
The
Pragmatic

Programmers

NO FLUFF JUST STUFF

2006
ANTHOLOGY

compiled by Neal Ford

No Fluff, Just Stuff Anthology
The 2006 Edition

Neal Ford, Editor

with Scott Davis

David Geary

Andrew Glover

Stuart Halloway

Kirk Knoernschild

Mark Richards

Jared Richardson

Ian Roughley

Brian Sletten

Venkat Subramaniam

Eitan Suez

Glenn Vanderburg

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-97761666-5

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, June 2006

Version: 2006-5-17

http://www.pragmaticprogrammer.com

Contents
Greetings! vi

Preface vii

1 Real-World Web Services 1

by Scott Davis

2 DSLs and Language-Oriented Programming 14

by Neal Ford

3 Shale 37

by David Geary

4 Test Categorization Techniques 51

by Andrew Glover

5 Spring AOP 62

by Stuart Halloway

6 Dependency Management 84

by Kirk Knoernschild

7 Process Choreography and the Enterprise Service Bus 104

by Mark Richards

8 The Cornerstone of a Great Shop 116

by Jared Richardson

9 Help! I’ve Inherited Legacy Code! 125

by Jared Richardson

CONTENTS v

10 Using Code Coverage to Improve Testing Effectiveness 132

by Ian Roughley

11 Extreme Decorator: Total Object Makeover 143

by Brian Sletten

12 From Fragility to Agility: Methodologies and Practices 157

by Venkat Subramaniam

13 The Many Guises of Method Instrumentation 169

by Eitan Suez

14 CSS: A Programmer’s Perspective 185

by Eitan Suez

15 Buried Treasure 199

by Glenn Vanderburg

A The Authors Speak! 209

B Resources 216

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=v

Greetings!

This NFJS anthology exists for two reasons. We wanted to provide you

with interesting and informational articles, and we also wanted to give

you an indication of the quality of the speakers we have on the NFJS

tour. NFJS takes great pride in featuring some of the premier technical

speaking talent in the country. The majority of our speakers are also

accomplished authors.

For those of you not familiar with the No Fluff, Just Stuff Symposium

Series, our beginnings can be traced back to 2001 in Boulder, Colorado.

Since that time, we have organized more than 75 symposia throughout

the United States and Canada with more than 12,000 attendees. Our

success has been a result of focusing on high-quality technical presen-

tations, great speakers, limited attendance (capped at 250 people) and

no “marketecture.” As a result of the NFJS symposium tour success,

the next step in our evolutionary process is to begin publishing a yearly

anthology by our speakers/authors that compliments the sessions they

give in 2006. I know you will enjoy the chapters within this anthology,

and I hope you will join us at an NFJS tour stop if you have not done

so already. Thank you in advance for your support and patronage.

A special thanks to Libby, Zachary, and Hannah. All three of you have

embraced the vision of No Fluff, Just Stuff from the beginning through

your efforts and your belief in me. I love you all!

All the best,

Jay Zimmerman

NFJS Symposium Creator & Director

http://www.nofluffjuststuff.com

http://www.nofluffjuststuff.com

Preface
About two years ago, I participated in an event that changed my life,

although I didn’t quite grasp the significance of it at the time: I spoke

at my first No Fluff, Just Stuff conference in Austin, Texas. My pub-

lisher, Manning, put me in touch with Jay Zimmerman, and we played

phone tag for a few weeks. When I finally talked to him about speak-

ing at that first show, he kept going on and on that “this show is more

advanced than other conferences” and “I’m really dedicated to keep the

quality sky high.” Basically, this was the same stuff I’d heard over and

over again from other conference organizers. I was no spring chicken

at conference speaking. I had already presented more than 100 confer-

ence sessions all over the world. So, I thought “Yada, yada, more of the

‘we’re better than everyone else’ blather.”

But a funny thing happened in Austin: he was right! Suddenly, my ace

game was barely adequate. I distinctly remember telling co-workers

when I returned that I felt like a kid eating at the adult’s table. Jay

had (and has) managed to create an extraordinary gathering in every

city he visits. Maybe it’s the weekend seclusion, or the longer than

average sessions, or the high level of discourse in the sessions that

spills into the hallways and the meals. Maybe it’s everyone you meet.

It’s all those things, with one more keystone ingredient: the speakers. I

am honored and humbled to be considered a part of this extraordinary

group of individuals: the most brilliant minds in the industry, genuinely

personable, gregarious, funny, and centered. Jay has created a work

of genius, gathering this group to talk about technology 27 weekends a

year.

Back in the 1920s, a group of writers, actors, and other artists started

gathering a few times a week at the Algonquin Hotel restaurant. This

group included Dorothy Parker and Harpo Marx, among others (for a

great movie that depicts this group and era, check out Mrs. Parker and

the Vicious Circle). According to legend, the Algonquin Round Table dis-

PREFACE viii

cussions were the wittiest in history because they attracted the quick-

est, most sarcastic people in New York at that time, who were the best

in the world. Here are a few samples:

• Robert Sherwood, reviewing cowboy hero Tom Mix: “They say he

rides as if he’s part of the horse, but they don’t say which part.”

• Dorothy Parker: “That woman speaks 18 languages and can’t say

‘no’ in any of them.”

• George S. Kaufman: Once when asked by a press agent, “How

do I get my leading lady’s name into your newspaper?” Kaufman

replied, “Shoot her.”

No Fluff has created a geek version of this same phenomenon: the

speakers’ dinner. On Saturday night, the speakers go somewhere and

eat, and every one of those gatherings ends up being the most fasci-

nating conversation you can imagine. All these brilliant people, gather

to talk about the topics they’ve been thinking about all week that they

can’t discuss with their spouses. I’ve probably had more revelations

over food during the last two years than I’ve had my entire life prior

to the speakers’ dinner. No Fluff created for the speakers a computer

science version of the Algonquin Round Table (at a Cheesecake Factory

in your neighborhood).

Until now, no one other than the speakers had access to this fascinat-

ing and varied stream of conversation. Last year, Jay approached me

with the idea of creating an annual book, featuring articles by some

of the speakers and covering the topics about which they are passion-

ate. That’s when the idea (but not the name) of the anthology arose. I

agreed to edit it, if for no other reason than to be the first to get to read

all the chapters. We talked about it over the winter, set up deadlines,

contacted the speakers, and waited on chapters. When they started

arriving, I saw that Jay was right: we had a fascinating, diverse, engag-

ing set of chapters, whose only common characteristics were No Fluff,

Just Stuff and technical acumen.

Giving this beast a title was the only chore left. When I was a young

boy, I was a voracious reader of science fiction. My favorite books were

the anthologies: Hugo Award Winners for 1970 and The Best New Sci Fi

& Fantasy, 1973. What I liked most about these books was the sense of

anticipation for every story. Because each story had a different author,

the styles of the stories ranged far and wide. Thus, the name No Fluff,

Just Stuff Anthology: The 2006 Edition was born.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=viii

PREFACE ix

Just like those hoary old science fiction anthologies, each chapter in

this book is wildly different, both in style and in topic. Whether you

read it from cover to cover or just jump right into the middle, you will

be pleasantly surprised. This book is the next best thing to a dinner

invitation at No Fluff, Just Stuff in all 27 cities. Bon appetit!

Neal Ford

April, 2006

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=ix

Chapter 1

Real-World Web Services
by Scott Davis

Scott Davis is a senior software engineer at OpenLogic. He is passionate about

open source solutions and agile development. He has worked on a variety of

Java platforms, from J2EE to J2SE to J2ME (sometimes all on the same project).

He is the coauthor of JBoss at Work [MD05], quite possibly the world’s first agile

J2EE book. He is also responsible for Google Maps API: Adding Where to Your

Application1 and the forthcoming Pragmatic GIS [Dav06].

Scott is a frequent presenter at national conferences (such as No Fluff, Just Stuff)

and local user groups. He was the president of the Denver Java Users Group in

2003 when it was voted one of the top-ten JUGs in North America. After a quick

move north, he is currently active in the leadership of the Boulder Java Users

Group. Keep up with him at http://www.davisworld.org.

Scott’s list of favorite books and tools starts on page 209.

1http://www.pragmaticprogrammer.com/titles/sdgmapi

http://www.pragmaticprogrammer.com/titles/sdgmapi

WHAT IS SOA? 2

When software historians reflect on the first decade of the 21st cen-

tury, they will most likely remembered it as the time when years-old

technologies were held up as recent innovations. Just as Ajax (Asyn- Ajax

chronous JavaScript And XML) is based primarily on the XMLHttpRequest

object that was incorporated into web browsers during the late 1990s,

the current infatuation with the notion of SOA has prompted many cur- SOA

mudgeons to dub it Same Old Architecture instead of Service-Oriented

Architecture.

In its defense, SOA is worth reevaluating. Given the meteoric rise in

popularity of the Internet, this might be the “perfect storm” of technolo-

gies and philosophies that finally moves SOA from theory to business

reality.

In order to implement SOA in your organization, you are forced to run

a gauntlet of loosely defined and poorly understood TLAs (three-letter

acronyms)—SOAP and WSDL, REST, and POX, to name just a few.

Compounding matters, as developers we often rush to an implemen-

tation without fully understanding the semantics behind it. In this

chapter, we’ll discuss the philosophy of SOA. You can take two very

different roads on the way to SOA. Both will eventually get you to the

same destination, but they take distinctly different routes.

To begin our journey, let’s put a more concrete definition together for

SOA.

1.1 What Is SOA?

We defined SOA earlier as Service-Oriented Architecture, but what does

that really mean? The Wikipedia entry says, “Unlike traditional point-

to-point architectures, SOAs comprise loosely coupled, highly inter-

operable application services.”2

“Services” refers to simple stateless resources that can be accessed

remotely, perhaps getStockQuote('IBM') or getCurrentTemp('Denver'). These

services can return either a single data value or a complex document.

“Loosely coupled, highly interoperable” echoes a common sentiment

used to describe technologies related to the Internet. Several books

use variations of this theme in their titles, such as Small Pieces Loosely

Joined: A Unified Theory of the Web [Wei02] by David Weinberger and

2http://en.wikipedia.org/wiki/Service-oriented_architecture

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=2

WHAT IS A WS? 3

Loosely Coupled: The Missing Pieces of Web Services [Kay03] by Doug

Kaye. The success of the Internet is due largely to its insistence on

platform-, language-, and vendor-neutral solutions. Interoperability is

demonstrated every second of every day as Windows, Linux, and Mac

servers and clients seamlessly interact with each other in as many dif-

ferent programming languages as there are spoken languages.

So is WS (web services) synonymous with SOA? Wikipedia goes on to WS

say, “Most definitions of SOA identify the use of web services (i.e., using

SOAP or REST) in its implementation. However, one can implement

SOA using any service-based technology.” To prove this, one needs to

look only as far as the modernization of the lowly parking meter. From

Florida to Las Vegas to California, examples are popping up all over

the place of a cell phone/parking meter interface. Rather than fumble

around for loose change, the driver calls a number posted on the park-

ing meter or sends an SMS message. When the meter is about to expire,

it sends a message to the phone, giving the driver a chance to add more

time without having to physically visit the meter again. This service

would not be possible if the technology surrounding it wasn’t ubiqui-

tous. (Imagine seeing a sign that read, “This meter works best with

T-Mobile phones. Verizon subscribers should park down the block.”)

An SOA can be implemented using a wide variety of protocols (SMTP,

XMPP, or SNMP, to name a few), although HTTP is by far the most

common of the bunch.

1.2 What Is a WS?

A web service is a remote, message-oriented type of SOA that rides atop

HTTP. In simple terms, this means you can make a request over port

80 and get an XML response. Of course, the type of HTTP request

you make (GET, POST, PUT, DELETE), the format of the request, and

the format of the response can all vary from WS implementation to

implementation. But before we get into the details of the various imple-

mentations, let’s spend a bit more time deconstructing the name web

services.

When they think of the World Wide Web, most people think of viewing

web pages in a web browser. As developers, we can take this one step

further and see it as making a GET request over HTTP and receiving an

HTML response.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=3

WHAT IS A WS? 4

HTTP, despite the name Hypertext Transport Protocol, doesn’t much

care what the datatype of its payload is. Every HTTP response includes

a MIME type. For web pages, the MIME type is generally text/html or

application/xhtml+xml. For images, the MIME type can be image/png,

image/jpeg, or image/gif depending on the file format. So as you can

see, sending XML back (text/xml) isn’t asking HTTP to do anything out

of the ordinary.3

So if HTTP doesn’t care whether it’s returning XML instead of HTML,

why did the W3C take great pains to differentiate web services from the

plain old Web that even your grandmother understands? The simple

answer is intent.

The plain old Web that we’ve known and loved for the past 15 years

is based on presenting data to you in an appealing manner. Whether

you’re using simple physical markup tags such as bold, italic, and (gri-

mace) blink or using sophisticated CSS (Cascading Style Sheets), the

whole point of the exercise is to affect the appearance of the data:

<h1>Honda Accord</h1>

Color: Black

Sunroof: Yes

Web services are not concerned about the appearance of the data at

all. The goal of WS is to leverage the ubiquity of the Web to get you the

unadorned data. It is the responsibility of the WS consumer to format

the data in an appropriate way:

<car type="Honda Accord">

<color>Black</color>

<sunroof>Yes</sunroof>

</car>

If you think about it in terms of MVC (Model, View, Controller pattern),

HTML is the view; XML is the model.

Almost all of the major websites have WS APIs that allow you to get at

the data without having to dig it out of the HTML. eBay handles more

than a billion WS requests a month, accounting for nearly half of its

entire business.4

3For a list of all registered MIME types, see http://www.iana.org/assignments/media-types/

or the file mime.types in the conf/ directory of your friendly neighborhood Apache web

server.
4See http://developer.ebay.com/join/whitepapers/webservicesinaction for more details.

http://www.iana.org/assignments/media-types/
http://developer.ebay.com/join/whitepapers/webservicesinaction
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=4

WHAT IS SOAP? 5

In the physical world, why do most cities have bus, taxi, and limo ser-

vices? Why do only a select few have subways, trolleys, monorails, or

gondolas? The obvious answer is infrastructure; the former services

can take advantage of the existing city streets, while the latter ser-

vices require expensive, specialized, proprietary platforms. In software

terms, what does WS have going for it that other remoting (RMI, DCOM,

CORBA) and messaging (JMS, MSMQ) architectures don’t? The answer

is that nearly every company has an Internet connection, a web server,

and port 80 open on its firewall.

1.3 What Is SOAP?

SOAP initially stood for Simple Object Access Protocol, but like many SOAP

other technology-related acronyms (JDBC comes to mind), this one is

now officially just a collection of four letters that has no deeper signifi-

cance. SOAP and its sibling WSDL (Web Services Description Language) WSDL

comprise arguably the most popular form of WS.5

SOAP requests and responses are well-formed XML documents. SOAP

messages have a standard envelope that contains a header and a body.

Just like a letter in the physical world, the envelope has an address

that allows a customizable payload (the body) to be delivered to the

recipient.

The WSDL document provides everything necessary to complete a SOAP

transaction: the URL of the WS provider, the names of the services and

any arguments, and the exact format of both the SOAP request and

the response bodies. Although the WSDL isn’t exactly an easy read

for humans, it is expressed in a standard XML format. This means a

number of utilities exist that can automatically create a SOAP client

without any human intervention.

To see SOAP in action, let’s look to the venerable search engine Google.6

No one needs a tutorial explaining how to use the web interface—you

type in your search criteria, click the search button, and get a list of

results in HTML, as shown in Figure 1.1, on the next page.

But what if you want to get the results back as XML instead of HTML?

The first step is to download the free Google web API toolkit.7 The

5See http://www.w3.org/TR/soap/ for the full specification.
6http://www.google.com
7http://www.google.com/apis

http://www.w3.org/TR/soap/
http://www.google.com
http://www.google.com/apis
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=5

WHAT IS SOAP? 6

Figure 1.1: Search results from the Google website

toolkit contains a WSDL document describing the interface, examples

of SOAP requests and responses, and sample code in several program-

ming languages showing you how to make the requests and manipulate

the responses. You’ll also need to register for a free API key that must

accompany each WS request.

To perform the same query using SOAP, you need to construct a SOAP

request, like the one in Figure 1.2, on the following page. You use HTTP

POST to send the request to the service. The SOAP response comes

back as XML. (See Figure 1.3, on the next page, for a snippet.) Once

you have the results, you can use any standard XML toolkit (JDOM,

Castor, XMLBeans, etc.) to transform the output into the format of

your choice.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=6

WHAT IS SOAP? 7

Figure 1.2: A Google SOAP request

Figure 1.3: A portion of a Google SOAP response

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=7

WHAT IS REST? 8

The Apache Axis project8 is an open source SOAP framework. In addi-

tion to giving you the capability to host your own SOAP-based WS, it

provides tools to seamlessly create SOAP clients as well. WSDL2Java and

Java2WSDL, as the names suggest, allow you to generate Java clients

from a WSDL document.

Maven9 takes this one step further. If you provide a URL to a WSDL

document, Maven will download it from the Web and build a full Java

client including unit tests. Several chapters in Maven: A Developer’s

Notebook [MO05] by Vincent Massol and Timothy M. O’Brien discuss

this process in great detail.

Implementing your SOA in SOAP has many benefits. SOAP is a mature,

well-understood specification with a robust ecosystem of supporting

toolsets. Although requests are most often sent over HTTP, native bind-

ings for other transports are supported as well.

However, SOAP is not without its drawbacks. As you saw, it is quite

verbose; few people will tackle SOAP without a toolkit to autogenerate

the lion’s share of the requisite code infrastructure. This has led a

vocal minority to say, “SOAP is the EJB of the XML world”—meaning it’s

undeniably powerful but perhaps heavier-weight than many solutions

require. It’s like using a sledgehammer as a flyswatter.

Another common complaint is that SOAP isn’t particularly browser-

friendly. JavaScript doesn’t have robust XML support, making SOAP

requests possible but not exactly trivial. These complaints have given

rise to a “kinder, gentler” form of WS: REST.

1.4 What Is REST?

REST is short for Representational State Transfer. Behind that rela- REST

tively complicated sounding name is a simple concept: if you want to

access a service over the Web, why not use a simple web URL? Provided

it returns XML, a request such as

http://www.someservice.com/store?action=getCarList&make=Honda

is every bit the web service that SOAP is.

8http://ws.apache.org/axis/
9http://maven.apache.org/

http://ws.apache.org/axis/
http://maven.apache.org/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=8

WHAT IS REST? 9

Figure 1.4: Search results from the Yahoo WS API

REST was formally introduced in the 2000 doctoral dissertation of Roy

Fielding,10 but the idea was woven into the fabric of the Web from the

beginning. Every resource on the Internet has a unique identifier—a

URI (Uniform Resource Identifier). The term URL (Uniform Resource URI

URLLocator) is a type of URI that in addition to identifying a service also

describes how to locate it.

The popular definition of a RESTful WS is anything that accepts a sim-

ple HTTP GET request instead of a formal SOAP request. In practice,

many of these URLs bear only a superficial resemblance to Fielding’s

original definition of REST (including the example URL I presented ear-

lier). After we examine a popular RESTful WS, I’ll give an example of a

canonical one.

In contrast to Google’s SOAP-based WS API, Yahoo11 offers a RESTful

API for searching. To download the sample SDK and register for a free

API key, visit http://developer.yahoo.net/.

Once you have a key, you can make a RESTful request by putting

together a simple URL (shown here split onto two lines):

10http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
11http://www.yahoo.com

http://developer.yahoo.net/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.yahoo.com
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=9

WHAT IS REST? 10

http://api.search.yahoo.com/WebSearchService/V1/webSearch?

appid=00000000&query=jboss+at+work

If you type this URL into a web browser, you can easily see the results,

as shown in Figure 1.4, on the preceding page. Of course, a real appli-

cation would take these results and transform them into something

more interesting than raw XML.

Yahoo offers a number of RESTful web services, in addition to search,

ranging from stock quotes to shopping to weather forecasts. Each ser-

vice is a breeze to play with—construct a slightly different URL, and

you’re off to the races.

Many companies offer both SOAP and REST interfaces. Notably, Ama-

zon reports an almost nine to one preference among developers for its

RESTful interface based on traffic patterns.12

Opponents of REST argue that it lacks a formal mechanism for defining

the interface and response format like WSDL, which in turn means that

there isn’t a Maven-like way to magically create clients. Supporters of

REST point to examples such as Amazon, suggesting that the interface

is so easy to learn that it doesn’t require a client generator. Any tool

or library that supports web requests (HttpClient, wget, curl) is already

REST-enabled.

Just as the term POJO (Plain Old Java Object) is often used to contrast POJO

more complicated, formal frameworks such as EJB, POX (Plain Old POX

XML) is gaining popularity when characterizing RESTful web services.

Even though the two search engine giants offer WS APIs that use dis-

tinct syntaxes, Fielding would probably argue that they are more sim-

ilar than different. Both are essentially RPC (Remote Procedure Call) RPC

interfaces. A true RESTful WS is resource-centric, not RPC-centric.

Consider the following URL:

http://www.somestore.com/books/jboss_at_work

In a RESTful system, making an HTTP GET request to that URI returns

the XML representation of that resource. If you want to get a different

book, you make a different request:

http://www.somestore.com/books/pragmatic_gis

12Visit http://www.amazon.com/gp/browse.html/002-7648597-5380869?node=3435361 to down-

load the SDK and register for a free API key.

http://www.amazon.com/gp/browse.html/002-7648597-5380869?node=3435361
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=10

WHAT IS REST? 11

If you want a list of all books, you ask for the following:

http://www.somestore.com/books

If instead you want a list of DVDs, you ask for the following:

http://www.somestore.com/dvds

Doesn’t that seem like a natural way to interact with a WS?

In an RPC interface, the emphasis is on defining unique method names,

for instance getBook('JBoss at Work'), addBook('JBoss at Work'), and delete-

Book('JBoss at Work'). It is a method-centric worldview, where you must

pass in the unique identifier.

When you look at the world through resource-centric glasses, it is the

object that is a first-class citizen, not the method. You perform actions

on objects rather than passing the object to an action.

To continue exploring our hypothetical RESTful interface, I would use

HTTP POST to insert a new book:

http://www.somestore.com/books/some_new_title

An HTTP DELETE would delete the book. An HTTP PUT would update

the resource. For a great set of articles on creating your own RESTful

API, see Joe Gregorio’s series on XML.com.13

To see a real-world example of this, consider the blogosphere. The

URI of my weblog is http://www.davisworld.org/blojsom/blog. There’s a

bit of implementation bleed-through—I use Blojsom14 for my blogging

software—but the point remains valid nonetheless. If you want to visit

my blog, you can visit that URL.

I am the only person blogging at that address right now, but Blojsom

supports multiple users. If you want to see an individual’s blog, you

simply expand the URI a bit: http://www.davisworld.org/blojsom/blog/scott.

(Since I am the only user at that URI, the real URI is as follows:

http://www.davisworld.org/blojsom/blog/default

Visiting that URL will always give you the latest list of blog entries. If

you want to go to a specific blog entry, you can expand the URI a bit

further:

http://www.davisworld.org/blojsom/blog/default/2006/02/01/Evolve.html

13http://www.xml.com/pub/at/34
14http://blojsom.sf.net/

http://www.davisworld.org/blojsom/blog
http://www.xml.com/pub/at/34
http://blojsom.sf.net/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=11

WHAT IS JSON? 12

By deconstructing the permalink, you can see how Blojsom organizes permalink

its entries: first by user, then by year, then by month, then by day, and

finally by title. If you shorten the URL a bit to

http://www.davisworld.org/blojsom/blog/default/2006/02

Blojsom will return all entries that were posted in February 2006.

The Atom Syndication Format and Atom Publishing Protocol RFCs fur-

ther define the rest of the RESTful nature of the blogosphere—providing

ways of publishing new entries, deleting entries, etc. (RSS is another

blog syndication API, but it is a more RPC-like implementation.) The

ROME toolkit15 is a Java API that allows you to programmatically inter-

act with both Atom and RSS feeds.

1.5 What Is JSON?

Because XML results are still problematic to parse using JavaScript,

regardless of the request format used, a third alternative for WS is

gaining steam with the Ajax crowd. JSON (JavaScript Object Notation) JSON

based web services return data in JavaScript instead of XML.

Despite the word JavaScript in the title, there are JSON bindings for

more than 15 different languages, including Java.16

At first glance, JSON seems to simply swap out angle braces in favor of

curly braces, commas, and colons. But by expressing the data struc-

tures in a more JavaScript-friendly manner, you can simply eval() the

returned data, getting well-formed JavaScript objects out the other

side.

To see JSON in action, let’s revisit the Yahoo API.

By appending output=json to the end of our query, we get a very different-

looking set of results:

{"Title":"java.net: JBoss at Work, Part 1: Installing and Configuring JBoss",

"Summary":"In this first article of a series ...",

"Url":"http:\/\/today.java.net\/pub\/a\/today\/2005\/03\/01\/Ins...",

"ClickUrl":"http:\/\/today.java.net\/pub\/a\/today\/2005\/03\/01...",

"ModificationDate":1140076800,

"MimeType":"text\/html",

"Cache":{"Url":"http:...","Size":"45524"}},

15https://rome.dev.java.net/
16See http://www.json.org/ for more information.

https://rome.dev.java.net/
http://www.json.org/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=12

WHAT IS JSON? 13

Ruby aficionados use a similar format, YAML, as the default serial- YAML

ization syntax. Early in its life, YAML meant Yet Another Markup

Language. Recently, that definition has been updated to YAML Ain’t

Markup Language. YAML parsers exist in a number of different lan-

guages other than Ruby, including Java.

Software developers are a pragmatic bunch—if XML support continues

to lag in their language of choice (especially in something as widespread

as JavaScript), expect to see more web services popping up that cater

to their immediate needs. If WS providers have to choose between his-

torical precedence and immediate market share, which do you think

they’ll select?

Of course, as request and response formats multiply, that will bring

a new set of challenges for the software developer to tackle. A whole

new class of software is emerging based on the notion of ESB (Enter- ESB

prise Service Bus). An ESB toolkit such as ServiceMix17 allows you to

normalize queries across multiple disparate services using generalized

XML syntaxes such as BPEL (Business Process Execution Language) BPEL

and the new JBI (Java Business Interface) API. JBI

Regardless of which new languages and protocols emerge in the future

to support SOAs, rest assured that there will be some old wizened devel-

oper in the background muttering under his breath, “SOAs? Why are

these young whippersnappers getting so excited about SOAs? I’ve been

doing the same thing for years....”

17http://servicemix.org/

http://servicemix.org/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=13

Chapter 2

DSLs and Language-Oriented
Programming

by Neal Ford

Neal Ford is an application architect at ThoughtWorks, a global IT consultancy

with an exclusive focus on end-to-end software development and delivery. He

is the designer and developer of applications, instructional materials, magazine

articles, and video presentations and author of the books Developing with Del-

phi: Object-Oriented Techniques [WFW95], JBuilder 3 Unleashed [FWA+99], and

Art of Java Web Development [For03]. His language proficiencies include Java,

C#/.NET, Ruby, Object Pascal, C++, and C. His primary consulting focus is the

building of large-scale enterprise applications. Neal has taught on-site classes

nationally and internationally to all branches of the military and to many For-

tune 500 companies. He is also an internationally acclaimed speaker, having

spoken at numerous developer conferences worldwide. If you have an insatiable

curiosity about Neal, visit his website at http://www.nealford.com. He welcomes

feedback and can be reached at mailto:nford@thoughtworks.com.

Neal’s book and tool selections start on page 210.

http://www.nealford
mailto:nford@thoughtworks.com

THE MOTIVATION FOR DOMAIN-SPECIFIC LANGUAGES 15

Have you ever wondered why you spend more time writing XML than

Java? XML seems to have taken over development in Java (and other

languages). Another interesting (and related) question is this: why is

everyone and his brother talking about Ruby and Ruby on Rails all of

a sudden? And finally, is there an evolutionary step beyond object-

oriented programming?

This chapter addresses these and other questions. It is about building

domain-specific languages using Java and a new development disci-

pline called language-oriented programming, which is a style of pro- language-oriented
programming

gramming where you create your own language keyed to a particular

problem domain. Before I get into all that, though, I want to talk about

why on Earth you would want to do this.

2.1 The Motivation for Domain-Specific Languages

A dynamic language (or dynamically typed language) doesn’t require dynamic language

type safety. In other words, if you have a variable that currently holds

an int, you can assign a String to it with no complaints. Most dynamic

languages don’t require you to specify a type for a variable—variables

hold whatever you give them. Ruby proponents call this duck typing::

if the variable responds to a message that asks it to quack like a duck

and it quacks, it must be a duck. This is clearly different from the

way that Java (and other strongly typed languages) work, where each

variable represents a certain type. Examples of dynamic languages

include JavaScript, Lisp, Smalltalk, Python, and Ruby.

If you look at the way experienced developers use dynamic languages,

you see a pattern emerge. Instead of modeling the problem using

objects or some other structural approach, they tend to write a new lan-

guage to solve the problem. This language is domain-specific, meaning

that it represents high-level abstractions of the problem domain. Using

DSLs to solve problems is well stated in Eric Raymond’s Art of UNIX

Programming [Ray03] in Section 1.6.14:

“Avoid hand-hacking: write programs to write programs when you can.”

Raymond is talking about the Unix tradition of little languages, which little languages

are small, specific languages used to solve a single problem.

A couple of examples will help me make my case. In the book Hackers

and Painters [Gra04], Paul Graham describes the first “build your own”

ecommerce solution (which was eventually sold to Yahoo Stores). The

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=15

SOME DEFINITIONS 16

application, written in Lisp as a DSL, closely modeled the problem of

building an ecommerce store. Their competitors at the time wrote their

applications in C. Paul’s group wrote their application in their DSL on

top of Lisp, which closely modeled the problem domain of building on-

line stores. Because Paul’s group operated at a much higher level of

abstraction (i.e., away from low-level Lisp syntax), they responded to

change more quickly. When their competitors added a new feature, they

could mimic that feature within days. When Paul’s team added new

features, it took their competitors weeks to match them. The approach

of modeling the problem as a DSL created a significant advantage.

Another example of a clever use of a domain-specific language is Ruby

on Rails, the web framework and persistence library written in Ruby.

Ruby on Rails is popular because it is extraordinarily productive for

some classes of web application development. Users of Ruby on Rails

are exuberant to the point of annoyance: they keep talking about what

a joy it is to use. The reason for its productivity and popularity revolves

around how it is written. Ruby on Rails is a DSL designed for building

web applications that feature persistence. Developers who blissfully

use it operate at a higher level of abstraction than those using a Java

framework.

2.2 Some Definitions

I first started talking about building domain-specific languages at No

Fluff, Just Stuff in March 2005. The genesis for the idea was the obser-

vation of the way developers used languages such as Ruby. Then, about

six months later, Martin Fowler (Chief Scientist at ThoughtWorks) wrote

an article about DSLs entitled “Language Workbenches: The Killer App

for Domain-Specific Languages?” It turns out that Martin talked about

the same stuff I was talking about, but he applied his uncanny ability of

assigning nomenclature to the problem. Without realizing it, he added

sorely lacking definitions to what I had been talking about all along.

After getting his permission, I adopted his definitions to organize what

I was talking about, and I use those definitions here.

Nomenclature

A domain-specific language is a limited form of computer language domain-specific
language

designed for a specific class of problems. In most of the existing lit-

erature, when authors refer to DSLs, it is always about a problem

domain, not boundary classes. When talking about model objects in

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=16

DSLS UNDERFOOT 17

an application, you can separate them by function into either an entity entity

or a boundary class. The entities model the problem domain and gen- boundary

erally contain just data fields and business rules. Boundary classes

handle the transitions between the layers of the application. Examples

of boundary classes include database access, user interface, service,

and any other class used to facilitate the building of the application’s

model. The entities represent why you build the application, and the

boundaries represent how you build it. In the existing literature, DSLs

mostly represent entities. In my view, you can use a DSL for any type

of limited problem domain that encompasses entities and boundaries.

Ruby on Rails addresses this boundary neighborhood, with support for

persistence and user interfaces.

Language-oriented programming describes the general style of devel- Language-oriented
programming

opment that operates around the idea of building software around a

set of domain-specific languages. This is an evolutionary step beyond

object-oriented programming because the building blocks of your DSL

(if you are writing it on top of Java) are classes, objects, aspects, and all

the other weapons you already have in your arsenal. This isn’t about

replacing object-oriented programming; it’s about operating at a higher

level of abstraction. The new language you create encapsulates your

problem domain, and the new language in turn is written using Java

features and extensions as its building blocks.

Types of DSLs

Two types of DSLs exist: internal and external. An internal DSL is a internal DSL

domain-specific language written “on top” of the underlying syntax of

your base language. If Java is your base language, then an internal DSL

written in Java uses Java syntax to define the language. Most of the

DSLs that exist today are internal DSLs: Ruby on Rails, the example

from Hackers and Painters, and Rake (the Ruby make utility). Program- Rake

ming languages with forgiving syntax (like Lisp, Smalltalk, Python, and

Ruby) have spawned DSLs for obvious reasons: the looser the syntax

rules, the easier it is to create a new language on top of it.

2.3 DSLs Underfoot

Whether you realize it or not, you’ve been using DSLs for years. You

haven’t noticed them because they have always been hidden, either in

regular, mundane code or in XML documents. Here are two examples.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=17

DSLS UNDERFOOT 18

J2EE Front Controller in Web Frameworks

Virtually every web framework in the Java world uses the J2EE Front

Controller design pattern. This pattern is generally implemented using

a servlet that intercepts requests to your web application and dis-

patches control to a workflow component (for example, an Action class

in Struts or a Handler class in JavaServer Faces).

Each of the implementations of this pattern follow the same general

structure. They all have some framework classes, used to establish framework

scaffolding. This example shows a simple implementation of this pat-

tern. This is the base class for the workflow classes, Action:

Download neal/paramcmd/pc/Action.java

abstract public class Action {

private HttpServletRequest request;

private HttpServletResponse response;

private ServletContext servletContext;

abstract public void execute();

public void forward(String forwardResource) {

try {

RequestDispatcher rd =

getRequest().getRequestDispatcher(

forwardResource);

rd.forward(getRequest(), getResponse());

} catch (IOException iox) {

servletContext.log("Forward Error", iox);

} catch (ServletException sx) {

servletContext.log("Servlet Error", sx);

}

}

public void setRequest(HttpServletRequest newRequest) {

request = newRequest;

}

public HttpServletRequest getRequest() {

return request;

}

public void setResponse(HttpServletResponse newResponse) {

response = newResponse;

}

public HttpServletResponse getResponse() {

return response;

}

http://media.pragprog.com/titles/nfjs06/code/neal/paramcmd/pc/Action.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=18

DSLS UNDERFOOT 19

public void setServletContext(ServletContext newContext) {

servletContext = newContext;

}

public ServletContext getServletContext() {

return servletContext;

}

}

The important method in the Action class is the abstract method exe-

cute(), which all child classes must override. A sample Action subclass

looks like this:

Download neal/paramcmd/pc/ListingAction.java

public class ListingAction extends Action {

public void execute() {

TheModel model = getOrCreateModel();

List sortedKeywords = getSortedKeywords(model);

bundleAttributesForView(model, sortedKeywords);

forwardToView();

}

private TheModel getOrCreateModel() {

HttpSession session = getRequest().getSession(true);

TheModel model = null;

model = (TheModel) session.getAttribute("model");

if (model == null) {

model = new TheModel();

session.setAttribute("model", model);

}

return model;

}

private List getSortedKeywords(TheModel model) {

List sortedKeywords = model.getKeywords();

Collections.sort(sortedKeywords);

return sortedKeywords;

}

private void bundleAttributesForView(TheModel model,

List sortedKeywords) {

getRequest().setAttribute("keywords", sortedKeywords);

getRequest().setAttribute("proposed",

model.getProposedKeywords());

}

private void forwardToView() {

forward("/Listing.jsp");

}

}

http://media.pragprog.com/titles/nfjs06/code/neal/paramcmd/pc/ListingAction.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=19

DSLS UNDERFOOT 20

To map the actions to a particular request, the framework requires

some kind of document to create an association with a name (in this

case, a URL parameter) and the Action class. To keep it simple, this

version uses a simple Java properties file (rather than an XML configu-

ration file), shown here:

Download neal/paramcmd/WEB-INF/mappings.properties

#Initial generation

#Thu Jan 24 17:11:27 CST 2002

formEntry=com.nealford.art.parameterizedcommands.EntryAction

listing=com.nealford.art.parameterizedcommands.ListingAction

saveAction=com.nealford.art.parameterizedcommands.SaveAction

The last part of the example is the controller servlet that handles invok-

ing the requested action. The MainController appears next:

Download neal/paramcmd/pc/MainController.java

public class MainController extends HttpServlet {

private Properties mappings;

public void init(ServletConfig config) throws

ServletException {

super.init(config);

InputStream is = null;

try {

String location = config.getInitParameter("mapping");

is = getServletContext().getResourceAsStream(location);

mappings = new Properties();

mappings.load(is);

} catch (IOException iox) {

getServletContext().log("I/O Error", iox);

iox.printStackTrace();

} finally {

try {

is.close();

} catch (IOException ignored) {

}

}

}

public void doGet(HttpServletRequest request,

HttpServletResponse response) throws

ServletException, IOException {

Ê String command = request.getParameter("cmd");

String actionClass = (String) mappings.get(command);

Action action = null;

try {

Ë action = (Action) Class.forName(actionClass).newInstance();

} catch (ClassNotFoundException cnfx) {

getServletContext().log("Class Not Found", cnfx);

http://media.pragprog.com/titles/nfjs06/code/neal/paramcmd/WEB-INF/mappings.properties
http://media.pragprog.com/titles/nfjs06/code/neal/paramcmd/pc/MainController.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=20

DSLS UNDERFOOT 21

cnfx.printStackTrace();

} catch (IllegalAccessException iax) {

getServletContext().log("Security Exception", iax);

} catch (InstantiationException ix) {

getServletContext().log("Instantiation Exception", ix);

}

action.setRequest(request);

action.setResponse(response);

action.setServletContext(getServletContext());

Ì action.execute();

}

public void doPost(HttpServletRequest request,

HttpServletResponse response) throws

ServletException, IOException {

doGet(request, response);

}

}

Ê Grab the friendly name of the action from a request parameter.

Ë Instantiate the Action class using reflection.

Ì Call the execute() method inherited from Action.

If you have browsed the guts of any J2EE web framework, you’ll see

nothing shocking in this code. But look at it in a different light. Two

types of code exist in this example: framework code and configuration

code. The framework code is in the Action and MainController classes,

while the configuration is in the properties file and the Action subclass,

ListingAction. In this application, you are dealing with two fundamentally

different types of code, with different uses. The configuration code is a

DSL for configuring your web application.

Reading from Flat Files

Here’s another example of a DSL lurking deep in otherwise “normal”

code. The problem: we need to read billing information from a flat

file excreted periodically from a mainframe. The file structure is fixed-

space fields, where each service type has different fields (the first line

is used to aid in counting positions):

Download neal/strategy/input.txt

#123456789012345678901234567890123456789012345678901234567890

SVCLFOWLER 10101MS0120050313.........................

SVCLHOHPE 10201DX0320050315........................

SVCLTWO x10301MRP220050329..............................

USGE10301TWO x50214..7050329...............................

http://media.pragprog.com/titles/nfjs06/code/neal/strategy/input.txt
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=21

DSLS UNDERFOOT 22

In this scenario, the first field identifies the type of service. We know

that new types of services exist beyond the two declared here, and we

want to insulate the application from this change. The clever way to

handle this contingency is the judicious use of the Strategy design pat- Strategy

tern. Ultimately, we want to take one of these input lines and produce

a simple class like ServiceCall:

Download neal/strategy/reader/ServiceCall.java

public class ServiceCall {

public String customerName;

public String customerId;

public String callTypeCode;

public String dateOfCallString;

public String toString() {

return "customerName: " + customerName +

"\ncustomerId: " + customerId +

"\ncallTypeCode " + callTypeCode +

"\ndate of Call: " + dateOfCallString;

}

}

For the first step, we configure a Reader interface that includes the

interesting methods:

Download neal/strategy/reader/ReaderStrategy.java

public interface ReaderStrategy {

String getCode();

void addFieldExtractor(int begin, int end, String target);

Object process(String line);

}

ReaderStrategy defines the methods that each strategy must implement:

getCode() retrieves the code type, which determines what other fields

to expect; the addFieldExtractor() allows us to define field positions; and

process() consumes a line of our input file.

Now comes the hard part, defining the ReaderStrategyImpl that will han-

dle defining strategies. This class utilizes an inner class to hold field

information, reflection to create objects, and Java 5 generics to create

type-safe collections. Hold your breath, and check out this listing (or

just trust that it does what I say it does):

Download neal/strategy/reader/ReaderStrategyImpl.java

public class ReaderStrategyImpl implements ReaderStrategy {

private String _code;

private Class _target;

http://media.pragprog.com/titles/nfjs06/code/neal/strategy/reader/ServiceCall.java
http://media.pragprog.com/titles/nfjs06/code/neal/strategy/reader/ReaderStrategy.java
http://media.pragprog.com/titles/nfjs06/code/neal/strategy/reader/ReaderStrategyImpl.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=22

DSLS UNDERFOOT 23

Ê final class FieldExtractor {

private int _begin, _end;

private String _targetPropertyName;

public FieldExtractor(int begin, int end, String target) {

_begin = begin;

_end = end;

_targetPropertyName = target;

}

Ë public void extractField(String line, Object targetObject) {

String value = line.substring(_begin, _end + 1);

try {

setValue(targetObject, value);

} catch (Exception oops) {

throw new RuntimeException(oops);

}

}

Ì private void setValue(Object targetObject, String value)

throws Exception {

Field field = targetObject.getClass().getField(_targetPropertyName);

field.set(targetObject, value);

}

}

private List<ReaderStrategyImpl.FieldExtractor> extractors =

Í new ArrayList<ReaderStrategyImpl.FieldExtractor>();

public ReaderStrategyImpl(String code, Class target) {

_code = code;

_target = target;

}

public String getCode() {

return _code;

}

public void addFieldExtractor(int begin, int end, String target) {

if (! targetPropertyNames().contains(target))

throw new NoFieldInTargetException(target, _target.getName());

extractors.add(new ReaderStrategyImpl.FieldExtractor(begin, end, target));

}

private List<String> targetPropertyNames() {

List<String> result = new ArrayList<String>();

Field fields[] = _target.getFields();

for (Field f : fields)

result.add(f.getName());

return result;

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=23

DSLS UNDERFOOT 24

public Object process(String line) {

Object result = null;

try {

result = _target.newInstance();

} catch (Exception oops) {

oops.printStackTrace();

}

Î for (FieldExtractor ex : extractors)

ex.extractField(line, result);

return result;

}

}

Ê Inner class that holds an individual field extractor object

Ë Extracts the field from the fixed-width string

Ì Uses reflection to set the value of the field defined by this field

extractor

Í Outer class collection of field extractors that make up a single

record from the flat file

Î Where the action is: loops over all the field extractors and extracts

the fields

OK, we now have all the framework set up. The last piece of the puzzle

is to use this framework to actually pull some service call records from

a sample flat file. This happens in ProcessRequest:

Download neal/strategy/reader/ProcessRequest.java

public class ProcessRequest {

public ProcessRequest() {

createInputFile();

Reader reader = new Reader();

configure(reader);

outputResults(reader.process(getInput()));

}

private void outputResults(List result) {

for (Object o : result)

System.out.println(o);

}

private BufferedReader getInput() {

BufferedReader buf = null;

try {

buf = new BufferedReader(new FileReader("input.txt"));

} catch (FileNotFoundException e) {

http://media.pragprog.com/titles/nfjs06/code/neal/strategy/reader/ProcessRequest.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=24

DSLS UNDERFOOT 25

e.printStackTrace();

}

return buf;

}

private void configure(Reader target) {

target.addStrategy(configureServiceCall());

target.addStrategy(configueUsage());

}

private ReaderStrategy configureServiceCall() {

ReaderStrategy result =

new ReaderStrategyImpl("SVCL", ServiceCall.class);

result.addFieldExtractor(4, 18, "customerName");

result.addFieldExtractor(19, 23, "customerId");

result.addFieldExtractor(24, 27, "callTypeCode");

result.addFieldExtractor(28, 35, "dateOfCallString");

return result;

}

private ReaderStrategy configueUsage() {

ReaderStrategy result =

new ReaderStrategyImpl("USGE", Usage.class);

result.addFieldExtractor(4, 8, "customerId");

result.addFieldExtractor(9, 22, "customerName");

result.addFieldExtractor(23, 30, "cycle");

result.addFieldExtractor(31, 36, "readDate");

return result;

}

public static void main(String[] args) {

new ProcessRequest();

}

}

We hoped with all that framework code behind us that using the frame-

work would be easy and, lo and behold, it is—we see very little code.

Using this strategy framework means that it is easy to configure new

formats for messages just by creating new methods like configureSer-

viceCall().

Now that we’ve slogged through all that code, what does this have to

do with domain-specific languages? Just as in the J2EE Front Con-

troller in Web Frameworks section, we can partition this strategy code

into framework and configuration. In this case, the framework code is

the Reader infrastructure and most of ProcessRequest. The configuration

code lies embedded inside ProcessRequest in two key methods: configure-

ServiceCall() and configureUsage().

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=25

DSLS UNDERFOOT 26

Download neal/strategy/reader/ProcessRequest.java

private ReaderStrategy configureServiceCall() {

ReaderStrategy result =

new ReaderStrategyImpl("SVCL", ServiceCall.class);

result.addFieldExtractor(4, 18, "customerName");

result.addFieldExtractor(19, 23, "customerId");

result.addFieldExtractor(24, 27, "callTypeCode");

result.addFieldExtractor(28, 35, "dateOfCallString");

return result;

}

private ReaderStrategy configueUsage() {

ReaderStrategy result =

new ReaderStrategyImpl("USGE", Usage.class);

result.addFieldExtractor(4, 8, "customerId");

result.addFieldExtractor(9, 22, "customerName");

result.addFieldExtractor(23, 30, "cycle");

result.addFieldExtractor(31, 36, "readDate");

return result;

}

It shouldn’t be a far stretch to imagine this configuration code in a

separate file with a different syntax. Consider this version, in the ever-

popular XML:

Download neal/strategy/ReaderConfig.xml

<ReaderConfiguration>

<Mapping Code = "SVCL" TargetClass = "dsl.ServiceCall">

<Field name = "CustomerName" start = "4" end = "18"/>

<Field name = "CustomerID" start = "19" end = "23"/>

<Field name = "CallTypeCode" start = "24" end = "27"/>

<Field name = "DateOfCallString" start = "28" end = "35"/>

</Mapping>

<Mapping Code = "USGE" TargetClass = "dsl.Usage">

<Field name = "CustomerID" start = "4" end = "8"/>

<Field name = "CustomerName" start = "9" end = "22"/>

<Field name = "Cycle" start = "30" end = "30"/>

<Field name = "ReadDate" start = "31" end = "36"/>

</Mapping>

</ReaderConfiguration>

Or, imagine it as a simple text file with the same information:

Download neal/strategy/ReaderConfig.txt

mapping SVCL dsl.ServiceCall

4-18: CustomerName

19-23: CustomerID

24-27 : CallTypeCode

28-35 : DateOfCallString

http://media.pragprog.com/titles/nfjs06/code/neal/strategy/reader/ProcessRequest.java
http://media.pragprog.com/titles/nfjs06/code/neal/strategy/ReaderConfig.xml
http://media.pragprog.com/titles/nfjs06/code/neal/strategy/ReaderConfig.txt
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=26

BUILDING DSLS 27

mapping USGE dsl.Usage

4-8 : CustomerID

9-22: CustomerName

30-30: Cycle

31-36: ReadDate

Or, again just for fun, imaging one more syntax:

Download neal/strategy/ReaderConfig.rb

mapping('SVCL', ServiceCall) do

extract 4..18, 'customer_name'

extract 19..23, 'customer_ID'

extract 24..27, 'call_type_code'

extract 28..35, 'date_of_call_string'

end

mapping('USGE', Usage) do

extract 9..22, 'customer_name'

extract 4..8, 'customer_ID'

extract 30..30, 'cycle'

extract 31..36, 'read_date'

end

As you may have guessed, that last one was Ruby code. (I couldn’t

write a whole chapter about DSLs without sneaking some Ruby in here

somewhere, could I?)

The point is that all four representations (Java code, XML, plain text,

and Ruby code) include the same information. This is the abstract

syntax of our configuration language. The four (or more) ways we can abstract syntax

look at it are all concrete syntaxes of our language. It turns out that concrete syntaxes

this distinction between abstract and concrete leads to some interesting

things.

The pervasive use of XML in the Java world is really a reflection of the

need to separate different languages: the language of the framework

and the language of configuration. Think of all the frameworks you’ve

used that have XML configuration files (better yet, try to think of a Java

framework that doesn’t use XML).

2.4 Building DSLs

Once you have identified a problem domain suitable for its own lan-

guage, you must decide how to build it. You have two choices: internal

or external. First I’ll discuss your options for building an internal DSL

in Java and then contrast that with building an external DSL.

http://media.pragprog.com/titles/nfjs06/code/neal/strategy/ReaderConfig.rb
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=27

BUILDING DSLS 28

Internal DSLs

An internal DSL is a new language written “on top” of the underlying internal DSL

syntax of your base language (in this case, Java). Java makes it difficult

to create an English-like DSL because it has strict rules for syntax:

every statement must end with a semicolon, you must have a public

static void main(), etc.

This doesn’t prevent you from creating sentence-like structures using

methods. Consider the code in the following listing, which creates an

internal DSL for a workout log:

Download neal/exerlog/MonthlyExerLog.java

public class MonthlyExerLog {

public static void main(String[] args) {

new MonthlyExerLog();

}

public MonthlyExerLog() {

new Log().forMonth("January").

add(new Swim().onDate("01/02/2005").forDistance(1250)).

add(new Bike().onDate("01/02/2005").forDistance(20)).

add(new Swim().onDate("01/03/2005").forDistance(1500)).

add(new Run().onDate("01/03/2005").forDistance(5)).

report();

Log febLog = new Log().forMonth("February");

febLog.add(new Swim().onDate("02/01/2005").forDistance(1250));

febLog.add(new Run().onDate("02/01/2005").forDistance(3.1));

febLog.add(new Swim().onDate("02/24/2005").forDistance(3000));

febLog.add(new Bike().onDate("02/25/2005").forDistance(24.5));

febLog.report();

}

}

The building blocks for this internal DSL are normal methods, writ-

ten in a certain style. To allow them to chain together like English

sentences, the methods have prepositional prefixes, and all return the

instance of the object to which they are part. Consider the Exercise class:

Download neal/exerlog/Exercise.java

abstract public class Exercise {

private Calendar date;

private double distance;

private DistanceUnitOfMeasure units;

public Calendar getDate() {

return date;

}

http://media.pragprog.com/titles/nfjs06/code/neal/exerlog/MonthlyExerLog.java
http://media.pragprog.com/titles/nfjs06/code/neal/exerlog/Exercise.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=28

BUILDING DSLS 29

public Exercise onDate(Calendar date) {

this.date = date;

return this;

}

public double getDistance() {

return distance;

}

public Exercise forDistance(int distance) {

this.distance = distance;

return this;

}

public Exercise forDistance(double distance) {

this.distance = distance;

return this;

}

public Exercise onDate(String dateString) {

Calendar c = Calendar.getInstance();

String month = dateString.substring(0, dateString.indexOf('/'));

String day = dateString.substring(dateString.indexOf("/") + 1,

dateString.lastIndexOf("/"));

String year = dateString.substring(dateString.lastIndexOf("/") + 1,

dateString.length());

c.set(Calendar.MONTH, Integer.parseInt(month) - 1);

c.set(Calendar.DATE, Integer.parseInt(day));

c.set(Calendar.YEAR, Integer.parseInt(year));

date = c;

return this;

}

public DistanceUnitOfMeasure getUnits() {

return units;

}

public Exercise inUnits(DistanceUnitOfMeasure units) {

this.units = units;

return this;

}

public void add(Calendar date, int distance, DistanceUnitOfMeasure units) {

}

abstract public String getType();

public String report() {

StringBuffer buf = new StringBuffer(100);

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=29

BUILDING DSLS 30

buf.append("On ").

append(new SimpleDateFormat("EEE, MMM d, yyyy").format(

new Date(date.getTimeInMillis()))).

append(" ").

append(getType()).

append(" for distance of ").

append(distance).

append(" ").

append(units.toString());

return buf.toString();

}

}

Contrast this with the “normal” Java style of writing getter() and setter()

methods. The DSL style creates code that is almost as readable as

English, which is, of course, the goal.

The real test, though, is whether you can give this file to an exercise

physiologist to read and use. They will surely ask, “What is this main()

thing?” and “Why are there so many semicolons?” Obviously, an inter-

nal DSL written in Java is for developer consumption only.

In fact, one of the best examples of this style of coding shows up in

the jMock mock-object library. Here is some representative code from

jMock:

class PublisherTest extends MockObjectTestCase {

public void testOneSubscriberReceivesAMessage() {

Mock mockSubscriber = mock(Subscriber.class);

Publisher publisher = new Publisher();

publisher.add((Subscriber) mockSubscriber.proxy());

final String message = "message";

// expectations

mockSubscriber.expects(once()).method("receive").with(eq(message));

// execute

publisher.publish(message);

}

}

The code to set up the Mock and the Publisher looks like pretty mundane

Java code. However, the configuration of mockSubscriber is very much in

the DSL style. In this case, the purposely readable style indeed makes

the code much more readable. Contrast this with the typical litany of

setXXX() calls you would normally expect.

Internal domain-specific languages in Java really make sense only for

consumption by other developers. If you don’t know Java, you can

never make sense of some of the required elements. To create a DSL to

be used by nondevelopers, you have to switch to an external DSL.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=30

BUILDING DSLS 31

External DSLs

An external DSL creates a new language. You need three elements to

create a language: a grammar, a lexer, and a parser.

Language Building Blocks

A grammar for a computer language is just like a grammar for a spoken grammar

language (only less subjective). When creating a grammar, you lay out

all the atomic elements of the language and how they fit together. These

grammars may exist in a variety of formats (depending on the tool you

use), but most follow BNF (the Backus-Naur Form, named for John

Backus and Peter Naur) or EBNF, which is Extended Backus-Naur form

(and, no, there wasn’t a guy named Extended).

Once you have a grammar, you must create a lexer. A lexer is respon- lexer

sible for reading your input file and breaking it up into tokens, defined

by your grammar. Lexers translate the actual bytes and letters into

something meaningful in the context of your language.

The last in the chain is the parser, which applies the grammar rules parser

to the sequence of tokens and decides whether you have a grammati-

cally correct statement/program and what to do in response to the code

you’ve written in your language. You’ll see an example of both a lexer

and parser in the next section.

Building a Language

A variety of language construction tools exist, from the legendary and

prickly LEX and YACC, to more modern (and Java-centric) tools such as

ANTLR (Another Tool for Language Recognition) and the acronym-free

Gold Parser System, which provides an IDE for building languages.

Both ANTLR and Gold allow you to write the code that fulfills your

grammar’s requests in Java.

Here’s a brief external DSL version of the previous exercise log example.

This example uses ANTLR as the language building tool because its

grammar syntax is straightforward and it allows you to embed Java

code to respond to language events directly in the grammar. Ultimately,

I want to create a source file that looks like this:

Download neal/exerlang/sample.exer

swim on WED for 2150

run on TUE for 6.5

bike on SAT for 50

summary

http://media.pragprog.com/titles/nfjs06/code/neal/exerlang/sample.exer
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=31

BUILDING DSLS 32

To create this simple language, I must first create a lexer to define all

the atomic pieces:

Download neal/exerlang/exer.g

class ExerlangLexer extends Lexer;

EXERCISE : "swim"

| "bike"

| "run"

;

WS : (' '

| '\t'

| '\n'

| '\r')

{ _ttype = Token.SKIP; }

;

ON : "on";

FOR : "for";

DISTANCE : (DIGIT)+ ;

protected

DIGIT : '0'..'9';

WEEKDAY : "MON"

| "TUE"

| "WED"

| "THU"

| "FRI"

| "SAT"

| "SUN"

;

SUMMARY : "summary" ;

Once I have defined the elements of the language, I must define how

they fit together and what to do in Java code when various parts of my

language appear. This happens in the parser (which, in ANTLR, may

appear in the same file as the lexer).

Download neal/exerlang/exer.g

class ExerlangParser extends Parser;

options {

buildAST = true;

}

http://media.pragprog.com/titles/nfjs06/code/neal/exerlang/exer.g
http://media.pragprog.com/titles/nfjs06/code/neal/exerlang/exer.g
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=32

BUILDING DSLS 33

series

: EXERCISE ON! WEEKDAY FOR! DISTANCE

| SUMMARY

;

class ExerLangTreeParser extends TreeParser;

{

int swim = 0;

int bike = 0;

int run = 0;

}

sum

: e:EXERCISE

d:WEEKDAY {

System.out.print("on " + d.getText());

}

dist:DISTANCE {

System.out.println(" went " + dist.getText());

if (e.getText().equals("swim"))

swim += Integer.parseInt(dist.getText());

else if (e.getText().equals("bike"))

bike += Integer.parseInt(dist.getText());

else

run += Integer.parseInt(dist.getText());

}

;

total

: SUMMARY {

System.out.println("Summary: \n------------");

System.out.println("Swim: " + swim);

System.out.println("Bike: " + bike);

System.out.println("Run:" + run);

}

;

As you can see, ANTLR allows you to place variables and Java code

directly in the grammar. In this case, I put all the behavior of the lan-

guage inline in the grammar. For more complex projects, you typically

create a class to hold that state and execute one-line method calls from

the grammar to your state class.

Once the lexer and parser are completed, you can run the ANTLR tool

on it to generate the lexer and parser Java source files. These source

files are simultaneously ugly, complex, and never in need of hand edit-

ing. What these files allow, though, is the creation of a simple Java

class with a main() method to apply your language to a source file:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=33

LANGUAGE WORKBENCHES 34

Download neal/exerlang/Main.java

public class Main {

public static void main(String[] args) {

Reader reader = null;

try {

reader = new FileReader(args[0]);

} catch (FileNotFoundException e) {

e.printStackTrace();

}

// attach lexer to the input stream

ExerlangLexer lexer = new ExerlangLexer(reader);

// Create parser attached to lexer

ExerlangParser parser = new ExerlangParser(lexer);

// start up the parser by calling the rule

// at which you want to begin parsing.

try {

parser.series();

// Get the tree out of the parser

AST resultTree = parser.getAST();

// Make an instance of the tree parser

ExerLangTreeParser treeParser = new ExerLangTreeParser();

treeParser.sum(resultTree); // walk AST once

} catch (RecognitionException e) {

e.printStackTrace();

} catch (TokenStreamException e) {

e.printStackTrace();

}

}

}

Whew! A five-page introduction to compiler theory and building a new

language. It seems pretty complex, doesn’t it? Well, it is. And this

complexity is one of the reasons this style of programming hasn’t really

achieved its potential. What we need are tools to make this process

much easier. They are on the way....

2.5 Language Workbenches

Programming by writing DSLs has moved beyond academia and the

small pools of developers who have used it to gain advantages in limited

http://media.pragprog.com/titles/nfjs06/code/neal/exerlang/Main.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=34

SUMMARY 35

problem domains. At least three major software vendors are actively

pursuing the idea of language-oriented programming by building lan-

guage workbenches: language workbenches

• JetBrains MPS (Meta-Programming System)

• Microsoft, with its Software Factories and a Visual Studio DSL

plug-in

• Intentional Software, producing something it will not talk about

publicly

All these tools (with the possible exception of Intentional’s, because

no one knows) are in the early stages of development. But the indus-

try interest in this style of building software is noteworthy. Language

workbenches make building external DSLs much easier by providing

specialized editors, code generation, prebuilt classes, and other tools.

As an example of the support these tools afford, consider the problem

of symbolic integration. If you create an external DSL now, you must symbolic integration

edit it in a text editor. At best, you can create a syntax file for some

existing editors, but you don’t get that to which you are accustomed:

context-sensitive pull-down syntax help, refactoring, debugging, and all

the other accoutrements we have for traditional languages. This is the

symbolic integration of our editors to our languages.

MPS, from JetBrains, changes that. When you design a language, you

also design an editor that provides context-sensitive pull-down lists,

syntax highlighting, and the other types of symbolic integration we all

crave. For example, Figure 2.1, on the following page shows an editor

for a DSL concerning the problem domain of billing rates and dates.

MPS allows the developer to create the DSL, symbolically integrated

editor, and code generator for any language you can conceive.

2.6 Summary

Internal DSLs are easier to write because you leverage existing tools

and language elements. Whether these DSL are usable by people who

aren’t programmers depends largely on the flexibility (and forgiveness)

of the language.

External DSLs allow you to create any type of language you want, gov-

erned only by your ability to parse the code and apply rules to it. Cur-

rently, these languages present great hurdles because of the primitive

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=35

SUMMARY 36

Figure 2.1: MPS Editor for a DSL

nature of the tools we must use to build them. Help is on the horizon

as language workbenches appear.

This style of programming has the potential to be the next evolutionary

step beyond object-oriented programming. One of the strengths of OOP

is its ability to encapsulate messy details into hierarchies. But it turns

out that the entire world cannot be shoehorned into a tree shape, which

is why we have features such as aspects to cut across the trees.

OOP has served us well, but it is too low a level of abstraction. We

need to use objects, aspects, and other building blocks to upgrade our

abstraction and build languages closer to the problem domains where

we work. The Lisp and Smalltalk guys who built DSLs were right: the

closer you can model your problem domain, the more productive you

are because you work right on top of the problem. Although classes are

fine, we need a higher layer of abstraction—languages close to the prob-

lem domain. Language-oriented programming will be the next major

paradigm shift in the way we build software. And it’s about time!

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=36

Chapter 3

Shale
by David Geary

A prominent author, speaker, and consultant, David Geary holds a unique qual-

ification as a Java expert: He wrote the best-selling books on each of Java’s

component frameworks: Swing and JavaServer Faces (JSF). David’s Graphic

Java Swing [Gea99] was one of the best-selling Java books of all time, and Core

JavaServer Faces [GH04], which he wrote with Cay Horstmann, is the most pop-

ular JSF book.

David was one of a handful of experts on the JSF Expert Group that actively

defined the standard Java-based web application framework. Besides serv-

ing on the JSF and JSTL Expert Groups, David has contributed to open source

projects and coauthored Sun’s Web Developer Certification Exam. He invented

the Struts Template library that was the precursor to Tiles, a popular framework

for composing web pages from JSP fragments, was the second Struts committer

and is currently an active contributor to Shale.

A regular on the NFJS tour, David also speaks at other conferences such as

JavaOne and JavaPolis. In 2005, David was awarded a Top Speaker award

at JavaOne for his Shale presentation with Craig McClanahan.

At NFJS, David loves to interact with attendees and is known for his sense of

humor, dazzling demos, and electrifying live-coding sessions.

THE FRAMEWORKS 38

Released in the spring of 2004 after nearly three years in the mak-

ing, JavaServer Faces (JSF) was met with a healthy dose of skepticism.

You can hardly blame Java developers for being skeptical. After all,

many had suffered irreparable damage from their encounters with EJB.

Another official spec from Sun for the other side of the house? Not for

us, thanks.

But JSF is an excellent framework, as most people realize once they

use it. Witness Gavin King, who chose JSF as his UI framework for his

Ruby on Rails killer, Seam:

“I was casting around for a framework to marry with EJB3.... I was

expecting [JSF] to be a bit of a steaming pile.... Rather, I found that

once I sat down and looked at it...it was basically how I would think to

define a framework.”1

3.1 The Frameworks

Gavin King is not alone in his opinion of JSF. In fact, Gavin’s frame-

work, Seam, is just one of the impressive frameworks based on JSF

that have emerged in the very recent past:

• Shale

• Facelets

• MyFaces

• Tomahawk

• JBoss’s Seam

• Oracle’s ADF

All the preceding projects are open source, and nobody gives up their

social life to start an open source project based on a framework they

perceive as a failure. As Eminem says, “I ain’t had to graduate from

Lincoln High School to know that.” The sudden emergence of high-

quality, sophisticated frameworks built on top of JSF, such as Shale,

Facelets, MyFaces components, and JBoss’s Seam are a clear signal to

the industry that JSF is for real.

Of course, you may ask yourself, “If JSF is such a great framework,

then why does it need all those other frameworks?” Good question.

The truth is that the current version of JSF has numerous holes. For

example, out of the box, JSF does not explicitly support client-side

1From the Java Posse’s interview with Gavin

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=38

ENTER SHALE 39

validation. JSF also uses JSP as its default display technology; if you’re

not happy with that choice, you could bolt on your own view technology,

but are you really going to do that? Probably not.

Open source to the rescue! MyFaces gives you a solid alternative to the

JSF Reference Implementation and a nice set of components to boot.

Facelets gives you Tapestry-like views and support for page composition

that rivals its more sophisticated cousin, Tiles. Seam, inspired by Ruby

on Rails, unifies the EJB 3.0 and JSF component models in a radical

recasting of the JEE landscape. And then there’s Shale, which is the

object of our immediate interest.

3.2 Enter Shale

The inventor of the most popular Java-based web application frame-

work is strongly in favor of abandoning the current code base in favor

of an entirely new framework built on JSF. In 2005, Craig McClanahan

proposed his nascent Shale framework, built on JSF, as a successor to

Struts.

Shale, which is a set of services built on top of JSF, has nothing to

do with the original Struts. In fact, the original Struts has forked into

two branches: Shale and Action. Shale hitches a ride on JSF, whereas

Action is a merger of Struts Classic and WebWork.

Since its inception in 2005, other Struts committers have jumped on

the Shale bandwagon, including the author of this article, and Shale

has matured into a robust set of services built on JSF:

• Tapestry-like views

• Web flow

• Method remoting (basis for Ajax)

• Support for JDK 5.0 annotations

• Apache Commons validator integration

• Testing framework, integrated with HTMLUnit

• Integration with Spring, Tiles, and JNDI

• View controllers

What does all that mean? It means you can strictly separate the roles

of graphic designer and software developer with Shale’s powerful Clay

plug-in that provides other goodies such as parameterizing chunks of

JSP with symbols so JSP can be reused for different managed beans.

It means you can define the flow of a user conversation—a set of HTTP

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=39

COMMON USE CASES 40

requests between the user and the application—in an XML file, sort of a

souped-up version of JSF’s default navigation. It means you can easily

call any managed bean method from JavaScript, which gives you the

foundation for Ajax. And that’s just the beginning.

3.3 Common Use Cases

In 2005, Shale grew from a handful of utilities to a robust set of ser-

vices built on JSF. A comprehensive examination of Shale would require

a book of its own, so here I will concentrate on three of the more inter-

esting use cases that Shale supports:

• Ajax

• Web flow

• HTML views

Ajax

I was on a plane on the way home from the 2006 St. Louis show when

the guy sitting next to me asked me what I did for a living. I told him

about NFJS, and it just so happened that I was working on my Ajaxian

Faces presentation at that very moment, so I showed him a progress

bar that I’d developed for that talk. “This is really cutting-edge stuff,” I

told the guy. “We haven’t been able to effectively refresh parts of a page

like that before. People at the show will be excited about this.” I turned

to look at the guy and he had cocked his head and raised one eyebrow

as if to say, “You’re joking, right?” At that moment, it occurred to me

how lucky software developers are compared to, say, astrophysicists,

who don’t stand a snowball’s chance in hell of explaining what they do

to the common man.

So, in deference to humble accomplishments, I present an example that

uses Shale method remoting to perform real-time validation. When

the user exits the username text field, we’ll sneak a quick trip to the

server and, via some Ajaxian magic, return a response, either positive

or negative, for the username the user left behind in the text field.

As you can see from Figure 3.1, on the next page, the only username

taken is Joe, so we react accordingly when confronted with either Joe

or anything but Joe. Let’s look at some code. First, here’s the view:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=40

COMMON USE CASES 41

Figure 3.1: Real-time validation fails then succeeds

<h:form>

<h:panelGrid columns="2">

<h:outputText value="Username:"/>

<h:panelGroup>

<h:inputText onfocus="hideMessage();"

onblur="validateUsername(this.value);"/>

<f:verbatim>

<div id="message" style="display: none;"></div>

</f:verbatim>

</h:panelGroup>

<h:outputText value="Password:"/>

<h:inputText size="8"/>

</h:panelGrid>

</h:form>

The code reacts to onfocus and onblur events. The validateUsername()

JavaScript function, to which we pass the current value of the text

field, sends an Ajax request to Shale, which in turn invokes a method

on a managed bean. That method returns some XML, which we subse-

quently use to update the hidden <div> with the id of message. You’ve

no doubt seen this sort of trickery before. Here’s the corresponding

JavaScript:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=41

COMMON USE CASES 42

<script src="prototype.js"></script> <!-- Prototype JavaScript Library -->

<script type="text/javascript" language="Javascript1.1">

<!--

function validateUsername(username) {

var ajaxRequest = new Ajax.Updater(

"message",

"dynamic/welcome/validateUsername.faces",

{ method: "get",

parameters: "username=" + username,

onComplete: showMessage

});

}

function showMessage(xhr) {

var msg = $("message");

msg.style.display = "inline";

msg.style.color = "red";

}

function hideMessage() {

$("message").style.display = "none";

}

-->

</script>

Implementing Ajax without a JavaScript framework is a little like using

JSPs without a framework. You can do it, but why suffer? In this

example, I’m using the Prototype JavaScript library, which, ironically

enough, is the foundation upon which Ruby on Rails’ Ajax is imple-

mented. But that’s another NFJS session.

Notice the URL we pass in to Prototype’s Ajax.Updater() constructor:

dynamic/welcome/validateUsername.faces. The instance of Ajax.Updater()

that we create uses the mythical XMLHttpRequest object to invoke that

URL on the server. Here’s the catch: that URL means something to

Shale; specifically, a URL that begins with dynamic is taken to be a

remote method call. When Shale sees that our URL starts with dynamic,

it invokes this method: welcome.validateUsername(), where welcome is a

managed bean defined in your application and validateUsername() is a

method of that bean. That means you can invoke a server-side method

from JavaScript code anytime, with no fuss. That’s Shale remoting. All

that’s left is the rather mundane bean code:

public void validateUsername() {

String username = (String)getRequestParameterMap().get("username");

if("Joe".equals(username))

writeResponse("Sorry, that username is already taken.");

dynamic/welcome/validateUsername.faces
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=42

COMMON USE CASES 43

else

writeResponse("Good choice.");

}

private void writeResponse(String text) {

FacesContext context = getFacesContext();

ResponseWriter writer =

(new ResponseFactory()).getResponseWriter(context, "text/xml");

try {

writer.startDocument();

writer.startElement("value", null);

writer.writeText(text, null);

writer.endElement("value");

writer.endDocument();

}

catch (IOException e) {

e.printStackTrace();

}

context.responseComplete();

}

Notice the mysterious ResponseFactory. That’s a Shale remoting object

that simplifies writing a response; in this case, it’s our XML response.

Before the writeResponse() method returns, it calls responseComplete() on

the Faces context, which short-circuits the JSF life cycle. JSF does not

render a response; instead, it assumes we’ve written to the response

ourselves, which of course we have.

Web Flow

JSF provides navigation facilities that are capable enough for most

applications, but JSF doesn’t explicitly support higher-level constructs

such as wizards. Shale provides support for more creative navigation

with its Web Flow package, which is modeled after Spring Web Flow

with a decidedly JSF perspective. Defining a web flow is simple to do.

Figure 3.2, on the following page and Figure 3.3, on the next page show

two screens from a wizard. You can see links to the five wizard pan-

els in the sidebar on the left side of the window. The current panel’s

link is italic, so it’s readily apparent what panel the user is on. The

wizard buttons are also sensitive to the currently displayed panel. All

of that sensitivity is implemented by obtaining the current state of the

dialog from Shale and then deciding on the state of user interface ele-

ments; for example, on the Username and Password panel there is no

previous panel, so the Previous button is disabled, but on the Phone

Numbers panel, there is a previous panel (Username and Password), so

the Previous button is enabled for the Phone Numbers panel.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=43

COMMON USE CASES 44

Figure 3.2: The Username wizard panel

Figure 3.3: The Phone Numbers wizard panel

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=44

COMMON USE CASES 45

Here’s the Shale XML definition for the wizard:

<dialogs>

<dialog name="Create Account" start="User Information">

<!-- Transitions applicable to all states -->

<transition outcome="cancel" target="Exit"/>

<transition outcome="username" target="User Information"/>

<transition outcome="phoneNumbers" target="Phone Numbers"/>

<transition outcome="address" target="Address"/>

<transition outcome="creditCard" target="Credit Card"/>

<transition outcome="summary" target="Summary"/>

<!-- User Information -->

<view name="User Information"

viewId="/pages/account.jsp">

<transition outcome="next"

target="Phone Numbers"/>

</view>

<!-- Phone Numbers -->

<view name="Phone Numbers"

viewId="/pages/account.jsp">

<transition outcome="next"

target="Address"/>

<transition outcome="previous"

target="User Information"/>

</view>

<!-- Address -->

<view name="Address"

viewId="/pages/account.jsp">

<transition outcome="next"

target="Credit Card"/>

<transition outcome="previous"

target="Phone Numbers"/>

</view>

...

<!-- Credit Card -->

<view name="Credit Card"

viewId="/pages/account.jsp">

<transition outcome="next"

target="Summary"/>

<transition outcome="previous"

target="Address"/>

<transition outcome="finish"

target="Create User"/>

</view>

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=45

COMMON USE CASES 46

<!-- Summary -->

<view name="Summary"

viewId="/pages/account.jsp">

<transition outcome="previous"

target="Credit Card"/>

<transition outcome="finish"

target="Create User"/>

</view>

<!-- Create User -->

<action name="Create User"

method="#{accountPage.finish}">

<transition outcome="finish"

target="Exit"/>

</action>

<!-- Exit -->

<end name="Exit" viewId="/pages/login.jsp"/>

</dialog>

</dialogs>

It’s pretty easy to understand the preceding XML, even if you know

nothing about Shale. Each of the five panels is represented with a view

element. Views, or view states, as they are known, can have transitions

that take you to the next state. For example, when Shale loads the

Create Account dialog, it starts with the User Information state, which

loads pages/account.jsp/. Then Shale waits for the user to click a link

or activate a button, and it looks at the corresponding outcome. If the

outcome matches a transition element, Shale forwards to that state and

waits for the next outcome, which triggers the next transition. A special

state, specified by the end element, cleans up any state that Shale has

stored, including a status object full of information about the current

dialog that you can programmatically access.

Method remoting and web flow are two of Shale’s hallmark features.

Before we wrap up, I’d like to show you one other really cool feature:

Clay.

HTML Views

Back in the old days, through the magic of servlets, everybody emitted

HTML from Java print statements. Imagine. Nowadays, especially in

the JSF world, we pretty much stick to JSP and custom tags, which

encapsulate a great deal of noise and let us work at a higher level of

abstraction. That’s great for developers who are also graphic designers,

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=46

COMMON USE CASES 47

Figure 3.4: HTML mock-up with Clay

but if you’ve ever had to merge a designer’s HTML mock-up’s look and

feel into a nontrivial JSF application replete with deeply nested Tiles,

you’ve experienced the dark side of custom tags firsthand.

Sometimes, as Tapestry advocates will argue (and rightly so), it’s best

to separate the responsibilities of graphic design and software devel-

opment so that each can implement their code without dependencies

upon the other. Like Tapestry, Shale’s Clay supports HTML views,

where the only perceptible variation from vanilla HTML is the presence

of a jsfid= attribute.

With Clay, user interfaces are defined in HTML (which does not have

to be well-formed, by the way). Typically, software developers create

some simple HTML mock-up and hand the HTML to the designer, who

subsequently adds a look and feel and returns the HTML to the devel-

oper. That single HTML file serves two purposes. When viewed directly

in a browser or another HTML-viewing tool such as Dreamweaver, you

see the mock-up HTML and its corresponding look and feel. But when

that same HTML file is run through Shale’s Clay, the mock-up HTML

is replaced with JSF components that have absorbed the mock-up’s look

and feel. For example, take a look at Figure 3.4 .

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=47

COMMON USE CASES 48

Figure 3.5: JSF components replace mock-up HTML

Figure 3.4 shows the HTML page when viewed directly (note the address

bar). Figure 3.5 shows the HTML page when accessed through Shale

(again, note the address bar). In Figure 3.4, we see markup for error

messages, whereas in Figure 3.5 we see a message generated by the

server in response to a validation failure.

How can one HTML page serve two purposes? The answer lies in the

HTML itself:

username error message

Notice the jsfid= attribute. That attribute points to a JSF component

that Shale’s Clay substitutes for the HTML markup. What does an

HTML viewer think of the jsfid= attribute? Nothing! It just ignores it and

shows the markup. But when Clay parses the page and produces a

view, it links in a JSF component, which is defined in a separate HTML

file:

<component jsfid="usernameMessage" extends="message" allowBody="false">

<attributes>

<set name="for" value="username" />

</attributes>

</component>

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=48

COMMON USE CASES 49

Figure 3.6: Modifications to HTML Mock-up

Now, suppose you’re the graphic designer and you decide to make

errors italic. So, you modify the mock-up HTML, taking great care,

of course, not to disturb the jsfid attribute:

username error message

Now, when you look at the HTML page directly in the browser, you

obtain instant gratification, as shown in Figure 3.6 .

But what about the message component that replaces the mock-up

HTML at runtime? Does that component absorb the look and feel of its

corresponding mock-up? Of course! See Figure 3.7, on the next page.

HTML views, interestingly enough, were an afterthought to Clay, which

started out as a sort of templating engine for JSF. Because of that his-

tory, Clay contains a number of other useful features such as aliasing a

JSP fragment so that the fragment can be used with different managed

beans.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=49

WRAP-UP 50

Figure 3.7: JSF components absorb HTML mock-up styles

3.4 Wrap-up

Shale is a powerful set of services built on top of a powerful framework.

As powerful as JSF is, however, the Shale developers are intimately

familiar with its drawbacks and are working to overcome them to make

JSF an even more appealing framework for enterprise developers.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=50

Chapter 4

Test Categorization Techniques
by Andrew Glover

Andrew Glover is the president of Stelligent Incorporated. Stelligent helps com-

panies address software quality with effective developer testing strategies and

continuous integration techniques that enable teams to monitor code quality early

and often.

Andrew was the founder of Vanward Technologies, which was acquired by JNet-

Direct in 2005. He coauthored Java Testing Patterns [TYBG04] and is an author

for multiple online publications including IBM’s developerWorks and Oreilly’s

ONJava and ONLamp portals. He actively blogs about software quality at http://www.thediscoblog.com.

His thoughts on books and tools start on page 211.

http://www.thediscoblog.com

UNIT TESTS 52

Ever run a build that lasted four hours? Probably once, right? After

that, you figured out how to compile just your own stuff so you could

actually get some work done and not have to wait around for the entire

build saga to end.

Then the rest of the team figured out how to do the same thing. Unfor-

tunately, a day before the big release (and before you installed a contin-

uous integration system), someone actually ran the complete build and, continuous integration

lo and behold, tests started failing (two hours into the build, however).

Unless a build compiles millions (and millions) of files, the culprit of a

prolonged build is usually the testing step, which could be a series of

steps! The total time to run a series of tests has the additional tendency

to become longer when there are extensive setup steps too, such as

configuring a database or deploying a .war file, to name a few.

For any nontrivial software project that wants to keep build times bear-

able, it becomes paramount to create an effective strategy for the cate-

gorization of tests. By segregating tests into categories and running the categorization of tests

associated categories at prescribed intervals, build times can remain

manageable for developers and continuous integration systems alike.

We as developers tend to use the term unit test rather broadly. This can

cause confusion, especially when teams start claiming their unit tests

“take too long to run.” Defining a common vocabulary for developer

tests can assist in categorizing them into groups, which will make all

the difference in creating an effective build process.

4.1 Unit Tests

Unit tests verify the behavior of small elements in a software system,

which are most often single classes. Occasionally, though, the one-to-

one relationship between a unit test and a class is slightly augmented

with additional classes because the classes being tested are tightly cou-

pled. Because of this small issue, it can be helpful to further segregate

unit tests into two types: isolated and semi-isolated unit tests. isolated

semi-isolated
For example, the following TestNG test demonstrates an isolated unit

TestNG
test focussing on one object (PartOfSpeechEnum).

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=52

UNIT TESTS 53

//imports removed...

/**

* @testng.test groups="unit"

*/

public class PartOfSpeechEnumTestNG {

public void verifyNotEquals() throws Exception{

assert PartOfSpeechEnum.ADJECTIVE != PartOfSpeechEnum.NOUN: "Noun == Adjective!";

}

public void verifyEquals() throws Exception{

assert PartOfSpeechEnum.VERB == PartOfSpeechEnum.VERB: "Verb != Verb!";

}

}

Semi-isolated unit tests verify the behavior of more than one object;

however, these objects have few other outside dependencies. For exam-

ple, the following test verifies two objects (Dependency and Dependency-

Finder):

//imports removed...

public class DependencyFinderTest extends TestCase {

private DependencyFinder finder;

public void testFindDependencies() throws Exception{

String targetClss = "test.com.vanward.sedona.DependencyFinderTest";

Filter[] filtr =

new Filter[] {new RegexPackageFilter("java|junit|org|com.jcoverage")};

Dependency[] deps = finder.findDependencies(targetClss, filtr);

assertNotNull("deps was null", deps);

assertEquals("should be 5 large", 5, deps.length);

}

protected void setUp() throws Exception {

this.finder = new DependencyFinder();

}

}

The key aspect, however, is that unit tests (regardless of isolation) do

not rely on outside dependencies such as databases, which have the

tendency to increase the amount of time it takes to set up and run

tests.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=53

COMPONENT TESTS 54

Unit tests can be created and run early in the development cycle (day

one is a good place to start). And, because of the short amount of time

between coding and testing the results, unit tests are an extremely

efficient way of debugging.

Because unit tests run so quickly, they should be run anytime a build

is run. The whole mantra of “code a little, test a little, code a little” is

predicated on the notion of rapid testing. If unit testing takes enough

time that someone can focus on something else, it’s taking too long! It

will become a burden and, soon forgotten.

In a continuous integration, or CI, environment, builds are run anytime

someone changes a source repository; therefore, unit tests should be

run anytime someone checks in code. There is no configuration cost,

and the resource consumption cost to run them is negligible.

4.2 Component Tests

Component or subsystem tests verify portions of a system and may

require a fully installed system or a more limited set of external depen-

dencies, such as databases, file systems, or network endpoints, to

name a few. These tests verify that components interact to produce

the expected aggregate behavior.

A typical component test requires the underlying database to be run-

ning and may even cross architectural boundaries. Because larger

amounts of code are exercised by each test case, more code coverage is

obtained per test; however, these tests have the tendency to take longer

to run than unit tests.

One key difference between component-level tests and higher-level test-

ing, like system tests (defined next), is that component-level tests exer-

cise code via an API, which may or may not be exposed to clients. This

type of test is also commonly referred to as an integration test. integration test

Component tests should be run at regular intervals, but not neces-

sarily every time a build is run. These tests have a cost to them—

dependencies have to be put in place and configured. Moreover, these

tests alone may take only a few seconds; however, in the aggregate, this

time adds up.

For example, the following component test takes, on average, four sec-

onds to run:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=54

COMPONENT TESTS 55

//imports removed..

public class DefaultSpringWordDAOImplTest extends DatabaseTestCase {

private WordDAO dao = null;

protected IDatabaseConnection getConnection() throws Exception {

final Class driverClass = Class.forName("org.gjt.mm.mysql.Driver");

return new DatabaseConnection(

DriverManager.getConnection("jdbc:mysql://localhost/words",

"words", "words"));

}

protected IDataSet getDataSet() throws Exception {

return new FlatXmlDataSet(new File("test/conf/words-seed.xml"));

}

public void testCreate() throws Exception{

final IWord word = new Word();

word.setSpelling("wamble");

word.setPartOfSpeech(PartOfSpeechEnum.VERB.getPartOfSpeech());

final Set definitions = this.getDefinitionForWord(word);

word.setDefinitions(definitions);

try{

this.dao.createWord(word);

} catch(CreateException e){

TestCase.fail("CreateException thrown while trying to create a word");

}

}

private Set getDefinitionForWord(IWord word){

final IDefinition defOne = new Definition();

defOne.setDefinition("To move unsteadily; to totter, waver, roll, etc.");

defOne.setWord(word);

Set defs = new HashSet();

defs.add(defOne);

return defs;

}

protected void setUp() throws Exception {

super.setUp();

final ApplicationContext context =

new ClassPathXmlApplicationContext("spring-config.xml");

this.dao = (WordDAO) context.getBean("wordDAO");

}

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=55

SYSTEM TESTS 56

This test does a number of things that add to the total test time and

configuration complexity. First, this test seeds a database via DbUnit. DbUnit

In this case, DbUnit does an insert of the data found in the XML file

words-seed.xml, which also implies that XML parsing is being done. This

also assumes the test case can find the file easily.

Next, this test case configures Spring, which also configures Hibernate. Spring

HibernateFinally, a test is run and a word is retrieved from the database. Are you

surprised this takes four seconds? Keep in mind, this is only one test

case. Each additional test case in this class may not add another four

seconds; however, it’ll probably add about two seconds. Do this about

ten more times and you have a minute. Get the picture?

Although these types of tests shouldn’t be executed every time a build

is run, it’s a good bet to run them before committing code into a reposi-

tory. In a CI environment, it’s probably a good idea to run these at least

a few times a day. Running them every time someone checks in code

could cause issues; however, this takes good judgment. Some projects

can get away with running component-level tests in a CI environment

every time someone checks in code.

4.3 System Tests

System tests exercise a complete software system and therefore require

a fully installed system, such as a servlet container and associated

database. These tests verify that external interfaces, such as web

pages, web service endpoints, or GUIs, work end-to-end as designed.

Because these tests exercise an entire system, they are often created in

the later cycles of development. Often, these tests tend to have lengthy

run times, in addition to long setup times. For example, the following

test utilizes JWebUnit to test the login functionality of a website: JWebUnit

//imports removed...

public class LoginTest extends WebTestCase {

protected void setUp() throws Exception {

getTestContext().setBaseUrl("http://divine.google.com/con/");

}

public void testLogIn() {

beginAt("/");

setFormElement("j_username", "ajudig");

setFormElement("j_password", "jslie");

submit();

assertTextPresent("Logged in as julie");

}

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=56

IMPLEMENTING TEST CATEGORIES 57

Keep in mind that these tests are fundamentally different from func-

tional tests, which test a system much like a client would use the sys-

tem.

System tests, which require a fully installed system, take the longest

to run. Additionally, the complexity in configuring a fully functional

system occasionally prohibits the full automation of these tests.

Ideally, developers can run these tests locally when needed. In a CI

environment, nightly (if they can be pulled off in an automated fashion)

is a good bet with these tests. Running these tests frequently in a CI

environment could be a recipe for disaster and probably overkill if other

tests are run often. Sometimes at the end of release cycles, though,

these types of tests can be run on a more frequent interval.

4.4 Implementing Test Categories

Frameworks such as JUnit and TestNG have annotations, which make JUnit

categorizing tests quite easy to implement. However, in other frame-

works, segregating tests is a bit more challenging.

Pre-4.0 JUnit Categorization

With pre-4.0 JUnit versions, there is no mechanism within the frame-

work itself or within Ant to easily divide tests into three groups. This

can be achieved, however, with a simple naming scheme or, even easier,

with a directory strategy.

A best practice for developer testing is to place unit tests in a different

directory than the source code. For example, a project would have a src

folder for the source code and a test folder for associated tests:

$ ls -lt ./

total 62

drwx------+ 6 Andy.Glover usrs 0 Feb 19 21:37 test

drwx------+ 4 Andy.Glover usrs 0 Dec 27 21:20 src

-rwx------+ 1 Andy.Glover usrs 32452 Nov 15 17:51 build.xml

-rwx------+ 1 Andy.Glover usrs 260 Aug 30 2005 build.properties

The src directory would obviously contain directories which map to

source code packages. With the test directory, categorization is pos-

sible by creating three additional internal directories: unit, component,

and system.

For example, the directory listing would look like this:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=57

IMPLEMENTING TEST CATEGORIES 58

$ ls -ltr ./test

total 0

drwx------+ 4 Andy.Glover usrs 0 Mar 1 22:09 unit

drwx------+ 2 Andy.Glover usrs 0 Mar 1 22:09 conf

drwx------+ 4 Andy.Glover usrs 0 Mar 1 22:11 component

drwx------+ 3 Andy.Glover usrs 0 Mar 1 22:12 system

The unit, component, and system directories would then contain the asso-

ciated tests for each category. Note, the conf directory would hold asso-

ciated properties files, and so on, required for testing.

The unit directory, for example, would have a directory structure that

maps to the unit tests’ package names, which usually map to the cor-

responding packages in the class under test, like this:

$ ls -ltr ./test/unit/test/com/van/sedna/frmwrk/filter/

total 12

-rwx------+ 1 Andy.Glover usrs 1190 Oct 25 2004 SimFilterTest.java

-rwx------+ 1 Andy.Glover usrs 2708 Oct 25 2004 RegexFilterTest.java

-rwx------+ 1 Andy.Glover usrs 1678 Nov 20 17:30 ClassFilterTest.java

Now that the tests are segregated into separate directories, your chosen

build system needs an update. In the case of Ant, three targets are Ant

created. One, for running unit tests, another, for running component

tests, and another, for running those system tests. A fourth target

could also be created that calls all three of the previous targets so as to

run the entire test suite.

For example, for system tests, the all too familiar batchtest element of

the JUnit task would look something like this:

<batchtest todir="${testreportdir}">

<fileset dir="test/system">

<include name="**/*Test.*">

</include>

</fileset>

</batchtest>

Note how there isn’t any special naming scheme going on here—tests

are still appended with Test regardless of granularity.

If the target for running the system tests were named test-system, then

running it would be as simple as typing anttest-system (don’t forget to set

up the associated depends clause for compiling, deploying, etc.).

TestNG Categorization

Categorizing TestNG tests into three groups (unit, component, and sys-

tem) is as easy as using the group annotation (or javadoc tag with pre-

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=58

IMPLEMENTING TEST CATEGORIES 59

Java 5 versions). With this annotation, you can tag an entire class or

an individual test method as belonging to a group.

For example, the following class has been tagged as belonging to the

unit test group:

//imports removed

/**

* @testng.test groups="unit"

*/

public class SimplePackageFilterTest {

/**

* @testng.test

*/

public void testJavaPackage() throws Exception{

Filter fltr = new SimplePackageFilter("java.");

String pck = "java.lang.String";

boolean val = fltr.applyFilter(pck);

Assert.assertTrue(val, "value should be true");

}

/**

* @testng.test

*/

public void testJavaStarPackage() throws Exception{

Filter fltr = new SimplePackageFilter("java.*");

String pck = "java.lang.String";

boolean val = fltr.applyFilter(pck);

Assert.assertFalse(val, "value should be flase");

}

}

Similarly, defining a test in the component group requires defining the

proper group:

//imports removed

/**

* @testng.test groups="component"

*/

public class BatchDepXMLReportValidationTest {

/**

* @testng.test

*/

public void assertToXML() throws Exception{

BatchDependencyXMLReport report =

new BatchDependencyXMLReport(new Date(9000000),

this.getFilters());

report.addTargetAndDependencies("com.vanward.test.MyTest",

this.getDependencies());

report.addTargetAndDependencies("com.xom.xml.Test",

this.getDependencies());

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=59

IMPLEMENTING TEST CATEGORIES 60

Diff diff = new Diff(new FileReader(

new File("./test/conf/report-control.xml")),

new StringReader(report.toXML()));

Assert.assertTrue(diff.identical(),"XML was not identical");

}

/**

* @testng.configuration beforeTestClass = "true" groups="component"

*/

protected void configure() throws Exception {

XMLUnit.setControlParser("org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

XMLUnit.setTestParser("org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

XMLUnit.setSAXParserFactory("org.apache.xerces.jaxp.SAXParserFactoryImpl");

XMLUnit.setIgnoreWhitespace(true);

}

private Filter[] getFilters(){

return new Filter[] {

new RegexPackageFilter("java|org"),

new SimplePackageFilter("junit.")

};

}

private Dependency[] getDependencies(){

return new Dependency[] {

new Dependency("com.vanward.resource.XMLizable"),

new Dependency("com.vanward.xml.Element")

};

}

}

Running these tests becomes a simple matter of defining the proper Ant

targets for running each group. For example, to run all tests belonging

to the unit group, the TestNG Ant task has a group attribute that can

take a comma-separated String of group names:

<target name="testng-unit" depends="testng-init">

<mkdir dir="${testng.output.dir.unit}"/>

<testng groups="unit"

outputDir="${testng.output.dir.unit}"

sourceDir="${testng.source.dir}"

classpath="${testclassesdir};${classesdir}">

<classfileset dir="${testng.source.dir}">

<include name="**/*Test.java"/>

</classfileset>

<classpath>

<path refid="build.classpath"/>

</classpath>

</testng>

</target>

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=60

SUMMARY 61

As you can see, TestNG facilitates test categories quite effectively—

that’s one of this framework’s selling points and an interesting influ-

ence on the newest version of JUnit.

4.5 Summary

Implementing a categorization strategy for developer tests is fairly easy,

as long as the team commits to a common mechanism. Running these

categories at various intervals within a CI strategy then becomes a sim-

ple matter of calling the proper build target. Dig it?

4.6 References

TestNG http://www.testng.org

JUnit http://www.junit.org

DbUnit http://dbunit.sourceforge.net/

JWebUnit http://jwebunit.sourceforge.net/

XMLUnit http://xmlunit.sourceforge.net/

http://www.testng.org
http://www.junit.org
http://dbunit.sourceforge.net/
http://jwebunit.sourceforge.net/
http://xmlunit.sourceforge.net/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=61

Chapter 5

Spring AOP
by Stuart Halloway

Stuart is a founding partner at Relevance, LLC.

Prior to founding Relevance, Stuart was chief architect at Near-Time and the chief

technical officer at DevelopMentor. Stuart is the author of Component Develop-

ment for the Java Platform, part of the DevelopMentor book series and available

for free online.

Stuart writes regularly, including a long-running column for the Java Developer

Connection and articles for JavaPro magazine and InformIT. Stuart regularly

speaks at industry events including the No Fluff, Just Stuff Java symposiums,

Pragmatic Studio: Ajax, and JavaOne. Prior to DevelopMentor, Stuart worked as

a lead engineer and project manager, shipping successful projects for Prentice

Hall, National Geographic, and Duke University’s Humanities Computing Facil-

ity. He received his B.S. and M.P.P. from Duke University in 1990 and 1994,

respectively.

FROM JAVA TO DEPENDENCY INJECTION TO AOP 63

Aspect-oriented programming (AOP) is the unsung other core of Spring.

Although dependency injection (DI) deserves its place as the core of

Spring, the combination of DI and AOP is more powerful than the sum

of its parts. This chapter introduces Spring AOP in the belief that AOP

should be a standard part of all modern Spring development.

We will introduce the core concepts of AOP, show how they work hand-

in-hand with DI, and present sample code to demonstrate each point

along the way. At the conclusion, we will look at changes in Spring 2

that may make AOP both easier to use and more powerful.

5.1 From Java to Dependency Injection to AOP

Java is not just an application platform—it is a platform for writing

components, reusable modules of software. Probably the key feature in

Java that encourages reuse is the use of interface. An interface, unlike

a class, implies no specific implementation. Instead, an interface is

simply a list of required methods. When you program in terms of inter-

faces, you can easily introduce new components. No recompilation is

required, as long as the new components continue to honor existing

interfaces. To take a simple example, consider the MessageSource inter-

face:

package di;

public interface MessageSource {

public String getMessage();

}

Clients that need a MessageSource can program against this interface

and retrieve messages. Clients do not need any knowledge of (or depen-

dency on!) specific MessageSource interfaces. Maybe the messages come

from files, from email, or from extraterrestrials. It simply does not mat-

ter. This is shown in Figure 5.1, on the next page.

Unfortunately, the use of the interface keyword is not enough to main-

tain a clean separation between components. For a variety of reasons,

components can become tightly coupled, with unnecessary dependen-

cies on internal details of other components. This defeats the intention

of programming against interfaces! In Java, the following factors typi-

cally introduce tight coupling:

• Variables that are typed to concrete types.

• Calls to new.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=63

FROM JAVA TO DEPENDENCY INJECTION TO AOP 64

Figure 5.1: Dependency only on MessageSource

Figure 5.2: Tight coupling

• Checked exceptions.

• Statically typed argument lists for object creation. Constructors

often (but not always) cause this problem.

Tight coupling is shown in Figure 5.2 .

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=64

FROM JAVA TO DEPENDENCY INJECTION TO AOP 65

Spring solves tight coupling with dependency injection (DI). With DI, dependency injection

application code takes the form of Plain Old Java Objects (POJOs). Plain Old Java Objects

These POJOs hold interface-based references to the other objects they

depend on, but they take no active role in acquiring these objects.

Instead, these dependencies are managed via a configuration file and

injected automatically by the container (Spring). For example, consider:

package di;

public interface MessageRenderer {

public void render();

}

and

package di;

import org.springframework.beans.factory.xml.XmlBeanFactory;

import org.springframework.core.io.FileSystemResource;

public class DemoCI {

public static void main(String[] args) {

XmlBeanFactory bf =

new XmlBeanFactory(new FileSystemResource("config/demo_ci.xml"));

MessageRenderer renderer =

(MessageRenderer) bf.getBean("renderer");

renderer.render();

}

}

The application DemoDI and the bean it calls are connected only by the

MessageRenderer interface. Thanks to DI, there are no subtle forms of

tight coupling to trouble us later. This is shown in Figure 5.3, on the

next page.

Spring is best known for DI, which eliminates a lot of unnecessary tight

coupling. But what about necessary coupling? You will often find a

large set of dependencies among components, even with DI. Sometimes

these dependencies are not clearly captured and localized in a single

source file. Such dependencies are called cross-cutting concerns. Here cross-cutting concerns

are a few examples:

• Since Java has single inheritance for implementation, it may be

difficult to model entities that seem to need multiple inheritance.

Secondary categorization hierarchies may have their code spread

among many classes.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=65

FROM JAVA TO DEPENDENCY INJECTION TO AOP 66

Figure 5.3: Dependency injection

• Generic services, such as persistence, transactions, validation,

and auditing, are typically spread across many classes.

For an example of cross-cutting concerns, consider Figure 5.4, on the

following page. This shows two totally different application domains

(superheroes and software projects). Within those domains, there are

several classes whose instances have names. In the superhero domain,

these classes all share a common base, but in software projects, they

do not. Imagine that you make an application- or organization-wide

change to how names are validated. This change might be easy to

describe: “Our new web forms tool needs us to allow null values, which

were formerly forbidden.” However, the implementation change will be

spread across several source code files in different application reposi-

tories. Name validation is a cross-cutting concern.

Aspect-oriented programming (AOP) allows us to localize the handling Aspect-oriented
programming

of cross-cutting concerns. Rather than having name validation spread

across many classes, a name validation aspect captures everything in

one place, and the run-time weaves the necessary code into affected

classes, as shown in Figure 5.5, on the next page.

AOP and DI are complementary and synergistic. DI helps you eliminate

unnecessary dependencies, and AOP helps you to localize and manage

real dependencies. Together, DI and AOP are the core of Spring.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=66

FROM JAVA TO DEPENDENCY INJECTION TO AOP 67

Figure 5.4: Cross-cutting concerns

Figure 5.5: Aspect-oriented programming

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=67

ASPECT TERMINOLOGY 68

5.2 Aspect Terminology

In order to read the code examples that follow, you will need to know

the following key AOP terms:

Term Definition

Advice Code that is woven in (to a pointcut)

Joinpoint Point in the execution of an application

Pointcut Combination of join points used to place advice

Aspect Advice + pointcut

Introduction Special case of advice: add entirely new fields/methods

Spring provides several approaches for wiring all this together. The

sections Advice and Pointcuts will show you how to wire aspects in

code, and then the section Aspect Dependency Injection will show you

how to do the same things declaratively, using DI for your aspects. The

examples shown here are representative but by no means exhaustive.

Note that Spring offers more than shown here, including a number of

conveniences for common tasks, plus support for many less common

tasks.

5.3 Advice

Advice is code that is to be woven into existing classes. In Spring, it

is possible to use advice without a pointcut, in which case the advice

is woven into all methods on a bean. An example will make this clear.

Consider the Superhero class:

package aop;

import java.lang.reflect.Method;

public class Superhero {

private String name;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}

We want to modify Superhero so that a null name will be rejected. The

NullBlocker class will do the trick:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=68

ADVICE 69

package aop;

import org.springframework.aop.MethodBeforeAdvice;

import java.lang.reflect.Method;

public class NullBlocker implements MethodBeforeAdvice {

public void before(Method method, Object[] objects, Object object)

throws Throwable {

if ((method.getName().startsWith("set")) && (objects[0] == null)) {

throw new IllegalArgumentException("null passed to " + method.getName());

}

}

}

NullBlocker implements the class MethodBeforeAdvice, which means that

it should be executed before any methods on a bean. Its sole method,

before(), has a generic signature (using Method and Object arguments),

because we cannot know in advance what kind of bean the NullBlocker

will be applied to.

To weave this all together, we can use Spring’s ProxyFactory, as shown

in the following test code:

package aop;

import org.springframework.aop.framework.ProxyFactory;

import util.TestBase;

public class TestBeforeAdvice extends TestBase {

public void testBeforeAdvice() {

Superhero h = new Superhero();

ProxyFactory pf = new ProxyFactory();

pf.addAdvice(new NullBlocker());

pf.setTarget(h);

Superhero proxy = (Superhero) pf.getProxy();

proxy.setName("Spiderman");

assertEquals("Spiderman", proxy.getName());

assertThrows(IllegalArgumentException.class, proxy, "setName", (Object)null);

}

}

TestBeforeAdvice demonstrates the basic steps for wiring together an

aspect in Spring:

1. Create a ProxyFactory.

2. Call setTarget() to associate a POJO.

3. Call getProxy() to return an instance that has the POJO function-

ality, but with the Aspect woven in.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=69

ADVICE 70

In TestBeforeAdvice, the call to the method assertThrows shows that the

Superhero instance is now protected by a NullBlocker.

Many people wonder, “Wouldn’t it be easier to just add the validation to

Superhero directly?” If all superheroes need this validation and no other

types need it, then maybe. But if the concern is cross-cutting, then

others need the validation as well, and the aspect approach simplifies

the code. TestBeforeAdvice2 shows the NullBlocker being used in a totally

different application domain:

package aop;

import util.TestBase;

import org.springframework.aop.framework.ProxyFactory;

public class TestBeforeAdvice2 extends TestBase {

public void testBeforeAdvice() {

OpenSourceProject osp = new OpenSourceProject();

ProxyFactory pf = new ProxyFactory();

pf.setTarget(osp);

pf.addAdvice(new NullBlocker());

OpenSourceProject proxy = (OpenSourceProject) pf.getProxy();

proxy.setName("Spring");

assertEquals("Spring", proxy.getName());

assertThrows(IllegalArgumentException.class, proxy, "setName", (Object) null);

}

}

The advice shown in the previous two examples is called before advice,

because it runs before the method. Before advice has access to method

parameters and can prevent the execution of the method by throwing

an exception. There are several other types of advice, shown in Fig-

ure 5.6, on the following page.

The interaction of the various types of advice with a method call on a

Java object are shown in Figure 5.7, on the next page.

Around advice is the most powerful, because it has complete access to

a method both before and after execution. This allows potent modifica-

tion to existing programs. Consider the Recorder class. Recorder does a

bit of gymnastics with getters and setters to keep a record of all setters

called on an object. With a bean aspected by Recorder, you can get a

list of past values for any bean property.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=70

ADVICE 71

Type of Advice AOP Alliance Inter-

face (Spring Class)

Example Usage

Around MethodInterceptor Recording

Before BeforeAdvice Validation

Throws ThrowsAdvice Remapping exception types

After AfterReturning Remapping return types

Introduction IntroductionInterceptor,

DelegatingIntroduction-

Interceptor

Mixins

Figure 5.6: The different types of advice

Figure 5.7: Advice

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=71

ADVICE 72

package aop;

import org.aopalliance.intercept.*;

import java.lang.reflect.Method;

import java.util.*;

import java.util.concurrent.CopyOnWriteArrayList;

public class Recorder implements MethodInterceptor {

private List history = new CopyOnWriteArrayList();

public Iterator historyIterator() {

return history.iterator();

}

public Method getterForSetter(Class cls, Method m) {

String name = m.getName();

if (name.startsWith("set")) {

try {

return cls.getMethod(name.replaceFirst("set", "get"));

} catch (NoSuchMethodException e) { ; }

}

return null;

}

public Object invoke(MethodInvocation mi)

throws Throwable {

Method method = mi.getMethod();

Method getter = getterForSetter(mi.getThis().getClass(), method);

Object result = null;

if (getter != null) {

Object before = getter.invoke(mi.getThis());

result = mi.proceed();

if (before != getter.invoke(mi.getThis())) {

history.add(new Record(method.getName(), before));

}

} else {

result = mi.proceed();

}

return result;

}

public static class Record {

private final String method;

private final Object value;

public boolean equals(Object o) {

if (this == o) return true;

if (o == null || getClass() != o.getClass()) return false;

final Record record = (Record) o;

if (!method.equals(record.method)) return false;

if (value != null ? !value.equals(record.value) : record.value != null)

return false;

return true;

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=72

ADVICE 73

public int hashCode() {

int result;

result = method.hashCode();

result = 29 * result + (value != null ? value.hashCode() : 0);

return result;

}

public Record(String method, Object value) {

this.method = method;

this.value = value;

}

}

}

The TestRecorder class demonstrates the Recorder in action.

package aop;

import util.TestBase;

import org.springframework.aop.framework.ProxyFactory;

import static aop.Recorder.*;

public class TestRecorder extends TestBase {

public void testRecorder() {

ProxyFactory pf = new ProxyFactory();

Recorder r = new Recorder();

pf.addAdvice(r);

pf.setTarget(new Superhero());

Superhero hero = (Superhero) pf.getProxy();

hero.setName("Spiderman");

assertIteratorEquals(r.historyIterator(), new Record("setName", null));

hero.setName("Batman");

assertIteratorEquals(r.historyIterator(),

new Record("setName", null),

new Record("setName", "Spiderman"));

}

}

Although this Recorder is pretty simple, the implications are powerful.

Similar code could be used to audit all access, record all state changes

into persistence media, implement undo and redo, or perform a variety

of other services around managing object state.

Recorder is written as around advice because it needs access to the

method before it runs (to cache the old value of a property) and after

it runs (to check whether the property changed). The other forms of

advice (before, after, and throws) provide subsets of around behavior. It

is considered good style to use the weakest advice that can get the job

done. Don’t use around advice unless none of the simpler types will do.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=73

POINTCUTS 74

5.4 Pointcuts

The advice examples were applied to all methods on a bean. Often, it

is necessary to limit the application of advice to some methods and not

others. Spring AOP provides several ways to create such pointcuts:

• You can configure static pointcuts based on the names of methods

or classes, by simple name matching or by regular expression.

• You can configure dynamic pointcuts that examine the runtime

call stack to determine where to apply advice. This is used less

often, since examining the call stack is expensive.

• The entire pointcut architecture is built around interfaces (but of

course!), so you can define your own pointcuts if Spring’s provided

ones do not match your needs.

The basic steps to using pointcuts in Spring are as follows:

1. Start with one or more POJOs.

2. Write some advice.

3. Write some pointcuts.

4. Combine pointcuts and advice into an advisor (advisor is another

name for Aspect).

5. Use the ProxyFactory to weave the advisor and the POJOs together.

As an example, let’s start with a slightly larger POJO, PersonName:

package aop;

public class PersonName {

private String lastName;

private String firstName;

private String middleInitial;

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getMiddleInitial() {

return middleInitial;

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=74

POINTCUTS 75

public void setMiddleInitial(String middleInitial) {

this.middleInitial = middleInitial;

}

}

We want to make sure that PersonName’s fields are not set to null. The

NullBlocker we wrote earlier can be reused here. But this time there is

a twist: first names and last names cannot be null, but middle initials

can. The TestNameMatchMethodPointcut class demonstrates how:

package aop;

import util.TestBase;

import org.springframework.aop.framework.ProxyFactory;

import org.springframework.aop.support.*;

import org.springframework.aop.Advisor;

public class TestNameMatchMethodPointcut extends TestBase {

public void testNameMatchMethodPointcut() {

ProxyFactory pf = new ProxyFactory();

NameMatchMethodPointcut pc = new NameMatchMethodPointcut();

pc.setMappedNames(new String[]{"setLastName", "setFirstName"});

Advisor adv = new DefaultPointcutAdvisor(pc, new NullBlocker());

pf.addAdvisor(adv);

pf.setTarget(new PersonName());

PersonName pn = (PersonName) pf.getProxy();

assertThrows(IllegalArgumentException.class, pn, "setFirstName", (Object) null);

assertThrows(IllegalArgumentException.class, pn, "setLastName", (Object) null);

pn.setMiddleInitial(null);

}

}

NameMatchMethodPointcut is part of Spring, and it matches an array

of names. There are several methods for setting the names to match;

here we call setMappedNames(). The constructor for DefaultPointcutAd-

visor then combines our pointcut and advice into an advisor. Calling

addAdvisor() configures the ProxyFactory, and then we use getProxy() to

retrieve our aspected PersonName.

For more complex situations, you can use JdkRegexpMethodPointcut to

match classes and methods by regular expression, as demonstrated by

the method TestJdkRegexpMethodPointcut:

package aop;

import util.TestBase;

import org.springframework.aop.framework.ProxyFactory;

import org.springframework.aop.support.*;

import org.springframework.aop.Advisor;

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=75

ASPECT DEPENDENCY INJECTION 76

public class TestJdkRegexpMethodPointcut extends TestBase {

public void testIt() {

ProxyFactory pf = new ProxyFactory();

JdkRegexpMethodPointcut pc = new JdkRegexpMethodPointcut();

pc.setPattern("aop.*set.*Name");

Advisor adv = new DefaultPointcutAdvisor(pc, new NullBlocker());

pf.addAdvisor(adv);

pf.setTarget(new PersonName());

PersonName pn = (PersonName) pf.getProxy();

assertThrows(IllegalArgumentException.class,

pn, "setFirstName", (Object) null);

assertThrows(IllegalArgumentException.class,

pn, "setLastName", (Object) null);

pn.setMiddleInitial(null);

}

}

Note that this code is almost the same as the previous example, except

for the line that creates the pointcut. Beware that with regular expres-

sion pointcuts, the regular expression must match the fully qualified

class name plus the method name.

5.5 Aspect Dependency Injection

As we have seen, creating an aspected bean is a matter of wiring POJOs,

advice, and pointcuts together. Most Spring applications will not do

this wiring in application code, instead preferring to configure aspects

via dependency injection. The TestDeclarativeAop class demonstrates

creating a PersonName bean with aspects injected:

package aop;

import util.TestBase;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.FileSystemXmlApplicationContext;

public class TestDeclarativeAop extends TestBase {

public void testIt() {

ApplicationContext ac =

new FileSystemXmlApplicationContext("config/test_declarative_aop.xml");

PersonName pn = (PersonName) ac.getBean("personName");

assertThrows("IllegalArgument", pn, "setFirstName", (Object) null);

assertThrows("IllegalArgument", pn, "setLastName", (Object) null);

assertDoesNotThrow(pn, "setMiddleInitial", (Object) null);

}

}

But hold on a minute—there is nothing in TestDeclarativeAop that says

anything about aspects! The fact that the PersonName bean uses (or

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=76

ASPECT DEPENDENCY INJECTION 77

does not use) aspects is an implementation detail. In fact, if you could

see aspects in TestDeclarativeAop, then we would have an unnecessary

dependency on aspects, which is exactly the kind of thing DI helps us

avoid. To see that Spring AOP is being used, you would have to look at

the bean configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="personName"

class="org.springframework.aop.framework.ProxyFactoryBean">

<property name="target">

<bean class="aop.PersonName"/>

</property>

<property name="interceptorNames">

<list>

<value>nullNameBlocker</value>

</list>

</property>

</bean>

<bean id="nullNameBlocker"

class="org.springframework.aop.support.DefaultPointcutAdvisor">

<property name="advice">

<bean class="aop.NullBlocker"/>

</property>

<property name="pointcut">

<bean class="org.springframework.aop.support.JdkRegexpMethodPointcut">

<property name="pattern">

<value>aop.*set.*Name</value>

</property>

</bean>

</property>

</bean>

</beans>

Here you can see that personName is not declared as a PersonName at

all. Instead, personName is a Spring ProxyFactory. The target property

then specifies the actual PersonName POJO, and the interceptorNames

property contains a list of advisors. The personName bean has only one

advisor, the nullNameBlocker.

If you examine its bean properties, you will see that it contains advice (a

NullBlocker) and a pointcut (a JdkRegexpMethodPointcut with an appropri-

ate pattern). With this configuration file, the TestDeclarativeAop applica-

tion is the DI equivalent of the TestJdkRegexpMethodPointcut app shown

previously.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=77

SPRING 2 78

Note that the target and pointcut properties use nested beans. Another

alternative would have been to make these top-level named beans in

their own right, and then refer to them by reference. The choice of

nested beans is an important decision, because it indicates our intent

that these beans are not to be used alone but only in the context of

the top-level beans personName and nullNameBlocker. Keeping the list of

top-level beans small makes it easy for clients to find the beans they

need, without wading through all the subsidiary support beans.

There is an even more important reason for making target (the raw Per-

sonName POJO) a nested bean. If the raw PersonName could be accessed

directly, its first and last names could be set to null. On the other hand,

the pointcut might reasonably be used elsewhere, so the choice between

top-level and nested bean for pointcut is not nearly so clear-cut. As a

rule of thumb, beans that require their aspects in order to function

correctly should be nested inside their ProxyFactory.

5.6 Spring 2

Note: The following is based on the most recent build available at the

time of this writing: the March 6, 2006, Spring 2 M3 daily build. Some

details may change.

Spring 2 makes several important enhancements in the area of aspects:

• Spring 2 uses XML Schema (xsd) instead of Document Type Dec-

larations (DTDs) to describe the bean configuration file. This, in

turn, allows a new AOP-specific namespace to be introduced. The

new AOP namespace provides a cleaner, terser syntax for aspects.

• Spring 2 allows the use of AspectJ’s pointcut language, which is AspectJ

much more powerful (and complex) than Spring AOP.

• Spring 2 allows Aspects to be POJOs, instead of forcing them to

have dependencies on interfaces such as MethodBeforeAdvice and

MethodInterceptor.

In addition to all this new goodness, the Spring team is determined to

provide an easy transition path from Spring AOP up to AspectJ. To this

end, all the 1.x features continue to work.

Better still, the new AOP namespace uses Aspect terminology directly,

instead of referring to Spring-specific classes. This lets you plug in

different implementations with no other change to configuration. New

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=78

SPRING 2 79

applications can use the new configuration schema to start simple with

Spring AOP and then power up to the AspectJ pointcut language with

a minimum of fuss. The TestDeclarativeAop application demonstrates

AOP, Spring 2–style:

package aop2;

import org.springframework.context.support.FileSystemXmlApplicationContext;

import org.springframework.context.ApplicationContext;

import aop.PersonName;

import util.TestBase;

public class TestDeclarativeAop extends TestBase {

public void testIt() {

ApplicationContext ctxt =

new FileSystemXmlApplicationContext("config/test_declarative_aop_2.xml");

PersonName pn = (PersonName) ctxt.getBean("personName");

assertThrows("IllegalArgument", pn, "setFirstName", (Object) null);

assertThrows("IllegalArgument", pn, "setLastName", (Object) null);

assertDoesNotThrow(pn, "setMiddleInitial", (Object) null);

}

}

By now it should come as no surprise that this client shows no aware-

ness that it depends on beans that use aspects (or Spring 2, for that

matter). To look under the hood, check out the configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:aop="http://www.springframework.org/schema/aop"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop.xsd">

<aop:config>

<aop:aspect id="nullBlocker" ref="paramValidator">

<aop:pointcut id="pc"

expression="execution(* set*Name(..)) and args(name)"/>

<aop:before pointcut-ref="pc"

method="blockNull"

arg-names="name "/>

</aop:aspect>

</aop:config>

<bean id="personName" class="aop.PersonName"/>

<bean id="paramValidator" class="aop2.ParamValidator"/>

</beans>

Here things are quite a bit different. First you see a bunch of schema

and namespace goo added as attributes on the <beans> element. This

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=79

IN CONCLUSION 80

is verbose but boilerplate. Then the fun begins. The aop:config element

configures our aspect. Much of this is self-explanatory. Here are a few

key points:

• The aspect specifies not only an aspect instance paramValidator,

but also the exact method and arguments that will be called (the

method and arg-names() attributes). This is a necessary good.

Since paramValidator is now a POJO, we can choose to invoke any

method we want as before advice.

• The expression attribute uses the AspectJ pointcut syntax. That’s

a topic for a whole book, but suffice it to say that this matches

calls of the form setXXXName() and makes the argument available

to the aspect.

Now let’s look at ParamValidator:

package aop2;

public class ParamValidator {

public void blockNull(String name) {

if (name == null) {

throw new IllegalArgumentException("Cannot be null");

}

}

}

The important thing here is what’s not here. ParamValidator is just a

POJO—no aspects or Spring-specific interfaces. Since we can invoke

any method on this POJO as advice, we have chosen the meaningful

name blockNull. (This hints that in the future we might hang all sorts of

other advice methods on this same class.)

The sum of these new features is very exciting. The new configuration

syntax and POJO support make aspects more friendly and approach-

able and may encourage wider adoption. On the other end of the scale,

the AspectJ integration makes Spring AOP much more powerful and

ready to tackle more complex problems. With Spring 2, aspects have

completed their move from “esoteric power tool” to a regular part of the

development process for all applications.

5.7 In Conclusion

Spring represents the tireless application of common sense and field-

tested knowledge to Java development. The two cores of Spring are

dependency injection (DI) and aspect-oriented programming (AOP).

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=80

RESOURCES 81

With DI, you rid your code of unnecessary dependencies—it becomes

focused, testable, and domain-oriented. With AOP, you can elegantly

manage the necessary dependencies in your application. Your appli-

cation source files can each clearly focus on a single task and avoid

degeneration to an unmaintainable tangle of cross-cutting concerns.

5.8 Resources

Sample Code Download

The Spring Exploration application sample code used in this article is

available online at http://www.codecite.com/project/spring_xt. Some of the

examples were inspired by Pro Spring [HM05], which is recommended

follow-up reading.

Running the Code

The code was tested against the following classpath on an M3 build of

Spring 2. All the code before the Spring 2 section was also tested on

Spring 1.2.6. You would use the same JAR files on 1.2.6, minus the

“asm” files.

Classpath

eclipse/plugins/org.junit_3.8.1/junit.jar

spring-framework-2.0-m3/dist/spring.jar

spring-framework-2.0-m3/lib/asm/asm-2.2.1.jar

spring-framework-2.0-m3/lib/asm/asm-analysis-2.2.1.jar

spring-framework-2.0-m3/lib/asm/asm-attrs-2.2.1.jar

spring-framework-2.0-m3/lib/asm/asm-commons-2.2.1.jar

spring-framework-2.0-m3/lib/asm/asm-tree-2.2.1.jar

spring-framework-2.0-m3/lib/asm/asm-util-2.2.1.jar

spring-framework-2.0-m3/lib/asm/asm-xml-2.2.1.jar

spring-framework-2.0-m3/lib/aspectj/aspectjweaver.jar

spring-framework-2.0-m3/lib/cglib/cglib-nodep-2.1_3.jar

spring-framework-2.0-m3/lib/jakarta-commons/commons-logging.jar

spring-framework-2.0-m3/lib/log4j/log4j-1.2.13.jar

Recommended Books

• Pro Spring [HM05] by Rob Harrop and Jan Machacek

• AspectJ in Action [Lad03] by Ramnivas Laddad

http://www.codecite.com/project/spring_xt
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=81

RESOURCES 82

Utility Code

Utility code that is called by the examples in this article is included

here for reference:

package util;

import junit.framework.TestCase;

import java.lang.reflect.Method;

import java.lang.reflect.InvocationTargetException;

import java.util.*;

public class TestBase extends TestCase {

static final HashMap exTypes = new HashMap();

static {

exTypes.put("IllegalArgument", IllegalArgumentException.class);

}

private Method getMethod(Object o, String methName, Object... args) {

Class cls = o.getClass();

Method[] methods = cls.getMethods();

for (int i = 0; i < methods.length; i++) {

Method method = methods[i];

if (method.getName().equals(methName)) {

return method;

}

}

throw new IllegalArgumentException(String.format("%s has no %s",

cls, methName));

}

public void assertIteratorEquals(Iterator it, Object... value) {

int count=0;

while (it.hasNext()) {

assertEquals(value[count], it.next());

count++;

}

assertEquals(count, value.length);

}

public Object assertDoesNotThrow(Object obj, String meth,

Object... args) {

Method method = getMethod(obj, meth, args);

try {

return method.invoke(obj, args);

} catch (IllegalAccessException e) {

throw new Error(e);

} catch (InvocationTargetException e) {

throw new Error(e.getTargetException());

}

}

public void assertThrows(String exPrefix, Object obj, String meth,

Object... args) {

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=82

RESOURCES 83

Class cls = (Class) exTypes.get(exPrefix);

if (cls == null) {

throw new Error("Unknown exPrefix " + exPrefix +

", add to exTypes");

}

assertThrows(cls, obj, meth, args);

}

public void assertThrows(Class exClass, Object obj, String meth,

Object... args) {

Method method = getMethod(obj, meth, args);

try {

method.invoke(obj, args);

} catch (InvocationTargetException ite){

Throwable t = ite.getTargetException();

if (!exClass.isAssignableFrom(t.getClass())) {

throw new Error(t);

}

return;

} catch (IllegalAccessException e) {

fail("Unexpected " + e);

}

fail("Expected " + exClass);

}

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=83

Chapter 6

Dependency Management
by Kirk Knoernschild

Kirk is chief technology strategist at QWANtify, where he leads based on his firm

belief in the pragmatic use of technology. In addition to his work on large devel-

opment projects, Kirk shares his experiences through developing courseware,

teaching, writing, and speaking at seminars and conferences. Kirk has provided

training to thousands of software professionals, teaching courses on UML, Java

J2EE technology, object-oriented development, component-based development,

software architecture, and software process.

As CTS at QWANtify, Kirk works with clients and peers to develop high-quality

software that solves real business challenges. In addition to spending a good

share of his time on projects, Kirk’s role typically involves mentoring other devel-

opers on proven coding and design techniques and driving QWANtify’s technol-

ogy vision. He intimately understands the software life cycle, and has applied

many best practices espoused by industry-proven agile methodologies, such as

the Rational Unified Process and Extreme Programming.

Kirk is the author of Java Design: Objects, UML, and Process [Kno01]. He fre-

quently contributes to various technical publications and actively updates his

personal website with new articles and white papers on a variety of software

development topics. He is also the founder of Extensible Java, a growing resource

of design pattern and dependency management heuristics.

Kirk’s favorite book and favorite tool selections are on page 212.

DEPENDENCY DEFINED 85

6.1 Dependency Defined

Why is software so difficult to change? When you establish your ini-

tial vision for the software’s design and architecture, you imagine a

system that is easy to modify, extend, and maintain. Possibly, you

envision system modules that are reusable not only within the system

but also across systems. Unfortunately, as time passes, changes trickle

in that exercise your design in unexpected ways. Unlike what you had

anticipated, each change begins to resemble nothing more than another

hack, until finally the system becomes a tangled web of code that few

developers care to venture through.

Eventually, modifications to the software that are intended to improve

the application have the opposite effect: they break other parts of the

system. The software is beginning to rot. The most common cause

of rotting software is tightly coupled code with excessive dependen-

cies. In this chapter, we’ll explore some common symptoms of rot-

ting design due to excessive dependencies, examine their cause, and

present solutions that can be used to minimize dependencies between

classes, packages, and binary units of deployment.

A dependency can be defined as follows:

If changing the contents of a module M2 may impact the contents of

another module, M1, we can say that M1 has a Dependency on M2.1

In Java, there are three modules where dependencies exist. A class

dependency exists when one class has a relationship to another class. A class dependency

package dependency exists when a class in one package imports a class package dependency

in another package. A physical dependency exists when the contents of
physical dependency

one deployable unit, or .jar file, uses the contents of another deployable

unit.

In Figure 6.1, on the next page, we see that class Client imports the

Service class from package service, where Client is deployed in client.jar

and Service is deployed in service.jar. This simple example illustrates the

three different types of dependencies. The first is a class dependency

between class Client and class Service. The second is a package depen-

dency between package client and package service, and the third is a

physical dependency between client.jar and service.jar.

1(Java Design: Objects, UML, and Process [Kno01])

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=85

DEPENDENCY CHALLENGES 86c l i e n t . j a rs e r v i c e . j a r p a c k a g e c l i e n t ;i m p o r t s e r v i c e . S e r v i c e ;p u b l i c c l a s s C l i e n t {. . .}p a c k a g e s e r v i c e ;p u b l i c c l a s s S e r v i c e {. . .}
Figure 6.1: Class, package, and physical dependency

Understanding dependencies between modules provides valuable infor-

mation about the structural makeup of your software system. For

instance, we know that changes to class Service may impact class Client.

Changes to package service may impact package client, and changes to

any of the contents of service.jar may impact the contents of client.jar.

Of course, for any interesting software system, some dependencies are

necessary. But dependencies should be minimized, and techniques are

available to help us manage and break complex dependencies.

6.2 Dependency Challenges

Managing dependencies is about minimizing coupling between mod-

ules. Excessive dependencies challenge developers in numerous ways:

• Dependencies hinder the maintenance effort. When you’re work-

ing on a system with heavy dependencies, you typically find that

changes in one area of the application trickle to many other areas

of the application. In some cases, you cannot avoid this. For

instance, when you add a column to a database table that must

be displayed on a page, you’ll be forced to modify at least the

data access and user interface layers. Such a scenario is mostly

inevitable. However, applications with a well-thought-out depen-

dency structure should embrace this change instead of resisting

it. Applications with complex dependencies do not accommodate

change well. Instead, with change, the system breaks in unex-

pected ways and in unexpected places. For this to happen, the

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=86

DEPENDENCY CHALLENGES 87

module you unexpectedly broke must be dependent on the mod-

ule that changed.

• Dependencies prevent extensibility. The goal of object-oriented sys-

tems is to create software that is open for extension but closed to

modification. This idea is known as the Open-Closed Principle

(see Java Design: Objects, UML, and Process [Kno01]). The desire

is to add new functionality to the system by extending existing

abstractions, and plugging these extensions into the existing sys-

tem without making rampant modifications. One reason for heavy

dependencies is the improper use of abstraction, and those cases

where abstractions are not present are areas that are difficult to

extend.

• Dependencies inhibit reusability. Reuse is often touted as a core

advantage of well-designed OO software. Unfortunately, few appli-

cations realize this benefit. Too often, we emphasize class-level

reuse. To achieve higher levels of reuse, we must carefully con-

sider the package structure and deployable unit structure. Soft-

ware with complex package and physical dependencies minimizes

the likelihood of achieving higher degrees of reuse.

• Dependencies restrict testability. Tight coupling between classes

eliminates the ability to test classes independently. Unit testing is

a fundamental principle that should be employed by all develop-

ers. Tests provide you with the courage to improve your designs,

knowing mistakes will be caught by unit tests. They also help

you design proactively and discourage undesirable dependencies.

Heavy dependencies discourage independent testing of software

modules.

• Dependencies limit understanding. When you work on a software

system, it’s important that you understand the system’s struc-

tural architecture and design constructs. A structure with com-

plex dependencies is inherently more difficult to understand.

Dependencies between different types of modules have different effects

on your design and architecture. Complex class dependencies may not

be troublesome if they are confined to a single package or deployable

unit. Yet if these classes are heavily used throughout the application,

are used across applications, or are part of a framework or class library,

the dependencies will cause problems. Package dependencies aren’t

necessarily bad if they are confined to a single unit of deployment,

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=87

CLASS DEPENDENCIES 88

but if package dependencies span units of deployment, reconsidering

the package structure to minimize the coupling between packages will

prove beneficial. Physical dependencies may not cause problems unless

you need to independently reuse a deployable unit. If the module is

heavily dependent on one or more other modules, reuse is a burden.

In the next few sections, we discuss in more detail the dependencies

between various modules and explore ways that dependencies can be

minimized and eliminated.

6.3 Class Dependencies

Class dependencies are relationships between classes dictated by your

code. A class declared as an instance variable, passed as a parame-

ter, or defined locally within a method creates an associative relation-

ship between the containing class and the declared class. Extending

an abstract class or implementing an interface also creates a static

relationship between the descendant and ancestor. When developing

object-oriented software systems, dependencies are created through

either inheritance or association. If you’re familiar with Unified Mod-

eling Language (UML), you’re aware of the distinction between associ-

ation, aggregation, and composition. When managing dependencies,

each of these is treated as an equal.

Inheritance is a static relationship between two classes where one, the

descendant, is an extension of another, the ancestor. In Java, inheri-

tance manifests itself in one of two ways. Using the extends keyword,

a class inherits the operations and behavior of its base class. Con-

versely, using the implements keyword, a class inherits only the oper-

ations defined on an interface. Arguably, implementation inheritance

using the extends keyword is worse. Implementation inheritance exists

when the purpose for extension is to reuse functionality defined within

the ancestor. A significant concern with implementation inheritance

is that it’s a static, compile-time relationship offering no flexibility for

extension. You cannot change your ancestors. Let’s see an example.

In Figure 6.2, on the following page, Descendant extends Ancestor where

Ancestor defines a simple method named reuse(). The reuse() method can

easily be overridden or accessed by all future descendants of Ancestor.

The problem is that all future descendants of Ancestor always receive

the same implementation of reuse and do not have the ability to easily

change the method behavior based on system state.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=88

CLASS DEPENDENCIES 89+ s t r a t e g y ()# t e m p l a t e M e t h o d ()+ r e u s e ()+ t e m p l a t e ()A n c e s t o r+ s t r a t e g y ()# t e m p l a t e M e t h o d ()D e s c e n d e n t
Figure 6.2: Inheritance is a static relationship+ s t r a t e g y ()# t e m p l a t e M e t h o d ()+ r e u s e ()A n c e s t o rt h o d ()e n t + r e u s e ()R e u s a b l e+ r e u s e ()R e u s a b l e I m p l

Figure 6.3: Association is a dynamic relationship

Although you cannot change your ancestors, you can easily change

who you associate with. This makes association a much friendlier rela-

tionship. In Figure 6.3 , the Ancestor reuse method delegates to the

Reusable hierarchy. This delegation allows for Descendant to be easily

configured with variations of the reuse() method, serving to minimize

the dependency of Descendant on the Ancestor.reuse() method.

In addition to minimizing the dependency between the Descendant and

Ancestor functionality, we have also increased the testability of Descen-

dant. Whereas in Figure 6.2 the descendant could not be tested inde-

pendently of Ancestor, we can now create mock objects and substitute

these mocks anywhere descendants of Reusable are expected.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=89

CLASS DEPENDENCIES 90

Although association is the most effective way to reduce dependencies,

there are some forms of association that we should avoid. Bidirectional

associations present a greater burden because each class has a refer-

ence to the other. In the diagram that follows, we see a bidirectional

association between Bill and Customer. The accompanying code shows

that the Customer has a list of Bill instances, while the Bill has a reference

to Customer that is used to help calculate the discount applied to an

individual Bill. Bidirectional associations are burdensome. Any changes

to Bill impact Customer, and vice versa. Neither class can be tested inde-

pendent of the other. Certainly, there must be a better way.*1C u s t o m e r B i l l
public class Customer {

private List bills;

public BigDecimal getDiscountAmount() {

...code...

}

public List getBills() { return this.bills; }

public void createBill(BigDecimal chargeAmount) {

Bill bill = new Bill(this, chargeAmount);

...code...

}

}

public class Bill {

private BigDecimal chargeAmount;

private Customer customer;

public Bill(Customer customer,

BigDecimal chargeAmount) {

this.customer = customer;

this.chargeAmount = chargeAmount;

}

public BigDecimal pay() {

BigDecimal discount = new BigDecimal(1).

subtract(this.customer.getDiscountAmount()).

setScale(2, BigDecimal.ROUND_HALF_UP);

//make the payment...

return paidAmount;

}

}

It’s possible to replace the bidirectional associations with a unidirec-

tional one. In this example, Customer depends on Bill, but Bill has no

knowledge of Customer:C u s t o m e r B i l l

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=90

CLASS DEPENDENCIES 91

This is a step in the right direction. Bill can now be tested and main-

tained independently of Customer. However, another interesting prob-

lem has arisen. Whereas in the bidirectional example the Bill class

contained the knowledge required to calculate the discount, the client

of Bill (in this case our test) must pass the discount amount to the

pay method, requiring clients of Bill to calculate this discount amount.

We have sacrificed ease of use to minimize the dependency structure.

Wouldn’t we rather have the best of both worlds?

public class Customer {

private List bills;

public BigDecimal getDiscountAmount() {

...code...

}

public List getBills() { return this.bills; }

public void createBill(BigDecimal chargeAmount) {

Bill bill = new Bill(chargeAmount);

...code...

}

}

public class Bill {

private BigDecimal chargeAmount;

public Bill(BigDecimal chargeAmount) {

this.chargeAmount = chargeAmount;

}

public BigDecimal getChargeAmount() {

return this.chargeAmount;

}

public BigDecimal pay(BigDecimal discountAmount) {

//make the payment...

return paidAmount;

}

}

Avoiding the disadvantages of a bidirectional association is important.

So too is making your classes easy to use and understand by expos-

ing a clear, concise interface. One useful way to break a bidirectional

association is to introduce an abstraction that guarantees a unidirec-

tional compile-time relationship while accommodating a bidirectional

run-time relationship. How do we do this?

Figure 6.4, on the next page, introduces a DiscountCalculator interface.

The code for the DiscountCalculator interface is trivial and not shown.

The Customer class implements DiscountCalculator, allowing Customer to

pass itself as a DiscountCalculator type to Bill when Bill is instantiated. The

code for this version of Bill is now virtually identical to the code for the

previous Bill. The significant difference is that Bill now references the

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=91

CLASS DEPENDENCIES 92*1C u s t o m e r B i l lD i s c o u n t C a l c u l a t o r 1
Figure 6.4: Abstract association

DiscountCalculator interface instead of the Customer class.

The class diagram in Figure 6.4 illustrates this relationship. Analyzing

the dependency structure, we find that Bill is independent of the Cus-

tomer class, offering us the advantages of a unidirectional relationship

while also ensuring the Bill interface remains clean. Additionally, the

system is more extensible since we can easily create new implementa-

tions of DiscountCalculator when necessary. Testing is also aided since

we can continue to test Bill independently of Customer by simply defining

a mock implementation of DiscountCalculator, allowing us to focus our

testing efforts only on the Bill class. A true unit test!

public class Customer implements DiscountCalculator {

private List bills;

public BigDecimal getDiscountAmount() {

... code ...

}

public List getBills() { return this.bills; }

public void createBill(BigDecimal chargeAmount) {

... code ...

}

}

public class Bill {

private BigDecimal chargeAmount;

private DiscountCalculator discounter;

public Bill(DiscountCalculator discounter,

BigDecimal chargeAmount) {

this.discounter = discounter;

this.chargeAmount = chargeAmount;

}

public BigDecimal pay() {

BigDecimal discount = new BigDecimal(1).

subtract(this.discounter.getDiscountAmount()).

setScale(2, BigDecimal.ROUND_HALF_UP);

BigDecimal paidAmount = this.chargeAmount.

multiply(discount).setScale(2);

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=92

PACKAGE DEPENDENCIES 93

//make the payment...

return paidAmount;

}

}

Minimizing coupling between classes is a good design decision. A flexi-

ble way to minimize coupling is to use abstractions to help break com-

plex compilation dependencies. This promotes other good practices,

such as increasing testability. Many common design patterns are based

upon using abstractions to manage dependencies and create extensible

designs. This idea, known as abstract coupling, is central to managing

dependencies among packages and the binary units of deployment, as

well.

6.4 Package Dependencies

If class dependencies are dictated by code, then package dependen-

cies are driven by the relationships between classes that span pack-

ages. As we’ve seen, bidirectional relationships between classes are an

unwise design choice in many cases because of the increased coupling.

Managing dependencies among packages is driven by a similar idea.

When designing packages, we want to avoid all cycles in the depen-

dency structure. Cycles in the dependency structure exist when we Cycles

can trace the package relationships and end with the package from

which we started.

Figure 6.5, on the following page shows our resulting class structure

with a default allocation to their respective packages. Customer and

DiscountCalculator both reside in the cust package, while Bill resides in the

bill package. Although there are no bidirectional relationships between

classes, there is a cyclic dependency between the cust and bill packages.

Although cyclic dependencies between packages are not always bad,

allowing such cycles to overtake your application is not good design.

Cycles between packages, especially if complex, make managing class

relationships more difficult. If you are certain that there are no cyclic

package relationships, you can be certain there are no bidirectional

class relationships that span packages. As we’ll see, eliminating cyclic

package dependencies is the first step toward a flexible physical struc-

ture. But first, let’s explore how to break package cycles and then make

certain cycles don’t resurface.

The package cycle in Figure 6.5, on the next page, is relatively easy to

break. Simply moving the DiscountCaclulator class from the cust package

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=93

PACKAGE DEPENDENCIES 94*1C u s t o m e rB i l l D i s c o u n t C a l c u l a t o r1c u s tb i l l
Figure 6.5: Cyclic package relationships

to the bill package, as shown in Figure 6.6, on the following page, elim-

inates the cycle. In Large-Scale C++ Software Design [Lak96], Lakos

refers to this as a callback, since at run-time Bill is passed a reference callback

to a Customer as the DiscountCalculator type, and proceeds to call back

into Customer when needed. Callbacks are one very good technique

for minimizing dependencies and breaking cycles between both pack-

ages and the units of deployment. Two other techniques from Lakos

are escalation, where the dependency is pushed to a class in a higher- escalation

level package or .jar file, and demotion where the dependency is pushed demotion

down. An example of Escalation is how the dependency was initially

broken between Customer and Bill by breaking the bidirectional associa-

tion, though at the risk of making the client more complex. Common

examples of escalation include mediator and control classes, and one of

the risks is a more complex, centralized behavioral structure. Pushing

the calculation down to a concrete DiscountCalculator class would have

been an example of demotion, though doing so in this situation would

have been counterproductive.

Escalation, demotion, and callbacks each have their preferred uses.

Escalation should be used when the code causing the dependency con-

trols the relationship. Escalated code is typically not functionality that

you have a strong desire to reuse. On the other hand, demotion is most

useful when the code is common functionality that is reused, and call-

backs are most useful when you need well-defined points of extension

within the application.

In many cases, eliminating cycles between packages is simply a mat-

ter of moving code, not necessarily modifying code. This is especially

the case if you stay current on managing package dependencies. Let a

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=94

PACKAGE DEPENDENCIES 95*1C u s t o m e rB i l l D i s c o u n t C a l c u l a t o r1c u s tb i l l
Figure 6.6: Acyclic package relationships

number of cyclic dependencies creep into your application, and break-

ing the cyclic structure will become much more complex.

It was simple to the break the package cycle by moving DiscountCal-

culator. This illustrates an important design principle. Interfaces and

abstract classes should be closer to the classes that use them than they

are to the class that implements or extends them. Because descendants

are dependent on their ancestor, not vice versa, placing the ancestor

closer to the class dependent on it allows us to work miracles when

managing dependencies. We’ll explore these wonders more when dis-

cussing physical dependencies, so you’ll have to wait a few minutes.

On large applications, with potentially hundreds of packages, it can

quickly become difficult to understand and manage package relation-

ships. Using JDepend, you can write unit test cases to verify the pack- JDepend

age structure, and you can incorporate JDepend into your Ant build

script, giving you a report that shows package dependencies. The fol-

lowing listing shows a simple JDepend test case:

Download kirkk/DependencyConstraintTest.java

package com.kirkk.test;

import junit.framework.*;

import junit.textui.*;

import jdepend.framework.*;

public class DependencyConstraintTest extends TestCase {

private JDepend jDepend;

public static void main(String[] args) {

junit.textui.TestRunner.run(DependencyConstraintTest.class);

}

http://media.pragprog.com/titles/nfjs06/code/kirkk/DependencyConstraintTest.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=95

PACKAGE DEPENDENCIES 96

public DependencyConstraintTest(String name) {

super(name);

}

protected void setUp() throws Exception {

PackageFilter filter = new PackageFilter();

filter.addPackage("java.*");

jDepend = new JDepend(filter);

jDepend.addDirectory("build/com/kirkk/cust");

jDepend.addDirectory("build/com/kirkk/bill");

}

public void testPackageDependencies() {

DependencyConstraint constraint = new DependencyConstraint();

JavaPackage cust = constraint.addPackage("com.kirkk.cust");

JavaPackage bill = constraint.addPackage("com.kirkk.bill");

cust.dependsUpon(bill);

jDepend.analyze();

assertEquals("Dependency Mismatch", true,

jDepend.dependencyMatch(constraint));

}

public void testCycles() {

java.util.Collection packages = jDepend.analyze();

assertEquals("Cycles exist", false, jDepend.containsCycles());

}

}

The setup() method begins by filtering all packages beginning with java

to exclude them from the output. We then add all directories containing

the classes we want to analyze. Since JDepend is a byte code utility and

is not classpath-dependent, we need to include in the directory name

the fully qualified package name, as well.

The testPackageDependencies() method verifies that the only existing

dependency constraints are the ones it defines. In our case, we state

that the cust package depends only on the bill package. No other package

dependencies should exise. This test method would pass for the struc-

ture in Figure 6.6, on the page before, but would fail for the structure

in Figure 6.5, on page 94. The testCycles() method analyzes all pack-

ages and determines whether any cyclic dependencies exist among the

package defined in the test’s setup() method. Again, in our case, the

test would fail if run from the design in Figure 6.5 but would pass for

the design in Figure 6.6.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=96

PHYSICAL DEPENDENCIES 97

JDepend can also be incorporated into your Ant build script to provide

an HTML report that shows, among many other things, the dependen-

cies between packages. The next listing shows an excerpt from an Ant

build script that defines a JDepend target. The first section specifies

that we will use the JDepend Ant task to analyze our build directory.

For reference, the build directory being analyzed should be the directory

containing the compiled .class files. This produces an XML document

which is formatted using the JDepend.XSL style sheet to produce a much

nicer-looking HTML document. I’ll leave it as your exercise to produce

a JDepend report to see what it looks like. It’s worth your while, and

if you already have a repeatable build script available, adding JDepend

will take only a few minutes. If you don’t have a repeatable build script,

use this as motivation to create one. You’ll find it worthwhile. Better

yet, set up an automated build, and include JDepend as a report on

your build website.

Download kirkk/Ant_snippet.xml

<target name="jdepend" depends="compile">

<jdepend format="xml" outputfile="${buildstats}/jdepend.xml">

<classespath>

<pathelement location="${build}" />

</classespath>

<classpath location=""/>

</jdepend>

<style in="${buildstats}/jdepend.xml" out="${buildstats}/jdepend.html"

style="${lib}/jdepend.xsl">

</style>

</target>

6.5 Physical Dependencies

Binary dependencies are the relationships between packages that span

the units of deployment. Many of the techniques used to manage and

minimize physical dependencies can also be used to manage package

dependencies, and vice versa. More so than with package dependen-

cies, cycles between the units of deployment is not a wise design deci-

sion. Such cycles eliminate independent reuse potential, complicate

deployment, and hinder maintenance. Whereas limited cycles in the

package structure may not prove too costly, cycles among the units of

deployment are never good.

Fortunately, we have many ways to break physical dependency cycles,

and techniques exist that will help restructure the physical relation-

http://media.pragprog.com/titles/nfjs06/code/kirkk/Ant_snippet.xml
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=97

PHYSICAL DEPENDENCIES 98c u s t . j a rb i l l .j a r
Figure 6.7: Allocation to units of deployment

ships. As we saw in Figure 6.6, on page 95, the Customer class resides

in the cust package, and the Bill and DiscountCalculator classes reside in

the bill package.

Let’s assume for a moment that the cust package is deployed in cust.jar

and the bill package is deployed in bill.jar, resulting in the component

diagram in Figure 6.7 .

What if, for example, we were not concerned with the reuse of bill.jar

but instead were more concerned with reusing cust.jar? In the previous

scenario we cannot deploy cust.jar without bill.jar, causing potentially

unnecessary overhead. We want to decouple cust.jar from bill.jar. What

we want to do, then, is invert the relationship between bill.jar and cust.jar,

yielding the structure shown in Figure 6.8, on the next page. But how

can we do this?

We invert the relationship between packages or units of deployment

by introducing an abstraction in the appropriate place. To eliminate

the cyclic relationship between packages in Figure 6.5, on page 94, we

moved DiscountCalculator from the cust package to the bill package. Here,

however, we do not have an existing abstraction that can be moved.

Instead, we need to introduce a new abstraction.

In Figure 6.9, on the next page, we have refactored the Bill class to an

interface, placing it in the cust package. We then introduce DefaultBill,

which is the implementation from the former Bill class. Since the Bill

interface now resides in the cust package, the relationship from bill to

cust has been eliminated, as has the dependency from cust.jar to bill.jar.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=98

PHYSICAL DEPENDENCIES 99b i l l .j a rc u s t . j a r
Figure 6.8: Inverting physical dependenciesb i l l D e f a u l t B i l lC u s t o m e r < < i n t e r f a c e > >B i l l< < i n t e r f a c e > >D i s c o u n t C a l c u l a t o r1 * 1

Figure 6.9: Refactored class structure

Since DefaultBill implements the Bill interface, the direction of the rela-

tionship has changed since descendants are dependent on their ances-

tors. DefaultBill depends on Bill, and the relationship between packages,

and subsequently between bill.jar and cust.jar, has been inverted.

While inverting the relationship provides us with the ability to deploy

and reuse cust.jar separately from bill.jar, we have increased the depen-

dencies of bill.jar. It’s possible we want bill.jar and cust.jar to be indepen-

dent of each other while still using the services of each other at run-

time. Is it possible to completely eliminate compile-time relationships

while maintaining the run-time relationships? Yes! It’s easy.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=99

PHYSICAL DEPENDENCIES 100b i l lc u s t D e f a u l t B i l l C u s t o m e r B i l lD i s c o u n t C a l c u l a t o r1 * 1b a s e
Figure 6.10: Reallocating classesb i l l . j a r b a s e . j a rc u s t . j a r

Figure 6.11: Eliminating physical dependencies

In Figure 6.10 , we have introduced a new package named base, moving

the DiscountCalculator and Bill interfaces to this new package. After refac-

toring Bill to an interface, the Customer and DefaultBill classes have no

compile-time dependency, making these two classes completely inde-

pendent of each other. By simply moving the abstractions to the base

package (neither closer to nor farther from the classes using them or

realizing them), we have eliminated the relationship between the cust

and bill packages, as well. Consequently, if we deploy the base package

in base.jar, cust.jar and bill.jar are no longer dependent on each other.

Instead, both are dependent on base.jar, as shown in Figure 6.11 .

When designing package relationships, we saw that JDepend can be

used to help verify and maintain the integrity of your package designs.

However, JDepend cannot be used to manage the relationship between

.jar files. Instead, we must turn to two other techniques.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=100

PHYSICAL DEPENDENCIES 101

A levelized build is a componentized compile. Instead of compiling the levelized build

entire application, you choose to compile a single .jar file, starting with

the .jars that have no outgoing application dependencies, and including

only the minimum necessary in the classpath for each .jar you com-

pile. As you can guess, a levelized build is possible only if no cyclic

physical dependencies exist. If cycles did exist, it would be difficult to

determine which .jar file was lowest in the hierarchy of .jars. Assuming

your structure is acyclic, a levelized build will enforce your physical

structure. Failed builds will weed out undesirable dependencies. The

listing that follows shows a snippet of a low-grade levelized build used

to build the .jar files in Figure 6.11, on the preceding page. Many of

the trivial targets have been omitted. Note that the basecompile target

includes only the source directory in the classpath since the base.jar

file we are compiling has no external dependencies. On the other hand,

the billcompile target includes base.jar in its classpath. These specific

classpaths enforce the physical dependency structure. Any undesir-

able dependencies will cause the build to fail.

Download kirkk/levelized_build.xml

<project name="Comp" default="analyzerdot" basedir=".">

<target name="basecompile" depends="init">

<mkdir dir="${buildsrc}"/>

<mkdir dir="${build}"/>

<copy todir="${buildsrc}">

<fileset dir="${src}">

<include name="com/kirkk/base/**"/>

</fileset>

</copy>

<javac srcdir="${buildsrc}" destdir="${build}">

<classpath>

<pathelement path="${buildsrc}"/>

</classpath>

</javac>

<jar jarfile="${dist}/base.jar"

basedir="${build}"

includes="com/kirkk/base/**"/>

<copy todir="${classes}">

<fileset dir="${build}">

<include name="**/*.class"/>

</fileset>

</copy>

<delete dir="${buildsrc}"/>

<delete dir="${build}"/>

</target>

<target name="billcompile" depends="basecompile">

<mkdir dir="${buildsrc}"/>

http://media.pragprog.com/titles/nfjs06/code/kirkk/levelized_build.xml
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=101

PHYSICAL DEPENDENCIES 102

<mkdir dir="${build}"/>

<copy todir="${buildsrc}">

<fileset dir="${src}">

<include name="com/kirkk/bill/**"/>

</fileset>

</copy>

<javac srcdir="${buildsrc}" destdir="${build}">

<classpath>

<pathelement path="${buildsrc}"/>

<pathelement path="${dist}/base.jar"/>

</classpath>

</javac>

<jar jarfile="${dist}/bill.jar"

basedir="${build}"

includes="com/kirkk/bill/**"/>

<copy todir="${classes}">

<fileset dir="${build}">

<include name="**/*.class"/>

</fileset>

</copy>

<delete dir="${buildsrc}"/>

<delete dir="${build}"/>

</target>

</project>

But what if you have an existing project that you know has a number of

cyclic physical dependencies? You cannot use a levelized build because

the structure must be acyclic. JDepend can be used only to find cyclic

package dependencies. JarAnalyzer is a utility that can be used to help JarAnalyzer

identify cyclic physical dependencies. JarAnalyzer parses a directory of

.jar files and identifies the dependencies between them.

JarAnalyzer is strictly a post-compile tool with two different output for-

mats. The first uses .xml to provide a detailed description of the con-

tents of a .jar file, including any cycles in the dependency structure.

The second uses GraphViz and DOT to generate a visual component

diagram showing the relationships between .jar files. Running JarAn-

alyzer using GraphViz and DOT as part of the build in the previous

listing would yield the diagram in Figure 6.11.

The following listing illustrates two targets that incorporate JarAnalyzer

into the build script in the previous build.xml script. The analyzerxml tar-

get generates XML output, while the analyzerdot target uses GraphViz

and DOT to generate a visual component diagram showing the relation-

ships between .jar files.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=102

CONCLUSION 103

Download kirkk/analyzer.xml

<target name="analyzerxml" depends="jdepend">

<taskdef name="jaranalyzer"

classname="com.kirkk.analyzer.textui.JarAnalyzerTask">

<classpath>

<pathelement path="${lib}/jaranalyzer-0.9.3.jar"/>

<pathelement path="${lib}/bcel-5.1.jar"/>

<pathelement path="${lib}/jakarta-regexp-1.3.jar"/>

<pathelement path="${lib}"/>

</classpath>

</taskdef>

<jaranalyzer srcdir="${dist}"

destfile="${buildstats}/dependencies.xml"

summaryclass="com.kirkk.analyzer.textui.XMLUISummary" />

</target>

<target name="analyzerdot" depends="analyzerxml">

<taskdef name="jaranalyzer"

classname="com.kirkk.analyzer.textui.JarAnalyzerTask">

<classpath>

<pathelement path="${lib}/jaranalyzer-0.9.3.jar"/>

<pathelement path="${lib}/bcel-5.1.jar"/>

<pathelement path="${lib}/jakarta-regexp-1.3.jar"/>

<pathelement path="${lib}"/>

</classpath>

</taskdef>

<jaranalyzer srcdir="${dist}"

destfile="${buildstats}/dependencies.grph"

summaryclass="com.kirkk.analyzer.textui.DOTSummary" />

<exec executable="dot" >

<arg line="-Tpng -Nshape=box -Nfontsize=30 -Nwidth=1.5 -Nheight=1.25

./stats/dependencies.grph -o ./stats/dependencies.png"/>

</exec>

</target>

6.6 Conclusion

Developers spend time designing class relationships, whether using Big

Design Up Front (BDUF) or a more agile approach such as Test Driven

Development (TDD). Regardless of approach, if you think only about

your class structure, you risk compromising the structural integrity of

the application. You should also give careful consideration to the pack-

age structure and physical structure. Although you may not always opt

for the more powerful solution, an awareness of techniques to manage

dependencies between these higher-level modules is critical. Software

with well-managed dependencies is ultimately more flexible, extensible,

maintainable, and testable. That is a Good Thing.

http://media.pragprog.com/titles/nfjs06/code/kirkk/analyzer.xml
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=103

Chapter 7

Process Choreography and the
Enterprise Service Bus

by Mark Richards

Mark Richards is certified senior IT architect at IBM, where he is involved in

the architecture and design of large-scale service-oriented architectures in J2EE

and other technologies, primarily in the financial services industry. He has

been involved in the software industry as a developer, designer, and architect

since 1984 and has significant experience and expertise in J2EE architecture

and development, object-oriented design and development, and systems integra-

tion. Mark served as the president of the Boston Java User Group in 1997 and

1998 and the president of the New England Java Users Group from 1999 through

2003, where he helped grow the group from its original 30 members to more 2700,

earning the recognition as one of the top 25 Java User Groups in the world. Mark

is an IBM Certified Application Architect, a Sun Certified J2EE Business Compo-

nent Developer, a Sun Certified J2EE Enterprise Architect, a Sun Certified Java

Programmer, a BEA WebLogic Certified Developer, and a Certified Java Instructor.

He holds a master’s degree in computer science from Boston University. He has

spoken at several conferences around the country, including the No Fluff, Just

Stuff symposium, Boston Java Users Group, New England Java Users Group,

Maine Java Users Group, and other professional groups and conferences.

Mark lists his favorite books and tools starting on page 212.

INTRODUCTION 105

7.1 Introduction

In my NFJS session titled “The Role of the Enterprise Service Bus

(ESB),” I define an ESB by the many capabilities it could have. Two of

those capabilities are service orchestration and process choreography. service orchestration

process choreographyIn this chapter I expand on these topics and describe the relationship

and interaction between process choreography, service orchestration,

and the enterprise service bus.

When we move to a service-oriented architecture (SOA) we have the

opportunity to make a proper distinction between business services

and implementation services. A business service is a service that the business service

end user or business sponsor understands and defines, whereas an

implementation service is something a developer designs, codes and implementation service

implements. Typically a business service is defined as an interface that

contains a service name, input specification, and output specification.

One way to define a business service in SOA is through WSDL (Web

Services Definition Language). Business services are usually much

courser-grained than implementation services and reflect the nature

of the business rather than how business processes are technically

implemented.

By contrast, an implementation service is a function or method that

a developer codes and implements using the specifications defined in

the business service. The specifications for an implementation service

may or may not be the same as those for the business service. An

implementation service may need additional information (i.e., security

credentials) that are required for implementation but not for the busi-

ness specification. The ability to define business processes through

services and not have them tied directly to how they are implemented

is one of the main benefits of SOA.

To understand this concept, consider an example of a trading firm that

deals in the exchange of securities. The specific business rules and pro-

cedures that the firm uses are defined through business services (i.e.,

WSDL) and implemented through implementation services (i.e., Java

methods). If the firm wants to replace its custom trading application

with a third-party solution, it should not have to redefine the way it

does business, and it should not have to redefine its business services;

it should be a purely technology task. The business services describe

the business and should remain independent of the underlying tech-

nology and implementation (making them more static), whereas the

implementation services change with respect to the platform, vendor,

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=105

PROCESS CHOREOGRAPHY VS. SERVICE ORCHESTRATION 106

and technology advances (making them more dynamic). The relation-

ship between the enterprise service bus and these service types is that

the ESB is the abstraction layer that binds business services to imple-

mentation services.

7.2 Process Choreography vs. Service Orchestration

The reason why the distinction between a business service and imple-

mentation service is important is that it provides a clear and con-

cise definition between process choreography and service orchestra-

tion. Simply stated, process choreography is the coordination of multi-

ple business services, whereas service orchestration is the coordination

of implementation services.

Process choreography is typically implemented through an XML-based

language called BPEL (Business Process Execution Language). Vendors

(and open source projects) create process servers that execute BEPL process servers

and coordinate business services. By contrast, service orchestration

is typically implemented through interservice communication, through

aggregate services within the implementation layer, or sometimes even

through the ESB.

For example, in the securities trading firm described previously, the

following business services are defined for creating a new trade order,

placing a trade with a broker, and executing a trade:

• CreateTradeOrder

• PlaceTrade

• ExecuteTrade

Each of these business services maps to one or more corresponding

implementation services as follows:

CreateTradeOrder OrderService.validateOrder(), OrderService.create()

PlaceTrade TradingService.createPlacement()

ExecuteTrade TradingService.executeTrade()

Notice how the CreateTradeOrder business service maps to more than

one implementation service, whereas the other business services have

a one-to-one mapping with the corresponding implementation service.

Also notice that the names of the corresponding services do not neces-

sarily have to match. Figure 7.1 illustrates this relationship.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=106

ESB 107

Figure 7.1: Business vs. implementation services

For equity securities (i.e., common stock), each of the business services

listed previously are invoked independently. However, for fixed-income

securities (i.e., corporate bonds, treasury notes, etc.), the placement

and execution of the trade is typically executed all at once in a sin-

gle request. Therefore, to handle this business request let’s define one

more business service called PlaceFixedIncomeTrade. Notice that the fol-

lowing mappings for this business service are other business services,

not implementation services:

PlaceFixedIncomeTrade PlaceTrade

ExecuteTrade

Through process choreography the PlaceTrade and ExecuteTrade busi-

ness services would be executed and coordinated as a single request.

From the client’s perspective it is a single request, but from the process

perspective it is two business service requests coordinated as one.

7.3 ESB

From an architecture standpoint there are four main components that

make up the capabilities of an ESB:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=107

ESB AND PROCESS CHOREOGRAPHY RELATIONSHIP 108

Figure 7.2: ESB components

• Mediator

• Service Registry

• Choreographer

• Rules Engine

The Mediator is the primary component and is typically the main entry Mediator

point into the ESB. It handles most of the capabilities of an ESB, includ-

ing routing, communication, message processing, message and proto-

col transformation, message enhancement, error handling, transaction

management, and security. The Service Registry handles the service Service Registry

mappings that link the business service to the corresponding imple-

mentation service. The Choreographer handles process choreography Choreographer

(the coordination of multiple business services for a single business

request such as PlaceFixedIncomeTrade discussed previously). The Rules

Engine component communicates with the Mediator component to pro- Rules Engine

cess any rules-based message enhancement or routing requests. Fig-

ure 7.2 illustrates the relationship between the components that make

up an ESB.

7.4 ESB and Process Choreography Relationship

The component used as the entry point into the ESB must be able

to handle message processing, transaction management, and security.

These capabilities are typically managed by the Mediator component.

The message-processing capability refers to the ability of the ESB to

manage request state and to ensure guaranteed delivery of the response

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=108

CHOREOGRAPHER BELOW MEDIATOR (RECOMMENDED) 109

message to the client. The transaction control capability refers to the

coordination of resources and data integrity aspects of the request.

The security capability refers to the authentication, authorization, and

auditing that must be handled in an SOA environment. Given the ESB

component architecture described previously, we have three possible

design approaches for defining the relationship between the Choreog-

rapher and the Mediator:

Choreographer Below Mediator

Client → Mediator → Choreographer

Choreographer Above Mediator

Client → Choreographer → Mediator

Choreographer and Mediator at Same Level

Client → Choreographer or Mediator

No single product can effectively provide all the capabilities of an ESB.

Therefore, even vendors with bundled ESB offerings generally provide

separate products that make up the ESB that correspond to the archi-

tecture components discussed earlier. Most vendor ESB offerings have

the flexibility to define any one of these design approaches. I will go

into details of each approach, explain the implications of each design,

and describe why having choreography below the Mediator is the best

design approach.

7.5 Choreographer Below Mediator (Recommended)

In this design approach the client communicates with the Mediator

component of the ESB, regardless of whether process choreography is

needed. The Mediator component, seeing that process choreography

is needed, then transfers control to the process choreographer. Other-

wise, the Mediator communicates directly with the service provider (i.e.,

Java object). The three primary capabilities of the entry point compo-

nent (message processing, transaction control, and security) are han-

dled by the Mediator. This design approach is based on the assumption

that, for most enterprise architectures, process choreography does not

account for the majority of requests made to an ESB. The diagram in

Figure 7.3, on the next page, illustrates this design approach.

As you can see from Figure 7.3, the client application always commu-

nicates with the ESB through the Mediator. The Mediator accepts the

request and communicates with the Service Registry to get the ser-

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=109

CHOREOGRAPHER BELOW MEDIATOR (RECOMMENDED) 110

Figure 7.3: Choreographer below mediator

vice mappings. To the Mediator the Choreographer component is just

another service destination.

Process Flow

Here’s how a request involving process choreography is processed using

our PlaceFixedIncomeTrade example:

1. First, the client executes a PlaceFixedIncomeTrade business ser-

vice request. The Mediator accepts the request via HTTP or MQ,

performs authentication and authorization, and starts a “relaxed

ACID” transaction or activity scope.

2. The Mediator asks the Service Registry for the location of the Place-

FixedIncomeTrade business service. The Service Registry returns

the address and port number of the corresponding implementa-

tion service, which in this case happens to point to the message

queue or HTTP address used by the Choreographer.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=110

CHOREOGRAPHER BELOW MEDIATOR (RECOMMENDED) 111

3. The Mediator sends a message to the Choreographer to process

the PlaceFixedIncomeTrade business service. The Choreographer

receives the request and executes the BPEL for the PlaceFixedIn-

comeTrade business service.

4. There are two BPEL nodes for the PlaceFixedIncomeTrade request:

PlaceTrade and ExecuteTrade. The Choreographer executes the first

BPEL node containing the PlaceTrade business service by sending

the request to the Mediator in the same way an external client

would. Notice in this case the Choreographer acts as a client to

the Mediator.

5. The Mediator receives the PlaceTrade business service request via

HTTP or MQ from the Choreographer, performs authentication

and authorization, and starts a “relaxed ACID” transaction (or

activity) scope in the same manner as the original request.

6. The Mediator asks the Service Registry for the location of the Place-

Trade business service. The Service Registry returns the address

and port of the corresponding implementation service, which in

this case happens to point to the createPlacement() method of the

TradingService EJB.

7. The Mediator either sends a message or directly invokes the create-

Placement() method via RMI/IIOP. The method returns the result

to the Mediator. The Mediator, having completed the request for

PlaceTrade, returns the result to the client, which in this case is

the first BPEL node in the Choreographer.

8. The Choreographer moves to the next BPEL node and executes

the ExecuteTrade business request. The same process is repeated

for the ExecuteTrade business service as was for the PlaceTrade

business service. Once the BPEL is complete, the Choreogra-

pher sends the final results to the Mediator (the original request

thread).

9. The Mediator, now having received the response from the origi-

nal message sent to the Choreographer, returns the result of the

PlaceFixedIncomeTrade to the client.

To summarize, the previous sequence works like this: the Mediator

treats the Choreographer as just another implementation service end-

point. The Choreographer, containing business services, makes its

request to the ESB via the Mediator as if it were another external client.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=111

CHOREOGRAPHER ABOVE MEDIATOR 112

This simplicity is what makes this design approach so powerful and

robust. There is a clear separation of responsibility between compo-

nents as well as a high level of abstraction between components (i.e.,

the mediator does not need to know whether a service needs choreog-

raphy).

This design approach has good performance characteristics because

the Choreographer (which is not the fastest component on the planet) is

invoked only when needed. Scalability is also good with this approach

because the Mediator component is much more scalable than most pro-

cess servers (BPEL engines). Finally, this design approach is much less

complex than the other approaches because only those services requir-

ing choreography are specified in BPEL and only a single component

(i.e., the Mediator) is responsible for message processing, transaction

control, and security.

7.6 Choreographer Above Mediator

With this design approach the client always communicates with the

process server (BEPL engine), which in turn communicates with the

ESB Mediator component. Unfortunately, this design approach is what

is typically found in most vendor ESB solutions and architectures. The

diagram in Figure 7.4, on the following page, illustrates this design

approach.

As you can see from Figure 7.4, all requests from the client first enter

the Choreographer, regardless of whether the request requires process

choreography. As the entry point into the ESB, the Choreographer

must provide the basic entry point capabilities described earlier (mes-

sage processing, transaction control, and security), something some

vendor process servers do not provide.

The main disadvantage to this approach is that every request, whether

it needs process choreography or not, must go through the process

server. This means that every business service must have a correspond-

ing BPEL, even if it is only a single node. Not only is this inefficient,

but it lacks the proper scalability provided by fast Mediator compo-

nents. It also lacks the proper performance characteristics required

by most applications and is more complex because every service must

be defined in WSDL, BPEL, and the Service Registry. Generally speak-

ing, business service requests processed via an ESB must be extremely

fast and efficient to overcome the additional layers of abstraction put

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=112

CHOREOGRAPHER AND MEDIATOR AT SAME LEVEL 113

Figure 7.4: Choreographer above mediator

in place by SOA. I would not recommend this design approach unless

90% or more of your services require process choreography. Even then

I would still consider the first design approach.

7.7 Choreographer and Mediator at same level

This design approach is a compromise between the prior two design

approaches. Instead of having to choose between the Mediator and

Choreographer as the ESB entry point, this design approach makes

either one an entry point. Therefore, the client can choose to commu-

nicate with the Choreographer or Mediator, depending on whether pro-

cess choreography is needed. Figure 7.5, on the next page, illustrates

this approach.

Although this design approach may seem the most flexible, it has the

most disadvantages of the three designs. As you can see from the dia-

gram, this approach requires that both the Mediator and Choreogra-

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=113

CHOREOGRAPHER AND MEDIATOR AT SAME LEVEL 114

Figure 7.5: Choreographer and Mediator at Same Level

pher components supply the entry point capabilities (message process-

ing, transaction control, and security). This adds complexity and dou-

bles the maintenance effort within the ESB. Also, this approach places

the burden on the client for deciding which services require choreogra-

phy and which ones do not. In this case service characteristics are not

abstracted from the client, requiring modifications at the client level

if a business service suddenly requires process choreography (or the

other way around). Finally, this approach contains additional com-

plexity because there is no clear separation of responsibilities between

components, and component interaction is unclear and confusing.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=114

CONCLUSION 115

7.8 Conclusion

Process choreography has been a source of confusion and complexity

within the context of SOA and enterprise service bus design. Remem-

bering a few simple things will help clarify some of the confusion and

remove the complexity associated with this capability. First, process

choreography is the coordination of business services, whereas service

orchestration is the coordination of implementation services. Second,

placing process choreography below the Mediator in the ESB produces

a much more scalable design approach that has better performance

and less complexity than other design approaches.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=115

Chapter 8

The Cornerstone of a Great Shop
by Jared Richardson

Jared Richardson, coauthor of Ship It! A Practical Guide to Successful Software

Projects [RG05], is a developer-turned-manager who thinks a good day is having

everything delegated so that he can sneak away and actually write code. He

specializes in using off-the-shelf technologies to solve tough problems, especially

those involving the software development process.

TIMELY FEEDBACK 117

I did a lot of lawn mowing when I was younger. My brother and I tried to

make our summer money by asking real estate agents if we could mow

the lawns of their absentee clients. We’d usually land one realtor each

year and they’d give us enough business to keep us busy all summer.

One of the lessons I learned is how hard it is to cut a straight line when

you’re mowing a wide yard. When I was in the middle of the yard, I felt

like I was cutting a straight line, but then I would get to the end of the

row and look back to discover a crooked mess. It always amazed me

how something could seem so right and yet be so off-course.

8.1 Timely Feedback

A software project can be a lot like mowing a yard. Even though we try

to move in a straight line, and we think we are, later we look back and

are amazed at how far the project ran off-course.

Whether mowing yards or building software, we need timely feedback to

help keep us on-track. Looking back at completed software projects, or

lawns, shows you where you missed the mark, but by then it’s usually

too late, at least for the stuff we’ve just done. We need feedback while

we’re still in the midst of the work. I never found a good way to get that

feedback for my lawn mowing, but I have found a guide for software

projects. I use continuous integration systems to keep my projects on-

track.

8.2 Continuous Integration (CI)

Mike Clark calls this type of system a “virtual build monitor.” This

extra team member keeps an eye on your project and lets you know

when things start getting off-course. If you invest in a good automated

test suite, you’ll quickly catch all sorts of errors that traditionally pull

good projects off-course.

The more shops I get to observe, the more I’m seeing that continuous

integration plays a vital role in keeping a shop on-course. In fact, these

days I’m telling people that I’ve learned one of the basic, fundamental

principals to keep both you and your project on target.

Do you want to make your product a great one? Do you want to be the

best developer you can be? Then make a solid continuous integration

system a first-class member of your team and the cornerstone of your

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=117

THE STEPS OF CI 118

shop. A good CI system eliminates many of the problems that prevent

you from working on the product, your career, and your craft.

A continuous integration system does several tasks automatically.

• Monitors your source code

• Compiles after every change

• Tests your compiled code

• Notifies the developers of problems as soon as they occur

As we move forward, keep an open mind, and try to see where each step

could’ve helped you in the last few months. Then, when we’re done, I’m

going to point you to a continuous integration system that is trivial to

install, easy to use, and open source to boot.

Let’s look at what a continuous integration system is and why it helps

so much.

8.3 The Steps of CI

Continuous integration systems all have a few common functions.

First, CI systems monitor your source. The system usually watches

your source code management system (Perforce, Visual Source Safe,

ClearCase, CVS, Subversion, and so on). Most systems can also mon-

itor other resources, such as file systems. This is how the software

knows it’s time for a build. Every time your code changes, the CI sys-

tem checks out the latest version.

Second, the software compiles your project. The system runs your

existing build scripts by wrapping them in an Ant script. For this to

work, you’ll obviously need a scripted build. If your builds are not

robust or repeatable, your CI tool will expose this flaw. It will force you

to have a clean build system.

Third, CI systems test your new build. Tests are created (or wrapped)

in an XUnit framework (JUnit, NUnit, HtmlUnit, jsUnit, etc.), which

means you have access to dozens of test frameworks that range from

unit testing to browser click-through testing. When you set up a sys-

tem to run tests, people are more likely to write the tests. They’ll also

contribute the tests they’ve been hiding on their own machines.

Lastly, your CI system will notify everyone of the results. The developers

or testers who just changed the code will get email telling them how long

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=118

WHAT’S THE BIG DEAL? 119

the build and test took, how many tests passed, how many failed, etc.

Your system will also archive the results to a web page.

However, the publishing step is very configurable. You can publish

in a variety of interesting ways beyond a standard web page. You can

publish to a custom web page, XML log, email, instant messaging client,

or even to a lava lamp. The publish step is an extremely flexible way of

sharing your build results.

8.4 What’s the Big Deal?

CI either requires or encourages several key practices. These are source

code management, scripted builds, and test automation. Much of the

benefit that comes from using a CI system actually comes from the

foundational practices that a CI system requires.

Don’t get me wrong. CI adds plenty of benefit as well. It’s just that

many day-to-day problems go away when you use these other practices

first.

8.5 Code Management

One of the first things your CI system will do for you is make sure

you have your source code organized and (I hope) into a source code

management system. After all, your CI software can’t watch a code tree

you can’t identify. The first practice CI encourages is good source code

management.

This benefit will seem elementary to many people, but I’ve seen shops

that still use network drives and .zip files. Quite a few developers still

haven’t discovered source code management.

Proper source code management doesn’t take much time at all once

you’ve learned how to use it. Like with any good tool, you’ll save much

more time than you’ll spend learning to be effective with the tool.

You’ll save the time you normally spend reconciling code differences

by hand, not to mention rewriting the work that careless co-workers

overwrite from time to time. Code collisions and lost work are common

issues, but a good source code system also merges your changes for

you, maintains a history for each file, and more.

If you’re not using a proper source code management system, I urge

you to rethink your position. It’s a huge time-saver.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=119

A SCRIPTED BUILD 120

8.6 A Scripted Build

The second thing your CI system will require is a scripted build. Mov-

ing to this step requires a level of build automation. Fortunately, this is

easy to add. Many tools, both commercial and open source, solve this

problem for you. You still have to understand how to build your prod-

uct, but these tools will keep you from learning the different command-

line options for javac or jar on different operating systems. Look at tools

such as Ant, Maven, and Rake.

Like good source code management, a scripted build provides many

benefits.

For starters, your teammates aren’t all busy building their own versions

of the build script. Everyone needs to build, and developers, being

clever, will all find a slightly different way to solve the same problem.

When you have a single build script, everyone is building the same way.

It’s OK if someone still wants to build differently (an IDE maybe?), but

they need to have the ability to build the same way that everyone else

does.

Don’t ignore the maintenance savings either. You’ll eventually improve

the build script, find a bug in it, or decide to make it faster. With a

single script, you do the work one time. When everyone has his or her

own build method, everyone solves the same problem repeatedly. What

a waste of time!

When you build your code the same way, everyone gets the same ver-

sion of the product. This means the testers report problems in the same

version of the program the developers run.

Without a canonical build script, you don’t always get everyone on the

same page. In fact, the customers, testers, and developers often run

different versions of the same product and then wonder why they can’t

reproduce the same issues. If you’ve had trouble reproducing your

customers’ bugs, then start here. Is everyone running the same version

of the product?

8.7 Test Automation

Another practice that a CI system encourages is test automation. Writ-

ing and running tests is a huge milestone for many shops and is one

of the hallmarks of a great shop. I think test automation is the core of

why a CI system adds such benefit. People who recognize the benefit

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=120

TEST AUTOMATION 121

of automating common tasks tend to be more strategic thinkers. They

automate everything possible, including building and testing, because

it frees them up for more interesting work. (Of course, this doesn’t

eliminate manual testing, but that’s another topic.)

What is an automated test?

• Binary

• Automatic

• Repeatable

Binary

A test with a binary result passes or fails unambiguously. There’s

no question about whether the test succeeded. Sometimes a test will

return a result that requires a judgment call from a tester. The odds

are good that you don’t need this.

Work hard to make your tests clean and binary. Write them so they

evaluate the result and tell you whether a test passed or failed.

Automatic

If the test isn’t automatic, then someone has to set up an environment,

start the test, click a button, or look at the results. When this hap-

pens, the test becomes interactive again. Much of the benefit of test

automation is lost.

You’ve created a hybrid test somewhere between an interactive test and

an automatic test. Instead of letting a small number of testers baby-sit

a large number of tests and continually add more tests, you’ll have a

large number of testers looking at log files all day long. Semiautomated

tests are certainly better than pure interactive testing, but they fall

short of where you could be. Work hard to make your tests completely

automatic, including the determination of the pass or fail status.

Repeatable

An automated test also needs to be repeatable. A good test doesn’t give

you different results for three out of five test runs. If your tests aren’t

repeatable, break the tests down into smaller tests. Eventually you’ll

isolate the problem area and, as a bonus, you’ll have new tests created

for your test suite.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=121

GETTING STARTED 122

Don’t forget about external dependencies either. You can rebuild and

restock database tables cleanly before each test run with tools such as

Ant’s SQL task or dbUnit (http://dbunit.sourceforge.net). A dirty database

table can introduce all sorts of variation into a test run. (You may want

to create a small, representative data set to load for your testing runs.)

Leverage Yourself

An automated test is a great way to leverage your experience and exper-

tise. As an expert on your product, you probably know how to test parts

of it in a way that few other people can. You can encode that knowl-

edge in a reusable format by creating an automated test. This makes

your experience available without diverting your attention. Sometimes

a co-worker will run the tests; other times you will. In other cases, a

program will run them.

Let these bits of your expertise exercise the product while you do other

things, like go home on time or stay late to solve problems that are more

interesting. These tests might run while you are coding or at home

sleeping, but you are doing something else. Your tests are working in

the background.

8.8 Getting Started

Sometimes people won’t install a CI system because they don’t have

tests ready to run in the system. There are enough benefits from fast

compile cycles to justify using continuous integration, so don’t wait.

You don’t wait to see a doctor until you’re not sick anymore, right?

Having the CI system keep your compiles clean will free up some of the

time needed to start writing tests as well.

I’ve also found that people are much more likely to write automated

tests if they’re sure the tests will be used. By providing a CI system,

you have a place to house your tests and run them immediately. This

is the best way I know to encourage test creation. People want to create

things that are used, and this assures them the tests they create will

run regularly.

The best way to get started with continuous integration is to start using

an existing software package. I’m going to point you to CruiseCon-

trol on SourceForge.1 Since version 2.3, CruiseControl comes with an

1http://cruisecontrol.sf.net/

http://dbunit.sourceforge.net
http://cruisecontrol.sf.net/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=122

CONCLUSION 123

embedded servlet engine2 and a sample project. You can download the

project and see CruiseControl running in less than five minutes. Then,

to add your own project, just copy the bundled example. It’s easy to get

started.

The CruiseControl team has a great write-up on how to run the binary

release of CruiseControl. Visit http://cruisecontrol.sf.net/, and click the

Getting Started link on the left.

8.9 Conclusion

The teams that I see running smoothly and cleanly always have contin-

uous integration in place. It’s a practice I respect more and more every

day.

I see this practice overshadow all others. Teams that run smoothly use

continuous integration. They respect the system instead of tolerating it,

and the developers treat the notifications seriously. When the system

says something is broken, these teams address the problem quickly.

These teams insist on CI coverage from the first day of a new product.

Other shops, even those who are using a CI system but ignoring it, are

different. They live in turmoil. Heroic efforts are not the exception but

the rule. In fact, these teams always seem to be running behind. They

always have a crisis issue to resolve or a deadline to meet.

They work and live in a perpetual twilight of stress and problems.

They’ve lived there so long that they think it’s the only way to write

software. Sadly, these teams tend to burn people out. I’ve been there,

and it’s no fun. Creating software can be a great joy—and it is, when

done right. CI can’t solve every problem, but it can remove several cat-

egories of problems that would otherwise clutter your day and slow you

down.

If you’re not using a continuous integration system, try one this week.

Get a system installed, and leave it running for one month. At the end

of that month, turn it off if you don’t see the benefit.

Don’t be surprised if you find yourself missing the system the first day

it’s gone. You might just become one of the developers who insists on

continuous integration coverage on your new projects.

2http://jetty.mortbay.com

http://cruisecontrol.sf.net/
http://jetty.mortbay.com
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=123

RESOURCES 124

8.10 Resources

Continuous Integration. . .

. . . http://martinfowler.com/articles/continuousIntegration.html

Martin Fowler and Matthew Foemmel on continuous integration

CruiseControl. .http://cruisecontrol.sourceforge.net/

The CruiseControl home page

CI Products . http://www.jaredrichardson.net/ci.html

My list of products that help with continuous integration

Scripted Build Links http://www.jaredrichardson.net/buildscripts.html

My list of links on scripting your build

Pragmatic Automation.http://www.pragmaticautomation.com

Mike Clark’s automation blog

Jetty .http://jetty.mortbay.com/jetty/index.html

A pure-Java HTTP server and servlet container

http://martinfowler.com/articles/continuousIntegration.html
http://cruisecontrol.sourceforge.net/
http://www.jaredrichardson.net/ci.html
http://www.jaredrichardson.net/buildscripts.html
http://www.pragmaticautomation.com
http://jetty.mortbay.com/jetty/index.html
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=124

Chapter 9

Help! I’ve Inherited Legacy Code!
by Jared Richardson

You can read about Jared on page 116.

USE A BAT 126

9.1 Use a BAT

Many times in our careers we’ll find ourselves supporting legacy code.

Sometimes you accept a new job, and the legacy code is your first

assignment. Maybe your company reorganizes, and an old product

ends up in your lap. For whatever reason, it happens. You wanted to

code something new and shiny, but instead you are now the owner of a

new-to-you and completely unfamiliar block of code. The code appears

to be rather intricate, and now you have to wade in.

In fact, if I can stretch the definition a bit, you can consider any code

written before today to be legacy code. Have you ever tried to revisit

code you wrote six months ago? It’s not always as easy as you’d hope

to support your own code, much less someone else’s. Both situations

are challenging unless you follow some basic guidelines.

The traditional approach is to start making changes while doing your

best to avoid unintentional collateral damage. Unfortunately, because

the code is unfamiliar, you aren’t sure what’s really going to happen

when you change a data structure or update a variable.

Rather than blindly wandering into this minefield, let’s create a plan of

attack. Don’t just start making changes and hope that everything still

works. Instead, take aim, and hit it out of the park with a BAT.

Here’s a three-pronged attack you can use to attack the problem. Build,

Automate, and Test. Use this BAT for your legacy code, and create a

safety net for yourself. The BAT approach will ensure that your code

continues to work the way you want it to work. It quickly catches

unintended side effects and helps you eliminate them.

I’d like to challenge you to look at how you handle your legacy code in

light of the BAT approach. See how your day-to-day work compares

and see whether you need to approach your work differently.

9.2 Build

The first problem to address is the build. It’s difficult to ship and test

a product unless you can reliably build it. Figure out how to cleanly

build the product on your desktop, and then script the process.

Occasionally this is a nonissue, but builds usually aren’t nearly as

clean as they should be. Often builds run only on a single machine or

in a special environment. When teams pass code from owner to owner,

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=126

BUILD 127

the build tends to accumulate extra requirements—each owner adds

his or her own special case to the mix. By the time you inherit the

mess there have been too many cooks in the kitchen.

A complicated build can cause an avalanche of cascading problems

with the entire product.

When a task is difficult, people do it less often. When a build is difficult,

people build less often. It’s just human nature. The ability to run a

clean build often becomes a dark art mastered by only a few people in

your shop. No one wants the task because it’s so difficult and painful.

Since you can’t test what you haven’t built, testing becomes less fre-

quent. When people finally run their tests, they find more bugs. Infre-

quent testing gives bugs more time to accumulate. If you are running

tests daily, you’ll have only one day’s worth of bugs to report. However,

if you wait six months to test, you’ll have a lot more issues to pin down.

So, your testing becomes burdensome. Since the testers get tired of

all the work in a testing cycle, they avoid testing. Entering dozens or

hundreds of bugs is boring work that no one enjoys.

Developers start to dread the testing cycle because they feel bombarded

and attacked by all the bug reports. So, the developers start resenting

and harassing the testers, which makes the testing cycle even more

painful. It’s a destructive feedback loop.

A complicated build causes problems for the entire product life cycle,

so be sure your build is clean.

When anyone can build, anyone can test. Testing is run more fre-

quently, leading to smaller groups of bug reports. Having less work to

do at a time is less of a chore. Anyone will move a bucket of paint and

not think twice, but ask someone to move 50 buckets and see what

they say.

Your goal is to create a clean build that runs on any development

machine and that is easy to maintain. Use a build scripting tool or lan-

guage, such as Rake, Ant, Maven, or Nant. These high-level build lan-

guages let you focus on building your application, instead of on build,

language, or platform details.

When you can build your product with a single command (such as ant

all), you can move on to the next step. Be sure to test this on more than

one machine.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=127

AUTOMATE 128

9.3 Automate

Now that you can automatically build the product on any development

machine, let’s automate.

Your goal is to automate the entire build and test cycle on a clean

machine with an absolute minimum of human intervention. It’s not

always possible to have everything completely automated, but we want

to reach a place where we script anything that can be reasonably auto-

mated.

Sometimes it’s easier to install and configure a supporting piece of the

software than to write a script to do it automatically. Applications that

you install only once are prime candidates. Things such as compil-

ers, run-time libraries, and preexisting data sets fall into this category.

Don’t try to reproduce the data set that takes you two hours to re-

create. However, if you can rebuild a representative data set in 30

seconds, you should build from scratch. The benefits of starting with

a clean, known data set are immense, but not always practical. Don’t

stretch a 15-minute test run into an hour by rebuilding all your data.

Be sure to document any manual steps thoroughly and keep all the

instructions around for anyone else who might want to duplicate the

environment.

On the other hand, why should you sit around and watch complete

builds all day long? Your time is valuable. Your IDE probably handles

incremental builds and small unit test runs for you anyway. In most

cases, this partial coverage is good enough. Having developers run a

set of smoke tests (see the sidebar), targeting active code areas, will

cover most situations.

We still need a clean build and a complete test run periodically. This is

how we verify that a change didn’t break the product in an unexpected

way. Since smoke testing often misses these types of breaks, we need

to run the entire suite fairly frequently to keep the product in the best

shape possible.

Instead of asking each developer to build the entire system from scratch

and then run every test available five times a day—tasks that can take

quite a while—we’re going to ask another computer to do that for us.

Since we’re tasking a computer to perform the automated build and test

run, there’s no reason why we can’t run it more than once a week. In

fact, there’s no reason why this cycle can’t run after every code change.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=128

TEST 129

What’s a Smoke Test?

A smoke test is a short collection of tests that target the areas
of the code that are actively being changed. Your smoke tests
don’t even try to exercise the entire product. A good set of
smoke tests will be rotated—they aren’t permanent. When you
start working on a different product area, move out the old
smoke tests, and cycle in others. You can select tests from your
complete testing suite tests to run in your smoke test suite. I usu-
ally just add them to an Ant target (called smoke-test) that runs
selected tests.

What’s the best way to set up this type of automation? The quickest

and easiest way is to use a continuous integration (CI) product. A CI

product watches your code, builds after each change, runs your tests,

and then notifies everyone involved.

A CI system creates a fast feedback loop. When you change your code,

you’ll find out whether anything was broken before you forget why you

made the changes. (For more information about CI systems, visit my

CI page at http://www.jaredrichardson.net/ci.html)

It’s all about the pace of your development. You want to keep moving

forward. Revisiting code edits from last week or last month is a poor

way to keep rolling. Catch and fix your problems within the hour, and

keep your team moving forward.

Here’s how the system works. You edit the code on your desktop until

you’re sure you have the feature completed or the bug fixed, so you

put your changes into your source code management (SCM) system.

Your continuous integration system monitors your SCM and sees that

code has changed. It then checks out the product, builds it, and runs

all your tests. You’ll immediately get an email telling you whether the

compilation and test run passed or failed.

It’s a simple concept that’s powerful in action.

9.4 Test

The final section of our BAT is Test. Now that our CI system is build-

ing the product and running our automated tests, we need to be sure

http://www.jaredrichardson.net/ci.html
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=129

TEST 130

What’s a Mock Client Test?

A mock client test isn’t a special testing framework. It’s a test
created to ensure your basic, expected functionality doesn’t
break. Quite often with legacy code, you’ll change some-
thing in one part of the system and not know that it affects
other areas of the product. I once worked on a product where
changing the communication protocol affected the GUI com-
ponent layout. Your mock client tests, inside your CI system,
are your insurance policy against accidental change. Test your
product the way that you expect it to be used, and you’ll have
a solid product baseline. Add tests to cover the more interest-
ing cases later, as you encounter them.

that our tests cover the product properly. After all, a test that doesn’t

validate the functionality your customer uses is pretty useless from the

customer’s point of view.

First, try to understand how your product is used...this can be a real

challenge with a legacy product. You may even want to create a set

of scenarios for customer usage. For example, you could have a sce-

nario for creating daily reports, doing daily data imports, or adding new

customers.

You may also want to have categories of users called user personas. You

could have “Joe the Power User,” “Mary the System Administrator,” or

“Fred the New User.” Each persona uses your product differently just

like a power user uses the product differently than a rank novice.

Next, create mock client tests (see the sidebar) to duplicate the most

common customer usage scenarios.

A great testing strategy is defect-driven testing. Every time you find a

bug in the system, add a new test that covers that defect. While you are

adding the specific test, look for other tests you can add that are close

but not quite the same. Over time, this strategy provides good coverage

in the areas of the product that need coverage the most.

Regardless of how you choose to add tests, make adding tests a priority.

Having a basic test suite in place is essential if you plan to make any

changes to the product.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=130

KNOCK IT OUT OF THE PARK 131

Your final step is getting the tests into your continuous integration sys-

tem.

You get feedback quickly on any problems when your automated tests

run in your continuous integration environment. Every time you add

or change the code, you get a “from scratch” build and a complete test

run. Most developers get addicted to this additional coverage quickly

and soon depend on this “extra team member.”

So, remember:

• Write scenarios.

• Create mock client tests.

• Use continuous integration.

9.5 Knock It Out of the Park

Build, automate, and test (BAT) is good advice for anyone writing code,

but it’s an especially good formula for anyone inheriting legacy code.

The ability to refactor with confidence is essential. I find it difficult to

be productive if I’m constantly looking over my shoulder to see what I’m

breaking. A good test suite looks over my shoulder for me and lets me

focus on the performance improvements I’m trying to make.

Remember, never change legacy code until you can test it, and never

test purely by hand unless you have no other option.

Don’t fear legacy code—handle it properly. Hit it with this BAT, and

you’ll win every time.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=131

Chapter 10

Using Code Coverage to Improve
Testing Effectiveness

by Ian Roughley

Ian Roughley is an independent consultant based in Boston, Massachusetts. For

more than ten years he has been providing architecture, development and men-

toring services to clients ranging in size from Fortune 100 companies to start-ups.

His professional background includes work in the financial, insurance, pharma-

ceutical, retail, hospitality, e-learning, and supply-chain industries.

Focused on a pragmatic and results-based approach, he is a proponent of open

source, as well as process and quality improvements through agile development

techniques. Ian is a committer on the WebWork project, a Sun Certified Java

Programmer, a Sun Certified J2EE Enterprise Architect, and an IBM Certified

Solutions Architect.

Ian’s list of favorite books and tools starts on page 213.

BACKGROUND 133

Eventually in every software development project, someone asks about

the quality of the code. This is a hard topic to address, even on small

projects. A key reason is that the quality of the code is usually asso-

ciated with the code coverage result, and the code coverage result is

dependent on “something else” happening. This “something else” is

running and utilizing tests that specifically exercise the application

code whose quality is being questioned.

Not only do the tests need to be present, but to ensure consistent code

coverage results, they need to be consistent themselves. They need to

be written at the same level of granularity, to be consistent in testing

adverse conditions and exceptions, to consistently assert object graph

results to the same depth, and even to ensure there are asserts in the

testing code.

Along with these process challenges comes an emotional component.

The tool gives us a code coverage percentage at the project, package,

and class levels. This percentage can increase or decrease during the

development of the project. In some development environments, espe-

cially under aggressive timelines, it can be easy to place blame incor-

rectly by taking the numbers out of context.

Given these complexities, is code coverage worth employing? In my

opinion, the answer is yes. Apart from code coverage, the other main

metric associated with quality is the success percentage of automated

developer tests. There are problems associated with this result also. It

is possible, and common, to have a 100% success rate from unit testing

while testing less than 100% of the code. The big picture is available

only when you combine automated testing and code coverage.

This chapter will address the issue of quality by looking at three tech-

niques that can be used to improve testing effectiveness: using code

coverage to zero in on hard-to-test code, maintaining code coverage per-

centage over of the life of the project, and comparing user and developer

testing percentages.

10.1 Background

We’ll focus on the open source project Cobertura.1 This is a code cover- Cobertura

age tool that is freely available, that is easy to configure via Ant tasks,

1http://cobertura.sourceforge.net

http://cobertura.sourceforge.net
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=133

BACKGROUND 134

and that provides complete basic functionality. There are only two

missing features that I would find helpful: a historical report, so the

code coverage trend information over the entire development life cycle

could be easily viewed; and an IDE plug-in, which would increase the

use of Cobertura as a code coverage tool when developing with small

development iterations. You can find these additional features in some

of the many other options for code coverage tools, including commercial

products.

Although Cobertura can be run from the command line, we will focus

on the provided Ant tasks that allow for easy integration into automated

builds. To configure Cobertura in your Ant build file, you need to add

the following top-level task definition:

<taskdef classpathref="classpath" resource="tasks.properties"/>

To capture code coverage data, the code coverage application needs to

access the byte code of the classes being executed. In Java applications,

you have two ways to achieve this, and both involve instrumenting the

byte code.

The first method uses a tool to instrument the class files after the code

has been compiled. This is the simplest method and involves less run-

time configuration. To make things even easier, the tools generally

provide Ant tasks that can be integrated into your build environment.

The second method uses a provided class loader that will instrument

the classes as they are loaded into the JVM. Although there is one less

build step, the environment you are deploying to must allow you to use

a custom class loader.

Cobertura uses the first method. The following Ant target instruments

the byte code, producing augmented code that will collect the code cov-

erage data:

<target name="instrument" depends="compile">

<cobertura-instrument todir="${instrumented.dir}"

classpath="classpath">

<ignore regex="org.apache.log4j.*" />

<fileset dir="${classes.dir}/demo">

<exclude name="*Test.class" />

</fileset>

</cobertura-instrument>

</target>

Note the following things about this target. First, the file set can include

more than just Java classes; JAR and WAR archives are valid and will

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=134

BACKGROUND 135

Figure 10.1: Cobertura package-level coverage report

be instrumented accordingly. Next, there are two options for specifying

and filtering classes to be instrumented. You can specify a regular

expression in the ignore tag that will exclude files, or you can use the

include and exclude tags in the fileset tag.

At this point, manual or automated testing can proceed. If you are

using automated testing, be sure to place the instrumented classes

(produced by the previous step) in the classpath before other classes.

If you don’t, no results or incorrect percentages will be produced.

Once the testing has been completed, the final step is to generate a

report from the results. This can take many forms, from XML or HTML,

to PDF or Swing applications. The following Ant code will create XML

and HTML reports in Cobertura:

<target name="coverage-report" >

<cobertura-report srcdir="${src.dir}"

destdir="${coverage.xml.dir}" format="xml" />

<cobertura-report srcdir="${src.dir}"

destdir="${coverage.html.dir}" />

</target>

In the resulting code coverage report, you can drill down into packages

and classes. At each of these levels, you will see two percentages:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=135

BACKGROUND 136

Figure 10.2: Cobertura Class-level Coverage Report

• Line coverage. This is the percentage of the lines of code that

were executed. For each line of code in the application, you can

determine whether it was executed.

• Branch coverage. This is the percentage of conditional code exe-

cuted. This expands upon the previous number. For complete cov-

erage, every logical condition in every branching statement needs

to have been exercised.

Figure 10.1 shows an example of the Cobertura package-level report.

The Cobertura class-level report appears in Figure 10.2.

Depending on the tool, there may be more information. Cobertura pro-

vides two additional metrics, McCabe’s Cyclomatic Complexity2 for all McCabe’s Cyclomatic
Complexity

methods, and the number of times the line of code was executed at the

class level.

2This is a great metric to have. Basically, the more complex the methods, the more

likely bugs will be hiding in them. You will get a better return on effort by adding tests

to increase the code coverage percentages in these methods and classes. You can find a

complete definition of the metric at http://en.wikipedia.org/wiki/Cyclomatic_complexity.

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=136

ZEROING IN ON HARD-TO-TEST CODE 137

10.2 Zeroing In on Hard-to-Test Code

The first technique we will look at to improve testing effectiveness is

using code coverage when first creating the tests.

When you are working with existing code, you never have a guarantee

that unit tests have been developed. Reasons for not having tests range

from the code being developed before agile techniques were common to

highly coupled classes where the time and risk to split the classes and

write the tests doesn’t exist in the project timeline.

Whatever the case, the time has now come to write unit tests as a safety

net for those who come after you. If you are retroactively writing testing

code, you may not have the time to test the entire class, so you need

to focus on the more complex and high-risk sections of the class. This

scenario is more often the case in legacy code that is highly coupled or

code that has complex or uncommon logic and algorithms.

The steps are intuitive, and by iteratively repeating them, you can

obtain the desired level of code coverage:

1. Remove any existing data files or databases. It is important to

ensure that the data being generated is correct for the current

iteration. Always remember to remove old data so that the results

will be correct for the current test run.

2. Review the code coverage results from the last iteration. Take a

look at the report to see whether the lines of code being targeted

were executed, and whether all the necessary branch conditions

and adverse or error conditions were covered. If this is the first

iteration, you can skip this step.

3. Update the unit tests that exercise the code you are targeting. You

have covered all the code and conditions in step 2 that you are

targeting, you are done. Otherwise, update the unit tests to incor-

porate those conditions that were previously missed.

4. Run the tests against code that has been instrumented. The final

step is to run the new unit test code against the instrumented

application code.

The key point to remember is that you are after a desired level of cover-

age. The more complex the code (and the relationships) and the closer

you get to 100% coverage, the more time it will take to develop the tests

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=137

ZEROING IN ON HARD-TO-TEST CODE 138

Where Did 85% Come From?

I’m not sure anyone really knows why this number seems to
be the standard percentage quoted, but I tend to agree with
Brian Marick in his article “How to Misuse Code Coverage.”∗ He
suggests that 85% has been passed from person to person and
from organization to organization, and that if followed back far
enough, you would most likely find that this number was “pulled
out of a hat.”

To determine the correct percentage for your application,
you need to determine the code coverage percentage at
which any further increase involves a significant increase in the
amount of testing code.

In general, a percentage from 80–90% seems to be the widely
accepted norm. This is substantiated by Brian Marick as well as
others, including Howard Lewis Ship† and Robert Grady in his
book Practical Software Metrics for Project Management and
Process Improvement.

∗http://www.testing.com/writings/coverage.pdf
†http://howardlewisship.com/blog/2005/09/code-coverage-metrics-and-testing

.html

to keep the code coverage percentage increasing. This follows the law

of diminishing returns.3 law of diminishing
returns

The generally accepted percentage at which returns start diminishing

for code coverage is 85%—whether you can achieve higher or lower than

this number depends on the code you are working with and the time in

the project plan allotted per feature (which should include the developer

testing). My suggestion is to try a few iterations to see whether you can

meet the desired percentage. If it cannot be met, decide on a percentage

with your project manager or project sponsor that balances the time

required to write the tests with the coverage obtained. Also, remember

that the percentages do not need to be the same for the entire project

and can be adjusted at a package level.

3http://www.answers.com/topic/law-of-diminishing-returns

http://www.testing.com/writings/coverage.pdf
http://www.answers.com/topic/law-of-diminishing-returns
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=138

MAINTAIN CODE COVERAGE PERCENTAGES OVER THE LIFE OF THE PROJECT 139

10.3 Maintain Code Coverage Percentages Over the

Life of the Project

Now that you have decided upon levels of code coverage on a package

or project level and have developed tests that adhere to that level, you

want to ensure that the percentages are maintained during the intro-

duction of new code and during modifications to existing code. The

way to ensure this is to instrument the application code, run the auto-

mated developer tests, and generate code coverage reports during the

build process. The reports then need to be reviewed to ensure the code

coverage percentages have been met.

The Cobertura-specific Ant tasks that instrument the code and generate

reports have already been discussed, but an additional task allows the

build to automatically fail if prescribed percentages are not met:

<cobertura-check haltonfailure="true" branchrate="80" linerate="80">

<regex pattern="example.gui.*" branchrate="85" linerate="90"/>

<regex pattern="example.model.*" branchrate="55" linerate="80"/>

<regex pattern="example.services.*" branchrate="85" linerate="95"/>

</cobertura-check>

The pattern matching for packages includes attributes for only branch

rate and line rate, but there is a full range of options for the parent

<cobertura-check> tag. For each attribute the value is from 0 to 100,

and the options available are shown in Figure 10.3, on the following

page.

When using this technique, it is vitally important to understand why

the percentage values were selected and the context in which the num-

bers will be used. Peer reviewing the developer tests, having formal

written policies around writing the tests (such as, “simple getters and

setters do not need to be tested”), and knowing how the code review

percentages were selected will help. It is also a good idea to review the

code coverage percentages on a weekly basis, recording any significant

changes in a project log (following the same example from earlier—

you might record “the total project percentages dropped 10% this week

because we added a number of new model objects”). There is nothing

worse than a project manager, who is looking only at the percentages

over time and out of context, approaching you at the end of develop-

ment and inquiring why quality has dropped.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=139

COMPARING USER AND DEVELOPER TESTING PERCENTAGES 140

Attribute Description

branchrate The minimum acceptable branch coverage rate

needed by each class

linerate The minimum acceptable line coverage rate

needed by each class

packagebranchrate The minimum acceptable average branch coverage

rate needed by each package

packagelinerate The minimum acceptable average line coverage

rate needed by each package

totalbranchrate The minimum acceptable average branch coverage

rate needed by the project as a whole

totallinerate The minimum acceptable average line coverage

rate needed by the project as a whole

Figure 10.3: Cobertura options

10.4 Comparing User and Developer Testing

Percentages

The last technique for improving testing effectiveness is to compare the

code coverage percentages when a user is exercising the application

(or automated tests mimicking this behavior) to the percentages from

running the developer tests.

The benefit of this approach is that it gives you a realistic baseline of

what code the users are actually exercising when running the applica-

tion and, thus, what developer testing should cover.

In fact, because the developer testing should exercise the less common

logic flows and exception cases, it should always have higher code cov-

erage percentages.

Here are the steps:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=140

COMPARING USER AND DEVELOPER TESTING PERCENTAGES 141

1. Instrument the code and deploy the application. You could instru-

ment the application during the build process, but I think in this

case it is a better option to instrument the final file that is going

to be deployed. This way, the name can be changed (to something

like myproject_instr.war) to avoid accidentally having the file go into

production.

2. Run user tests through the application, and collect the code cover-

age results. Before starting, make sure that the code coverage

database has been removed. Once removed, the testing can pro-

ceed. If your organization has automated tests, they can be run.

Otherwise, someone manually running all the test scripts will do

just as well. When complete, you want to generate code coverage

reports from the collected data. Remember to move the generated

reports to a different location for safekeeping.

3. Run the automated developer tests, and collect the code coverage

results. Once again, make sure the code coverage database has

been removed. Run the automated tests on the application, and

generate the code coverage report. If you have the resources, run

the automated developer testing and the user testing concurrently

on different machines—just make sure that the application code

is the same.

4. Compare the results. This is the most manual step, because Cob-

ertura doesn’t provide any tools to compare two sets of coverage

data. Rather than going down to the class level, focus on the line

coverage and branch coverage at the package level. Because the

first page of the HTML report provides the percentages for each

individual package as well as the total for all packages, it is a

simple task to compare them.

Once you have generated and compared the results, you can achieve

and surpass concrete code coverage percentage goals—not only at a

project level but at a package and class level as well. This is important.

A common practice to improve code coverage from a developer test per-

spective (usually when deadlines are tight) is to add testing coverage to

methods that are easy to test but do not provide any additional quality

benefit (providing test cases for simple getters and setters is again a

good example). It will be easy to determine whether quality is improv-

ing in the necessary places if these classes are isolated in the same

package.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=141

CONCLUSION 142

10.5 Conclusion

The three techniques covered in this chapter will help improve testing

effectiveness, allowing you to productively pinpoint where more test

coverage is needed and enabling you to maintain the code coverage

results throughout the life of the project. The key point to remember

is that you cannot leave code coverage analysis until the last minute—

it needs to be an integral part of your development process. This way,

you can craft tests that better target problematic code and quickly react

to trends in the quality of your software. Knowing sooner, rather than

later, is the only way to find time in the project plan to address quality

issues and proactively address the question of code quality before it is

asked.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=142

Chapter 11

Extreme Decorator: Total Object
Makeover

by Brian Sletten

Brian Sletten is a liberal arts–educated software engineer focusing on forward-

leaning technologies. He has a background as a system architect, a developer,

a mentor, and a trainer. His experience spans defense, finance, and commercial

domains, with security consulting and software development involving network

matrix switches, 3D simulation/visualization, Grid Computing, P2P, and Seman-

tic web-based systems. He has a bachelor’s degree in computer science from the

College of William and Mary and currently lives in Fairfax, Virginia, where he

and his wife run Bosatsu Consulting, Inc.

Brian’s recent favorite books and technical discoveries are listed starting on

page 213.

CHAPTER 11. EXTREME DECORATOR: TOTAL OBJECT MAKEOVER 144

Figure 11.1: Decorator pattern

A few years ago television programs about decorating someone else’s

house, apartment, or car became all the rage. The owner started with

something basic, and somebody else came in and improved upon it by

adding their own style or extra features. The results were often not

what the original owner anticipated, but they usually liked them. The

shows made for good television, and still seem popular today.

The Decorator pattern works in much the same way, although it is Decorator pattern

unlikely to result in quite as compelling television. The intent of this

pattern is to allow an object to be wrapped at run-time to compose it

with extra behavior, often in ways unanticipated by the class designer.

The original object is held by the decorating instance which delegates

to the inner target when and if it sees fit. An example of the structural

relationship between the participants appears in Figure 11.1 .

The mechanism works because the client knows about the object in

question only through the interface by which it is held. The decorating

instance also implements this interface but does something the orig-

inal class did not do. This is an example of separation of concerns, separation of concerns

a goal of computer scientists for the last 30 years that has motivated

the adoption of structured, object-oriented, and now aspect-oriented

programming. By allowing a class consumer to pick and choose what

behavior she wants dynamically, the same code can cleanly respond to

different circumstances in a wide variety of ways.

Many developers do not realize that they’ve probably been using the

Decorator pattern for as long as they’ve been using Java. The basic

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=144

CHAPTER 11. EXTREME DECORATOR: TOTAL OBJECT MAKEOVER 145

byte-oriented I/O streams from the java.io package are a canonical

example of Decorator in action. Perhaps you’ve wondered why you

need an InputStream to create a BufferedInputStream. It’s because Buffered-

InputStream simply adds buffering capabilities to the underlying byte-

oriented features. It needs a source from which to consume data,

though, so we need to provide it in the constructor. The following code

demonstrates the basic usage of buffering data from a compressed file:

InputStream is = new FileInputStream("myfile.gz");

is = new GZIPInputStream(is);

is = new BufferedInputStream(is);

You may argue that buffering is a common enough I/O task that Sun

should have just added it to the basic InputStream class. The problem

is that you may not always want or need buffering features, or they

may not be supported by your underlying transport. You may also

want to buffer at a different layer. The point is that the consumer of

the InputStream class knows better than Sun engineers when and where

she needs buffering. As such, it is great that they allowed her to make

that decision. Even if you did successfully lobby to get buffering added

to the InputStream class, what then? Filtering? Zip compression? GZip

compression? Any number of capabilities might be desirable only some

of the time. Encumbering the basic I/O capability with all of these

features would penalize developers who did not need them and make

the APIs harder to learn.

In general, the Sun engineers made a good choice in separating the

concerns of byte-oriented I/O, buffering, compression, and so on. I will

explain in the Consequences section why I will concede only that they

made a good choice “in general.”

Given that developers are familiar with the I/O wrapper implementa-

tions provided by the JDK libraries, it seems strange they do not think

about creating their own extensions more often. I’m going to show that

there are several ways in which decorating InputStream instances with

your own custom implementation of the Decorator pattern can provide

easy and useful ways to manipulate the stream.

To move beyond the standard Decorator pattern I/O classes, we will

create a few somewhat realistic scenarios. We will, of course, leave

out many nitty-gritty details, but you will propably find a good starting

point for extending our examples.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=145

SCENARIO 1 146

11.1 Scenario 1

A company, Value Products, Inc., takes payment information from its

customers in its retail stores. These records get aggregated for the day

and submitted to a central billing system to process the charges. The

file format as follows (note these are not real credit card numbers, so

please do not attempt to use them!):

Customer Account Activity

Date: 1/10/2006

Store: #1678

Account Payment Method Amount

123458 3425987987987324 $123.12

134580 4720987987988233 $215.82

158222 2426687980012345 $99.79

164358 6743079879873241 $520.57

177758 4748250079798732 $110.33

195800 5525017987986339 $49.99

Historically, these files were then sent by FTP to a report generator

server that would summarize the purchases for its customers on a

monthly basis. Being a hip, trendy company, Value Products is moving

to a service-oriented architecture and now wants to POST an XML ver- service-oriented
architecture

sion of the report to a RESTful service. A schema is generated for the

request; it looks like the example in this listing:

<REPORTSUMMARY>

<STORE>1234</STORE>

<REPORT>

<![CDATA[

<!-- REPORT GOES HERE -->

]]>

</REPORT>

</REPORTSUMMARY>

When discussing how to do this, one developer suggests creating a

JDOM document, reading the file into a string and adding a CDATA JDOM

section to the <REPORT> element. Although this will certainly work

for small reports and low volumes of data, it is unnecessarily memory-

intensive; we do not need to commit the entire report to memory. If we

are just going to be POSTing the file to a RESTful service, we can be

clever and use the Decorator pattern to wrap the underlying FileInput-

Stream.

The first realization that assists us is that we want the data consumer

to read from a series of independent streams in succession. The first

one will serve up the first part of the wrapper schema. Once it is done

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=146

SCENARIO 1 147

with the initial part of the wrapper, it needs to read from the wrapped

InputStream itself. When all the original data has been read, it needs

to consume the last part of the schema. The JDK helper class Sequen-

ceInputStream provides just this behavior. It takes either an Enumera-

tion<InputStream> or two InputStreams.

Although we could certainly just use a SequenceInputStream directly to

solve our problem, we would be exposing implementation details in a

way we would rather not do. These details would also be scattered

to every use of our report-wrapping feature. Instead, we will create a

class called ReportInputStream that takes in a String source name and an

InputStream. Presumably, the source identifies the store and is extracted

from a filename or directory in which the report file is found. Our goal

is to use the ReportInputStream as we do in this listing:

InputStream is = new FileInputStream(dataFile);

is = new ReportInputStream("1678", is);

byte [] buffer = new byte[2048];

ByteArrayOutputStream baos = new ByteArrayOutputStream();

int numRead = 0;

while ((numRead = is.read(buffer)) >= 0) {

if (numRead > 0) {

baos.write(buffer, 0, numRead);

}

}

All the implementation details are contained within the class that is

shown in the following listing. The Enumeration passed to the Sequen-

ceInputStream constructor is satisfied by an inner class that maintains

a list of InputStreams; one for the schema header, one for the report

body, and one for the schema footer. Each is consumed in turn by the

mechanics of the parent SequenceInputStream.

Download Decorator/net/bosatsu/util/report/ReportInputStream.java

package net.bosatsu.util.report;

import java.io.ByteArrayInputStream;

import java.io.InputStream;

import java.io.SequenceInputStream;

import java.util.ArrayList;

import java.util.Enumeration;

import java.util.List;

/**

* Modularize wrapping a particular InputStream with XML elements by

* defining three separate InputStreams and serving them up to the

* parent SequenceInputStream.

http://media.pragprog.com/titles/nfjs06/code/Decorator/net/bosatsu/util/report/ReportInputStream.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=147

SCENARIO 1 148

*

* Demonstrate one potential custom Decorator pattern implementation.

* @author bsletten

*/

public class ReportInputStream extends SequenceInputStream

{

/*

* Constructor that takes some arbitrary String source identifier

* and the underlying InputStream to wrap.

*/

public ReportInputStream(String source, InputStream is) {

super(new StreamEnumerator(source, is));

}

/**

* The inner class simply maintains the list of InputStreams for the

* parent SequenceInputStream to iterate over.

*

* @author bsletten

*/

public static class StreamEnumerator implements Enumeration <InputStream> {

private List <InputStream> streamList = new ArrayList <InputStream>();

public StreamEnumerator(String source, InputStream is) {

// We want to wrap the underlying input stream with XML

// elements satisfying some schema perhaps for submitting

// to a RESTful web service. A different set of values

// could wrap the InputStream with a SOAP request. In

// addition to decorating existing data sources into these

// request forms transparently, by relying on the stream

// interfaces, we can avoid having to read the entire data

// source into memory all at once.

streamList.add(new ByteArrayInputStream(

new String("<REPORTSUMMARY><STORE>" + source +

"</STORE><REPORT><![CDATA[\n").getBytes()));

streamList.add(is);

streamList.add(new ByteArrayInputStream(

new String("\n]]></REPORT></REPORTSUMMARY>").getBytes()));

}

public boolean hasMoreElements() {

return streamList.size() > 0;

}

public InputStream nextElement() {

return streamList.remove(0);

}

}

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=148

SCENARIO 1 149

We separated the stream-wrapping concern into a RESTful request and

so were able to satisfy the requirements without tangling the submis-

sion code with too many irrelevant details. This way, if we need to

wrap the report into a SOAP request, we could just choose a different

instance of the Decorator pattern to provide that functionality.

Because the Decorator pattern works on instances of classes that sat-

isfy an interface, it is necessary to be able to intercept the object cre-

ation or hand-code the wrapping as we did in the previous listing. Java

does not have the ability to intercept object creation like C++, Ruby,

and Objective-C do, so we might want to request an instance of the

InputStream from a factory instance, as shown in this listing:

InputStream is = InputStreamFactory.getInputStream(dataFile);

// Now we can use the InputStream unaware of the actual composition

The factory might respond to the name of the file, where it was found, or

some other system property to decide how to wrap the created instance.

The point is that the InputStream client would not need to know or care

about the particulars of the source of the data, or what was happening

to it along the way. It simply knows it is consuming data from a stream.

Applying the ReportInputStream to our sample data file results in output

that looks like this:

<REPORTSUMMARY>

<STORE>1678</STORE>

<REPORT>

<![CDATA[

Customer Account Activity

Date: 1/10/2006

Store: #1678

Account Payment Method Amount

------- ---------------- -------

123458 3425987987987324 $123.12

134580 4720987987988233 $215.82

158222 2426687980012345 $99.79

164358 6743079879873241 $520.57

177758 4748250079798732 $110.33

195800 5525017987986339 $49.99

]]>

</REPORT>

</REPORTSUMMARY>

A pleasant side effect of this approach is that we can wrap any Input-

Stream with our ReportInputStream, not just FileInputStream instances. We

could extract the stream from any open URL, such as for a website or

other REST-based service, and pass that into our new code.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=149

SCENARIO 2 150

11.2 Scenario 2

After our system in Scenario 1 is tested and released, Value Products

decides it wants to undertake an effort to protect its customers’ credit

card data to avoid any embarrassing incidents and to satisfy the exter-

nal audits it knows are coming. Management decides that this initiative

is the new high priority (not at the expense of all the other high priori-

ties, though). Each team is responsible for protecting their part of the

enterprise system.

The files are submitted to the accounting servers in an encrypted form,

so they are protected until they are handed off to be processed for

reporting. The data stored in the accounting databases requires spe-

cial handling to maintain the full credit card in a protected form in

case accounting needs to recharge or adjust the amount in the future.

The reporting system, however, has no further need of the actual credit

card information before returning it to customers. It would be useful

to show the customers the last four digits of the card that was used, so

we want to maintain at least that much of the number.

The reporting service team meets to discuss the effort required to mask

the credit cards in all the reports (including several formats other than

what we are discussing in this chapter). Some well-intentioned engi-

neer gets up and draws some diagrams on the whiteboard describing

how he wants to put a new process in place. Files will be dropped into

a directory where they will be lexically parsed based on the document

format (he can barely contain his glee at the prospect of whipping out

his old-school Unix fu). Once the report is parsed, the masking of the

relevant data can occur, and the file can be rewritten out before moving

it back to where it would be picked up by the existing report submission

system.

After some discussion about keeping the number of moving parts of

the system to a minimum, another engineer points out that they are

already converting the files using the ReportInputStream code. It seems

like it would be possible to work within that code to mask the credit

cards. Someone else points out that it would be a good idea to keep the

masking code separate from the existing report-wrapping code. A new

use of the Decorator pattern could isolate this new feature.

The team decides that there probably is no actual need to parse the data

with something like lex because credit cards have a definite form, easily

distinguished from most surrounding text. Particularly in the current

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=150

SCENARIO 2 151

set of files there should be no identifiers or data values that look like

credit cards but are not. It seems like matching credit cards with a

regular expression will solve the company’s parsing needs in the short

term. If it needs to put in some other constraints to avoid transforming

data that does not represent a credit card, the company can add them

later.

After performing this analysis, the team decides to solve the problem

with a RegularExpressionInputStream capable of doing transformations of

data identified by arbitrary regular expressions. Although they are only

focusing on credit card data now, they think a general-purpose tool

would be useful because other forms of data might need to be trans-

formed in the future. The full code to implement this is too complicated

to list fully here, but we will show some relevant parts. Its use would

be similar to what we have seen before. This is shown in this listing:

InputStream is = new FileInputStream(dataFile);

RegularExpressionReplacer rer = new RegularExpressionReplacer();

rer.addPatternMapping(Pattern.compile("\\b(\\d{16})\\b"),

new CCMaskRegularExpressionTransformer());

is = new RegularExpressionInputStream(is, rer);

is = new ReportInputStream("1678", is);

This example shows wrapping the FileInputStream with a RegularExpres-

sionInputStream before using our earlier ReportInputStream. The RegularEx-

pressionReplacer class maps the specified patterns to functional trans-

formers, in this case a CCMaskRegularExpressionTransformer instance. The

RegularExpressionInputStream converts the underlying InputStream into a

series of lines using a BufferedReader. This will work only on text-

oriented data streams, but that should not be a big concession to make.

The read method looks like this:

public int read() throws IOException {

int retValue = EOF;

// If we have a buffer

if(buffer != null) {

// And it isn't empty

if(bufferIndex < buffer.length) {

// Read the next byte

retValue = buffer[bufferIndex++];

} else {

// We have hit the end of our line. Grab the next line

// and transform anything that matches any of our patterns.

fetchAndTransformNextLine();

// We need to indicate the EOL

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=151

SCENARIO 2 152

retValue = EOL;

}

}

return retValue;

}

private void fetchAndTransformNextLine() throws IOException {

String line = br.readLine();

bufferIndex = 0;

if(line != null) {

buffer = rer.performTransformations(line).getBytes();

} else {

buffer = null;

}

}

fetchAndTransformNextLine() reads the next line from BufferedReader and

passes it to RegularExpressionReplacer to transform any patterns that are

matched. This transformed line is held in the buffer from which we

get our bytes. As we hit the end of the buffer, we repeat the process

and consume and transform the next line. Within the RegularExpression-

Replacer instance, each Transformer object’s transform() method is called

when its associated pattern is matched. Here we use a CCMaskRegular-

ExpressionTransformer, which is shown in the following listing:

Download Decorator/net/bosatsu/util/regex/cc/CCMaskRegularExpressionTransformer.java

package net.bosatsu.util.regex.cc;

import java.util.regex.Matcher;

import net.bosatsu.util.regex.io.Transformer;

/**

* A concrete implementation of the Transformer interface that simply masks

* a 16-digit credit card by concatenating the last four digits to a bunch

* of Xs. A real implementation of this would need to guarantee the validity

* of the credit card (rather than simply matching digits) and to support

* different credit card lengths.

*

* @author bsletten

*/

public class CCMaskRegularExpressionTransformer implements Transformer {

public String transform(Matcher m) {

String retValue = "XXXXXXXXXXXX" + m.group().substring(12);

return retValue;

}

}

http://media.pragprog.com/titles/nfjs06/code/Decorator/net/bosatsu/util/regex/cc/CCMaskRegularExpressionTransformer.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=152

SCENARIO 3 153

Executing this code on our reports results in something like this:

<REPORTSUMMARY>

<STORE>1678</STORE>

<REPORT>

<![CDATA[

Customer Account Activity

Date: 1/10/2006

Store: #1678

Account Payment Method Amount

------- ---------------- -------

123458 XXXXXXXXXXXX7324 $123.12

134580 XXXXXXXXXXXX8233 $215.82

158222 XXXXXXXXXXXX2345 $99.79

164358 XXXXXXXXXXXX3241 $520.57

177758 XXXXXXXXXXXX8732 $110.33

195800 XXXXXXXXXXXX6339 $49.99

]]>

</REPORT>

</REPORTSUMMARY>

The real issues of providing real credit card protection against arbitrary

data file formats are much more complicated. It would be straight-

forward, however, to add support for managing different credit card

lengths, the existence of non-credit-card data that matches our regu-

lar expressions, and so on, into our CCMaskRegularExpressionTransformer

class. The goal here is simply to show the composition of behavior using

the Decorator pattern.

11.3 Scenario 3

Based largely on its success in keeping customer data safe and writ-

ing clever software to manage costs, Value Products’ stock price rises

over time. Feeling flush with value (it is not just a clever name, after

all), the company goes on a purchasing binge and acquires some of

its competitors. Although it is simple enough to install its point-of-

sale systems in the newly acquired retail locations, there is the issue

of mapping the parent company’s customer account information into

the subsidiary company’s databases before issuing purchase activity

reports. The company sets up an account service that is capable of

doing the lookup, but we still need to apply the account transformation

before the reporting system.

The team gets together to discuss this new requirement and realizes

that they have already laid the groundwork for what needs to be done.

The files that show up can be identified by whether they are from an

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=153

SCENARIO 3 154

original or newly acquired store. The reports from the latter category

can be transformed using another Transformer class that calls into the

AccountService to make the transformation. The following listing shows

the extra code being added to support this behavior:

InputStream is = new FileInputStream(dataFile);

RegularExpressionReplacer rer = new RegularExpressionReplacer();

rer.addPatternMapping(Pattern.compile("\\b(\\d{16})\\b"),

new CCMaskRegularExpressionTransformer());

rer.addPatternMapping(Pattern.compile("^(\\d{6})\\b"),

new AccountRegularExpressionTransformer());

is = new RegularExpressionInputStream(is, rer);

is = new ReportInputStream("1678", is);

In this case, any six-digit number matched at the start of the line is

considered an account number and is transformed by the AccountReg-

ularExpressionTransformer class, which can be seen in this listing:

Download Decorator/net/bosatsu/util/regex/account/AccountRegularExpressionTransformer.java

package net.bosatsu.util.regex.account;

import java.util.regex.Matcher;

import net.bosatsu.util.regex.io.Transformer;

/**

* A concrete implementation of the Transformer interface

* that transforms an account ID selected via a regular expression

* by looking up a different account ID from some service.

*

* @author bsletten

*/

public class AccountRegularExpressionTransformer implements Transformer

{

public String transform(Matcher m) {

String oldAccount = m.group();

return AccountService.getNewAccount(oldAccount);

}

}

The final output appears in the following listing. The good news is

that once the customer account databases get synced up, we can easily

extract this code without affecting anything else. In fact, it might be a

good idea to interrogate a property to see whether we need it. That way,

it can be shut off without a code change.

<REPORTSUMMARY>

<STORE>1678</STORE>

<REPORT>

<![CDATA[

http://media.pragprog.com/titles/nfjs06/code/Decorator/net/bosatsu/util/regex/account/AccountRegularExpressionTransformer.java
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=154

CONSEQUENCES 155

Customer Account Activity

Date: 1/10/2006

Store: #1678

Account Payment Method Amount

------- ---------------- -------

01234-123458 XXXXXXXXXXXX7324 $123.12

01234-134580 XXXXXXXXXXXX8233 $215.82

01234-158222 XXXXXXXXXXXX2345 $99.79

01234-164358 XXXXXXXXXXXX3241 $520.57

01234-177758 XXXXXXXXXXXX8732 $110.33

01234-195800 XXXXXXXXXXXX6339 $49.99

]]>

</REPORT>

</REPORTSUMMARY>

After running the new code, the team realizes they will need to compen-

sate in the event that RegularExpressionInputStream changes the length of

what it transforms by adding or removing characters. In the previous

listing, this might involve eating spaces after the transformed accounts.

These and other details are left as an exercise for the reader.

11.4 Consequences

Although I have clearly glossed over many of the details in these con-

trived scenarios, I hope I have demonstrated how the Decorator pat-

tern can be used to modularize particular concerns so that they may

be composed dynamically as necessary. This keeps us from tangling

implementation details that are unrelated. It also allows us to make

the choice of what gets called in response to run-time context. In our

scenarios, reports from different stores might require the AccountReg-

ularExpressionTransformer or not. It would be great to hide that fact from

the code that was reading in the data to keep it simple and focused on

what it is doing.

A consequence of the elegance of the JDK I/O design is that it requires a

least-common-denominator approach to traversing the streams; in this

case, it is the byte-oriented nature that facilitates the various higher-

level abstractions. The problem is that for large data sets, this approach

does not perform well. Even the use of buffering wrappers does not

help when you are talking about gigabytes or terabytes of data. For

this reason, in JDK 1.4 Sun introduced NIO, the new I/O capabilities.

These forgo this design approach. Instead, they focus specifically on

mechanisms that promote performance for big data sets.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=155

CONCLUSION 156

Java I/O streams are not the only application of the Decorator pattern.

Other examples include caching, synchronization, logging, and other

concerns that you might require for your objects in some circumstances

but not others.

There are consequences and complications to this pattern, though.

First, the Decorator pattern requires the use of interfaces and wrap-

ping instances. If you do not have a relevant interface or did not plan

for wrapping the instances, it can be difficult or impossible to adopt

the Decorator pattern in your system. If the code that you are trying

to put into a Decorator implementation fundamentally changes class

invariants of the decorated instance, perhaps this is not an appropriate

approach either.

Second, the Decorator pattern also requires you to provide implemen-

tations of all of the methods in an interface even if you want to decorate

only a few. It certainly is possible have “empty” methods that simply

delegate to the inner instance, but too much of that starts to feel like a

waste of time. Additionally, it is possible to decorate only instances and

not, say, classes or collections of classes. If you find yourself needing

to do these more advanced kinds of decoration, you may want to look

at aspect-oriented programming as a more general way to modularize aspect-oriented
programming

concerns.

11.5 Conclusion

Although innovative Decorator patterns may never make compelling

prime-time television, they may allow you to quickly respond to new

requirements in simple and elegant ways. By allowing developers to

deal with different execution scenarios and customer needs by com-

posing behavior at run-time, it is possible to take a basic object and

give it a total makeover, turning it into exactly what is needed in a

given situation.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=156

Chapter 12

From Fragility to Agility:
Methodologies and Practices

by Venkat Subramaniam

Dr. Venkat Subramaniam, founder of Agile Developer, Inc., has trained and men-

tored more than 3,000 software developers in the United States, Canada, and

Europe. Venkat helps his clients effectively apply and succeed with agile prac-

tices on their software projects. He speaks frequently at conferences. Venkat

is also an adjunct professor for the practice of computer science at University

of Houston and teaches at Rice University School for Continuing Studies. He is

the author of .NET Gotchas [Sub05] and coauthor of Practices of an Agile Devel-

oper [Sub06].

CHAPTER 12. FROM FRAGILITY TO AGILITY: METHODOLOGIES AND PRACTICES 158

Software development has come to be a fragile endeavor. According to

one study,1 less than 10% of software development projects succeed.

Would we tolerate such an abysmal rate of success in any other field of

work? How can we turn our development efforts into success stories?

We will address that question in this chapter. We’ll first talk about

agility, then we’ll discuss some of the agile methodologies.

What (and Why) Is Agility?

Agility is defined, in the Merriam-Webster dictionary, as “marked by

ready ability to move with quick easy grace.” Agility is having a quick,

resourceful, and adaptable character. Being agile is really not as much

a technical matter as it is a matter of your attitude.

Let’s start with an everyday example. A driver on a busy highway

switches on the turn signal to move into the adjacent lane. What hap-

pens next in most major cities? Sadly, the person behind our driver but

one lane over lane speeds up, blocking the way and leaving our driver

frustrated. Next time, our clever driver decides to jump lanes without

signaling. This may provoke a response from the driver behind, often a

wave with fewer than five fingers. Some of these situations escalate to

road rage. The same two people walking toward a door generally act in

a civilized way, but put them behind a wheel and....

Imagine, again, our driver turns on his signal. The person in the next

lane eases the accelerator, signaling our driver to go ahead with the

lane change. Our ever-polite driver waves back happily, thanking the

neighbor—same situation, different attitude, different result.

Navigating through your project is like navigating ever-changing traffic

patterns. It requires agility and attitude. If our attitude is to resist

change or if our planning makes it harder to make changes, then we’re

setting ourselves up for failure.

But, you say, experts have given us some rigorous methodologies in the

past. Can’t we succeed using them? Unfortunately, the answer is no.

Although some of these rigorous methodologies were introduced with

good intent, they have failed to yield results.

1Capers Jones, “Software Project Management Practices: Failure versus Success,”

http://www.stsc.hill.af.mil/crosstalk/2004/10/0410Jones.html

http://www.stsc.hill.af.mil/crosstalk/2004/10/0410Jones.html
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=158

KEY TO AGILE DEVELOPMENT 159

Until the early 19th century, the death rate after surgery was very

high; those who survived surgery were likely to die from infection.

The experts of that time did not figure out that unsanitary conditions

were causing infection. Some doctors actually carried the infection to

patients. Joseph Lister’s germ theory and antiseptic procedures, which

are established standards today, were received with doubt, indifference,

and hostility. It takes time for us—humans—to figure out what works.

Most of the methodologies proposed in the past decades have tried to

make software development an engineering activity. Folks reasoned

that engineers are successful, so if we do what they’re doing, we should

succeed as well. Software development is still a nascent field, and it

is not entirely engineering.2 There is a lot of learning to do, and it is

important to keep our minds open to ideas that will help us succeed.

Simply borrowing ideas and practices from other fields may not help.

History has taught us that merely attaching wings to a machine does

not make an airplane.

12.1 Key to Agile Development

What makes software development different (and special)? If you ask

me how much time and money I’d need to manufacture 10,000 cell

phones, I can give you a fairly decent and reliable estimate. However,

can you guess how much time it took to commercialize the first cell

phone? Thirty-seven years!3 It takes a heck a lot of effort and time

to create something new. Craig Larman’s Agile and Iterative Develop-

ment: A Manager’s Guide [Lar04] states that software development is

an innovative process—not predictive manufacturing.

In any nontrivial development project, the users gain a better under-

standing of what they need as they get to see what is being developed.

Some of the things they thought of as important turn out not to be

important. Other things, often conceived of only later, suddenly become

urgent.

Software developers are often unfamiliar with the domain of the appli-

cation being developed. This makes it harder to communicate, because

communication is easier when people share a context. It takes fewer

2Alistair Cockburn, “The End of Software Engineering and the Start of Economic-

Cooperative Gaming,”

http://alistair.cockburn.us/crystal/articles/eoseatsoecg/theendofsoftwareengineering.htm.
3http://inventors.about.com/library/weekly/aa070899.htm

http://alistair.cockburn.us/crystal/articles/eoseatsoecg/theendofsoftwareengineering.htm
http://inventors.about.com/library/weekly/aa070899.htm
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=159

THE HYPOCRISY OF TIMELINES 160

words to express yourself when you’re in sync—at times, all it takes is

a look or a smile, as in social settings. Assume I have little understand-

ing of atomic physics. How do I, as a strong software developer, help

design and implement a control system for a nuclear reactor? Dropping

a 100-page (or 1,000-page) document on my desk is not much help. I

could read it and still develop a perfectly functional reactor that blows

up.

Documents are often misinterpreted. Generally, the longer the docu-

ment is, the less I grasp all that is being said. The document may

have expressed one expert’s view but may not be agreed upon by all the

stakeholders on the project.

How do we then make sure we actually deliver what the customers

want, especially when the customers themselves may not fully know

what they want? Communication is the key.

Imagine that I take some requirements then go off to design and imple-

ment them. Within a week or two, I get the customers together and

show them what I’ve done. I ask them them to play with it and solicit

their feedback. What will they do? They’ll tell me whether I have met

their requirements and how I should proceed further, including what

changes, if any, I need to make. If I am totally off, I find out in a week

or two from the time they give me the spec, not months later—a week

before we go into production.

I’m not suggesting that documents are unnecessary. I am suggest-

ing that we can’t rely solely on documents if we want to understand

requirements. Interaction and collaboration are critical to the success

of our projects.

We take their input, get the work done quickly and in small steps, show

them what we’ve done, and ask them to steer us further, and then we

move forward based on what they really want. That’s what agility in

development is all about.

12.2 The Hypocrisy of Timelines

In January, your team starts work on a project with a predefined dead-

line of November 1st. On September 1st, you realize that things may not

be going well. You approach the boss, who is busy browsing the Web,

with the question “Is the deadline in 60 days firm?” You got his atten-

tion. He looks at you for a minute, takes a deep breath, and says, “Yes,

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=160

THE HYPOCRISY OF TIMELINES 161

we better be done by then. Any questions?” You walk away determined

to do your best. Your team works a lot of late nights and weekends.

Finally, you throw a binary over the fence on or around November 1st.

Then what happens? It is not unheard of that companies spend the

next weeks to several months fixing bugs. If, after three months, you’re

still fixing bugs, did you really get the project done on time? As an

industry, we have been kidding ourselves for too long with deadlines,

estimations, and planning. As an industry, we’re hypocritical about

timelines.

If project managers and nontechnical people decide the timeline and

they do so upfront when they have the least understanding of the

project, how realistic are these estimates?

Three factors influence our progress: scope, time, and quality. Like

the old Triangle maxim (fast, cheap, or good), you let your customers

and management pick two of these three influences. If they set the

timeline and a certain amount of quality is important, then you get to

negotiate the scope. If scope and time are critical (as they are with a

business trying to be first in the market with a proof of concept), then

you may have to compromise on the quality to get ahead, provided that

is clearly understood by all involved. What if your customers and/or

management insist that they get to pick all three—scope, time, and

quality? Then they get to enjoy the fourth factor—failure.

If two factors are picked for you, how do you estimate and measure your

progress on the third factor? Iterative and incremental development

can help. Start the ten-month project, but within three weeks demo

what you have done so far, and let your customers exercise your code

and evaluate the progress. Repeat this every three weeks.4 Don’t wait

until the end to find out that your project is doomed. Take the pulse of

the progress every few weeks, and steer the development based on cur-

rent conditions—reassessing and reprioritizing appropriately. Every-

one involved in the project development—managers, customers, and

developers—participates in the success of the project (and decides how

to define that success).

4Refer to “Feel the Rhythm” in Practices of an Agile Developer [Sub06]

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=161

AGILE METHODOLOGIES 162

12.3 Agile Methodologies

Software methodology is what we do to create software. It’s a series of

related methods to coordinate our team’s activities. We seek guidance

from methodologies (and methodologists) to learn how to get our work

done, to understand our responsibilities and priorities, and to help us

measure and show progress. A methodology can serve as a framework

for learning and practicing development skills.

A number of lightweight methodologies have been introduced by people

interested in improving the reputation of software development. In this

section, we’ll take a look at the key features of these methodologies.

eXtreme Programming (XP)

Kent Beck, Ward Cunningham, and Ron Jeffries (and others) intro-

duced XP in eXtreme Programming Explained [Bec00] based on their

experience on the C3 project. XP is based on four values and twelve

principles.

Features

The four values of XP are communication, simplicity, feedback, and

courage. As we discussed earlier, communication is critical to make

sure we’re converging toward stability and meeting the expectations of

customers. By keeping things simple, we avoid unnecessary complex-

ity, and we keep the code understandable and maintainable. Keeping

up with evolutionary design is easier as well. We seek feedback in two

ways. One, we use unit tests to make sure the code meets the program-

mer’s expectations. Two, we hold regular demos and seek customer

feedback. In between demos, we constantly interact with customers to

get their input and feedback. What’s courage? It’s not about calling the

tall, big guy ugly. It’s about not hesitating to admit you may have to

throw away what you’ve done to make things simpler or easier to work

with. It’s about being able to bring attention to problems that may ben-

efit from reworking, even if that means admitting you didn’t get it right

the first time.

XP insists on having on-site customers, recommends a two-to-three-

week iteration cycle, and de-emphasizes documentation.

XP takes the practices that produce results and takes them to extremes:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=162

AGILE METHODOLOGIES 163

• Refactoring. Because agile development favors evolutionary design

and change is inevitable, the code should be kept simple, under-

standable, and maintainable. Refactoring helps this by removing

duplication, by removing unnecessary complexity, and by making

the code more cohesive.

• Simple design. Some of us have a tendency to build complexity

into our applications. We say, “I need this feature to make the code

extensible.” Often this perceived extensibility ends up overly com-

plicating our system. By keeping the design simple—striving for

“simple design that works”—we make the code easier to maintain

and make it easier for the design to evolve. Ron Jeffries empha-

sizes this in his YAGNI principle by stating that “you aren’t gonna

need it.” This means postponing features until you clearly see the

need for the added complexity. It’s a pay-as-you-go model.

• Paired programming. code review is good, why not do it all the

time? A pair of programmers works together developing code;

while one person is writing code, the other is thinking about its

correctness, evaluating what unit tests may be written, thinking

of simpler ways to express the ideas, and so on.

• Collective Ownership: You probably have worked on a project

where you’ve been told, “No matter what you do, don’t touch that

piece of code. The guy who wrote it is no longer here and no one

understands how it works,” That’s scary.

How does code get that way? It happens when a programmer

becomes isolated and his code is kept from the view of others.

Collective ownership eliminates this problem. Since others look at

your code, you keep it clean and understandable. Anyone on the

team who understands the code can change it or fix a bug. This

is a way to reduce the impact of losing people from a project. You

can also effectively reallocate resources.

• Coding standards. Collective ownership is possible only if the code

can easily be understood and modified by different team members.

Following a consistent coding standard helps with this. Without

a coding standard, developers may get frustrated looking at code,

or they may spend too much time modifying the appearance of the

code instead of working with it. Coding standards go beyond the

question of where you put the curly braces. It is about naming

conventions and other guidelines your team can agree upon.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=163

AGILE METHODOLOGIES 164

• Unit testing. We all make mistakes, and our minds play tricks on

us from time to time. So seek feedback from the code to make

sure what you typed actually meets your expectations. Unit test-

ing provides a safety net for you when you refactor your code

and make enhancements—after all, breaking what already works

doesn’t help.

• Continuous integration. You have good unit tests, and you run

them every time you modify your code. However, what if your

change breaks your colleague’s expectations? You may not find

out for days, and by the time the problem surfaces you’ve moved

on to other tasks. If you’re like me, you’ll have forgotten critical

details about the code.

So it’s critical to minimize the time between making the change

and getting feedback about its impact. After all, if your code

sucks, you’d rather hear it from your computer rather than your

co-worker, right? Continuous integration tools constantly pick up

your code, compile it, and report the health of the code. You can

configure it to send out different levels and frequency of notifi-

cation. You take proactive steps to make sure your code stays

healthy at all times.

• Metaphor. You improve communication and guide your team’s

development effort by sharing a common set of stories of how the

whole system works.

• The planning game. You plan and scope your releases by consid-

ering the business values and priorities and by making technical

estimates. You follow a realistic, adaptive plan, and you’re happy

to change plans as you go along. You care more about succeeding

than sticking with a predefined plan.

• Small releases. Big-bang releases often shock customers. They

also increase your risk. So, focus on developing and delivering

small chunks of functionality and getting feedback to steer the

progress of further development.

• On-site customers. Success depends heavily on interaction and

collaboration. We want to discuss the details, get input from

customers, and make sure what we’re developing is relevant and

meets their expectations. Such constant interaction necessitates

having a customer on-site—meaning, in the same room—so we

can approach them at any time.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=164

AGILE METHODOLOGIES 165

• 40-hour work weeks. After a certain point, our productivity is

inversely proportional to the number of hours we work. We make

fewer mistakes when we’re fresh and not overworked. XP recom-

mends that you don’t work overtime two weeks in a row.

Pros and Cons

XP works effectively for smaller (20 people or fewer) teams. It is not for

all teams. The business culture of your team decides whether this is

the right approach for you. Is your team goal-oriented or paperwork-

oriented? Do people care about the amount of work completed or the

number of hours spent? Are the members of the team flexible and open

to change? Is the technology you use lightweight—is it adaptable to

change, or does it bog you down? Does your work environment promote

interaction and collaboration?

XP discourages documentation. This has advantages and disadvan-

tages. It makes it easier to keep up with rapid change. However, when

your team is nearing completion of a project and you want to hand

over the maintenance of your project to someone else, it gets hard—

they’re left with code and a whole lot of nothing else. Documentation in

moderation—keeping in mind what the purpose is and where readers

can get more information, often from code—is better than no documen-

tation at all.

Scrum

Scrum was developed by Ken Schwaber and Jeff Sutherland (Agile

Project Management with Scrum [Sch04]). The term comes from the

game of Rugby; a scrum is a group effort to quickly move to counter the

opposing team, adjusting the momentum along the way.

Features

Scrum relies on self-directed and self-organized teams. A Scrum master

acts as a coach, keeping distractions out and facilitating and coordinat-

ing the team. Each iteration, called a sprint, lasts 30 days. No work

is added in the middle of a sprint, and a demo to the stakeholders is

held at the end of the iteration. Backlogs and burn-up charts help

with adaptive planning. Daily, short, stand-up meetings are used to

keep everyone informed. At these meetings you tell the team what you

worked on the day before, what your goal for the day is, and what’s

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=165

AGILE METHODOLOGIES 166

holding you back. The team works together in determining the success

criteria for the sprint and realizing that goal. The key values of Scrum

are commitment, focus, openness, respect, and courage. The team is

(or is expected to be) committed to realizing the goals of the project,

avoiding obstacles along the way. The team is focused and keeps the

distractions away. The overall status of the project, along with each

individual’s status, is kept in the open for anyone to view. The team

members take responsibility for their actions instead of trying to fix

blame.

Pros and Cons

Scrum focuses more on planning and executing a project—an essen-

tial part of software development. It is somewhat light on programming

practices. Although Scrum does not discourage documentation, it rec-

ommends that you do only what’s necessary.

Evo

Evolutionary Project Management (Evo), developed by Tom Gilb, is one

of the oldest methodologies.

Features

Evo is averse to big, up-front specification. Evo recognizes that under-

standing the requirements and developing the design are both evolu-

tionary. It recommends working with a short list of project objectives.

The duration of an iteration is (an aggressive) five days, emphasizing

measurable progress and frequent delivery to stakeholders.

Pros and Cons

Evo works hard to avoid certain project risks. The five-day iteration

is good for a short duration (three-month-long) projects. However, for

longer project durations, this may result in team burnout. It also sug-

gests a language for specification that may appear somewhat burden-

some.

Crystal Family

The Crystal family of methods was developed by Alistair Cockburn (see

Crystal Clear: A Human-Powered Methodology for Small Teams [Coc04]).

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=166

AGILE METHODOLOGIES 167

Crystal comes in different flavors (actually, colors)—you pick one based

on the criticality of your project.

Features

The Crystal family comes in four colors: clear, yellow, orange, and red.

You pick the one based on the project team size and criticality—the

Crystal color is a metaphor for difficulty. You start with a lighter color

and move to a darker color only when your project shows significant

signs of risk. It emphasizes people and communication. Criticality is

based on the potential losses due to defects; factors include loss of

comfort, discretionary money, essential money, and life. Crystal asks

teams to reflect and improve and to criticize and fix. It encourages

open communication and promotes honesty and criticism. It recognizes

that feedback is essential, and teams need to be fast. Crystal requires

expert users to consult with. The usual agile programming practices

are recommended as well.

Pros and Cons

Crystal recognizes that there is no one solution for all problems or

projects. However, not all colors are fully defined.

Lean Development (LD)

Lean development was developed by Robert Charette based on Toyota’s

Lean Manufacturing model (see Lean Software Development: An Agile

Toolkit for Software Development Managers [PP03]).

Features

LD emphasizes satisfying customers, promoting project reversibility,

providing business value, and creating minimum yet essential solu-

tions. It defines phases for start-up, steady-state, and transitional-

renewal. It encourages you to focus on completing a project more than

constructing it (buy instead of build, if you can).

Pros and Cons

LD focuses on high-level strategic business processes. It states that

development is a team effort and that pushing the approach beyond

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=167

WHICH METHODOLOGY SHOULD YOU USE? 168

its limits will not yield results. It also emphasizes that need should

determine the technologies used.

Adaptive Software Development (ASD)

ASD was developed by Jim Highsmith and Sam Bayer based on rapid

application development (Adaptive Software Development [III99]).

Features

ASD emphasizes continuous adaptation of process, collaboration, and

learning. It recommends iterative, risk-driven, change-tolerant devel-

opment. The development effort is mission-based and feature-driven.

Pros and Cons

ASD does not dictate how to do things or what specific practices to

follow. It establishes general guidelines, giving you the flexibility to

figure out your own way to achieve your goals.

12.4 Which Methodology Should You Use?

We have looked at half a dozen agile methodologies. Which one should

you choose?

Any methodology that becomes dogmatic fails. Sometimes it makes

sense to use a certain practice, and sometimes it may not apply to your

particular setting or project. Although XP deals with a number of tac-

tical issues, it does not cover enough of project planning and manage-

ment. Scrum, on the other hand, addresses those issues but does not

fully address some of the programmer-specific issues. Evo has some

nice ideas about keeping your specification and design evolutionary.

The best methodology is the one that works for you. It is your respon-

sibility to learn the different practices. However, it is more important

to understand the reasons behind these practices. Learning the whys

more than the hows helps you to make prudent and pragmatic deci-

sions as to what combination of practices will be of use to help in spe-

cific situations and projects. I would rather use a mixture of practices

that provide direct benefits than stick with all the practices of one par-

ticular methodology. I like the freedom to choose. You have that choice

as well.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=168

Chapter 13

The Many Guises of Method
Instrumentation

by Eitan Suez

Eitan Suez is a programmer living and working in Austin, Texas. He has been

programming in Java since 1995 and is a Certified Java Programmer. Eitan is

the author of an open source Java documentation system named Ashkelon (see

http://ashkelon.sourceforge.net/) and, more recently, of the jMatter framework for

extremely agile software construction for workgroups. Eitan speaks at the No

Fluff Just Stuff series of programming symposia on a variety of topics including

Java documentation systems, Cascading Stylesheets, NakedObjects, Hibernate,

and more. Eitan is active with his local Java Users Group and maintains weblogs

at http:// java.net and http://u2d.com.

Eitan lists his favorite books and tools starting on page 214.

http://ashkelon.sourceforge.net/
http://java.net
http://u2d.com

CHAPTER 13. THE MANY GUISES OF METHOD INSTRUMENTATION 170

I have been involved with NFJS, on and off, for a while. I recall NFJS’s

first show in Austin, Texas, where I had the opportunity to speak on my

open source project, Ashkelon, and to meet other speakers including

Jason Hunter and James Duncan Davidson. It has been maybe four

years since then, and I’ve personally participated in roughly two dozen

symposia.

One of the talks I am giving in 2006 focuses on the excellent Hibernate

O/R mapping framework.1 There are many challenges to giving an

effective talk, one that teaches well and imparts good, solid information

to attendees in 90 minutes. One method (and one that I have come

to really enjoy, though it requires much preparation) is to spend just a

little time flipping from slide to slide and as much time as possible doing

group coding sessions, where you attempt to expose as much of an API

or framework in a meaningful sample application. This mode turns a

passive presentation into an active one: attendees become engaged in

solving a problem.

Ruby on Rails is a terrific candidate for a great talk because it lends

itself well to this mode of presentation. You don’t have to spend tedious

and precious minutes in front of an audience hacking XML configu-

ration files just to get a “hello, world”–calibre demo up and running.

Instead, you get to work showing the relevant aspects of the task you

have to perform and show meaningful results in short order. “There

he goes again with Ruby and Rails,” you might be thinking. OK, so I

chose a bad example. In the Java world, the NakedObjects framework

is another perfect candidate for doing hands-on coding in front of an

audience. I had the pleasure of giving talks on the topic of NakedOb-

jects in 2005, and, let me tell you, we had a fantastic time with it (and

I have the session evaluations to prove it! :-)).

So here’s my question: is it possible to do the same thing for a talk

on Hibernate? You bet! Let’s explore that together. Here is what I

am promising you in return: we’re going to end up coding a pretty

cool, reusable little framework. In the process, we’re going to have a

lot of fun connecting the dots between all kinds of technologies includ-

ing Hibernate, JUnit, the Spring framework, Java 5 features including

annotations and varargs, and finally aspect-oriented programming.

Are you ready? Let’s begin by discussing the basic setup for a simple

Hibernate tutorial. What ingredients will we need?

1http://www.hibernate.org

http://www.hibernate.org
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=170

CHAPTER 13. THE MANY GUISES OF METHOD INSTRUMENTATION 171

• A build file (build.xml)

• A log4j config file (log4j.properties)

• A Hibernate config file (hibernate.properties or hibernate.cfg.xml)

• A couple of model objects and their corresponding mapping files

• Some kind of utility class to load the Hibernate configuration and

build a session factory

All of these are pretty standard for Hibernate. In fact, if you haven’t ever

looked at Hibernate, I highly recommend reading through Chapter 1 of

the Hibernate 3.1 reference documentation, which is a simple tutorial

that walks you through the specifics of writing each file.

I won’t walk you through the specifics of each and every file. The log4j

config file is not strictly necessary but is practically de facto. In a Hiber-

nate talk, we can safely think of it as a black box. Ant has likewise

become so commonplace and indispensable that it is essentially a pre-

requisite today for doing any Java-related work.

The interesting nuggets in teaching Hibernate (in my opinion, of course)

include the following:

• Understanding the mapping files and how to write them

• Learning HQL, the Hibernate Query Language

• Discovering Hibernate’s wonderful (IMHO) Criteria API

• Looking at the nuances of the Hibernate run-time API, detached

objects, the roles of the SessionFactory and Session objects, transac-

tions, and so on

• Discovering the beauty of object-oriented queries and persistence

modeling; you can perform polymorphic queries, model inher-

itance, and do away with the object-relational impedance mis-

match

So, again, let’s repeat the question: how do we structure a talk on

Hibernate such that an audience spends very little time on the setup

and configuration and much time on those nuggets I just listed?

Here are a few items that, if made part of one’s setup, could get us

there:

• Being able to easily rebuild or update the database schema from

the model and mapping files (schema-export and schema-update).

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=171

EASY SCHEMA EXPORTS AND SCHEMA UPDATES 172

• Using a Spring-like HibernateTemplate mechanism to avoid having

each example repeat boring setup and teardown code that accom-

panies each hibernate test run: get a session, begin a transaction,

commit the transaction, and close the session.

• When learning Hibernate, I expect to be doing many “one-off”

tests, testing how changes to an HQL query affect the obtained

results, and so on. I should have an easy way to build a bunch of

Hibernate “tests,” a simple way to add tests, and an easy way to

control which test I want to run at a particular moment in time.

• It would also be nice to have some of the fixture support that Rails

has to prepopulate a test database.

In this chapter, we’re going to attack the first three.

13.1 Easy Schema Exports and Schema Updates

The first item, having the ability to easily rebuild a schema, is provided

by Hibernate. One way to do this is to turn on the hbm2ddlauto feature

in the configuration, which can be used to automatically drop and re-

create our tables during each run. This could work, though you don’t

always want to do this on each run. For example, if you just tested

a query and simply want to run another query, rebuilding the schema

would simply take extra time and add lots of noise to the output. I

prefer using Hibernate’s SchemaExport and SchemaUpdate tools directly.

These come in two flavors: you can use them as Ant tasks in your

Ant build file, or you can call them programmatically. It really doesn’t

matter which you use. I like to have that capability exposed in both

environments. Here’s how I’ve set things up.

In the utility class where I build my session factory (let’s call it Hiberna-

teUtil), I add these methods:

public static void schemaExport()

{

SchemaExport tool = new SchemaExport(config);

tool.setDelimiter(";");

tool.create(true, true);

}

public static void schemaUpdate()

{

SchemaUpdate tool = new SchemaUpdate(config);

tool.execute(true, true);

}

I then expose these methods to the command line with a main method:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=172

EASY SCHEMA EXPORTS AND SCHEMA UPDATES 173

public static void main(String[] args)

{

if (args == null || args.length != 1)

{

System.err.println("Usage: java utils.HibernateUtil [export|update]");

System.exit(0);

}

if ("update".equals(args[0]))

{

schemaUpdate();

}

else if ("export".equals(args[0]))

{

schemaExport();

}

}

Then, in my Ant build file, I can use the <java> task to invoke that

main method:

<target name="schema-x" depends="compile">

<java classpathref="class.path" fork="true"

classname="util.HibernateUtil">

<arg value="${arg}" />

</java>

</target>

I could invoke this target directly from the command line with the fol-

lowing:

ant schema-x -Darg=update|export

However, I’d prefer something like this:

ant schema-export

and this:

ant schema-update

This is easily accommodated with two more targets:

<target name="schema-export" description="export schema">

<antcall target="schema-x">

<param name="arg" value="export" />

</antcall>

</target>

<target name="schema-update" description="update schema">

<antcall target="schema-x">

<param name="arg" value="update" />

</antcall>

</target>

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=173

AVOIDING TEDIOUS SETUP AND TEARDOWN CODE 174

OK. That was really simple. And we didn’t really have to do any work

since Hibernate gives us the export and update tools, and we just

invoke them. The important thing is that during a lecture, I now have

the flexibility of updating my schema whenever necessary with a mini-

mum of fuss and, more important, a minimum amount of time.

13.2 Avoiding Tedious Setup and Teardown Code

Let’s start by understanding the problem. Here is some code, taken

directly from the Hibernate 3.1 reference documentation (Chapter 1,

“Intro to Hibernate”):

private Long createAndStoreEvent(String title, Date theDate)

{

Session session = HibernateUtil.getSessionFactory().getCurrentSession();

session.beginTransaction();

Event theEvent = new Event();

theEvent.setTitle(title);

theEvent.setDate(theDate);

session.save(theEvent);

session.getTransaction().commit();

return theEvent.getId();

}

We can distinguish between two types of code in this method: static

(boilerplate) code that must be invoked before and after the code that

is directly relevant to this creating and storing the event. For each new

method we add, we’re going to have to repeat the before and after parts.

We’ll have code duplication.

In languages such as Smalltalk, Ruby, and JavaScript, refactoring our

code is fairly straightforward. Just for fun, let’s try to do this refactoring

in JavaScript. Here’s how things might (fictitiously) look in JavaScript

before the refactoring:

function createAndStoreEvent(title, date)

{

var session = getSessionFactory().getCurrentSession();

session.beginTransaction();

var event = new Event(title, date);

session.save(event);

session.getTransaction().commit();

return event.getId();

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=174

AVOIDING TEDIOUS SETUP AND TEARDOWN CODE 175

And, here is how it might look after refactoring:

function createAndStoreEvent(title, date)

{

return doInSession(function(session)

{

var event = new Event(title, date);

session.save(event);

return event.getId();

});

}

function doInSession(codeBlock)

{

var session = getSessionFactory().getCurrentSession();

session.beginTransaction();

var result = codeBlock(session);

session.getTransaction().commit();

return result;

}

The previous code creates an anonymous function (that takes a session

parameter) and passes that function as an argument to the doInSession()

method. The anonymous function is called a functor, and the function

that wraps it is called a higher-order function. In JavaScript, functions

are objects that can be passed around and invoked later. The doInSes-

sion() method invokes our code block on the following line:

var result = codeBlock(session);

In Java, we can think of the java.lang.reflect.Method class as being some-

what analogous to that code block. It’s an object, so we can pass it

around. And we can invoke it later using Method.invoke(). The code just

ends up not looking as clean as the JavaScript version.

One of the main things that frameworks such as Spring do for Hiber-

nate is provide this type of refactoring, similar to what we just did in

JavaScript. The Spring framework defines an interface, HibernateCall-

back, with the following single method signature:

Object doInHibernate(Session session)

throws HibernateException, SQLException;

This interface is analogous to the JavaScript anonymous function we

passed around. Spring then defines the HibernateTemplate.execute()

method; here’s the complete method signature:

public Object execute(HibernateCallback action)

throws DataAccessException;

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=175

JUNIT 176

Clients can now invoke execute() like this:

// Assume the containing class has a reference to a hibernateTemplate variable

private Long createAndStoreEvent(final String title, final Date theDate)

{

return hibernateTemplate.execute(new HibernateCallback()

{

public Object doInHibernate(Sesssion session)

{

Event theEvent = new Event();

theEvent.setTitle(title);

theEvent.setDate(theDate);

session.save(theEvent);

}

});

}

We delegate the responsibility of ensuring that the proper setup() and

teardown() code is invoked to Spring’s HibernateTemplate.

We don’t really need to use the Spring framework to do this. We could

have written our own equivalent. The point is that the code duplication

has now been removed. We’re back to a more refactored situation.

Still, I’m not really happy with the way things are. I still have to

tediously set up an anonymous inner class each time I want to invoke

some Hibernate code. Can the situation be improved further? Hiber-

nateTemplate does give us other utility methods such as executeFind()

that improve the situation.

Let’s go in a different direction. I seem to have been using terminology

from JUnit: setUp() and tearDown() are JUnit methods. Furthermore,

JUnit does appear to be doing something similar to what we want,

though in a different context. JUnit will invoke a bunch of methods

for us; it harvests those methods whose names are prefixed with test

from a given class. It then uses each essentially as a code block that it

invokes in isolation from the other methods.

Can we use JUnit for what we’re trying to do? You bet.

13.3 JUnit

What does JUnit do when it runs your tests?

This is a very interesting question, because the way things look when

we’re writing our test classes and the way they work are very different.

(I recently looked at a JUnit alternative, TestNG. It is another fairly

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=176

JUNIT 177

popular testing framework that employs Java 5 annotations. TestNG

was motivated by its author’s frustration that the way things look and

work in JUnit are indeed very different from one another.)

For a given class, say MyTest, with a given set of test methods—test1(),

test2(), and test3()—what does JUnit do? Here’s the answer, in pseu-

docode:

for each test in tests:

setUp();

run test;

tearDown();

Compare that to what we want to do with Hibernate:

for each hibernate test:

setup the session, begin a transaction

run the test

commit the transaction, close the session

So, in the lecture environment, we don’t have to use Spring to talk

about Hibernate. All we have to do is set up a simple JUnit test:

public class HBMTest extends TestCase

{

Session session;

protected void setUp() throws Exception

{

session = HBMContext.getSessionFactory().getCurrentSession();

session.beginTransaction();

}

protected void tearDown() throws Exception

{

session.getTransaction().commit();

session.close();

}

public void testQueryEvents()

{

List events = session.createQuery("from Event e").list();

System.out.println(events.size() + " Events in database");

}

public void testQueryPeople()

{

List people = session.createQuery("from Person p").list();

System.out.println(people.size() + " People in database");

}

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=177

ONE MORE TIME, JUST FOR FUN 178

Can it be that two things we don’t normally think of as related to one

another essentially solve the same problem? It seems that Spring and

JUnit do have something in common.

13.4 One More Time, Just for Fun

Rather than use an external framework such as Spring or JUnit, let’s

write one ourselves. I happened upon Elliotte Rusty Harold’s relatively

recent article on IBM’s developerWorks titled “An early look at JUnit

4.”2

One of the main themes of JUnit 4 is a move away from method naming

conventions to Java 5 annotations. I must admit annotations seem

to be a better solution than method naming conventions for tagging

methods. For those of you not familiar with the new flavor that JUnit

4 brings to the table, the basic gist can be illustrated with the following

quick code snapshots. Here’s the “before” picture:

public void testSomething()

{

assertTrue(someBoolean);

}

And the “after” picture:

@Test public void iCanBeNamedAnything()

{

assertTrue(someBoolean);

}

My experiments with annotations in the last few months make at least

one thing clear: defining, implementing, and wiring up annotations in

Java 5 is simple and easy; it’s actually a joy. I propose we write an

annotation-based solution similar to JUnit 4 as a means of running

code blocks that require some kind of standard, repetitive setup and

teardown (or before and after) treatment.

Let me explain more specifically what I’d like to do. What if I, the

developer, supplied the following pieces:

• My “tests”:

@ContextInfo(HBMContext.class)

public class HBMTests

{

2http://www-128.ibm.com/developerworks/java/library/j-junit4.html

http://www-128.ibm.com/developerworks/java/library/j-junit4.html
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=178

THE IMPLEMENTATION 179

@Test public void storePerson(Session session)

{

Person p = new Person("Eitan", "Suez", 35);

session.save(p);

}

@Test public void fetchPeople(Session session)

{

List people = session.createQuery("from Person p").list();

// iterate over people or whatever..

}

}

• A Context, or harness in which to run these “tests”:

public class HBMContext implements Context

{

public void runTest(Block block)

{

Session session = getSessionFactory().getCurrentSession();

session.beginTransaction();

block.call(session);

session.getTransaction().commit();

session.close();

}

}

I want machinery that will wire all this together for me. This machinery

would be passed a class containing the tests, and it would go looking for

the methods tagged with the @Test annotation and run each in turn in

the supplied context; it would invoke HBMContext.runTest() on my behalf

for each “test” method.

Finally, how about we invoke our machinery with something like this?

new Runner(HBMTests.class).run(); // run all "tests"

And why not this, too?

new Runner(HBMTests.class).run("fetchPeople"); // run only a single test

13.5 The Implementation

Let’s start with the easiest part: defining the annotations:

@Retention(RetentionPolicy.RUNTIME)

public @interface Test {}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=179

THE IMPLEMENTATION 180

There’s nothing to the Test annotation. It’s simply a marker annotation.

The only pesky part is having to explicitly mark the retention policy.

The ContextInfo annotation is almost as simple. We need to allow the

class under test to specify what context it wants to be run in by speci-

fying its class name:

@Retention(RetentionPolicy.RUNTIME)

public @interface ContextInfo

{

public Class value();

}

We also need to define an interface for implementing various contexts:

public interface Context

{

public void runTest(Block block);

}

Notice that I’ve taken the liberty of defining a method call wrapper

named Block. Here’s that interface:

public interface Block

{

public void call(Object... params);

}

The cool part here is what Java 5’s varargs feature buys me: flexibility.

I don’t have to hard-code the method signature; it can remain very

generic.

We’re halfway there. Here’s a quick and dirty implementation for a

Block, the MethodBlock class:

public class MethodBlock implements Block

{

private Object _instance;

private Method _method;

public MethodBlock(Object instance, Method method)

{

_instance = instance;

_method = method;

}

public void call(Object... params)

{

try

{

_method.invoke(_instance, params);

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=180

THE IMPLEMENTATION 181

catch (IllegalAccessException e)

{

e.printStackTrace();

}

catch (InvocationTargetException e)

{

e.printStackTrace();

}

}

}

MethodBlock is given a method and an instance to call the method on.

When I invoke call() on it, it turns around and invokes its method.

Finally, let’s write the Runner machinery:

public class Runner

{

private Context _context = null;

private Map<String, Block> _blockMap = new HashMap<String, Block>();

public Runner(Class<?> instrumentedClass)

{

ContextInfo contextInfo = instrumentedClass.getAnnotation(ContextInfo.class);

Class contextClass = contextInfo.value();

Object instrumentedInstance = null;

try

{

_context = (Context) contextClass.newInstance();

instrumentedInstance = instrumentedClass.newInstance();

}

catch (InstantiationException e)

{

throw new RuntimeException("Failed to instantiate test and/or context class");

}

catch (IllegalAccessException e)

{

throw new RuntimeException("Failed to instantiate test and/or context class");

}

Method[] methods = instrumentedClass.getDeclaredMethods();

for (int i=0; i<methods.length; i++)

{

if (methods[i].isAnnotationPresent(Test.class))

{

MethodBlock block = new MethodBlock(instrumentedInstance, methods[i]);

_blockMap.put(methods[i].getName(), block);

}

}

}

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=181

REFLECTIONS 182

public void run()

{

for (Block block : _blockMap.values())

_context.doInContext(block);

}

public void run(String blockName)

{

Block block = _blockMap.get(blockName);

_context.doInContext(block);

}

}

Let’s analyze this code one step at a time. For a given class containing

our code blocks, here is what Runner needs to do:

1. Look up the @ContextInfo annotation to figure out what Context

class to run the code blocks in.

2. Instantiate a context, in anticipation of calling runTest() on it.

3. Instantiate the instrumented class, in anticipation of calling each

of its methods.

4. Harvest the @Test-tagged methods on the instrumented class.

5. Tuck away the list of code blocks in a map in anticipation of ful-

filling its run() and run(blockname) method obligations.

As you can see, the implementation is quite straightforward and simple.

I took the liberty of using Java 5 generics in this case (read with a Texas

drawl: figured I might as well since I was already in Java 5 land).

13.6 Reflections

We now have a simple way to cook up a small Hibernate test or demo

and run it. We can do the following:

• Run a bunch of tests (not sure yet whether/why I’d want to do

that in a Hibernate context)

• Liberally add and remove @Test tags on methods to control the set

that I want to run at a given time

So, we have the flexibility we were looking for when we set out to have

a good setup for teaching Hibernate:

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=182

AOP 183

• We can update our schema when necessary.

• The clutter of creating anonymous CallBack interfaces is gone.

• We can play with HQL or parts of the Hibernate API with a mini-

mum of fuss; we can run one-off tests whenever we want.

We can use either JUnit with setup() and teardown() methods or cook

up our own little framework. Here’s what I like about the code we wrote

for ourselves:

• By actually writing the machinery, we now know what happens

behind the scenes. There’s no more guessing. There’s no better

way to understand the the way something works than by attempt-

ing to write it ourselves.

• We discovered that it took little code and little time to set up our

own mechanism.

• We should have also gotten a good feel for a situation where anno-

tations really shine. The parts of our system that called for anno-

tations included the following:

– The need to relate (or link) our test class to a specific running

context (via the @ContextInfo annotation)

– The need to tag methods (with the @Test marker annotation)

13.7 AOP

In a way, what JUnit does is akin to a mini-AOP framework. With

JUnit, we have the ability to instrument methods by specifying what

code should be run before and after the method is invoked. The same

can be said of the code we wrote: we’ve implemented the ability to

instrument methods tagged with a marker annotation. And we can

specify how these methods are instrumented by implementing Context

classes (the runTest() method).

It turns out that a tool such as AspectJ is, in a sense, a more complete

solution to this general issue:

• Through pointcuts, we are given powerful mechanism for picking

out which methods to instrument.

• Through the various advice methods, we have the ability to inject

code before(), after(), and around() a method and to invoke the

method itself with proceed().

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=183

AOP 184

You could think of JUnit’s setUp() and tearDown() methods as mere

aliases for before() and after() advice on test methods. Rather than

taking a few more pages to look at AspectJ in detail, I’d like to invite

you to attend an upcoming NFJS symposium near you and to hear our

resident expert on AOP, Ramnivas Laddad, give you the low-down.

Summary

In many situations, the way to eliminate code duplication is by passing

code as an argument to another piece of code: by using functors and

higher-order functions. These features exist natively in languages such

as JavaScript, Smalltalk, and Ruby.

In Java, we discover that many of the frameworks we use provide their

own mechanisms to address the same problem. The same pattern

exists in many guises, and is veiled behind different semantics and

different metaphors.

In this article, I discussed JUnit, AspectJ, and Spring implementations

of the Template and Callback patterns for Hibernate and other frame-

works it wraps. Here are some I did not specifically discuss: Spring

AOP, EJB3 interceptors, and emerging Java functors libraries includ-

ing JGA3 and Jakarta Commons Functor.4

3http://jga.sourceforge.net/
4http://jakarta.apache.org/commons/sandbox/functor/

http://jga.sourceforge.net/
http://jakarta.apache.org/commons/sandbox/functor/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=184

Chapter 14

CSS: A Programmer’s Perspective
by Eitan Suez

Eitan’s bio appears on page 169.

CHAPTER 14. CSS: A PROGRAMMER’S PERSPECTIVE 186

Although it is certainly not always the case, it seems to me that web

application shops polarize into two camps. On the one hand, there’s

the designer/artist camp that concentrates on the client side and its

look and feel. On the other hand, there’s the developer camp that has

somewhat retreated to the server side, and concentrates on the seri-

ous issues of high availability, transactional integrity, and other ACID1

things (J2EE).

I’ve seen Cascading Style Sheets (CSS) championed not by program- Cascading Style Sheets

mers but by “designers” (for lack of a better term). Designers wield CSS

to improve the state of the art in online publishing from a soup of tricks

and hacks into something that is somewhat manageable and clean (let’s

resist the tendency, however, to replace HTML hacks with CSS hacks).

In the previous paragraph, I used the word hacks. What did I mean?

• The use of blank images as a poor man’s spacer

• The (offensive) use of repeating nonbreaking spaces (), also

for spacing

• The use of HTML tables to simulate the CSS box model (margins,

borders, and padding)

• The use of HTML tables for layout and positioning (for which CSS

provides an alternative)

• Font styling with tags

What I see lacking, and where this modest article hopes to contribute,

is in encouraging the use of CSS by programmers and developers:

• As a tool for refactoring the client side

• As a tool for exploiting modern browsers (such as Firefox) to their

full potential

• Specifically, to take advantage of modern browsers’ layout engines

to reflow and restyle content dynamically (without having to con-

sult the server)

Thus, I treat CSS here as a technology that is useful for client-side

developers. This article is not about making a page look as nice as it

can be; it’s about making a web application’s user interface as usable

as it can be.

1ACID: Atomicity, Consistency, Isolation, and Durability

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=186

THE WEB 1.0 187

14.1 The Web 1.0

Yes, there was a time when sites were horrible, and I’m sure many sites

still are horrible. Just look at the HTML source of the content. How

legible is it? How easily can it be revised to give your content a different

style or look?

It’s usually easy to tell an old, pre-CSS site. These are the markers;

the code smells (as Martin Fowler would say) of a site in need of an

overhaul:

• Liberal use of nonbreaking spaces ()

• Use of the deprecated tag

• Blank GIF images used to generate margins and padding

• Nested HTML tables

• A high markup to content ratio

• Table rows with liberal use of colspan and rowspan attributes

• Empty table cells (used for their padding/margin side effects)

Of course, you don’t have to really look for any of these smells. Your

body will tell you: you’ll get a nauseating feeling, or a feeling of immense

frustration, maybe despair...but you’ll know.

CSS gives us the necessary tools to transform such old sites into ones

that are maintainable and easily revised. Moving a sidebar from one

side of the screen to the other can be performed by replacing a float: left

style declaration with float: right. But we need to remain cautious and

make sure that when we use CSS, we are still moving in the direction

of more readable and more maintainable code.

I’ve seen CSS employed in a way where the designer has to calculate

the absolute position of a block in order to place it in a proper location.

Such designs are fragile and expensive to keep up-to-date, because they

require style changes when content changes.

How does one go about improving a pre-CSS site? One way to do it

is to apply the principles of refactoring. I’ve recently employed refac- refactoring

toring on a site that I maintain. You’d be amazed how much smaller,

cleaner, and more readable the resulting site has become. I was able

to make small, piecemeal changes over weeks, at my own pace. The

look and behavior of the site was maintained throughout the process

of cleaning up the markup. This particular site had been designed and

implemented by someone else; making small, iterative changes worked

well in this situation.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=187

REFACTORING CONTENT? 188

The other option, of course, requires a little more gumption but will

often end up taking less time. Here is the recipe:

1. Extract the content from the existing site into a separate set of

pages.

2. Make sure the content is complete and can be viewed in a plain

old browser. Sure, it’s lacking some style and layout and a look

and feel, but that’s coming.

3. Make some basic layout and look and feel decisions. Perhaps

revise the structure of the content slightly to match the structure.

4. Link a new stylesheet into the header of the pages using either the

<link> tag or @import CSS directive.

5. Start building the stylesheet. Begin with global styles: document

margins, base font, and colors.

6. Proceed with any additional styling necessary to give specific types

of blocks the look and positioning necessary to affect the end

result.

7. As you go, you’ll have a general idea of what you want to do. The

feedback you’ll get in the process of styling the document will help

you make the finer, more detailed decisions.

I’ve employed this method to redesign a separate site. In this case, I

didn’t need to maintain the same look and feel, so it made more sense

to start from scratch. Also, the former site had been created using

automated WYSIWYG tools, which introduced a large amount of unnec-

essary markup, making it difficult to edit the existing content.

14.2 Refactoring Content?

A definition of refactoring, when applied to programming, is as follows:

A change made to the internal structure of software to make it easier

to understand and cheaper to modify without changing its observable

behavior2

When I apply the term refactoring to markup, I’m mentally substituting

the following:

2A warm thanks to Martin Fowler for giving us the necessary terminology to express

ourselves coherently and succinctly.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=188

CASE STUDY: I Inherited My Local JUG Site 189

• Software with markup and stylesheets and whatever other compo-

nents that a web browser interprets to display our website, and

• Behavior with look, layout, style, and to some extent behavior, too

So we’re taking a site in its present (and possibly not-so-maintainable)

state and making small, discrete, isolated changes. We test that the

change did not break or change anything. Once we’re satisfied, we can

move on to the next small change. Over time, the entire site is slowly

transformed into a clean, maintainable, even beautiful one.

Small (yet important) flaws may have been difficult to see because of

the overwhelming amount of markup in the original version. Refactor,

and they surface and are easily fixed. The pages become smaller and

lighter. Browser parsing engines don’t have as difficult a time load-

ing our content. Fewer calls are made to the server to fetch a bunch

of images. We discover that we didn’t really need to make page xyz

dynamic after all. It was an illusion, difficult to diagnose because of

the complex structure of our site before we applied the refactorings.

Indeed, the process of refactoring a site is interleaved with the process

of evolving it and growing it.

14.3 Case Study: I Inherited My Local JUG Site

I admit it: like most JUG sites, our JUG site was really ugly. Our little

community is thankful to one of our members for one day volunteering

to redesign our site and give it a much improved, consistent look. It was

a few months later that I inherited the duty of updating the content with

new meeting information. I expected to find a modern, clean site. I was

surprised when I opened the lid to find so many markup smells lying

beneath.

I decided to refactor this particular site piecemeal. The main reason was

simple: it was not a site I had designed. I didn’t quite understand how

the various effects were implemented. I didn’t want to break anything.

Surprisingly, this site already contained a small stylesheet. I did the

obvious thing first: I added global font styles it. Once I made sure

that the global font styles properly applied to the text on the pages, I

started removing tags from the HTML. The DRY principle (Don’t DRY

Repeat Yourself) is at work here. Much refactoring in this domain has

to do with removing duplication. In this case, we’ve got dozens—maybe

hundreds—of font tags replaced with a single reference in a stylesheet.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=189

CASE STUDY: I Inherited My Local JUG Site 190

CSS inheritance of font styles ensures that styles applied to parent

elements also percolate to the children.

Next, I began looking for tables containing only a single column. The

technique of employing tables for the task of simulating the CSS box

model used to be rampant. In pre-CSS days, there was no alternative.

Tables would be used just for the sake of applying padding, borders,

and margins. With CSS, much markup in my pages was replaced with

simple <div> tags. Each type of block needing a specific type of look

would be categorized via the HTML class attribute and styled appropri-

ately in my stylesheet. This attribute was added to the HTML specifica-

tion specifically to accommodate CSS.

Nonbreaking spaces were all removed and their effects replaced with

CSS margin and padding specifications. The same went for the

tag. References to blank images were removed and replaced with mar-

gins and padding as well.

I discovered a page that attempted to use tables to essentially simulate

a float effect. I did away with table and replaced it with the CSS style

property, designed specifically for such a layout task.

Sidebar elements were marked up consistently, and the styles for each

list item were now applied uniformly. Another sidebar on the right side

had the same problem: repetitive applications of the same styles were

consolidated into a single set of rules that applied the style uniformly.

The look of the site actually slightly improved. All margins between

blocks were now uniform. The reason is simple: oftentimes, when the

same style has to be applied repetitively, mistakes are made and quality

suffers.

CSS allowed me to easily apply diagnostic borders to various blocks

to gain insight into the structure of the pages. This insight in turn

revealed ways to simplify structures and collapse tables, nested divs,

and so on.

Once the minor stuff was cleaned up, I was now in a position to take

a look at how some of the dynamic aspects of the site worked. There

weren’t many. The basic effect was the use of a single JSP that included

a header, navigation bar, and content based on a parameter in the URL.

Once I discovered that this was the only responsibility of the JSP file,

I was able to consolidate two JSPs into a single file. I was able to

eliminate a small but significant number of pages. I renamed pages

to represent more clearly the content they carried and the role they

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=190

CASE STUDY: I Inherited My Local JUG Site 191

Before and After

If you’re interested in actually reviewing the before/after pic-
tures of this small site, I checked them into a CVS repository on
http://austinjug.dev.java.net fairly early in the refactoring process.
I wish I had made my CVS comments more specific instead of
the useless “more cleanup” comment I usually went with. If
you follow the above link, click “Version Control,” then “Setup
CVS command line client” for instructions on checking out the
code. As for stats, I was able to make the site approximately
25% smaller, all the while adding content. But these figures
highly depend on the quantity of content. A more useful fig-
ure would be the ratio of before to after markup, excluding the
content (text). But I did not bother generating it.

played. I was now pleased that a directory listing yielded fewer files

and more information.

I now knew where everything resided and where I needed to make a

change. I had finally gotten to the point where the cumulative effects of

my refactorings had created a site whose feel was distinctly better than

its former state.

I continued refactoring in a similar fashion. I attacked other aspects of

the site, one at a time. I inspected the construction of the site’s header

and undid its complexity. The process is akin to taking knots out of

tangled rope. The original version used tables and table cell rowspan

and colspan tricks to make the ends of the header rectangle appear to

protrude on either side. I applied CSS relative positioning instead to

reproduce the look. In this one case, although I was able to reproduce

its original effect, I finally decided to deviate from the original design

and ended up going with a simpler (yet still decent) look.

Wherever possible, I removed extraneous content or markup. Less was

more. The personality of the site changed subtly. No one has com-

mented on these site changes to me. I’m assuming no one has noticed

them, a sign of good markup refactoring (changing the implementation

without altering how the page looks).

Now, updating my local JUG’s website takes me less time and is a much

more, shall we say, fragrant experience.

http://austinjug.dev.java.net
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=191

ASPECT -ORIENTED...STYLING? 192

14.4 Aspect-Oriented...Styling?

One of the aspects of CSS that really attracts me is its simplicity. It’s

a thread that CSS holds in common with HTML. One can learn HTML

quickly, probably in a single day, without much a priori knowledge.

CSS’s syntax is clear and yet concise. But the real genius behind CSS

is the realization that style is fairly orthogonal to content. Styling is an

aspect, as in aspect-oriented programming (AOP). aspect-oriented
programming

In AOP, a pointcut is defined as a program construct that selects join
pointcut

points. Join points are identifiable points in the execution of a program,

such as a call to a method.

We could describe CSS’s design using similar, analogous language. A

CSS selector is the analog of the AOP pointcut. Instead of selecting join

points, it selects identifiable points in a target document, such as a tag

with an id. Like pointcuts, CSS selectors can select more than a single

point. Any points matching the selector are returned.

In AOP, an advice is code that is executed before, after, or around a

join point. Similarly CSS contains a list of styling declarations that are

analogous to AOP’s advice body. What’s even more interesting is that

CSS’s pseudoselectors (:before, :after) are analogous to the ability in AOP

to specify before and after advice.

The similarities abound. We can take this even further. CSS does not

provide an :around pseudoselector. But that doesn’t stop designers from

coming up with their own simulations of the feature. Designers will

often apply a display: none; style to the content of a block and yet slide in

an image into the background of the containing block, thus essentially

replacing content. This is analogous to AOP’s around advice.

Having said all this, I’m no AOP expert—far from it. Although I’ve read

about AOP, I have practically no experience in the field. But one can see

that some aspects of AOP’s design are quite evolved. AOP’s design has

more features compared to the design of CSS. It seems to me that we

could evolve CSS by simply looking to what AOP has done and adopting

those parts we lack and those parts we need in the web world.

So, let’s get to it! What parts do we lack? What parts do we need? I

think it’d be really cool to open the floodgates for a while and make

accessible a number of features to experiment with, and then after

we’ve collectively gained some experience and grown wiser, we can

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=192

A MORE SEMANTIC WEB 193

tighten up the features to only those that really prove to be valuable.

It’s somewhat analogous to a brainstorming activity.

So let’s brainstorm a bit.

We can try to take the notion of pseudoselectors further. In addition

to :before, and :after, we can introduce an :around or :replace. (Note: it

turns out that CSS3 is adding a ton of new and powerful pseudoselec-

tors).

We could also try to extend event pseudoselectors such as :hover to

cover other things, such as :click.

We could even go as far as attempt to merge the syntax of AOP and

CSS. Let’s refactor the two designs into one. Let’s make a sort of unified

model for aspect design that applies to both code and XML documents.

Back down to earth: what if we could specify more than just styling in

advice bodies? Technically we already do. CSS positioning allows us to

inject positioning information.

Why not open CSS’s advice bodies to things other than styling and

positioning? Why not invoke code? This is what I’d like to see:

#some-id:click

{

javascript:callMe();

}

That’d be pretty good for starters.

Status: this type of capability is already in the pipeline for CSS3.

CSS3’s module “behavioral extensions to CSS” is bundling in IE’s HTC

and element behavior (or Mozilla’s analog: XBL) work. In addition,

they’ll be adding CSS-style event handling and code invocation (even

the ability to embed a script within a CSS file with the @script directive).

The most intriguing thought here is the notion of using CSS’s design as

the basis for introducing some kind of AOP framework for JavaScript.

14.5 A More Semantic Web

Content tends to become more semantic as a consequence of employing

CSS. Although the HTML tags become more abstract (<div>, ,

, and so on), the two magic HTML attributes, class= and id=, are in

a sense a dynamic mechanism for creating one’s own markup language.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=193

ON THE NATURE OF WEB APPLICATIONS 194

Of course, this markup language can have anything from a horrible

design to a superb one. It’s up to the author to decide how extensive of

a vocabulary to build.

Let’s clarify what I mean with an example: take a catalog of books. If

you were to come up with a markup language, you might end up with

XML looking like this:

<book isbn="1234">

<title>Cooking French</title>

<author>John Doe</author>

<abstract>blah..</abstract>

</book>

Now consider an HTML alternative:

<div class="book" id="1234">

Cooking French

John Doe

blah..

</div>

The ISBN could also have been specified as an invented attribute. It

could have been made its own element. The s could also have

been <div>s instead. The point is that the new instruments of HTML,

<div>, , id=, and class= can be used as near equivalents to cus-

tom tags, all with the benefit of not having to define custom tags.

A major difference, of course, is that it’s all loosely typed, so to speak.

There’s no XML schema for this custom HTML. One could say that

the “new and improved” HTML is a mechanism for producing unofficial

markup vocabularies.

Back to my original point, though: using CSS pushes you to structure

your HTML in a manner similar to the previous example. What we end

up with (besides cleaner content) is more semantic content, which is

good and is something worth noting.

14.6 On the Nature of Web Applications

How is a web application different from a desktop application?

Web apps are more document-like. They’re coarser grained. A web view

(the page) will typically contain relatively larger amounts of information

than a desktop application’s view. This stems from the nature of web

apps: they’re remote and thus must be coarser grained—fewer round-

trips to the server but fetching more information per trip.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=194

ON THE NATURE OF WEB APPLICATIONS 195

This gives web applications a different feel from desktop applications.

They also face different usability challenges. For example, all browsers

I know support a word-processor find feature that lets you find a piece

of text on a page. The browser will autoscroll to the proper location and

highlight the matching text on the page.

Take the find feature in Mozilla. You can find something without tak-

ing your fingers off the keyboard. Simply typing the search characters

automatically starts searching through the page. If the text is part of a

hyperlink, then pressing Enter will have the same effect as clicking on

that link.

Furthermore, techniques such as find don’t all have to be generic. A

web application developer can build little tools or UI widgets into the

app that take advantage of the developer’s knowledge of the applica-

tion’s domain to make the usability of the application really shine.

Fortunately for us, CSS features such as visibility, font styling, and

color coding, can be employed with ease to provide a whole suite of

such features.

I invite you to visit http://u2d.com/css/ and try the samples in the side-

bar. Each is a user interface design pattern that exploits the various

CSS properties to improve the usability of a web application.

Let’s quickly discuss each sample:

Show/Hide Error

Instead of displaying an error in its entirety, thus cluttering a page

with lots of information that the end user may not be interested

in, the error’s details are hidden and summoned only at the end

user’s request by clicking a button. They’re just as easily removed

or hidden again.

Scrolling

Sites are armed with headers, footers, sidebars, and menus for

a very good reason. These areas are like the end user’s cockpit

controls. They need to be accessible at all times. Unfortunately,

page bodies can be quite lengthy at times, and scrolling the main

body often results in these controls scrolling out of view. The

header or footer or sidebar links will often be clipped when the

end user scrolls to view parts of the page body. Simply scrolling

the body and not the rest of the page is the solution in this case.

http://u2d.com/css/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=195

ON THE NATURE OF WEB APPLICATIONS 196

Master/Detail

The epitome of the web-based catalog is the idea of viewing a list

of entries and then being able to drill down to the specifics of a

single item. In the case of the two round-trips to the server, one to

fetch the listing and another to view the details, we don’t have the

issue of the details of a different item cluttering the user’s locus

of attention. But there are plenty of cases where both the listing

and the details are on the same page (Javadoc springs to mind). A

typical class page template will show the details of every method

on a single page. The master/detail sample shows how to remove

from sight anything but the one item that the user is interested in.

Lots of information exists on that single page, yet the end user’s

view is a short, uncluttered page that quickly summons an item’s

details with a subsecond response.

Color Coding

Color coding is all about exploiting our natural ability to filter

information. Most people can quickly parse and comprehend a

fairly information-heavy page if that page is color-coded. There are

many issues to address regarding color coding, including exploit-

ing culturally or socially accepted conventions such as the color

red implying an error or danger, for example.

Legends

Again, this sample is about making information available to the

end user when requested and without requiring screen real estate.

Tabbed Panes

In this case, we’re exposing (or hiding) information by category.

Dynamic Tables

This is another mechanism for filtering out information. In this

case, the structure of the information is tabular.

Trees

Finally, the trees sample, which makes the branch nodes dynam-

ically expandable, is more of the same: hiding information that

the user is not interested in and enabling the end user’s locus of

attention on a portion of the tree.

What’s really striking here is that all these features have the same com-

mon thread and solve the same general problem: that of distilling large

amounts of content to help end users maintain their loci of attention.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=196

GOING FORWARD: MY WISH LIST 197

These are all good things for web applications that begin to make them

feel a little more like desktop applications.

14.7 Going Forward: My Wish List

A small wish list came out of my experience and experiments with CSS,

a wish list for either improving CSS or for improving other aspects of

the web by borrowing from the design of CSS:

• The ability to employ the same syntax that HTML framesets have

regarding how to specify relative the allotment of space between

two frames (horizontal or vertical), as in the following:

<frameset rows="10%,*" />

What I want is that little asterisk that allows me to tell the browser,

“Give the remaining horizontal space to this block here.”

• The extension of CSS’s aspect-like design to scripting: using selec-

tors to specify events upon which code is invoked, as follows:

a:click { javascript: doSomethingInteresting(); }

Status: this type of capability is already in the pipeline for CSS3,

which contains a module called “behavioral extensions to CSS.”

This bundles IE’s HTC and element behavior work. In addition,

they’ll be adding CSS-style event handling and code invocation

(even the ability to embed script within a CSS file with the @script

directive).

• The ability to reference a tag by id to specify relative positioning.

That is, absolutely positioned elements are relative to the most

immediate relatively positioned containing block. It’d be nice if I

could place content at the bottom of the page but specify some-

thing like this:

#someContent

{

position: absolute;

relative-to: #someOtherContent;

}

• In CSS stylesheets selectors are analogous to XPath expressions

that allow you to select or target specific points in a document.

Programmatically, the DOM must be used to select such points.

I think it’d be really nice if one could actually programmatically

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=197

GOING FORWARD: MY WISH LIST 198

take advantage of the CSS selector “language” or “syntax,” similar

to the way we can use Xpath APIs.

Status: Version 1.5 of Prototype.js3 adds this very feature!.

• In the same vein as the last request for a DOM getElementsBySe-

lector() method, I wonder how they overlooked putting getElements-

ByClassName() into the DOM HTML API (on HTMLElement). Again,

fortunately for us, Prototype.js has filled that gap.

• It would be really nice if the area where a list’s list-style-type or list-

style-image appears could be used as part of a selector in a CSS

rule. That is, this area could be made into a “hot spot” for (for

example) expanding and collapsing a tree. The current alternative

is to target the entire list item, which is less than optimal.

3http://prototype.conio.net/

http://prototype.conio.net/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=198

Chapter 15

Buried Treasure
by Glenn Vanderburg

Glenn Vanderburg has been a programmer through only the second half of the

history of computing, but he’s interested in the first 30 years, too. For years

he has dreamed of teaching a course on the topic. That’s just one reason he’s

delighted that people are discovering the practical value of knowing our history.

Glenn is a consultant who lives in Plano, Texas, with his wife, Deborah, and their

sons, James and Daniel.

Glenn talks about some recent tool and book favorites starting on page 215.

THE SIGNS 200

Over the past three years, many of my talks for the No Fluff, Just Stuff

symposium series have shared a common theme. It was partly con-

scious, but mostly it came naturally, as a reflection of where I think

our field is going.

I think our field is going backward.

And it’s not a minute too soon. For years, we’ve been fighting our

way forward, step by harried step, but for the most part it has been

down the wrong path. The grass looked greener here—or at least, bet-

ter manicured—but traps are lurking here, some of them very well con-

cealed. We keep falling into them, but we keep fighting on. “We must

be more careful!” we say, calling over our shoulders to our companions

as we walk toward the next pit.

But some in the programming field have started to remember another

place, one we passed on the way. It was a little unkempt and overgrown,

to be sure, and maybe there were just as many dangers—but some-

how the place, overall, was less dangerous. Plus, people who ventured

in there keep telling us about the riches to be found in that place—

wonderful treasures buried just below the surface.

The reasons why these older ways turn out to be better are subtle and

occasionally complex, and I don’t claim to understand them all. What-

ever the reasons, the signs of what’s happening are clear. Let’s look at

those first and then try to make sense of the whys and wherefores.

15.1 The Signs

The signs that we’re returning to older stomping grounds are every-

where. Those of us programmers who know the history of our field

spotted them early (although I certainly wasn’t the first). Now they’re so

prominent, and growing so quickly, that many people have spotted the

trend. The signs I’ve noticed tend to fall into a few distinct areas: the

way we go about designing and building systems, the kinds of program-

ming languages and techniques we employ, and the way languages and

platforms are implemented.

Design

The way programmers and teams of programmers design software is

changing. After decades of increasing investment in tools and disci-

plines to support an analytical approach to software design, our field

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=200

THE SIGNS 201

is running headlong toward a more empirical approach based on itera-

tion, trial and error, and rapid feedback. There is widespread acknowl-

edgment that the task of software design is simply too complex to tackle

with a purely analytical approach. Programming will always involve a

lot of careful thought, of course, but we must also be guided by feed-

back, checking our assumptions against the hard realities of real sys-

tems and running code.

The modern approaches to design aren’t precisely the same as the older

approaches from the 1960s and 1970s, but they share many of the

same characteristics. A prime example is the emphasis on iterative

development. Long before it became fashionable to try to design a pro-

gram completely before beginning programming, the common practice

was to build a simple, working system and gradually enhance it. Sto-

ries are even told of Marvin Minsky at MIT taking this practice to an

extreme, beginning development by starting to debug an empty pro-

gram. The modern equivalent of that, of course, is test-driven develop-

ment. Guiding our development with automated tests is relatively new,

but developing in small increments, evolving the design as we go, has

a long history.

Another sign: today we are beginning once again to emphasize code

over pictures in the design process. Don’t get me wrong—we’ll always

draw pictures of our systems from time to time; that’s something pro-

grammers have always done. But as the centerpiece of the design pro-

cess, UML and other graphical notations have clearly failed. After hav-

ing tried for years to improve software design by focusing on graphical

models before we start writing code, programmers have learned some-

thing crucial. Code—good clean code, at least—is a more expressive

notation for the details of software than boxes and lines.

As a computer science student in the 1980s, I read papers by Jon Bent-

ley and others from Bell Labs extolling the virtues of domain-specific

languages (DSLs). The best way to build many kinds of systems, they

said, was to design simple, focused, special-purpose programming lan-

guages for the applications’ domains, implement those languages, and

build the systems using languages tailored to the tasks at hand. Lan-

guage development tools such as yacc and lex were introduced as tools

to facilitate developing such languages. And that group had remarkable

success practicing what they preached, building groundbreaking tools

such as pic, grap, make, sed, awk, and, of course, yacc and lex. All of

those tools are still in use, in some form or other, decades later.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=201

THE SIGNS 202

That style of development never really took off outside Bell Labs. Now,

though, it’s seeing a sudden resurgence. One of the most dramatic

overnight success stories in software development is the Rails web

framework, and much of Rails’ strength comes from its inclusion of

several distinct, small domain-specific languages focused on various

aspects of web application development. Two related tools that have

also garnered their share of attention, Capistrano (née SwitchTower)

and Rake, are also based on those concepts. The implementation tech-

niques are different from what the Bell Labs gang wrote about (and I’ll

talk about the new techniques next) but the concepts are the same.

The idea of domain-specific languages seems to be one whose time has

come.

Programming Techniques

I also see big changes in the programming techniques we use to build

our software. This isn’t entirely unrelated to the previous section; these

techniques have strong effects on our design, and vice versa.

The most obvious change in this category is the move toward dynam-

ically typed languages. Static languages of various stripes have domi-

nated the software development for decades, from the loosely typed C

and C++ to the stronger type systems of Pascal, Java, and C#. Most

programmers have been taught that strong, static typing and compile-

time analysis provide the only way to build robust, reliable systems.

That idea seemed to make sense, but it ignored the many solid systems

built using dynamic languages. Additionally, during my ten years as a

Java programmer I saw firsthand that strong typing is not a panacea;

in fact, truly robust Java-based applications are rather rare.

Today, many developers have realized that a static type system is a

two-edged sword. It does have some benefits, but it also has some

costs. The advent of unit testing, more than anything else, has served to

weaken static typing’s appeal. Ruby, Python, and even JavaScript are

growing more and more popular as developers discover the productivity

advantages of dynamic typing.

For various reasons, many of these dynamically typed languages are

dynamic in other ways as well. Your code can change (or augment) the

way built-in facilities work, for example. This sounds similar to how

aspect-oriented programming systems work, but the idea isn’t new; in

fact, aspect-oriented programming is a direct attempt to adapt older

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=202

THE SIGNS 203

dynamic language techniques to static languages, pioneered by some

of the same people who built those dynamic language facilities.

Dynamic languages also blur the distinction between compile-time and

run-time; in such languages, new code can easily be added to the sys-

tem while it’s running. Combined with other dynamic characteristics,

this gives rise to a technique called metaprogramming, which is essen-

tially extending your programming language from within. The practice

of metaprogramming is a big part of the reason that domain-specific

languages are making a comeback, because compared to building a

stand-alone interpreter or compiler for a language, it’s much, much

easier to define domain-specific constructs in a language that supports

metaprogramming. The new wave of DSLs gaining popularity in the

Ruby community are built within Ruby itself as libraries.

The trend toward dynamically typed languages is both widespread and

strong. Less obvious, though, is a resurgence of interest in functional

programming and functional languages. Just in the past two years,

two compelling applications have appeared that are written in Haskell:

PUGS (an exploratory, prototype implementation of Perl 6) and Darcs (a

powerful, decentralized revision control system). Other interesting sys-

tems have been written in Objective CAML (including MTASC, a free,

blazingly fast ActionScript compiler). Those systems have prompted

many programmers to learn those languages just so they can con-

tribute to the projects, and the newcomers have been struck by the

power and efficiency of functional languages.

Plus, interesting functional languages continue to appear. XQuery, the

XML query language, is a functional language. This year’s No Fluff,

Just Stuff symposia will feature a talk from Ted Neward about Scala,

a terrific functional language designed to work compatibly on both the

JVM and the CLR. In fact, Ruby, Python, and JavaScript have strong

functional characteristics and are often used in a functional style.

But it’s not just a revival of old concepts in new languages; the old

languages themselves are seeing a resurgence. A surprising number of

people are discovering (or rediscovering) Lisp, due in part to the popular

essays of Paul Graham. Also, the use of Smalltalk is growing again,

sparked by some impressive systems such as Croquet and the brilliant

Seaside web framework.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=203

WHY NOW? 204

Language Implementations and Infrastructure

I remember vividly the reaction of many programmers when Java was

released: “It’s interpreted! It’s garbage-collected! All array references

are bounds-checked. You can’t use languages like that; they’re too

slow!”

That was the common wisdom among most programmers for about

three decades. To be efficient, languages had to be compiled, and pro-

grammers had to manage memory themselves.

It’s true that many Java-based systems perform poorly, and Java to

this day has a reputation for sluggishness. And, for that matter, early

implementations of Java really were excruciatingly slow. But that was

mostly due to immature implementations that used pure interpretation

of bytecodes and naive garbage collection strategies. In modern Java-

based systems, though, the slowness is due not to those characteristics

of the language implementation but to the libraries, frameworks, and

platforms that have been built on top of Java. Java’s garbage collector

performs extremely well, and many Java systems spend much less time

managing memory than do equivalent C and C++ programs. As far as

interpretation goes, the just-in-time compilers (JITs) and dynamic opti-

mization technologies employed by most Java implementations produce

very fast machine code at run-time.

Today we seem to have shed those earlier qualms about Java’s style

of language implementation. Oh, there will always be situations where

C is the most appropriate technology, but for most of the systems we

build, VM-based or interpreted languages are fast enough, and features

such as automatic memory management and array bounds checking

really do help us build more robust systems—they’re much more help-

ful, in my opinion, than static typing.

For most systems, you get much more performance benefit from good

architecture than you do from fast code. That’s a big part of the reason

that typical Rails applications are at least as fast as their J2EE coun-

terparts, even though Java typically benchmarks as about ten times

faster than Ruby.

15.2 Why Now?

So far I’ve avoided a crucial question: if these older ways of doing things

are so great, why didn’t they succeed at first? Lisp and Smalltalk had

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=204

WHY NOW? 205

their moments, as did bottom-up and iterative development, and the

market chose a different direction. Why? And what has changed now

to make the time right?

First, it’s important to realize that there are more ways to fail than

there are to succeed, and the problems weren’t necessarily inherent to

the technologies. Here are just a few ideas about what went wrong the

first time and why things are different now.

The kinds of design techniques and processes that are returning to

prominence were originally used by individuals and very small teams

and began to show real weaknesses on more ambitious projects with

larger teams. It was perfectly natural to try to inject more “disci-

pline” into things with the use of phases, careful analysis and planning,

inspections, and so on. But there are other forms of discipline besides

top-down control, and we’ve learned from painful experience that soft-

ware development is just too complicated a task to really benefit from

central planning. Economies around the world, successful businesses,

and even military organizations are pushing power and responsibility

down toward the people in the trenches. The software development

industry has learned the same lessons. Rigid control hasn’t helped us

avoid mistakes, so the industry is returning to basic skills, commu-

nication, and cooperation, supported this time by powerful tools and

improved team practices.

Dynamic languages can be implemented very efficiently, but it’s not

easy to do so. Early implementations of dynamic languages were rather

slow and required a lot of resources. It was much easier to build a C

compiler that generated fast code than to build, say, a Smalltalk VM

that performed similarly well. But implementation techniques have

continued to advance, and the performance gap has shrunk dramat-

ically. Not every dynamic or functional language has a state-of-the-

art implementation, but we know from examples like Common Lisp,

Squeak Smalltalk, and Haskell that it is possible for such languages to

be blazingly fast.

As language implementations have been getting faster, our cost models

have been changing. The first time around, slow CPUs and expensive

memory meant that computing resources were not to be wasted, and

dynamic languages looked like the wrong trade-off. Now, though, the

balance has shifted. Sure, we still can’t afford to be completely heedless

of CPU and memory utilization, but fast machines and cheap memory

mean that the sensible trade-off today is very different. Productivity is

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=205

WHY NOW? 206

much more valuable than it used to be in software development, and

languages that save our time at the expense of some extra CPU cycles

make a lot of sense.

As mentioned previously, we’ve begun using better development prac-

tices that help a lot. When projects don’t use version control and don’t

have a disciplined approach to testing, the safety net offered by static

typing seems to be quite valuable. We’ve learned, though, that we have

to build our own safety nets that cover all aspects of the project, not

just data types.

I could keep extending this list of reasons why things happened the

way they did. The full list includes reasons such as primitive tools, frac-

tured communities, weak development practices, incompatible compet-

ing dialects, expensive implementations, the lack of any free versions

that developers could play with, and more.

Ultimately, though, we never really gave these tools and techniques

a fair chance the first time. A world that hadn’t yet really grasped

the concept and power of “emergence” fled from iterative development

as soon as it began showing flaws, not considering that the problem

was a lack of supporting tools and practices rather than the technique

itself. As far as languages are concerned, Lisp and Smalltalk were

always on the fringes of the software field. COBOL, Fortran, C, and

BASIC occupied the center. Occasionally we would adopt some of the

ideas, such as object orientation, but we would try to fit them into the

world we were used to, rather than taking them on their own terms.

As a result, we missed some important subtleties, like (for example) the

fact that object orientation doesn’t exist in isolation but benefits greatly

from other language characteristics such as blocks, dynamic typing,

and automatic memory management.

So it’s wrong to say “we tried that once and it failed.” We’re not going

back to what we tried once; we’re going back to what others had suc-

cess with. The industry at large tried to go a different way, and at

long last we’ve begun to realize that no matter how many new tools

we throw at our problems, software development still isn’t getting any

easier. Maybe it’s time to rethink the whole way we’ve been going. The

people who really embraced Lisp and Smalltalk early on don’t think

those languages failed (except in terms of gaining broad acceptance).

On the contrary, most of them that I know are either still finding ways

to work with those technologies or else yearning for a return to the good

old days.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=206

MORE PAST IN OUR FUTURE 207

15.3 More Past in Our Future

I predict that we’ll see the increasingly wide adoption of dynamic lan-

guages, metaprogramming, and agile design and development practices

over the next few years. In spite of many naysayers, momentum seems

to be building in this direction.

I don’t think it will stop with Ruby, Python, or any of the other new old

languages that are gaining popularity. Although those languages bor-

row extensively from their progenitors, they stop short in some other

ways. I love programming in Ruby, but occasionally I find myself need-

ing some of the features of Smalltalk or Lisp that Ruby doesn’t have—

true macros, for instance, or the ability to easily pass multiple blocks

to a single method (with appropriate cues as to their distinct roles).

And don’t get the idea that I’m an old Smalltalk or Lisp programmer!

I come from a C, C++, and Java background. But I’ve recently begun

to understand some of the subtle strengths of languages that I used to

think were weird.

I’m not predicting a utopia, of course. These are trade-offs, and we’ll

give up some features to gain others. I can hear my skeptical friends

asking now, “Sure, all that stuff is powerful, but is that the kind of

power you want to give to the weakest programmers on your team?”

I bought into that argument for a while and argued that you should use

truly powerful languages only with sharp, experienced teams. But then

I started to notice something about the Java projects I was involved

in: weak teams and weak programmers will go to great lengths to do

the wrong thing. Time and again I’ve seen system designs that were

not only inappropriate but also much more difficult to build than better

designs would have been. I’ve just shaken my head in amazement—not

at the inappropriate designs per se because good design is difficult but

at the effort and tenacity it took to proceed with those designs in the

face of the obstacles the teams had to overcome to build them.

What I’ve concluded is that you can’t keep a weak team out of trouble

by limiting the power of their tools. The way forward is not figuring out

how to achieve acceptable results with weak teams; rather, it’s under-

standing how to build strong teams and how to train programmers to

be part of such teams. One place to start is with more emphasis on his-

tory. Our field is just barely 60 years old; there’s no excuse for allowing

programming students to remain ignorant of such recent history. Our

history is rich with lessons that have been forgotten.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=207

MORE PAST IN OUR FUTURE 208

Here’s an example. I’m developing with Rails right now, and Rails incor-

porates nice support for database migrations: little classes that encap-

sulate the changes to production databases (including both schema

and data changes) required to move from one version or release of an

application to another. It’s a brilliant feature. But it has some prob-

lems, and most of them involve the way migrations mesh with the way

we use version control. When we have a particular version of the soft-

ware checked out, we are working with a set of files that describe the

way the system looks at a given point in time. But migrations don’t fit

that model. There, in one version of your project, is a set of files that

describe the whole history of the database schema, not just a point in

time. It’s like having a little version control system stored within your

project, and that feels odd.

Typically we use version control to manage versions of program source

code, and we use that source to build the system from scratch each

time. Migrations, on the other hand, operate on persistent data; they

don’t have the luxury of starting from a clean slate.

In thinking about how to resolve some of these issues and perhaps fix

them, I suddenly realized Smalltalk developers have dealt with similar

issues for years. Smalltalk programs don’t exist in source files on disk

that are loaded, parsed, and compiled every time the system is run.

Rather, they exist as objects—class objects, method objects, predefined

and preconfigured instances, and other things—in a Smalltalk image,

essentially a dump of Smalltalk’s heap that is reloaded from disk and

reconstituted just as it was the last time you were using it. In other

words, Smalltalk programs exist as persistent objects.

So to learn how to solve my problems with migrations, it might help me

to find out how Smalltalk developers do version management of their

applications. I don’t know the answer yet; that’s a part of Smalltalk I’m

not familiar with. But I’m going to find out.

There’s more buried treasure there.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=208

Appendix A

The Authors Speak!
We asked the authors to tell us what they’re reading and which tools

they’re using. Here’s what they said.

A.1 Scott Davis

Favorite Books

I’ve devoured a slew of non-computer-related books in quick succes-

sion: The Tipping Point [Gla02] and Freakonomics [LD05] are two great

books that coincidentally explore some of the same case studies from

different perspectives. Both are very accessible, enjoyable explorations

of the phenomena of popularity. The Tipping Point is more of a psy-

chology/sociology book whereas Freakonomics is written from the per-

spective of a PhD in economics. I’m hoping to gain some insight as to

why some technologies like Ajax and Ruby on Rails aren’t just merely

interesting, but wildly popular. What is keeping something that I think

is vastly superior (Mac OS X) from “crossing the chasm” to become a

mainstream reality instead of a niche product?

The Paradox of Choice: Why More Is Less [Sch05] is another good book

that is strangely complementary to the previous two. It talks about

how, in theory, more choices should lead to happier consumers. In

reality, study after study seems to indicate that the reverse is true—the

more choices we have in a given category, the more unhappy we end

up being about the choice we eventually make. The proliferation of web

frameworks comes to mind here. Ajax frameworks seem to fall into this

same category, while Ruby on Rails stands out as the clear market-

leader for Ruby developers. Without taking anything away from the

NEAL FORD 210

intrinsic beauty of Ruby on Rails, does the lack of competition con-

tribute in some significant way to the infatuation with this framework?

Will Ruby be as appealing to developers once it has the competitive,

confusing, redundant ecosystem that Java has?

The last pure Java-related book I read was Maven: A Developer’s Note-

book [MO05]. Saying that Maven is just like Ant is a disservice to both.

I haven’t been drawn to Maven in the past because I felt like I was los-

ing control of my build process. I’m slowly coming to the realization

that it isn’t a bug of Maven’s; it’s a feature. Ant allows me to micro-

manage every last detail of my build. Maven frees me from obsessing

over the minutiae of my build process and allows me to produce work-

ing code more quickly. I haven’t come to a conclusion on this matter

yet, but Maven: A Developer’s Notebook certainly makes the first strong

argument I’ve heard that challenges the de facto standard of Ant.

Favorite Technical Tool

Probably Maven. Enough open source projects use it (ActiveMQ, Geron-

imo, GeoTools) that I can’t ignore it any longer. It seems very Ruby

on Rails–like in its ability to quickly set up a scaffolding (including

unit tests) for a variety of Java projects and GEMS-like in its ability to

“automagically” download required JARs for the build process. Maven:

A Developer’s Notebook [MO05] has gone a long way toward helping me

understand Maven; now it’s a matter of seeing whether I can actually

incorporate it into my day-to-day Java development process.

I think that 2006 will be the year of JavaScript. As Glenn Vanderburg

says, “JavaScript: There’s a Real Programming Language in There.”

Ajax has gone a long way towards legitimizing the language. Bringing

native Rhino support to the JVM in Java 6 means that JavaScript will

be a first-class citizen in both the web browser as well as the JVM.

A.2 Neal Ford

Favorite Technical Book

A golden oldie, Smalltalk Best Practice Patterns [Bec96] by Kent Beck,

is my favorite technical book. The Smalltalk guys already figured out

most of the “innovations” we think we have discovered anew. Even

if you don’t care for Smalltalk, this book can teach you tons about

software development.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=210

ANDREW GLOVER 211

Favorite Technical Tool

My favorite recent technical tool is actually a combination of a bunch

of old technologies. In my current project, we needed to improve com-

munication between developers in the United States and India. We

set up a wiki and started a protocol where we would update the wiki

every day, but I realized at some point that we were violating the DRY

(Don’t Repeat Yourself) principle, because we were putting the same

comments in code check-ins and the wiki update. So, we wrote a lit-

tle developer shim as a post-commit hook for Subversion. This little

program listens for check-ins, automatically pulls the developer com-

ments out, and posts them to the wiki. The wiki we’re using (Instiki,

http://instiki.org/) publishes RSS updates for Wiki updates. Now, on all

our pairing workstations, we installed an RSS reader that launches

automatically as part of our goodMorning task in Nant. This means that

everyone who sits down to develop gets an update on all the stuff that

has happened in the project since they last read the updates.

A.3 Andrew Glover

Favorite Technical Books

• Java Design [CMK98] by Peter Coad and others. ALthough this

book seems ancient (it was written in 1998), Chapters 2 and 3 are

probably the best reading out there because they cover design-

ing with composition rather than inheritance and designing with

interfaces. These two techniques, when applied correctly, sepa-

rate the professional from the hobbyist.

• Bruce Eckel’s Thinking in Java [Eck06] and Joshua Bloch’s Effec-

tive Java [Blo01] are two classics that every Java developer should

read cover to cover.

• I found Software by Numbers [DCH03] by Denne and Cleland-

Huang quite interesting from a management standpoint.

Favorite Developer Tools

• Google’s RSS reader has an intuitive aggregation platform that

saves me from surfing a variety of sites for information.

• The WordPress blogging platform is incredibly simple to get up and

running, and there is a rich community out there for support and

new features.

http://instiki.org/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=211

KIRK KNOERNSCHILD 212

A.4 Kirk Knoernschild

Favorite Technical Book

There are a lot of technical books that I reference frequently, but the

most frequent must be Design Patterns [GHJV95].

Favorite Tools

I wouldn’t say I have a favorite tool. It’s really a genre of tools that

helps me write better code. This includes tuff like JUnit, Emma, PMD,

JDepend, JarAnalyzer, etc. They must be easy to use and light.

A.5 Mark Richards

Favorite Technical Books

• Death March [You99] by Edward Yourdon. Although things will

never change, it is always good to know how and when you will

run into the death spiral of IT projects. This book is a must for

anyone involved in a large or difficult project.

• Expert One-on-One J2EE Design and Development [Joh02] by Rod

Johnson. This book lays the foundation for the Spring framework

and does a great job explaining when to use EJB and when not to

use it. It is an excellent book and should be required reading for

any J2EE architect or developer.

• My recent “fun” technical book is the Ted Nelson two-fer: Dream

Machines and Computer Lib (1974). I recently was able to get my

hands on this little gem from a friend of mine. What an amaz-

ing book. One side has Dream Machines; flip it over and you get

Computer Lib. Although outdated, it is a classic and is fun to read.

Favorite Technical Tool

I have two answers to this question. First, I must say that the digi-

tal camera has recently become one of my favorite productivity tools.

There is no better way of capturing a whiteboard design session bet-

ter than with one of these little babies, especially when you are getting

kicked out of a conference room! Second, from the software stand-

point, I would have to say Eclipse. You can do anything with this tool—

including end-user rich client GUIs. It is the wave of the future, and

my prediction is that it will replace browser software within the next

ten years.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=212

IAN ROUGHLEY 213

A.6 Ian Roughley

Favorite Technical Books

Working Effectively with Legacy Code [Fea04] by Michael C. Feathers

and Object-Oriented Reengineering Patterns [DDN02] by Serge Demeyer,

Stéphane Ducasse, and Oscar Nierstrasz. These books provide a wealth

of information in the form of strategies and solutions for not only work-

ing with legacy code but also working with code that you are not familiar

with.

Favorite Technical Tool

Groovy. I find myself using Groovy more and more, especially now that

IDE plug-ins are available (even though they are still immature). The

feature I like the most is being able to utilize my existing Java code

and libraries from within a scripting environment. Experimenting with

code, writing tests, and quickly throwing together scripts for those one-

off tasks has never been easier!

A.7 Brian Sletten

Favorite Technical Books

The Social Life of Information [BD02] by John Seely Brown and Paul

Duguid and Bo Leuf’s The Semantic Web: Crafting Infrastructure for

Agency [Leu06]

Favorite Technical Discoveries

• NetKernel (http://www.1060.org) is a scalable platform that marries

the best of REST and Unix pipelines for XML processing and other

goodness.

• ActiveRDF (http://activerdf.m3pe.org/) is a Ruby library to create an

Active Record–like way of dealing with RDF.

• Elmo (http://www.openrdf.org) is a library for dealing with several-

well known SemWeb vocabularies in idiomatic Java.

• MINA,1 Multipurpose Infrastructure for Network Application, a

network application framework that is part of the Apache Direc-

tory Project. It supports the development of high-performance,

highly scalable network applications.

1http://directory.apache.org/subprojects/mina/

http://www.1060.org
http://activerdf.m3pe.org/
http://www.openrdf.org
http://directory.apache.org/subprojects/mina/
http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=213

EITAN SUEZ 214

A.8 Eitan Suez

Favorite Technical Books

On the technical front, it’s Agile Web Development with Rails [TH05].

This sounds a little corny, but I have to hand it to Dave Thomas. I

believe he has written what I consider to be one of the best books of

the year, from the way the book is organized (comprehensive tutorial

and comprehensive reference) to how completely thoroughly the book

covers the technology it targets and finally to the revolutionary nature

of the technology itself. It’s a winner.

On the nontechnical front, I have recently read a relatively old book:

Night [Wie82] by Elie Wiesel. I cannot think of another book that has

made a stronger impression on me.

Favorite Developer Tools

I had a difficult time naming a single tool. Here are four; each is a

favorite in its own category:

• Ubuntu Linux is a terrific environment that is composition of tools

that has been a joy to discover and work with over the last nine

months. It includes Gnome, apt-get, and the synaptic package

manager, various GTK and Qt apps for everything from email (Evo-

lution) to RSS readers (Straw), browsers (Epiphany), simple text

editors (gedit), and much more.

• Markdown is the way writing for web publishing was meant to be.

Its name says it all: Markdown is less markup; it frees writers

from the chains/tedium of HTML authoring and allows them to

concentrate on what they have to say. This is the way to more

prolific writing and authoring for the Web.

• Typo CMS is a terrific, simple, extensible, Rails-based content

management system. Although there are literally hundreds of con-

tent management systems to choose from these days, this one is

a winner because it supports Markdown. It is Rails-based and so

can be easily learned, understood, extended, and customized.

• IntelliJ IDEA is still a terrific, fast IDE for Java development and

more. It has good support for XML editing, JavaScript, and CSS.

It’s nice to have it all under a single environment. It is still the

workhorse for Java development.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=214

GLENN VANDERBURG 215

A.9 Glenn Vanderburg

Favorite Technical Book

I just reread Tom DeMarco and Timothy Lister’s Waltzing with Bears:

Managing Risk on Software Projects [DL03]. Even though I read it just

a few years ago, it was well worth reading again. It’s full of truth,

uncommon common sense, and excellent pragmatic advice for effective

risk management (or, as the authors call it, “project management for

grown-ups”).

Favorite Developer Tool

My favorite recent discovery is a tool for Mac web developers called Xyle

Scope, from Cultured Code. It’s a fantastic tool for understanding and

debugging web page formatting.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=215

Appendix B

Resources
B.1 Bibliography

[BD02] John Seely Brown and Paul Duguid. The Social Life of Infor-

mation. Harvard Business School Press, 2002.

[Bec96] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall,

Englewood Cliffs, NJ, 1996.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 2000.

[Blo01] Joshua Bloch. Effective Java Programming Language Guide.

Addison Wesley Longman, Reading, MA, 2001.

[CMK98] Peter Coad, Mark Mayfield, and Jonathan Kern. ava Design:

Building Better Apps and Applets. Prentice Hall, Englewood

Cliffs, NJ, 1998.

[Coc04] Alistair Cockburn. Crystal Clear: A Human-Powered

Methodology for Small Teams. Addison Wesley Longman,

Reading, MA, 2004.

[Dav06] Scott Davis. Pragmatic GIS. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2006.

[DCH03] Mark Denne and Jane Cleland-Huang. Software by Num-

bers: Low-Risk, High-Return Development. Prentice Hall,

Englewood Cliffs, NJ, 2003.

[DDN02] Serge Demeyer, Stéğśhane Ducasse, and Oscar Nierstrasz.

Object-Oriented Reengineering Patterns. Morgan Kaufman,

2002.

BIBLIOGRAPHY 217

[DL03] Tom Demarco and Timothy Lister. Waltzing with Bears:

Managing Risk on Software Projects. Dorset House, New

York, NY, 2003.

[Eck06] Bruce Eckel. Thinking in Java. Prentice Hall, Englewood

Cliffs, NJ, fourth edition, 2006.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[For03] Neal Ford. Art of Java Web Development: Struts, Tapestry,

Commons, Velocity, JUnit, Axis, Cocoon, InternetBeans, Web-

Work. Manning Publications Co., Greenwich, CT, 2003.

[FWA+99] Neal Ford, Ed Weber, Talal Azzouka, Terry Dietzler, and

Casey Williams. JBuilder 3 Unleashed. Sams Publishing,

Indianapolis, IN, 1999.

[Gea99] David Geary. Graphic Java 2: Swing. Prentice Hall, Engle-

wood Cliffs, NJ, 1999.

[GH04] David Geary and Cay Horstmann. Core JavaServer Faces.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Gla02] Malcolm Gladwell. The Tipping Point: How Little Things Can

Make a Big Difference. Back Bay Books, 2002.

[Gra04] Paul Graham. Hackers and Painters: Big Ideas from the

Computer Age. O’Reilly & Associates, Inc, Sebastopol, CA,

2004.

[HM05] Rob Harrop and Jan Machacek. Pro Spring. Apress, Berke-

ley, CA, 2005.

[III99] James A. Highsmith III. Adaptive Software Development:

A Collaborative Approach to Managing Complex Systems.

Dorset House, New York, NY, 1999.

[Joh02] Rod Johnson. Expert One-on-One J2EE Design and Develop-

ment. Wrox, 2002.

[Kay03] Doug Kaye. Loosely Coupled: The Missing Pieces of Web Ser-

vices. RDS Press, 2003.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=217

BIBLIOGRAPHY 218

[Kno01] Kirk Knoernschild. Java Design: Objects, UML, and Process.

Pearson Education, Indianapolis, IN, 2001.

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-

Oriented Programming. Manning Publications Co., 2003.

[Lak96] John Lakos. Large-Scale C++ Software Design. Addison Wes-

ley Longman, Reading, MA, 1996.

[Lar04] Craig Larman. Agile and Iterative Development: A Manager’s

Guide. Addison-Wesley, Reading, MA, 2004.

[LD05] Steven D. Levitt and Stephen J. Dubner. Freakonomics:

A Rogue Economist Explores the Hidden Side of Everything.

William Morrow, 2005.

[Leu06] Bo Leuf. The Semantic Web: Crafting Infrastructure for

Agency. John Wiley & Sons, 2006.

[MD05] Tom Marrs and Scott Davis. JBoss at Work: A Practical

Guide. O’Reilly & Associates, Inc, Sebastopol, CA, 2005.

[MO05] Vincent Massol and Timothy O’Brien. Maven: A Developer’s

Notebook. O’Reilly & Associates, Inc, Sebastopol, CA, 2005.

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software

Development: An Agile Toolkit for Software Development

Managers. Addison-Wesley, Reading, MA, 2003.

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Addison-

Wesley, Reading, MA, 2003.

[RG05] Jared Richardson and Will Gwaltney. Ship It! A Practical

Guide to Successful Software Projects. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2005.

[Sch04] Ken Schwaber. Agile Project Management with Scrum.

Microsoft Press, Redmond, WA, 2004.

[Sch05] Barry Schwartz. The Paradox of Choice: Why More Is Less.

Harper Perennial, 2005.

[Sub05] Venkat Subramaniam. .NET Gotchas. O’Reilly & Associates,

Inc, Sebastopol, CA, 2005.

[Sub06] Venkat Subramaniam. Practices of an Agile Developer: Work-

ing in the Real World. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=218

BIBLIOGRAPHY 219

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development with Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2005.

[TYBG04] Jon Thomas, Matthew Young, Kyle Brown, and Andrew

Glover. Java Testing Patterns. Wiley, 2004.

[Wei02] David Weinberger. Small Pieces Loosely Joined: A Unified

Theory of the Web. Perseus Books Group, Cambridge, MA,

2002.

[WFW95] Edward C. Weber, J. Neal Ford, and Christopher R. Weber.

Developing with Delphi: Object-Oriented Techniques. Pren-

tice Hall, Englewood Cliffs, NJ, 1995.

[Wie82] Elie Wiesel. Night. Bantam, 1982.

[You99] Edward Yourdon. Death March: The Complete Soft-

ware Developer’s Guide to Surviving âĂŸMission Impossible’

Projects. Prentice Hall, Englewood Cliffs, NJ, 1999.

http://books.pragprog.com/titles/nfjs06/errata/add?pdf_page=219

Index
A
Abstract syntax, 27

Action, 39

Action class, 18–21

Action subclass, 19

Acyclic dependencies, 95f

addAdvisor() method, 75

addFieldExtractor() method, 22

Advice, 68–73

after, 71f, 73

around, 70, 71f, 73

Aspect, wiring together, 69

before, 70, 71f, 73

before() method, 69

defined, 68

interactions (Java object), 71f

introduction, 71f

MethodBeforeAdvice class, 69

NullBlocker class, 68–70

Pointcut example, 68

ProxyFactory class, 69

Recorder class, 70, 73

setTarget() method, 69

Spring AOP, 68–73

TestBeforeAdvice class, 69, 70

throws, 71f, 73

types of, 71f

Agility, 158–168

(Adaptive software development)

ASD, 168

attitude and, 158

communication, 159–160

Crystal family, 166–167

defined, 158

early methodologies, 159

Evo, 166

eXtreme Programming (XP), 162–165

factors affecting progress, 161

Lean development (LD), 167

Scrum, 165–166

selecting a methodology, 168

timelines, 160–168

Ajax, 40–43

JavaScript framework and, 42

Prototype JavaScript library, 42

request, 41

Ajax.Updater() method, 42

Amazon (RESTful interface), 10

“An early look at JUnit 4” (Harold), 178

Ant, 57, 58, 95, 97, 120, 127, 133–135,

139

Hibernate and, 172, 173

<java> task, 173

ANTLR, 31

grammar, 33

lexer, 33

main() method, 33

parser, 33

workout log example, 31–34

Apache Axis project, 6, 8

Art of Java Web Development (Ford), 14

Art of UNIX Programming (Raymond), 15

ASD, 168

Aspect DI

defined, 68

nested beans, 78

pointcut properties, 78

Spring AOP, 76–78

target properties, 78

Aspect-Oriented Programming, 63, 66,

67f, 156, 203

advice, 192

aspect name validation, 66

DI, synergistic effect, 66

JUnit comparison, 183

pointcuts, 192

styling in CSS, 192

AspectJ, 183

AspectJ in Action (LADDAD) 221 COMPONENT TESTS

AspectJ in Action (Laddad), 81

Atom

Publishing Protocol RFCs, 12

ROME toolkit, 12

Syndication Format, 12

B
Backus, John, 31

Basic, 206

BAT, 126–131

Automate, 128–129

Build, 126–127

Mock client test, 130

Smoke tests, 128, 129

Test, 129–131

testing issues, 127

Bayer, Sam, 168

Beck, Kent, 162

before() method, 69

Bell Labs, 201, 202

Bentley, Jon, 201

Binary dependencies, 97

Blogging, 11

Atom Publishing Protocol RFCs, 12

Atom Syndication Format, 12

Blojsom, 12

Blojsom, 11, 12

BNF (Backus-Naur Form), 31

boundary class, 17

BPEL (Business Process Execution

Language), 13, 106, 112

Branch coverage, 136

Buffering data, 145

Business service, 105

C
C, 206

C#, 202

call() method, 181

Callback, 93, 94

Capistrano, 202

Charette, Robert, 167

Clark, Mike, 117, 124

Class dependencies, 85, 86f, 87–93

aggregation, 88

association, 88

composition, 88

Clay

HTML mock-up, 47f

HTML view support in Shale, 47

HTML, replace with JSF, 47

JSF components absorb HTML

mock-up, 50f

JSF components replace HTML

mock-up, 48f

jsfid= attribute, 47, 49

message component, 49

modifications to HTML mock-up, 49f

parsing, 48

Cobertura, 133–136

ANT, 134

attributes, 140f

Branch coverage, 136

class-level coverage report, 136f

code coverage percentages, 139

drawbacks, 134

JAR, 134

Java classes, 134

Line coverage, 136

metrics, 136

options, 140f

package-level coverage report, 135f

report generation, 135

task definition, 134

tools, 134

user vs developer testing

percentages, 140–141

WAR, 134

COBOL, 206

Cockburn, Alistair, 159n, 167

Code coverage, 133–142

85%, 138

background, 133–136

Branch coverage, 136

class-level coverage report, 136f

hard to test code, 137–138

law of diminishing returns, 137

Line coverage, 136

maintenance of, 139

package-level coverage report, 135f

reports, 135

user vs developer testing

percentages, 140–141

Code management, 119

Coding standards, 163

Collective ownership, 163

Component tests, 54–56, 59

API, 54

considerations, 54

DbUnit, 56

defined, 54

example, 54–56

CONCRETE SYNTAXES 222 DECORATOR PATTERN

Hibernate, 56

vs higher level tests, 54

Spring, 56

when to execute, 56

XML parsing, 56

Concrete syntaxes, 27

Configuration code, 21

configureServiceCall() method, 25

configureUsage() method, 25

Continuous integration (CI), 52, 129,

131, 164

benefits of, 117

compiles, 122

CruiseControl, 122, 124

features of, 118

key practices, 119–122

products for, 124

resources, 124

scripted build, 120

source code management, 119

steps of, 118

test automation, 120–122

automatic, 121

benefits of, 122

binary, 121

external dependencies, 121

repeatable, 121

timely feedback, 117

Controller servlet (in J2EE Front

Controller), 20

Core JavaServer Faces (Geary,

Horstmann), 37

Cross-cutting concerns, 65, 66, 67f

CruiseControl, 122, 124

Crystal family, 166–167

CSS, 186–198

advice bodies, 193

book catalog example, 194

box model, 186

browser potential, 186

code invocation, 193

Color coding, 196

CSS3, 193, 197

designers vs developers, 186

Dynamic tables, 196

event handling, 193

features, 195

font styles, inheritance, 190

hacks, 186

HTML and, 193

improvement, areas for, 197–198

Legends, 196

Master/Detail, 196

positioning, 193

pseudo-selectors, 192, 193

refactoring client side, 186

refactoring steps, web pages,

187–188

relative positioning, 191

Scrolling, 195

Show/Hide error, 195

styling, 190

styling, aspect oriented, 192–193

Tabbed panes, 196

Trees, 196

Web, 187–188

Web applications, 194–197

Cunningham, Ward, 162

Customers, on-site, 164

Cycles, 93

Cyclic dependencies, 94f, 98

D
Darcs, 203

dateUsername() method, 42

Davis, Scott

background, 1

favorite books, 209–210

favorite tools, 210

weblog of, 11

website, 1

DbUnit, 56

Deadlines, 160–161

Decorator Pattern, 144f, 144–156

account service transformation

example, 153–155

AccountRegularExpressionTransformer

class, 154, 155

AccountService class, 154

BufferedReader class, 151, 152

buffering data, 145

CCMaskRegularExpressionTransformer

class, 152, 153

concept, 144

credit card protection example,

150–153

drawbacks, 156

Enumeration class, 147

fetchAndTransformNextLine() method,

152

FileInputStream class, 149, 151

I/O classes, 145

DEFECT DRIVEN TESTING 223 DSL

implementation details, 147

InputStream class, 147, 149, 151

Java, 145

JDK I/O design, 155

lex, 151

RegularExpressionInputStream class,

151, 155

RegularExpressionReplacer class, 152

ReportInputStream class, 147, 149–151

RESTful payment example, 146–149

scenario 1, 146–149

scenario 2, 150–153

scenario 3, 153–155

schema, 147

separation of concerns, 144

SequenceInputStream class, 147

SOA, 146

SOAP, 149

String class, 147

transform() method, 152

Transformer class, 154

Defect driven testing, 130

Demotion, 93, 94

Dependency injection (DI), 63, 65, 66f

aspects, 68

cross-cutting concerns, 65, 66, 67f

tight coupling and, 65

Dependency management, 84–103

abstract coupling, 93

abstraction, improper use of, 87

aggregation, 88

architecture, effects on, 87

association, 88, 89f

abstract, 91, 92f

bidirectional, 89, 91

independent testing, 92

unidirectional, 91

binary dependencies, 97

challenges, 86–88

extensibility, prevention of, 87

maintenance, 87

reusability, 87

testability, 87

understanding, 87

class dependencies, 85f, 85, 87–93

Client class, 85

composition, 88

coupling, 87

cycles, 93

defined, 85

design, effects on, 87

dynamic relationship, 89f

inheritance, 88, 89f

JarAnalyzer, 102–103

Java, 85

JDepend, 95–97, 101, 102

package dependencies, 85, 86f, 87,

93–97

abstract classes, principles for

use, 95

acyclic, 95f

allocation to units of deployment,

98f

callback, 93, 94

component diagram, 98f

cyclic, 94f

demotion, 93, 94

design principles, 95

escalation, 93, 94

interfaces, principle for use, 95

physical dependencies, 85, 86f, 87,

97–103

abstraction, introducing, 98

cyclic, 98

decoupling files, 97

eliminating, 100f

inverting, 98, 99f

levelized build, 101, 102

vs physical dependencies, 97

reallocating classes, 100f

refactoring class structure, 99f

Service class, 85

setup() method, 96

static relationship, 89f

testCycles() method, 96

testPackageDependencies() method, 96

Developing with Delphi: Object-Oriented

Techniques (Ford), 14

Directories

component, 57, 58

system, 57, 58

unit, 57, 58

doInSession() method, 175

DOT, 102

DSL, 15–36, 201

abstract syntax, 27

advantages, 16

ANTLR, 33

boundary class, 17

building, 27–34

concrete syntaxes, 27

configuration, 27

DUCK TYPING 224 FRAMEWORKS FOR JSF

defined, 16–17

entity class, 17

Exercise class, 28

external, 17, 31–35

Flat files, reading, 21–27

framework, 27

getter() method, 30

grammar, 31

internal, 17, 28–30, 35

J2EE Front Controller, 18–21

Java code, 25

jMock, 30

Language building blocks, 31

Language construction tools, 31

Language oriented programming, 17

language workbenches, 34–35

lexers, 31

modeling approach, 16

MPS editor for, 36f

parsers, 31

plain text file, 26

Ruby code, 27

Ruby on Rails, 16

setter() method, 30

setXXX() method, 30

strategies, defining (Flat files), 22

Strategy design pattern, 22

strategy framework, 25

symbol integration, 35

types, 17

workout log example, 28–34

XML, 26

Duck typing, 15

Dynamic languages, 202, 205

examples of, 15

Little languages, 15

type safety, 15

E
eBay (WS requests), 4

EBNF, 31

EJB, 38

“The End of Software Engineering and

the Start of Economic-Cooperative

Gaming” (Cockburn), 159n

entity class, 17

ESB, 105–115, 115

BPEL, 112

business services, 107f

Choreographer, 108, 109

Choreographer above Mediator, 113f,

112–113

Choreographer below Mediator, 110f,

109–112

Choreographer below Mediator,

process flow, 110–111

Choreographer/Mediator at same

level, 113f, 113–114

components of, 107, 108f

Mediator, 108, 109

process choreography, 105, 108–115

Rules engine, 108

service orchestration, 105

Service registry, 108

ServiceMix, 13

Escalation, 93, 94

eval () method, 12

Evo, 166

execute() method, 19, 21, 176

Exercise class, 28

External DSL, 31–35

External DSL and Language

workbenches, 35

eXtreme Programming (XP), 162–165

principles of, 163–165

values of, 162

F
Facelet, 38, 39

Feedback, importance, 117

Fielding, Roy, 8, 10

Flat files, 21–27

defining strategies with DSL, 22

pull services call records example,

24–25

Strategy design pattern, 22

Foemmel, Matthew, 124

Ford, Neal

background, 14

on DSLs, 14–36

email, 14

favorite book, 210

favorite tool, 211

website, 14

Fortran, 206

Fowler, Martin, 16, 124, 187

Framework classes, 18

Framework code, 21

Frameworks (writing your own),

178–182

Frameworks for JSF, 38–39

FUNCTOR 225 HTTP

Functor, 175

Future prospects, 200–208

background, 200

code and, 201

design trends, 200–202

DSLs, 201

Dynamic languages, 202

history, importance of, 207

iterative development, 201

language implementation and

infrastructure trends, 204

metaprogramming, 203

predictions, 207–208

programming technique trends,

202–203

reasons for changes, 204–206

test-driven development, 201

trends, 200–204

G
Geary, David

background, 37

on Shale, 37–50

GET request, 3, 10

getCode() method, 22

getProxy() method, 69, 75

getter() method, 30

Gilb, Tom, 166

Glover, Andrew

background, 51

favorite books, 211

favorite tool, 211

on test categorization techniques,

51–61

website, 51

Gold Parser System, 31

Google

search results example, 6f

search results in XML, 6

SOAP request, 6, 7f

Web API toolkit, 6

Google Maps API: Adding Where to Your

Application (Davis), 1

Grady, Robert, 138

Graham, Paul, 15, 16, 203

Grammar, 31, 33

Graphic Java: Swing (Geary), 37

GraphViz, 102

Gregorio, Joe, 11

H
Hackers and Painters (Graham), 15, 17

hacks, 186

Halloway, Stuart

background, 62

Component Development for the Java

Platform, 62

on Spring AOP, 62–82

Harold, Elliotte Rusty, 178

Harrop, Rob, 81

Haskell, 203, 205

HBMContext.runTest() method, 179

Hibernate, 170–184

Ant, 172, 173

execute() method, 176

hbm2ddlauto feature, 172

HibernateTemplate, 176

HQL, 171, 172, 183

JUnit, 176–178

refactoring, 174–175

schema exports and updates,

172–174

schemaExport() method, 172

schemaUpdate() method, 172

setup, 171

setup and teardown code, 174–176

setup() method, 176

Spring framework, 175

summary, 182

teardown() method, 176

tutorial, 170–172

Highsmith, Jim, 168

Horstmann, Cay, 37

"How to Misuse Code Coverage"

(Marick), 138

HQL, 183

HTML

class=, 194

Cobertura reports, 135

CSS and, 193

<div>, 194

id=, 194

MVC pattern, 4

, 194

HTML views, 46–49

HTTP

GET request, 3

MIME type, 4

Web services (WS), 3

I/O 226 JAVA API

I
I/O, 145

Implementation service, 105

Inheritance, 88–90

association, 89f

defined, 88

Intentional Software, 35

Internal DSL, 28–30, 35

Internet

interoperability, 3

reasons for success, 3

URI, 9

URL, 9

Interoperability, 3

Introduction (defined), 68

Isolated unit tests, 52

Iterative development, 201

J
J2EE, 186

J2EE Front Controller, 18–21

Action class, 18, 19, 21

Action subclass, 19

configuration code, 21

controller servlet, 20

execute() method, 19, 21

framework classes, 18

framework code, 21

MainController class, 20, 21

map actions of request, 20

Rails, 204

workflow classes, 18

JarAnalyzer, 102–103

Java, 134

AccountRegularExpressionTransformer

class, 154, 155

AccountService class, 154

Advice, interactions, 71f

Ancestor class, 88, 89

ANTLR, 31–33

Buffered Reader class, 151, 152

CCMaskRegularExpressionTransformer

class, 152, 153

class dependencies, 85, 86f

Client class, 85

cross-cutting concerns, 65

Decorator Pattern, 145

dependency injection (DI), 63

dependency modules, 85

Descendant class, 88, 89

doInSession() method, 175

DSL and, 15

dynamic language, 202

Enumeration class, 147

execute() method, 176

extends keyword, 88

fetchAndTransformNextLine() method,

152

FileInputStream class, 149, 151

functors, 175, 184

garbage collector, 204

getter() method, 30

Gold Parser System, 31

I/O streams, 155

implements keyword, 88

inheritance and, 88

InputStream class, 145, 147, 149, 151

interface, 63

internal DSL, 28–30

J2EE Front Controller, 20

Java 5 generics, 22

jMock, 30

JSF and, 38

main() method, 33

MessageSource, 64f

Method.invoke() method, 175

NakedObjects, 170

package dependencies, 85, 86f

physical dependencies, 85, 86f

POJOs, 65

ReaderStrategyImpl class, 22

RegularExpressionInputStream class,

151, 155

RegularExpressionReplacer class, 152

release, 204

ReportInputStream class, 147, 149–151

reuse() method, 88, 89

SequenceInputStream class, 147

Service class, 85

setter() method, 30

setup() method, 176

setXXX() method, 30

single inheritance, 65

String class, 147

syntax rules, 28, 30

teardown() method, 176

tight coupling, 63, 64f, 64

transform() method, 152

Transformer class, 154

typed language, 15

Java 5, 177, 178, 180, 182

Java API, 12, 13

Java Design: Objects, UML, AND PROCESS 227 Large Scale C++ Software Design (LAKOS)

Java Design: Objects, UML, and

Process (Knoernschild), 84

Java Testing Patterns (Glover), 51

JavaScript, 202

refactoring in, 174–175

XML parsing, 12

XML support, 8

JBoss At Work (Marrs and Davis), 1

JBoss’s Seam, 38, 39

JBuilder 3 Unleashed (Ford), 14

JDepend, 95–97

.jar files and, 101

Ant, 95, 97

classpath independent, 97

limitations, 102

test case example, 95

XSL stylesheet, 97

JDK libraries, 145

JDOM, 146

Jeffries, Ron, 162, 163

JetBrains MPS, 35, 36f

Jetty, 124

jMock (mock-object library), 30

Join point (defined), 68

JSF

client-side validation, 39

drawbacks, 38–39

Facelets, 38, 39

frameworks for, 38–39

HTML views, 46–49

JBoss’s Seam, 38, 39

JSP (as default display technology),

39

MyFaces, 38, 39

Oracle’s ADF, 38

Phone Numbers Wizard Panel, 44f

release of, 38

Shale, 38–50

Tomahawk, 38

Username Wizard Panel, 44f

Web Flow, 43–46

Wizards, support for, 43

jsfid= attribute, 47, 49

JSON, 12–13

JavaScript data, 12

Yahoo example, 12

JSP, 39

JUG site, refactoring, 189–191

JUnit, 176–178

AOP comparison, 183

Java 5 annotations and, 178

MyTest class, 177

setUp() method, 176

Spring compairison, 178

summary, 183

tearDown() method, 176

test, 177

JUnit 4, 178

JUnit categorization, 57–58

Ant, 57, 58

batchtest, 58

directory strategy, 57

naming scheme, 57

root directory example, 57

test directory, 57–58

unit directory structure example, 58

unit tests, 57

JWebUnit, 56

K
Kaye, Doug, 3

King, Gavin, 38

Knoernschild, Kirk

background, 84

on dependency management, 84–103

favorite book, 212

favorite tools, 212

L
Laddad, Ramnivas, 81, 184

Lakos, John, 93

Language building blocks

BNF, 31

grammar, 31

lexers, 31

parsers, 31

Language implementations, trends in,

204

Language infrastructure, trends in, 204

Language oriented programming, 15

defined, 17

Language Workbenches, 34–35

external DSLs, 35

Intentional Software, 35

JetBrains MPS, 35

Microsoft, 35

symbol integration, 35

"Language Workbenches: The

Killer-App for Domain Specific

Languages" (Fowler), 16

Large Scale C++ Software Design

(Lakos), 93

LARMAN 228 PERMALINK

Larman, Craig, 159

Law of diminishing returns, 137

Lean Development (LD), 167

Legacy code, 126–131

Ant, 127

Automate, 128–129

BAT, 126

Build, 126–127

CI, 129, 131

Defect driven testing, 130

defined, 126

Maven, 127

Mock client test, 130

Nant, 127

Rake, 127

Smoke tests, 128, 129

source code management (SCM), 129

Test, 129–131

testing issues, 127

traditional approach, 126

user personas, 130

Levelized build, 101, 102

Lex, 31, 151, 201

Lexers, 31–33

Line coverage, 136

Lisp, 203, 205–207

Little languages, 15

Loosely Coupled: The Missing Pieces of

Web Services (Kaye), 3

M
Machacek, Jan, 81

main() method, 33

MainController class, 20, 21

Marick, Brian, 138

Massol, Vincent, 8

Maven, 8, 120, 127

Maven: A Developer’s Notebook

(Massol, O’Brien), 8

McCabe’s Cyclomatic Complexity, 136

McClanahan, Craig, 37, 39

MessageSource, 64f

Metaphor, 164

Metaprogramming, 203

Method implementation

HBMContext.runTest() method, 179

JUnit, 176–178

setup and teardown code, 174–176

Method instrumentation, 170–184

annotations, defining own, 179

Block class, implementation, 180

framework, writing your own,

178–182

Hibernate, 170–184

interface, defining own, 180

JUnit, 183

JUnit 4, 178

Runner class, machinery, 181

Methodologies, 162–168

Microsoft, 35

MIME type

images, 4

web pages, 4

Minsky, Marvin, 201

Mock client test, 130

Mozilla, 195

MPS editor for a DSL, 36f

MTASC, 203

MVC pattern (Model, View, Controller),

4

MyFaces, 38, 39

N
NakedObjects, 170

Nant, 127

Naur, Peter, 31

.NET Gotchas (Subramaniam), 157

Neward, Ted, 203

NIO, 155

O
O’Brien, Timothy M., 8

Object-oriented programming (OOP), 36

Objective CAML, 203

onblur, 41

onfocus, 41

OOP, 36

Oracle’s ADF, 38

P
Package dependencies, 85, 86f, 87,

93–97

acyclic, 95f

component diagram, 98f

cyclic, 94f

Paired programming, 163

paramValidator class, 80

Parking meter example, 3

Parsers, 31, 33

Pascal, 202

Permalink, 12

PHYSICAL DEPENDENCIES 229 ROUGHLEY

Physical dependencies, 85, 86f, 87,

97–103

abstraction, introducing, 98

cyclic, 98

eliminating, 100f

inverting, 98, 99f

levelized build, 101, 102

reallocating classes, 100f

refactoring class structure, 99f

Planning game, 164

Pointcuts, 183

architecture, 74

basic steps, 74

creating, 74

defined, 68

example, 74

NullBlocker class, 75

PersonName class, 75, 76

ProxyFactory class, 74, 75, 77

Spring AOP, 74–76

TestJdkRegexpMethodPointcut class, 75

TestNameMatchMethodPointcut class,

75

POJOs (Plain Old Java Objects), 65,

71f, 74

POX (Plain Old XML), 10

Practical Software Metrics for Project

Management and Process

Improvement (Grady), 138

Practices of an Agile Developer

(Subramaniam and Hunt), 157

Pragmatic GIS (Davis), 1

Pro Spring (Harrop and Machacek), 81

Process choreography and ESB,

105–115

BPEL, 106, 112

business services, 106, 107f

Choreographer above Mediator, 113f,

112–113

Choreographer below Mediator, 110f,

109–112

Choreographer/Mediator at same

level, 113f, 113–114

Choreographer/Mediator

relationship, 109

ESB components, 107, 108f, 108

implementation services, 106, 107f

process servers, 106

relationship with, 108–115

securities trading firm example, 106

security capability, 109

service orchestration, 105

vs service orchestration, 106–107

process() method, 22

ProcessRequest class, 24, 25

Programming techniques, trends in,

202–203

Prototype JavaScript library, 42

PUGS, 203

Python, 202, 207

R
Rails, 202, 204, 208

Rake, 17, 120, 127, 202

Raymond, Eric, 15

Reader class, 22

ReaderStrategyImpl class, 22

Refactoring, 163, 188

responseComplete() method, 43

ResponseFactory, 43

REST, 8–12

advantages, 10

Amazon, 10

API, create your own, 11

Atom Publishing Protocol RFCs, 12

Atom Syndication Format, 12

blogging, 11, 12

Decorator Pattern, 149

drawbacks, 10

Fielding, Roy, 8

HTTP DELETE, 11

HTTP GET, 9, 10

HTTP POST, 11

HTTP PUT, 11

POX for WS, 10

RESTful request, 9

RESTful WS defined, 9

ROME toolkit, 12

RPC and, 10

Yahoo example, 9

reuse() method, 88, 89

Richards, Mark

background, 104

favorite books, 212

favorite tool, 212

Richardson, Jared

background, 116

CI page, 129

ROME toolkit, 12

Roughley, Ian

background, 132

favorite books, 213

RPC INTERFACE 230 SOAP

favorite tool, 213

RPC interface, 10

methods, emphasis on, 11

RSS feeds (ROME toolkit), 12

Ruby, 202, 207

DSLs, 203

duck typing, 15

Rake, 17

refactoring in, 174

Ruby on Rails, 170

Ajax, 42

DSL and, 16

Runner machinery, 181–182

S
Scala, 203

Schwaber, Ken, 165

Scott, Davis

on Web services, 1–13

Scripted build, benefits, 120

Scrum, 165–166

Semi-isolated unit tests, 53

Separation of concerns, 144

Service orchestration, 105

implementation services, 107f

vs process choreography, 106–107

ServiceCall class, 22

ServiceMix (ESB toolkit), 13

setMappedNames() method, 75

setTarget() method, 69

setter() method, 30

setUp() method, 176

setup() method, 96, 176

setXXX() method, 30

setXXXName() method, 80

Shale, 38–50

Action and, 39

Ajax request, 41

Ajax support, 40–43

bean code, 42

Clay, 47

Clay HTML mock-up, 47f

Clay JSF components absorb HTML

mock-up, 50f

Clay JSF components replace HTML

mock-up, 48f

Clay modifications to HTML

mock-up, 49f

dynamic, 42

HTML views, 40, 46–49

HTML, replace with JSF, 47

jsfid= attribute, 47, 49

Phone Numbers Wizard Panel, 44f

realtime validation example, 41f,

40–42

remote call method, 42

remoting object, 43

ResponseFactory, 43

roles of graphic designer, software

developer, 39

services built on JSF, 39

Struts and, 39

transitions in, 46

Username Wizard Panel, 44f

view states, 46

Web Flow, 43–46

Web Flow support, 40

Wizards, support for, 43

XML definition for wizard, 45–46

Ship It! A Practical Guide to Successful

Software Projects (Richardson and

Gwaltney), 116

Ship, Howard Lewis, 138

Simple design, 163

Sletten, Brian

background, 143

on Decorator pattern, 143–156

favorite books, 213

favorite tools, 213

Small Pieces Loosely Joined: A Unified

Theory of the Web (Weinberger), 3

Small release, 164

Smalltalk, 203, 205–208

refactoring in, 174

Smoke tests, 128, 129

SMS message (parking meter example),

3

SOA, 2–13, 109

benefits of, 105

business service, 105

defined, 2

implementation service, 105

introduction to, 2

parking meter example, 3

protocols for implementing, 3

services, 2

SOAP, benefits of use, 8

SOAP, drawbacks of, 8

Value Products examples, 146–155

web services, compared to, 3

SOAP, 5–8

Amazon, 10

SOFTWARE DESIGN 231 SYSTEM TESTS

Apache Axis project, 6

benefits, 8

client, creating automatically, 5

Decorator Pattern, 149

drawbacks of, 8

Google example, 6f, 5–6

HTTP POST, 6

Maven Java client build, 8

messages, 5

origin of name, 5

request for Google, 7f

requests and responses, 5

Software design, 201

Software development, 159

Source code management (SCM), 129

Spring 2, 78–80

AOP namespace, 79

aspect enhancements, 78

aspect terminology, 79

AspectJ, 78

before advice, 80

configuration file, 79

expression attributes, 80

key points, 80

POJO, 78, 80

setXXXName() method, 80

XML Schema, 78

Spring AOP, 63–81

addAdvisor() method, 75

Advice, 71f, 68–74

Advice defined, 68

Advice types, 71f

aspect name validation, 66

aspect bean, creating, 76

Aspect defined, 68

Aspect DI, 76–78

Aspect, wiring together, 69

aspect-oriented programming, 67f

AspectJ transition, 78

AspectJ in Action (Laddad), 81

background, 63–66

bean configuration file, 77

bean property, past values, 70

before advice, 70

cross-cutting concerns, 65, 66, 67f

dependency injection, 63, 65, 66f, 66

getProxy() method, 69, 75

Introduction defined, 68

Join point defined, 68

MessageRenderer interface, 65

MessageSource, 64f

NullBlocker class, 75

PersonName class, 75–77

Pointcuts, 68, 74–76

POJO, 65, 74, 76

Pro Spring (Harrop and Machacek),

81

ProxyFactory class, 69, 74, 75, 77

resources, 80

setMappedNames() method, 75

setTarget() method, 69

Software Projects example, 66, 67f

Spring 2, 78–80

Superhero example, 66, 67f

terminology, 68

TestBeforeAdvice class, 69, 70

TestDeclarativeAop class, 76, 77

TestJdkRegexpMethodPointcut class, 75

TestNameMatchMethodPointcut class,

75

tight coupling, 63, 64f, 64, 65

utility code, 82

Spring Framework, 175

Spring framework

JUnit comparison, 178

Strategy code

configuration, 25, 27

framework, 25, 27

strategy design pattern, 22

Struts, 39

Subramaniam, Venkat

on Agility, 157–168

background, 157

Suez, Eitan

background, 169

favorite books, 214

favorite tools, 214

on Method instrumentation,

169–184

weblog, 169

Sun, 145

JDK 1.4, 155

Sutherland, Jeff, 165

SwitchTower, 202

Symbolic integration, 35

System tests, 56–57

example, 56

vs functional tests, 57

JWebUnit, 56

run time, 57

TAPESTRY 232 WEB SERVICES (WS)

T
Tapestry, 47

tearDown() method, 176

teardown() method, 176

Test automation, 120–122

automatic, 121

benefits of, 122

binary, 121

external dependencies, 121

repeatable, 121

Test categorization techniques, 52–61

component test, 59–60

Component tests, 54–56

continuous integration, 52

isolated unit tests, 52–53

JUnit categorization, 57–58

semi-isolated unit tests, 52

summary, 61

System tests, 56–57

TestNG categorization, 58–61

unit test, 59–60

Unit tests, 52–54

Test-driven development, 201

testCycles() method, 96

TestNG, 177

TestNG categorization, 52, 58–61

Ant, 60

component, 58

component test, 59–60

group attribute, 60

system, 58

unit test, 58–60

testPackageDependencies() method, 96

Tight coupling, 63, 64f, 64, 65

Tomahawk, 38

transform() method, 152

U
UML, 88

Unified modified language (UML), 88

Uniform Resource Identifier (URI), 9

Unit tests, 52–54, 59, 60, 164

code coverage, 133, 137

continuous integration, 54

debugging, 54

defined, 52

directory, 57

efficiency, 54

isolated, 52–53

semi-isolated, 52, 53

static typing and, 202

Unix (Little languages), 15

URL, 9

Ajax, 42

HTTP GET requests, 10

RESTful request, 9

User personas, 130

V
validateUsername() method, 41

Value Products (example company)

account service transformation,

153–155

credit card protection, 150–153

RESTful payment example, 146–149

Vanderburg, Glenn

background, 199

favorite book, 215

favorite tool, 215

on industry trends, 199–208

Version control, 208

View states, 46

W
W3C (on Web services (WS)), 4

Web

applications, 194–197

case study, 189–191

data presentation, 4

JUG example, 189–191

refactoring with CSS, 187–189

semantic improvements in, 193

vs Web Services (WS), 4

Web Flow, 43–46

defined, 43

Phone Numbers Wizard Panel, 44f

Username Wizard Panel, 44f

view states, 46

Web pages

MIME type, 4

Web services (WS)

Apache Axis project, 6

APIs, 4

benefits of, 5

defined, 3

eBay example, 4

HTTP request, 3

infrastructure, 5

JavaScript data, 12

JSON, 12–13

Maven, 8

MVC pattern, 4

WEINBERGER 233 YAML

POX, 10

purpose of, 4

REST, 8–12

RPC interface, 11

SOA, 3

SOAP, 5–8

vs the Web (W3C), 4

WSDL, 5

Yahoo search results, 9f

Weinberger, David, 3

welcome.validateUsername() method, 42

Wizards, 43

Workout log example (DSL), 28–34

writeResponse() method, 43

WSDL, 5, 105

documents, 5

SOAP transaction, 5

WYSIWYG, 188

X
XML

BPEL, 106

Cobertura reports, 135

JavaScript, difficulties parsing, 12

MVC pattern, 4

support in JavaScript, 8

XQuery, 203

XP, 162–165

XQuery, 203

Y
YACC, 31

yacc, 201

"YAGNI" principle, 163

Yahoo

Build your own ecommerce solution,

15

JSON example, 12

RESTful API example, 9

RESTful Web services, 9

Search results from WS API, 9f

YAML

parsers, 13

	No Fluff, Just Stuff Anthology : The 2006 Edition
	Contents
	1 Real-World Web Services
	2 DSLs and Language-Oriented Programming
	3 Shale
	4 Test Categorization Techniques
	5 Spring AOP
	6 Dependency Management
	7 Process Choreography and the Enterprise Service Bus
	8 The Cornerstone of a Great Shop
	9 Help! I’ve Inherited Legacy Code!
	10 Using Code Coverage to Improve Testing Effectiveness
	11 Extreme Decorator: Total Object Makeover
	12 From Fragility to Agility: Methodologies and Practices
	13 The Many Guises of Method Instrumentation
	14 CSS: A Programmer’s Perspective
	15 Buried Treasure
	A The Authors Speak!
	B Resources
	Index

