. Javadoc for Java, RDoc for Ruby, and
others work pretty much the same way.

This sort of documentation is not just for people outside your team,
or organization. Imagine you are asked to fix some code a few months

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=108

COMMUNICATE IN CODE 109

after you wrote it: your life would be a lot easier if you could just quickly
look at the comments at the top of the method and glean from them the
important details you need to know. After all, if a method will work only
when there’s a full solar eclipse, it would be nice to know that up-front,
without having to examine the code in detail—or waiting another ten
years or so.

Code will always be read many more times than written, so the little
extra effort that is required to document your code when writing it will
pay you back handsomely in the end.

Comment to communicate. Document code using well-
chosen, meaningful names. Use comments to describe its
purpose and constraints. Don’t use commenting as a sub-
stitute for good code.

What It Feels Like

Comments feel like helpful friends; you can read them and quickly scan
code to fully understand what it’s doing and why.

Keeping Your Balance

• Blaise Pascal famously said he didn’t have time to write a short
letter, so he had to write a long one. Take the time to write a short
comment.

• Don’t use comments in places where real code can convey the
intent instead.

• Commenting what the code does isn’t that useful; instead, com-
ment why it does it.

• When you override methods, preserve the intent and the com-
ments that describe the purpose and constraints of the original
method.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=109

ACTIVELY EVALUATE TRADE-OFFS 110

27 Actively Evaluate Trade-Offs
“Performance, productivity, elegance, cost, and time to market
are the most important, critical issues in software development.
You have to maximize all of them.”

You may be part of a team where the manager or customer places a
lot of emphasis on the appearance of your application. There are also
teams where clients place much importance on performance. Within
the team, you may find a lead developer or architect who emphasizes
following the “right” paradigm more than anything else. Such exclusive
emphasis—on anything—without regard to whether it’s essential for the
success of the project is a recipe for disaster.

It is reasonable to think that performance is important, because poor
performance can kill an application’s chance of success in the market.
However, if your application’s performance is reasonable, should you
still work on getting it faster? Probably not. Many other aspects of an
application are also important. Rather than spend time eking out the
last millisecond, perhaps it’s more important to bring the application to
market sooner, with less development effort and at a lower cost.

For example, consider the case of a .NET Windows application that
has to communicate with a remote Windows server. You can choose
between using .NET remoting and web services to implement this facil-
ity. Now, the very mention of web services provokes some developers to
say, “We’re going from Windows to Windows, and the literature recom-
mends .NET remoting in this case. Besides, web services are slow, and
we’ll have performance problems.” That is, indeed, the party line.

However, in this case, going the web services route was easier to
develop. A quick measure of performance showed that the size of the
XML4 was pretty small, and the time spent in creating and parsing
XML was negligible compared to the time the application itself took to
respond. Going the web services route not only saved time in the short
run but proved to be wiser when the team was forced to switch to using
a third-party service later.

4XML documents are much like humans—they are cute and fun to deal with when
they’re small but can get really annoying as they grow bigger.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=110

ACTIVELY EVALUATE TRADE-OFFS 111

Andy Says. . .
Taking Things to Extremes

I once had a client who was a firm believer in configurability,
so much so, in fact, that their application had something like
10,000 configuration variables. Adding code became tortu-
ous because of the overhead of maintaining the configuration
application and database. But they swore they needed this
level of flexibility because every one of their customers had dif-
ferent requirements, and needed different settings.

But they had only nineteen customers and didn’t expect to
grow beyond fifty. That was not a good trade-off.

Consider an application where you have to fetch data from a database
and tabularize it for display. You could use an elegant object-oriented
approach to get the data from the database, creating objects and
returning them to the UI tier. In the UI tier, you can then fetch the
data from the objects and populate your table. Other than being ele-
gant, what are the benefits of this approach?

Maybe you could simply ask the data tier to return a dataset or col-
lection of data and then populate the table with that data. You could
avoid the overhead of object creation and destruction. If all you need is
to display data, why go through the hassle of creating objects? By not
doing OO by the book, you will have saved effort (and gained some per-
formance as well). There are significant drawbacks to this approach,
of course, but the point is to be aware of them, not just take the long
road out of habit.

After all, the cost of development and time you take to get to market
both have significant impact on the success of your application. And
because computers are getting cheaper and faster every day, you can
spend money on hardware to buy performance and invest the time that
you save on other aspects of the application.

Of course, that is true only to a point: if your hardware needs are so
great that you require a large grid of computers and a sizeable support
staff to keep it running (something the size of Google, say), then the
balance may tip back the other way.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=111

ACTIVELY EVALUATE TRADE-OFFS 112

But who decides whether the performance is adequate or whether the
look of the application is “dazzling” enough? The customers or stake-
holders must evaluate and make this decision (see Practice 10, Let
Customers Make Decisions, on page 45). If your team thinks the per-
formance can be improved or you can make something more attractive,
then consult the stakeholder and let them decide where you should
focus your efforts.

No best solution
No one best solution fits all circumstances.
You have to evaluate the problem on hand and
arrive at a solution that is the most suitable.

Each design is very specific to the particular problem—the better ones
are found by explicitly evaluating the trade-offs.

Actively evaluate trade-offs. Consider performance, con-
venience, productivity, cost, and time to market. If perfor-
mance is adequate, then focus on improving the other fac-
tors. Don’t complicate the design for the sake of perceived
performance or elegance.

What It Feels Like

Even though you can’t have everything, it should feel like you have the
important things—the features important to the customer.

Keeping Your Balance

• If you’re investing extra effort now for a perceived benefit later,
make sure the investment will pay off (most of the time, it probably
won’t).

• True high-performance systems are designed that way from the
beginning.

• Premature optimization is the root of all evil.5

• A solution or approach you have used in the past may—or may
not—be appropriate to the current problem. Don’t automatically
assume either position; check it out.

5Donald Knuth’s pithy summary of Hoare’s dictum[Knu92]

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=112

CODE IN INCREMENTS 113

28 Code in Increments
“Real programmers work for hours and hours straight, without
a break, without even looking up. Don’t break your flow to stop
and compile: just keep typing!”

When you’re driving on a long trip, does it make sense to hold the wheel
firmly in one position, stare straight ahead, and then just floor the gas
for a couple of hours? Of course not. You have to steer. You have to
be constantly aware of traffic. You have to check your gas gauge. You
have to stop for fuel, food, and other necessities, and so on.6

Don’t code for hours, or even minutes, without stopping to make sure
you’re on the right path—by testing what you produce. Instead, code
in short increments. You’ll find that coding in increments helps you
refine and structure the code as you go along. The code is less likely
to become complicated or messy; you build the code based on the on-
going feedback from writing and testing in increments.

When you write and test incrementally, you tend to create methods that
are smaller and classes that are more cohesive. You are not heads-
down, blindly writing large pieces of code in one shot. Instead, you are
constantly evaluating how the code is shaping up, making many small
adjustments rather than a few really, really large ones.

While you are writing code, constantly look for small ways to improve it.
You might work on its readability. Perhaps you discover that you can
break a method into smaller methods, thus making it more testable.
Many of the small improvements you make fall under the general head-
ing of Refactoring (discussed in Martin Fowler’s Refactoring: Improving
the Design of Existing Code [FBB+99]). You can use test-first develop-
ment (see Practice 20, Use It Before You Build It, on page 82) as a way
of enforcing incremental development. The key is to keep doing some-
thing small and useful, rather than saving up for a single long session
of coding or refactoring.

That’s the agile approach.

6Kent Beck introduced the driving analogy—and the importance of steering—in XP
Explained [Bec00].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=113

CODE IN INCREMENTS 114

Write code in short edit/build/test cycles. It’s better
than coding for an extended period of time. You’ll create
code that’s clearer, simpler, and easier to maintain.

What It Feels Like

You feel the urge to run a build/test cycle after writing a few lines of
code. You don’t want to go too far without getting feedback.

Keeping Your Balance

• If the build and test cycle takes too long, you won’t want to do it
often enough. Make sure the tests run quickly.

• Pausing to think and “zoom out” from the code details while the
compile and test is running is a good way to stay on track.

• When you take a break, take a real break. Step away from the
keyboard.

• Refactor tests as well as code and as frequently.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=114

KEEP IT SIMPLE 115

29 Keep It Simple
“Software is complex business. Any fool can write simple, ele-
gant software. You’ll get fame and recognition (not to mention
job security) by writing the most sophisticated, complex pro-
grams possible.”

Perhaps you come across an article that describes a design idea,
expressing it as a pattern with a fancy name. When you put the maga-
zine down, the chances are that the code in front of you suddenly looks
as if it would benefit from the new idea—that pattern—you picked up.
Ask yourself whether you really need that and how it will help with
the specific problem on hand. Ask yourself whether specific problems
forced you to use that solution. Don’t succumb to the pressure to
overdesign and overcomplicate your code.

Andy once knew a fellow who was so fascinated by design patterns, he
wanted to use all of them. At once. On one small, several-hundred-line
piece of code. He managed to get about seventeen of the original GOF
book [GHJV95] patterns involved in the hapless program before he was
discovered.

That’s not how you write agile code.

The problem is that many developers tend to confuse effort with com-
plexity. If you look at any given solution and say that it is simple and
easy to understand, chances are you’ll make its designer unhappy.
Many developers take pride in creating complexity: they often beam
with pride if you say, “Wow, that is hard—it should’ve taken a lot of
effort to arrive at!” On the contrary, you should be proud of creating a
simple design that works well.

Simple is not simplistic
Simplicity is widely misunderstood (in pro-
gramming as well as life in general). It doesn’t
mean simplistic, amateurish, or insufficient in
any way. Quite the opposite. Simplicity is often much more difficult to
achieve than an overly complex, kludgey solution.

Simplicity, in coding or writing, is like a chef’s fine reduction sauce.
You start with a lot of wine, stock, and spices and you carefully boil it
down to a super-concentrated essence. That’s what good code should
taste like—not a large watery mess but a rich, fine sauce.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=115

KEEP IT SIMPLE 116

Andy Says. . .
What Is elegance?

Elegant code is immediately obvious in its utility and clarity. But
the solution isn’t something you would have thought of eas-
ily. That is, elegance is easy to understand and recognize but
much harder to create.

One of the best ways to measure the quality of design is to listen to your
intuition. Intuition isn’t magic: it’s the culmination of your experience
and skill. When you look at a design, listen to that voice in your head. If
something bothers you, then it’s time to get an understanding of what’s
wrong. A good design makes you feel comfortable.

Develop the simplest solution that works. Incorporate
patterns, principles, and technology only if you have a com-
pelling reason to use them.

What It Feels Like

It feels right when there isn’t any line of code you could remove and still
deliver all the needed features. Code is easy to follow and correct.

Keeping Your Balance

• Code can almost always be refined even further, but at a cer-
tain point you won’t be getting any real benefit from continued
improvements. Stop and move on before you hit that point.

• Keep the goal in mind: simple, readable code. Trying to force ele-
gance is similar to premature optimization and just as damaging.

• Simple solutions must, of course, be adequate—compromising
features for simplicity is merely simplistic.

• Terse is not simple; it’s merely uncommunicative.

• One person’s simplicity may be another person’s complexity.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=116

WRITE COHESIVE CODE 117

30 Write Cohesive Code
“You are about to write some new code, and the first decision
you need to make is where to put it. It doesn’t really matter
where it goes, so just go ahead and add it to the class that
happens to be open in your IDE now. It’s easier to keep track
of code when it’s all in one big class or component anyway.”

Cohesion is a measure of how functionally related the members of a
component (package, module, or assembly) are. A higher value of cohe-
sion indicates that the members work toward one feature or set of fea-
tures. A lower value of cohesion indicates that the members provide a
disparate set of features.

Imagine tossing all your clothes into one drawer. When you need to
find a pair of socks, you will have to wade through all the clothes you
have in there—your pants, underwear, T-shirts, etc.—before you can
find the pair of socks you want. It can be very frustrating, especially
when you are in a hurry. Now, imagine keeping all your socks in one
drawer (in matching pairs), all your T-shirts in another, and so on. The
effort to find a pair of socks is merely to open the right drawer.

Similarly, how you organize a component can make a big difference
in your productivity and overall code maintenance. When you decide
to create a class, ask yourself whether the functionality provided by
this class is similar to and closely related to the functionality of other
classes already in that component. This is cohesion at the component
level.

Classes are also subject to cohesion. A class is cohesive if its methods
and properties work together to implement one feature (or a closely
related set of functionality).

Consider Mr. Charles Hess’s 1866 patent of a “Convertible Piano,
Couch, and Bureau” (Figure 6.2, on the following page). According
to his patent claim, it features the “...addition of couch, bureau...to fill
up the unused space underneath the piano....” He goes on to justify
the need for his convertible piano. You may have seen your share of
classes that resemble this invention in your projects. There isn’t much
cohesion here, and one can imagine that the maintenance on this beast
(changing the sheets, tuning the piano, etc.) is probably pretty difficult.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=117

WRITE COHESIVE CODE 118

Figure 6.2: U.S. Patent 56,413: Convertible Piano, Couch, and Bureau

For an example from this century, Venkat came across a twenty-page
web application written using ASP. Each page started out with HTML
and contained a serious amount of VBScript with embedded SQL state-
ments to access a database. The client was rightfully concerned that
this application had gotten out of hand and was hard to maintain. If
each page contains presentation logic, business logic, and code for data
access, too much is going on in one place.

Suppose you decide to make a slight change to the database table
schema. This small change will result in a change to all the pages
in this application and also multiple changes in each page—this appli-
cation becomes a disaster quickly.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=118

WRITE COHESIVE CODE 119

If instead the application had used a middle-tier object (such as a
COM component) to access the database, the impact of change in the
database schema would have been localized, making the code easier to
maintain.

The consequences of having low cohesion are pretty severe. Suppose
you have a class that implements five disparate features. This class
will have to change if the requirements or details of any of these five
features change. If a class (or a component) changes too frequently,
such a change may ripple through the system and will result in higher
maintenance and cost. Consider another class that implements just
one feature. This second class will change less frequently. Similarly,
a component that is more cohesive has fewer reasons to be modified
and is thus more stable. According to the Single Responsibility Prin-
ciple (see Agile Software Development: Principles, Patterns, and Prac-
tices [Mar02]), a module should have only one reason to change.

A number of design techniques can help. For instance, we often use the
Model-View-Controller (MVC) pattern to separate the presentation logic,
the control, and the model. This pattern is effective because it allows
you to achieve higher cohesion—the classes in the model contain one
kind of functionality, those in the control contain another kind, and
those in the view are solely concerned with UI.

Cohesion affects reusability of a component as well. The granularity of
a component is an important design consideration. According to the
Reuse Release Equivalency principle ([Mar02]), “Granularity of reuse is
the same as the granularity of release.” That is, a user of your library
should have a need for the entire library and not only a part of it. Fail
to follow this principle, and users of your component are forced to use
only part of the component you have released. Unfortunately, they’ll
still be affected by updates to the parts they don’t care about. The
bigger the package, the less reusable it is.

Keep classes focused and components small. Avoid the
temptation to build large classes or components or miscel-
laneous catchall classes.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=119

WRITE COHESIVE CODE 120

What It Feels Like

Classes and components feel tightly focused: each does one thing, and
does it well. Bugs are easy to track down, and code is easy to modify
because responsibilities are clear.

Keeping Your Balance

• It’s possible to break something down into so many little parts that
it isn’t useful anymore. A box of cotton fibers isn’t helpful when
you need a sock.7

• Cohesive code can be changed proportionally to the change in
requirements. Consider how many code changes you need to
implement a simple functional change.8

7You might call this a “Spaghetti OOs” system.
8One reviewer told us of a system that needed sixteen team members and six man-

agers to add one field to a form. That’s a pretty clear warning sign of a noncohesive
system.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=120

TELL, DON’T ASK 121

31 Tell, Don’t Ask
“Don’t trust other objects. After all, they were written by other
people, or even by you last month when you weren’t as smart.
Get the information you need from others, and then do your
own calculations and make your own decisions. Don’t give up
control to others!”

“Procedural code gets information and then makes decisions. Object-
oriented code tells objects to do things.” Alec Sharp [Sha97] hit the nail
on the head with that observation. But it’s not limited to the object-
oriented paradigm; any agile code should follow this same path.

As the caller, you should not make decisions based on the state of the
called object and then change the state of that object. The logic you are
implementing should be the called object’s responsibility, not yours.
For you to make decisions outside the object violates its encapsulation
and provides a fertile breeding ground for bugs.

David Bock illustrates this well with the tale of the paperboy and the
wallet.9 Suppose the paperboy comes to your door, requesting his pay-
ment for the week. You turn around and let the paperboy pull your
wallet out of your back pocket, take the two bucks (you hope), and put
the wallet back. The paper boy then drives off in his shiny new Jaguar.

The paperboy, as the “caller” in this transaction, should simply tell the
customer to pay $2. There’s no inquiry into the customer’s financial
state, or the condition of the wallet, and no decision on the paperboy’s
part. All of that is the customer’s responsibility, not the paperboy’s.
Agile code should work the same way.

Keep commands
separate from queries

A helpful side technique related to Tell, Don’t
Ask is known as command-query separa-
tion [Mey97]. The idea is to categorize each of
your functions and methods as either a com-
mand or a query and document them as such in the source code (it
helps if all the commands are grouped together and all the queries are
grouped together).

A routine acting as a command will likely change the state of the object
and might also return some useful value as a convenience. A query just

9http://www.javaguy.org/papers/demeter.pdf

Report erratum

http://www.javaguy.org/papers/demeter.pdf
http://books.pragprog.com/titles/pad/errata/add?pdf_page=121

TELL, DON’T ASK 122

Beware of Side Effects

Have you ever heard someone say, “Oh—we’re just calling that
method because of its side effects.” That’s pretty much on par
with defending an odd bit of architecture by saying, “Well, it’s
like that because it used to....”

Statements such as these are clear warning signs of a fragile,
not agile, design.

Relying on side effects or living with an increasingly twisted
design that just doesn’t match reality are urgent indications you
need to redesign and refactor the code.

gives you information about the state of the object and does not modify
the externally visible state of the object.

That is, queries should be side effect free as seen from the outside world
(you may want to do some pre-calculation or caching behind the scenes
as needed, but fetching the value of X in the object should not change
the value of Y).

Mentally framing methods as commands helps reinforce the idea of Tell,
Don’t Ask. Additionally, keeping queries as side effect free is just good
practice anyway, because you can use them freely in unit tests, call
them from assertions, or from the debugger, all without changing the
state of the application.

Explicitly considering queries separately from commands also gives you
the opportunity to ask yourself why you’re exposing a particular piece
of data. Do you really need to do so? What would a caller do with it?
Perhaps there should be a related command instead.

Tell, don’t ask. Don’t take on another object’s or compo-
nent’s job. Tell it what to do, and stick to your own job.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=122

TELL, DON’T ASK 123

What It Feels Like

Smalltalk uses the concept of “message passing” instead of method
calls. Tell, Don’t Ask feels like you’re sending messages, not calling
functions.

Keeping Your Balance

• Objects that are just giant data holders are suspect. Sometimes
you need such things, but maybe not as often as you think.

• It’s OK for a command to return data as a convenience (it’d be nice
to be able to retrieve that data separately, too, if that’s needed).

• It’s not OK for an innocent-looking query to change the state of an
object.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=123

SUBSTITUTE BY CONTRACT 124

32 Substitute by Contract
“Deep inheritance hierarchies are great. If you need functional-
ity from some other class, just inherit from it! And don’t worry
if your new class breaks things; your callers can just change
their code. It’s their problem, not yours.”

A key way to keep systems flexible is by letting new code take the place
of existing code without the existing code knowing the difference. For
instance, you might need to add a new type of encryption to a commu-
nications infrastructure or implement a better search algorithm using
the same interface. As long as the interface remains the same, you are
free to change the implementation without changing any other code.
That’s easier said than done, however, so we need a little bit of guid-
ance to do it correctly. For that, we’ll turn to Barbara Liskov.

Liskov’s Substitution principle [Lis88] tells us that “Any derived class
object must be substitutable wherever a base class object is used, with-
out the need for the user to know the difference.” In other words, code
that uses methods in base classes must be able to use objects of derived
classes without modification.

What does that mean exactly? Suppose you have a simple method in
a class that sorts a list of strings and returns a new list. You might
invoke it like this:

utils = new BasicUtils();

...

sortedList = utils.sort(aList);

Now suppose you subclass the BasicUtils class and make a new sort()
method that uses a much better, faster sort algorithm:

utils = new FasterUtils();

...

sortedList = utils.sort(aList);

Note the call to sort() is the same; a FasterUtils object is perfectly sub-
stitutable for a BasicUtils object. The code that calls utils.sort() could be
handed a utils of either type, and it would work fine.

But if you made a subclass of BasicUtils that changed the meaning of
sort—returning a list that sorted in reverse order, perhaps—then you’ve
grossly violated the Substitution principle.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=124

SUBSTITUTE BY CONTRACT 125

Inheritence Delegation

Base Class

methodA()

Called Class

Called Class

methodA() →
Delegate Class

methodA()

1

Figure 6.3: Delegation versus inheritance

To comply with the Substitution principle, your derived class services
(methods) should require no more, and promise no less, than the corre-
sponding methods of the base class; it needs to be freely substitutable.
This is an important consideration when designing class inheritance
hierarchies.

Inheritance is one of the most abused concepts in OO modeling and
programming. If you violate the Substitution principle, your inheri-
tance hierarchy may still provide code reusability but will not help with
extensibility. The user of your class hierarchy may now have to exam-
ine the type of the object it is given in order to know how to handle it. As
new classes are introduced, that code has to constantly be reevaluated
and revised. That’s not an agile approach.

But help is available. Your compiler may help you enforce the LSP, at
least to some extent. For example, consider method access modifiers.
In Java, the overriding method’s access modifier must be the same or
more lenient than the modifier of the overridden method. That is, if
the base method is protected, the derived overriding method must be
protected or public. In C# and VB .NET, the access protection of the
overridden method and the overriding method are required to be the
same.

Consider a class Base with a method findLargest() that throws an Index-

OutOfRangeException. Based on the documentation, a user of this class
will prepare to catch that exception if thrown. Now, assume you inherit
the class Derived from Base, override the method findLargest(), and in

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=125

SUBSTITUTE BY CONTRACT 126

the new method throw a different exception. Now, if an instance of
Derived is used by code expecting an object of class Base, that code
may receive an unexpected exception. Your Derived class is not substi-
tutable wherever Base is used. Java avoids this problem by not allowing
you to throw any new kind of checked exceptions from the overriding
methods, unless the exception itself derives from one of the exception
classes thrown from the overridden method (of course, for unchecked
exceptions such as RuntimeException, the compiler won’t help you).

Unfortunately, Java violates the Substitution principle as well. The
java.util.Stack class derives from the java.util.Vector class. If you (inadver-
tently) send an object of Stack to a method that expects an instance of
Vector, the elements in the Stack can be inserted or removed in an order
inconsistent with its intended behavior.

Use inheritance
for is-a;
use delegation
for has-a or uses-a

When using inheritance, ask yourself whether
your derived class is substitutable in place of
the base class. If the answer is no, then ask
yourself why you are using inheritance. If the
answer is to reuse code in the base class when
developing your new class, then you should

probably use composition instead. Composition is where an object of
your class contains and uses an object of another class, delegating
responsibilities to the contained object (this technique is also known as
delegation).

Figure 6.3, on the page before shows the difference. Here, a caller
invoking methodA() in Called Class will get it automatically from Base

Class via inheritance. In the delegation model, the Called Class has to
explicitly forward the method call to the contained delegate.

When should you use inheritance versus delegation?

• If your new class can be used in place of the existing class and
the relationship between them can be described as is-a, then use
inheritance.

• If your new class needs to simply use the existing class and the
relationship can be described as has-a or uses-a, then use dele-
gation.

You may argue that in the case of delegation you have to write lots
of tiny methods that route method calls to the contained object. In
inheritance, you don’t need these, because the public methods of the

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=126

SUBSTITUTE BY CONTRACT 127

base class are readily available in the derived class. By itself, that’s not
a good enough reason to use inheritance.

You can write a good script or a nice IDE macro to help you write these
few lines of code or use a better language/environment that supports a
more automatic form of delegation (Ruby does this nicely, for instance).

Extend systems by substituting code. Add and enhance
features by substituting classes that honor the interface
contract. Delegation is almost always preferable to inheri-
tance.

What It Feels Like

It feels sneaky; you can sneak a replacement component into the code
base without any of the rest of the code knowing about it to achieve
new and improved functionality.

Keeping Your Balance

• Delegation is usually more flexible and adaptable than inheri-
tance.

• Inheritance isn’t evil, just misunderstood.

• If you aren’t sure what an interface really promises or requires, it
will be hard to provide an implementation that honors it.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=127

You might get the impression that
experienced woodworkers never make
mistakes. I can assure you that isn’t true.
Pros simply know how to salvage
their goofs.

Jeff Miller, furniture maker and
author Chapter 7

Agile Debugging
Even on the most talented agile projects, things will go wrong. Bugs,
errors, defects, mistakes—whatever you want to call them, they will
happen.

The real problem with debugging is that it is not amenable to a time
box. You can time box a design meeting and decide to go with the best
idea at the end of some fixed time. But with a debugging session, an
hour, a day, or a week may come and go and find you no closer to
finding and fixing the problem.

You really can’t afford that sort of open-ended exposure on a project.
So, we have some techniques that might help, from keeping track of
previous solutions to providing more helpful clues in the event of a
problem.

To reuse your knowledge and effort better, it can help to Keep a Solu-
tions Log, and we’ll see how on the following page. When the compiler
warns you that something is amiss, you need to assume that Warnings
Are Really Errors and address them right away (that’s on page 132).

It can be very hard—even impossible—to track down problems in the
middle of a entire system. You have a much better chance at finding the
problem when you Attack Problems in Isolation, as we’ll see on page 136.
When something does go wrong, don’t hide the truth. Unlike some
government cover-up, you’ll want to Report All Exceptions, as described
on page 139. Finally, when you do report that something has gone
awry, you have to be considerate of users, and Provide Useful Error
Messages. We’ll see why on page 141.

KEEP A SOLUTIONS LOG 129

33 Keep a Solutions Log
“Do you often get that déjà vu feeling during development? Do
you often get that déjà vu feeling during development? That’s
OK. You figured it out once. You can figure it out again.”

Facing problems (and solving them) is a way of life for developers. When
a problem arises, you want to solve it quickly. If a similar problem
occurs again, you want to remember what you did the first time and
fix it more quickly the next time. Unfortunately, sometimes you’ll see a
problem that looks the same as something you’ve seen before but can’t
remember the fix. This happens to us all the time.

Can’t you just search the Web for an answer? After all, the Internet
has grown to be this incredible resource, and you might as well put
that to good use. Certainly searching the Web for an answer is better
than wasting time in isolated efforts. However, it can be very time-
consuming. Sometimes you find the answers you’re looking for; other
times, you end up reading a lot of opinions and ideas instead of real
solutions. It might be comforting to see how many other developers
have had the same problem, but what you need is a solution.

Don’t get burned twice
To be more productive than that, maintain
a log of problems faced and solutions found.
When a problem appears, instead of saying,
“Man, I’ve seen this before, but I have no clue how I fixed it,” you can
quickly look up the solution you’ve used in the past. Engineers have
done this for years: they call them daylogs.

You can choose any format that suits your needs. Here are some items
that you might want to include in your entries:

• Date of the problem

• Short description of the problem or issue
• Detailed description of the solution

• References to articles, and URLs, that have more details or related
information

• Any code segments, settings, and snapshots of dialogs that may
be part of the solution or help you further understand the details

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=129

KEEP A SOLUTIONS LOG 130

04/01/2006: Installed new version of Qvm (2.1.6),
which fixed problem where cache entries never got
deleted.

04/27/2006: If you use KQED version 6 or earlier, you
have to rename the base directory to _kqed6 to avoid
a conflict with the in-house Core library.

Figure 7.1: Example of a solutions log entry, with hyperlinks

Keep the log in a computer-searchable format. That way you can per-
form a keyword search to look up the details quickly. Figure 7.1 shows
a simple example, with hyperlinks to more information.

When you face a problem and you can’t find the solution in your log,
remember to update your log with the new details as soon as you do
figure out a solution.

Even better than maintaining a log is sharing it with others. Make it
part of your shared network drive so others can use it. Or create a Wiki,
and encourage other developers to use it and update it.

Maintain a log of problems and their solutions. Part of
fixing a problem is retaining details of the solution so you
can find and apply it later.

What It Feels Like

Your solutions log feels like part of your brain. You can find details on
particular issues and also get guidance on similar but different issues.

Keeping Your Balance

• You still need to spend more time solving problems than docu-
menting them. Keep it light and simple; it doesn’t have to be
publication quality.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=130

KEEP A SOLUTIONS LOG 131

• Finding previous solutions is critical; use plenty of keywords that
will help you find an entry when needed.

• If a web search doesn’t find anyone else with the same problem,
perhaps you’re using something incorrectly.

• Keep track of the specific version of the application, framework
or platform where the problem occurred. The same problem can
manifest itself differently on different platforms/versions.

• Record why the team made an important decision. That’s the sort
of detail that’s hard to remember six to nine months later, when
the decision needs to be revisited and recriminations fill the air.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=131

WARNINGS ARE REALLY ERRORS 132

34 Warnings Are Really Errors
“Compiler warnings are just for the overly cautious and pedan-
tic. They’re just warnings after all. If they were serious, they’d
be errors, and you couldn’t compile. So just ignore them, and
let ’er rip.”

When your program has a compilation error, the compiler or build tool
refuses to produce an executable. You don’t have a choice—you have
to fix the error before moving on.

Warnings, unfortunately, are not like that. You can run the program
that generates compiler warnings if you want. What happens if you
ignore warnings and continue to develop your code? You’re sitting on
a ticking time bomb, one that will probably go off at the worst possible
moment.

Some warnings are benign by-products of a fussy compiler (or inter-
preter), but others are not. For instance, a warning about a variable
not being used in the code is probably benign but may also allude to
the use of some other incorrect variable.

At a recent client site, Venkat found more than 300 warnings in an
application in production. One of the warnings that was being ignored
by the developers said this:

Assignment in conditional expression is always constant;

did you mean to use == instead of = ?

The offending code was something like this:

if (theTextBox.Visible = true)

...

In other words, that if will always evaluate as true, regardless of the
hapless theTextBox variable. It’s scary to see genuine errors such as this
slip through as warnings and be ignored.

Consider the following C# code:

public class Base

{

public virtual void foo()

{

Console.WriteLine("Base.foo");

}

}

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=132

WARNINGS ARE REALLY ERRORS 133

public class Derived : Base

{

public virtual void foo()

{

Console.WriteLine("Derived.foo");

}

}

class Test

{

static void Main(string[] args)

{

Derived d = new Derived();

Base b = d;

d.foo();

b.foo();

}

}

When you compile this code using the default Visual Studio 2003
project settings, you’ll see the message “Build: 1 succeeded, 0 failed,
0 skipped” at the bottom of the Output window. When you run the
program, you’ll get this output:

Derived.foo

Base.foo

But this isn’t what you’d expect. You should see both the calls to foo()
end up in the Derived class. What went wrong? If you examine the
Output window closely, you’ll find a warning message:

Warning. Derived.foo hides inherited member Base.foo

To make the current member override that implementation,

add the override keyword. Otherwise, you' d add the new keyword.

This was clearly an error—the code should use override instead of virtual
in the Derived class’s foo() method.1 Imagine systematically ignoring
warnings like this in your code. The behavior of your code becomes
unpredictable, and its quality plummets.

You might argue that good unit tests will find these problems. Yes,
they will help (and you should certainly use good unit tests). But if the
compiler can detect this kind of problem, why not let it? It’ll save you
both some time and some headaches.

1And this is an insidious trap for former C++ programmers; the program would work
as expected in C++.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=133

WARNINGS ARE REALLY ERRORS 134

Find a way to tell your compiler to treat warnings as errors. If your
compiler allows you to fine-tune warning reporting levels, turn that
knob all the way up so no warnings are ignored. GCC compilers support
the -Werror flag, for example, and in Visual Studio, you can change the
project settings to treat warnings as errors.

That is the least you should do on a project. Unfortunately, if you go
that route, you will have to do it on each project you create. It’d be nice
to enable that more or less globally.

In Visual Studio, for instance, you can modify the project templates
(see .NET Gotchas [Sub05] for details) so any project you create on your
machine will have the option set, and in the current version of Eclipse,
you can change these settings under Window → Preferences → Java →
Compiler → Errors/Warnings. If you’re using other languages or IDEs,
take time to find how you can treat warnings as errors in them.

While you’re modifying settings, set those same flags in the continuous
integration tool that you use on your build machine. (For details on
continuous integration, see Practice 21, Different Makes a Difference,
on page 87.) This small change can have a huge impact on the quality
of the code that your team is checking into the source control system.

You want to get all of this set up right as you start the project; suddenly
turning warnings on partway through a project may be too overwhelm-
ing to handle.

Just because your compiler treats warnings lightly doesn’t mean you
should.

Treat warnings as errors. Checking in code with warn-
ings is just as bad as checking in code with errors or code
that fails its tests. No checked-in code should produce any
warnings from the build tools.

What It Feels Like

Warnings feel like...well, warnings. They are warning you about some-
thing, and that gets your attention.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=134

WARNINGS ARE REALLY ERRORS 135

Keeping Your Balance

• Although we’ve been talking about compiled languages here, inter-
preted languages usually have a flag that enables run-time warn-
ings. Use that flag, and capture the output so you can identify—
end eliminate—the warnings.

• Some warnings can’t be stopped because of compiler bugs or prob-
lems with third-party tools or code. If it can’t be helped, don’t
waste further time on it. But this shouldn’t happen very often.

• You can usually instruct the compiler to specifically suppress
unavoidable warnings so you don’t have to wade through them
to find genuine warnings and errors.

• Deprecated methods have been deprecated for a reason. Stop
using them. At a minimum, schedule an iteration where they (and
their attendant warning messages) can be removed.

• If you mark methods you’ve written as deprecated, document what
current users should do instead and when the deprecated meth-
ods will be removed altogether.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=135

ATTACK PROBLEMS IN ISOLATION 136

35 Attack Problems in Isolation
“Stepping line by line through a massive code base is pretty
scary. But the only way to debug a significant problem is to
look at the entire system. All at once. After all, you don’t know
where the problem may be, and that’s the only way to find it.”

One of the positive side effects of unit testing (Chapter 5, Agile Feed-
back, on page 76) is that it forces you to layer your code. To make your
code testable, you have to untangle it from its surroundings. If your
code depends on other modules, you’ll use mock objects to isolate it
from those other modules. In addition to making your code robust, it
makes it easier to locate problems as they arise.

Otherwise, you may have problems figuring out where to even start.
You might start by using a debugger, stepping through the code and
trying to isolate the problem. You may have to go through a few forms
or dialogs before you can get to the interesting part, and that makes
it hard to reach the problem area. You may find yourself struggling
with the entire system at this point, and that just increases stress and
reduces productivity.

Large systems are complicated—many factors are involved in the way
they execute. While working with the entire system, it’s hard to sepa-
rate the details that have an effect on your particular problem from the
ones that don’t.

The answer is clear: don’t try to work with the whole system at once.
Separate the component or module you’re having problems with from
the rest of the code base for serious debugging. If you have unit tests,
you’re there already. Otherwise, you’ll have to get creative.

For instance, in the middle of a time-critical project (aren’t they all?),
Fred and George found themselves facing a major data corruption prob-
lem. It took a lot of work to find what was wrong, because their team
didn’t separate the database-related code from the rest of the appli-
cation. They had no way to report the problem to the vendor—they
certainly couldn’t email the entire source code base to them!

So, they developed a small prototype that exhibited similar symptoms.
They sent this to the vendor as an example and asked for their expert
opinion. Working with the prototype helped them understand the
issues more clearly.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=136

ATTACK PROBLEMS IN ISOLATION 137

Plus, if they weren’t able to reproduce the problem in the prototype,
it would have shown them examples of code that actually worked and
would have helped them isolate the problem.

Prototype to isolate
The first step in identifying complex problems
is to isolate them. You wouldn’t try to fix an
airplane engine in midair, so why would you
diagnose a hard problem in a part or component of your application
while it’s working inside the entire application? It’s easier to fix engines
when they’re out of the aircraft and on the workbench. Similarly, it’s
easier to fix problems in code if you can isolate the module causing the
problem.

But many applications are written in a way that makes isolation dif-
ficult. Application components or parts may be intertwined with each
other; try to extract one, and all the rest come along too.2 In these
cases, you may be better off spending some time ripping out the code
that is of concern and creating a test bed on which to work.

Attacking a problem in isolation has a number of advantages: by isolat-
ing the problem from the rest of the application, you are able to focus
directly on just the issues that are relevant to the problem. You can
change as much as you need to get to the bottom of the problem—you
aren’t dealing with the live application. You get to the problem quicker
because you’re working with the minimal amount of relevant code.

Isolating problems is not just something you do after the application
ships. Isolation can help us when prototyping, debugging, and testing.

Attack problems in isolation. Separate a problem area
from its surroundings when working on it, especially in a
large application.

What It Feels Like

When faced with a problem that you have to isolate, it feels like search-
ing for a needle in a tea cup, not a needle in a haystack.

2This is affectionately known as the “Big Ball of Mud” design antipattern.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=137

ATTACK PROBLEMS IN ISOLATION 138

Keeping Your Balance

• If you separate code from its environment and the problem goes
away, you’ve helped to isolate the problem.

• On the other hand, if you separate code from its environment
and the problem doesn’t go away, you’ve still helped to isolate
the problem.

• It can be useful to binary chop through a problem. That is, divide
the problem space in half, and see which half contains the prob-
lem. Then divide that half in half again, and repeat.

• Before attacking your problem, consult your log (see Practice 33,
Keep a Solutions Log, on page 129).

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=138

REPORT ALL EXCEPTIONS 139

36 Report All Exceptions
“Protect your caller from weird exceptions. It’s your job to han-
dle it. Wrap everything you call, and send your own exception
up instead—or just swallow it.”

Part of any programming job is to think through how things should
work. But it’s much more profitable to think about what happens when
things don’t work—when things don’t go as planned.

Perhaps you’re calling some code that might throw an exception; in
your own code you can try to handle and recover from that failure. It’s
great if you can recover and continue with the processing without your
user being aware of any problem. If you can’t recover, it’s great to let
the user of your code know exactly what went wrong.

But that doesn’t always happen. Venkat found himself quite frustrated
with a popular open-source library (which will remain unnamed here).
When he invoked a method that was supposed to create an object, he
received a null reference instead. The code was small, isolated, and
simple enough, so not a whole lot could’ve been messed up at the code
level. Still, he had no clue what went wrong.

Fortunately it was open source, so he downloaded the source code
and examined the method in question. It in turn called another
method, and that method determined that some necessary compo-
nents were missing on his system. This low-level method threw an
exception containing information to that effect. Unfortunately, the top-
level method quietly suppressed that exception with an empty catch
block and returned a null instead. The code Venkat had written had no
way of knowing what had happened; only by reading the library code
could he understand the problem and finally get the missing compo-
nent installed.

Checked exceptions, such as those in Java, force you to catch or prop-
agate exceptions. Unfortunately, some developers, maybe temporarily,
catch and ignore exceptions just to keep the compiler from complaining.
This is dangerous—temporary fixes are often forgotten and end up in
production code. You must handle all exceptions and recover from the
failures if you can. If you can’t handle it yourself, propagate it to your
method’s caller so it can take a stab at handling it (or gracefully com-

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=139

REPORT ALL EXCEPTIONS 140

municate the information about the problem to users; see Practice 37,
Provide Useful Error Messages, on the next page).

Sounds pretty obvious, doesn’t it? Well, maybe it’s not as obvious as
you think. A story in the news not long ago talked about a major failure
of a large airline reservations system. The system crashed, grounding
airplanes, stranding thousands of passengers, and snarling the entire
air transportation system for days. The cause? A single unchecked SQL
exception in an application server.

Maybe you’d enjoy the fame of being mentioned on CNN, but probably
not like that.

Handle or propagate all exceptions. Don’t suppress them,
even temporarily. Write your code with the expectation that
things will fail.

What It Feels Like

You feel you can rely on getting an exception when something bad hap-
pens. There are no empty exception handlers.

Keeping Your Balance

• Determining who is responsible for handling an exception is part
of design.

• Not all situations are exceptional.

• Report an exception that has meaning in the context of this code.
A NullPointerException is pretty but just as useless as the null object
described earlier.

• If the code writes a running debug log, issue a log message when
an exception is caught or thrown; this will make tracking them
down much easier.

• Checked exceptions can be onerous to work with. No one wants to
call a method that throws thirty-one different checked exceptions.
That’s a design error: fix it, don’t patch over it.

• Propagate what you can’t handle.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=140

PROVIDE USEFUL ERROR MESSAGES 141

37 Provide Useful Error Messages
“Don’t scare the users, or even other programmers. Give them
a nice, sanitized error message. Use something comforting like
‘User Error. Replace, and Continue.”’

As applications are deployed and put into use in the real world, things
will fail from time to time. A computation module may fail, for instance,
or the connection to a database server may be lost. When you can’t
honor a user’s request, you want to handle it gracefully.

When such an error occurs, is it enough to pop up a graceful, apologetic
message to the user? Sure, a general message that informs the user
about a failure is better than the application misbehaving or disappear-
ing because of a crash (which leaves the user confused and wondering
what happened). However, a message along the lines of “something
went wrong” doesn’t help your team diagnose the problem. When users
call your support team to report the problem, you’d like them to report a
lot of good information so you can identify the problem quickly. Unfor-
tunately, with just a general error message, they won’t be able to tell
you much.

The most common solution to this issue is logging: when something
goes wrong, have the application log details of the error. In the most
rudimentary approach, the log is maintained as a text file. But you
might instead publish to a systemwide event log. You can use tools to
browse through the logs, generate an RSS feed of all logged messages,
and so on.

While logging is useful, it is not sufficient: it might give you, the devel-
oper, information if you dig for it, but it doesn’t help the hapless user. If
you show them something like the message in Figure 7.2, on the follow-
ing page, they are left clueless—they don’t know what they did wrong,
what they might do to work around it, or even what to report when they
call tech support.

If you pay attention, you may find early warning signs of this problem
during development. As a developer, you’ll often pretend to be a user
in order to test new functionality. If error messages are hard for you to
understand or are not helpful to locate problems, imagine how hard it
will be for your real users and your support team.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=141

PROVIDE USEFUL ERROR MESSAGES 142

Figure 7.2: Exception message that doesn’t help

For example, suppose the logon UI calls the middle tier of your appli-
cation, which makes a request to its database tier. The database tier
throws an exception because it couldn’t connect to a database. The
middle tier then wraps that exception into its own exception and passes
that up. What should your UI tier do? It should at least let the user
know there was a system error, and it’s not due to any user input.

So the user calls up and tells you that he can’t log on. How can you
locate the actual problem? The log file may have hundreds of entries,
and it’s going to be hard to find the relevant details.

Instead, provide more details right in the message you give the user.
Imagine being able to see exactly which SQL query or stored procedure
messed up: this can make the difference between finding the prob-
lem and moving ahead versus wasting hours trying to find the problem
blindly. On the other hand, providing the specific details about what
went wrong during database connectivity doesn’t help the users once
the application is in production. It may well scare the living daylights
out of some users.

On one hand, you want to provide users with a clean, high-level expla-
nation of what went wrong so that they can understand the problem
and perhaps pursue a workaround. On the other hand, you want to
give them all the low-level, nitty-gritty details of the error so that you
can identify the real problem in the code.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=142

PROVIDE USEFUL ERROR MESSAGES 143

Figure 7.3: An exception message with link for more details

Here’s one way to reconcile those disparate goals: Figure 7.3 shows
a high-level message that appears when something goes wrong. This
error message, instead of being just simple text, contains a hyperlink.
The user, the developers, or the testers can then follow this link to get
more information, as shown in Figure 7.4, on the following page.

When you follow the link, you’ll see details about the exception (and all
the nested exceptions). During development, you may want to simply
display these details by default. When the application goes into pro-
duction, however, you’ll probably want to modify this so that instead of
displaying these gory details directly to the users, you provide a link or
some sort of handle or entry into your error log. Your support team can
ask the user to click the error message and read the handle so they can
quickly find the specific details in the log. In the case of a stand-alone
system, clicking the link might email the details of what went wrong
directly to your support department.

The information you’ve logged may contain not only the details about
what went wrong but also a snapshot of the state of the system as well
(the session state in a web application, for example).3

3Some security-sensitive information should not be revealed or even logged; this
includes items such as passwords, account numbers, etc.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=143

PROVIDE USEFUL ERROR MESSAGES 144

Figure 7.4: Complete details displayed for debugging

Using these details, your support group can re-create the situation that
caused the problem, which will really help efforts to find and fix the
issue.

Error reporting has a big impact on developer productivity as well as
your eventual support costs. If finding and fixing problems during
development is frustrating, take it as an early sign that you need a
more proactive approach to error reporting. Debugging information is
precious and hard to come by. Don’t throw it away.

Present useful error messages. Provide an easy way to
find the details of errors. Present as much supporting detail
as you can about a problem when it occurs, but don’t bury
the user with it.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=144

PROVIDE USEFUL ERROR MESSAGES 145

Distinguishing Types of Errors

Program defects. These are genuine bugs, such as NullPointer-
Exception, missing key values, etc. There’s nothing the user
or system administrators can do.

Environmental problems. This category includes failure to
connect to a database or a remote web service, a full
disk, insufficient permissions, and that sort of thing. The pro-
grammer can’t do anything about it, but the user might
be able to get around it, and the system administrator cer-
tainly should be able to fix it, if you give them sufficiently
detailed information.

User error. No need to bother the programmer or the system
administrators about this; the user just needs to try again,
after you tell them what they did wrong.

By keeping track of what kind of error you are reporting, you
can provide more appropriate advice to your audience.

What It Feels Like

Error messages feel useful and helpful. When a problem arises, you
can hone in on the precise details of what went wrong, where.

Keeping Your Balance

• An error message that says “File Not Found” is not helpful by
itself. “Can’t open /andy/project/main.yaml for reading” is
much more informative.

• You don’t have to wait for an exception to tell you something went
wrong. Use assertions at key points in the code to make sure
everything is correct. When an assertion fails, provide the same
good level of detail you would for exception reporting.

• Providing more information should not compromise security, pri-
vacy, trade secrets, or any other sensitive information (this is
especially true for web-based applications).

• The information you provide the user might include a key to help
you find the relevant section in a log file or audit trail.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=145

I not only use all of the brains I have, but
all I can borrow.

Woodrow Wilson, U.S. president

Chapter 8

Agile Collaboration
Any nontrivial project requires a team of people. The days of building a
full product alone, in your garage, have pretty much passed us by. But
working in a team is very different from working alone; suddenly, your
actions have consequences on the productivity and progress of others
in the team and on the entire project.

The success of a project depends on how effectively the people on the
team work together, how they interact, and how they manage their
activities. Everyone’s actions must be relevant to the context of the
project, and in turn each individual action affects the project context.

Effective collaborative is a cornerstone of agile development, and these
practices will help keep everyone involved and headed in the right
direction—together.

The first step you want to take is to Schedule Regular Face Time, on
page 148. A face-to-face meeting is still the most effective way to com-
municate, so we’ll start with that. Next, you want to get everyone in
the game. That means Architects Must Write Code (we’ll see why on
page 152). And since you and your team are all in this together, you
want to Practice Collective Ownership (that’s on page 155) to make sure
you aren’t held hostage by any one team member. This is a collaborative
effort, remember?

But effective collaboration is more than just banging code out the door.
Everyone on the team needs to refine and improve their skills over time
and grow their careers. Even if you’re just starting out, you can Be
a Mentor, and we’ll see how on page 157. Many times you’ll know
the answer to something that a teammate may not know. You can

CHAPTER 8. AGILE COLLABORATION 147

help grow the team if you Allow People to Figure It Out, as we’ll see on
page 160.

Finally, since you are working together on a team, you need to modify
some of your personal coding practices to accommodate the rest of the
team. For starters, it’s polite to Share Code Only When Ready (starting
on page 162) so as not to encumber your teammates with half-baked
works in progress. When you’re ready, you’ll want to Review Code
with other team members (and we’ll look at that on page 165). As the
project rolls along and you complete tasks and take on new ones, you
need to Keep Others Informed about your progress, problems you’ve
encountered, and neat things you’ve discovered. We’ll conclude with
that practice on page 168.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=147

SCHEDULE REGULAR FACE TIME 148

38 Schedule Regular Face Time
“You need to hold meetings—lots of them. In fact, we’re going to
keep scheduling more meetings until we discover why no work
is getting done.”

You may personally hate meetings, but communication is key to the
success of projects. Not only do you need to talk to your customers,
but you must interact well with fellow developers. You certainly want
to know what others are doing—if Bernie has a solution to the problem
that you are struggling with, you’d like to know about it sooner rather
than later, right?

Stand-up meetings (introduced in Scrum and emphasized in XP) are an
effective way to get the team together and keep everyone informed. As
the name suggests, participants aren’t allowed to sit down in stand-
up meetings. This helps keep the meetings short; you might get too
comfortable when you sit down, and as a result meetings tend to go on
forever.

Andy once had a client where he and Dave Thomas participated in the
stand-up meeting remotely via speakerphone. Things were going very
well until one day the meeting suddenly lasted twice as long as usual.
You guessed it; they had moved into a conference room and were sitting
down in comfy armchairs.

A seated meeting usually lasts longer; most people generally don’t like
to continue long conversations standing up.

To help keep the meeting focused, everyone should limit their contribu-
tion to answering these three questions:

• What did I achieve yesterday?

• What am I planning to do today?
• What’s in my way?

Each participant is given only a short amount of time to talk (about two
minutes). You may want to have a timer to help those of us who have
the tendency to ramble. If you want to discuss something in greater
detail, then get together with the appropriate people after the stand-up
meeting (it’s OK to say, “I need to talk to Fred and Wilma about the
database” during the meeting; just don’t start going into the details).

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=148

SCHEDULE REGULAR FACE TIME 149

Pigs and Chickens

Scrum names the roles of team members versus nonteam
members as pigs and chickens. Team members are pigs (there
goes the self-esteem!) and nonteam members (managers,
support, QA, etc.) are chickens. The terms come from a
fable of barnyard animals getting together to open a restau-
rant. When planning to serve bacon and eggs for breakfast,
the chicken is certainly involved, but the pigs are committed.

Only “pigs” are allowed to participate in the Scrum stand-up
meeting.

The stand-up meeting is usually held early in the day when everyone
is at work. Don’t schedule this as the very first thing; you have to give
everyone a chance to make it through the traffic, get some coffee and
delete the latest spam scam emails and other unsolicited, salacious
offers. You need to get the meeting over with in time to get a good
amount of work done before lunch, but you don’t want it so early that
everyone is coffee-deprived and groggy. Thirty minutes to an hour after
the nominal arrival time is probably a good target.

Those who attend the meeting follow a few rules in order to stay
on track and keep the focus of the meeting: only team members—
developers, product owner, and coordinator—can speak (see the
description of “pigs” versus “chickens” in the sidebar). They have to
answer the three questions and should not get into lengthy discussions
(but it’s OK to arrange to talk later). The manager jots down the list of
issues to resolve and shouldn’t try to direct the conversation other than
keeping people focused on the three questions.

Stand-up meetings provide many benefits:

• They kick off the day ahead in a focused way.

• If a developer is having problems with something, he or she has
an opportunity to bring the issue out into the open and actively
seek help.

• They help determine areas that may need additional hands and
allow for team leads or managers to obtain or reassign people.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=149

SCHEDULE REGULAR FACE TIME 150

Using a Kitchen Timer

Developer Nancy Davis tells us about her experience using a
kitchen timer for her team’s stand-up meetings:

“We used a kitchen timer my sister gave me for Christmas last
year. It didn’t make a low clicking noise while running, and
it made just one ding at the end. If the timer went off, we just
added two minutes and went on to the next person. Occasion-
ally, we just forgot the timer and went as long as we needed,
but mostly we stuck with it.”

• They make team members aware of what’s going on in other areas
of the project.

• They help you quickly identify redundancy or areas where some-
one else has a solution.

• They speed development by facilitating the sharing of code and
ideas.

• They encourage forward momentum: seeing others report
progress motivates each of us to do the same.

Carrying out stand-up meetings requires commitment and participa-
tion from management. However, lead developers in a team can be
instrumental in getting this started. When developers can’t get man-
agement to participate, they can hold stand-up meetings among them-
selves informally.

Use stand-up meetings. Stand-up meetings keep the team
on the same page. Keep the meeting short, focused, and
intense.

What It Feels Like

You look forward to the stand-up meeting. You get a good sense of what
everyone else is working on and can bring problems out into the open
easily.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=150

SCHEDULE REGULAR FACE TIME 151

Keeping Your Balance

• Meetings take time away from development, so you need to max-
imize the return on investment of your time. Stand-up meetings
should never take more than thirty minutes maximum, and ten to
fifteen minutes is a realistic target.

• If you’re using a conference room that has to be reserved, reserve it
for a full hour. That gives you an opportunity to use it immediately
for smaller meetings after the fifteen-minute stand-up has ended.

• Although most teams need to meet every day, for small teams that
might be overkill. Meeting every other day, or twice a week, may
be sufficient.

• Watch the level of detail being reported. You need to report con-
crete progress during the meeting, but don’t get bogged down in
low-level details. For instance, “I’m working on the logon screen”
is not sufficient. “Logon accepts the user name and password of
guest/guest and I’ll hook up to the database tomorrow” is about
the right level of detail.

• Part of keeping a short meeting short is starting promptly. Don’t
waste time waiting to get the meeting started.

• If the stand-up meeting feels like a waste of time, perhaps you
aren’t really operating as a team. That’s not necessarily a bad
thing as long as you’re aware of it.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=151

ARCHITECTS MUST WRITE CODE 152

39 Architects Must Write Code
“Fred, our expert architect, will deliver a design for you to code.
He’s very experienced and very expensive, so don’t waste his
time with silly questions or implementation problems.”

You can’t code in
PowerPoint

The industry is full of people with the title Soft-
ware Architect. It’s a title your authors don’t
like much, and here’s why: an architect is a
person who designs and guides, but many of

the people with Architect on their business cards don’t deserve the title.
An architect is not a person who just draws pretty pictures, speaks jar-
gon, and uses lots of patterns—such designers are often ineffective.

They typically come in during the beginning of a project, draw all kinds
of diagrams, and leave before any serious implementation takes place.
There are many “PowerPoint architects” out there, and they aren’t effec-
tive because of lack of feedback.

A design is specific to the problem at hand, and your understanding of
the problem changes as you implement that design. It’s hard to come
up with an effective detailed design up front (see Practice 11, Let Design
Guide, Not Dictate, on page 48): there isn’t enough context, and there’s
little or no feedback. Design evolves over time; you can’t design a new
feature, or an enhancement, by ignoring the realities of the application
(its implementation).

As a designer, you can’t be even marginally effective without under-
standing the nitty-gritty details of the system. You don’t get this kind
of understanding working solely with high-level diagrams.

It’s like trying to conduct a battle from miles away by looking only at the
map—once the battle begins, planning is not sufficient. Strategic deci-
sions may be made from miles away, but tactical decisions—decisions
that determine victory or defeat—require significant understanding of
what’s on the ground.1

1In World War I, the Battle of the Somme was intended to be a decisive breakthrough.
Instead, it became the greatest military folly of the twentieth century, mostly because of a
loss of communication and the way the commanders insisted on following the plan even
when facing a very different reality. See http://www.worldwar1.com/sfsomme.htm.

Report erratum

http://www.worldwar1.com/sfsomme.htm
http://books.pragprog.com/titles/pad/errata/add?pdf_page=152

ARCHITECTS MUST WRITE CODE 153

Reversibility

The Pragmatic Programmer [HT00] points out There Are No Final
Decisions. No decision you make should be cast in stone.
Instead, consider each major decision about as permanent
as a sandcastle at the beach and explicitly plan ahead for
change.

Designer of a new system
by Donald E. Knuth

The designer of a new kind of system must participate fully in the
implementation.

As Knuth says, a good designer is someone who can roll up his sleeves
and get his hands dirty, coding without hesitation. A true architect
would protest mightily if told they couldn’t be involved in the code.

A Tamil proverb suggests that “A picture of a vegetable doesn’t make
good curry.” Similarly, a paper design will not make a good application.
Design should be prototyped, tested, and validated as well—it has to
evolve. It’s the responsibility of the designer, or the architect, to realize
a design that actually works.

Martin Fowler, in his article entitled “Who Needs an Architect?”2 says
that the role of a real architect “...is to mentor the development team,
to raise their level so that they can take on more complex issues.” He
goes on to say, “I think that one of an architect’s most important tasks
is to remove architecture by finding ways to eliminate irreversibility
in software designs.” Fostering reversibility is a key component of the
pragmatic approach (see the sidebar on this page).

Encourage your programmers to design. A lead programmer may take
the role of an architect—and may indeed wear different hats. This per-
son is immersed in design issues, but not at the expense of giving up
coding. If developers are reluctant to take on these design responsibili-
ties, pair them with someone who can design well. A programmer who
refuses to design is a person who refuses to think.

2http://www.martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Report erratum

http://www.martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
http://books.pragprog.com/titles/pad/errata/add?pdf_page=153

ARCHITECTS MUST WRITE CODE 154

Good design evolves from active programmers. Real
insight comes from active coding. Don’t use architects who
don’t code—they can’t design without knowing the realities
of your system.

What It Feels Like

Architecture, design, coding, and testing feel like different facets of the
same activity—development. They shouldn’t feel like separate activities.

Keeping Your Balance

• If you have one chief architect, he or she may not have enough
time to be a full-fledged coder as well. Keep them involved but not
on the critical path on the largest piece of code.

• Don’t let anyone design in isolation, especially yourself.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=154

PRACTICE COLLECTIVE OWNERSHIP 155

40 Practice Collective Ownership
“Don’t worry about that crippling bug; Joe will fix it when he
gets back from vacation next week. Just work around it until
then.”

Any nontrivial application requires collaborative effort to develop. In
that context, there’s no good reason to take territorial ownership of
code. Any team members who understand a piece of code should be
able to work on it. You increase risk by keeping a piece of code exclu-
sively in the hands of a single developer.

Solving problems and making the application meet its users’ expecta-
tions are more important than deciding who has the most brilliant idea,
or, for that matter, whose implementation stinks.

When multiple people work with code, the code is constantly checked,
refactored, and maintained. If a fix is needed, any one of the developers
can pitch in to get the work done. Project scheduling becomes easier
when more than one person can comfortably work with different parts
of your application code.

You’ll find that the overall knowledge and experience level of the people
in the team improves when you rotate them through tasks, giving them
the opportunity to work with different parts of the application. When
Joe picks up code that Sally wrote, he may refactor it, ironing out issues
that need attention. He will ask useful questions while trying to under-
stand the code, providing significant early insight into problems.

From the other side, knowing that others are going to work on your
code means you’ll be more disciplined. You have to be more careful if
you know others are watching.

You might argue that if a developer is exclusively assigned to work on
one area, then he is going to be highly proficient in it, leading to faster
development. That’s true, but in the long term, you gain benefits by
having multiple eyes look at a piece of code. It helps improve the overall
quality of the code, it’s easier to maintain and understand, and the
errors decrease.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=155

PRACTICE COLLECTIVE OWNERSHIP 156

Emphasize collective ownership of code. Rotate develop-
ers across different modules and tasks in different areas of
the system.

What It Feels Like

You feel comfortable working on most any part of the project.

Keeping Your Balance

• Don’t accidentally lose expertise on your team. If one developer is
highly skilled in an area, it may be advantageous to keep them as
the resident expert in that subject while still exposing them to the
rest of the system.

• In a large project it can get very messy if everyone randomly
changes everything all the time. Collective ownership is not a
license to hack wildly.

• You don’t need to know every detail of every part of the project, but
you shouldn’t be scared away from any part of the system either.

• There are special occasions when you don’t want collective own-
ership. Perhaps the code requires specialized, specific problem-
domain knowledge, such as in a hard real-time control system. In
these cases, you may find that too many cooks spoil the broth.

• People do occasionally get run over by buses or suffer other sud-
den calamities, including getting hired by the competition. When
you don’t share knowledge on the team, you risk losing it entirely.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=156

BE A MENTOR 157

41 Be a Mentor
“It took you a long time and a lot of hard work to get where you
are. Keep it to yourself so you look better. Use your superior
skills to intimidate your teammates.”

There may come a time when you realize that you know more about
some particular subject than others in your team. What can you do
with this newfound authority? Well, you could use it to criticize others,
making fun of decisions they make and code they write—we’ve certainly
seen folks who do just that. Alternatively, you could share what you
know, making those around you better.

Knowledge grows when
given

“And no matter how many people share it, the
idea is not diminished. When I hear your
idea, I gain knowledge without diminishing
anything of yours. In the same way, if you use
your candle to light mine, I get light without darkening you. Like fire,
ideas can encompass the globe without lessening their density.”3

Working with others on a team is a great learning experience. Knowl-
edge has several unique properties; if you give someone money, for
instance, you end up with less and they end up with more. But if you
educate someone, both of you gain more knowledge.

By taking the time to explain what you know, you get a better under-
standing of it yourself. You also get a different perspective when some-
one asks you questions. You might find yourself picking up a few new
tips and tricks—you may hear yourself say, “I hadn’t thought about it
that way before.”

By engaging with others, you motivate them to better themselves, which
improves the overall competence of your team. And questions that you
can’t answer point out areas where you may not be as strong—where
you need to focus further in order to improve. A good mentor takes
notes while offering advice to others. You’ll stop to jot down topics you
want to spend more time looking at or thinking about. Add these notes
to your daylog (see Practice 33, Keep a Solutions Log, on page 129).

3Thomas Jefferson

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=157

BE A MENTOR 158

Being a mentor doesn’t mean you spend all your time holding team
members’ hands and spoon-feeding them information (see Practice 42,
Allow People to Figure It Out, on page 160). It doesn’t mean you have
to lecture at a white board or give quizzes. You might decide to present
at a brown-bag lunch, but mostly being a mentor means helping your
fellow teammates improve their game as well as helping yourself.

And you don’t have to stop at the borders of your team. Start a personal
blog, and post something code or technology related on it. It doesn’t
have to be an epic work; even a small code snippet and explanation
might be useful to someone.

Being a mentor means sharing—not hoarding—what you know. It
means taking an interest in seeing others learn and develop and adding
increasing value to the team. It’s all about building up your teammates
and yourself, not about tearing down.

Unfortunately, it seems to be part of human nature to struggle up the
ladder and then look down on others with disdain. Perhaps without
even realizing it, it’s easy to create a communication barrier. Others in
the team either may begin to fear you or may be too embarrassed to
approach you with questions. Then there’s no exchange of knowledge.
Being such an expert is like having great wealth and not having the
health to enjoy it. You want to be a mentor, not a tormenter.

Be a mentor. There’s fun in sharing what you know—you
gain as you give. You motivate others to achieve better
results. You improve the overall competence of your team.

What It Feels Like

You find that teaching is another way to improve your own learning,
and others come to trust that you can help them.

Keeping Your Balance

• If you keep teaching the same topics over and over to different
people, keep notes to write an article or a book about the subject.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=158

BE A MENTOR 159

• Being a mentor is a great way to invest in your team (see Prac-
tice 6, Invest in Your Team, on page 31).

• Pair programming (see Practice 44, Review Code, on page 165) is
a natural environment for effective mentoring.

• If you find yourself getting interrupted by people who seem too lazy
to find the answer for themselves, see Practice 42, Allow People to
Figure It Out, on the next page.

• Set a time limit for how long anyone on the team can be stuck on
a problem before asking for help. One hour seems to be a pretty
good target.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=159

ALLOW PEOPLE TO FIGURE IT OUT 160

42 Allow People to Figure It Out
“You’re so smart; just provide neat solutions to others on the
team. Don’t waste time trying to educate them.”

“Give a man a fish, and you’ll feed him for a day. Teach him to fish,
and you will feed him for a lifetime.” And he won’t bother you again for
weeks. Part of being a good mentor involves teaching your teammates
to fish, not just handing them a fish every day.

After reading Be a Mentor, you may be inclined to dispatch a co-worker
with a quick answer and get on with the task. But what happens if
you just give them pointers and let the developer figure out their own
answer?

This doesn’t have to be a big deal; instead of answering something
obvious like “42,” ask your teammate, “Did you look at the interaction
between the transaction manager and the application lock handler?”

Using this technique has a few advantages:

• You are helping them learn how to approach the problem.

• They get to learn more than just the answer.

• They won’t keep coming to you with similar questions again and
again.

• You are helping them function when you are not available to
answer questions.

• They may come back with solutions or ideas you didn’t consider.
This is the fun part—you learn something new as well.

If the person comes back empty-handed, you can always supply more
hints (or even the answer). If the person returns with some ideas, you
can help them evaluate the pros and cons of each idea. If the person
returns with a better answer or solution than what you had thought
of, you can learn from the experience and share your thoughts. This
serves as a great educational experience for both of you.

As a mentor, you lead others toward solutions, motivating them to solve
problems and giving them an opportunity to think and learn problem

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=160

ALLOW PEOPLE TO FIGURE IT OUT 161

solving. We mentioned Aristotle’s quote earlier: “It is the mark of an
educated mind to be able to entertain a thought without accepting it.”
You are entertaining thoughts and perspectives of others, and in the
process you broaden yours.

When the whole team adopts that attitude, you’ll find that the intellec-
tual capital of the team increases rapidly, and you can start creating
some really great stuff.

Give others a chance to solve problems. Point them
in the right direction instead of handing them solutions.
Everyone can learn something in the process.

What It Feels Like

It feels like you are being helpful without spoon-feeding. You’re not
cryptic or cagey, but you can lead people to find their own answers.

Keeping Your Balance

• Answer the question with another question that leads in the right
direction.

• If someone is truly stuck, don’t torment them. Show them the
answer, and explain why it’s the answer.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=161

SHARE CODE ONLY WHEN READY 162

43 Share Code Only When Ready
“Check in all code as often as you can, especially when you
leave for the day, whether it’s ready or not.”

Here’s a riddle for you: what’s worse than not using a version control
system? Answer: using it incorrectly. The way you use version control
can affect productivity, product stability, quality, and schedules. In
particular, something as simple as how often you check in your code
makes a big difference.

You should check in code as soon as you are done with a task; you don’t
want to hold that code on your computer for an extended period of time.
What good is your code if you have not made it available for others to
integrate and use? You need to get it out to start getting feedback.4

Obviously, checking in code weekly or monthly is not desirable—you’re
not using version control for its intended purpose. You might hear
various excuses for such sloppy habits. Maybe folks say that developers
are working off-site or offshore and the access to the version control
system is very slow. This is an example of environmental viscosity—it’s
easier to do the wrong thing than to do the right thing. Clearly that’s a
simple technical problem that needs to be addressed.

On the other hand, how about checking in the code before you are done
with the task? Perhaps you are working on some critical code, and you
want to go home and work on it after dinner. The easiest way to get to
this code at home is to check it into version control system at work and
check it out when you get home.

But if you check in code you are still working on, you’re putting the code
into the repository in an unworkable state. It might have compilation
errors, or the changes you have made might not be compatible with the
rest of the code in the system. Now you’re affecting other developers as
soon as they fetch the latest copy of the code.

Normally, you check in a group of files that relate to a specific task
or a bug you have fixed. You check them all in together, along with a

4Plus, you don’t want to keep the only copy of the code on a hard drive backed only
by a “ninety-day limited warranty” for very long.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=162

SHARE CODE ONLY WHEN READY 163

Safe, But Not Checked In

If you need to transfer or save source code that isn’t quite done
yet, you have a couple of options:

Use remote access. Instead of checking in half-baked code
to take it home, leave the code at work, and use remote
access to work on it.

Take it with you. Copy the code to a USB stick, CD, or DVD
to work on off-site.

Use a docking laptop. If this is a persistent problem, perhaps
you could use a laptop with a docking station; that way
you could have the code with you anywhere.

Use version control features. Microsoft Visual Team System
2005 has a “shelving” feature, some products have the
notion of promoting code to be available to others inde-
pendent of checking it in to the system, and in CVS and
Subversion you can set up developer branches for code
that isn’t ready for the main line (see [TH03] and [Mas05]).

meaningful log message that will let folks in the future figure out what
files changed and, more important, why. This kind of atomic commit
will also help should you need to roll back the change.

Make sure all your unit tests still pass before checking in the code. One
easy way for you to make sure the code in the control system is healthy
is to use continuous integration.

Share code only when ready. Never check in code that’s
not ready for others. Deliberately checking in code that
doesn’t compile or pass its unit tests should be considered
an act of criminal project negligence.

What It Feels Like

You feel the team sitting there at the other end of the version control
system. You know that as soon you check in, the world has it.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=163

SHARE CODE ONLY WHEN READY 164

Keeping Your Balance

• Some version control systems distinguish between “checked-in”
and “publicly available.” In that case, you can perform temporary
check-ins (while traveling between home and work, for example)
without incurring the wrath of your teammates.

• Some people like to require code reviews before allowing code to
be checked in. That’s fine, as long as it doesn’t unduly delay the
check-in. If any part of your process is slowing you down, revise
your process.

• You still need to check in code frequently. Don’t use “it’s not ready”
as an excuse to avoid checking in code.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=164

REVIEW CODE 165

44 Review Code
“Users make great testers. Don’t worry—if it’s wrong, they’ll tell
us eventually.”

The best time to find problems in code is as soon as the code is written.
If you let code sit and rot for a while, it won’t smell any prettier.

Code Reviews and Defect Removal
by Capers Jones in Estimating Software Costs [Jon98]

Formal code inspections are about twice as efficient as any known form of
testing in finding deep and obscure programming bugs and are the only
known method to top 80 percent in defect-removal efficiency.

As Capers Jones points out, code reviews are probably the best single
way to locate and solve problems. Unfortunately, it’s sometimes hard
to convince managers and developers to use them.

Managers worry about the time it takes to review the code. They don’t
want their team to quit coding and get into lengthy code review meet-
ings. Developers fear code reviews; they feel threatened by others look-
ing at their code. It affects their egos. They are worried about being
emotionally beaten up.

On projects where your authors have practiced code reviews, the
results have been remarkable.

Venkat recently worked on a very aggressively scheduled project with
some less experienced developers. They were able to deliver top-quality
and stable code by using rigorous code reviews. When developers on
the team completed their coding and testing of a task, the code was
thoroughly reviewed by another developer before it was even checked
in to version control.

Quite a few problems were fixed in this process. Oh, and code reviews
are not just for code written by junior developers—you should perform
code reviews on the code written by every developer in the team, regard-
less of their experience.

So how do you review code? You can choose from a couple of different
basic styles.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=165

REVIEW CODE 166

The all-nighter. You could hold a one-night-a-month monster code
review session, bring your entire team together, and order pizza.
But this may not be the most effective way to hold code reviews
(and doesn’t sound particularly agile). Large review teams tend to
get into lengthy and extended discussions. Such a broad review
may not only be unnecessary, but it might even be detrimental to
progress. We don’t recommend this style.

The pick-up game. As soon as some code has been written, compiled,
tested, and is ready for check-in, the code is picked up for review
by another developer. These “commit reviews” are designed to be
a quick, low-ceremony way to make sure the code is acceptable
before checking it in. In order to eliminate any behavioral ruts, try
to rotate through developers. For instance, if Jane reviewed Joey’s
code last time, ask Mark to review it this time. This can be a very
effective technique.5

Pair programming. In Extreme Programming, you never code alone.
Code is always written in pairs: one person sits at the keyboard
(the driver), and one person sits back and acts as navigator. Every
so often, they switch roles. Having a second pair of eyes acts like a
continuous code review; you don’t have to schedule any separate,
specific review time.

What should you look for during a code review? You might develop
your own list of specific issues to check (all exception handlers are
nonempty, all database calls are made within the scope of a transac-
tion, and so on), but here’s a very minimal list to get you started:

• Can you read and understand the code?

• Are there any obvious errors?

• Will the code have any undesirable effect on other parts of the
application?

• Is there any duplication of code (within this section of code itself
or with other parts of the system)?

• Are there any reasonable improvements or refactorings that can
improve it?

5For more details on this style, see Ship It! [RG05].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=166

REVIEW CODE 167

In addition, you might want to consider using code analysis tools such
as Similarity Analyzer or Jester. If that sort of static analysis proves
useful to you, make these tools part of your continuous build.

Review all code. Code reviews are invaluable in improv-
ing the quality of the code and keeping the error rate low.
If done correctly, reviews can be practical and effective.
Review code after each task, using different developers.

What It Feels Like

Code reviews happen in small chunks, continuously. It feels like an
ongoing part of the project, not a big scary event.

Keeping Your Balance

• Rubber-stamp code reviews without thought are without value.

• Code reviews need to actively evaluate the design and clarity of the
code, not just whether the variable names and layout are compli-
ant to some corporate standard.

• Different developers may write the same code quite differently.
Different is not necessarily worse. Don’t criticize code unless you
can make it measurably better.

• Code reviews are useless unless you follow up on the recommen-
dations quickly. You can schedule a follow-up meeting or use a
system of code annotations to mark what needs to be done and
track that it has been handled.

• Always close the loop on code reviewers; let everyone know what
steps you took as a result of the review.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=167

KEEP OTHERS INFORMED 168

45 Keep Others Informed
“The manager, your team, and the business owners are relying
on you to get tasks done. If they want your status, they’ll ask
you for it. Just keep your head down, and keep working.”

By accepting a task, you have agreed to deliver it on time. But, it’s not
unusual to run into problems and face delays. The deadline arrives and
at the demo you are expected to show the code working. What if you
arrive at the meeting and inform everyone that you haven’t finished?
Besides being embarrassing, it’s not healthy for your career.

If you wait until the deadline to deliver bad news, you’re just begging
your manager and technical lead to micromanage you. They’ll be wor-
ried that you’ll surprise them again so will check with you several times
a day to make sure you are progressing. Your life is now evolving into
a Dilbert cartoon.

Suppose you are in the middle of a task. It looks as if technical dif-
ficulties mean you won’t be able to finish it on time. If you take the
proactive step of informing others, you are giving them an opportunity
to help figure out a solution ahead of time. Maybe they can ask another
developer to help. They may reassign the task to someone else who may
be more familiar with it. They may help you by giving more input on
what needs to be done, or they may adjust the scope of work to what’s
doable in this iteration. Your customer may be willing to trade the task
with some other equally important task.

By keeping others informed, you eliminate surprises, and they are com-
fortable they know your progress. They know when to provide you with
helping hands, and you’ve earned their trust.

A traditional way to keep people informed is to send them an email,
send them a message on a sticky note, or make a quick phone call.
Another way to is to use what Alistair Cockburn calls “information
radiators.”6 An information radiator is something like a poster on the
wall providing information that changes over time. Passersby pick up
the information effortlessly. By pushing the information at them, you
eliminate the need for them to ask you questions. Your information

6See http://c2.com/cgi-bin/wiki?InformationRadiator.

Report erratum

http://c2.com/cgi-bin/wiki?InformationRadiator
http://books.pragprog.com/titles/pad/errata/add?pdf_page=168

KEEP OTHERS INFORMED 169

radiators can display the progress you are making on your tasks and
any additional information you think will be of interest to your team,
manager, or customers.

You might use a poster on the wall, a website or Wiki, or a blog or RSS
feed. As long as you put the information somewhere that people will
look at regularly, then you’re in the right place.

The whole team can use information radiators to broadcast their status,
code designs, cool new ideas they’ve researched, and so on. Now just
by walking around you can get smarter, and your manager will know
exactly what’s up.

Keep others informed. Publish your status, your ideas
and the neat things you’re looking at. Don’t wait for others
to ask you the status of your work.

What It Feels Like

You don’t feel pestered by managers or co-workers constantly asking
for your status or your latest design or research efforts.

Keeping Your Balance

• The daily stand-up meeting (see Practice 38, Schedule Regular
Face Time, on page 148) helps keep everyone up-to-date at a high
level.

• When presenting status, make sure the level of detail is appropri-
ate for the audience. CEOs and business owners don’t care about
obscure details of abstract base classes, for instance.

• Don’t spend more time or effort keeping others informed than
actually getting your work done.

• Stay head’s up, not head down.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=169

As one lamp serves to dispel a thousand
years of darkness, so one flash of wisdom
destroys ten thousand years of ignorance.

Hui-Neng

Chapter 9

Epilogue: Moving to Agility
One flash of wisdom. That’s all it takes. We hope you’ve enjoyed our
description of these agile practices and that at least one or two will
serve to spark that flash of wisdom for you.

No matter what your experience has been so far, whether it has been
highly successful or somewhat challenged, just one new practice can
blow away any cobwebs and make a real difference to your career and
your life. You can use a subset of these practices to rescue a project in
trouble, or you can plan to introduce a fuller set over time.

9.1 Just One New Practice

For example, consider this story of one of Andy’s former clients. The
team had beautiful offices lined up in a graceful curve along the outside
wall of a towering glass office building. Everyone had a window view,
and the entire team ringed about half of the building. But there were
problems. Releases were running late, and bugs were escalating out of
control.

So in the usual fashion, the Pragmatic Programmers started on one
end of the offices and began interviewing the team to find out what
they were working on, what was working well, and what things were
in the way. The first fellow explained that they were building a client-
server application, with a razor-thin client and a fat server containing
all the business logic and database access.

But as the interviewing progressed down the long line of offices, the
story slowly changed. The vision of the project drifted a little bit with

RESCUING A FAILING PROJECT 171

each person. Finally, the last person at the end of the line proudly
explained the system as being a fat client, containing all the GUI and
business logic, with nothing on the server except a simple database!

It became clear that the team never got together to talk about the
project; instead, each team member only ever talked to the person
immediately next to them. Just as in a school kid’s game of “telephone,”
the message inevitably gets corrupted and distorted as it passes from
person to person.

The pragmatic advice? Start using the stand-up meeting immediately
(see Practice 38, Schedule Regular Face Time, on page 148). The results
were fast and amazing. Not only did the architectural issues get quickly
resolved, but something deeper happened. The team began to jell—
began to form a cohesive unit, working together. Bug rates fell, the
product became more stable, and deadlines weren’t as deadly.

It didn’t take long, and it didn’t take a lot of effort. It required some
discipline to stick with the meeting, but even that soon became a habit.
It was just one new practice, but it made a huge difference to the team.

9.2 Rescuing a Failing Project

So if one practice is good, then all of them must be better, right?
Eventually, yes, but not all at once—and especially not if the project
is already in trouble. Changing all your development practices on a
project at once is the best way to kill it.

To use a medical analogy, suppose you have a patient with chest pain.
Of course, if the patient exercised regularly and ate well, they wouldn’t
be in trouble. But you can’t just say, “Get your butt off the bed, and
start running on the treadmill.” That would be fatal and surely cause
your malpractice insurance rates to rise.

You have to stabilize the patient using the minimum (but essential)
medicines and procedures. Only once the patient is stable can you
offer a regime to maintain good health.

When a project is failing, you’ll want to introduce a couple of practices
to stabilize the situation first. For example, Venkat once got a panicked
call from a prospective client; their project was in shambles. They had
spent half their allotted time and still had 90% of the project to deliver.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=171

INTRODUCING AGILITY: THE MANAGER’S GUIDE 172

The manager was unhappy that the developers did not produce enough
code fast enough. The developers were unhappy that the manager was
pushing too hard. Should they spend the rest of the day fixing bugs
or writing new functionality? Despite the depth of the crisis, the team
was genuinely interested in succeeding. But they didn’t know how.
Everything they did put them further behind. They felt threatened and
weren’t comfortable making decisions.

Instead of trying to fix everything all at once, Venkat had to first
stabilize the patient, starting with communication and collaboration-
oriented practices such as Practice 3, Criticize Ideas, Not People, on
page 18; Practice 38, Schedule Regular Face Time, on page 148; Prac-
tice 43, Share Code Only When Ready, on page 162; and Practice 45,
Keep Others Informed, on page 168. From there, the next step was
to introduce simple release practices such as Practice 13, Keep It
Releasable, on page 55, and Practice 14, Integrate Early, Integrate
Often, on page 58. Finally, they started a few helpful coding prac-
tices such as Practice 34, Warnings Are Really Errors, on page 132, and
Practice 35, Attack Problems in Isolation, on page 136. It was enough to
avert the crisis; the project was completed two weeks ahead of schedule
and received acclaim from higher-level managers.

That’s the emergency rescue model. If things aren’t that dire, you can
take a fuller, more measured approach to introducing agile practices.
We’ve got some ideas for you depending on whether you’re a manager
or a team lead or whether you’re just an interested programmer trying
to lead from within the organization.

9.3 Introducing Agility: The Manager’s Guide

If you’re a manager or team lead, you need to start by getting the team
all on board. Make it clear that agile development is supposed to make
things easier for the developers. This is primarily for their benefit (and
ultimately, the users and the organization as well). If it isn’t easier,
then something is wrong.

Go slowly. Remember that every little motion a leader makes is magni-
fied by the time it hits the team.1

1For a great book about leading teams and honing your management skills, see
Behind Closed Doors [RD05].

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=172

INTRODUCING AGILITY: THE MANAGER’S GUIDE 173

As you introduce these ideas to the team, be sure to lay out the ground
rules for an agile project as described in Chapter 2, Beginning Agility, on
page 10. Make sure everyone understands that this is how the project
will be run—it’s not just lip service.

Start with the stand-up meeting (see Practice 38, Schedule Regular Face
Time, on page 148). That will give you an opportunity to get the team
talking to each other and synchronized on major issues. Bring any iso-
lated architects into the group and have them roll up their sleeves and
participate (see Practice 39, Architects Must Write Code, on page 152).
Start informal code reviews (Practice 44, Review Code, on page 165),
and make plans to get the customer/users involved (Practice 10, Let
Customers Make Decisions, on page 45).

Next you need to get the development infrastructure environment in
order. That means adopting (or improving) the fundamental Starter Kit
practices:

• Version control

• Unit testing

• Build automation

Version control needs to come before anything else. It’s the first bit of
infrastructure we set up on any project. Once that’s set up, you need to
arrange for consistent, scripted local builds for each developer that run
any available unit tests as well. As that’s coming online, you can start
creating unit tests for all new code that’s being developed and adding
new tests for existing code as needed. Finally, add a continuous build
machine in the background as a “backstop” to catch any remaining
problems as soon as they occur.

If this is unfamiliar territory to you, run to the nearest bookstore (or
www.PragmaticBookshelf.com), and get yourself a copy of Ship It! A
Practical Guide to Successful Software Projects [RG05]; that will help you
get the overall mechanics set up. The Starter Kit series can help with
the details of version control, unit testing, and automation in specific
environments.

With this infrastructure in place, now you need to settle into a rhythmic
groove. Reread most of Chapter 4, Delivering What Users Want, on
page 43, to get a feel for the project’s timings and rhythms.

Report erratum

www.PragmaticBookshelf.com
http://books.pragprog.com/titles/pad/errata/add?pdf_page=173

INTRODUCING AGILITY: THE PROGRAMMER’S GUIDE 174

By now you have all the basics in place, so you just need to tune the
practices and make them all work for your team. Review the material
in Chapter 5, Agile Feedback, on page 76, as you’re setting up, and
then take another look at Chapter 6, Agile Coding, on page 98, and
Chapter 7, Agile Debugging, on page 128, for agile approaches to daily
issues.

And last, but by no means least, start introducing brown-bag lunches
and the other practices as outlined in Chapter 3, Feeding Agility, on
page 26. Work on the practices in Chapter 8, Agile Collaboration, on
page 146, to make sure the team is working together well.

Every so often—perhaps at the end of each iteration or each release—
hold a project retrospective. Get feedback from the team: what’s work-
ing well, what needs tuning, and what things just aren’t making it. If
a practice you’ve tried isn’t working out, review the What It Feels Like
and Keeping Your Balance sections for that practice, and see whether
there’s some aspect that has fallen out of balance and can be corrected.

9.4 Introducing Agility: The Programmer’s Guide

If you’re not in charge of the team but would like to push them in this
direction, you have a bit of a challenge ahead of you. You need to
accomplish everything listed earlier in the previous section, but you’re
going to have to lead by example, not by decree.

As the old saying might now go, “You can lead a horse to water...but you
can’t make him use your favorite code editor.” Unless, of course, you
seem to be having a really good time with it. If the benefit is obvious,
then your teammates will want to get in on the action.

For instance, unit testing is a good place to start. You can start by
using it on your own code. Within a short time (weeks or less), you
see that your code has improved—you’ve lowered the number of errors,
improved the quality, and enhanced its robustness. You start to go
home at five, and all your tasks are complete—you’re not getting panic
calls at night to fix bugs. The developer next to you wants to know what
you’re doing differently, and the word spreads. Instead of you fighting
to convince the team, they are now eager to pick up the newfangled
practice.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=174

THE END? 175

If you want to lead your team into new territory, it’s only fair you go
first. So start with the practices that you can do right now. Most of
the practices in Chapter 2, Beginning Agility, on page 10, make a good
start, followed by coding-oriented practices such as Practice 19, Put
Angels on Your Shoulders, on page 78, and Practice 20, Use It Before
You Build It, on page 82, and the practices in Chapter 6, Agile Coding,
on page 98, and Chapter 7, Agile Debugging, on page 128. You can
run a continuous build on your own machine and know about prob-
lems as soon as they happen. Your teammates may even think you’re
clairvoyant.

After a while, you might start some informal brown-bag sessions (Prac-
tice 6, Invest in Your Team, on page 31) and talk about the rhythms
of an agile project (Practice 9, Feel the Rhythm, on page 40) and other
topics of interest.

9.5 The End?

And that brings us to the end of the book. What happens next is entirely
up to you. You can apply these practices yourself and see some per-
sonal benefit, or you can get your whole team on board and start devel-
oping better software faster and more easily.

Please visit us on the Web at www.pragmaticprogrammer.com where
you’ll find the authors’ blogs and other writings, as well as links to
related resources.

Thanks for reading,

&

Report erratum

www.pragmaticprogrammer.com
http://books.pragprog.com/titles/pad/errata/add?pdf_page=175

Appendix A

Resources
A.1 On the Web

Agile Developer
http://www.agiledeveloper.com/download.aspx

The Agile Developer download page, where you’ll find articles and presentations
by Venkat Subramaniam.

/\ndy’s Blog
http://toolshed.com/blog

Andy Hunt’s blog, covering a wide variety of topics and even a little software
development.

Anthill
http://www.urbancode.com/projects/anthill/default.jsp

A tool that ensures a controlled build process (continuous integration) and
promotes the sharing of knowledge within an organization.

The Art of Unix Programming
http://www.faqs.org/docs/artu/ch04s02.html

An excerpt from Eric Steven Raymond’s The Art of Unix Programming book.

Continuous Integration
http://www.martinfowler.com/articles/continuousIntegration.html

An article that presents the benefits of continuous integration.

CruiseControl
http://cruisecontrol.sourceforge.net

A continuous integration tool mainly for Java applications. A C# port
of this, named CruiseControl.NET, is available for the .NET platform at
http://sourceforge.net/projects/ccnet.

http://www.agiledeveloper.com/download.aspx
http://toolshed.com/blog
http://www.urbancode.com/projects/anthill/default.jsp
http://www.faqs.org/docs/artu/ch04s02.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://cruisecontrol.sourceforge.net
http://sourceforge.net/projects/ccnet

ON THE WEB 177

Damage Control
http://dev.buildpatterns.com/trac/wiki/DamageControl

A continuous integration tool written in Ruby on Rails.

Draco.NET
http://draconet.sourceforge.net

A continuous integration tool for .NET, implemented as a Windows service.

Dependency Inversion Principle
http://c2.com/cgi/wiki?DependencyInversionPrinciple

A short article that introduces the Dependency Inversion principle.

Framework for Integration Testing
http://fit.c2.com

A collaboration tool that allows you to automatically compare customers’ expec-
tations to actual results.

Google Groups
http://groups.google.com

A website that gives you access to newsgroup discussions.

Information Radiator
http://c2.com/cgi-bin/wiki?InformationRadiator

Discusses Alistair Cockburn’s Information Radiator.

Is Design Dead?
http://www.martinfowler.com/articles/designDead.html

Excellent article by Martin Fowler discusses the significance and role of design
in agile development.

JUnit
http://www.junit.org

A site dedicated to software developers using JUnit or one of the other XUnit
testing frameworks.

JUnitPerf
http://www.clarkware.com/software/JUnitPerf.html

A collection of JUnit test decorators used to measure the performance and
scalability of functionality contained within existing JUnit tests.

NUnit
http://sourceforge.net/projects/nunit

A site dedicated to software developers using NUnit.

Object-Oriented Design Principles
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign

A good collection of various object-oriented design principles.

Report erratum

http://dev.buildpatterns.com/trac/wiki/DamageControl
http://draconet.sourceforge.net
http://c2.com/cgi/wiki?DependencyInversionPrinciple
http://fit.c2.com
http://groups.google.com
http://c2.com/cgi-bin/wiki?InformationRadiator
http://www.martinfowler.com/articles/designDead.html
http://www.junit.org
http://www.clarkware.com/software/JUnitPerf.html
http://sourceforge.net/projects/nunit
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://books.pragprog.com/titles/pad/errata/add?pdf_page=177

ON THE WEB 178

Object-Relational Mapping
http://www.neward.net/ted/weblog/index.jsp?date=20041003#1096871640048

Ted Neward discusses frameworks; includes his quote “object-relational map-
ping is the Vietnam of computer science.”

Open-Closed Principle
http://www.objectmentor.com/resources/articles/ocp.pdf

Describes the Open-Closed principle with example and limitations.

Open-Closed Principle: Short Introduction
http://c2.com/cgi/wiki?OpenClosedPrinciple

Discussions on the Open-Closed principle with opinions on the pros and cons.

Pragmatic Programming
http://www.pragmaticprogrammer.com

The Pragmatic Programmer’s home page, where you’ll find links to the Prag-
matic Bookshelf titles (including this book), along with information for develop-
ers and managers.

Single Responsibility Principle
http://c2.com/cgi-bin/wiki?SingleResponsibilityPrinciple

Describes the Single Responsibility principle and provides links to related arti-
cles and discussions.

Software Project Management Practices: Failure versus Success
http://www.stsc.hill.af.mil/crosstalk/2004/10/0410Jones.html

Capers Jones analyzes the success and failure of 250 software projects.

Test Driven Development
http://c2.com/cgi/wiki?TestDrivenDevelopment

An introduction to Test Driven Development.

The End of Software Engineering and the Start of Economic-
Cooperative Gaming
http://alistair.cockburn.us/crystal/articles/eoseatsoecg/theendofsoftwareengineering.

Alistair Cockburn questions whether software development should be consid-
ered as software engineering and introduces a new model.

Tragedy on the Somme: A Second Balaclava
http://www.worldwar1.com/sfsomme.htm

This site discusses the aftermath of the Battle of Somme in Word War I.

Why Your Code Sucks
http://www.artima.com/weblogs/viewpost.jsp?thread=71730

A blog entry by Dave Astels that talks about code quality.

XProgramming.com
http://www.xprogramming.com/software.htm

Report erratum

http://www.neward.net/ted/weblog/index.jsp?date=20041003#1096871640048
http://www.objectmentor.com/resources/articles/ocp.pdf
http://c2.com/cgi/wiki?OpenClosedPrinciple
http://www.pragmaticprogrammer.com
http://c2.com/cgi-bin/wiki?SingleResponsibilityPrinciple
http://www.stsc.hill.af.mil/crosstalk/2004/10/0410Jones.html
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://alistair.cockburn.us/crystal/articles/eoseatsoecg/theendofsoftwareengineering.htm
http://www.worldwar1.com/sfsomme.htm
http://www.artima.com/weblogs/viewpost.jsp?thread=71730
http://www.xprogramming.com/software.htm
http://books.pragprog.com/titles/pad/errata/add?pdf_page=178

BIBLIOGRAPHY 179

A collection of resources, including testing tools.

You Aren’t Gonna Need It
http://c2.com/cgi/wiki?YouArentGonnaNeedIt

Discussions on the You Aren’t Gonna Need It principle with opinions on the
pros and cons.

A.2 Bibliography

[Bec00] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, MA, 2000.

[Cla04] Mike Clark. Pragmatic Project Automation: How to Build,
Deploy, and Monitor Java Applications. The Pragmatic Pro-
grammers, LLC, Raleigh, NC, and Dallas, TX, 2004.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wesley Longman, Reading, MA, 1999.

[Fow05] Chad Fowler. My Job Went to India: 52 Ways to Save Your
Job. The Pragmatic Programmers, LLC, Raleigh, NC, and
Dallas, TX, 2005.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley, Reading,
MA, 2000.

[HT03] Andrew Hunt and David Thomas. Pragmatic Unit Testing in
Java with JUnit. The Pragmatic Programmers, LLC, Raleigh,
NC, and Dallas, TX, 2003.

[HT04] Andrew Hunt and David Thomas. Pragmatic Unit Testing in
C# with NUnit. The Pragmatic Programmers, LLC, Raleigh,
NC, and Dallas, TX, 2004.

[Jon98] Capers Jones. Estimating Software Costs. McGraw Hill,
1998.

[Knu92] Donald Ervin Knuth. Literate Programming. Center for the
Study of Language and Information, Stanford, CA, 1992.

Report erratum

http://c2.com/cgi/wiki?YouArentGonnaNeedIt
http://books.pragprog.com/titles/pad/errata/add?pdf_page=179

BIBLIOGRAPHY 180

[Lar04] Craig Larman. Agile and Iterative Development: A Manager’s
Guide. Addison-Wesley, Reading, MA, 2004.

[LC01] Bo Leuf and Ward Cunningham. The Wiki Way: Collabora-
tion and Sharing on the Internet. Addison-Wesley, Reading,
MA, 2001.

[Lis88] Barbara Liskov. Data abstraction and hierarchy. SIGPLAN
Notices, 23(5), May 1988.

[Mar02] Robert C. Martin. Agile Software Development, Principles,
Patterns, and Practices. Prentice Hall, Englewood Cliffs, NJ,
2002.

[Mas05] Mike Mason. Pragmatic Version Control Using Subversion.
The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,
TX, 2005.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction.
Prentice Hall, Englewood Cliffs, NJ, second edition, 1997.

[MR84] William A. Madden and Kyle Y. Rone. Design, development,
integration: space shuttle primary flight software system.
Communications of the ACM, 27(9):914–925, 1984.

[Rai04] J. B. Rainsberger. JUnit Recipes: Practical Methods for Pro-
grammer Testing. Manning Publications Co., Greenwich, CT,
2004.

[RD05] Johanna Rothman and Esther Derby. Behind Closed Doors:
Secrets of Great Management. The Pragmatic Programmers,
LLC, Raleigh, NC, and Dallas, TX, 2005.

[RG05] Jared Richardson and Will Gwaltney. Ship It! A Practical
Guide to Successful Software Projects. The Pragmatic Pro-
grammers, LLC, Raleigh, NC, and Dallas, TX, 2005.

[Roy70] Winston W. Royce. Managing the development of large
software systems. Proceedings, IEEE WECON, pages 1–9,
August 1970.

[Sch04] Ken Schwaber. Agile Project Management with Scrum.
Microsoft Press, Redmond, WA, 2004.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=180

BIBLIOGRAPHY 181

[Sen90] Peter Senge. The Fifth Discipline: The Art and Practice of the
Learning Organization. Currency/Doubleday, New York, NY,
1990.

[Sha97] Alec Sharp. Smalltalk by Example: The Developer’s Guide.
McGraw-Hill, New York, NY, 1997.

[Sub05] Venkat Subramaniam. .NET Gotchas. O’Reilly & Associates,
Inc., Sebastopol, CA, 2005.

[TH01] David Thomas and Andrew Hunt. Programming Ruby: The
Pragmatic Programmer’s Guide. Addison-Wesley, Reading,
MA, 2001.

[TH03] David Thomas and Andrew Hunt. Pragmatic Version Control
Using CVS. The Pragmatic Programmers, LLC, Raleigh, NC,
and Dallas, TX, 2003.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web
Development with Rails. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2005.

[You99] Edward Yourdon. Death March: The Complete Software
Developer’s Guide to Surviving “Mission Impossible” Projects.
Prentice Hall, Englewood Cliffs, NJ, 1999.

Report erratum

http://books.pragprog.com/titles/pad/errata/add?pdf_page=181

Index
A
Acceptance testing, 90, 177
Acronyms, 28
Agile Developer

web site, 176
Agile Manifesto, 2
Agile vs. fragile, 88, 122
agilemanifesto.org, 2
Agility, 1

definition of, 4
All-nighter, 166
Andy Hunt’s blog, 176
Architect, 152
Aristotle, 20, 161
Audit trail, 145
Automated testing, 90
Avoiding lawsuits, 25

B
Backlog, 94, 95
Battle

Battle of Somme (WWI), 178
Be the worst, 32
Beck, Kent, 113
Belling the cat, 23
Best vs. better, 20, 22
Big ball of mud, 137n
Big design up front, 51
Bill Nye, 76
Binary chop, 138
Blame, 12
Blog, 158, 169
Blogs, 29
Bock, David, 121
Broken Windows, 3
Brown bag sessions, 31
Bug fix, 63
Bugs

inevitability of, 128
Build automation, 6, 56
Build error, 132
Build machine, 79
Building construction, 73
Burnout, 42
Business decisions, 45
Business logic, 90

testing, 91

C
Change

coping with, 34
Code

inspections, 165
procedural vs. object-oriented, 121
quality, 25
reviews, 164
rot, 165
sharing, 163
understanding, 100

Coding
incrementally, 113

Cohesion, 117
Command-query separation, 121
Comments, 106
Commitment, 149
Compiler error, 132
Compliance, 13
Composition, 126
Conference room, 151
Conferences, 29
Continuous build, 173
Continuous development, 58
Continuous integration, 6, 56, 60, 63,

134, 176
multiple platform, 88

Contracts, fixed price, 73

COUPLING 183 INFORMATION RADIATORS

Coupling, 104
Courage, 25
Courtesy, 19
CRC card design, 50
Crisis management, 4
Customer demos, 68
Customers

working with, 66
CVS, 163

D
Data holders, 123
Daylog, 157

see also Solutions log
Deadlines, 41

setting, 20
Death march, 14
Debug log, 140
Debugger, 78, 136
Debugging information, 144
Decision making

tracking, 131
Decisions

business, 45
Delegation, 126
Deployment, 61
Deprecated methods, 135
Design, 48

evolution, 152
flaws, 81
hand-off, 49
Is design dead?, 177
patterns, 115
using testing for, 85

Development methodology
understanding, 16

Devil
about, 7

Diagnosing problems, 37
Differences, 87
Docking, 163
Documentation, 81, 92, 105, 108
Don’t Repeat Yourself, 105
Done, 3, 4, 41, 93, 163
DRY, see Don’t Repeat Yourself

E
Eisenhower

U.S. president, 51
Elegance, 116

Emergency project rescue, 172
Emerging technologies, 30
Encapsulation, 121
Environmental problems, 145
Environmental viscosity, 162
Error messages

details in, 143
Error reporting, 144
Estimation, 74, 93
Evolutionary development, 69
Exceptions, 140
Expertise, 156
Extreme programming, 113n, 148, 166

F
Failure, graceful, 141
Farragut, Admiral David, 24
Feedback, 3, 41, 50, 66, 76, 78, 80, 96,

114
Fire drills, 40
FIT, 90
Fixed-price contracts, 73
Fragile vs. agile, see Agile vs. fragile
Framework

justify, 178
Friction, 3

G
Gang of Four, 115
Glossary, 67
Goal-driven design, 50

H
Habits, 35
Hacking, crude, 15
Hand-off, 49
Hardware vs. software

relative costs, 111
Heraclitus, 28
Hippocratic oath, 60
Hoare, C.A.R., 100
Hungarian notation, 105

I
Impatience, 25
Incremental

development, 113
Incremental development, 69
Information radiators, 168, 177

INHERITANCE 184 PROCEDURAL VS. OBJECT-ORIENTED CODE

Inheritance, 125
Installer, 62, 63
Integration, 58
Intellectual capital, 161
Investment, 112
ISO-9001, 13
Isolation, 16
Issue tracking, 68
Iteration, 4, 41, 65, 67
Iterative development, 69

J
Javadoc, 107
Jefferson, Thomas, 157
Jones, Capers, 165
JUnit, 78

K
Kitchen timer, 150
Knowledge

sharing, 157
Knuth, Donald, 112, 153

L
Lava lamps, 6
Learning

and diversity, 31
iteratively, 29
unit tests as aid, 81
and unlearning, 35

Lewis and Clark, 50
Life cycle, 3
Liskov, Barbara, 124
List, The, 94n
Log, see Solutions log
Log messages

in version control, 163

M
Maintenance costs, 53
Manager role

in meetings, 149
Mediator, 21
Meetings, stand up, 148
Mentoring, 157
Messaging, 123
Metaphors

using, 31
Methodology

understanding, 16
Metrics, 95
Milestone, 69
Mistakes

making enough, 14
Mock objects, 59, 136
Model-View-Controller (MVC), 119

N
Naming, 67, 103, 105
NDoc, 107
Negativity, 19
Next most important thing, 94
Noah, 33

O
Object-oriented vs. procedural code,

121
OO design principles, 177
Opaque code, 15
Options

providing, 46
Outcome, 12
Overcomplication, 85, 115

P
Pair programming, 159, 166
Paperboy and the wallet, 121
Pascal, Blaise, 109
Patent claim, 117
Patterns, 119
Pick-up game, 166
PIE principle, 102
Pizza bribes, 33, 42
Plan vs. planning, 51
Plan-based projects, 3
Planning, 43
Politics, 19
PowerPoint architects, 152
Pragmatic Programmer

web site, 178
Pressure, 37, 45
Privacy, 145
Problem

diagnosis, 129
identification, 52, 97
isolating, 137
solving, chance for, 161

Procedural vs. object-oriented code,
121

PRODUCTION ENVIRONMENT 185 USER GROUPS

Production environment, 61
Program defects, 145
Program intently and expressively, 102
Progress reporting, 168
Project automation, 56
Project glossary, 67
Project roles, 10
Prototype, 51, 60, 86, 136

Q
QA testing, 61
Quick fix, 15

R
Résumé-driven-design, 52
Raising the bar, 32
RDoc, 107
Readability, 100
Refactoring, 4, 80, 113
Regression tests, 80
Remote access, 163
Repeatable tests, 79
Requirements

freezing, 64
Responsibilities, 120
Retrospectives, 174
Return on investment, 25
Reuse Release Equivalency, 119
Reversibility, 52, 153
Risk, 55

and integration, 58
Roles, 10
Root cause analysis, 38
RSS feed, 169
Ruby, 106
Ruby on Rails, 35
Rut vs. grave, 36

S
Saboteurs, 3
Sam Houston, 55
Santa Anna, 55
Scrum, 40, 95
Security concerns, 143n
Sharing code, 163
Sharing learning, 31
Side effects, 122
Simple vs. simplistic, 115
Single Responsibility principle, 119

Slackers, 3
Smalltalk, 123
Snowbird, 2
Software architect, 152
Solutions log, 46, 129, 138, 157
Sprint, 40, 95
Stand-up meeting, 148, 171
Starter Kit, 173
Strategic

decisions, 152
design, 49

Stub program, 78
Stupid users, 97
Subclass, 124
Subversion, 163
Surfing, 1

T
Tactical

decisions, 152
design, 49

Teaching, 158
Teams

size, 4
Teamwork, 151
Technology stew, 53
Tell, Don’t Ask, 121
Territorial code ownership, 155
Test coverage, 81
Test Driven Development, 82
Testing

user involvement, 90
Testing frameworks, 78
Time boxing, 20, 41, 128
Time sheets

problems with, 93
Tools, 6
Track issues, 68
Trade-offs, 54, 111
Transitioning, 36

U
Unit testing, 6, 16, 56, 163, 174, 177

automated, 78
JUnit, 177
JUnitPerf, 177
NUnit, 177

Unlearning, 35
User errors, 145
User groups, 29

VERSION CONTROL 186 ZOOM-OUT

V
Version control, 6, 162, 173
Versioning, 57

W
Warnings, 132
Waterfall, 49
Why

benefits of asking, 38
Wiki, 6, 46, 67, 130, 169
Working overtime, 42

X
XP, see Extreme programming
xUnit, 78

Y
YAGNI, 84

Z
Zoom-out, 114

Competitive Edge
Now that you’ve gotten an introduction to the individual practices of an agile developer,
you may be interested in some of our other titles. For a full list of all of our current titles,
as well as announcements of new titles, please visit www.pragmaticprogrammer.com.

Ship It!
Agility for teams. The next step from the
individual focus of Practices of an Agile Devel-
oper is the team approach that let’s you Ship
It!, on time and on budget, without excuses.
You’ll see how to implement the common tech-
nical infrastructure that every project needs
along with well-accepted, easy-to-adopt, best-
of-breed practices that really work, as well as
common problems and how to solve them.

Ship It!: A Practical Guide to Successful
Software Projects
Jared Richardson and Will Gwaltney
(200 pages) ISBN: 0-9745140-4-7. $29.95

My Job Went to India

World class career advice. The job market is
shifting. Your current job may be outsourced,
perhaps to India or eastern Europe. But you
can save your job and improve your career
by following these practical and timely tips.
See how to: • treat your career as a business
• build your own brand as a software devel-
oper • develop a structured plan for keeping
your skills up to date • market yourself to
your company and rest of the industry • keep
your job!

My Job Went to India: 52 Ways to Save
Your Job

Chad Fowler
(208 pages) ISBN: 0-9766940-1-8. $19.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

www.pragmaticprogrammer.com
http://pragmaticprogrammer.com/catalog

Cutting Edge
Learn how to use the popular Ruby programming language from the Pragmatic Program-
mers: your definitive source for reference and tutorials on the Ruby language and exciting
new application development tools based on Ruby.

The Facets of Ruby series includes the definitive guide to Ruby, widely known as the
PickAxe book, and Agile Web Development with Rails, the first and best guide to the
cutting-edge Ruby on Rails application framework.

Programming Ruby (The PickAxe)
The definitive guide to Ruby programming.
• Up-to-date and expanded for Ruby ver-
sion 1.8. • Complete documentation of all the
built-in classes, modules, methods, and stan-
dard libraries. • Learn more about Ruby’s
web tools, unit testing, and programming phi-
losophy.

Programming Ruby: The Pragmatic
Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler
and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

Agile Web Development with Rails

A new approach to rapid web development.
Develop sophisticated web applications
quickly and easily • Learn the framework of
choice for Web 2.0 developers • Use incre-
mental and iterative development to create the
web apps that users want • Get to go home
on time.

Agile Web Development with Rails:
A Pragmatic Guide
Dave Thomas and David Heinemeier Hansson
(570 pages) ISBN: 0-9766940-0-X. $34.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Visit Us Online
Practices of an Agile Developer Home Page
pragmaticprogrammer.com/titles/pad

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community
pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/pad.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/pad
www.pragmaticprogrammer.com/catalog

	Chapter 1 Agile Software Development
	The Spirit of Agility
	The Practice of Agility
	Keeping Your Balance

	Chapter 2 Beginning Agility
	Work for Outcome
	Quick Fixes Become Quicksand
	Criticize Ideas, Not People
	Damn the Torpedoes, Go Ahead

	Chapter 3 Feeding Agility
	Keep Up with Change
	Invest in Your Team
	Know When to Unlearn
	Question Until You Understand
	Feel the Rhythm

	Chapter 4 Delivering What Users Want
	Let Customers Make Decisions
	Let Design Guide, Not Dictate
	Justify Technology Use
	Keep It Releasable
	Integrate Early, Integrate Often
	Automate Deployment Early
	Get Frequent Feedback Using Demos
	Use Short Iterations, Release in Increments
	Fixed Prices Are Broken Promises

	Chapter 5 Agile Feedback
	Put Angels on Your Shoulders
	Use It Before You Build It
	Different Makes a Difference
	Automate Acceptance Testing
	Measure Real Progress
	Listen to Users

	Chapter 6 Agile Coding
	Program Intently and Expressively
	Communicate in Code
	Actively Evaluate Trade-Offs
	Code in Increments
	Keep It Simple
	Write Cohesive Code
	Tell, Don't Ask
	Substitute by Contract

	Chapter 7 Agile Debugging
	Keep a Solutions Log
	Warnings Are Really Errors
	Attack Problems in Isolation
	Report All Exceptions
	Provide Useful Error Messages

	Chapter 8 Agile Collaboration
	Schedule Regular Face Time
	Architects Must Write Code
	Practice Collective Ownership
	Be a Mentor
	Allow People to Figure It Out
	Share Code Only When Ready
	Review Code
	Keep Others Informed

	Chapter 9 Epilogue: Moving to Agility
	Just One New Practice
	Rescuing a Failing Project
	Introducing Agility: The Manager's Guide
	Introducing Agility: The Programmer's Guide
	The End?

	Appendix A Resources
	On the Web
	Bibliography

	Index

