

What Readers Are Saying About Modular Java

Craig Walls does an awesome job in this book covering this very

important topic. Whether you are developing an enterprise application

or an application to run on your cell phone, modularization is some-

thing you have to master, and I can’t think of a better resource than

this book you’re holding in your hands.

Dr. Venkat Subramaniam

Jolt award–winning author and founder of Agile Developer,

Inc.

Well-written and interesting. I found the “hands-on” style engaging.

It feels like you are in an OSGi workshop, trying out all the tools and

looking at the results. . . well done, Craig!

Frederic Daoud

Author, Stripes. . . And Java Web Development Is Fun Again

Craig does a great job covering the “why” and “how” of writing modu-

lar Java web applications with OSGi in this book.

Erik Weibust

Senior architect, Credera

Craig takes what many believe to be a complex subject and strips

away the FUD immediately and then goes on to show the power and

elegance of OSGi, especially when enabled with Spring for building

enterprise-class Java applications. By making OSGi and Spring more

accessible to Java developers everywhere, Craig does a great service

to his whole industry, and I plan to continue to be part of the wave

of developers building modular and flexible applications with these

technologies! Perhaps the best proof of this book’s value is the fact

that it was immediately practical and applicable to me in a real-world

project, even before it was fully written! This will be the go-to book for

developers looking to take full advantage of these advances in software

development.

Mike Nash

President, JGlobal Ltd.

Craig’s style is fun and easy to read, while he tackles very technical

material. This book demystifies a topic that even experienced devel-

opers struggle with. Even if you don’t program in Java, this book will

improve your design thinking in how to better use components.

Derek Lane

CTO, Semantra, Inc.

Craig has done it again! As he has in the past with technologies such

as the Spring Framework, he has masterfully crafted a book that is

clear, concise, and comprehensive. Developers and architects alike will

find this to be an invaluable tool as they take Java modularization to

the next level.

Paul Nelson

Software craftsman

Modular Java
Creating Flexible Applications

with OSGi and Spring

Craig Walls

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Craig Walls.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-40-9

ISBN-13: 978-1934356-40-1

Printed on acid-free paper.

http://www.pragprog.com

Contents
1 Introduction 10

1.1 A New Set of Wheels . 11

1.2 Modularity . 11

1.3 Introducing OSGi . 15

1.4 Road Map . 19

1.5 Who Is This Book For? 21

1.6 Acknowledgments . 21

I OSGi Fundamentals 23

2 Getting Started 24

2.1 Getting to Know the OSGi Container 24

2.2 Hello, OSGi . 30

2.3 A Hello World Service Bundle 36

3 Dude, Where’s My JAR? 45

3.1 Searching for JAR Files 45

3.2 Designing the Application Components 46

3.3 Bundling the Application Components for OSGi 48

3.4 Setting Up the Project 50

4 Working with Bundles 59

4.1 Creating the Domain Bundle 59

4.2 Contending with Nonbundle Dependencies 69

4.3 Following the Bundle Life Cycle 78

5 OSGi Services 80

5.1 Creating an OSGi Service 80

5.2 Testing the Service . 91

5.3 Consuming OSGi Services 100

CONTENTS 8

II Spring Dynamic Modules and Web Bundles 109

6 Spring and OSGi 110

6.1 Introducing Spring-DM 111

6.2 Declaring Services . 115

6.3 Injecting Services into Consumers 122

7 Creating Web Bundles 129

7.1 Assembling a Web Server 129

7.2 The Spring-DM Web Extender 137

7.3 Developing a Web Bundle 142

7.4 Deploying the Web Bundle 150

8 Extending Bundles 159

8.1 Introducing Fragments 159

8.2 Creating a UI Fragment 161

8.3 Trying It . 167

III Finishing Touches 171

9 OSGi in Production 172

9.1 Distributing the Application 172

9.2 Adding an Administration Console 181

10 Configuring the Application 186

10.1 Installing Pax ConfMan 187

10.2 Configuring the Web Console 188

10.3 Adjusting Logging . 190

10.4 Configuring Application Details 191

10.5 Configuring the Web Server 197

A Manifest Headers 202

A.1 OSGi R4 Headers . 202

B Spring-DM Configuration 204

B.1 Spring-DM Core Configuration Elements 204

B.2 Spring-DM Compendium Configuration Elements . . . 212

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=8

CONTENTS 9

C The OSGi Blueprint Service 216

C.1 Comparing the Blueprint Service with Spring-DM . . . 216

C.2 OSGi Blueprint Services (RFC-124) Elements 217

C.3 OSGi Blueprint Services (RFC-124) Compendium Ele-

ments . 226

D Resources 231

E Bibliography 233

Index 234

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=9

Chapter 1

Introduction
Welcome to the world of modular Java!

Building and deploying monolithic applications is a thing of the past.

Applications that are composed of several smaller, well-defined modules

are a much better way to go. By hiding design and implementation

details that are likely to change behind a stable API, each module is

easier to maintain, test, and understand. This ultimately affects the

overall maintainability and testability of the whole application.

Unfortunately, as of Java 6, Java’s built-in facilities for modularity are

severely limited. Imperative instructions are modularized into methods,

which are then modularized into classes. Classes can be further col-

lected into packages, which offer a weak form of modularization. But

that’s where Java modularity ends. Java offers no means for modular-

izing classes or packages of classes into coarse-grained modules.

Where Java falls short, OSGi steps in. OSGi is a framework specifica-

tion1 that brings modularity to the Java platform. In this book we’re

going to see how OSGi can enable development of well-defined, loosely

coupled modules that can be assembled into complete applications.

But before we get too carried away, let’s get a feel for the type of problem

that OSGi solves by listening in on a conversation between two co-

workers on their way to lunch.

1. You can download the OSGi framework and service compendium specifications from

http://www.osgi.org/Specifications/HomePage.

http://www.osgi.org/Specifications/HomePage

A NEW SET OF WHEELS 11

1.1 A New Set of Wheels

Jim: Hey, is this a new car?

Brian: Sure is. Sweet ride, eh?

Jim: It’s really nice. But didn’t you get a new car last week?

Brian: Yep. . . it’s all part of being a responsible car owner.

Jim: What?

Brian: You know. . . fresh oil, new air filters, new windshield wiper

blades. And I can go only about a week or so on a tank of gas. You

know how it is.

Jim: Actually, no I don’t.

Brian: Of course you do! Every car eventually runs low on gas. Time to

trade it in for one with a full tank, right?

Jim: No. When my car runs low on gas, I go to a gas station and fill it

up.

Brian: Well, maybe. . . but what are you going to do? Drive the same car

around for a few years? At the very least the tires will wear down. What

are you going to do then? You can’t just buy new tires and swap them in

for the old ones.

Jim: Well, actually. . .

(Jim pauses, realizing that he has lost interest in prolonging the con-

versation.)

Jim: (after a pause of awkward silence) So, what do you have going on

this weekend?

Brian: Packing boxes. We’re moving to a new house.

Jim: Really? You hadn’t mentioned that.

Brian: Well, it was a recent decision. A lightbulb burned out in our

kitchen, and so. . .

1.2 Modularity

Brian’s problem is lack of modularity—or more precisely, his failure

to recognize his car’s modularity. Cars are not monoliths—they are

made up of several distinct and individual components. It’s typically

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=11

MODULARITY 12

more cost-effective to swap out those components when they need to

be replaced or upgraded than to swap out the entire car.

If components can be replaced and upgraded in something as rigid as

an automobile, then why not something so soft as software?

I know what you’re thinking. You’re thinking that you already design

your applications to be modular. You place your classes and interfaces

into packages organized by their function. You design your applica-

tion into functional layers. You keep coupling low by abstracting that

functionality behind interfaces. Perhaps you use a dependency injec-

tion framework such as Spring to make it possible to swap out one

implementation class for another. And you may have even broken your

application into two or more individually built projects.

Those are all great things. But if your application is so modular, then

why do you still deploy it as one big monolithic WAR file?

I submit that your applications aren’t as modular as you probably think

they are.

What Does It Mean to Be Modular?

Put simply, a module is a self-contained component of a much larger

system. Beyond that trite definition, however, the two key attributes of

a well-designed module are high cohesion and low coupling.

To do one thing and do it well is the essence of cohesion. A module

that is highly cohesive is focused on a distinct task and does not con-

tain anything that does not contribute to that focus. As a consequence,

cohesive modules tend to be fine-grained, robust, reusable, and more

easily understood.

Where cohesion is an internal metric of a module’s focus, coupling is an

external metric of how a module interacts with other modules. Loosely

coupled modules depend on other modules only through stable abstrac-

tions, unaware of the implementations that lie beneath. As a result,

changes to one module’s implementation rarely have any impact on the

modules that interact with it.

Applications can benefit from modularity in several ways:

• Changeability: If each module in an application is known only

through its published interface (and not by its internal implemen-

tation), then it’s easy to swap out one module with another, as

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=12

MODULARITY 13

long as they publish the same interface(s). As my friend Mike Nash

says, modularity “enables us to change our minds faster.”

• Comprehensibility: Cohesive modules with well-defined bounda-

ries are much easier to study and understand individually, and

ultimately this leads to a greater understanding of the whole

application.

• Parallel development: Modules can be developed virtually indepen-

dently of each other, making it possible for development teams to

split up tasks along module boundaries.

• Improved testability: Although both unit testing and integration

testing are good practices, another level of testing can be achieved

by testing each module as a cohesive unit.

• Reuse and flexibility: Depending on the scope of a module and

how well its functionality is abstracted, it’s very possible to take a

module designed for one application and reuse it in a completely

different application. On a larger scale, it’s even conceivable that a

selection of modules used in one application could be reassembled

in another context to produce a different application.

It probably won’t come as much of a surprise that modularity is not a

new idea. It’s a common tactic in the manufacture of all kinds of sys-

tems, software or otherwise. In fact, in their 1970 book (see Designing

Systems Programs [GP70]), Richard Gauthier and Stephen Ponto sum-

marize the benefits of modularity:

A well-defined segmentation of the project effort ensures sys-

tem modularity. Each task forms a separate, distinct pro-

gram module. At implementation time each module and its

inputs and outputs are well-defined; there is no confusion in

the intended interface with other system modules. At check-

out time the integrity of the module is tested independently;

there are few scheduling problems in synchronizing the com-

pletion of several tasks before checkout can begin. Finally,

the system is maintained in modular fashion; system errors

and deficiencies can be traced to specific system modules,

thus limiting the scope of detailed error searching.

Most programming languages offer some degree of support for mod-

ularity. There are even some legacy programming languages such as

Modula-2 and MIL that were created with modularity as a core concern.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=13

MODULARITY 14

Bar.jar

Foo.jar

Runtime Class Space

Bar.jar

Foo.jar

Load into JVM

Figure 1.1: The boundaries provided by JAR files are artificial and fade

away at runtime.

But what about Java? Does Java offer any help in developing modular

applications?

Modularity in Java

Java archive (JAR) files are often thought of as the unit of modularity

in Java. Unfortunately, however, JAR files give only a thin illusion of

modularity.

A typical JAR file is really only a deployment-time convenience, provid-

ing a vessel for a given set of classes, interfaces, and other resources.

As illustrated in Figure 1.1, once a JAR is placed into the classpath,

the JAR boundaries dissolve—along with any notion of modularity. All

of the JAR’s contents sit in the application’s class space alongside the

contents of every other JAR file in the classpath. Consequently, every

public class in the JAR file is accessible by every other class in the class

space.

What’s more, aside from embedding a version number in the filename,

JAR files offer no practical notion of versioning. It can be difficult to

know for certain which version of a given JAR file you’re dealing with.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=14

INTRODUCING OSGI 15

Keep an Eye Out for OSGi 4.2

As I write this, version 4.1 is the latest release of the OSGi spec-
ification. But version 4.2 is in the works and should be final very
soon. There’s some good stuff in there, such as distributed OSGi,
a common command shell, and a new declarative service
model based on Spring Dynamic Modules.

So, although JAR files may give the appearance of supporting modular-

ity, their weak boundaries fail to restrict access to their internal imple-

mentation. This leaves them vulnerable to misuse and tight coupling

between JAR files.

What’s needed is a way to fortify the boundaries of a JAR file such that

outsiders can see and use only the published API of the library. It just

so happens that is where OSGi steps in.

1.3 Introducing OSGi

OSGi is a component framework specification that brings modularity to

the Java platform. OSGi enables the creation of highly cohesive, loosely

coupled modules that can be composed into larger applications. What’s

more, each module can be individually developed, tested, deployed,

updated, and managed with minimal or no impact to the other modules.

Let’s take a look at the ingredients that make up the OSGi 4.1 speci-

fication and see how they support modular application development in

Java.

The Key Elements of OSGi

From Figure 1.2, on the next page, you can see that OSGi builds upon

the Java platform with a module definition, module life cycle, service

registry, services, and security layers.

At its lowest level, the OSGi specification defines a deployment model

for Java-based modules. The unit of deployment in OSGi is known as a

bundle. Rather than create a completely new deployment mechanism,

OSGi leverages the existing JAR file format for bundles. OSGi bundles

are much like common JAR files, except that their META-INF/MANIFEST.MF

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=15

INTRODUCING OSGI 16

Hardware

Operating System

Java Virtual Machine

Modules

Lifecycle

Service Registry

Services

S
e
c
u
ri
ty

Application/Bundles

OSGi

Java

Platform

Figure 1.2: The OSGi framework provides a life cycle for modules, a

service registry, and a compendium of services for building modular

applications.

file contains OSGi-specific metadata, including a definitive name, ver-

sion, dependencies, and other deployment details.

Once a bundle is installed into an OSGi framework, the OSGi life cycle

governs the status of the bundle. A bundle can be installed, started,

stopped, and uninstalled from the framework, following the life cycle

prescribed by the OSGi specification.

OSGi also provides a service registry, with which bundles may publish

and/or consume services. As illustrated by the triad in Figure 1.3, on

the following page, OSGi’s service registry enables a form of service-

oriented architecture (SOA). However, unlike many interpretations of

SOA, which rely on web services for communication, OSGi services are

published and consumed within the same Java virtual machine. Thus,

OSGi is sometimes described as “SOA in a JVM.”

Taking advantage of the service registry, the OSGi specification also

defines several core services that may be provided in the framework.

These include a logging service, an HTTP service, and a configuration

service, among others.

Finally, the OSGi specification defines an optional security layer that

spans the other layers. This layer ensures that bundles are deployed

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=16

INTRODUCING OSGI 17

OSGi
Service
Registry

Service
Bundle

Consumer
Bundle

R
eg
is
te
rs
 S
er
vi
ce

D
iscovers S

ervice

Consumes Service

Figure 1.3: OSGi bundles can both publish and consume services. An

SOA in a JVM!

securely by authenticating them with digital signatures or by verify-

ing that bundle updates take place only from the location where the

bundle was originally installed. In addition, the security layer may sup-

port Java 2–style permissions to control loading and executing bundle

classes.

How Does OSGi Address Modularity Concerns?

When we considered Java’s built-in support for modularity, we deter-

mined that it came up short. Now let’s examine the features of OSGi to

see how it brings modularity to the Java platform.

Content Hiding

In OSGi, each bundle is loaded into its own class space. Consequently,

the contents of a bundle are private unless explicitly exported. This

makes it possible for a bundle’s internal implementation to evolve with-

out impacting other bundles that depend on its relatively stable public

API.

This is in contrast to normal JAR files, whose full contents are spilled

out into the application’s class space to be seen by every other class.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=17

INTRODUCING OSGI 18

Foo

1.0.0

Bar

1.0.2

Qib

2.0.1

Zab

1.0.4

Zab

2.1.3

Figure 1.4: Multiple versions of a bundle can be installed into OSGi at

the same time.

Service Registry

By providing an “SOA in a JVM,” OSGi enables modules to publish

services and to depend on services published by other bundles. The

services are known by their published interfaces, not by the imple-

mentation. This means that the coupling is kept low between service

publishers and those that consume their services.

Parallel Bundle Versions

Because each bundle is given its own class space, it’s possible for two or

more versions of a given bundle to reside in the OSGi framework at the

same time. Without OSGi, dependency graphs, like those in Figure 1.4,

present a dilemma where you must pick which version of Zab to use

and hope that it works with both dependent libraries. In OSGi, however,

you do not have to choose—both versions can be present at the same

time, and each dependent bundle can work with the version of Zab that

meets their needs.

Even though it’s not likely that your application will directly depend on

multiple versions of a library, it may transitively depend on two or more

versions through its direct dependencies. OSGi makes it possible for all

bundles to depend on the versions of other bundles that serve them

best.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=18

ROAD MAP 19

Dynamic Modularity

Another consequence of isolating bundles in their own class space is

that any given bundle may be installed, stopped, started, updated, or

uninstalled independently of other bundles in the framework. Among

other things, this makes it possible to swap out a bundle with a newer

version of the same bundle while the application continues to run.

Strong-Naming

Unlike traditional JAR files that have no way to definitively identify

themselves, OSGi bundles are discretely identified by a name (known

as the bundle’s symbolic name) and version number in the bundle’s

manifest.

It should be noted that OSGi is not a silver bullet for modularity. Just

adopting OSGi into your application architecture will not necessarily

make your application more modular. It is still up to you to ensure that

the modules you create follow good modular design. OSGi does, how-

ever, encourage modular programming practices by making it easy to

create well-defined modules and, in some cases, making it more diffi-

cult not to do so.

1.4 Road Map

We’ll take a progressive approach as we explore OSGi, starting with

OSGi fundamentals. In Chapter 2, Getting Started, on page 24, we’ll

kick the tires on OSGi by getting to know two of the most popular OSGi

framework implementations, Apache Felix and Eclipse Equinox. We’ll

also start developing a few simple OSGi bundles and see them in action

as we deploy them into the OSGi framework.

Chapter 3, Dude, Where’s My JAR?, on page 45 will set the stage for

the rest of the book by describing Dude, Where’s My JAR?, the example

application that we’ll build as we learn OSGi and Spring Dynamic Mod-

ules. In this chapter, we’ll cover the basic features of the application as

well as a high-level design overview of how OSGi will be used to develop

it. We’ll also get acquainted with an OSGi development kit called Pax

Construct.2

In Chapter 4, Working with Bundles, on page 59, we’ll get started on the

example application by building one of the bundles that will define the

2. http://wiki.ops4j.org/display/ops4j/Pax+Construct

http://wiki.ops4j.org/display/ops4j/Pax+Construct
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=19

ROAD MAP 20

domain objects. In doing so, we’ll learn how to share the contents of the

bundle with other bundles and how to import contents from bundles

that our bundle depends on. We’ll also see how to deal with third-party

libraries that aren’t distributed as OSGi bundles.

Chapter 5, OSGi Services, on page 80 will turn things up a notch as we

develop two new bundles that publish and consume services. We’ll see

how OSGi provides a simple framework for an intra-VM service-oriented

architecture.

Chapters 1 through 5 lay a foundation that will enable you to start

developing OSGi-based components and applications. From that foun-

dation, the next few chapters will layer on Spring Dynamic Modules

(also known as Spring-DM). Spring-DM is an extension to OSGi that

brings a Spring-style programming model to OSGi, including depen-

dency injection and declarative publication of services.

We will begin our exploration of Spring-DM in Chapter 6, Spring and

OSGi, on page 110 by looking at how Spring-DM implements another

common OSGi pattern known as the bundle extender pattern to create

and start a Spring application context for each bundle. We’ll also see

how to publish and consume OSGi services declaratively in the Spring

context configuration.

In Chapter 7, Creating Web Bundles, on page 129, we’ll finally put a face

on the example application by building a web front end and deploying

it as an OSGi bundle. In this chapter, we’ll see how to use Spring-DM’s

web extender to turn ordinary WAR files into lean, mean (and modular)

WAR bundles that can be deployed to either Apache Tomcat or Jetty

running within the OSGi framework.

In Chapter 8, Extending Bundles, on page 159, we’ll look at a special

kind of bundle called a fragment and see how we can use fragments to

extract the look and feel of our application into its own module.

At this point in the book, our example application will be completely

functional. But that’s just the beginning. In Chapter 9, OSGi in Pro-

duction, on page 172, we’ll take steps to prepare the application for its

transition from development into production.

Finally, in Chapter 10, Configuring the Application, on page 186, we’ll

wrap up the work to prepare the application for deployment into pro-

duction by configuring various facets of the distribution.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=20

WHO IS THIS BOOK FOR? 21

What’s Not in This Book

Just as important as what’s in this book, I should make it clear what

won’t be in this book. Specifically, I will avoid containerism—anything

that is possible only in a specific OSGi framework implementation. I’ll

be using Eclipse Equinox in many of the examples, but you should

be able to follow along using Felix, Knopflerfish, or any other OSGi

implementation you’d like.

Also, even though Eclipse offers a lot of IDE goodness for OSGi devel-

opment through its plugin development environment (PDE), I’ll make

sure that what you learn in this book can be applied using whatever

IDE you favor. If you’re an IntelliJ IDEA or NetBeans user, I won’t make

you switch IDEs to build OSGi applications.

Finally, the scope of this book will focus on assembling OSGi bun-

dles into web applications. We won’t be spending any time digging into

OSGi’s original purpose of embedded software or discussing other uses

of OSGi such as building plugins for Eclipse. And, since the world of

OSGi is large and growing larger, we’ll avoid diversions that distract us

from our core goal of building a modularized Java web application with

OSGi.

1.5 Who Is This Book For?

This book is for programmers and application architects already famil-

iar with object-oriented programming. They seek ways to simplify de-

ployment and updates, improve testability, and boost parallel develop-

ment by breaking their applications into several well-defined modules.

1.6 Acknowledgments

A lot of thought, frustration, hard work, and late nights have gone into

the writing of this book. Although very few people aside from myself

have lost much sleep over it, there were many whose time, encourage-

ment, and input had tremendous impact on the end result.

First, I’d like to thank the publishers, Dave Thomas and Andy Hunt, for

giving this book project a green light. I knew from the beginning that

the OSGi story I wanted to tell would be best presented in the Pragmatic

style. I’m so glad that they agreed.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=21

ACKNOWLEDGMENTS 22

I also want to thank Jackie Carter, my editor throughout this effort. She

was very effective at asking me the questions that needed to be asked

to pull the best thoughts out of my head and put them into words. It

has been a pleasure to work with her again, and I hope we’ll have more

opportunities to work together on future projects.

Thanks to Frederic Daoud, Venkat Subramaniam, Rod Coffin, Paul

Barry, Ryan Breidenbach, Erik Weibust, Derek Lane, and Paul Nelson

for taking the time to review the book while it was still in progress and

provide much needed feedback.

Many thanks to my friends and contacts at SpringSource. I especially

want to thank Rod Johnson for the many great conversations over e-

mail and in person and to Costin Leau for responding to my many

questions and suggestions about Spring-DM.

A shout-out to the Semantra team: Mike Nash, Ryan Breidenbach, Matt

Smith, Ben Rady, Ben Poweski, Greg Vaughn, Tom McGraw, Derek

Lane, and Paul Holser. Thanks for enduring my OSGi-related

ramblings.

Last, but certainly not least, thanks to my beautiful wife, Raymie, and

to my two awesome little girls, Maisy and Maddie. Thanks for indulging

another book project and for the love and encouragement along the

way.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=22

Part I

OSGi Fundamentals

Chapter 2

Getting Started
Now that we’ve established the benefits of modularity and how OSGi

brings modularity to Java, it’s time to get down to the business of work-

ing with OSGi. In this chapter, we’re going to dip our toes into the OSGi

waters and see some of the basic stuff that goes into building an OSGi

module. This will prepare us for wading a little deeper into the waters

of OSGi bundles and services over the next few chapters. Later, once

we’re acclimated to the fundamentals of OSGi, we’ll take a deep dive

into Spring-DM starting in Chapter 6, Spring and OSGi, on page 110.

First things first, however. Let’s start by tinkering with a couple of the

most popular OSGi frameworks, Equinox and Felix, to see what makes

them tick.

2.1 Getting to Know the OSGi Container

All OSGi-based applications run within an OSGi container (sometimes

known as an OSGi framework). There are several open source and com-

mercial OSGi containers to choose from, including the following:1

• Eclipse Equinox

• Apache Felix (formerly ObjectWeb Oscar)

• Knopflerfish

• Concierge

Each of these containers has its pros and cons, but for the most part

you’re free to choose the container that you like best and that comes

1. For a complete list of OSGi implementations that are certified by the OSGi Alliance

as being Release 4 compliant, visit http://www.osgi.org/Markets/Certified.

http://www.osgi.org/Markets/Certified

GETTING TO KNOW THE OSGI CONTAINER 25

Joe Asks. . .

Are Eclipse and Equinox the Same Thing?

It’s worth pointing out that the Eclipse IDE and Eclipse Equinox
are two different things. And yet, they’re very related.

Equinox is an OSGi framework, suitable for deploying OSGi bun-
dles that combine to make up modularized applications.

The Eclipse IDE is a prime example of such an application.
Eclipse IDE is an OSGi-based application that is made up of sev-
eral hundred bundles—or even more than a thousand bundles,
depending on what plugins are installed.

You don’t have to use the Eclipse IDE to use Equinox. But if you
do use the Eclipse IDE, you are certainly using Equinox (whether
you realize it or not).

with a license that fits your needs. Equinox and Felix are probably the

two most popular OSGi containers available, so let’s start by taking

each of them for a test drive.

Eclipse Equinox

If you’ve been programming in Java for any significant length of time,

odds are good that you’ve used Equinox before (even if you didn’t know

it). The Eclipse IDE is built upon Equinox, taking advantage of the mod-

ularity aspects of OSGi to create a development environment that is

centered on the notion of plugins, where each plugin is defined as one

or more OSGi bundles.

To start kicking the tires on Equinox, let’s first download the Equinox

runtime.2 As I’m writing this, the latest stable release is 3.4. After

selecting to download version 3.4, you will be presented with several

download options, including the full Equinox ZIP file and a stand-alone

Equinox Framework JAR file (org.eclipse.osgi_3.4.0.v20080605-1900.jar). For

the purposes of this section, you need only the JAR file, but you’re wel-

come to download the full Equinox platform in the ZIP file (which will

contain the JAR we need).

2. http://download.eclipse.org/eclipse/equinox/

http://download.eclipse.org/eclipse/equinox/
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=25

GETTING TO KNOW THE OSGI CONTAINER 26

Once you have the JAR, you can start the Equinox container by running

the following at the command line:

equinox% java -jar org.eclipse.osgi_3.4.0.v20080605-1900.jar

After a brief pause, you’ll see the command-line prompt. Did Equinox

start? Well, yes and no. . . .

Equinox did start. But it had nothing to do and so it immediately shut

down. If we want Equinox to stick around for awhile, we’ll need to give

it something to do. At the very least, let’s ask Equinox to present us

with its console so that we can interact with the container:

equinox% java -jar org.eclipse.osgi_3.4.0.v20080605-1900.jar -console

osgi>

A-ha! This time we’re greeted with an osgi> prompt, indicating that

Equinox is alive and well and awaiting our instructions. There are a lot

of things we could do here, but let’s start by asking Equinox for some

help:

osgi> help

---Eclipse Runtime commands---

diag - Displays unsatisfied constraints for the specified bundle(s).

enableBundle - enable the specified bundle(s)

disableBundle - disable the specified bundle(s)

disabledBundles - list disabled bundles in the system

...

osgi>

Equinox responds by listing all the commands that it understands.

We’re not going to try out all these commands now—in fact, I’ve trun-

cated the list for brevity’s sake. But we’ll get a chance to use several of

them later in the book. For now, let’s just get a feel for how Equinox

behaves by issuing a very basic command:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

osgi>

The ss command means short status and is probably the one Equinox

command that you’ll use the most often. It lists all the bundles installed

in the OSGi container. In this case, there’s only one bundle installed

(the Equinox runtime itself). From this list, we know that the Equinox

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=26

GETTING TO KNOW THE OSGI CONTAINER 27

The OSGi Back Door into Eclipse

When you normally start the Eclipse IDE, all of Eclipse’s plugins
(bundles) are started, and you are presented with the user inter-
face. But under the covers, there’s still an Equinox container
that makes that happen. And, just like the Equinox container
that we’re playing with, you can start Eclipse’s Equinox con-
tainer in console mode and interact with it.

Rather than starting Eclipse from an icon, you’ll need to start
it from the command line so that you can specify the -console

parameter. On a Windows machine, find the eclipse.exe exe-
cutable, and start it with the -console parameter:

c:\eclipse> eclipse.exe -console

On Mac OS X, find the Eclipse executable (there’s probably a
symbolic link to Eclipse.app/Contents/MacOS/eclipse in the instal-
lation root folder), and execute it like this:

$ eclipse -console

In either event, the Eclipse IDE should start, and you should be
given the Equinox osgi> prompt at the command line. Feel free
to explore the container using ss. But be careful not to manipu-
late any of the bundles (such as uninstalling or stopping them)
unless you are certain that you know what you are doing.

runtime bundle has an ID of 0, is in ACTIVE state, and is described as

org.eclipse.osgi_3.4.0.v20080605-1900.

As we’ve already discussed, all OSGi bundles contain a MANIFEST.MF

file with special headers. In case you’re wondering what headers are

defined in a bundle’s manifest, you can use the headers command.

The headers command takes a single argument—the ID of the bundle

that you’re interested in. For example, to view Equinox’s headers, you’d

issue the headers command like this:

osgi> headers 0

Bundle headers:

Bundle-Activator = org.eclipse.osgi.framework.internal.core.SystemBundleActivator

Bundle-Copyright = Copyright (c) 2003, 2004 IBM Corporation and others.

All rights reserved. This program and the accompanying materials are

made available under the terms of the Eclipse Public License v1.0

which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

Bundle-Description = OSGi System Bundle

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=27

GETTING TO KNOW THE OSGI CONTAINER 28

Bundle-DocUrl = http://www.eclipse.org

Bundle-Localization = systembundle

Bundle-ManifestVersion = 2

Bundle-Name = OSGi System Bundle

Bundle-RequiredExecutionEnvironment = J2SE-1.4,OSGi/Minimum-1.1

Bundle-SymbolicName = org.eclipse.osgi; singleton:=true

Bundle-Vendor = Eclipse.org

Bundle-Version = 3.4.0.v20080605-1900

Eclipse-ExtensibleAPI = true

Eclipse-SystemBundle = true

Export-Package =org.eclipse.osgi.event;version="1.0",...

Export-Service = org.osgi.service.packageadmin.PackageAdmin,...

Main-Class = org.eclipse.core.runtime.adaptor.EclipseStarter

Manifest-Version = 1.0

osgi>

Upon issuing the command, you’ll find a wealth of information about

Equinox, including the fact that it was built with Apache Ant 1.7.0, that

IBM Corporation holds the copyright, and that it exports several pack-

ages, including OSGi Alliance packages (org.osgi.*) that we can import

and use in the bundles we’ll create.

As we develop and install our own bundles, you’ll get to know more

about Equinox and commands to interact with it. But for now let’s

issue one more command before we take a look at Apache Felix:

osgi> exit

equinox%

Equinox is a very capable OSGi container (and, in fact, it’s my personal

favorite to work with). But it is licensed under the Eclipse Public License

(EPL), which may not be compatible with other licenses (the GNU Gen-

eral Public License, for instance). If license compatibility is a concern,

you may want to consider another container such as Apache Felix,

which is licensed under the Apache License 2.0. Let’s get acquainted

with Felix.

Felix

The first thing to do is to download Felix.3 As I write this, the latest

version of Felix is 1.4.1. Download felix-1.4.1.zip or felix-1.4.1.tar.gz, and

expand them into a folder on your system.

3. http://felix.apache.org/site/downloads.cgi

http://felix.apache.org/site/downloads.cgi
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=28

GETTING TO KNOW THE OSGI CONTAINER 29

Next, navigate into the Felix folder, and start Felix by issuing the fol-

lowing on the command line:

felix% java -jar bin/felix.jar

Welcome to Felix.

=================

->

When we started Equinox, we were immediately greeted with an osgi>

prompt. Similarly, Felix prompts us with ->. From here we can see a

list of Felix commands using the help command:

-> help

bundlelevel <level> <id> ... | <id> - set or get bundle start level.

cd [<base-URL>] - change or display base URL.

headers [<id> ...] - display bundle header properties.

help - display impl commands.

install <URL> [<URL> ...] - install bundle(s).

obr help - OSGi bundle repository.

packages [<id> ...] - list exported packages.

ps [-l | -s | -u] - list installed bundles.

refresh [<id> ...] - refresh packages.

resolve [<id> ...] - attempt to resolve the specified bundles.

services [-u] [-a] [<id> ...] - list registered or used services.

shutdown - shutdown framework.

start <id> [<id> <URL> ...] - start bundle(s).

startlevel [<level>] - get or set framework start level.

stop <id> [<id> ...] - stop bundle(s).

uninstall <id> [<id> ...] - uninstall bundle(s).

update <id> [<URL>] - update bundle.

version - display version of framework.

->

The first thing you’ll notice is that Felix has a much smaller set of

commands than Equinox. Never fear, though. . . you’ll find that Felix

has a command for most of your basic OSGi needs. For example, to see

a list of installed bundles, use the ps command:

-> ps

START LEVEL 1

ID State Level Name

[0] [Active] [0] System Bundle (1.4.1)

[1] [Active] [1] Apache Felix Shell Service (1.0.2)

[2] [Active] [1] Apache Felix Shell TUI (1.0.2)

[3] [Active] [1] Apache Felix Bundle Repository (1.2.1)

->

As you can see, a baseline Felix setup involves four bundles. For the

most part, it isn’t very important to know what these bundles do. But

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=29

HELLO, OSGI 30

if you’re curious, feel free to use the headers command to see what

headers are in each bundle’s manifest. For example, to examine the

System Bundle headers, do this:

-> headers 0

System Bundle (0)

Bundle-Description = This bundle is system specific; it

implements various system services.

Bundle-SymbolicName = org.apache.felix.framework

Export-Package = org.osgi.framework; version="1.4.0" ...

Export-Service = org.osgi.service.packageadmin.PackageAdmin,

org.osgi.service.startlevel.StartLevel,

org.osgi.service.url.URLHandlers

Bundle-Version = 1.4.1

Bundle-Name = System Bundle

->

The Bundle-Description header indicates that this bundle implements

various system services. A close look at the Export-Package header finds

that, among other things, this bundle exports the core OSGi packages

(org.osgi.*). A similar inspection of the other bundles reveals that bundle

1 is a simple OSGi command shell service, bundle 2 is a textual user

interface for the shell service, and bundle 3 provides a bundle reposi-

tory service.

Feel free to explore Felix further, if you’d like. When you’re done, use

the shutdown command to close Felix:

-> shutdown

-> felix%

There is only so much fun to be had by poking around in a baseline

OSGi container. The real fun begins when we install and manipulate

our own bundles. So, with no further delay, let’s create our own bundle

to tinker with: the obligatory Hello World bundle.

2.2 Hello, OSGi

There’s an unwritten rule that all technical books include a Hello World

example to gently introduce readers to the subject of the book. Not

being one to buck tradition, I feel compelled to stick to that rule and

share a Hello World example—OSGi-style.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=30

HELLO, OSGI 31

Creating the Bundle

You’ll recall that an OSGi bundle is little more than a JAR file with some

special entries in its META-INF/MANIFEST.MF file. So, using your favorite

IDE or text editor, let’s first create a MANIFEST.MF file for our Hello World

bundle:

Download hello/src/main/resources/META-INF/MANIFEST.MF

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.pragprog.HelloWorld

Bundle-Name: HelloWorld

Bundle-Version: 1.0.0

Bundle-Activator: com.pragprog.hello.HelloWorld

Import-Package: org.osgi.framework

There are several important things being said in these headers, so let’s

examine each of them:

Bundle-ManifestVersion

This header gives the OSGi specification to use to read the bun-

dle. Oddly enough, the default value of 1 indicates OSGi release

3, while 2 indicates OSGi release 4 and later. Confusing? You bet!

To keep it simple, just remember that it should always be 2.

Bundle-SymbolicName

This header is the only required header and specifies a unique

identifier for the bundle. The value can be virtually anything, but

it is strongly recommended that you follow a reverse domain name

convention (just like Java package names) when deciding on a

bundle’s symbolic name—to help ensure its uniqueness.

Bundle-Name

This header specifies a human-readable name for the bundle that

is easier to read than the symbolic name. You can name your bun-

dles anything you like, as long as it doesn’t contain any spaces.

Bundle-Version

This is the version of the bundle. We’ll talk more about versioning

later.

Bundle-Activator

This is the fully qualified class name of a special bundle life-cycle

class called an activator. This class implements the BundleActivator

interface, and its start() and stop() methods will be invoked when

the bundle is started and stopped (respectively). We’ll see what

com.pragprog.hello.HelloWorld looks like in a moment.

http://media.pragprog.com/titles/cwosg/code/hello/src/main/resources/META-INF/MANIFEST.MF
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=31

HELLO, OSGI 32

Import-Package

This header lists one or more packages (contained in other bun-

dles) that this bundle requires. Since our bundle activator de-

pends on a couple of items in the org.osgi.framework package and

since that package is defined in another bundle, we had to import

it here.

Simply adding the Bundle-SymbolicName header to the manifest makes

any JAR file an OSGi bundle. But in this specific bundle that we’re

creating, we’ve specified a Bundle-Activator, so we have a bit more work

to do.

A bundle activator is a special class in the bundle that gets hooked into

a portion of the bundle’s life cycle and is triggered when a bundle is

started and stopped. Using a bundle activator, we can develop startup

and shutdown behavior for a bundle. To qualify as a bundle activator,

the class must implement the org.osgi.framework.BundleActivator inter-

face, which defines start() and stop() methods that are invoked when a

bundle is started and stopped. As for our HelloWorld activator, it looks

like this:

Download hello/src/main/java/com/pragprog/hello/HelloWorld.java

package com.pragprog.hello;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class HelloWorld implements BundleActivator {

public void start(BundleContext ctx) throws Exception {

System.out.println("Hello World!");

}

public void stop(BundleContext ctx) throws Exception {

System.out.println("Goodbye World!");

}

}

In the interest of keeping things simple (a tenet of all good Hello World

examples), the start() method simply prints “Hello World!” when the

bundle is started (as illustrated in Figure 2.1, on the following page).

Likewise, the stop() method prints “Goodbye World!” as the bundle is

stopped. Notice that both methods are given a BundleContext that can

be used to interact with the OSGi container. We’ll see how to use the

BundleContext a little later, but we won’t need it in this example.

http://media.pragprog.com/titles/cwosg/code/hello/src/main/java/com/pragprog/hello/HelloWorld.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=32

HELLO, OSGI 33

com.pragprog.HelloWorld
1.0.0

OSGi Framework

Hello World!

Goodbye World!

Figure 2.1: The HelloWorld activator says “Hello World!” when the bundle

starts and “Goodbye World!” when the bundle is stopped.

We’re almost ready to see the bundle in action. But first, we must cre-

ate the bundle JAR file. To do that, compile HelloWorld.java, and then

create a JAR file having the structure illustrated in Figure 2.2, on the

next page. Since I’m using Maven, you can create the JAR file with the

Maven’s package goal:

hello% mvn package

[INFO] Scanning for projects...

[INFO] --

[INFO] Building Hello World - OSGi Activator

[INFO] task-segment: [package]

[INFO] --

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Tue Mar 03 00:19:56 CST 2009

[INFO] Final Memory: 7M/13M

[INFO] --

hello%

The example code that accompanies this book4 can be built into a bun-

dle JAR file using Maven 2.

4. http://pragprog.com/titles/cwosg/source_code

http://pragprog.com/titles/cwosg/source_code
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=33

HELLO, OSGI 34

Joe Asks. . .

Do I Have to Use Maven?

There’s nothing about OSGi that requires Maven. However, I
think that there’s a lot of synergy between Maven’s compile-
time dependency management and OSGi’s runtime depen-
dency management. Thus, it seems quite natural to use Maven
to build OSGi bundle projects.

If you’re not a Maven expert, rest easy. There’s not much about
Maven you’ll need to know to work through the examples in this
book. We’ll be using only the following handful of Maven goals:

• test: Compiles all Java code and runs unit tests.

• package: Compiles and tests Java code and then pack-
ages project classes and resources in a JAR or WAR file.

• install: Same as package, but also installs the JAR/WAR in
the local Maven repository.

If you want to learn more about Maven, then I suggest
Sonatype’s Maven: The Definitive Guide [Com08].∗

∗. http://www.sonatype.com/products/maven/documentation/book-defguide

/

com

pragprog

hello

HelloWorld.class

META-INF

MANIFEST.MF

Figure 2.2: The structure of the Hello World activator bundle

http://www.sonatype.com/products/maven/documentation/book-defguide
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=34

HELLO, OSGI 35

Installing the Bundle

With the JAR bundle created, we’re now ready to start an OSGi con-

tainer and try using it. Throughout this book, I’ll be using Equinox. I

chose Equinox primarily as a matter of personal preference. But also,

we’ll be working with OSGi fragments later, and Felix doesn’t yet sup-

port fragments.5 Even so, you’re welcome to use Felix or any other OSGi

container you want.

First, let’s fire up Equinox. As you’ll recall from earlier, you can start

Equinox in console mode like this:

equinox% java -jar org.eclipse.osgi_3.4.0.v20080605-1900.jar -console

osgi>

Next, from the Equinox prompt, we’ll install the Hello World bundle:

osgi> install file:target/hello-activator-1.0.0.jar

Bundle id is 1

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 INSTALLED com.pragprog.HelloWorld_1.0.0

osgi>

After issuing the ss command, we see that our bundle is sitting there in

INSTALLED state, waiting to be started. So, let’s not keep it waiting. To

start it, issue the start command:

osgi> start 1

Hello World!

osgi>

The start command takes a bundle ID as its argument. Notice that once

we started the bundle, the familiar “Hello World!” greeting was printed.

What’s more is that our humble little bundle is now in ACTIVE state,

as proven by issuing the ss command again:

osgi> ss

Framework is launched.

5. See FELIX-29 in the Felix issue-tracking system for the status on fragments in Felix.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=35

A Hello World SERVICE BUNDLE 36

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.0

osgi>

That was pretty cool. But it shows only half of what our bundle can do.

Now let’s stop the bundle and see what happens:

osgi> stop 1

Goodbye World!

osgi>

As expected, stopping the bundle yielded a “Goodbye World!” message

on the screen. And if we issue an ss command again, we’ll see that its

status is no longer in ACTIVE state:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 RESOLVED com.pragprog.HelloWorld_1.0.0

osgi>

Were you a little surprised to see the bundle in RESOLVED state?

Maybe you were expecting it to go back to INSTALLED state. For now,

don’t worry too much about bundle states—it’s enough to just know

that the bundle is no longer active. We’ll examine the bundle life cycle

in more detail later in Section 4.3, Following the Bundle Life Cycle, on

page 78.

I couldn’t be more excited! We’ve just built our first OSGi bundle, de-

ployed it to an OSGi container, and seen it do its stuff. If you’d like, you

can kick it around some more. Feel free to start it and stop it again as

many times as you like. But don’t get too carried away. . . there’s more

fun in store for the Hello World example.

2.3 A Hello World Service Bundle

A bundle can do a lot of things. It can simply act as a library, providing

classes and interfaces for other bundles to use. Or, as we’ve already

seen with the previous example, a bundle can contain an activator that

performs some action when the bundle is started and stopped.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=36

A Hello World SERVICE BUNDLE 37

Another thing that a bundle can do is publish services to be consumed

by other bundles. To illustrate, let’s rip our Hello World example into

two parts: a bundle that publishes a service that provides greetings

and another bundle that contains a consumer of the service and prints

those greetings.

Publishing a Hello Service

The first step in creating a service is deciding what its interface will look

like. In OSGi, a service’s interface defines not only how other compo-

nents can interact with the service but also how the other components

find the service. For our Hello World service, we’ll need two methods:

one to return some hello message and one to return a goodbye mes-

sage. The following interface should do the trick:

Download hello-service/src/main/java/com/pragprog/hello/service/HelloService.java

package com.pragprog.hello.service;

public interface HelloService {

String getHelloMessage();

String getGoodbyeMessage();

}

Now we write the service implementation class. To keep things interest-

ing, the following service implementation has an international flair:

Download hello-service/src/main/java/com/pragprog/hello/service/impl/HelloImpl.java

package com.pragprog.hello.service.impl;

import com.pragprog.hello.service.HelloService;

public class HelloImpl implements HelloService {

public String getHelloMessage() {

return "Bonjour!";

}

public String getGoodbyeMessage() {

return "Arrivederci!";

}

}

Take notice of the service implementation’s package and how it dif-

fers from the interface’s package. Although both could reside in the

same package, it’s a good practice to keep them separate. As we’ll soon

see, keeping them separate will make it possible to publish the service

under an exported interface for other bundles to use, while keeping the

implementation of the service hidden from its consumers.

http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/java/com/pragprog/hello/service/HelloService.java
http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/java/com/pragprog/hello/service/impl/HelloImpl.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=37

A Hello World SERVICE BUNDLE 38

In OSGi, services are published to a service registry within the con-

tainer and are identified by the interface(s) that they implement. So,

we’ll need some way to register HelloImpl with the service registry. For

that, let’s create HelloPublisher:

Download hello-service/src/main/java/com/pragprog/hello/service/impl/HelloPublisher.java

package com.pragprog.hello.service.impl;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import com.pragprog.hello.service.HelloService;

public class HelloPublisher implements BundleActivator {

private ServiceRegistration registration;

public void start(BundleContext context) throws Exception {

registration = context.registerService(HelloService.class.getName(),

new HelloImpl(), null);

}

public void stop(BundleContext context) throws Exception {

registration.unregister();

}

}

HelloPublisher is a bundle activator, much like the HelloWorld activator

we created earlier. This activator, however, uses the BundleContext that

it is given to register an instance of HelloImpl as a service. It does this

by calling the BundleContext’s registerService() method, passing the ser-

vice’s interface (as the String returned from a call to the interface’s

class.getName() method), an instance of HelloImpl, and a set of service

properties to associate with the service (which, for our purposes, can

be null).

The last thing we need to create is the bundle’s META-INF/MANIFEST.MF

file:

Download hello-service/src/main/resources/META-INF/MANIFEST.MF

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.pragprog.HelloWorldService

Bundle-Name: HelloWorldService

Bundle-Version: 1.0.0

Bundle-Activator: com.pragprog.hello.service.impl.HelloPublisher

Import-Package: org.osgi.framework

Export-Package: com.pragprog.hello.service

http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/java/com/pragprog/hello/service/impl/HelloPublisher.java
http://media.pragprog.com/titles/cwosg/code/hello-service/src/main/resources/META-INF/MANIFEST.MF
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=38

A Hello World SERVICE BUNDLE 39

/

com

pragprog

hello

service

META-INF

MANIFEST.MF

HelloService.class

impl

HelloPublisher.class

HelloImpl.class

Figure 2.3: The structure of the HelloWorld service bundle

This bundle’s manifest isn’t dramatically different from the manifest we

created before, but there is one new header to take note of. The Export-

Package header publishes the contents of one or more packages for

other bundles to use. Here, we’ve exported the com.pragprog.hello.service

package so that consumers of our service can see and use the HelloSer-

vice interface.

What’s particularly interesting about Export-Package is the package that

it doesn’t export. Specifically, we’re not exporting the com.pragprog.

hello.service.impl package. That’s because the service’s implementation

(and HelloPublisher, for that matter) are implementation details that are

best kept secret. By not exporting them, we’re effectively declaring them

to be private, or unpublished. This prevents undesirable coupling that

may occur if another bundle were to try to use HelloImpl directly instead

of through its interface.

Now we’re ready to compile and package everything up in a JAR file. In

Figure 2.3, we can see the structure of the bundled JAR.

Finally, let’s install it in Equinox:

osgi> install file:target/hello-service-1.0.0.jar

Bundle id is 2

osgi> ss

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=39

A Hello World SERVICE BUNDLE 40

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.0

2 INSTALLED com.pragprog.HelloWorldService_1.0.0

osgi>

The service bundle is now installed, alongside our first Hello World bun-

dle that we deployed earlier. But the service won’t be of any use to us

until we start the bundle:

osgi> start 2

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.0

2 ACTIVE com.pragprog.HelloWorldService_1.0.0

osgi>

When the service bundle is started, Equinox will invoke the start() meth-

od in HelloPublisher, consequently publishing the service in the service

registry. To prove that the service has been published, we can issue

Equinox’s bundle command:

osgi> bundle 2

file:target/hello-service-1.0.0-SNAPSHOT.jar [2]

Id=2, Status=ACTIVE

Data Root=/Users/wallsc/osgi/configuration/org.eclipse.osgi/bundles/2/data

Registered Services

{com.pragprog.hello.service.HelloService}={service.id=21}

No services in use.

Exported packages

com.pragprog.hello.service; version="0.0.0"[exported]

Imported packages

org.osgi.framework; version="1.4.0"<System Bundle [0]>

No fragment bundles

Named class space

com.pragprog.HelloWorldService; bundle-version="1.0.0"[provided]

No required bundles

osgi>

Notice that our service is found under the Registered Services heading.

Also, notice that com.pragprog.hello.service is under the Exported pack-

ages heading.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=40

A Hello World SERVICE BUNDLE 41

Before we move on, it’s worth noting that although HelloPublisher makes

liberal use of the OSGi API in order to publish the service, HelloImpl and

HelloService are completely OSGi-free.

At this point, the service has been deployed, but nobody is using it. Our

original Hello World bundle is still in the container, but its activator is

still printing hard-coded greetings. Let’s put the service bundle to work

by giving it a client.

Consuming the Service

Rather than create a new bundle to consume the hello service, let’s re-

visit the original HelloWorld activator that we created earlier and change

it to use the HelloWorld service:

Download hello-consumer/src/main/java/com/pragprog/hello/HelloWorld.java

package com.pragprog.hello;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import com.pragprog.hello.service.HelloService;

public class HelloWorld implements BundleActivator {

public void start(BundleContext context) throws Exception {

HelloService helloService = getHelloService(context);

System.out.println(helloService.getHelloMessage());

}

public void stop(BundleContext context) throws Exception {

HelloService helloService = getHelloService(context);

System.out.println(helloService.getGoodbyeMessage());

}

private HelloService getHelloService(BundleContext context) {

ServiceReference ref = context.getServiceReference(HelloService.class

.getName());

HelloService helloService = (HelloService) context.getService(ref);

return helloService;

}

}

This new HelloWorld activator is a bit more interesting than the first one.

Rather than printing hard-coded greetings, the new start() and stop()

methods use the HelloService returned from getHelloService(). The getHel-

loService() method is just a convenience method that looks up the ser-

vice in the OSGi service registry. It does this by using the service’s class

http://media.pragprog.com/titles/cwosg/code/hello-consumer/src/main/java/com/pragprog/hello/HelloWorld.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=41

A Hello World SERVICE BUNDLE 42

com.pragprog.HelloWorld
1.0.0

OSGi Framework

Bonjour!

Arrivederci!

com.pragprog.
HelloWorldService

1.0.0

Figure 2.4: The new service-oriented HelloWorld activator relies on a ser-

vice (deployed in a separate bundle) to provide its greetings.

name to get a service reference. With the service reference in hand, it

then asks the BundleContext for the service, as shown in Figure 2.4.

It may not be apparent at first glance, but the getHelloService() method

is rather naive. In OSGi, services can come and go as bundles are

installed, updated, started, stopped, and uninstalled. What will the

BundleContext’s getService() return if the service’s bundle isn’t active or

installed? As it turns out, if the service isn’t available, then getHelloSer-

vice() will return null, and the calls to getHelloMessage() and getGood-

byeMessage() will fail in a splendid fashion with a NullPointerException.

For now we’ll just pretend that the service will always be available.

We’ll examine some strategies for dealing with missing services more

gracefully in Chapter 5, OSGi Services, on page 80.

The only thing left to do is modify the manifest to account for the

changes made to the HelloWorld activator. Since the activator now uses

the HelloService interface, we must add its package to the Import-Package

header:

Download hello-consumer/src/main/resources/META-INF/MANIFEST.MF

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.pragprog.HelloWorld

Bundle-Name: HelloWorld

Bundle-Version: 1.0.1

Bundle-Activator: com.pragprog.hello.HelloWorld

Import-Package: org.osgi.framework,

org.osgi.util.tracker,

com.pragprog.hello.service

In addition to importing the service’s interface package, I have also

http://media.pragprog.com/titles/cwosg/code/hello-consumer/src/main/resources/META-INF/MANIFEST.MF
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=42

A Hello World SERVICE BUNDLE 43

bumped up the Bundle-Version to 1.0.1, just to indicate that this is a

slightly different bundle than the one we’ve already installed.

All the pieces are now in place. To see it in action, first compile and JAR

up the bundle, and then install it to Equinox. Assuming that the new

version of the JAR file is in the same location as before, we can issue

the update command:

osgi> update 1

Goodbye World!

Bonjour!

A lot of stuff happens when we ask Equinox to update the bundle. It

first stops the bundle—that’s why we see the “Goodbye World!” mes-

sage. Then it uninstalls the old bundle and reinstalls the new bundle

from the original location. Finally, it starts the bundle, resulting in the

hello message being printed. And, it does all of this without having to

restart Equinox!

Did you notice that the hello message is now “Bonjour!”? That proves

that the activator is using the service and not simply printing the old

hard-coded “Hello World!” message. If you need any further evidence

that the bundle has been updated, check the status by issuing the ss

command:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 ACTIVE com.pragprog.HelloWorld_1.0.1

2 ACTIVE com.pragprog.HelloWorldService_1.0.0

osgi>

The thing to spot is that the version number is now 1.0.1 and not 1.0.0

as it was previously.

For proof that the activator is actually using the service, the bundle

command again comes in handy:

osgi> bundle 1

file:../hello/target/hello-activator-1.0.0.jar [1]

Id=1, Status=ACTIVE

Data Root=/Users/wallsc/osgi/configuration/org.eclipse.osgi/bundles/1/data

No registered services.

Services in use:

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=43

A Hello World SERVICE BUNDLE 44

{com.pragprog.hello.service.HelloService}={service.id=21}

No exported packages

Imported packages

org.osgi.framework; version="1.4.0"<System Bundle [0]>

org.osgi.util.tracker; version="1.3.3"<System Bundle [0]>

com.pragprog.hello.service; version="0.0.0"

<file:../hello-service/target/hello-service-1.0.0.jar [2]>

No fragment bundles

Named class space

com.pragprog.HelloWorld; bundle-version="1.0.1"[provided]

No required bundles

osgi>

If you look under the Services in use: heading, you’ll find that this bun-

dle is using the service published by the service bundle. And, it imports

the com.pragprog.hello.service package that is exported by the service

bundle.

We’ve seen the hello message. Now let’s complete the story by stopping

the bundle and seeing the goodbye message:

osgi> stop 1

Arrivederci!

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.0.v20080605-1900

1 RESOLVED com.pragprog.HelloWorld_1.0.1

2 ACTIVE com.pragprog.HelloWorldService_1.0.0

osgi>

With that, we conclude our first adventure in OSGi. Although we’ve kept

things simple, we’ve covered a lot of ground. We’ve become acquainted

with two different OSGi containers (Equinox and Felix). We’ve also de-

ployed a simple Hello World bundle in an OSGi container and seen it in

action. And, we’ve expanded the Hello World example to be split across

two bundles, one consuming a service published by the other. All of this

serves as the basis for more OSGi adventure to come.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=44

Chapter 3

Dude, Where’s My JAR?
As much fun as it has been to build Hello World bundles, those simplis-

tic examples do not serve well in demonstrating the full extent of OSGi’s

power. If we are to get a real sense of what it is like to build real-world

applications that are based on OSGi, then we’ll need to work on a more

realistic example.

We could build the umpteenth pet store application or perhaps another

MySpace knockoff and, in the end, have nothing to show for our efforts

other than the remnants of another academic exercise. Wouldn’t it be

great if in the course of learning OSGi we could develop something that

we might actually use?

To that end, the primary example throughout the rest of this book will

be a search engine with Java developers as the target user base. We’ll

call it Dude, Where’s My JAR? In this short chapter, we’ll map out the

basic design for the application and start thinking about how we can

use OSGi to realize that plan.

3.1 Searching for JAR Files

How many times have you spent several moments crafting the next

great piece of software only to be confronted with the enigmatic Class-

NotFoundException upon submitting your work to the compiler.

You’re a skilled Java programmer. You know what to do, right? The

solution required here is simply a matter of adding some JAR file to your

classpath. But which one? There are so many Java classes scattered

across so many Java libraries, how can you know for sure which JAR

DESIGNING THE APPLICATION COMPONENTS 46

file you should add? And even if you think you know which JAR file is

needed, where do you go to get it?

That’s where Dude, Where’s My JAR? comes to the rescue. It is a search

engine for Java libraries. Given a class, interface, enum, or annotation

name, it will search Maven repositories for all matching JAR files. It

will then help you include the JAR in a Maven 2 build by providing you

with the proper <dependency> and repository information to add to

your project’s pom.xml file.

What’s more, if you’re an OSGi developer, Dude, Where’s My JAR? will

index information contained within a JAR’s META-INF/MANIFEST.MF file so

that you can find just the right OSGi bundle to fit your needs.

3.2 Designing the Application Components

To get started, let’s think about the features that the application needs.

At a very basic level, we’re going to need the following:

• Something that crawls around one or more Maven repositories,

finding JAR files to add to the index

• A means of indexing meta-information about a JAR file so that it

can be found later

• Some domain object(s) that represent the JAR file by holding the

meta-information

• A way to query for JAR files that match certain criteria

• A web front end so that the Java-developing masses can use the

application to find their libraries

Let’s flesh each of these items out more, starting with the repository

crawler.

The Maven Repository Spider

If your favorite bookstore had nothing but empty shelves every time you

visited it, it probably wouldn’t be your favorite bookstore for very long.

Likewise, a search engine that doesn’t have any information to present

in its results isn’t a very good search engine. Therefore, we need a way

to stock the application’s index. For that, we’ll need to develop a spider

that crawls around one or more Maven repositories looking for JAR

files.

As the spider finds a JAR file, it will collect meta-information about the

JAR file (such as its Maven group, artifact, and version, and the names

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=46

DESIGNING THE APPLICATION COMPONENTS 47

of the classes it contains). It will send the meta-information to the index

service (more on that in a moment) to be added to the index and then

continue looking for more JAR files.

A JAR-File Domain

JAR files can get rather large, so it’s not desirable (nor necessary) for

Dude, Where’s My JAR? to keep the JAR files once it has indexed them.

Instead, we only need to collect a set of basic information about each

JAR to be searched upon later.

Some of the information that may be interesting about a JAR is the

following:

• The URL of the Maven repository where the JAR was found.

• The Maven group ID, artifact ID, and version of the JAR.

• A list of the JAR’s contents (e.g., a list of the .class files contained

within the JAR).

• It might be nice to know whether the JAR is a proper OSGi bundle

(that is, does its META-INF/MANIFEST.MF have a Bundle-SymbolicName

header?).

This information can be collected into a simple domain object.

The Index Service

Once the spider has collected meta-information about a JAR file, it’ll

need to hand it off to some service to be indexed. Later, when a user

searches for a JAR file, we’ll also need a way to search that index and

produce a result set.

For both indexing and searching, we’ll create an index service. It’ll offer

two functions:

• Given JAR file meta-information, it will add the information to an

index.

• Given a search string, it will produce a collection of JAR file meta-

information that matches the search criteria.

Under the covers, the index service uses Compass (an object-mapping

abstraction over Lucene) to populate and search the index.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=47

BUNDLING THE APPLICATION COMPONENTS FOR OSGI 48

The Web Application

Finally, we need a way for users to tell Dude, Where’s My JAR? what

we’re looking for and for the application to respond with a set of match-

ing JAR files.

To build the application front end, we’ll use Spring MVC, a simple and

capable web framework that is based on the Spring Framework. The

controllers in the web application will interact with the index service to

search for JARs that match a user’s criteria.

3.3 Bundling the Application Components for OSGi

If this were a typical application, we’d probably give each of the compo-

nents its own package within the overall application structure and call

that modularity. If we’re in a particularly enlightened frame of mind,

we might even package each component into its own JAR file that is

ultimately encased in the web application’s WAR file.

But this isn’t a typical application. In order to benefit from ease of

deployment, versioning, parallel development, testability, and the other

virtues of modularity, we’re going to build this application as a collec-

tion of OSGi bundles.1

More specifically, we’re going to define the following bundles, as illus-

trated in Figure 3.1, on the following page:

• A domain bundle: This rather simple bundle will contain the do-

main class that defines a JAR file. This bundle will simply export

the single domain package for all the other bundles to use. It will

not consume or publish any services. We’ll start working on this

bundle in Chapter 4, Working with Bundles, on page 59.

• A spider bundle: This bundle will contain the repository-crawling

spider component. It will not export any packages, and it will

not publish any services. The spider works almost autonomously,

importing only the domain package from the domain bundle and

making calls to the index service to add JAR file data to the index.

We’ll take a first pass at bundling up the spider component in

Chapter 5, OSGi Services, on page 80 and then revisit it again in

Chapter 6, Spring and OSGi, on page 110 when we look at Spring-

DM and how to use dependency injection with OSGi services.

1. Besides. . . this is an OSGi book, right? Why would we do it any other way?

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=48

BUNDLING THE APPLICATION COMPONENTS FOR OSGI 49

Index
Service
Bundle

Spider
Bundle

Web
Application
WAR

Domain
Bundle

imports

im
po
rts

im
p
o
rt
s

adds JARs

s
e
a
rc
h
s

Figure 3.1: The components of the Dude, Where’s My JAR? application

will be built and deployed as OSGi bundles.

• An index bundle: This bundle is the centerpiece of Dude, Where’s

My JAR?, containing the index service that both indexes JAR file

metadata and searches the index on behalf of a user. It will import

the domain package and will publish the index service. We’ll start

building the index bundle in Chapter 5, OSGi Services, on page 80

and then revisit it in Chapter 6, Spring and OSGi, on page 110 to

see how Spring-DM simplifies publication of OSGi services.

• A web bundle: This bundle is the most unusual of all the bundles

we’ll create. That’s because it will bear more of a resemblance to a

traditional WAR file than an OSGi bundle. But we’ll see in Chap-

ter 7, Creating Web Bundles, on page 129 how to deploy a WAR file

as an OSGi bundle.

Along the way, we’ll also see how to extend bundles with fragments (in

Chapter 8, Extending Bundles, on page 159), how to test bundles (in

Chapter 4, Working with Bundles, on page 59), and how to do other

OSGi techniques such as versioning and hot deployment.

But before we get too carried away, we need to do a little setup of the

project structure that we’ll be building on throughout the book.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=49

SETTING UP THE PROJECT 50

Getting to Know the Pax Tools

Pax Construct is just one of many tools under the Pax
umbrella project. The Pax project∗ includes more than a dozen
subprojects that provide tools and utility bundles for OSGi
development.

In this chapter, you’ll be introduced to Pax Construct, a devel-
opment toolkit for OSGi. Before the end of the book, you’ll have
seen a few other Pax projects, including the following:

• Pax Exam: An extension to JUnit for testing bundles within
an OSGi framework

• Pax Logging: An implementation of the OSGi Logging
Service

• Pax Runner: A utility for starting an OSGi framework with a
predefined set of bundles installed

• Pax ConfMan: An implementation of the OSGi Configura-
tion Admin Service

∗. http://wiki.ops4j.org/display/ops4j/Pax

3.4 Setting Up the Project

Since we’re building four separate bundles, it seems logical that we’ll

probably need to create four different project directories, each with their

own build instructions. Furthermore, so that we can build the entire set

of bundles together, we may want to organize those projects all under a

parent project.

Setting up such a project structure is a fairly straightforward effort,

involving the creation of a project directory and four subdirectories (one

for each of the individual bundle projects). Then, in each directory we’d

need to determine where our source code goes, where the build output

goes, and where other resources related to the project will go. And,

we’d need to create build instructions, using either Ant or Maven, for

the parent project and each of the bundle subprojects.

It’s not all too complicated to create a project directory and write build

instructions. But it’s also quite tedious and prone to error—and it

sounds like a lot of work. I’ve got a better idea. . . .

http://wiki.ops4j.org/display/ops4j/Pax
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=50

SETTING UP THE PROJECT 51

Joe Asks. . .

Do I Have to Use Pax Construct?

You really don’t need many tools to build OSGi bundles. In fact,
all that you really need is a text editor, a Java compiler, and
the Java jar utility. But if you want to save yourself some trouble,
you should consider taking advantage of some of the OSGi-
oriented tools.

I like to use Pax Construct because it simplifies a lot of what goes
into building OSGi bundles and because it leverages Maven,
which, as I’ve already stated, has a lot of synergy with OSGi.
I also really like the scripted Rails-like development model of
Pax Construct. Finally, my decision to use Pax Construct doesn’t
preclude the possibility of using Eclipse PDE or most other OSGi
development tools.

If Pax Construct isn’t your style, then feel free to find an OSGi
tool that better fits you.

Allow me to introduce you to Pax Construct,2 one of the handiest tools

that OSGi developers can have at their disposal. Pax Construct is a

set of scripts, backed by a Maven plugin, that automates the creation,

building, and execution of OSGi projects. In many ways, the scripts

provided by Pax Construct are similar to the scripts used when devel-

oping Ruby on Rails (or Grails) applications. It not only sets up a project

for you, but it also helps you manage your bundles’ manifests and deal

with third-party dependencies, and it even deploys your bundles into

an OSGi framework.

Installing Pax Construct

To get started with Pax Construct, you’ll need to download the scripts

and install them in your system path. As I write this, the current version

of Pax Construct is 1.4.3

After downloading the distribution file, unzip it to a folder on your sys-

tem. Then, add the unzipped folder’s bin directory to your system path.

2. http://wiki.ops4j.org/display/ops4j/Pax+Construct

3. http://repo1.maven.org/maven2/org/ops4j/pax/construct/scripts/1.4/scripts-1.4.zip

http://wiki.ops4j.org/display/ops4j/Pax+Construct
http://repo1.maven.org/maven2/org/ops4j/pax/construct/scripts/1.4/scripts-1.4.zip
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=51

SETTING UP THE PROJECT 52

Script What It Does

pax-add-repository Adds a Maven repository to the project’s list of

repositories.

pax-clone Clones an existing Pax Construct project so that it

can be re-created elsewhere.

pax-create-bundle Creates a new bundle project within an OSGi

project or within a module.

pax-create-module Creates a new module within another module or an

OSGi project. Modules are an organizational entity

to group related bundles together.

pax-create-project Creates a new parent OSGi project. This is the first

Pax Construct script you’ll use. Within the project

that it creates, you’ll use the other scripts to create

new bundle subprojects.

pax-embed-jar Embeds a third-party JAR file within a bundle,

ensuring that it is added to the bundle’s classpath.

pax-import-bundle Adds Import-Package instructions to ensure that a

bundle imports a dependency bundle.

pax-move-bundle Moves a bundle project to a new directory, updat-

ing the Maven POM as necessary.

pax-provision Starts an OSGi framework (Felix by default),

installs all of the project’s bundles and dependen-

cies, and starts the bundles.

pax-remove-bundle Removes a bundle from the OSGi project.

pax-update Checks for and installs a new version of Pax

Construct.

pax-wrap-jar Creates a bundle project within an OSGi project or

a module that wraps a third-party JAR file as an

OSGi bundle.

Figure 3.2: Pax Construct provides several scripts to automate devel-

opment of OSGi projects.

Now you’re ready to start using Pax Construct. All the scripts made

available by Pax Construct are described in Figure 3.2.

Since we haven’t set up a project yet, the script that we’ll need first

is pax-create-project. We’ll use it to create the foundation for the Dude,

Where’s My JAR? project.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=52

SETTING UP THE PROJECT 53

Updating Pax Construct

While I was still writing this book, Pax Construct 1.4 was released,
fixing a significant bug with regard to deploying web bundles
(we’ll talk more about that later in Chapter 7, Creating Web
Bundles, on page 129). To take advantage of the bug fix, I
needed to update Pax Construct from version 1.3 to version 1.4.

No problem. That’s exactly what the pax-update script is for. It
checks for a newer version of Pax Construct and automatically
updates the version used by the current project. To use it, simply
type pax-update at the command line of the Pax Construct–
enabled project.

Creating the Top-Level Project

The simplest way to create a new project with Pax Construct is to run

the pax-create-project script at the command line:

projects% pax-create-project

pax-create-project -g groupId -a artifactId [-v version] [-o] [-- mvnOpts ...]

groupId (examples) ? com.dudewheresmyjar

artifactId (myProject) ? dwmj

version (1.0-SNAPSHOT) ? 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] Scanning for projects...

[INFO] --

[INFO] Building Maven Default Project

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:create-project]

(aggregator-style)

[INFO] --

[INFO] Setting property: classpath.resource.loader.class =>

'org.codehaus.plexus.velocity.ContextClassLoaderResourceLoader'.

[INFO] Setting property: velocimacro.messages.on => 'false'.

[INFO] Setting property: resource.loader => 'classpath'.

[INFO] Setting property: resource.manager.logwhenfound => 'false'.

...

[INFO] Archetype created in dir: /Users/wallsc/Projects/projects/dwmj

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Thu Mar 05 23:57:34 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

projects%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=53

SETTING UP THE PROJECT 54

dwmj/

poms

pom.xml

provision

pom.xml

pom.xml

compiled

pom.xml

wrappers

pom.xml

Figure 3.3: The pax-create-project script kick starts OSGi project devel-

opment with a basic project structure and Maven 2 POM files.

Under the covers, pax-create-project uses a Maven 2 archetype to create

the project structure. Therefore, when you run pax-create-project with-

out any arguments, it will prompt you for a Maven group ID, artifact

ID, and version number to apply to the project it creates. If you’d rather

not answer any questions, you could also provide those details on the

command line:

projects% pax-create-project -g com.dudewheresmyjar -a dwmj -v 1.0.0-SNAPSHOT

When pax-create-project is finished, you’ll find the top-level project for

Dude, Where’s My JAR? in the dwmj directory. Within this directory,

you’ll find the directory structure shown in Figure 3.3.

As you can see, there are several Maven 2 pom.xml files in the project.

For the most part, the only one that matters right now is the one at the

top level, just inside the dwmj directory—it is the one that is used to

build the whole project. The pom.xml files under the poms directory will

serve as parent POMs for the bundle subprojects that we’ll create later.

As for the pom.xml file in the provision directory, Pax Construct will use it

to decide what bundles to install when the OSGi framework is started

with the pax-provision script. Since we’ve only just started, there’s not

much in there yet. But if you want to give it a spin, feel free to kick off

pax-provision now.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=54

SETTING UP THE PROJECT 55

projects% cd dwmj

dwmj% pax-provision

[INFO] Scanning for projects...

[INFO] Reactor build order:

[INFO] com.dudewheresmyjar.dwmj (OSGi project)

[INFO] dwmj - plugin configuration

[INFO] dwmj - wrapper instructions

[INFO] dwmj - bundle instructions

[INFO] dwmj - imported bundles

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:provision]

(aggregator-style)

[INFO] --

[INFO] [pax:provision]

[INFO] ~~~~~~~~~~~~~~~~~~~

[INFO] No bundles found!

[INFO] ~~~~~~~~~~~~~~~~~~~

[INFO] Installing /Users/wallsc/Projects/projects/dwmj/runner/deploy-pom.xml to

/Users/wallsc/.m2/repository/com/dudewheresmyjar/dwmj/build/deployment/

1.0.0-SNAPSHOT/deployment-1.0.0-SNAPSHOT.pom

[INFO] artifact org.ops4j.pax.runner:pax-runner: checking for updates from central

______ ________ __ __

/ __ / / __ / / / / /

/ ___/ / __ / _\ \ _/

/ / / / / / / _\ \

/__/ /__/ /__/ /_/ /_/

Pax Runner (0.14.1) from OPS4J - http://www.ops4j.org

-> Using config [classpath:META-INF/runner.properties]

-> Provision from [/Users/wallsc/Projects/projects/dwmj/runner/deploy-pom.xml]

-> Provision from [scan-pom:file:/Users/wallsc/Projects/projects/dwmj/runner/

deploy-pom.xml]

-> Using property [org.osgi.service.http.port=8080]

-> Using property [org.osgi.service.http.port.secure=8443]

-> Using default executor

-> Downloading bundles...

-> Felix 1.2.2 : 356815 bytes @ [641kBps]

-> org.osgi.compendium (4.1.0) : 514214 bytes @ [331kBps]

-> org.apache.felix.shell (1.0.2) : 51390 bytes @ [1167kBps]

-> org.apache.felix.shell.tui.plugin (1.0.2) : 12237 bytes @ [108kBps]

-> Execution environment [J2SE-1.5]

-> Starting platform [Felix 1.2.2]. Runner has successfully finished his job!

Welcome to Felix.

=================

->

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=55

SETTING UP THE PROJECT 56

As you can see, pax-provision fires up Felix. The key thing to notice is the

line that says “No bundles found!” That’s because we haven’t created

any bundles in our project yet. We’ll get to that soon. But first, I thought

you might be interested in seeing a few ways that the project can be

customized. (Be sure to issue the shutdown command to get out of Felix.)

Customizing the Project

All of the project’s behavior is contained within the top-level pom.xml

file. If you open that file up in your text editor, you’ll find a handful of

places where you can customize the project.

This is a standard Maven 2 POM file, so you can add pretty much

anything to this file that you would add to any other pom.xml file. I’m

not going to spend any time on basic Maven configuration, but I do

want to make a few simple tweaks to the project so that it works the

way I’d like it to work.

As we develop the code for Dude, Where’s My JAR?, we’re likely to

use Java 5 language constructs, such as annotations and generics.

By default, however, Maven compiles only Java 1.4–level source code.

So, to bring Maven up to Java 5, we’ll add the following configuration

to the <build>/<plugins> section of pom.xml:

Download dwmj/pom.xml

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<configuration>

<source>1.5</source>

<target>1.5</target>

</configuration>

</plugin>

This tells Maven to compile code containing Java 5 constructs and to

compile targeting a Java 5 virtual machine.

Another change you may want to make is to use a different OSGi frame-

work when running pax-provision. As we’ve already seen, pax-provision

defaults to using Felix. But you can change it to use another imple-

mentation, such as Equinox, by tweaking the –platform parameter:

Download dwmj/pom.xml

<plugin>

<groupId>org.ops4j</groupId>

<artifactId>maven-pax-plugin</artifactId>

http://media.pragprog.com/titles/cwosg/code/dwmj/pom.xml
http://media.pragprog.com/titles/cwosg/code/dwmj/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=56

SETTING UP THE PROJECT 57

<version>1.4</version>

<configuration>

<provision>

<param>--platform=equinox</param>

<param>--profiles=minimal</param>

</provision>

</configuration>

</plugin>

The –platform parameter tells Pax which OSGi framework to use. If you’d

rather use Knopflerfish, then feel free to set it to knopflerfish (or kf for

short).

Finally, if you’re an Eclipse user, like myself, you’ll want to uncomment

the lines near the end of pom.xml that say “uncomment to auto-generate

IDE files,” leaving the following Maven declaration uncommented:

Download dwmj/pom.xml

<execution>

<id>ide-support</id>

<goals>

<goal>eclipse</goal>

</goals>

</execution>

These lines instruct Pax Construct to automatically generate Eclipse

project files so that you can easily import the bundle projects into

Eclipse. Aside from ensuring that all of the necessary dependencies

are in the Eclipse project classpath, Pax Construct will also make sure

that the project has Eclipse’s plugin development environment (PDE)

nature—so that package visibility will be limited to packages that are

imported in the project’s manifest.

The stage is now set for the rest of the book. We have identified a sample

application to be developed using OSGi. And we’ve taken a moment to

break it down along functional boundaries into pieces that we’ll develop

as OSGi bundles.

In preparation for what is to come, we’ve also created a top-level project

structure for the Dude, Where’s My JAR? application. We could’ve set

up the project by hand, but instead we’ve generated it using scripts

provided by the Pax Construct project, which is an open source toolkit

for developing OSGi applications. We’ll use Pax Construct more as we

continue fleshing out the bundles that make up our application.

http://media.pragprog.com/titles/cwosg/code/dwmj/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=57

SETTING UP THE PROJECT 58

In fact, we’re now ready to create the first bundle of our application.

In the next chapter, we’ll create a simple library bundle that contains

the domain objects of the application. As we do that, we’ll learn a few

new tricks with Pax Construct, and we’ll figure out how to deal with

third-party libraries that aren’t quite OSGi-ready.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=58

Chapter 4

Working with Bundles
OSGi is all about modularity. And the unit of modularity in OSGi is a

bundle. As we’ve already discussed, OSGi bundles are little more than

good old-fashioned JAR files with a little bit of extra information in their

manifests.

We’ve already created a few simple bundles. But now we’re ready to

turn it up a notch and develop a few more realistic bundles that will

come together to form the Dude, Where’s My JAR? application.

In this chapter we’re going to create the first bundle for the application.

It will be a simple bundle that exports only a single package and does

not publish or consume any services. Even though it’s simple, we’ll face

several interesting problems, including how to deal with dependencies

on third-party JAR files that aren’t OSGi-ready.

4.1 Creating the Domain Bundle

In the previous chapter, we used Pax Construct’s pax-create-project

script to create a top-level project for our application. Now we’ll use

the pax-create-bundle script to generate a bundle subproject to carry

the domain objects in the application. From within the dwmj project

directory, execute pax-create-bundle.1

1. For readability, I’m using a Unix shell trick to break long lines by ending them with a

backslash (\). The question mark (?) on the subsequent lines indicates that the lines are

continuations of the previous line. If you’re on Windows (or if you just want to), you can

type the command and its arguments in a single line. If you choose to use this trick, you

must type the backslash, but the Unix shell will provide the question mark.

CREATING THE DOMAIN BUNDLE 60

dwmj% pax-create-bundle -p dwmj.domain -n domain \

? -g com.dudewheresmyjar -v 1.0.0-SNAPSHOTs

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:create-bundle]

(aggregator-style)

[INFO] --

...

[INFO] Archetype created in dir: /Users/wallsc/Projects/projects/dwmj/domain

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 06 00:04:11 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmj%

Here, I’ve specified the root package of the bundle with the -p argument,

the name of the bundle with the -n argument, the bundle’s Maven group

ID with the -g argument, and the version number with the -v argument.

Optionally, I could’ve left that information off the command line, but

then the script would have prompted me for the bundle details.

In any event, once pax-create-bundle has finished, you’ll find the domain

bundle project in the domain directory under dwmj. If you dig around in

the domain directory, you’ll find several interesting items, including the

following:

• A pom.xml file: This contains the Maven build instructions for

building the bundle project. Notice that this project has the top-

level dwmj project as its parent. What’s more, if you look at the

top-level project’s pom.xml file, you’ll see that the domain project

has been added as a child project.

• An osgi.bnd file: Under the covers, Pax Construct leans on a tool

called BND2 to automatically generate manifests for bundle pro-

jects. The osgi.bnd file contains a set of instructions to guide BND

as it generates the manifest. By allowing Pax Construct to generate

the manifest (using BND), we free ourselves from the burden of

maintaining the manifest file ourselves. For the domain bundle,

this file starts out empty.

• A src directory structure that contains a few Java class files: When

Pax Construct creates a new bundle project, it places a few bits of

2. http://www.aqute.biz/Code/Bnd

http://www.aqute.biz/Code/Bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=60

CREATING THE DOMAIN BUNDLE 61

example code in there as placeholders. ExampleService.java defines

an interface that fronts the OSGi service defined in ExampleServi-

ceImpl.java. ExampleActivator.java contains an OSGi activator that

registers the service in the OSGi service registry.

Feel free to take a look around in the generated domain project’s direc-

tory. You may be interested in taking a close look at the Java source

code to see another example of an OSGi service and how a bundle acti-

vator registers it with the service registry.

The example service and activator Java files are great for educational

purposes. However, they serve no purpose in our domain bundle, so

when you’re finished looking around, go ahead and delete them. In

their place, we’ll need to create a domain class that represents a JAR

file within the index.

Defining the Domain Class

As you’ll recall from the previous chapter, the primary function of the

application is to provide a search engine for JAR files. Internally, JAR

files will be represented by a domain class named JarFile:

Download dwmj/domain/src/main/java/dwmj/domain/JarFile.java

package dwmj.domain;

public class JarFile {

private String repository;

private String groupId;

private String artifactId;

private String version;

private boolean snapshot;

private String rawUrl;

private boolean hasSource;

private boolean hasJavadoc;

private String bundleSymbolicName;

private Set<String> packages;

public String getPackageNames() {

if(packages == null) return "";

String packageNames = "";

for (String p : packages) {

packageNames += (p + " ");

}

return packageNames;

}

http://media.pragprog.com/titles/cwosg/code/dwmj/domain/src/main/java/dwmj/domain/JarFile.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=61

CREATING THE DOMAIN BUNDLE 62

private Set<String> classes;

public String getClassNames() {

if(classes == null) return "";

String classNames = "";

for (String c : classes) {

classNames += (c + " ");

}

return classNames;

}

// NOTE: property setter/getter methods left out

// for brevity's sake

}

As you can see, a JarFile carries around several useful bits of informa-

tion about artifacts that it indexes. Since the application will be using

Maven repositories as its source of JAR files, the JarFile class holds

information that can be used to find the JAR file in a Maven repos-

itory: the repository, group ID, artifact ID, and version. In addition,

JarFile has two boolean properties indicating whether the JAR file is a

snapshot version and whether it is an OSGi bundle (that is, does it have

a Bundle-SymbolicName header in its manifest).

As it stands, JarFile is a sufficient class for holding JAR file metadata.

But ultimately we’ll want to write the information kept in JarFile to an

index that can be searched upon. In the next chapter, we’ll build the

index service, which uses an open source search framework known as

Compass to do the indexing and searching. In the meantime, we can go

ahead and annotate the class with information that Compass can use

when indexing a JarFile.

Download dwmj/domain/src/main/java/dwmj/domain/JarFile.java

@Searchable(alias = "jar")

public class JarFile {

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private String repository;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private String groupId;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private String artifactId;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private String version;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private boolean snapshot;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

http://media.pragprog.com/titles/cwosg/code/dwmj/domain/src/main/java/dwmj/domain/JarFile.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=62

CREATING THE DOMAIN BUNDLE 63

private String rawUrl;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private boolean hasSource;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private boolean hasJavadoc;

@SearchableProperty(store = Store.YES, index = Index.UN_TOKENIZED)

private String bundleSymbolicName;

private Set<String> packages;

@SearchableProperty(store = Store.YES, index = Index.TOKENIZED)

public String getPackageNames() {

if(packages == null) return "";

String packageNames = "";

for (String p : packages) {

packageNames += (p + " ");

}

return packageNames;

}

private Set<String> classes;

@SearchableProperty(store = Store.YES, index = Index.TOKENIZED)

public String getClassNames() {

if(classes == null) return "";

String classNames = "";

for (String c : classes) {

classNames += (c + " ");

}

return classNames;

}

// NOTE: property setter/getter methods left out

// for brevity's sake

@SearchableId

public String getRawUrl() {

return rawUrl;

}

}

I used the @Searchable annotation to indicate that I want JarFile to be

searchable (and thus, indexed by Compass). I also annotated the mem-

ber variables of JarFile with @SearchableProperty to tell Compass that

these values are searchable. Finally, I annotated the getRawUrl() method

with @SearchableId to indicate that the value returned from this method

should be used as the unique identifier for the JarFile (think of it as a

primary key).

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=63

CREATING THE DOMAIN BUNDLE 64

Because Compass is outside of the scope of this book, I won’t dwell on

these annotations any further. We’ll do a bit more Compass work in the

next chapter as we develop the index service, but if you want to know

more about Compass, you can visit the project home page.3

The JarFile class is the only class we’ll need in the domain bundle. Since

we’ve written all of the code that this bundle needs, we’re ready to build

it into a deployable bundle JAR file.

Building the Domain Bundle

Pax Construct–created projects are based on Maven. Therefore, we can

build the domain bundle using ordinary Maven life-cycle goals. More

specifically, let’s use Maven’s install goal to build the bundle and deploy

it in our local Maven repository:

domain% mvn install

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.domain [dwmj.domain]

[INFO] task-segment: [install]

[INFO] --

[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [pax:compile]

[INFO] Compiling 1 source file to

/Users/wallsc/Projects/projects/dwmj/domain/target/classes

[INFO] [recovering meta-data]

[INFO] --

[ERROR] BUILD FAILURE

[INFO] --

[INFO] Compilation failure

/Users/wallsc/Projects/projects/dwmj/domain/src/main/java/dwmj/domain/JarFile.java:

[7,31] package org.compass.annotations does not exist

...

[INFO] --

[INFO] For more information, run Maven with the -e switch

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 06 00:06:51 CST 2009

[INFO] Final Memory: 12M/23M

[INFO] --

domain%

Oops! It seems we’ve already run into some trouble. It looks like Maven

is having trouble compiling JarFile.java because it can’t find the Compass

3. http://www.compass-project.org/

http://www.compass-project.org/
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=64

CREATING THE DOMAIN BUNDLE 65

annotations. That’s because we haven’t added Compass as a depen-

dency in the project. Let’s fix that by adding Compass as a dependency

in pom.xml. Open the domain bundle project’s pom.xml in your editor,

and add the following <dependency> to the <dependencies> block:

<dependency>

<groupId>org.compass-project</groupId>

<artifactId>compass</artifactId>

<version>2.1.1</version>

</dependency>

You’re probably wondering how I knew what the group and artifact IDs

should be. Well, it certainly would be nice if there were some sort of

search engine that would find these things for us. But since nobody

has developed one of those quite yet, I figured it out by reading the

Compass website.

At the same time, I also happened to learn that Compass isn’t in the

central Maven repository—Compass has its own repository. In typical

Maven fashion, we could add the following <repository> entry to the

pom.xml file:

<repository>

<id>compass-project.org</id>

<name>Compass</name>

<url>http://repo.compass-project.org</url>

</repository>

Or, since we’re using Pax Construct, we can use the pax-add-repository

script:

dwmj% pax-add-repository -i compass -u http://repo.compass-project.org

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:add-repository]

(aggregator-style)

[INFO] --

[INFO] [pax:add-repository]

[INFO] Adding repository http://repo.compass-project.org to

com.dudewheresmyjar:dwmj:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 06 00:08:57 CST 2009

[INFO] Final Memory: 9M/18M

[INFO] --

dwmj%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=65

CREATING THE DOMAIN BUNDLE 66

With Compass added as a dependency in Maven, we’re ready to try the

build again. This time, things seem to go a little bit better:

domain% mvn install

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.domain [dwmj.domain]

[INFO] task-segment: [install]

[INFO] --

...

And with that we have built the first bundle for our application. But

before we get too celebratory, we should probably deploy it to the OSGi

framework to see what happens.

Deploying the Bundle

In Chapter 2, we created and deployed a bundle that contained an acti-

vator class. As a result, we were given instant feedback from the bundle

when it was started (as well as when it was stopped). The domain bun-

dle, on the other hand, is much simpler and doesn’t include any exe-

cutable code. But that won’t stop us from deploying it into the container

and poking at it to see what happens.

As it turns out, Pax Construct’s repertoire isn’t limited to creating

projects and bundles. Pax Construct also comes with the pax-provision

script, which will automatically start an OSGi framework and deploy all

the bundles associated with the project. To give it a spin, run it from

the top-level project directory:

dwmj% pax-provision

[INFO] Scanning for projects...

[INFO] Reactor build order:

[INFO] com.dudewheresmyjar.dwmj (OSGi project)

[INFO] dwmj - plugin configuration

[INFO] dwmj - wrapper instructions

[INFO] dwmj - bundle instructions

[INFO] dwmj - imported bundles

[INFO] com.dudewheresmyjar.domain [dwmj.domain]

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:provision]

(aggregator-style)

[INFO] --

[INFO] [pax:provision]

[INFO] Installing /Users/wallsc/Projects/projects/dwmj/runner/deploy-pom.xml to

/Users/wallsc/.m2/repository/com/dudewheresmyjar/dwmj/build/

deployment/1.0.0-SNAPSHOT/deployment-1.0.0-SNAPSHOT.pom

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=66

CREATING THE DOMAIN BUNDLE 67

______ ________ __ __

/ __ / / __ / / / / /

/ ___/ / __ / _\ \ _/

/ / / / / / / _\ \

/__/ /__/ /__/ /_/ /_/

Pax Runner (0.14.1) from OPS4J - http://www.ops4j.org

-> Using config [classpath:META-INF/runner.properties]

-> Provision from [/Users/wallsc/Projects/projects/dwmj/runner/deploy-pom.xml]

-> Provision from [scan-pom:file:/Users/wallsc/Projects/projects/dwmj/runner/

deploy-pom.xml]

-> Using property [org.osgi.service.http.port=8080]

-> Using property [org.osgi.service.http.port.secure=8443]

-> Installing bundle [{location=mvn:com.dudewheresmyjar/domain/1.0.0-SNAPSHOT,

startlevel=null,shouldStart=true,shouldUpdate=false}]

-> Installing bundle [{location=mvn:org.compass-project/compass/2.1.1,

startlevel=null,shouldStart=true,shouldUpdate=false}]

-> Using default executor

-> Downloading bundles...

-> mvn:com.dudewheresmyjar/domain/1.0.0-SNAPSHOT : 4186 bytes @ [2093kBps]

-> mvn:org.compass-project/compass/2.1.1 : 2195374 bytes @ [6290kBps]

-> Execution environment [J2SE-1.5]

-> Starting platform [Equinox 3.4.1]. Runner has successfully finished his job!

osgi>

Under the covers, pax-provision uses another Pax project, Pax Runner, to

do its dirty work. Pax Runner is responsible for downloading an OSGi

framework (Equinox 3.4.0 in this case), starting it, and then installing

and starting a set of bundles. When used with Pax Construct, that set of

bundles is determined from the set of bundle projects and dependencies

in the Pax Construct–managed OSGi project.

Notice that once Pax Runner has finished its job, we’re presented with

our old friend, the osgi> prompt. Let’s use it to see what was deployed:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 INSTALLED com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

4 ACTIVE org.compass-project.compass_2.1.1

osgi>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=67

CREATING THE DOMAIN BUNDLE 68

It seems that in addition to a few core Equinox bundles, Pax Runner

has installed our domain bundle (id=3) and Compass (id=4). Now that’s

smart: Pax Runner not only knew to install our bundle, but it was able

to figure out, from the Maven POM, that we’d also need Compass.

Our bundle is installed and everything seems in order, that is, except

for the fact that our bundle isn’t active. Hmmm. Why didn’t Pax Runner

start it for us like it did for the other bundles? Oh well, let’s start it

ourselves:

osgi> start 3

org.osgi.framework.BundleException: The bundle could not be resolved. Reason:

Missing Constraint: Import-Package: org.compass.annotations; version="0.0.0"

at org.eclipse.osgi.framework.internal.core.BundleHost.startWorker

at org.eclipse.osgi.framework.internal.core.AbstractBundle.start

at org.eclipse.osgi.framework.internal.core.AbstractBundle.start

at org.eclipse.osgi.framework.internal.core.FrameworkCommandProvider._start

at sun.reflect.NativeMethodAccessorImpl.invoke0

at sun.reflect.NativeMethodAccessorImpl.invoke

at sun.reflect.DelegatingMethodAccessorImpl.invoke

at java.lang.reflect.Method.invoke

...

osgi>

Whoa! That was unexpected. Apparently our bundle can’t be started

because it can’t find the org.compass.annotations package. That’s funny

. . . I don’t remember adding an Import-Package: header to the bundle’s

manifest. In any event, if our bundle is importing that package, would

you not think that the Compass bundle would export it? Let’s check

into it by seeing what the Compass bundle has to offer:

osgi> bundle 4

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Id=4, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmj/runner/

equinox/org.eclipse.osgi/bundles/4/data

No registered services.

No services in use.

No exported packages

No imported packages

No fragment bundles

Named class space

org.compass-project.compass; bundle-version="2.1.1"[provided]

No required bundles

osgi>

The No exported packages line looks to be the root of our problem. In

fact, the Compass bundle looks pretty much useless as is. It seems that

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=68

CONTENDING WITH NONBUNDLE DEPENDENCIES 69

we’ll need to modify the Compass bundle’s manifest so that we can get

at its content.

4.2 Contending with Nonbundle Dependencies

In a perfect world, pizza would be categorized as health food, we’d power

our notebook computers from a wireless power source, and all JAR files

would already be OSGi bundles.

Unfortunately, this is not an ideal world, and not every JAR file you’ll

encounter is a full-fledged OSGi bundle. In fact, a great number of

libraries that you’ll probably want to use in your applications do not

have a proper OSGi-enabling MANIFEST.MF file.

We’ve already run into an example of a JAR file that isn’t an OSGi bun-

dle: Compass. Actually, the Compass 2.1.1 JAR file does contain a man-

ifest with a Bundle-SymbolicName: header (which satisfies the minimum

requirements for an OSGi bundle). Oddly enough, however, while the

Compass JAR has a proper OSGi manifest, it seems to be incomplete.

That’s because the Compass manifest doesn’t export any packages.

Therefore, even though we can install Compass as a bundle into the

OSGi framework, we can’t use any of the classes, interfaces, or annota-

tions that it contains. So, despite the presence of a Bundle-SymbolicName:

header, we’ll need to treat Compass as if it were a nonbundle JAR file.

Although we don’t develop software in a perfect world, hope is not lost if

your OSGi-based application depends on a library that doesn’t provide

an OSGi bundle. One way to fix the Compass bundle is to expand it,

edit its manifest, and then reconstitute the contents back into a new

JAR file. But that seems a bit extreme, especially if it’s a manual effort.

Instead, let’s consider two less extreme ways to bring nonbundle JARs

into our OSGi application:

• Embed the JAR files within the bundles that need them.

• Wrap the JAR files with an OSGi manifest.

Let’s take a look at how to use each of these techniques to be able to

use Compass in our application.

Embedding JARs

The first option for using nonbundle JARs in an OSGi application is to

directly embed the JAR files into the bundle. But wait a minute. Isn’t

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=69

CONTENDING WITH NONBUNDLE DEPENDENCIES 70

the bundle a JAR file? Am I suggesting that we package a JAR file within

another JAR file?

Yes, I know it sounds weird, but embedding JAR files within OSGi bun-

dles is a perfectly valid way to add nonbundle libraries to your OSGi

application. This trick involves adding a Bundle-ClassPath: header to the

domain bundle’s manifest.

The Bundle-ClassPath: header defines a bundle’s classpath. By default,

it is set to “.” which indicates that the bundle’s own content is on

the classpath (in addition to any packages that it may have imported

from other bundles). But if we were to embed the Compass JAR file

within the domain bundle JAR, then we could add a reference to the

embedded JAR in Bundle-ClassPath:, and Compass would be included in

the domain bundle’s classpath. For example, if we placed Compass in

the JAR file under a lib directory, then we could set Bundle-ClassPath: to

“.,lib/compass-2.1.1.jar.”

That all sounds well and good, but it also sounds like a lot of work.

Never fear—Pax Construct is on the job with its pax-embed-jar script.

This handy little script will take care of everything needed to embed a

JAR file in a bundle. To embed the Compass JAR, run pax-embed-jar

from within the domain directory:

domain% pax-embed-jar -g org.compass-project -a compass -v 2.1.1

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.domain [dwmj.domain]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:embed-jar]

(aggregator-style)

[INFO] --

[INFO] [pax:embed-jar]

[INFO] Embedding org.compass-project:compass:2.1.1 in

com.dudewheresmyjar:domain:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 06 00:29:16 CST 2009

[INFO] Final Memory: 9M/17M

[INFO] --

domain%

And with that, Compass will be embedded in the domain bundle. But

how? What did pax-embed-jar really do?

Actually, pax-embed-jar didn’t really embed anything. Instead, it

changed a few of the domain project’s files so that Compass will be

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=70

CONTENDING WITH NONBUNDLE DEPENDENCIES 71

embedded when the domain bundle is built. More specifically, pax-

embed-jar made the following changes:

• Added an Embed-Dependency entry to osgi.bnd. The Embed-

Dependency entry declares that the manifest should have a proper

Bundle-ClassPath: header pointing to the Compass JAR file that will

be embedded within the domain bundle.

• Added a <dependency> entry to the POM file to ensure that Com-

pass is counted as a dependency of the project.

Now when we build the domain bundle, it should contain not only our

JarFile class but also the contents of the Compass library. Let’s try build-

ing it:

domain% mvn install

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.domain [dwmj.domain]

[INFO] task-segment: [install]

[INFO] --

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 9 seconds

[INFO] Finished at: Fri Mar 06 00:30:13 CST 2009

[INFO] Final Memory: 14M/33M

[INFO] --

domain%

So far so good. Let’s kick it off again and see whether adding the Com-

pass bundle will enable the domain bundle to start:

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 INSTALLED com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

osgi>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=71

CONTENDING WITH NONBUNDLE DEPENDENCIES 72

As you can see, the domain bundle is still not starting. To figure out

what’s going on, let’s use Eclipse’s diag command:

osgi> diag 3

initial@reference:file:com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [3]

Direct constraints which are unresolved:

Missing imported package com.gigaspaces.datasource_0.0.0.

Missing imported package com.gigaspaces.events_0.0.0.

Missing imported package com.gigaspaces.events.batching_0.0.0.

Missing imported package com.ibatis.sqlmap.client_0.0.0.

Missing imported package com.ibatis.sqlmap.client.event_0.0.0.

Missing imported package com.ibatis.sqlmap.engine.impl_0.0.0.

Missing imported package com.ibatis.sqlmap.engine.mapping.result_0.0.0.

Missing imported package com.ibatis.sqlmap.engine.mapping.statement_0.0.0.

Missing imported package com.j_spaces.core_0.0.0.

...

Wow! it seems that our domain bundle now depends on a lot of other

packages, including packages in libraries such as Gigaspaces and

iBATIS. But I don’t remember making any changes that would cause

the domain bundle to depend on these packages. What’s going on?

It just so happens that even though our domain bundle doesn’t need

any of those packages, Compass does. And when we embedded Com-

pass within the domain bundle, that meant that the domain bundle

would have to declare those imports on behalf of the embedded Com-

pass library. But does this mean that we must install those other

libraries as bundles in the OSGi framework? Not necessarily. . . .

By default, Pax Construct instructs BND to generate a manifest that

imports every package needed by a bundle (and, in this case, by any

libraries embedded within a bundle). That’s why Equinox couldn’t start

the domain bundle—the embedded Compass library was demanding

packages that aren’t being provided by other bundles.

The good news, however, is that most of Compass’ dependencies are

optional. Compass comes with support for Gigaspaces, TopLink,

iBATIS, and a lot of other third-party libraries. But unless we’re using

those parts of Compass, we shouldn’t need to install them in OSGi.

What we need is a way to tell the OSGi framework to not require those

packages. To do that, we can add the following directive to the domain

bundle BND instruction file (osgi.bnd):

Download dwmj/domain/osgi-embedded.bnd

Import-Package: *;resolution:=optional

http://media.pragprog.com/titles/cwosg/code/dwmj/domain/osgi-embedded.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=72

CONTENDING WITH NONBUNDLE DEPENDENCIES 73

This tells BND to import all packages that it needs but differs from

the default in that it specifies the resolution of those packages to be

optional. In other words, BND will produce a manifest that tells the

OSGi framework to try to resolve the packages but not to complain if

it can’t find a bundle that exports them. This should make it possible

for us to start the domain bundle. After rebuilding the domain bundle

(using mvn install), let’s give it a try:

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

osgi>

It looks like that did the trick. Our domain bundle is installed and

started with Compass embedded within it. At this point, we are ready

to move on and start developing the index service bundle.

Hold on! Embedding Compass within the domain bundle satisfied the

domain bundle’s dependency on Compass. But our index service bun-

dle is also going to need to use Compass to add JarFile entries to the

index and to search for them on behalf of a user. With Compass embed-

ded in the domain bundle, the index service bundle won’t be able to

use it—that is, unless the domain bundle also exports the Compass

packages.

There’s no reason why the domain bundle couldn’t export Compass

packages. But it probably shouldn’t because it would create an awk-

ward arrangement of dependencies. If we decide later to upgrade to

a newer version of Compass, we’ll have to rebuild the domain bundle

with the new version embedded in place of the older version. In short,

we sacrificed a little modularity by embedding Compass in our domain

bundle.

Before we settle on the approach of embedding Compass within the

domain bundle, let’s see how we can make Compass available to the

domain bundle by wrapping it to be a proper OSGi bundle.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=73

CONTENDING WITH NONBUNDLE DEPENDENCIES 74

Joe Asks. . .

How Do I Decide Whether to Embed a JAR or to Wrap It?

This is a very good question. The answer comes down to a
choice of simplicity vs. fine-grained control.

When you wrap a JAR file, you effectively turn it into an OSGi
bundle. This means that you can install, start, stop, update, and
uninstall it in the OSGi framework just like any other bundle. You
need to install it only once for all depending bundles to be able
to use it.

Embedded JARs, on the other hand, can be managed only
within the scope of the bundle into which they are embedded.
This means that you can’t upgrade to a newer version of an
embedded JAR file without rebuilding the hosting bundle. Also,
if more than one bundle depends on a library, then that library’s
JAR file must be embedded within each bundle that needs it.

With that said, embedding JARs within bundles follows a familiar
deployment model that is similar to web application WAR files
that have JAR files embedded within them.

As a rule of thumb, if a library is needed by only one bundle
and if you will only ever manage that library within the scope of
the depending bundle, then you should probably embed it. But
if the library is needed by several bundles and/or you want to
manage that library independent of other bundles in the OSGi
framework, then it may make more sense to wrap the library
and deploy it as a full-fledged bundle.

Wrapping JARs

Another way to deal with JARs that aren’t OSGi-ready is to wrap them

so that they’ll contain a proper OSGi manifest. In a Pax Construct

project, the easiest way to do this is using the pax-wrap-jar script. To

wrap the Compass JAR, run pax-wrap-jar from the top-level project

directory (the dwmj directory) like this:

dwmj% pax-wrap-jar -g org.compass-project -a compass -v 2.1.1

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:wrap-jar] (aggregator-style)

[INFO] --

...

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=74

CONTENDING WITH NONBUNDLE DEPENDENCIES 75

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 06 00:37:50 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmj%

Like most other Pax Construct scripts, pax-wrap-jar takes Maven arti-

fact information at the command line (but will prompt you to enter the

information if you don’t enter it on the command line). In this case, I’ve

specified the group ID (org.compass-project), the artifact ID (compass),

and the version number (2.1.1).

Once pax-wrap-jar has finished, you’ll find a new bundle project under

the dwmj directory in org.compass-project.compass. You’ll also find that

this new project has been added as a module to the top-level pom.xml

file. But what does this project contain?

Not much, really. It contains just a Maven pom.xml file and an osgi.bnd

file. The most interesting of these two files is the osgi.bnd file:

Download dwmj/org.compass-project.compass/osgi.bnd

Embed-Dependency:\

*;scope=compile|runtime;type=!pom;inline=true,\

lucene-core;groupId=org.apache.lucene;inline=false

This file directs BND (by way of Pax Construct) to automatically unpack

Compass into this bundle as the bundle is being created. Effectively,

this means unpacking the Compass JAR file, adding a manifest, and

then repacking it as an OSGi bundle.

Take note of the backslashes at the end of each line. These are used to

split apart exceptionally long lines.

Now let’s rebuild the bundle (with mvn install) and then try pax-provision

again:

dwmj% pax-provision

[INFO] Scanning for projects...

[INFO] Reactor build order:

[INFO] com.dudewheresmyjar.dwmj (OSGi project)

[INFO] dwmj - plugin configuration

[INFO] dwmj - wrapper instructions

[INFO] dwmj - bundle instructions

[INFO] dwmj - imported bundles

[INFO] com.dudewheresmyjar.domain [dwmj.domain]

[INFO] org.compass-project.compass 2.1.1 [osgi]

http://media.pragprog.com/titles/cwosg/code/dwmj/org.compass-project.compass/osgi.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=75

CONTENDING WITH NONBUNDLE DEPENDENCIES 76

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:provision]

(aggregator-style)

[INFO] --

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 INSTALLED com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

4 INSTALLED org.compass-project.compass_2.1.1

osgi>

It looks like the Compass bundle has been installed, but neither it nor

the domain bundle is started. Let’s use Equinox’s diag command to see

what the problem might be:

osgi> diag 3

initial@reference:file:com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [3]

Direct constraints which are unresolved:

Missing imported package dwmj.domain_1.0.0.SNAPSHOT.

Missing imported package org.compass.annotations_0.0.0.

Leaf constraints in the dependency chain which are unresolved:

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package com.ibatis.sqlmap.engine.mapping.result_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package javax.jdo.listener_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package org.hibernate.cfg_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package com.gigaspaces.events.batching_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package org.apache.openjpa.lib.log_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package org.jdom.xpath_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package net.jini.core.transaction_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package org.dom4j.io_0.0.0.

initial@reference:file:org.compass-project.compass_2.1.1.jar/ [4]

Missing imported package com.j_spaces.core_0.0.0.

...

Hmmm. . . this looks familiar. It seems that the Compass bundle can’t

be started because it depends on several third-party packages that

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=76

CONTENDING WITH NONBUNDLE DEPENDENCIES 77

aren’t being exported by any of the bundles already installed. As you’ll

recall, we encountered the same problem when we tried embedding

Compass in the domain bundle. The solution here is the same as then,

except that we’ll declare the optional packages in the wrapped Compass

bundle project’s osgi.bnd file:

Download dwmj/org.compass-project.compass/osgi.bnd

Import-Package: *;resolution:=optional

Just like in the embedded Compass situation, this tells BND to create a

manifest that tries to import packages but doesn’t complain if it can’t.

OK, let’s try to build the bundle once more (with mvn install) and then

cross our fingers and provision it:

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

4 ACTIVE org.compass-project.compass_2.1.1

osgi>

Voilà! It looks like both the Compass bundle and our domain bundle

have been successfully installed and started. Compass was able to start

because the framework was able to resolve all of its required dependen-

cies (of which there were none). And with Compass started, all of the

domain bundle’s required dependencies were resolved, and the domain

bundle was started.

Since Compass is installed as a separate bundle from the domain bun-

dle, we can manage it independently of any of the other bundles in our

application, including the domain bundle. So, in contrast to embedding

Compass, wrapping Compass gave us back the modularity that we had

lost between the domain bundle and Compass. For that reason, I think

we should stick with the wrapped Compass.

http://media.pragprog.com/titles/cwosg/code/dwmj/org.compass-project.compass/osgi.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=77

FOLLOWING THE BUNDLE LIFE CYCLE 78

INSTALLED

UNINSTALLED RESOLVED

STARTING STOPPING

ACTIVE

install

update

un
in
st
al
l resolve

st
ar
t

st
op

uninstall

Figure 4.1: In OSGi, the bundle life cycle consists of a well-defined

series of states.

4.3 Following the Bundle Life Cycle

One thing that I’ve glossed over up until now is how a bundle moves

from one state to another. After we installed our bundles, the Equinox

ss command told us that they were in the INSTALLED state. Later, after

starting them, we saw that they were in the ACTIVE state. Then, when

we stopped them, they ended up in the RESOLVED state. But what do

these states mean, and what transitions take a bundle from one state

to another?

To help clear this up, consider the state diagram in Figure 4.1, which

traces the stages of a bundle’s life cycle.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=78

FOLLOWING THE BUNDLE LIFE CYCLE 79

When you first install a bundle into the OSGi framework, its state is

INSTALLED. If all the bundle’s dependencies (imported packages or

required bundles) are already available in the framework, it will auto-

matically transition to the RESOLVED state. Otherwise, it will remain

in INSTALLED state until all of its dependencies are met or until it is

uninstalled.

If you choose to uninstall a bundle, it will be removed from the frame-

work. Once it is removed, there’ll be no trace of its existence in the

framework. Therefore, it’s unlikely that you’ll ever see a bundle in the

UNINSTALLED state. UNINSTALLED is merely a placeholder for bun-

dles that are no longer available.

A bundle in the RESOLVED state has all of its dependencies satisfied,

but it hasn’t been started. As we’ve already seen, the start command

starts a bundle, transitioning it to ACTIVE, via the STARTING state.

Likewise, issuing the stop command on a bundle transitions it back to

the RESOLVED state, by way of the STOPPING state. Starting and stop-

ping a bundle is typically a quick activity. This means that although it’s

possible to see a bundle in STARTING or STOPPING state, it’s unlikely

that you’ll be able to catch most bundles in one of those transitional

states.

What’s not apparent in the state diagram is that most OSGi framework

implementations will allow you to uninstall an active bundle. But even

if the bundle is in the ACTIVE state when it is uninstalled, it will still

transition from ACTIVE through STOPPING to RESOLVED and then to

UNINSTALLED. This series of transitions is important because it may

be necessary for a bundle activator’s stop() method to be invoked prior

to uninstallation so that the bundle can free up resources or perform

other shutdown activity.

Now we’ve constructed our application’s first bundle. It doesn’t do

much, but it is, nonetheless, a critical module in the application. Along

the way, we came to know Pax Construct a bit more, learned to deal

with the inevitable nonbundle dependency, and came to understand

the life cycle of a bundle.

Coming up in the next chapter, we’ll add another bundle to Dude,

Where’s My JAR? as we build the heart of the application: the index ser-

vice. In doing so, we’ll see how to publish services from OSGi

bundles.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=79

Chapter 5

OSGi Services
In the previous chapter, we created and installed a simple OSGi bundle

that defined a domain class for Dude, Where’s My JAR?. Now we’re going

to put that domain class to work. Because the focus of this chapter is

OSGi’s service layer, we’re going to continue fleshing out the application

by building a bundle that publishes the index service. The index ser-

vice, as you may recall, is responsible for both adding JarFile entries to

an index and searching the index for any JarFiles that meet given search

criteria. Then we’ll create the spider bundle that will use the index ser-

vice to index JAR files that it finds while scouring Maven repositories.

5.1 Creating an OSGi Service

To get started with the index service, we’ll use Pax Construct’s pax-

create-bundle script to generate the index bundle subproject. From

within the top-level dwmj directory, run pax-create-bundle, specifying the

bundle project’s name, base package, Maven group ID, and version:

dwmj% pax-create-bundle -n index -p dwmj.index -g com.dudewheresmyjar \

? -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:create-bundle]

(aggregator-style)

[INFO] --

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 7 seconds

[INFO] Finished at: Fri Mar 06 15:58:08 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmj%

CREATING AN OSGI SERVICE 81

Just as when we created the domain bundle, pax-create-bundle will cre-

ate a sample activator, service class, and service interface. We won’t be

needing these, so go ahead and delete them. In their place, we’ll create

a new activator, service class, and interface for the index service. Let’s

start with the IndexService interface:

Download dwmj/index/src/main/java/dwmj/index/IndexService.java

package dwmj.index;

import java.util.List;

import dwmj.domain.JarFile;

public interface IndexService {

void addJarFile(JarFile jarFile);

List<JarFile> findJarFiles(String searchString);

void removeJarFile(JarFile jarFile);

}

As reflected in the IndexService interface, the index service does three

basic things: it indexes JAR files, searches for JAR files, and removes

JAR files from the index. Later in this chapter, we’ll see how the spider

bundle calls addJarFile() to add JAR file metadata to the index. As for

the findJarFiles() method, we’ll use that when we build the web layer of

the application.

But first things first. The IndexService interface isn’t very useful by itself.

We’ll also need an implementation class:

Download dwmj/index/src/main/java/dwmj/index/internal/IndexServiceImpl.java

package dwmj.index.internal;

import java.util.ArrayList;

import java.util.List;

import org.compass.core.Compass;

import org.compass.core.CompassException;

import org.compass.core.CompassHit;

import org.compass.core.CompassHits;

import org.compass.core.CompassSession;

import org.compass.core.CompassTransaction;

import dwmj.domain.JarFile;

import dwmj.index.IndexService;

public class IndexServiceImpl implements IndexService {

private final Compass compass;

http://media.pragprog.com/titles/cwosg/code/dwmj/index/src/main/java/dwmj/index/IndexService.java
http://media.pragprog.com/titles/cwosg/code/dwmj/index/src/main/java/dwmj/index/internal/IndexServiceImpl.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=81

CREATING AN OSGI SERVICE 82

public IndexServiceImpl(Compass compass) {

this.compass = compass;

}

public void addJarFile(JarFile jarFile) {

CompassSession session = null;

CompassTransaction transaction = null;

try {

session = compass.openSession();

transaction = session.beginTransaction();

session.create(jarFile);

transaction.commit();

}

catch (CompassException e) {

if (transaction != null) {

transaction.rollback();

}

}

finally {

if (session != null) {

session.close();

}

}

}

public List<JarFile> findJarFiles(String searchString) {

CompassSession session = compass.openSession();

CompassTransaction transaction = session.beginTransaction();

CompassHits hits = session.find(searchString);

List<JarFile> jarFiles = new ArrayList<JarFile>(hits.getLength());

for (CompassHit hit : hits) {

jarFiles.add((JarFile) hit.getData());

}

transaction.commit();

session.close();

return jarFiles;

}

public void removeJarFile(JarFile jarFile) {

CompassSession session = null;

CompassTransaction transaction = null;

try {

session = compass.openSession();

transaction = session.beginTransaction();

session.delete(jarFile);

transaction.commit();

}

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=82

CREATING AN OSGI SERVICE 83

catch (CompassException e) {

if (transaction != null) {

transaction.rollback();

}

}

finally {

if (session != null) {

session.close();

}

}

}

}

You’re welcome to scrutinize the internal details of IndexServiceImpl if

you’d like—for the most part they’re not pertinent to our exploration of

OSGi. But the main thing to take note of here is that IndexServiceImpl

makes heavy use of Compass and the domain bundle’s JarFile class.

This means that this bundle will need to import the packages from

those bundles in its manifest. And we’ll need to add those bundles to

the project’s pom.xml file so that their classes will be available at compile

time.

The good news is that Pax Construct’s Maven plugin will automatically

add the Import-Package: headers that we need when we build the bun-

dle. But we’ll still need to add the dependencies to the pom.xml file.

For that, we’ll use Pax Construct’s pax-import-bundle script. First, the

Compass bundle:

index% pax-import-bundle -g com.dudewheresmyjar.dwmj \

? -a org.compass-project.compass -v 2.1.1-001-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.index [dwmj.index]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[WARNING] Problem resolving project

com.dudewheresmyjar.dwmj:org.compass-project.compass:pom:2.1.1-001-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 06 16:18:56 CST 2009

[INFO] Final Memory: 8M/15M

[INFO] --

index%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=83

CREATING AN OSGI SERVICE 84

And then the domain bundle:

index% pax-import-bundle -g com.dudewheresmyjar -a domain -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.index [dwmj.index]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.domain [dwmj.domain] as dependency to

com.dudewheresmyjar:index:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 06 16:20:32 CST 2009

[INFO] Final Memory: 8M/19M

[INFO] --

index%

Now we have a service interface and implementation class. But if you

take another look at those classes, you’ll see that there’s nothing special

about them that makes them an OSGi service. They’re just a plain-old

Java class and a plain-old Java interface (POJO/POJI). That’s a good

thing because it demonstrates the lightweight nature—the OSGi API

hasn’t crept into our service implementation. But it also means that

just writing a service class doesn’t do anything to make it an OSGi

service. We need something more to publish the service.

Publishing the Service with a Bundle Activator

The key to publishing a service is a bundle activator. We’ve already seen

one bundle activator earlier in this book (see Section 2.3, Publishing a

Hello Service, on page 37). The activator that we’ll create to publish the

index service is remarkably similar to that activator:

Download dwmj/index/src/main/java/dwmj/index/internal/IndexServiceActivator.java

package dwmj.index.internal;

import org.compass.core.Compass;

import org.compass.core.config.CompassConfiguration;

import org.compass.core.config.CompassEnvironment;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import dwmj.domain.JarFile;

import dwmj.index.IndexService;

http://media.pragprog.com/titles/cwosg/code/dwmj/index/src/main/java/dwmj/index/internal/IndexServiceActivator.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=84

CREATING AN OSGI SERVICE 85

public final class IndexServiceActivator implements BundleActivator {

public void start(BundleContext bc) throws Exception {

IndexService indexService = new IndexServiceImpl(getCompass());

bc.registerService(IndexService.class.getName(), indexService, null);

}

public void stop(BundleContext bc) throws Exception {

// nothing to do!

}

private Compass getCompass() {

String tempDir = System.getProperty("java.io.tmpdir");

CompassConfiguration config = new CompassConfiguration().setSetting(

CompassEnvironment.CONNECTION, tempDir + "/dudeindex")

.addClass(JarFile.class);

return config.buildCompass();

}

}

When the index bundle is installed into the OSGi framework and is

started, the start() method on the activator will be called. In this case,

the activator will use the BundleContext given to the start() method to

register the index service.

The first parameter given to registerService() is the name under which

we’ll register the service. In reality, we could register the service under

any name. But if we were to pick any arbitrary name, we increase the

opportunity for a name collision with another service that just happens

to be registered under the same arbitrary name. Therefore, the conven-

tion agreed upon is to register the service using the fully qualified name

of the interface that the service implements. In addition to avoiding

name collisions, this convention also provides a way for a service con-

sumer to locate services by their function (as defined by the interface).

As for the second parameter, it is an instance of the service imple-

mentation. In this case, there’s nothing special—just a new instance of

IndexServiceImpl. But you could use this opportunity to inject references

to other services into the service before registering it with the OSGi

service registry.

The third parameter is an optional set of properties (java.util.Properties)

that will be attached to the service as it’s registered. In this case, we

had no need for any additional properties. But if we had registered the

service with properties, a service consumer could use those properties

when looking up a service from the service registry.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=85

CREATING AN OSGI SERVICE 86

Joe Asks. . .

Must I Develop to the OSGi API?

If importing OSGi-specific classes and interfaces is troubling to
you, then hang tight. You’re only one chapter away from learn-
ing how to eliminate OSGi from Java code.

There’s just one more thing we need to do to ensure that our index

service will be published: add a Bundle-Activator: header to the bundle’s

manifest. But since we’re relying on Pax Construct’s Maven plugin to

automatically generate the manifest for us, we’ll need to add the Bundle-

Activator: entry to the osgi.bnd file instead:

Download dwmj/index/osgi.bnd

Bundle-Activator: dwmj.index.internal.IndexServiceActivator

While we are editing osgi.bnd, we’ll also want to remove the existing

Bundle-Activator: entry referencing dwmj.index.internal.ExampleActivator. It

was just a leftover entry from when pax-create-bundle first created the

subproject.

Using the Logging Service

Now it seems that all of the pieces are in place for our index service. So,

let’s build it (using mvn install) and provision it:

index% cd ..

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

4 ACTIVE org.compass-project.compass_2.1.1

5 RESOLVED com.dudewheresmyjar.index_1.0.0.SNAPSHOT

osgi>

http://media.pragprog.com/titles/cwosg/code/dwmj/index/osgi.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=86

CREATING AN OSGI SERVICE 87

Oops! The index service was installed into the framework, and while

it resolved (which means that it found all of its explicit dependencies),

it failed to start. And there’s no obvious indication as to why it didn’t

start. What can we do?

Unfortunately, the answer is not all that obvious. There’s nothing in

the exceptions and stack traces that make it clear what’s going on. But

I do know one thing: Compass uses Jakarta Commons Logging. If we

start using Compass and Commons Logging isn’t available, we’re going

to have some trouble.

As it is, the Compass bundle doesn’t explicitly import packages for

Commons Logging, so it resolves and starts with no problems. But as

our index service is starting, it creates an instance of IndexServiceImpl,

which immediately starts using Compass. With no Commons Logging

available, an exception is thrown, and our index bundle fails to start.

So, if my educated hunch is right, adding Commons Logging should

solve our problem. . . right?

Yes. . . and no. You see, the way that Commons Logging (and other log-

ging libraries, for that matter) loads its loggers makes using it in OSGi

tricky at best. Even so, many third-party libraries (such as Compass)

are already coded to use Commons Logging or Log4J.

Meanwhile, the OSGi specification defines a central logging service. But

most implementations of the OSGi logging service are too minimalistic

to be of any practical use. What’s more, Compass and other libraries

weren’t developed to use the OSGi logging service.

If Commons Logging is not OSGi friendly and Compass doesn’t know

how to use the OSGi logging service, then are we at an impasse?

Absolutely not! Pax Logging, another open source OSGi offering from

the OPS4J folks, comes to the rescue. Pax Logging is an implementation

and extension of the OSGi logging service that also provides familiar

logging interfaces such as those from Commons Logging and Log4J. In

short, it is a better implementation of both the OSGi logging service

(because it offers a familiar interface) and Jakarta Commons Logging

(because it is OSGi-friendly). When I put it that way, it sounds just like

something that might be useful in our current circumstance.

So, let’s add it to our project. First, we’ll need to add the Pax Logging

API, which offers us the familiar Commons Logging interface we need.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=87

CREATING AN OSGI SERVICE 88

Within the top-level dwmj directory we’ll use pax-import-bundle to add

Pax Logging to our project.

dwmj% pax-import-bundle -g org.ops4j.pax.logging -a pax-logging-api -v 1.3.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing OPS4J Pax Logging - API to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 06 16:31:37 CST 2009

[INFO] Final Memory: 8M/19M

[INFO] --

dwmj%

As for the Pax Logging’s implementation of the OSGi logging service, it’s

contained in a separate bundle. So, we’ll also need to add the logging

service bundle to our project:

dwmj% pax-import-bundle -g org.ops4j.pax.logging -a pax-logging-service -v 1.3.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing OPS4J Pax Logging - Service to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 06 16:32:29 CST 2009

[INFO] Final Memory: 9M/16M

[INFO] --

dwmj%

Now to see whether it worked, let’s try building and provisioning the

index bundle again:

dwmj% pax-provision

[INFO] Scanning for projects...

...

[Start Level Event Dispatcher]

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=88

CREATING AN OSGI SERVICE 89

DEBUG org.compass.core.util.reflection.ReflectionFactory -

Failed to generate ASM (should have worked...) for constructor

[public dwmj.domain.JarFile()]

java.lang.NoSuchMethodException: Can't create ASM constructor reflection

helper for [public dwmj.domain.JarFile()]

...

Caused by: java.lang.NoClassDefFoundError: org/apache/lucene/index/IndexWriter

at org.compass.core.lucene.engine.LuceneSettings.configure()

at org.compass.core.lucene.engine.LuceneSearchEngineFactory.<init>()

at org.compass.core.impl.DefaultCompass.<init>()

at org.compass.core.impl.DefaultCompass.<init>()

at org.compass.core.config.CompassConfiguration.buildCompass()

at dwmj.index.internal.IndexServiceActivator.getCompass()

at dwmj.index.internal.IndexServiceActivator.start()

at org.eclipse.osgi.framework.internal.core.BundleContextImpl$2.run()

at java.security.AccessController.doPrivileged()

at org.eclipse.osgi.framework.internal.core.

BundleContextImpl.startActivator()

... 10 more

[Framework Event Dispatcher] DEBUG org.eclipse.osgi - FrameworkEvent STARTLEVEL

CHANGED

osgi>

The good news is that it seems that adding Pax Logging addressed our

concerns about logging. The bad news is that our index bundle still

doesn’t start. But this time it fails for a different reason and with an

exception to work with. It seems that Compass is having trouble finding

the IndexWriter class from Apache Lucene.

Embedding Lucene

It makes sense that Compass might complain that it can’t find classes

from Lucene. After all, Compass is an object-to-Lucene mapping frame-

work. Under the hood, it uses Lucene to do the actual indexing and

searching work. Since we’ve not installed Lucene into the OSGi frame-

work, Compass won’t be able to find it.

No problem! Let’s use pax-wrap-jar to wrap the Lucene JAR as an OSGi

bundle to be provisioned along with our other bundles.

But wait a minute. Before we get too carried away, let’s give this a bit

more thought. Compass does depend on Lucene—but our application

does not (at least not directly). Moreover, Compass 2.1.1 was built and

tested against a specific version of Lucene (2.4.0), making it unlikely

that we’d ever want to use a different version of Lucene. Therefore,

since Compass is the only bundle in our application that needs Lucene

and since it is based on a specific version of Lucene, then why not

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=89

CREATING AN OSGI SERVICE 90

embed Lucene within Compass instead of wrapping it? At very least,

embedding Lucene will give us one less bundle to manage.

As you’ll recall from the previous chapter, the pax-embed-jar script is

the Pax Construct script used to embed a JAR within a bundle project.

From within the org.compass-project.compass subproject directory, we

ask pax-embed-jar to perform its magic:

org.compass-project.compass% pax-embed-jar -g org.apache.lucene -a lucene-core \

? -v 2.4.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building org.compass-project.compass 2.1.1 [osgi]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:embed-jar]

(aggregator-style)

[INFO] --

[INFO] [pax:embed-jar]

[INFO] Embedding org.apache.lucene:lucene-core:2.4.0 in

com.dudewheresmyjar.dwmj:org.compass-project.compass:bundle:2.1.1-001-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 06 16:34:40 CST 2009

[INFO] Final Memory: 8M/16M

[INFO] --

org.compass-project.compass%

After a few seconds, pax-embed-jar completes successfully. Lucene 2.4.0

should be contained within the Compass bundle. After building the

Compass bundle (using mvn install), cross your fingers and try to provi-

sion all our application’s bundles one more time:

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

6 ACTIVE org.compass-project.compass_2.1.1

7 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

osgi>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=90

TESTING THE SERVICE 91

Woo-hoo! As you can see, all of our bundles are active. But was the

index service published? Let’s use the bundle command in Equinox to

find out:

osgi> bundle 7

initial@reference:file:com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [7]

Id=7, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmj/runner/

equinox/org.eclipse.osgi/bundles/7/data

Registered Services

{dwmj.index.IndexService}={service.id=24}

No services in use.

Exported packages

dwmj.index; version="1.0.0.SNAPSHOT"[exported]

Imported packages

dwmj.domain; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [5]>

org.compass.core; version="0.0.0"<initial@reference:file:

org.compass-project.compass_2.1.1.jar/ [6]>

org.compass.core.config; version="0.0.0"<initial@reference:file:

org.compass-project.compass_2.1.1.jar/ [6]>

org.osgi.framework; version="1.4.0"<System Bundle [0]>

No fragment bundles

Named class space

com.dudewheresmyjar.index; bundle-version="1.0.0.SNAPSHOT"[provided]

No required bundles

osgi>

And there you have it! Under the Registered Services header, we find

that a service has, in fact, been registered with the fully qualified name

of the IndexService interface. The index service is open for business.

Later in this chapter, we’re going to build the spider bundle, a bundle

that will consume the index service. And later, we’ll build the web front

end of the application that will use the index service to search for arti-

facts. But first, let’s write an integration test to drive the index service

and assert that it does what we want it to do.

5.2 Testing the Service

When testing the index service, we could (and perhaps should) write a

unit test against IndexServiceImpl that mocks the Compass object given

to the constructor. But that sort of test would only be able to confirm

that IndexServiceImpl interacts with Compass in the way that we think it

should. It does not assert that those interactions accomplish the func-

tionality that we desire from the index service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=91

TESTING THE SERVICE 92

Pax Exam vs. Spring-DM’s Testing Support

I should mention that Pax Exam isn’t the only way to test OSGi
bundles within an OSGi framework. Spring-DM also comes with
bundle-level testing support that is conceptually very similar to
what Pax Exam offers.

In fact, it could be argued that Spring-DM’s testing support is
better than Pax Exam because it takes advantage of Spring
autowiring to eliminate the need to look up services from the
OSGi service registry.

Although autowiring of services into tests is certainly a nice
thing to have, Spring-DM’s testing support is based on JUnit 3,
which (in my opinion) makes it awkward to work with. Spring-
DM has slated support for JUnit 4 (and TestNG) in version 2.0.0.
But until then, I’ll take Pax Exam’s JUnit 4–style tests over Spring-
DM’s autowiring of services.

To be sure that index service is truly doing what we expect it to do,

we should test the index service in a context that includes the other

objects that it collaborates with. More specifically, we should test the

index service bundle within the OSGi framework along with the other

bundles that it depends upon. In short, we should write an integration

test.

That’s where we add Pax Exam to our OSGi toolbox. Pax Exam is

an integration testing framework, based on JUnit, that enables in-

framework testing of OSGi bundles. What’s especially interesting about

Pax Exam, as you’ll soon see, is that instead of deploying bundles into

the framework and then observing them from outside, Pax Exam test

cases are actually deployed into the framework alongside the bundles

it is testing.

As we’ll soon see, Pax Exam test cases depend on ready-to-deploy bun-

dles. Therefore, we can’t add the test to the index service bundle project

—the index service bundle will not have been built by the time the test

case is run. Instead, we’ll create a separate project to own the tests for

the bundles.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=92

TESTING THE SERVICE 93

Setting Up the Test Project

First, let’s do some basic project setup, starting with the project direc-

tory structure. Because the tests will be run as part of a Maven 2 build,

we’ll need to set up the basic Maven 2 project structure to house the

tests:

dwmj% mkdir -p bundle-tests/src/test/java

Next, let’s create the Maven pom.xml file:

Download dwmj/bundle-tests/pom.xml

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd"

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<parent>

<relativePath>../poms/compiled/</relativePath>

<groupId>com.dudewheresmyjar.dude.build</groupId>

<artifactId>compiled-bundle-settings</artifactId>

<version>1.0.0-SNAPSHOT</version>

</parent>

<modelVersion>4.0.0</modelVersion>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>bundle-tests</artifactId>

<version>1.0.0-SNAPSHOT</version>

<packaging>jar</packaging>

<dependencies>

<dependency>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>index</artifactId>

<version>1.0.0-SNAPSHOT</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>domain</artifactId>

<version>1.0.0-SNAPSHOT</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar.dude</groupId>

<artifactId>org.compass-project.compass</artifactId>

<version>2.1.1-SNAPSHOT</version>

<scope>test</scope>

</dependency>

</project>

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=93

TESTING THE SERVICE 94

The key pieces of this pom.xml file are the dependencies. Here I’ve in-

cluded the two bundles that we’ve created so far (because the test will

use classes from those bundles) and the Compass bundle (because

there will be a transitive dependency between the test and Compass).

We’ll also need to add Pax Exam. This includes the following Maven

dependencies:

Download dwmj/bundle-tests/pom.xml

<dependency>

<groupId>org.ops4j.pax.exam</groupId>

<artifactId>pax-exam</artifactId>

<version>0.3.0</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.ops4j.pax.exam</groupId>

<artifactId>pax-exam-container-default</artifactId>

<version>0.3.0</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.ops4j.pax.exam</groupId>

<artifactId>pax-exam-junit</artifactId>

<version>0.3.0</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.ops4j.pax.exam</groupId>

<artifactId>pax-exam-junit-extender-impl</artifactId>

<version>0.3.0</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.ops4j.pax.url</groupId>

<artifactId>pax-url-dir</artifactId>

<version>0.4.0</version>

<scope>test</scope>

</dependency>

</dependencies>

<repositories>

<repository>

<id>OPS4J</id>

<url>http://repository.ops4j.org/maven2</url>

<snapshots>

<enabled>true</enabled>

</snapshots>

</repository>

</repositories>

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=94

TESTING THE SERVICE 95

Testing the Bundle Context

Now the basic project structure has been set up, and we’re ready to

write the bundle test, IndexServiceBundleTest:

Download dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java

package dwmj.index.test;

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertNotNull;

import static org.ops4j.pax.exam.CoreOptions.equinox;

import static org.ops4j.pax.exam.CoreOptions.mavenBundle;

import static org.ops4j.pax.exam.CoreOptions.options;

import static org.ops4j.pax.exam.CoreOptions.provision;

import java.util.List;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.ops4j.pax.exam.Inject;

import org.ops4j.pax.exam.Option;

import org.ops4j.pax.exam.junit.Configuration;

import org.ops4j.pax.exam.junit.JUnit4TestRunner;

import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

import dwmj.domain.JarFile;

import dwmj.index.IndexService;

@RunWith(JUnit4TestRunner.class)

public class IndexServiceBundleTest {

@Inject

private BundleContext bundleContext;

// ...

}

Pax Exam test cases are just JUnit 4 test cases that use a special test

runner called JUnit4TestRunner. This test runner is designed to fire up

one or more OSGi framework implementations, install a set of bundles,

and then wrap up the test class itself within an on-the-fly bundle that

runs inside the OSGi framework alongside the bundles that are being

tested.

The first element of this test class is a private BundleContext variable

that’s annotated with @Inject. The @Inject annotation tells Pax Exam

to automatically inject the on-the-fly bundle’s BundleContext so that we

can use it in our tests.

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=95

TESTING THE SERVICE 96

To tell Pax Exam how to set up the OSGi framework and bundles, we

must create a method that returns an array of Options and annotate

it with @Configuration. For our test case, we’re going to run the test

in Equinox with our domain and index bundles. We’ll also need the

wrapped Compass bundle and Pax Logging installed. Here’s a configu-

ration method that sets up the test case:

Download dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java

@Configuration

public static Option[] configuration()

{

return options(equinox(), provision(

mavenBundle().groupId("org.ops4j.pax.logging").

artifactId("pax-logging-service"),

mavenBundle().groupId("org.ops4j.pax.logging").artifactId("pax-logging-api"),

mavenBundle().groupId("com.dudewheresmyjar").artifactId("domain"),

mavenBundle().groupId("com.dudewheresmyjar").artifactId("index"),

mavenBundle().groupId("com.dudewheresmyjar.dude").

artifactId("org.compass-project.compass").version("2.1.1-SNAPSHOT")

));

}

Pax Exam provides for test configuration through a fluent interface that

starts with the options() method. This method takes one or more config-

uration items.

In this case, we’re giving it two such items: a call to equinox() to indicate

that we want the test to run in the latest supported version of Equinox

and a call to provision() to itemize the bundles to install. As parame-

ters to provision(), we’re using mavenBundle(), which identifies bundles

to install given their Maven group ID, artifact ID, and (optionally) ver-

sion.

What’s not shown here is that we could also run these tests in Felix

or Knopflerfish by adding felix() and/or knopflerfish() as parameters to

options(). For example:

Download dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java

@Configuration

public static Option[] configuration()

{

return options(equinox(), felix(), knopflerfish(), provision(

...

));

}

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java
http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=96

TESTING THE SERVICE 97

With the configuration method in place, let’s write the first test method.

We’ll start slow with a test that asserts that the BundleContext was

injected:

Download dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java

@Test

public void bundleContextShouldNotBeNull() {

assertNotNull(bundleContext);

}

As with any JUnit 4 test case, test methods in a Pax Exam test case are

annotated with @Test. The bundleContextShouldNotBeNull() method simply

asserts that the BundleContext isn’t null. Had the test setup failed for any

reason, the on-the-fly bundle would not be created and installed, and

this test would fail.

This humble little test method doesn’t really test much at all—and

it certainly doesn’t make any assertions about the index service. But

before we write any more test methods, let’s get some quick gratifica-

tion by running the test and seeing it pass. The test should run in the

IDE of your choice, but I’ll leave it up to you to try it in the IDE. Instead,

I’ll run the test through Maven with Maven’s test goal:

bundle-tests% mvn test

[INFO] Scanning for projects...

...

[PaxRunnerTestContainer] - Starting up the test container (Pax Runner 0.17.2)

[ConfigurationImpl] - Using config [classpath:META-INF/runner.properties]

[Run] - Using only arguments from command line

...

[PlatformImpl] - Preparing framework [Equinox 3.4.1]

[PlatformImpl] - Downloading bundles...

[StreamUtils] - Equinox 3.4.1 (v20080826) : downloading...

[StreamUtils] - Equinox 3.4.1 (v20080826) : 997883 bytes @ [6929kBps]

...

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 17.551 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 21 seconds

[INFO] Finished at: Fri Mar 06 16:54:53 CST 2009

[INFO] Final Memory: 10M/23M

[INFO] --

bundle-tests%

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=97

TESTING THE SERVICE 98

It looks like the test passed with flying colors. But if you look close,

you’ll see something even more interesting. As the test is run, Pax Exam

starts the OSGi framework (in this case, Equinox) and then installs

and starts several bundles. Among the bundles started is one that

Pax Exam generates on the fly that contains IndexServiceBundleTest. As

a result, IndexServiceBundleTest will be able to interact with the index

service through the OSGi framework, the same way that the real con-

sumers of the index service will.

Speaking of testing the index service, we need to write another test

method to assert that the index service is actually doing its job.

Testing the Index Service

To test the index service, we’ll need to write a test method that retrieves

a reference to the service through the OSGi service registry and then

exercises the methods on the index service. The following test method

does just that:

Download dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java

@Test

public void shouldIndexAndFindAJarFileObject() throws Exception {

IndexService indexService = retrieveIndexService();

JarFile jarFile = new JarFile();

jarFile.setRepository("http://repo1.maven.org/maven2");

jarFile.setGroupId("com.dudewheresmyjar");

jarFile.setArtifactId("domain");

jarFile.setVersion("1.0.0");

jarFile.setRawUrl(

"http://repo1.maven.org/maven2/com/dudewheresmyjar/domain/1.0.0");

indexService.addJarFile(jarFile);

List<JarFile> foundJarFiles = indexService.findJarFiles("domain");

assertEquals(1, foundJarFiles.size());

JarFile foundJarFile = foundJarFiles.get(0);

assertEquals(jarFile.getRepository(), foundJarFile.getRepository());

assertEquals(jarFile.getGroupId(), foundJarFile.getGroupId());

assertEquals(jarFile.getArtifactId(), foundJarFile.getArtifactId());

assertEquals(jarFile.getVersion(), foundJarFile.getVersion());

indexService.removeJarFile(foundJarFile);

foundJarFiles = indexService.findJarFiles("domain");

assertEquals(0, foundJarFiles.size());

}

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=98

TESTING THE SERVICE 99

This test method is a bit more interesting than the first. It starts by

retrieving a reference to the index service (by calling retrieveIndexSer-

vice(), which we’ll see in a moment) and asserting that it isn’t null. Then

it creates a test JarFile instance and asks the index service to index it.

Next, it searches the index and asserts that the JarFile that was origi-

nally indexed can be found. Finally, it cleans up after itself by removing

the JarFile from the index and then asserting that it won’t be found if

searched for again.

As for the retrieveIndexService() method, it looks like this:

Download dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java

private IndexService retrieveIndexService() throws InterruptedException {

ServiceTracker tracker = new ServiceTracker(bundleContext,

IndexService.class.getName(), null);

tracker.open();

IndexService indexService = (IndexService) tracker.waitForService(5000);

tracker.close();

assertNotNull(indexService);

return indexService;

}

This method uses a service tracker to look up the index service from

the OSGi service repository. We’ll talk a bit more about service trackers

in Section 5.3, Using Service Trackers, on page 101.

But for now, the only thing left to do is to see this test pass. So, let’s

kick off the Maven test goal again:

bundle-tests% mvn test

[INFO] Scanning for projects...

...

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 22.442 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 26 seconds

[INFO] Finished at: Fri Mar 06 16:59:08 CST 2009

[INFO] Final Memory: 10M/22M

[INFO] --

bundle-tests%

http://media.pragprog.com/titles/cwosg/code/dwmj/bundle-tests/src/test/java/dwmj/index/test/IndexServiceBundleTest.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=99

CONSUMING OSGI SERVICES 100

For brevity’s sake, I’ve cut out most of the output produced when run-

ning the test. But the punch line is the same: the test passes. Therefore,

we know that our index service is working correctly (or at least within

the expectations of the shouldIndexAndFindAJarFileObject() method). As

we continue to develop the application, we’ll know whether the changes

we make break the index service, because this test will be the first to

complain.

Our application is really starting to take shape. In this chapter, we

added another bundle to the mix—this time with a service published

in the OSGi service registry. And even though we haven’t yet developed

any bundles that consume that service, we’ve been able to test drive it

with an integration test driven by Pax Exam.

But a service isn’t any good unless someone uses it. Let’s build some-

thing that uses the index service.

5.3 Consuming OSGi Services

As you’ll recall from Chapter 3, Dude, Where’s My JAR?, on page 45,

the index service will ultimately have two consumers: the web front end

and the repository spider. The web front end will use the index service

to look search for JAR files that meet a user’s criteria. The spider will

use the index service to stock the search engine’s index with the JAR

files that it finds in Maven repositories. We’ll get to the web front end

later in Chapter 7, Creating Web Bundles, on page 129. But we’ll go

ahead and build the spider now.

First things first. . . the repository spider represents another module

of our application and thus will be contained within its own bundle.

Therefore, we’ll need to create a new bundle project. Once again, we

call on the pax-create-bundle script:

dwmj% pax-create-bundle -g com.dudewheresmyjar -p dwmj.spider -n spider \

? -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

...

[INFO] Archetype created in dir: /Users/wallsc/Projects/projects/dwmj/spider

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 8 seconds

[INFO] Finished at: Sat Mar 07 16:43:22 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmj%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=100

CONSUMING OSGI SERVICES 101

As usual, pax-create-bundle adds an example service, service interface,

and activator to the generated project. Go ahead and remove them, and

we’ll be ready to develop the spider bundle.

Using Service Trackers

The first thing we’ll need to do is to create the spider implementation

class. Spidering a Maven repository is quite involved. For the purposes

of our application, this involves several steps such as parsing POM files,

reading a JAR file’s contents, and extracting information from a JAR’s

META-INF/MANIFEST.MF file. For the most part, however, the functionality

of the spider has nothing to do with OSGi. Therefore, in the interest of

saving space and to keep our focus on consuming services, I’m going

to show only the parts of the spider that are pertinent to the topic of

consuming OSGi services.1

Download dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

package dwmj.spider.internal;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.URL;

import javax.swing.text.MutableAttributeSet;

import javax.swing.text.html.HTML;

import javax.swing.text.html.HTMLEditorKit;

import javax.swing.text.html.HTML.Tag;

import javax.swing.text.html.HTMLEditorKit.Parser;

import javax.swing.text.html.HTMLEditorKit.ParserCallback;

import org.osgi.util.tracker.ServiceTracker;

import dwmj.domain.JarFile;

import dwmj.index.IndexService;

public class MavenSpider implements Runnable {

private JarFilePopulator[] jarFilePopulators = new JarFilePopulator[] {};

private final ServiceTracker indexServiceTracker;

private String repositoryUrl;

private boolean active;

public MavenSpider(ServiceTracker indexServiceTracker) {

this.indexServiceTracker = indexServiceTracker;

}

1. Remember, you can download the complete source code from

http://www.pragprog.com/titles/cwosg/source_code.

http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://www.pragprog.com/titles/cwosg/source_code
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=101

CONSUMING OSGI SERVICES 102

public void setRepositoryUrl(String repositoryUrl) {

this.repositoryUrl = repositoryUrl;

}

// ...

private void handleJarFile(String jarUrl) {

// ...

IndexService indexService =

(IndexService) indexServiceTracker.getService();

if(indexService != null) {

indexService.addJarFile(jarFile);

}

}

// ...

}

The MavenSpider class is constructed by passing in a service tracker.

You’re probably wondering what this odd little class is for. Ultimately,

doesn’t MavenSpider need the index service? Why not just give it the

index service straightaway? Why all of the indirection?

OSGi services are a tricky bunch. They can come and go at any time.

There’s no way to be sure that if we give an index service to the Maven-

Spider at creation that the index service will still be around when we’re

ready to use it. For that matter, there’s no guarantee that the index

service is even available when we create the MavenSpider.

Rather than putting MavenSpider in the awkward position of having to

manage the comings and goings of the index service, we will use a ser-

vice tracker. Service trackers contain all of the magic to keep track of

whether a service is available, and they hide away the complexity of

dealing with the OSGi service registry through lower-level APIs. Maven-

Spider is given a service tracker that keeps track of the index service

and, upon request through the getService() method, provides the index

service so that we can add a JarFile to the index.

Even though the service tracker abstracts away any unpleasantness

of dealing with the service registry’s low-level APIs, getService() could

still return null if the service is unavailable. So, we will need to check

for a null service before calling addJarFile(). But if you’d rather wait for

the service to become available, we could call waitForService() instead of

getService().

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=102

CONSUMING OSGI SERVICES 103

Caution: Don’t Dawdle in an Activator

The waitForService() method will block until a service is avail-
able or the specified timeout has passed. For that reason, avoid
specifying a long timeout when using waitForService() in an acti-
vator’s start() or stop() method. If the service isn’t available, the
bundle will get stuck in STARTING or STOPPING state while tran-
sitioning to or from an ACTIVE state.

Download dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

try {

IndexService indexService =

(IndexService) indexServiceTracker.waitForService(10000);

// ...

}

catch (InterruptedException e) {

// handle exception

}

Unlike getService(), which returns immediately, waitForService() will wait

for a service to become available, up to a specified timeout (in millisec-

onds). In this case, waitForService() will wait up to ten seconds for the

service to become available before giving up. A timeout of zero tells wait-

ForService() to wait indefinitely.

Now that we’ve spent some time looking at how to use a service tracker

to look up a service from the OSGi registry, you’re probably wondering

where that service tracker comes from. For the answer to that, look no

further than SpiderActivator, the spider bundle’s activator:

Download dwmj/spider/src/main/java/dwmj/spider/internal/SpiderActivator.java

package dwmj.spider.internal;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

import dwmj.index.IndexService;

public final class SpiderActivator implements BundleActivator {

private ServiceTracker indexServiceTracker;

private static String[] REPOSITORIES = new String[] {

"http://www.dudewheresmyjar.com/repo/" };

http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/SpiderActivator.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=103

CONSUMING OSGI SERVICES 104

private static JarFilePopulator[] POPULATORS = new JarFilePopulator[] {

new PomBasedJarFilePopulator(), new JarContentBasedJarFilePopulator()

};

private final MavenSpider[] spiders = new MavenSpider[REPOSITORIES.length];

public void start(BundleContext context) throws Exception {

indexServiceTracker = new ServiceTracker(context, IndexService.class

.getName(), null);

indexServiceTracker.open();

for (int i = 0; i < REPOSITORIES.length; i++) {

MavenSpider spider = new MavenSpider(indexServiceTracker);

spider.setRepositoryUrl(REPOSITORIES[i]);

spider.setJarFilePopulators(POPULATORS);

Thread thread = new Thread(spider);

thread.start();

}

}

public void stop(BundleContext context) throws Exception {

for (int i = 0; i < spiders.length; i++) {

spiders[i].stop();

}

indexServiceTracker.close();

}

}

SpiderActivator’s main job is to create an instance of MavenSpider for each

Maven repository that will be crawled (in this case, an artificial repos-

itory). But first, it creates a service tracker to track the index service.

The constructor for ServiceTracker takes three parameters:

• The bundle context

• The name of the service to be tracked

• An optional service tracker customizer (org.osgi.util.tracker.

ServiceTrackerCustomizer)

Since we need to track the index service, we pass in the bundle context

and the fully qualified name of the IndexService interface.

As for the third parameter, ServiceTrackerCustomizer is an odd little inter-

face that lets us hook into the service tracker to monitor when services

are added, removed, or modified. We won’t need a service tracker cus-

tomizer, though—so we’ll give it a null service tracker customizer.

The last thing that the activator does is create a MavenSpider instance

for each of the repositories and sends them off to crawl. So that the

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=104

CONSUMING OSGI SERVICES 105

Please Don’t Crawl IBiblio

As a consequence of crawling a repository, the spider gener-
ates a lot of traffic. Maven repositories are geared toward serv-
ing occasional requests for Java libraries but may not be pre-
pared to handle a barrage of requests from our spider.

Please be a good citizen, and do not configure the spider to
crawl the central repository at IBiblio or any other repository
that you do not have express permission to crawl. Or better yet,
set up a local repository, and set the spider bundle to crawl it.

start() method can finish without waiting for the crawlers (Maven repos-

itories are large—it might take awhile), SpiderActivator fires off a thread

for each spider to crawl in.

The spider bundle is almost complete. The only thing left to do is to

register SpiderActivator as the bundle’s activator by adding a line in the

BND instruction file:

Download dwmj/spider/osgi.bnd

Bundle-Activator: dwmj.spider.internal.SpiderActivator

All of the bundle’s pieces are in place. We’re almost ready to build and

deploy the spider bundle and watch it crawl a repository.

Deploying the Spider Bundle

There’s only one more thing to do before we can build the spider bundle.

Since the spider directly depends on classes and interfaces from the

domain and index bundles, we’ll need to make sure that they’re in the

compile-time classpath. For that, we’ll use Pax Construct’s pax-add-

dependency script. First, we’ll add the domain bundle as a dependency

to the spider bundle:

spider% pax-import-bundle -g com.dudewheresmyjar -a domain -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.spider [dwmj.spider]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.domain [dwmj.domain] as dependency to

com.dudewheresmyjar:spider:bundle:1.0.0-SNAPSHOT

http://media.pragprog.com/titles/cwosg/code/dwmj/spider/osgi.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=105

CONSUMING OSGI SERVICES 106

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Sat Mar 07 21:52:40 CST 2009

[INFO] Final Memory: 8M/18M

[INFO] --

spider%

Then we’ll add the index bundle:

spider% pax-import-bundle -g com.dudewheresmyjar -a index -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.spider [dwmj.spider]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.index [dwmj.index] as dependency to

com.dudewheresmyjar:spider:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Sat Mar 07 21:53:00 CST 2009

[INFO] Final Memory: 8M/18M

[INFO] --

spider%

The pax-add-dependency script should have added the domain and in-

dex bundles as <dependency>s in the spider bundle’s pom.xml file. Now

that the spider bundle is set dependency-wise, let’s try building it:

spider% mvn install

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.spider [dwmj.spider]

[INFO] task-segment: [install]

[INFO] --

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 9 seconds

[INFO] Finished at: Sat Mar 07 22:01:03 CST 2009

[INFO] Final Memory: 14M/31M

[INFO] --

spider%

Good deal! The spider bundle was successfully built.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=106

CONSUMING OSGI SERVICES 107

Now we’re ready to provision it and see whether it works:

dwmj% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

6 ACTIVE org.compass-project.compass_2.1.1

7 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

8 ACTIVE com.dudewheresmyjar.spider_1.0.0.SNAPSHOT

osgi>

After running pax-provision and using the Equinox ss command, you’ll

see that the spider bundle was installed and started. Moreover, if you

issue the bundle command to view the spider bundle’s information. . .

osgi> bundle 8

initial@reference:file:com.dudewheresmyjar.spider_1.0.0.SNAPSHOT.jar/ [8]

Id=8, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmj/runner/

equinox/org.eclipse.osgi/bundles/8/data

No registered services.

Services in use:

{dwmj.index.IndexService}={service.id=24}

Exported packages

dwmj.spider.impl; version="1.0.0.SNAPSHOT"[exported]

Imported packages

dwmj.domain; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [5]>

dwmj.index; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [7]>

javax.swing.text; version="0.0.0"<System Bundle [0]>

javax.swing.text.html; version="0.0.0"<System Bundle [0]>

javax.xml.parsers; version="0.0.0"<System Bundle [0]>

javax.xml.xpath; version="0.0.0"<System Bundle [0]>

org.osgi.framework; version="1.4.0"<System Bundle [0]>

org.osgi.util.tracker; version="1.3.3"<System Bundle [0]>

org.w3c.dom; version="0.0.0"<System Bundle [0]>

No fragment bundles

Named class space

com.dudewheresmyjar.spider; bundle-version="1.0.0.SNAPSHOT"[provided]

No required bundles

osgi>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=107

CONSUMING OSGI SERVICES 108

. . . you’ll find that the spider bundle uses the service identified as dwmj.

index.IndexService (look under the Services in use: header). Also, if you

wait a moment or two, you’ll see the spider interacting with the index

service as it finds JAR files in the Maven repository.

Finally, as one more bit of proof that the index service is indexing JarFiles

on behalf of the spider, go dig around in the index directory (probably

/tmp/dudeindex on Unix or c:\temp\dudeindex on Windows). This direc-

tory contains a set of files that comprise a Lucene index. While the

spider is running, the selection of files and the sizes of those files will

fluctuate, indicating that new entries are being written to the index.

In this chapter, we’ve developed two of the central bundles of our appli-

cation. The index bundle publishes a service through which consumers

can add and search for JarFile entries in an index. The spider bundle is

one such consumer of the index service, crawling a Maven repository

and submitting what it finds to the index service for indexing.

We’ll write some code to search that index when we develop the web

front end in Chapter 7, Creating Web Bundles, on page 129. But before

we get there, let’s push rewind on the project and see how Spring

Dynamic Modules for OSGi (Spring-DM) brings a POJO-based program-

ming model to OSGi, simplifying some of the OSGi plumbing code we’ve

written so far.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=108

Part II

Spring Dynamic Modules and

Web Bundles

Chapter 6

Spring and OSGi
We’re making great progress on the Dude, Where’s My JAR? application.

In the previous chapter, we developed a great deal of the application’s

functionality. We created the index bundle, which publishes a service

to the OSGi service registry. And we consumed that service from within

the spider bundle that crawls Maven repositories looking for JAR files.

It would seem that we have most of the pieces in place and that the only

thing left to do is to build the web front end to present the application

to its users.

But first, let’s think about what we had to do to publish and consume

services. Publishing the index service wasn’t so bad—we had to create a

bundle activator, but at least our work with the OSGi API was confined

to the activator class. However, if you’re like me, you felt a bit dirty

writing the MavenSpider class that dealt with a ServiceTracker to look up

the index service.

If only there were some way to write our application code as POJOs

and then declare that they are to consume or to be published as OSGi

services.

In this chapter, we’re going to see how to use Spring Dynamic Modules

for OSGi (Spring-DM) to eliminate all of that OSGi-specific code that we

used to publish and consume services. At the same time we’ll bring all

the power of the Spring Framework to OSGi. Instead of programming to

the OSGi API, as we did in the previous chapter, this time we’ll declare

Spring beans to be OSGi services and inject services into other beans.

INTRODUCING SPRING-DM 111

Native OSGi Services vs. Spring-DM

As you’ll see in this chapter, Spring-DM greatly simplifies working
with OSGi services. But that doesn’t mean that our exercise in
managing services natively through the OSGi API was a waste
of time. Having gone through that experience, you’ll be able
to make sense of any bundle you encounter that works with
services that way. And you’ll be able to fully appreciate what
Spring-DM offers.

6.1 Introducing Spring-DM

Unless you’ve been living under a rock or involved in some sort of mul-

tiyear solitary confinement exercise, you’ve probably heard about the

Spring Framework. You may have even worked on a project or two

that is based on Spring. It’s a fact that Spring has made a tremendous

impact on enterprise Java development.

Spring brings a lot to the table for any application, including:

• Spring’s support for dependency injection promotes loose coupling

and high testability of application objects.

• Spring’s support for aspect-oriented programming offers develop-

ers an opportunity to separate cross-cutting concerns such as

transactions, security, and caching from core application code.

• Spring makes it easy to work with JDBC and other persistence

frameworks such as Hibernate, JPA, and iBATIS for data

persistence.

• Spring supports declarative creation and consumption of remote

services using a variety of remoting options, including RMI, Hes-

sian, Burlap, and web services.

• Spring cleanly integrates POJOs with many pieces of the enter-

prise Java stack, including Enterprise JavaBeans (EJB), Java

Messaging Service (JMS), Java Naming and Directory Interface

(JNDI), and JavaMail.

• Spring provides a very simple yet capable MVC framework for

building web applications.

• And Spring offers much, much more than I could possibly list

here.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=111

INTRODUCING SPRING-DM 112

Getting to Know the Spring Framework

Our focus in this chapter will be on Spring-DM, an OSGi exten-
sion to the Spring Framework. I’ll assume that you are already
familiar with Spring, so I will not be going into any detail on
how to declare any wire beans in a Spring application con-
text. However, if you need a bit more introduction to Spring,
many great books are available on the subject, including my
personal favorite: Spring in Action, Second Edition [Wal07].

Although it’d be unusual that you’d use every part of Spring in a given

application, it’s quite likely that you could find a use for some subset

of Spring in any application.

The Synergy of OSGi and Spring

Spring and OSGi have a lot to offer each other.

Spring does a lot of things, but at its core Spring is a framework that

promotes loose coupling through dependency injection and interface-

oriented design. However, even though Spring’s dependency injection

goes a long way toward decoupling application objects, it provides little

for working with application modules.

Meanwhile, as we’ve seen already, OSGi is great for factoring applica-

tions into several modules. But when it comes to publishing and con-

suming services, OSGi ends up being a little bit cumbersome. And OSGi

offers nothing for wiring together the objects within a bundle.

Spring-DM is the blending of OSGi’s support for modularity with

Spring’s dependency injection model. Using Spring-DM, not only will

we be able to wire together objects within our bundles, but we’ll also be

able to declaratively publish and consume OSGi services. What’s more,

because it’s Spring, we’ll have the full power of Spring at our disposal

as we develop OSGi applications.

The Spring-DM Extender

At the center of Spring-DM is the Spring-DM extender. The Spring-DM

extender’s purpose in life is to watch for other bundles to be started,

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=112

INTRODUCING SPRING-DM 113

Joe Asks. . .

What About OSGi Declarative Services? Or iPOJO?

When it comes to declaring OSGi services, Spring-DM is not
the only game in town. In addition to Spring-DM, there are
at least two other options for declarative services. One such
option is appropriately named Declarative Services (or DS for
short) and is part of the OSGi Compendium Specification (sec-
tion 112). The other is part of the Apache Felix project and is
called iPOJO.

There’s nothing inherently wrong with either DS or iPOJO. They
both have their merits and are worth consideration in any
OSGi project. However, although DS and iPOJO are focused
on declaring services, Spring-DM also provides for dependency
injection among the beans that make up a service. Not only
that, but Spring-DM also brings the full power of Spring and its
related projects to the table. If you want to exploit the other
features of Spring in your OSGi project, then I recommend
Spring-DM over the other options.

and if they are Spring-enabled, it will create a Spring application con-

text for them. Here, Spring-enabled means that the bundle contains

one or more Spring context definition files.

By default, the Spring-DM extender looks for Spring context definition

files in the META-INF/spring directory. It assumes that all XML files in

that folder are Spring context definition files and will use those files to

create beans in the bundle’s Spring application context.

As illustrated in Figure 6.1, on the following page, the Spring-DM exten-

der creates a separate Spring application context for each Spring-enabled

bundle. That means that beans from one bundle can’t see beans from

any other bundles. This is consistent with the encapsulation espoused

by OSGi.

Setting Up Spring-DM

Spring-DM is delivered in the form of a handful of OSGi bundles, in-

cluding the bundle that contains the Spring-DM extender.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=113

INTRODUCING SPRING-DM 114

JVM

OSGi Framework

Spring-DM
Extender

Spring-
enabled
Bundle

Spring-
enabled
Bundle

Spring-
enabled
Bundle

Spring Application Contexts

cre
ate

s

cr
ea
te
s

c
re
a
te
s

Figure 6.1: Spring-DM’s <osgix:cm-properties> pulls configuration

details from the OSGi Configuration Admin Service and makes it avail-

able to Spring’s property placeholder facility.

Moving the Spring Context Files

If you don’t want to place your Spring context definition files
under META-INF/spring, that’s OK. But you’ll have to tell Spring-DM
where they are by supplying the Spring-Context: header in the
manifest (by way of osgi.bnd since we’re using Pax Construct).

For example, if you’d rather place them in a directory called
spring-config at the root of the bundle JAR, then add the follow-
ing to the bundle’s META-INF/MANIFEST.MF file:

Spring-Context: spring-config/*.xml

Or, if you prefer, you may explicitly list which XML files to use in
defining the Spring context:

Spring-Context: spring-config/some-beans.xml, \
spring-config/some-more-beans.xml

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=114

DECLARING SERVICES 115

To get started with Spring-DM, we’ll need to add these bundles to our

project:

dwmjs% pax-import-bundle -g org.springframework.osgi -a spring-osgi-extender \

? -v 1.2.0 -- -DimportTransitive -DwidenScope

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 8 seconds

[INFO] Finished at: Fri Mar 20 15:33:34 CDT 2009

[INFO] Final Memory: 9M/18M

[INFO] --

dwmjs%

Here we’ve asked Pax Construct to add version 1.2.0 of the Spring-DM

extender bundle (identified with a group ID of org.springframework.osgi

and an artifact ID of org.springframework.osgi.extender) to the project. In

addition to the Spring-DM extender bundle itself, we’ve also asked that

pax-import-bundle also pull in transitive dependencies (-DimportTransitive)

and to consider all compile and runtime dependencies as potential bun-

dles (-DwidenScope).

The Spring-DM bundles are now in place and are ready to help us

declaratively publish the index service.

6.2 Declaring Services

The first step in declaring a service in Spring-DM is to wire a bean in

the Spring application context. In Spring, a bean is any object (not nec-

essarily a JavaBean) that is instantiated and managed by the Spring

Framework. A common way of configuring the beans that Spring cre-

ates is to define a Spring application context in an XML file. For exam-

ple, consider this Spring configuration XML (index-context.xml) that we’ll

use to define an application context for the index service bundle:

Download dwmjs/index/src/main/resources/META-INF/spring/index-context.xml

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:compass="http://www.compass-project.org/schema/spring-core-config"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.compass-project.org/schema/spring-core-config

http://www.compass-project.org/schema/spring-compass-core-config-2.0.xsd">

<bean id="indexService"

class="dwmj.index.internal.IndexServiceImpl">

<constructor-arg ref="compass" />

</bean>

http://media.pragprog.com/titles/cwosg/code/dwmjs/index/src/main/resources/META-INF/spring/index-context.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=115

DECLARING SERVICES 116

<compass:compass name="compass" >

<compass:connection>

<compass:file path="/tmp/dudeindex" />

</compass:connection>

<compass:mappings>

<compass:class name="dwmj.domain.JarFile"/>

</compass:mappings>

</compass:compass>

<compass:session id="compassSession" />

</beans>

Here we’ve declared two beans. The first is defined with the <bean>

element. This bean tells Spring to create an instance of IndexServiceImpl

and to give it an ID of indexService. What’s especially interesting about

this bean is that we’re telling Spring to instantiate it by calling a single-

argument constructor and passing in a reference to another bean.

Specifically, Spring should construct IndexServiceImpl with a reference

to a bean whose ID is compass.

That brings us to the second bean. Instead of using a generic <bean>

element to declare the compass bean, we’re using elements from a

Compass-specific configuration namespace provided as part of the

Compass library. Ultimately, this declaration creates a bean of type

org.compass.core.Compass, suitable for the first argument of the IndexSer-

viceImpl constructor.

As mentioned before, Spring-DM creates an application context by

reading all XML files in the META-INF/spring directory. Since we’re build-

ing the bundle using Maven, we’ll need to place index-context.xml in the

src/main/resources/META-INF/spring directory of the index bundle project.

But it won’t be alone. In addition to the core Spring configuration file,

we’ll also create a separate Spring configuration file (index-osgi.xml) that

tells Spring-DM to publish the indexService bean to the OSGi service

registry:

Download dwmjs/index/src/main/resources/META-INF/spring/index-osgi.xml

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<service ref="indexService"

interface="dwmj.index.IndexService" />

</beans:beans>

http://media.pragprog.com/titles/cwosg/code/dwmjs/index/src/main/resources/META-INF/spring/index-osgi.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=116

DECLARING SERVICES 117

Using Spring-DM with Java 1.4

In Spring-DM, it’s common for beans from different applica-
tion contexts to interact with each other concurrently. To avoid
deadlocks when beans are requested from the application
contexts, Spring-DM needs concurrent collections. Java 1.5
and later provide concurrent collections out of the box. But
Java 1.4 does not.

To add concurrent collection classes for Java 1.4, you’ll need to
add the Backport bundle. First, because the Backport libraries
in the central Maven repository aren’t OSGi-ready bundles,
you’ll need to add the Spring-DM repository:

dwmjs% pax-add-repository -i spring-osgi -u \
? http://s3.amazonaws.com/maven.springframework.org/osgi \
? -- -Dsnapshots

Then import the Backport bundle into the project:

dwmjs% pax-import-bundle -g org.springframework.osgi -a \
? backport-util-concurrent.osgi -v 3.0-SNAPSHOT -- \
? "-DimportPackage=sun.misc;resolution:=optional,*"
...
dwmjs%

To keep the OSGi-specific configuration separate from the generic bean

definitions, I’ve placed this service declaration in a separate configura-

tion file. The <service> element declares that the bean referenced by

the ref= attribute should be published to the OSGi service registry with

the interface specified in the interface= attribute. In this case, it’s the

index service bean that we declared in index-context.xml, which should

be published with the dwmj.index.IndexService interface.

And that simple bit of Spring configuration is all we need to do to

declare the index service bean as an OSGi service. You’ve no doubt

noticed that this is simpler than programmatically publishing it using

a bundle activator. All of the hassles of working directly with the OSGi

API go away and are replaced with a simple entry in a Spring applica-

tion context configuration file.

Speaking of not having to deal with the OSGi API, we no longer need

the index bundle’s activator. We needed it only to create and publish

the index service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=117

DECLARING SERVICES 118

But since Spring-DM’s handling that for us now, we can get rid of it:

dwmjs% cd index

index% rm src/main/java/dwmj/index/internal/IndexServiceActivator.java

index%

We’ll also need to delete the Bundle-Activator: entry from the osgi.bnd file.

Now that we’ve swapped out the bundle activator for a Spring-DM ser-

vice declaration, let’s rebuild the index service. . .

index% mvn install

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 7 seconds

[INFO] Finished at: Fri Mar 20 15:47:34 CDT 2009

[INFO] Final Memory: 13M/31M

[INFO] --

index%

. . . and then provision it:

index% cd ..

dwmjs% pax-provision

[INFO] Scanning for projects...

...

Caused by: java.lang.ClassNotFoundException:

org.compass.core.config.binding.metadata.AsmMetaDataReader

not found from bundle [com.dudewheresmyjar.index]

...

osgi>

Oops! It looks like our index bundle had a little trouble getting started.

Now that we’re using Compass’ configuration namespace for Spring,

our bundle needs to import some packages that we’re not currently

importing. But wait—the index service is already using Compass in

some capacity, and we haven’t had to import any Compass packages

before. Why must we import Compass packages now?

The answer is a bit nonobvious. As you’ll recall, our build is using the

BND tool to generate the MANIFEST.MF file from the osgi.bnd file. When we

were programmatically working with Compass in the bundle activator,

BND was able to figure out what packages to import by analyzing the

activator and the service classes. But now the activator class has gone

away, and we’re declaring much of the Compass stuff in the Spring

configuration file.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=118

DECLARING SERVICES 119

Unfortunately, BND doesn’t analyze the Spring configuration file when

putting together its list of packages to import. So, we’ll have to add

those imports to osgi.bnd ourselves:

Download dwmjs/index/osgi.bnd

Import-Package: *, \

org.compass.core.engine.naming, \

org.compass.core.executor.concurrent, \

org.compass.core.cache.first, \

org.compass.core.lucene.engine.analyzer, \

org.compass.core.lucene.engine.optimizer, \

org.compass.core.transaction, \

org.apache.lucene.index, \

org.apache.lucene, \

org.apache.lucene.document, \

org.apache.lucene.queryParser, \

org.apache.lucene.search, \

org.apache.lucene.store, \

org.apache.lucene.util,\

org.compass.core.config.binding.metadata,\

org.compass.core.json.impl.converter

The first item in the import list is *, which tells BND to import all

packages that it finds while analyzing Java classes—the default import

behavior. What follows are the packages that are needed by Compass.1

Let’s build the index bundle and try provisioning it again:
dwmjs% pax-provision

[INFO] Scanning for projects...

...

Caused by: java.lang.NoClassDefFoundError:

org/springframework/transaction/PlatformTransactionManager

...

osgi>

We have one more hurdle to overcome. It seems that Spring can’t create

the compass bean because it can’t find org.springframework.transaction.

PlatformTransactionManager. What? Spring cannot find one of its own

classes?

As it turns out, PlatformTransactionManager resides in a separate bun-

dle from the Spring bundles that we’ve already installed. To get past

this problem, we’re going to need to add Spring’s transaction support

bundle to our project.

1. I figured out what packages are needed by a tedious trial and error effort. I’m sparing

you the effort of walking you through that exercise. But if you’d like to try it yourself,

you can start by importing org.compass.core.engine.naming—the package containing the

class that was the subject of the ClassNotFoundException we encountered—and following

the breadcrumbs from there.

http://media.pragprog.com/titles/cwosg/code/dwmjs/index/osgi.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=119

DECLARING SERVICES 120

dwmjs% pax-import-bundle -g org.springframework -a spring-tx -v 2.5.6

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Spring Framework: Transaction to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 15:54:07 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

With the Spring transaction support bundle in place, let’s try to provi-

sion all of our bundles one more time:

dwmjs% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE org.springframework.osgi.extender_1.2.0

6 ACTIVE org.springframework.osgi.core_1.2.0

7 ACTIVE org.springframework.osgi.io_1.2.0

8 ACTIVE com.springsource.slf4j.org.apache.commons.logging_1.5.0

9 ACTIVE com.springsource.slf4j.api_1.5.0

Fragments=10

10 RESOLVED com.springsource.slf4j.log4j_1.5.0

Master=9

11 ACTIVE org.springframework.aop_2.5.6

12 ACTIVE org.springframework.beans_2.5.6

13 ACTIVE org.springframework.context_2.5.6

14 ACTIVE org.springframework.core_2.5.6

15 ACTIVE org.springframework.test_2.5.6

16 ACTIVE com.springsource.org.aopalliance_1.0.0

17 ACTIVE org.springframework.transaction_2.5.6

18 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=120

DECLARING SERVICES 121

19 ACTIVE org.compass-project.compass_2.1.1

20 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

21 ACTIVE com.dudewheresmyjar.spider_1.0.0.SNAPSHOT

osgi>

So far so good. There were no exceptions thrown that time, and all of

our bundles are active. Let’s use the bundle command to dig a little

deeper into the index bundle to see whether it is publishing the index

service:

osgi> bundle 20

initial@reference:file:com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [20]

Id=20, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmjs/

runner/equinox/org.eclipse.osgi/bundles/20/data

Registered Services

{dwmj.index.IndexService}={org.springframework.osgi.bean.name=indexService,

Bundle-SymbolicName=com.dudewheresmyjar.index,

Bundle-Version=1.0.0.SNAPSHOT, service.id=26}

{org.springframework.osgi.context.DelegatedExecutionOsgiBundleApplicationContext,

org.springframework.osgi.context.ConfigurableOsgiBundleApplicationContext,

org.springframework.context.ConfigurableApplicationContext,

org.springframework.context.ApplicationContext,

org.springframework.context.Lifecycle,

org.springframework.beans.factory.ListableBeanFactory,

org.springframework.beans.factory.HierarchicalBeanFactory,

org.springframework.context.MessageSource,

org.springframework.context.ApplicationEventPublisher,

org.springframework.core.io.support.ResourcePatternResolver,

org.springframework.beans.factory.BeanFactory,

org.springframework.core.io.ResourceLoader,

org.springframework.beans.factory.DisposableBean}=

{org.springframework.context.service.name=com.dudewheresmyjar.index,

Bundle-SymbolicName=com.dudewheresmyjar.index,

Bundle-Version=1.0.0.SNAPSHOT, service.id=27}

...

osgi>

It looks like that worked, as evidenced by the first entry under the Reg-

istered Services header. Notice that there’s a lot of information about

the service, including the interface that it’s published under, the bun-

dle that publishes the service, and the Spring bean that provides the

service.

You may have noticed that there’s another entry under Registered Ser-

vices—where’d that come from? In addition to publishing the services

declared using the <service> element, Spring-DM also publishes the

Spring application context as a service. And, it’s published under a

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=121

INJECTING SERVICES INTO CONSUMERS 122

How to Not Publish the Spring Context as a Service

If you’d rather not have a bundle’s Spring context published as
a service, you’ll need to say so with the Spring-Context: header:

Spring-Context: META-INF/spring/*.xml;publish-context:=false

By setting the publish-context directive to false, we’re asking
Spring-DM to go ahead and load the Spring context using XML
files in META-INF/spring, but not to publish the context in the
OSGi service registry.

baker’s dozen of interfaces, any of which you can use to retrieve the

bundle’s Spring context.

Now that we’ve converted the index bundle to use Spring-DM, let’s turn

our attention to the spider bundle to see whether Spring-DM can help

us eliminate all of the code that we wrote to consume the index service.

6.3 Injecting Services into Consumers

As you’ll recall, there’s much more to consuming a service than pub-

lishing it. A service consumer must carefully deal with the transitivity

of services to make sure that it’s not trying to use a service that has

gone away or that has been replaced with a newer version. All of that

service management resulted in a lot of code in both the spider bundle’s

activator and in the spider implementation class.

Spring-DM was able to eliminate OSGi-specific code in our index bun-

dle. Can it do the same for the spider bundle? You bet! In fact, as

you’ll soon see, consuming a service with Spring-DM isn’t much dif-

ferent from publishing a service.

First things first. . . just as with the index bundle, we’re no longer going

to need the bundle activator for the spider bundle. So, let’s go ahead

and ditch it:

dwmjs% cd spider

spider% rm src/main/java/dwmj/spider/impl/SpiderActivator.java

Be sure to remove the Bundle-Activator: entry from osgi.bnd, too.

Now that the spider’s bundle activator is gone, we no longer have a way

to give the MavenSpider a service tracker to look up the index service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=122

INJECTING SERVICES INTO CONSUMERS 123

But that’s OK, because instead of giving MavenSpider a way to get the

index service, we’re going to inject the index service into MavenSpider:

Download dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

public class MavenSpider {

private static final Logger LOGGER = Logger.getLogger("MavenSpider");

private JarFilePopulator[] jarFilePopulators = new JarFilePopulator[] {};

private String repositoryUrl;

private boolean active = true;

private IndexService indexService;

public MavenSpider(IndexService indexService) {

this.indexService = indexService;

}

}

We’ve traded a ServiceTracker for a reference to an IndexService. Actu-

ally, we’re going to inject MavenSpider with a proxy to the index service

(that automatically handles the transitive nature of services). But for all

intents and purposes, you can pretend that it’s the real index service—

MavenSpider won’t know the difference.

Notice that MavenSpider no longer implements java.lang.Runnable. Origi-

nally, we had to start MavenSpider in a separate thread so that it would

not hold up the spider bundle from starting. But now Spring is going to

start MavenSpider, so it no longer needs to implement Runnable.

There’s just one more tweak we must make to MavenSpider to make it

ready for Spring-DM. Now that we’re injecting an IndexService reference

into MavenSpider, we’ll need to change it to just use the IndexService and

not try to look it up from the ServiceTracker. Previously, MavenSpider had

a snippet of code that looked like this:

Download dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

if (jarFile.isIndexable()) {

IndexService indexService =

(IndexService) indexServiceTracker.getService();

if(indexService != null) {

indexService.addJarFile(jarFile);

}

}

http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://media.pragprog.com/titles/cwosg/code/dwmj/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=123

INJECTING SERVICES INTO CONSUMERS 124

But with the ServiceTracker gone, it’s much simpler:

Download dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java

if(jarFile.isIndexable()) {

indexService.addJarFile(jarFile);

}

Awesome! We’ve managed to turn MavenSpider into a POJO, eliminating

all hints of the OSGi API. To wrap up the conversion of the spider bun-

dle to use Spring-DM, we need to wire MavenSpider as a Spring bean,

injecting it with a reference to the index service. First, we’ll configure a

reference to the index service:

Download dwmjs/spider/src/main/resources/META-INF/spring/spider-osgi.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<reference id="indexService"

interface="dwmj.index.IndexService" />

</beans:beans>

The <reference> element isn’t much different from the <service> ele-

ment, only in reverse. The interface= attribute tells Spring to look up

a service from the OSGi service registry with the dwmj.index.IndexService

interface. The id= attribute is effectively the flipside of the <service> ele-

ment’s ref= element—but, instead of referencing another Spring bean,

the id= attribute gives the index service proxy a name with which we

can inject it into the MavenSpider.

Speaking of injecting the index service into the MavenSpider, let’s wire

up the spider bean:

Download dwmjs/spider/src/main/resources/META-INF/spring/spider-context.xml

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean class="dwmj.spider.internal.MavenSpider"

init-method="run" destroy-method="stop">

<constructor-arg ref="indexService" />

http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/java/dwmj/spider/internal/MavenSpider.java
http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/resources/META-INF/spring/spider-osgi.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/spider/src/main/resources/META-INF/spring/spider-context.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=124

INJECTING SERVICES INTO CONSUMERS 125

<property name="repositoryUrl" value="http://repo2.maven.org/maven2/" />

<property name="jarFilePopulators">

<list>

<bean class=

"dwmj.spider.internal.PomBasedJarFilePopulator" />

<bean class=

"dwmj.spider.internal.JarContentBasedJarFilePopulator" />

</list>

</property>

</bean>

</beans>

The third <constructor-arg> injects the bean named indexService into

the MavenSpider as it’s constructed. Once it has been constructed,

Spring will start the spider by calling the run() method, as indicated

by the <bean> element’s init-method= attribute. Later, when the Spring

context is shut down (when the bundle is stopped), Spring will invoke

the stop() method to stop the spider, as indicated by the destroy-method=

attribute.

The spider bundle is now converted from a bundle whose Java code is

strewn with bits of the OSGi API to one containing simple POJOs that

are managed by Spring. Before we move on, there’s one more thing left

to do. . . let’s build the spider bundle and see whether it works. First,

the build. . .

spider% mvn install

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 7 seconds

[INFO] Finished at: Fri Mar 20 18:00:13 CDT 2009

[INFO] Final Memory: 14M/31M

[INFO] --

spider%

. . . and then the provision:

spider% cd ..

dwmjs% pax-provision

[INFO] Scanning for projects...

...

osgi> ss

Framework is launched.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=125

INJECTING SERVICES INTO CONSUMERS 126

Joe Asks. . .

What If a Service Isn’t Available?

When we used the <reference> element to consume the index
service, we assumed that the service would be readily avail-
able. But what if it isn’t?

By default, Spring-DM will wait five minutes for the service to
become available before an unchecked ServiceUnavailableEx-

ception is thrown. If you want to change the timeout period,
you have two options.

First, you can set the timeout= attribute on the <reference> ele-
ment to adjust the timeout on a reference-by-reference basis:

<reference id="indexService"
interface="com.dudewheresmyjar.index.IndexService"
timeout="60000"/>

Or you can change the default timeout value by setting the
osgi:default-timeout= at the root of the XML file:

<beans:beans xmlns="http://www.springframework.org/schema/osgi"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/

spring-beans-2.5.xsd"
osgi:default-timeout="60000">

<reference id="indexService"
interface="com.dudewheresmyjar.index.IndexService" />

</beans:beans>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=126

INJECTING SERVICES INTO CONSUMERS 127

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

3 ACTIVE org.ops4j.pax.logging.pax-logging-api_1.3.0

4 ACTIVE org.ops4j.pax.logging.pax-logging-service_1.3.0

5 ACTIVE org.springframework.osgi.extender_1.2.0

6 ACTIVE org.springframework.osgi.core_1.2.0

7 ACTIVE org.springframework.osgi.io_1.2.0

8 ACTIVE com.springsource.slf4j.org.apache.commons.logging_1.5.0

9 ACTIVE com.springsource.slf4j.api_1.5.0

Fragments=10

10 RESOLVED com.springsource.slf4j.log4j_1.5.0

Master=9

11 ACTIVE org.springframework.aop_2.5.6

12 ACTIVE org.springframework.beans_2.5.6

13 ACTIVE org.springframework.context_2.5.6

14 ACTIVE org.springframework.core_2.5.6

15 ACTIVE org.springframework.test_2.5.6

16 ACTIVE com.springsource.org.aopalliance_1.0.0

17 ACTIVE org.springframework.transaction_2.5.6

18 ACTIVE com.dudewheresmyjar.domain_1.0.0.SNAPSHOT

19 ACTIVE org.compass-project.compass_2.1.1

20 ACTIVE com.dudewheresmyjar.index_1.0.0.SNAPSHOT

21 ACTIVE com.dudewheresmyjar.spider_1.0.0.SNAPSHOT

osgi>

So far so good. There were no exceptions thrown, and everything seems

to be working. Let’s check the spider bundle to make sure that it’s using

the index service:

osgi> bundle 21

initial@reference:file:com.dudewheresmyjar.spider_1.0.0.SNAPSHOT.jar/ [21]

Id=21, Status=ACTIVE Data Root=/Users/wallsc/Projects/projects/dwmjs/runner/

equinox/org.eclipse.osgi/bundles/21/data

No registered services.

Services in use:

{org.springframework.beans.factory.xml.NamespaceHandlerResolver}={service.id=24}

{org.xml.sax.EntityResolver}={service.id=25}

{dwmj.index.IndexService}={org.springframework.osgi.bean.name=indexService,

Bundle-SymbolicName=com.dudewheresmyjar.index, Bundle-Version=1.0.0.SNAPSHOT,

service.id=26}

Exported packages

dwmj.spider.impl; version="1.0.0.SNAPSHOT"[exported]

Imported packages

dwmj.domain; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.domain_1.0.0.SNAPSHOT.jar/ [18]>

dwmj.index; version="1.0.0.SNAPSHOT"<initial@reference:file:

com.dudewheresmyjar.index_1.0.0.SNAPSHOT.jar/ [20]>

javax.swing.text; version="0.0.0"<System Bundle [0]>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=127

INJECTING SERVICES INTO CONSUMERS 128

Spring-DM to Become Part of the OSGi Specification

As I write this, a draft of the OSGi 4.2 Specification is available.
Within this specification is RFC 124: A Component Model for
OSGi. It’s commonly being referred to as the Blueprint Service.

What’s curious about the Blueprint Service is that it looks sus-
piciously like Spring-DM. A few names and terms have been
changed, but for the most part, Blueprint Service is Spring-DM.
This should come as no surprise to anyone who looks closely as
the specification—it is written by employees of SpringSource,
the company behind the Spring Framework and Spring-DM.

See Appendix C, on page 216, for more information on how the
Blueprint Service compares to Spring-DM.

javax.swing.text.html; version="0.0.0"<System Bundle [0]>

javax.xml.parsers; version="0.0.0"<System Bundle [0]>

javax.xml.xpath; version="0.0.0"<System Bundle [0]>

org.w3c.dom; version="0.0.0"<System Bundle [0]>

No fragment bundles

Named class space

com.dudewheresmyjar.spider; bundle-version="1.0.0.SNAPSHOT"[provided]

No required bundles

osgi>

And there it is. The third entry under the Services in use: header tells us

that the spider bundle is using the index service—thanks to Spring-DM

and the <reference> element.

At this point we’ve developed all the bundles of the Dude, Where’s My

JAR? application twice: once using the core OSGi API and again using

Spring-DM. Before we move on, let’s take a moment to reflect on what

Spring-DM has done for us.

Without Spring-DM, both publication and consumption of a service

required writing directly to the OSGi API. In both cases, we had to write

an activator class to either register or retrieve a service in the OSGi

service registry. On the other hand, with Spring-DM we were able to

publish and consume services in a declarative fashion, with no need to

interact directly with the OSGi API.

Now we’re ready to put a face on this application. Coming up in the next

chapter, we’re going to develop the web front end of the application.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=128

Chapter 7

Creating Web Bundles
Up until now, all of the modules that we’ve created have been the basic

garden-variety OSGi bundle. They are all JAR files with some extra

metadata in their MANIFEST.MF to guide the OSGi framework in deploying

and starting them. And in some cases they publish and/or consume

services.

Now as we begin to put a face on our application, we’re going to be

creating a different flavor of OSGi bundle. In this chapter, we’re going

to build a web bundle—a bundle that looks like a WAR file (or is it a

WAR file that looks like a bundle?).

But before we build our web bundle, the first order of business is setting

up an environment for it to run in. Let’s start by adding web server

capabilities to the OSGi framework.

7.1 Assembling a Web Server

If we were building an everyday, run-of-the-mill Java web application,

we might deploy our application into a web container, such as those

included in virtually every Java application server. But we’re building

an OSGi web application, so things are going to be a little different.

Instead of deploying our application into a web container, we’re going

to install a web container into our application—or, more accurately,

we’re going to deploy a web container alongside our application in the

OSGi framework.

When installing a web container in OSGi, we have two choices: Tomcat

and Jetty. Let’s look at how to assemble a small collection of bundles

to make an OSGi-ready web application server.

ASSEMBLING A WEB SERVER 130

Installing Tomcat Bundles

Tomcat is easily one of the most popular Java web application servers.

So, it’d be no surprise if that’s the server you’d want to use to host

web applications. Unfortunately, the JAR files that make up the Tom-

cat server don’t come ready-made for OSGi. That is, they aren’t OSGi

bundles, and therefore we can’t use them as is in an OSGi context.

But we’re not going to let that stop us.

The silver lining behind this seemingly dark Tomcat-in-OSGi cloud is

that the Spring-DM team has converted the Tomcat JAR files into OSGi

bundles and has made them available in the Spring-DM bundle repos-

itory. If you haven’t already added the Spring-DM repository to the

project for Java 1.4 support (see the sidebar on page 117), then you’ll

need to add it now to be able to use the OSGi-ified Tomcat bundles.

Here’s how to add the Spring-DM repository:

dwmjs% pax-add-repository -i spring-osgi \

? -u http://s3.amazonaws.com/maven.springframework.org/osgi \

? -- -Dsnapshots

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:add-repository]

(aggregator-style)

[INFO] --

[INFO] [pax:add-repository]

[INFO] Adding repository http://s3.amazonaws.com/maven.springframework.org/osgi to

com.dudewheresmyjar:dwmj:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:25:41 CDT 2009

[INFO] Final Memory: 8M/16M

[INFO] --

dwmjs%

Note that we’ve declared the Spring-DM repository as being a SNAP-

SHOT repository. That’s because many of the bundles that the Spring-

DM team have converted from nonbundle JARs are versioned as SNAP-

SHOT versions to differentiate them from their nonbundle counter-

parts.

Now we’re ready to add bundles. The first bundle we’ll need for Tom-

cat support is the one that contains the servlet engine—the Catalina

bundle.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=130

ASSEMBLING A WEB SERVER 131

The Future of the Spring-DM Repository

You should know that the Spring-DM team refers to their own
repository as a temporary repository. That’s because Spring-
Source has another Maven repository that’s chock-full of OSGi
bundles known as the SpringSource Enterprise Bundle Reposi-
tory∗ or by its nickname of BRITS (short for Bundle Repository in
the Sky).

Because of the temporary nature of the Spring-DM repository,
the Spring-DM team recommends that you use BRITS instead of
the Spring-DM repository. However, as I write this, there are still
a few of the bundles missing in BRITS that we need to make our
application work. Specifically, it’s missing the Tomcat and Jetty
starter bundles.

So, I’m going to go ahead and use the temporary repository in
the examples but recommend that you keep an eye on both
repositories and be prepared to switch when the missing bun-
dles are available in BRITS.

∗. http://www.springsource.com/repository/app/

dwmjs% pax-import-bundle -g org.springframework.osgi \

? -a catalina.osgi -v 6.0.16-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Apache Tomcat Catalina Container (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 6 seconds

[INFO] Finished at: Fri Mar 20 20:26:42 CDT 2009

[INFO] Final Memory: 9M/16M

[INFO] --

dwmjs%

In support of the Catalina servlet engine, we’ll also need to import a

bundle containing the Java Servlet API.

http://www.springsource.com/repository/app/
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=131

ASSEMBLING A WEB SERVER 132

dwmjs% pax-import-bundle -g org.springframework.osgi -a servlet-api.osgi \

? -v 2.5-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Servlet API 2.5 (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:27:34 CDT 2009

[INFO] Final Memory: 9M/16M

[INFO] --

dwmjs%

When we develop the web portion of our application, we’re going to

use JSP to develop the view. Therefore, we’ll also need to add Jasper,

Tomcat’s JSP engine:

dwmjs% pax-import-bundle -g org.springframework.osgi -a jasper.osgi \

? -v 6.0.16-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Tomcat 6.x JSP Jasper (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 6 seconds

[INFO] Finished at: Fri Mar 20 20:28:24 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

As the JSP engine, Jasper depends on the JSP API. So, we’ll need to

add a bundle for that, as well:

dwmjs% pax-import-bundle -g org.mortbay.jetty -a jsp-api-2.1 -v 6.1.14

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=132

ASSEMBLING A WEB SERVER 133

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Glassfish Jasper API to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:28:58 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

If you look closely, you’ll see that we’re using the JSP API bundle pro-

vided by Jetty. Even though it may seem odd to use Jetty’s JSP API

with Tomcat, rest assured that there’s nothing Jetty-specific about it

and that it will work fine with Tomcat. The reason we’re using Jetty’s

JSP API is that it is the only one available in version 2.1, which is the

version that Jasper 6.0.16 depends on.

Next, to support JSP expression language syntax, we’ll need the expres-

sion language API:

dwmjs% pax-import-bundle -g org.springframework.osgi -a el-api.osgi \

? -v 2.1-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing EL API (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:29:33 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

All of the core pieces of a Tomcat server are now in place. There’s only

one more bundle we’ll need to add to our project if we want to use

Tomcat as our web server. In addition to converting Tomcat JARs into

OSGi bundles, the Spring-DM team has also provided a bundle that

contains an activator that starts Tomcat. Let’s add it to the mix.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=133

ASSEMBLING A WEB SERVER 134

dwmjs% pax-import-bundle -g org.springframework.osgi -a catalina.start.osgi \

? -v 1.0.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Tomcat Catalina OSGi Activator to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:30:22 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

Now, if you were to fire up the application (using pax-provision) and then

point your browser to http://localhost:8080, you’d see a blank page. The

fact that you didn’t get an error about being unable to connect to the

server indicates that Tomcat is listening for requests on port 8080. The

blank page indicates that there are no servlets available to respond to

the request. Don’t worry about that; by the time we finish this chapter,

there’ll be plenty for Tomcat to serve up.

But first, let’s set Tomcat aside and look at Jetty, the other web server

that we can use in OSGi.

Installing Jetty Bundles

Jetty is special in that it is already distributed in the form of OSGi

bundles. So, there’s not much to do other than add the Jetty bundles

to our project. Specifically, there are six bundles we’ll need to import,

starting with the Jetty server bundle:

dwmjs% pax-import-bundle -g org.mortbay.jetty -a jetty -v 6.1.14

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Jetty Server to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

http://localhost:8080
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=134

ASSEMBLING A WEB SERVER 135

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 20 20:33:15 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

The Jetty server bundle depends on a few utility classes contained in a

separate Jetty utilities bundle, so we’ll also need to add that:

dwmjs% pax-import-bundle -g org.mortbay.jetty -a jetty-util -v 6.1.14

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Jetty Utilities to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:33:49 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

The two bundles that we’ve added thus far constitute the bulk of the

Jetty server. But the server won’t start by itself. Fortunately, the Spring-

DM folks have provided an activator bundle to kick off Jetty:

dwmjs% pax-import-bundle -g org.springframework.osgi -a jetty.start.osgi \

? -v 1.0.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Jetty OSGi Activator to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:34:19 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=135

ASSEMBLING A WEB SERVER 136

Next, just as we did with Tomcat, we’ll need to install the bundle con-

taining the Java Servlet API:

dwmjs% pax-import-bundle -g org.springframework.osgi -a servlet-api.osgi \

? -v 2.5-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Servlet API 2.5 (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:35:11 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

Finally, we’ll need to add a JSP engine. As it turns out, Jetty also uses

Jasper, so we’ll need to add Jasper. . .

dwmjs% pax-import-bundle -g org.springframework.osgi -a jasper.osgi \

? -v 6.0.16-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Tomcat 6.x JSP Jasper (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:35:48 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

. . . and the JSP API. . .

dwmjs% pax-import-bundle -g org.mortbay.jetty -a jsp-api-2.1 -v 6.1.14

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=136

THE SPRING-DM WEB EXTENDER 137

Joe Asks. . .

Tomcat or Jetty?

It really doesn’t matter whether you choose to use Tomcat or
Jetty to serve your web applications in OSGi. Either one should
work well; the decision mostly boils down to a matter of per-
sonal preference.

I’ll be assuming Jetty throughout the rest of the book. But if
you’d prefer to use Tomcat, then go right ahead. There should
be very few differences (and I’ll note them along the way).

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Glassfish Jasper API to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 20 20:36:15 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

Let’s start it up to see whether it works. First, use pax-provision to start

Equinox, all of our application’s bundles, and the Jetty bundles. Point

your web browser to http://localhost:8080, and you will see. . . an HTTP

404 error.

Don’t panic. The fact that we get an HTTP 404 error is a good sign.

It proves that the web server is running and responding to browser

requests. The only reason we get an error message is because there

aren’t any web applications deployed to the Jetty server. We’ll address

that problem before this chapter is done.

7.2 The Spring-DM Web Extender

While most of the bundles we’ll deploy in the OSGi framework are

just JAR files with some OSGi metadata in the META-INF/MANIFEST.MF

http://localhost:8080
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=137

THE SPRING-DM WEB EXTENDER 138

Joe Asks. . .

Do I Need Spring-DM to Deploy Web Applications in OSGi?

The short answer is no.

In fact, the OSGi Services Compendium defines an HTTP Service
that enables deployment of servlets in an OSGi framework. The
problem with the HTTP Service, however, is that it requires you
to deploy servlets programmatically through the OSGi API. That
approach is very unnatural for most Java web developers who
are accustomed to registering servlets via a web.xml file.

What’s more, the HTTP Service is defined to support only servlets
and not the full capability of the Java Servlet specification. That
means it doesn’t support filters, listeners, or even JSP.

What’s nice about Spring-DM’s web extender is that it allows
you to deploy web applications in a bundle that resembles a
traditional WAR file, right down to the web.xml file that regis-
ters servlets. And because it deploys your web application to
a real web application server such as Tomcat or Jetty, you are
welcome to use whatever parts of the servlet specification you
would like.

file, web bundles are WAR files with some OSGi metadata in the META-

INF/MANIFEST.MF file.

I know what you’re thinking—what’s the difference? Well, there are a

few subtle factors to consider when developing web bundles:

• The class space of a JAR bundle is rooted at the root of the JAR

file. But the class space of a WAR file is rooted at WEB-INF/classes

(and, WEB-INF/lib if there are any embedded libraries).

• JAR files are libraries that merely need to be available in an appli-

cation’s class space to be useful. WAR files, however, are of little

use unless they are installed into a servlet container.

We’ll address the first difference when we get around to building our

web bundle. It’s the second difference—deploying a WAR bundle to a

servlet container—that we’ll need to think about now. For that, we’ll

use Spring-DM’s web extender.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=138

THE SPRING-DM WEB EXTENDER 139

How It Works

When a WAR file is installed into the OSGi framework, the framework

only knows to treat it like any other bundle. That is, the framework will

manage its life cycle and, if directed to do so by the manifest, import and

export packages. But the OSGi framework doesn’t know much about

how to serve web applications. And, even though we may have Tomcat

or Jetty installed, the OSGi framework doesn’t know how to hand the

WAR file off to the servlet container.

That’s where Spring-DM’s web extender comes in. The web extender is

a bundle that has an activator whose job is to watch for bundles to

be installed into the OSGi framework and, if it sees a web bundle, to

deploy that bundle to either Tomcat or Jetty.

Installing the Web Extender

Spring-DM’s support for web applications comes in the form of two

bundles that we’ll need to add to our application. The first is the Spring-

DM web extender itself:

dwmjs% pax-import-bundle -g org.springframework.osgi \

? -a spring-osgi-web-extender -v 1.2.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Spring OSGi Web Extender to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 20 20:39:42 CDT 2009

[INFO] Final Memory: 9M/16M

[INFO] --

dwmjs%

The web extender bundle only watches for WAR bundles to be installed

in the OSGi framework. For the real work—deploying the WAR to a

web container and creating a Spring application context—the extender

delegates to classes contained in a separate Spring-DM web support

bundle.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=139

THE SPRING-DM WEB EXTENDER 140

dwmjs% pax-import-bundle -g org.springframework.osgi -a spring-osgi-web \

? -v 1.2.0

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Spring OSGi Web Support to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 20 20:40:38 CDT 2009

[INFO] Final Memory: 9M/18M

[INFO] --

dwmjs%

This web support bundle contains, among other things, a special OSGi-

ready implementation of Spring’s WebApplicationContext interface. This

means that this bundle depends on the web bundle from the Spring

Framework. So, we’ll also need to be sure to add that bundle:

dwmjs% pax-import-bundle -g org.springframework -a spring-web -v 2.5.6

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Spring Framework: Web to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 20 20:41:12 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

The Spring-DM web extender is now in place and is ready to deploy

WAR bundles to Tomcat. But what if you chose to use Jetty instead of

Tomcat?

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=140

THE SPRING-DM WEB EXTENDER 141

Configuring the Web Extender for Jetty

By default, the web extender assumes that you’re using Tomcat to serve

web applications. But if Jetty is more your cup of tea, then you’ll need to

tell the web extender to deploy web bundles to Jetty instead. The trick

to configuring the web extender for Jetty is to install a special kind of

bundle known as a fragment. We’ll talk more about fragments in the

next chapter, but for now just know that fragments are a mechanism

for extending OSGi bundles with additional content.

In this case, the fragment needs two things:

• Its manifest must include a Fragment-Host: that is set to org.

springframework.bundle.osgi.web.extender. This tells the OSGi frame-

work that the fragment is to be hosted by the web extender bundle.

• There must be a Spring context definition file in META-INF/spring/

extender that defines a warDeployer bean of type org.spring-

framework.osgi.web.deployer.jetty.JettyWarDeployer. This overrides the

default TomcatWarDeployer used by the web extender.

I could show you how to build a fragment that fits this bill. But why

bother building one yourself if you can just install a ready-made frag-

ment from the Spring-DM repository? Importing the Jetty web extender

fragment should do the trick:

dwmjs% pax-import-bundle -g org.springframework.osgi \

? -a jetty.web.extender.fragment.osgi -v 1.0.1

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing Jetty Spring-DM Web Fragment (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:48:30 CDT 2009

[INFO] Final Memory: 8M/16M

[INFO] --

dwmjs%

There’s just one more bundle you’ll need to set up the web extender

to deploy to Jetty. Internally, the Jetty WAR deployer uses CGLIB to

create a proxy to the Jetty server. The details of that interaction aren’t

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=141

DEVELOPING A WEB BUNDLE 142

important, but it is important that we make CGLIB available to the

Jetty WAR deployer. To do that, we’ll add a CGLIB bundle to the mix:

dwmjs% pax-import-bundle -g org.springframework.osgi -a cglib-nodep.osgi \

? -v 2.1.3-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing cglib no dependencies (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:49:53 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

dwmjs%

Now that we’ve set up all the infrastructure our application needs for

web bundles, it’s time to create the web bundle itself.

7.3 Developing a Web Bundle

As I’ve already mentioned, web bundles are a strange breed. In many

ways, they resemble a traditional WAR file, but they also contain an

OSGi-ready manifest to enable them to be deployed in an OSGi frame-

work. But although adding a manifest to a WAR file may make it an

OSGi bundle, that alone doesn’t fully exploit the benefits of OSGi.

A typical WAR file contains not only the web portion of an application

but also the complete functionality of the application. Even if the appli-

cation is developed in a modular fashion, those modules end up as JAR

files in the WEB-INF/lib directory of the WAR, as illustrated in Figure 7.1,

on the next page.

An OSGi web bundle, on the other hand, doesn’t need to carry anything

more than the web portion of the application. The remaining function-

ality of the application is contained in separate bundles, as shown in

Figure 7.2, on the following page. The web bundle consumes services

from the other bundles.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=142

DEVELOPING A WEB BUNDLE 143

dude.war

/WEB-INF/lib

spider.jar index.jar domain.jar

Figure 7.1: In a conventional Java web application, all of the applica-

tion’s modules end up packaged within a single WAR file.

OSGi Framework

spider.jar

index.jar

domain.jar

dude.war

Figure 7.2: An OSGi web bundle resembles a WAR file but collaborates

with other bundles instead of carrying its own dependencies.

We’re going to develop the web front end for our application using

Spring’s web MVC framework. It’s a fairly lightweight framework, and

it naturally integrates with Spring. Even so, much of what we’ll do to

create a web bundle is applicable to almost any Java web framework.

Let’s start by setting up a new bundle project.

Setting Up a Web Bundle Project

The first step toward creating a web bundle is the same first step as

with any other bundle. We must create the bundle project. So, from

within the top-level directory of the Dude project, we’ll once again use

pax-create-bundle to set up a skeleton bundle project.

dwmjs% pax-create-bundle -p dwmj.web -n web -g com.dudewheresmyjar \

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=143

DEVELOPING A WEB BUNDLE 144

? -v 1.0.0-SNAPSHOT -- -Dspring

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:55:50 CDT 2009

[INFO] Final Memory: 10M/18M

[INFO] --

dwmjs%

You’ll notice that this time I did one thing a little different from before.

In addition to the standard set of group ID, artifact ID, and version

information, I also specified that the project is a Spring-DM project by

including --Dspring on the command line. The first two dashes indicate

that what follows is a Maven option. The -Dspring option tells the Pax

Construct Maven plugin to include Spring context configuration files in

the META-INF/spring directory.

Just like before, pax-create-bundle places some sample classes in the

project. We won’t need those classes, so we’ll erase them to get them

out of our way:

dwmjs% cd web

web% rm src/main/java/dwmj/web/ExampleBean.java

web% rm src/main/java/dwmj/web/internal/ExampleBeanImpl.java

web%

But, what we will need are the bundles that our web bundle will depend

on. We already know that the web portion of the application will use the

index service to search for JAR files. So, let’s import the index bundle:

web% pax-import-bundle -g com.dudewheresmyjar -a index -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.web [dwmj.web]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.index [dwmj.index] as dependency to

com.dudewheresmyjar:web:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 4 seconds

[INFO] Finished at: Fri Mar 20 20:57:29 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

web%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=144

DEVELOPING A WEB BUNDLE 145

And the web bundle will also be dealing with JarFile instances, so we’ll

need to import the domain bundle:

web% pax-import-bundle -g com.dudewheresmyjar -a domain -v 1.0.0-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.web [dwmj.web]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.domain [dwmj.domain] as dependency to

com.dudewheresmyjar:web:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:58:00 CDT 2009

[INFO] Final Memory: 8M/18M

[INFO] --

web%

Since we’re going to be using the Spring MVC web framework, we also

need to add it to the mix:

web% pax-import-bundle -g org.springframework -a spring-webmvc -v 2.5.6

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.web [dwmj.web]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding Spring Framework: Web MVC as dependency to

com.dudewheresmyjar:web:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 21:23:45 CDT 2009

[INFO] Final Memory: 8M/19M

[INFO] --

web%

Finally, as we learned with the spider bundle, the JarFile class brings

with it a transitive dependency on Compass annotations. That means

that we’re going to need the Compass bundle.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=145

DEVELOPING A WEB BUNDLE 146

web% pax-import-bundle -g com.dudewheresmyjar.dwmj \

? -a org.compass-project.compass -v 2.1.1-001-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.web [dwmj.web]

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Adding com.dudewheresmyjar.dwmj:org.compass-project.compass:

jar:2.1.1-001-SNAPSHOT as dependency to

com.dudewheresmyjar:web:bundle:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 20:58:43 CDT 2009

[INFO] Final Memory: 8M/16M

[INFO] --

web%

And now we’re ready to develop the web bundle code.

Constructing the Web Application

We could develop the web bundle using any one of the countless web

frameworks that are available to Java developers, including JavaServer

Faces, Struts, and Tapestry. But since we’re already using Spring for

dependency injection, it seems natural to use Spring-MVC.

Handling Web Requests

In Spring MVC, web requests are handled by objects called controllers.

For our application, we need only a single controller that responds to

HTTP GET requests with a search form and processes the data sub-

mitted on an HTTP POST request. The class in SearchController.java does

just that.

Download dwmjs/web/src/main/java/dwmj/web/SearchController.java

package dwmj.web;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestMethod;

import dwmj.domain.JarFile;

http://media.pragprog.com/titles/cwosg/code/dwmjs/web/src/main/java/dwmj/web/SearchController.java
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=146

DEVELOPING A WEB BUNDLE 147

import dwmj.index.IndexService;

@Controller

@RequestMapping("/search.htm")

public class SearchController {

@RequestMapping(method = RequestMethod.GET)

public String showSearchForm(String searchString, ModelMap model) {

if(searchString != null) return doSearch(searchString, model);

return "searchForm";

}

@RequestMapping(method = RequestMethod.POST)

public String doSearch(String searchString, ModelMap model) {

List<JarFile> matches = indexService.findJarFiles(searchString);

model.addAttribute(matches);

return "searchResults";

}

@Autowired

IndexService indexService;

}

As of Spring 2.5, it’s possible to write a controller by tagging an oth-

erwise plain Java class with annotations that identify methods to han-

dle requests. In this case, SearchController is annotated in four places

with three different annotations that make it work as a Spring MVC

controller:

• At the class level, SearchController is annotated with @Controller to

identify the class as a controller. In a moment, we’ll see how this

annotation is used to automatically register SearchController as a

bean in the Spring application context.

SearchController is also annotated at the class level with @Request-

Mapping. As used here, @RequestMapping tells Spring MVC this

controller will handle requests with a URL pattern of /search.htm.

• The showSearchForm() method is annotated with @RequestMapping.

But in this case, @RequestMapping is used to indicate that the

showSearchForm() method will handle HTTP GET requests to

/search.htm. If the GET request carries a searchString parameter,

then it calls the doSearch() method to perform a search. Other-

wise, it returns the logical view name of searchForm to tell Spring

MVC to display the search form.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=147

DEVELOPING A WEB BUNDLE 148

• Likewise, the doSearch() method is annotated with @RequestMap-

ping to declare that it will handle HTTP POST requests. It uses an

IndexService to find matching JarFiles. It places whatever is found

into the model and then returns searchResults as the logical name

of the view to display the results.

• As for the IndexService, it is an instance variable that is annotated

with @Autowired so that Spring will automatically inject it with a

matching bean (which we expect will be the service published by

the index bundle).

Regarding the showSearchForm() and doSearch() methods, both return

a String containing the logical name of a view to display in the user’s

browser after the request has been handled. We’ll see how that logical

view name is mapped to an actual view soon. But first, let’s take a look

at the two JSP files that define those views.

Creating the Web Views

When an HTTP GET request arrives for SearchController, the showSearch-

Form() method handles the request by returning searchForm. This value

is a logical view name that is ultimately mapped to the actual view

implementation, /WEB-INF/jsp/searchForm.jsp:

Download dwmjs/web/src/main/webapp/WEB-INF/jsp/searchForm.jsp

<html>

<head>

<title>Dude, Where's My JAR?</title>

</head>

<body>

<h2>Dude, Where's My JAR?</h2>

<form method="POST" action="search.htm">

<input type="text" name="searchString"/>

<input type="submit" value="Search"/>

</form>

</body>

</html>

This JSP file contains a simple form that asks the user to enter a search

string and then submits the entry, via HTTP POST, to /search.htm.

That’s where the doSearch() method steps in. After it has finished col-

lecting matching JarFiles from the index service, it returns searchRe-

sults, a logical view name corresponding to /WEB-INF/jsp/searchResults.jsp.

http://media.pragprog.com/titles/cwosg/code/dwmjs/web/src/main/webapp/WEB-INF/jsp/searchForm.jsp
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=148

DEVELOPING A WEB BUNDLE 149

Download dwmjs/web/src/main/webapp/WEB-INF/jsp/searchResults.jsp

<%@ page info="Search results page" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@page import="dwmj.domain.JarFile"%>

<html>

<head><title>Dude, Where's My JAR?</title></head>

<body>

<form method="POST" action="search.htm">

<input type="text" name="searchString"/>

<input type="submit" value="Search"/>

</form>

<c:choose>

<c:when test='${empty jarFileList}'>

<h2>Where's your JAR, dude?</h2>

<p>I couldn't find the JARs you were asking for.</p>

</c:when>

<c:otherwise>

<h2>Here's your JAR(s), dude!</h2>

<p>I found these JAR files:</p>

<table border="1">

<thead>

<tr>

<td>Repository</td>

<td>Group</td>

<td>Artifact</td>

<td>Version</td>

<td>Snapshot?</td>

<td>Source?</td>

<td>Javadoc?</td>

<td>Symbolic Name</td>

<td> </td>

</tr>

</thead>

<tbody>

<c:forEach items="${jarFileList}" var="jarFile">

<tr>

<td><c:out value="${jarFile.repository}" /></td>

<td><c:out value="${jarFile.groupId}" /></td>

<td><c:out value="${jarFile.artifactId}" /></td>

<td><c:out value="${jarFile.version}" /></td>

<td><c:out value="${jarFile.snapshot}" /></td>

<td><c:out value="${jarFile.hasSource}" /></td>

<td><c:out value="${jarFile.hasJavadoc}" /></td>

<td><c:out value="${jarFile.bundleSymbolicName}" /></td>

<td><a href="<c:out value="${jarFile.rawUrl}" />">Download</td>

</tr>

</c:forEach>

http://media.pragprog.com/titles/cwosg/code/dwmjs/web/src/main/webapp/WEB-INF/jsp/searchResults.jsp
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=149

DEPLOYING THE WEB BUNDLE 150

</tbody>

</table>

</c:otherwise>

</c:choose>

</body>

</html>

This JSP cycles through the list of JarFiles that were found, displaying

them to the user. And, it offers the user another search form so that

they can search again.

One small detail about these web views still needs to be settled. Since

searchResults.jsp uses JSTL, we’ll also need to be sure to make that avail-

able at runtime:

dwmjs% pax-import-bundle -g org.springframework.osgi -a jstl.osgi \

? -v 1.1.2-SNAPSHOT

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dwmj (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:import-bundle]

(aggregator-style)

[INFO] --

[INFO] [pax:import-bundle]

[INFO] Importing JSTL 1.1.x (OSGi version) to

com.dudewheresmyjar.dwmj.build:provision:pom:1.0.0-SNAPSHOT

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 21:25:11 CDT 2009

[INFO] Final Memory: 8M/17M

[INFO] --

dwmjs%

At this point we’ve created our web bundle project and have stocked it

with a Spring MVC controller and a couple of JSP files. But the func-

tional contents of a web bundle are only half of the story. Before we can

see our application present itself in a web browser, we need to address

some configuration details.

7.4 Deploying the Web Bundle

In a conventional Java web application, the WEB-INF/web.xml file config-

ures any servlets, filters, and/or listeners that are part of the applica-

tion. And, if that web application is a Spring MVC application, there’ll

also be at least one Spring context definition file to declare the Spring

controllers, URL handlers, and view resolvers.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=150

DEPLOYING THE WEB BUNDLE 151

An OSGi web bundle is no different. We’ll still need a web.xml file, and

we’ll need a Spring context file. A web bundle is different from a con-

ventional WAR file, however, in that it will also need a MANIFEST.MF file

to make it an OSGi bundle. And the Spring context will also need to

include a <reference> to the index service that it will use.

Configuring the Web Bundle

Just like any web application, we’ll need to configure the web bundle

by creating a web.xml file. More specifically, because we’re using Spring

MVC, we’ll need to configure ContextLoaderListener and DispatcherServlet:

Download dwmjs/web/src/main/webapp/WEB-INF/web.xml

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

version="2.4">

<display-name>Dude Where's My Jar? Web Application</display-name>

<context-param>

<param-name>contextClass</param-name>

<param-value>

org.springframework.osgi.web.context.support.OsgiBundleXmlWebApplicationContext

</param-value>

</context-param>

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/dude-osgi.xml</param-value>

</context-param>

<listener>

<listener-class>

org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

<servlet>

<servlet-name>dude</servlet-name>

<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<init-param>

<param-name>contextClass</param-name>

<param-value>

org.springframework.osgi.web.context.support.OsgiBundleXmlWebApplicationContext

</param-value>

http://media.pragprog.com/titles/cwosg/code/dwmjs/web/src/main/webapp/WEB-INF/web.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=151

DEPLOYING THE WEB BUNDLE 152

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>dude</servlet-name>

<url-pattern>*.htm</url-pattern>

</servlet-mapping>

</web-app>

DispatcherServlet is Spring’s front controller, handling HTTP requests as

they come in and directing them to the appropriate controller class for

processing. Here the <servlet-mapping> configures it to respond to any

request that ends with .htm.

When DispatcherServlet is started, it loads its Spring context from an

XML file whose name is based on the servlet’s name (as specified by

the <servlet-name> element). In this case, DispatcherServlet will load its

Spring context from WEB-INF/dude-servlet.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-2.5.xsd">

<bean class=

"org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping"/>

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

<context:component-scan base-package="dwmj.web" />

</beans>

This Spring configuration declares two <bean>s. As a request is re-

ceived by DispatcherServlet, the DefaultAnnotationHandlerMapping bean

will map URL patterns declared with @RequestMapping to the SearchCon-

troller’s methods. After the controller is finished, DispatcherServlet will use

InternalResourceViewResolver to map the logical view name returned by

the controller to JSP view implementations in the /WEB-INF/jsp

directory.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=152

DEPLOYING THE WEB BUNDLE 153

The <component-scan> element from Spring’s context namespace

rounds out the Spring configuration file. This near-magical element is

configured to scan the dwmj.web package looking for classes that are

annotated with either @Component, @Controller, @Aspect, @Repository, or

@Service and to automatically register those classes as beans in the

Spring context. As it turns out, SearchController is in that package and

is annotated with @Controller—so a SearchController bean will be created.

What’s more, <component-scan> will arrange to have the SearchCon-

troller bean’s indexService property automatically wired with an imple-

mentation of IndexService. That’s because the indexService property is

annotated with @Autowired. But where is the IndexService bean that will

be injected into the indexService property?

Defining Additional Spring Configuration

In order to keep the OSGi-specific Spring configuration separate from

the rest of the beans, I’ve placed the reference to the index service in a

separate Spring configuration file. This is what the ContextLoaderListener

is for. Whereas DispatcherServlet will load the Spring application context

from only a single configuration file, ContextLoaderListener loads more

context configuration from one or more additional files. In this case, the

contextConfigLocation context parameter identifies /WEB-INF/dude-osgi.xml

as the file that contains additional Spring configuration details:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:beans="http://www.springframework.org/schema/beans"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd">

<reference id="indexService"

interface="dwmj.index.IndexService" />

</beans:beans>

This Spring configuration should look a little familiar, because it’s not

much different from the OSGi configuration file we used for the spider

bundle. In both cases, the <reference> element is used to look up the

index service from the OSGi service registry and add a reference to it

as a bean in Spring. Because the service being referenced implements

IndexService, it is autowired into SearchController’s indexService property.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=153

DEPLOYING THE WEB BUNDLE 154

Filling Out the Web Bundle’s Manifest

We’re almost ready to run the application again and see the web bundle

in action. But there are a few loose ends to tie up with regard to the

bundle’s manifest:

• Unlike typical bundles, web bundles follow the WAR file conven-

tion of having their classpaths rooted in WEB-INF/classes and WEB-

INF/lib. We’ll need to tell the OSGi framework about this.

• We used several Spring classes (such as DispatcherServlet and

DefaultAnnotationHandlerMapping) in non-Java files. BND will auto-

matically create Import-Package: entries in the manifest for depen-

dencies it finds in Java code. But we’ll need to help it out for

dependencies that are used only in web.xml or Spring configura-

tion files.

• We also used the JSTL tag libraries in our JSP. We’ll need to make

those packages available to our bundle too.

• When the web bundle is installed in Jetty or Tomcat, it will be

given a context path (the path in the application’s URL) that is

based on the bundle’s symbolic name. We should probably give it

a friendlier context path. Perhaps something as simple as dude.

The following osgi.bnd file should take care of all of the previous:

#---

Use this file to add customized Bnd instructions for the bundle

#---

Bundle-Classpath: .,WEB-INF/classes

Import-Package: *,\

org.springframework.osgi.web.context.support,\

org.springframework.web.servlet,\

org.springframework.web.servlet.handler,\

org.springframework.web.servlet.mvc,\

org.springframework.web.servlet.view,\

dwmj.domain,\

org.springframework.web.servlet.mvc.annotation,\

org.springframework.web.context

Require-Bundle: org.springframework.osgi.jstl.osgi

Web-ContextPath: dude

The Bundle-Classpath: header specifies the path, relative to the root of the

bundle’s JAR file, that should be included in the bundle’s classpath. By

default, Bundle-Classpath: is set to . to indicate that the classpath should

be the root of the bundle JAR. Here I’ve set it to also include WEB-

INF/classes, because that’s where the compiled SearchController class will

be found.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=154

DEPLOYING THE WEB BUNDLE 155

Use Require-Bundle Sparingly

In the case of JSTL, Require-Bundle: is a convenient way to make
the entire tag library available and to cut down on the number
of explicitly imported packages. But Require-Bundle: should be
used with caution.

Require-Bundle: has approximately the same effect as using
Import-Package: to import all the packages within a given bun-
dle. Import-Package: declares that a bundle needs to import
certain packages but doesn’t care which bundle(s) they come
from. Require-Bundle:, on the other hand, mandates that all
exported packages of a specific bundle must be imported, cre-
ating what is usually an undesirable coupling with a specific
bundle.

Import-Package: is set to include all the Spring packages that we use

outside our Java code. It also includes * to indicate that we also want

to include any packages that BND will import as it scans our Java code

for dependencies.

In order to make the JSTL libraries available, I’ve added Require-Bundle:.

Although I could have used Import-Package: to import the JSTL classes,

Require-Bundle: is far more convenient in this case, because it will import

all of the packages from the JSTL bundle.

Finally, Web-ContextPath: specifies the context path with which the

application will be deployed to the web container. By setting this to

dude, we will be able to navigate to the application using a URL such

as http://localhost:8080/dude.

In fact, I think we’re ready fire up the application and see it in a web

browser.

Firing It Up

First things first. Before we can start the application and kick the tires

on the web bundle, we’ll need to build it. But before we can build it, we

need to tweak the Maven pom.xml file.

You see, when we created the web bundle project with pax-create-bundle,

what we got was a pom.xml file with bundle packaging. That is, the arti-

fact produced by Maven will be an OSGi bundle. That’s exactly what we

http://localhost:8080/dude
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=155

DEPLOYING THE WEB BUNDLE 156

want, but we also want a little bit more. We also want the web bundle

to be a WAR file and to have the internal structure of a WAR file.

So, it would seem that we’re facing a dilemma. Do we tell Maven to

create a bundle or to create a WAR file?

Fortunately, we can get both. The Maven WAR plugin does a great job

of producing WAR files, so we’ll set the packaging of our project to be

war:

<packaging>war</packaging>

Then we’ll need to add that Felix Bundle plugin so that an OSGi mani-

fest will be created for the web bundle:

<plugin>

<groupId>org.apache.felix</groupId>

<artifactId>maven-bundle-plugin</artifactId>

<executions>

<execution>

<id>bundle-manifest</id>

<phase>process-classes</phase>

<goals>

<goal>manifest</goal>

</goals>

</execution>

</executions>

<configuration>

<supportedProjectTypes>

<supportedProjectType>jar</supportedProjectType>

<supportedProjectType>bundle</supportedProjectType>

<supportedProjectType>war</supportedProjectType>

</supportedProjectTypes>

<!-- ... -->

</configuration>

</plugin>

Finally, we’ll need to tweak the configuration of the WAR plugin so that

it will include the manifest generated by the bundle plugin:

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-war-plugin</artifactId>

<configuration>

<archive>

<manifestFile>

${project.build.outputDirectory}/META-INF/MANIFEST.MF

</manifestFile>

</archive>

</configuration>

</plugin>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=156

DEPLOYING THE WEB BUNDLE 157

Now that we’ve arranged for Maven to build a bundle that is also a WAR

file, let’s kick off the build:

web% mvn install

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 8 seconds

[INFO] Finished at: Fri Mar 20 21:30:19 CDT 2009

[INFO] Final Memory: 14M/28M

[INFO] --

web%

It looks like it built cleanly. Now let’s kick it off with pax-provision and

pull up the application in a web browser and see what happens. As

you’ll recall, we set the context path to dude and mapped SearchCon-

troller to respond to /search.htm. Therefore, we will need to point our

browser to http://localhost:8080/dude/search.htm. You should see the

application’s home page with a simple search form in your web browser.

Woo-hoo! The application is asking us to enter some search criteria. So

far so good. Let’s try searching for something. How about something

like spring?

Depending on how far along the spider has gotten in indexing the repos-

itory, the application may respond with some results, as shown in Fig-

ure 7.3, on the next page. Of course, if the spider hasn’t got around to

indexing any JARs that would match the search criteria, you may be

disappointed in what it finds (or doesn’t find).

Our application seems to work. But before we move on, let’s step back

and think about what we’ve done. In this chapter, we have done the

following:

• Set up a web server (either Tomcat or Jetty) within the OSGi

framework

• Installed the Spring-DM web extender so that we can deploy WAR

files as bundles

• Developed and deployed the web portion of our application as a

WAR bundle

That last item is worth expanding on. Although we’ve deployed a WAR

file, this isn’t a conventional web application. It’s an OSGi bundle that

just borrows some of the characteristics of a WAR file.

http://localhost:8080/dude/search.htm
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=157

DEPLOYING THE WEB BUNDLE 158

Figure 7.3: The search results page after searching for spring

Unlike a conventional WAR file, this web bundle doesn’t carry all of

its dependencies internally. Instead, it will consume services from the

OSGi runtime that it is deployed in. This not only makes the web bundle

a bit skinnier than a conventional WAR file but also decouples the web

portion of the application from the rest of it.

You’ve no doubt noticed that the look and feel leaves a lot to be desired.

Unfortunately, OSGi can’t help you make your application look prettier.

But as you’ll see in the next chapter, it can help you separate the look

and feel of your application (JSPs, style sheets, and images) from the

rest of the web layer code. So, go ahead and celebrate our progress with

a cold beverage of your choice. Then come back, and let’s see how to

use something called fragments to package the look and feel in its own

bundle.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=158

Chapter 8

Extending Bundles
One of the most significant tenets of object-oriented programming is

that software entities should be open for extension but closed for mod-

ification. The open-closed principle is often cited in reference to classes

but is, in fact, applicable to modules as well.

In OSGi, the mechanism for extending bundles is to create a special

kind of bundle known as a fragment bundle (or fragments, as they’re

typically called). Fragments provide a way to add new content to an

established bundle at runtime, without rebuilding the bundle.

In this chapter, we’re going to create a fragment that extends the web

bundle that we created in the previous chapter, providing the look

and feel of the application. This will effectively decouple the client-side

presentation of our application from the server-side controllers that

respond to user input.

8.1 Introducing Fragments

Fragments are much like regular bundles in that they are a unit of

deployment in OSGi. They’re packaged as JAR files and are described

in metadata in the META-INF/MANIFEST.MF file. Unlike regular bundles,

however, fragments are useless by themselves. They must be connected

to another bundle.

Think of the relationship between bundles and fragments as being like

the relationship between a home entertainment system and DVDs. A

typical modern home entertainment system probably includes at least

a television and a DVD player. Although the entertainment system is

probably useful on its own for viewing broadcast programs, a DVD

INTRODUCING FRAGMENTS 160

OSGi Framework

DVD Player

Bundle-SymbolicName: com.sony.dvd.player

Star Wars: Episode 4

Fragment-Host: com.sony.dvd.player

DVD Player /
Star Wars: Episode 4

Bundle-SymbolicName: com.sony.dvd.player

Figure 8.1: Although they’re two separate physical entities, an OSGi

fragment becomes one with its host bundles at runtime.

has little utility beyond that of a shiny drink coaster without the DVD

player. By placing the DVD into the player, you give the DVD pur-

pose and, at the same time, extend the capability of the entertainment

system.

Likewise, a fragment is nothing more than a JAR file until it is given

to a bundle. Unlike a DVD that can be played in any compatible DVD

player, however, a fragment specifies the bundle to which it should be

associated with a Fragment-Host: entry in its manifest. For example, if we

were to develop our DVD example as OSGi bundles and fragments, the

DVD fragment’s MANIFEST.MF might look like this:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: com.lucasfilm.movies.starwars4

Bundle-Description: Star Wars, Episode 4: A New Hope

Bundle-Version: 1.0.0

Fragment-Host: com.sony.dvd.player

In this contrived example, the DVD fragment is asking to be joined to

the bundle whose symbolic name is com.sony.dvd.player, as illustrated

in Figure 8.1.

Specifying a Fragment-Host: is just about all there is to creating a frag-

ment. The only thing that’s left is to fill the fragment’s JAR file with

contents. When the OSGi framework joins a fragment to a bundle at

runtime, the contents of the fragment effectively become the contents

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=160

CREATING A UI FRAGMENT 161

Using Felix? Then No Fragments for You

I’ve mentioned this before, but it’s worth repeating again. As
I write this, the current version of Felix (1.4) does not support
fragments. That means that this chapter doesn’t apply to you if
you’re using Felix. (If, however, you’re using Equinox, then you’ll
be OK—Equinox supports fragments.)

There is an item in Felix’s issue-tracking system to add fragment
support to Felix. You can follow the progress of the Felix frag-
ment issue at http://issues.apache.org/jira/browse/FELIX-29.

of the hosting bundle. They become one logical runtime bundle, even

though their contents are spread across two (or more) physical JAR

files.

Now that you know what fragments are, let’s see how we can use them

to manage the look and feel of our application.

8.2 Creating a UI Fragment

Unfortunately, there’s nothing in the OSGi specification that can

directly impact the usability and aesthetics of our application. It will

still be up to us to flex our creativity muscles to give our application a

polished look and feel. But what OSGi can offer, through fragments, is

a way to separate the look and feel of the application from the appli-

cation itself so that each can be developed and modified independently

of the other. This separation of an application’s user interface from its

functionality is commonly known as skinning.

The OSGi specification says that one of the key use cases for fragments

is to provide translation files for different locales. Although localization

isn’t exactly the same as look and feel, they’re both a type of skinning.

Localization just happens to be a way to skin an application with a

specific language. If fragments can be used for localization, then they

can certainly also be used for skinning our application to make it look

nice.

We’ll start by creating the fragment project.

http://issues.apache.org/jira/browse/FELIX-29
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=161

CREATING A UI FRAGMENT 162

Setting Up the Fragment Project

Because fragments are just a special kind of bundle, we can use Pax

Construct’s pax-create-bundle command to set up our fragment project:

dwmjs% pax-create-bundle -p dwmj.web -n ui -v 1.0.0-SNAPSHOT \

? -- -Dinterface=false -Dinternals=false

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 5 seconds

[INFO] Finished at: Fri Mar 20 22:15:12 CDT 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmjs%

As always, the -p, -n, and -v parameters specify the bundle’s base pack-

age, name, and version (respectively). But notice the double dash (--)

and the two items that follow it. The double dash indicates that all

parameters that follow are Maven parameters (and not for pax-create-

bundle).

In this case, I am using the double dash to set two properties used by

the Maven archetype that works under the covers of pax-create-bundle.

By setting the interface property to false, I am telling the archetype to

not create the sample OSGi service interface. Similarly, setting internals

to false tells the archetype not to create the same code in the internals

package. Our user interface fragment won’t be needing any of that stuff.

In fact, since the fragment will contain only web artifacts like JSP, CSS,

and image files, we won’t need any Java content created at all. There-

fore, the package name given with the -p parameter is irrelevant. But,

pax-create-bundle considers it a mandatory parameter, so I had to pro-

vide it.

Now let’s add some web content to the user interface (UI) fragment.

Adding Web Files

The web bundle had only three JSP files—one in the root (the index.jsp

welcome file) and two in WEB-INF/jsp (a search form page and a search

results page). The index.jsp file does nothing more than redirect requests

for the application root to the search page and has no look and feel

aspect to it. So, it is fine where it is. But we’ll need to move the other

two JSP files into the UI fragment.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=162

CREATING A UI FRAGMENT 163

As we move them over, let’s embellish them to be more aesthetically

pleasing. First, here’s the new searchForm.jsp:

Download dwmjs/ui/src/main/resources/WEB-INF/jsp/searchForm.jsp

<html>

<head>

<title>Dude, Where's My JAR?</title>

</head>

<body style="text-align:center;">

<form method="POST" action="search.htm">

<input type="text" name="searchString" size="55" />

<input type="submit" value=" Find My JAR " />

</form>

Copyright © 2009

</body>

</html>

The key thing that’s changed here is the addition of some HTML for

layout purposes as well as an tag to display the Dude, Where’s

My JAR? logo. We’ll need to remember to put the logo’s image file (dwmj-

logo.png) in src/main/resources/images so that it will end up in the frag-

ment JAR file when we build the project. Don’t worry if your graphic

design skills are lacking—I’ve included a logo image file in the example

download.

Next up is the searchResults.jsp file (abridged here to save space):

Download dwmjs/ui/src/main/resources/WEB-INF/jsp/searchResults.jsp

<%@ page info="Search results page" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<%@page import="dwmj.domain.JarFile"%>

<html>

<head>

<title>Dude, Where's My JAR?</title>

<link href="css/dude.css" rel="stylesheet" type="text/css">

http://media.pragprog.com/titles/cwosg/code/dwmjs/ui/src/main/resources/WEB-INF/jsp/searchForm.jsp
http://media.pragprog.com/titles/cwosg/code/dwmjs/ui/src/main/resources/WEB-INF/jsp/searchResults.jsp
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=163

CREATING A UI FRAGMENT 164

<script src="jquery/jquery.js"></script>

<script>

$(document).ready(function(){

$('.summaryRow').click(function() {

$(this).siblings().slideToggle("slow");

});

$('.downloadLink').click(function() {});

});

</script>

</head>

<body>

<form method="POST" action="search.htm">

<img src="images/dwmj-logo-50.png"

align="middle" border="0"/>

<input type="text" name="searchString" size="55"

value="${param.searchString}" />

<input type="submit" value=" Find My JAR " />

</form>

<div class="resultsHeader">

Dude, I found <c:out value="${fn:length(jarFileList)}" /> JARs

</div>

<c:choose>

<c:when test='${empty jarFileList}'>

<div style="text-align:center;">

<h2>Where's your JAR, dude?</h2>

<p>I couldn't find any JARs that match "<c:out

value="${param.searchString}" />".</p>

<p>Try searching again with new search criteria.</p>

</div>

</c:when>

<c:otherwise>

<div class="resultsList">

<c:forEach items="${jarFileList}" var="jarFile">

<!-- ... -->

</c:forEach>

</div>

</c:otherwise>

</c:choose>

</body>

</html>

As you can see, this JSP is significantly more advanced than the one we

created before. Aside from layout changes and the addition of the logo,

this JSP uses jQuery1 to add some dynamic capabilities to the result

1. http://www.jquery.com

http://www.jquery.com
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=164

CREATING A UI FRAGMENT 165

listing. It also uses an external style sheet to define the overall style of

the result page. Therefore, we’ll need to be sure to include the jQuery

file and the CSS file in the project.

I am using version 1.2.6 of the packed jQuery JavaScript file. Place

jquery-1.2.6.pack.js in src/main/resources/jquery so that it will end up in the

jquery directory inside the fragment.

As for the CSS file, it should be placed in src/main/resources/css. The

dude.css file looks like this:

Download dwmjs/ui/src/main/resources/css/dude.css

body {

font-family:arial;

}

.firstEntry {

border-top: 1px solid #999999;

}

.entry {

border-bottom: 1px solid #999999;

font-size:small;

}

.summaryRow {

font-weight:bold;

font-size:small;

width:100%;

}

.detailsRow {

font-size:small;

display:none;

background-color:#eeeeee;

width:100%;

}

.resultsList {

margin-left:50px;

margin-right:50px;

}

.resultsHeader {

width:100%;

background-color:#eeeeff;

border-top:1px solid #000099;

padding:3px;

font-size:small;

}

http://media.pragprog.com/titles/cwosg/code/dwmjs/ui/src/main/resources/css/dude.css
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=165

CREATING A UI FRAGMENT 166

.label {

text-align:right;

font-weight:bold;

}

.pomDependency {

font-family:monospace;

whitespace:pre;

border-top: 1px solid black;

border-bottom: 1px solid black;

}

Now all of the web artifacts are in place, and we’re almost ready to build

the fragment and try using it. But first we need to make sure that we’re

building a fragment and not a regular bundle.

Specifying the Fragment Host

Up until now, most of the what we’ve done in this chapter has been

typical web design work. We’d probably create CSS and HTML files,

work with JavaScript, and design logo graphics for any web application

we create, whether we’re working with OSGi or not.

But now, before we can build the fragment, we need to finally do the

one little bit of OSGi-related work that will make this bundle a fragment

bundle. We need to specify the Fragment-Host: in the osgi.bnd file:

#---

Use this file to add customized Bnd instructions for the bundle

#---

Fragment-Host: com.dudewheresmyjar.web

In this case, we’ve specified that the fragment will be hosted by the

bundle whose symbolic name is com.dudewheresmyjar.web. That just

happens to be the symbolic name of our web bundle. Consequently,

when we deploy the fragment along with the web bundle (as shown in

Figure 8.2, on the next page), the JSP, CSS, and image files in the bun-

dle will be merged into the web bundle at runtime—as if they were in

the web bundle all along.

Again, Fragment-Host: is all you need (aside from the obligatory Bundle-

SymbolicName: header) to create a fragment bundle. Now let’s build it

and try it.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=166

TRYING IT 167

OSGi Framework

Bundle-SymbolicName: com.dudewheresmyjar.web

META-INF/MANIFEST.MF

WEB-INF/classes/com/dudewheresmyjar/web/SearchController.class

WEB-INF/dude-osgi.xml

WEB-INF/dude-servlet.xml

Fragment-Host: com.dudewheresmyjar.web

META-INF/MANIFEST.MF

WEB-INF/jsp/searchForm.jsp

WEB-INF/jsp/searchResults.jsp

css/dude.css

images/dwmj-logo.png

images/dwmj-logo-50.png

index.jsp

jquery/jquery.js

Bundle-SymbolicName: com.dudewheresmyjar.web

META-INF/MANIFEST.MF

WEB-INF/classes/com/dudewheresmyjar/web/SearchController.class

WEB-INF/dude-osgi.xml

WEB-INF/dude-servlet.xml

META-INF/MANIFEST.MF

WEB-INF/jsp/searchForm.jsp

WEB-INF/jsp/searchResults.jsp

css/dude.css

images/dwmj-logo.png

images/dwmj-logo-50.png

index.jsp

jquery/jquery.js

Figure 8.2: The UI fragment attaches JSP, CSS, and image files to the

web bundle when deployed in the OSGi framework together.

8.3 Trying It

Before we can fire up the OSGi framework and see the UI fragment

applied to the web bundle, we’ll need to build it:

ui% mvn install

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 7 seconds

[INFO] Finished at: Fri Mar 20 22:22:40 CDT 2009

[INFO] Final Memory: 13M/30M

[INFO] --

ui%

The build is successful, so we’re ready to go, right? Not quite. We have

a little cleanup to do first.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=167

TRYING IT 168

Cleaning Up the Web Bundle

One thing that I haven’t told you about fragments yet is that they can

only add new content to their hosting bundle. They cannot replace

any of their host’s existing content. Since our web bundle already has

searchForm.jsp and searchResults.jsp in its WEB-INF/jsp directory, the UI frag-

ment won’t be able to replace them with the new JSP files. Therefore,

if our UI fragment is to have any effect, we’ll need to clean up the web

bundle, removing the old versions of the application’s JSP files:

ui% cd ../web

web% rm -R src/main/webapp/WEB-INF/jsp

web%

After the web bundle is rebuilt, we’re finally ready to give our UI frag-

ment a spin.

Starting the Application

As usual, we’ll use pax-provision to kick off the OSGi framework and

install and start our bundles, effectively starting our application. Once

everything has started, let’s issue the ss command to see the bundles in

the OSGi framework, focusing specifically on the web bundle and our

UI fragment:

osgi> ss

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.4.2.R34x_v20080826-1230

1 ACTIVE org.eclipse.osgi.util_3.1.300.v20080303

2 ACTIVE org.eclipse.osgi.services_3.1.200.v20070605

...

35 ACTIVE com.dudewheresmyjar.web_1.0.0.SNAPSHOT

Fragments=36

36 RESOLVED com.dudewheresmyjar.dwmj.ui_1.0.0.SNAPSHOT

Master=35

osgi>

Notice that the web bundle (id=32) and the UI fragment (id=33) refer-

ence each other. The web bundle’s entry includes Fragments=33, which

indicates that the web bundle is augmented by the fragment whose ID

is 33.2 As for the fragment, it includes Master=32, indicating that this

item is a fragment and that it is hosted by the bundle whose ID is 32.

2. Also notice that “Fragments” is plural. That’s because it’s possible for a bundle to

host more than one fragment. On the other hand, a fragment can be hosted by a single

bundle only.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=168

TRYING IT 169

Figure 8.3: A search results page after applying the UI fragment

You’ve probably also noticed that the UI fragment seems to be stuck in

the RESOLVED state and is not ACTIVE. That’s because fragments do

not do anything on their own and therefore are never actually started.

Just as with regular bundles, the RESOLVED state indicates that the

fragment’s dependencies have been met, but that’s as far as a fragment

will go in the bundle life cycle.

Let’s see the fruit of our labor. Open up your web browser, and point it

at http://localhost:8080/dude. You should see the new and more visually

appealing home page. Now let’s try submitting a search. The results

found when I tried searching for spring are shown in Figure 8.3.3

Each line of the result set includes the Maven group ID, artifact ID,

and version number, along with a link to download the JAR file. Also,

thanks to our use of jQuery’s slide-toggle animation, you can expand a

row to see more information by clicking it. Clicking it again will collapse

the row.

3. Note that I performed this search on an index that was created by spidering only a

subset of a repository. Your results may be different, depending on what repository you

spider and what items are in your index when you submit the search.

http://localhost:8080/dude
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=169

TRYING IT 170

Of course, there’s a lot more that we could do with the presentation

aspects of our application (paging the result set comes to mind), but

the main topic of this chapter was how to develop fragment bundles

and secondarily how to use fragments to separate the appearance of an

application from its function.

In this chapter, we’ve seen how to use OSGi fragments to extend bun-

dles with additional content. Specifically, we’ve extended our applica-

tion’s web bundle with visual content, decoupling the application’s view

from its controllers. Effectively, the fragment we created in this chapter

contains the “skin” of our application.

However, there are a lot of things we could do with fragments aside

from using them as vessels for JSP and CSS. What kinds of things? In

the last chapter, it was a fragment that told Spring-DM that we’d rather

use Jetty than Tomcat for our web container. And, before this book is

done, we’ll see two more fragments that solve very different problems.

Speaking of finishing this book, the application is functionally and visu-

ally complete. There’s no reason that we couldn’t deploy it in production

—except that we don’t know how to deploy OSGi applications yet. That’s

what we’ll figure out in the next chapter.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=170

Part III

Finishing Touches

Chapter 9

OSGi in Production
Up until now, we’ve been developing our bundles using Pax Construct—

and it has served us well. Not only have we used it to construct our

application’s project structure, but we have leaned heavily on its pax-

provision command to run the application.

But Pax Construct is a development tool, and it would be inappropriate,

and perhaps even unreasonable, to expect Pax Construct to be available

in a production setting. As our application moves beyond development

and into a QA or production setting, we need a way to run the applica-

tion without relying on pax-provision.

In this chapter, we’re going to extract the bundles from our Pax Con-

struct project into a ready-to-run distribution. As we do, we’ll also

address a few concerns that will take our application out of develop-

ment and make it production-ready.

9.1 Distributing the Application

Under the covers, the pax-provision script from Pax Construct uses a

different OPS4J project, called Pax Runner. Pax Runner’s mission in

life is to start an OSGi framework and to install and start a selection

of bundles. That sounds like exactly what we need. Fortunately, Pax

Runner can be used without Pax Construct, so that’s what we’ll use.

But first, we’ll need a way to draw our application’s bundles out of their

Pax Construct habitat and into a distribution for Pax Runner to work

with.

DISTRIBUTING THE APPLICATION 173

Cutting a Release

Up until now, we’ve been in development mode and have kept
our projects versioned at 1.0.0-SNAPSHOT. But now as we create
a distribution to take the project into production, it’s probably
a good idea to bump the version up to a final 1.0.0 and then
build our distribution zip file from the 1.0.0 project.

Since our project is based on Pax Construct, which is itself based
on Maven, I recommend using the Maven release plugin. This
plugin handles the job of bumping version numbers up and
even ensures that the project is in a releasable state prior to per-
forming the release. The details of the release plugin are outside
of the scope of this book, but if you want to know more, visit the
release plugin home page.∗

∗. http://maven.apache.org/plugins/maven-release-plugin

Creating a Distribution Project

Since our project is based on Maven (thanks to Pax Construct), we are

afforded the opportunity to use Maven’s assembly plugin. The assembly

plugin is a perfect way to collect project artifacts and dependencies in a

zip file for distribution. All we need is a project that has all the bundles

as dependencies for the assembly plugin to gather up.

Fortunately, the vast majority of the bundles that our application needs

are already listed in a Maven POM file. Every time we have used pax-

import-bundle to add a dependency bundle to our project, it added a

dependency element to the pom.xml file in the provision directory. So,

we’ll base the distribution project’s pom.xml file on the provisioning

pom.xml so that it inherits its dependencies.

First, create the distribution project. Pax Construct isn’t going to help

us much here, so we’ll resort to standard DOS/shell commands:

dwmjs% mkdir dist

dwmjs% cd dist

dist%

Then, we’ll start creating the Maven pom.xml file in the dist directory.

http://maven.apache.org/plugins/maven-release-plugin
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=173

DISTRIBUTING THE APPLICATION 174

Download dwmjs/dist/pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

Ê <parent>

<relativePath>../provision/</relativePath>

<groupId>com.dudewheresmyjar.dude.build</groupId>

<artifactId>provision</artifactId>

<version>1.0.0</version>

</parent>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>distribution</artifactId>

<packaging>pom</packaging>

<name>Dude, Where's My JAR? Application Packager</name>

<version>1.0.0</version>

<repositories>

<repository>

<id>OPS4J</id>

<url>http://repository.ops4j.org/maven2</url>

</repository>

<repository>

<id>com.springsource.repository.bundles.external</id>

<name>SpringSource Enterprise Bundle Repository (External Bundles)</name>

<url>http://repository.springsource.com/maven/bundles/external</url>

</repository>

</repositories>

<build>

<plugins>

<plugin>

Ë <artifactId>maven-assembly-plugin</artifactId>

<configuration>

<finalName>dude-${project.version}</finalName>

<descriptors>

<descriptor>src/main/assembly/assembly.xml</descriptor>

</descriptors>

</configuration>

</plugin>

</plugins>

</build>

<dependencies>

</dependencies>

</project>

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=174

DISTRIBUTING THE APPLICATION 175

By basing the distribution pom.xml on the provisioning pom.xml Ê, the

distribution project will inherit all the dependencies from the provision-

ing pom.xml. That will make them available to the assembly plugin for

placement in a distribution zip file.

But that won’t be enough. Although many of the project’s dependencies

are listed in the provisioning pom.xml file, there are some that are not.

First, our own project’s bundles (domain, spider, index, web, and ui)

aren’t in the provisioning pom.xml file. So, we’ll need to add those to the

distribution pom.xml ourselves:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>domain</artifactId>

<version>${project.version}</version>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>spider</artifactId>

<version>${project.version}</version>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>index</artifactId>

<version>${project.version}</version>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar</groupId>

<artifactId>web</artifactId>

<version>${project.version}</version>

<type>war</type>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar.dude</groupId>

<artifactId>ui</artifactId>

<version>${project.version}</version>

</dependency>

<dependency>

<groupId>com.dudewheresmyjar.dude</groupId>

<artifactId>org.compass-project.compass</artifactId>

<version>2.1.1-SNAPSHOT</version>

</dependency>

Since we’ll be using Pax Runner, we’ll need to make sure it is available.

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=175

DISTRIBUTING THE APPLICATION 176

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.ops4j.pax.runner</groupId>

<artifactId>pax-runner</artifactId>

<version>0.17.0</version>

</dependency>

Finally, we’ll need to be sure to include the OSGi framework itself. If we

don’t include Equinox bundles, Pax Runner will try to get them itself

when we start the application. But we can save it the trouble if we

include those bundles in the distribution:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.eclipse</groupId>

<artifactId>osgi</artifactId>

<version>3.4.2.v20080826-1230</version>

</dependency>

<dependency>

<groupId>org.eclipse.osgi</groupId>

<artifactId>util</artifactId>

<version>3.1.300.v20080303</version>

</dependency>

<dependency>

<groupId>org.eclipse.osgi</groupId>

<artifactId>services</artifactId>

<version>3.1.200.v20070605</version>

</dependency>

Now let’s turn our attention to the assembly plugin Ë. Note that it is

configured to create an assembly whose base name includes “dude-”

and the project version. As for what goes into that assembly, the plugin

turns to the descriptor file in src/main/assembly/assembly.xml. Let’s create

that descriptor file next.

Defining the Distribution

Again, we’ll need to turn to manual means to create the directory where

the assembly descriptor will reside. Use the Unix mkdir command:

dist% mkdir -p src/main/assembly

dist%

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=176

DISTRIBUTING THE APPLICATION 177

Now, in the src/main/assembly directory, we’ll create the following assem-

bly.xml file:

Download dwmjs/dist/src/main/assembly/assembly.xml

Line 1 <assembly>
- <formats>

- <format>zip</format>
- </formats>
5

- <dependencySets>

- <dependencySet>

- <useTransitiveDependencies>false</useTransitiveDependencies>
- <outputDirectory>/lib</outputDirectory>

10 <includes>

- <include>*:*</include>
- <include>org.eclipse.osgi:org.eclipse.equinox.cm</include>
- </includes>

- <excludes>
15 <exclude>org.eclipse:*</exclude>

- <exclude>org.eclipse.osgi:org.eclipse.osgi</exclude>
- <exclude>org.eclipse.osgi:org.eclipse.osg.services</exclude>
- <exclude>org.eclipse.osgi:services</exclude>
- <exclude>org.eclipse.osgi:util</exclude>

20 <exclude>org.ops4j.pax.runner:*</exclude>
- </excludes>
- </dependencySet>

- <dependencySet>

- <outputDirectory>/bin</outputDirectory>
25 <includes>

- <include>org.ops4j.pax.runner:*</include>
- </includes>

- </dependencySet>
- </dependencySets>

30

- <repositories>
- <repository>

- <outputDirectory>equinox</outputDirectory>
- <includes>

35 <include>org.eclipse:*</include>
- <include>org.eclipse.osgi:*</include>
- </includes>

- </repository>
- </repositories>

40

- <fileSets>
- <fileSet>

- <directory>src/main/etc</directory>
- <fileMode>0755</fileMode>

45 <outputDirectory></outputDirectory>
- </fileSet>

- </fileSets>

- </assembly>

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/src/main/assembly/assembly.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=177

DISTRIBUTING THE APPLICATION 178

This assembly descriptor is sort of complicated, so let’s break it down

line by line.

To start, lines 2 through 4 tell the assembly plugin that we want to

create a zip file. Since we configured the assembly plugin with a final

name of dude-${project.version}, it means that the assembly plugin will

produce a file called dude-1.0.0.zip.

Next up are two dependency sets (lines 6 through 29) that are used

to pull project dependencies into the assembly. The first dependency

set (lines 7 through 22) will place all the project’s dependencies in the

assembly’s lib directory. It places all of them, that is, except for those

whose group ID is org.eclipse, org.eclipse.osgi, or org.ops4j.pax.runner. We’ll

need those dependencies to be placed elsewhere in the assembly.

The second dependency set (lines 23 through 28) places the Pax Runner

JAR file in the assembly’s bin directory. In a moment, we’ll create a

script that executes this JAR to start the application.

But first, we continue our exploration of the assembly descriptor with

the <repositories> element (lines 31 through 39). When Pax Runner

starts up, it will try to install the Equinox bundles from a Maven repos-

itory. Normally, that repository would be on the Internet somewhere.

But to avoid unnecessary network communication during startup, I’m

creating a miniature Maven repository within the assembly itself using

<repositories>. This way, Pax Runner will be able to find the Equinox

bundles from the equinox directory and not have to go to the Internet.

Finally, the <fileSets> element (lines 41 through 47) picks up any and

all artifacts within the src/main/etc directory and makes them available

in the root of the assembly. Specifically, this will pick up the startup

script. And it will set its mode to 0755, making it executable in a Unix

filesystem.

Speaking of the startup script, that’s the only thing we have left to add

to the distribution project.

The Startup Script

Recall that one of the dependency sets in the assembly descriptor places

the Pax Runner JAR file in the assembly’s bin directory. Pax Runner

comes as an executable JAR file, but it can’t start itself. So, we’ll need

to create a script that runs the JAR file:

Download dwmjs/dist/src/main/etc/bin/start.sh

exec java -jar pax-runner-0.17.0.jar

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/src/main/etc/bin/start.sh
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=178

DISTRIBUTING THE APPLICATION 179

This is a fairly simple script that simply passes the JAR file as an argu-

ment to Java’s -jar parameter. From there, the JVM kicks in, loads Pax

Runner, and starts running the OSGi framework.

But there’s more to it than that. By default Pax Runner reads in its

arguments from a file named runner.args in the same directory. So, let’s

fire up the editor and create the following runner.args file in dist/src/main/

etc/bin:

--platform=equinox

--repositories=file:../equinox

scan-dir:../lib

The first argument, --platform=equinox, tells Pax Runner that we want

to use Equinox (instead of its default, Felix). And we tell it, using -

-repositories=file:../equinox, to retrieve Equinox bundles from the mini-

repository that we had the assembly plugin create for us. Finally, scan-

dir:../lib tells Pax Runner to scan the lib directory and to install and start

all of the bundles it finds there.

Assembling the Distribution

Now that we’ve defined what the distribution should look like, we’re

ready to let Maven create it. To do that, we’ll need to ask Maven to run

the assembly:assembly goal:

dist% mvn assembly:assembly

[INFO] Scanning for projects...

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 36 seconds

[INFO] Finished at: Fri Mar 20 23:00:12 CDT 2009

[INFO] Final Memory: 11M/30M

[INFO] --

dist%

When Maven has finished, there will be a ZIP file in the target directory.

You could take that ZIP file and unzip it anywhere you want to install

the application. For now, though, let’s just unzip it into the target direc-

tory to try it:

dist% cd target/

target% unzip dude-1.0.0.zip

Archive: dude-1.0.0.zip

...

dude-1.0.0%

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=179

DISTRIBUTING THE APPLICATION 180

dwmj/

bin/

equinox/

lib/

start.sh

pax-runner-0.16.0.jar

org/eclipse/osgi/...

Figure 9.1: The structure of the distribution ZIP file

After unzipping the distribution, you’ll get a new directory called dwmj-

1.0.0. The directory contents are shown in Figure 9.1.

Within the distribution directory, we find three subdirectories:

• bin: This directory contains the start.sh startup script as well as the

Pax Runner JAR file

• equinox: This directory is the Maven mini-repository that contains

the Equinox bundles that Pax Runner will load.

• lib: This directory contains all the other bundles that our applica-

tion needs. This includes both third-party libraries and our own

domain, index, spider, web, and ui bundles.

It looks like everything is in order, so let’s try starting the application.

At development time, we’d use pax-provision to start it up. But this is a

production distribution, so we’ll use the start.sh script instead:

dude-1.0.0% cd bin

bin% start.sh

______ ________ __ __

/ __ / / __ / / / / /

/ ___/ / __ / _\ \ _/

/ / / / / / / _\ \

/__/ /__/ /__/ /_/ /_/

Pax Runner (0.17.2) from OPS4J - http://www.ops4j.org

...

osgi>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=180

ADDING AN ADMINISTRATION CONSOLE 181

As evidenced by the osgi> prompt, everything seems to have started

OK. You could also issue the ss command to see that all our bundles

are started. But the best way to check to see that our application has

started successfully is to open up a web browser and point it at http://

localhost:8080/dude. Go ahead and try it—I’ll wait. Barring any surprises

(and this is software, so there is always potential for surprises), you

should be greeted with the Dude, Where’s My JAR? home page.

Everything seems good to go. So, let’s ship it! Right? Well, hold back

your enthusiasm. I see at least one problem that we need to address.

After starting the application, we’re given the familiar Equinox osgi>

prompt. That was handy during development, but I’m not so sure that

we want that exposed in a production runtime. It opens up the possi-

bility for troublemakers to walk up to the server and indiscriminately

stop or uninstall our bundles—or worse, install their own bundles to

cause mischief. We need to lock down the Equinox console.

9.2 Adding an Administration Console

Fortunately, it’s rather simple to shut off the Equinox console by adding

the --noConsole argument to the Pax Runner arguments:

--noConsole

--platform=equinox

--repositories=file:../equinox

scan-dir:../lib

Now if we were to start the application, there’d be no way for any ne’er-

do-well to access the Equinox console and wreak any havoc on our

application. The only downside is that although the bad guys can’t

access the console, neither can we. What if we need to update a bundle

or perform some other administrative tasks?

Wouldn’t it be great if there were some way to provide secured access

to the OSGi framework?

Installing the Felix Web Console

As you may have guessed by now, there is a way to administer the OSGi

framework that is more secure than the standard Equinox console. The

Felix project offers the Felix Web Console,1 which provides a web-based

administration console for OSGi.

1. http://felix.apache.org/site/apache-felix-web-console.html

http://localhost:8080/dude
http://localhost:8080/dude
http://felix.apache.org/site/apache-felix-web-console.html
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=181

ADDING AN ADMINISTRATION CONSOLE 182

Accessing the Equinox Console via Telnet

Another option for accessing the Equinox console is to have
it listen on a Telnet port. To do that, we need to pass a port
number to Equinox’s -console option. But since Pax Runner hides
the details of the underlying OSGi framework, it’s not obvious
how to set that option.

The trick is to set FRAMEWORK_OPTS to include the -console

option. For example, if we want the Equinox console to be avail-
able on port 8888, our runner.args file might look like this:

-DFRAMEWORK_OPTS="-console 8888"
--platform=equinox
--repositories=file:../equinox
scan-dir:../lib

Note that although this offers an alternate way to access the
Equinox console, it doesn’t address any form of security. Any-
one with a Telnet client and knowledge of the port number can
access the Equinox console.

Wait a minute. We’re using Equinox, not Felix. How can we use the

Felix Web Console if we’re not using Felix?

As it turns out, the Felix Web Console is not specific to the Felix OSGi

implementation and can be used with any OSGi framework implemen-

tation. This fact is a testament to the portability of OSGi bundles across

all OSGi implementations.

All that you need to do to add the Felix Web Console is to add a handful

of bundles to the OSGi runtime. For the purposes of our application

distribution, this means adding those bundles as <dependency>s to

the distribution project’s pom.xml file. First, we’ll need to add the web

console bundle itself:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.apache.felix</groupId>

<artifactId>org.apache.felix.webconsole</artifactId>

<version>1.2.2</version>

</dependency>

The web console bundle depends on the Felix Service Component Run-

time (SCR), the Felix Preferences Services, and the Felix Shell.

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=182

ADDING AN ADMINISTRATION CONSOLE 183

So, we’ll also need to add those dependencies to pom.xml:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.apache.felix</groupId>

<artifactId>org.apache.felix.prefs</artifactId>

<version>1.0.2</version>

</dependency>

<dependency>

<groupId>org.apache.felix</groupId>

<artifactId>org.apache.felix.scr</artifactId>

<version>1.0.6</version>

</dependency>

<dependency>

<groupId>org.apache.felix</groupId>

<artifactId>org.apache.felix.shell</artifactId>

<version>1.0.2</version>

</dependency>

Finally, the web console needs a web server. We already have the Jetty

bundles installed to serve the web front end for the application. But

what the web console needs is an implementation of the OSGi HTTP

Service, as defined in section 102 of the OSGi Service Compendium.

Jetty, by itself, doesn’t implement the HTTP Service and therefore is

unsuitable for serving the web console.

Fortunately, our friends at OPS4J provide Pax Web, an implementa-

tion of the OSGi HTTP Service that should do the trick. We’ll add it to

pom.xml with the following <dependency> XML:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.ops4j.pax.web</groupId>

<artifactId>pax-web-service</artifactId>

<version>0.5.1</version>

</dependency>

Since Pax Web isn’t available in the central Maven repository, we’ll also

need to add the OPS4J Maven repository to the distribution’s pom.xml

file:

Download dwmjs/dist/pom.xml

<repositories>

<repository>

<id>OPS4J</id>

<url>http://repository.ops4j.org/maven2</url>

</repository>

</repositories>

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=183

ADDING AN ADMINISTRATION CONSOLE 184

All the bundles for the web console are in place, and we’re almost ready

to try the web console. But first, we need to sort out a small conflict

between Pax Web and Jetty.

Changing the Web Console’s Default Port

After adding Pax Web to the mix, we have two web servers in play: Jetty

and Pax Web. And they both default to listening on port 8080. If we

were to fire up the application now, we’d certainly see a port conflict,

and one of the two web servers would fail to start.

So, let’s ask Pax Web to listen on port 8888 instead of 8080. The way

to do that is to set the org.osgi.service.http.port system property to 8888

(or whatever port number you’d like). We’d normally do that using the

-D option when we start the JVM. The gotcha here is that we need to

make sure we’re setting that variable on the correct JVM.

When we start Pax Runner in start.sh, we start a JVM that runs Pax

Runner. But then, Pax Runner starts another JVM to run Equinox. It

will do no good for us to set org.osgi.service.http.port on the Pax Runner

JVM, because Pax Runner doesn’t know anything about the HTTP Ser-

vice. We need to set that variable on the JVM that runs Equinox. To do

that, we must use Pax Runner’s --vmOptions option (in runner.args):

--noConsole

--vmOptions=-Dorg.osgi.service.http.port=8888

--platform=equinox

--repositories=file:../equinox

scan-dir:../lib

As you can see, --vmOptions tells Pax Runner that we want to pass some

options along to the JVM that it starts to run Equinox. More specifically,

we ask it to pass along -Dorg.osgi.sevice.http.port=8888.

Using the Web Console

Now we’re ready to try using the web console. First, we’ll need to rebuild

the distribution (using mvn assembly:assembly) and unzip the resulting

ZIP file. Then, when you start the application (by running the start.sh

script), you should be able to navigate to http://localhost:8888/system/

console to access the web console. After entering the username and

password (by default, both the username and password are “admin”),

you should see a page that looks a little something like Figure 9.2, on

the following page.

http://localhost:8888/system/console
http://localhost:8888/system/console
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=184

ADDING AN ADMINISTRATION CONSOLE 185

Figure 9.2: The Felix Web Console

From the web console, you’ll be able to stop, start, uninstall, and install

bundles.

To recap, in this chapter we’ve released our application into the wild

from its development-time Pax Construct habitat. We’ve wrapped all of

its bundles along with Pax Runner and a startup script in a ZIP file

ready for distribution.

At this point, we should have a working, ready-to-install application

and a web console to administer its bundles. But if you’re like me, you

may be a bit uneasy with the security for the web console. Sure, it’s

protected by a username and password—but it wouldn’t take a very

resourceful hacker to guess that admin/admin will get you in. We need

a way to configure the web console to set its username and password.

But the truth is that the web console is just one of several things about

our application that we need to be able to configure. We also need to

adjust logging settings as well as configure the repositories that the

spider will crawl.

As we wrap up our OSGi adventure in the final chapter, we’ll see how to

add configurability to our application by using the OSGi Configuration

Admin Service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=185

Chapter 10

Configuring the Application
The OSGi specification comes paired with a compendium of standard

services that could be available in an OSGi framework. We’ve already

mentioned a few of the services described in the compendium: the Log-

ging Service and the HTTP Service. In this chapter, we’re going to focus

on the Configuration Admin Service to see how it can be used to con-

figure various aspects of our application.

The Configuration Admin Service is a service that is responsible for

providing configuration information to bundles and other services that

need externalized configuration. I won’t bore you with the low-level

details of how the Configuration Admin Service works, because we

won’t be coding to the low-level OSGi APIs to access the service. If,

however, you are interested in the inner workings of the Configura-

tion Admin Service, then I refer you to section 104 of the OSGi Service

Compendium.1

Adding the Configuration Admin Service to our application is a simple

matter of adding a <dependency> to the distribution project’s pom.xml:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.eclipse.osgi</groupId>

<artifactId>org.eclipse.equinox.cm</artifactId>

<version>1.0.0.v20080509-1800</version>

</dependency>

1. http://www.osgi.org/Download/Release4V41

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://www.osgi.org/Download/Release4V41

INSTALLING PAX CONFMAN 187

Here I’ve chosen the Equinox implementation of the Configuration Ad-

min Service. However, I could have just as easily chosen another imple-

mentation of the Configuration Admin Service, such as the Felix

implementation:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.apache.felix</groupId>

<artifactId>org.apache.felix.configadmin</artifactId>

<version>1.0.4</version>

</dependency>

The Configuration Admin Service is in place and is ready to start feeding

configuration data to bundles. But where does it get that configuration

data from? To answer that question, we’ll turn to another one of the

utility bundles proved by the Pax project: Pax ConfMan.

10.1 Installing Pax ConfMan

One of the great things about the Configuration Admin Service is that

it is rather unspecific about where the configuration data comes from.

Different Configuration Admin agent implementations could enable you

to feed configuration data to the Configuration Admin Service from

sources such as LDAP, a relational database, or a web-based con-

sole. Call me old-fashioned, but I like using a basic Java properties

file for configuration my applications. Therefore, I favor Pax ConfMan,

a properties-file based configuration admin agent.

To add Pax ConfMan to our application, we have to add it as a

<dependency> in our distribution project’s pom.xml:

Download dwmjs/dist/pom.xml

<dependency>

<groupId>org.ops4j.pax.confman</groupId>

<artifactId>pax-confman-propsloader</artifactId>

<version>0.2.2</version>

</dependency>

We also need to tell ConfMan where to look for property files. By default,

ConfMan looks in a directory called runner/configurations. The problem is

that the runner directory is Pax Runner’s working directory and doesn’t

exist until after the first time we start our application. That makes it a

very inconvenient place for us to place configuration details.

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/pom.xml
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=187

CONFIGURING THE WEB CONSOLE 188

Instead, let’s have ConfMan look in a directory called conf that is a

peer to the bin, lib, and equinox directories. To do that, we’ll tack on an

additional system property value through Pax Runner’s --vmOptions:

--noConsole

--vmOptions=-Dorg.osgi.service.http.port=8888

-Dbundles.configuration.location=../../conf

--platform=equinox

--repositories=file:../equinox

scan-dir:../lib

(Note that the --vmOptions definition is split into two lines to fit on a page

and should be a single line in the real runner.args file.)

Notice that because ConfMan’s base directory ends up being the Pax

Runner working directory (which is in bin/runner), we must use rela-

tive paths, backing up two directories to the root of the application

distribution.

10.2 Configuring the Web Console

Now that ConfMan is in place, configuring the Felix Web Console in-

volves nothing more than creating a properties file for ConfMan to

consume. Specifically, we’ll need to create a file named org.apache.felix.

webconsole.internal.servlet.OsgiManager.properties in a directory called ser-

vices under the conf directory.

That was a mouthful. Let me explain how that properties file got its

name.

When a bundle uses the Configuration Admin Service, it identifies itself

to the Configuration Admin Service using a persistent identifier (PID).

ConfMan looks up configuration details by looking for a properties file

whose base name is the PID of the bundle it is to configure. As it turns

out, the web console’s PID is org.apache.felix.webconsole.internal.servlet.

OsgiManager—which explains the name we’ll give to the properties file.

To explain the services directory, however, I must first explain a bit

about how the Configuration Admin Service works.

In short, there are two types of things that the Configuration Admin

Service can configure: managed services and managed service factories.

A managed service is a class through which the Configuration Admin

Service gives a bundle its configuration data. Typically, a configured

bundle needs only a single instance of a managed service (which Conf-

Man configures with a properties file in the services directory). But if, for

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=188

CONFIGURING THE WEB CONSOLE 189

Property Default What It Does

realm OSGi Management Console The name of the HTTP

Authentication realm when

prompting the user for

administrator credentials

username admin The administrator user-

name

password admin The administrator password

manager.root /system/console The context root of the web

console application

default.render bundles The name of the default

page to display in the web

console

Figure 10.1: The properties for configuring Felix Web Console

whatever reason, it needs many managed services, you’ll configure the

bundle through a managed service factory (which ConfMan configures

with a properties file in a factories directory).

Because the web console is configured through a single managed ser-

vice, its properties file will reside in the services directory.

Within the web console properties file, we can configure several things.

The properties that can be configured for the Felix Web Console are

shown in Figure 10.1.

Recall that we weren’t too pleased with the default username and pass-

word for the web console. So, let’s configure those first:

username=dudeadmin

password=letmein01

Now, just for fun, we can also tweak the authentication realm so that

the login box is more suitable for our application:

realm=Dude, Where's My JAR? Administration

And, let’s tweak the application path to be a bit shorter:

manager.root=/admin

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=189

ADJUSTING LOGGING 190

That should do it. Now, when we rebuild our distribution and restart

the application (using start.sh), the web console will be available at http://

localhost:8888/admin, and we’ll need to log in with a username of “dude-

admin” and a password of “letmein01.” You’ll also notice that the login

dialog box identifies the application as Dude, Where’s My JAR? Admin-

istration.

The web console isn’t the only thing we can configure with the Configu-

ration Admin Service and Pax ConfMan. Let’s see how we can use them

to adjust the logging of our application.

10.3 Adjusting Logging

You may have noticed that after starting the application, there’s an

enormous amount of information written to the console. That happens

for three reasons:

• We haven’t asked Pax Runner to not tell us about everything it

does.

• We haven’t configured Pax Logging to log to a file instead of the

console.

• The default logging level is TRACE.

The chattiness of Pax Runner is easy to fix. To tell Pax Runner to run a

bit more silently, we need to add two lines to the Pax Runner arguments

file:

--downloadFeedback=false

--log=NONE

--noConsole

--vmOptions=-Dorg.osgi.service.http.port=8888

-Dbundles.configuration.location=../../conf

--platform=equinox

--repositories=file:../equinox

scan-dir:../lib

(As before, the --vmOptions definition is split into two lines to fit on a

page and should be a single line in the real runner.args file.)

The first argument, --downloadFeedback, tells Pax Runner to not tell us

what it’s doing as it downloads bundles. This includes any feedback

about copying bundles from the lib directory into Pax Runner’s working

directory. As for --log=NONE, this will tell Pax Runner to not log anything

itself.

http://localhost:8888/admin
http://localhost:8888/admin
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=190

CONFIGURING APPLICATION DETAILS 191

Those two arguments will make Pax Runner run more silently, but it

won’t stop our bundles (or any dependency bundles) from logging their

activity. To control the logging of our application and its dependency

bundles, we need to configure Pax Logging. As it turns out, Pax Logging

can be configured through the Configuration Admin Service.

Pax Logging’s PID is “org.ops4j.pax.logging,” so we’ll need to create a

file under conf/services called org.ops4j.pax.logging.properties. Since we’re

using Pax Logging through its Log4J API, we can configure Pax Log-

ging by filling org.ops4j.pax.logging.properties with Log4J configuration.

For example:

Download dwmjs/dist/src/main/etc/conf/services/org.ops4j.pax.logging.properties

log4j.rootLogger=WARN, file

log4j.appender.file=org.apache.log4j.DailyRollingFileAppender

log4j.appender.file.threshold=INFO

log4j.appender.file.File=/Users/wallsc/logs/dude.log

log4j.appender.file.MaxBackupIndex=20

log4j.appender.file.MaxFileSize=20MB

log4j.appender.file.layout=org.apache.log4j.PatternLayout

log4j.appender.file.layout.ConversionPattern=%d [%t] %-5p %c - %m%n

Here, I’ve not only tightened the log level to WARN, but I’ve also config-

ured it to log to a rolling daily log file instead of the console. Once you

rebuild the distribution ZIP, unzip it, and start the application, you’ll

notice a lot less noise going to the console. (There will still be some log-

ging to the console that takes place before the Pax Logging bundle gets

started.)

Configuring the web console and the logging framework are one thing.

But what about configuring our own portion of the application? Let’s

see how to bring configuration closer to home by configuring the spider

and index services.

10.4 Configuring Application Details

As we developed the index bundle, we cheated a little bit by hard-

coding the path to the Compass index in the Spring context definition.

We cheated again in the spider bundle by hard-coding the URL to the

Maven repository. That’s carried us through most of this book. But now

as we prepare the application for deployment into a production environ-

ment, we really need to be able to externally configure those details.

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/src/main/etc/conf/services/org.ops4j.pax.logging.properties
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=191

CONFIGURING APPLICATION DETAILS 192

Fortunately, Spring-DM can help us out in two different ways:

• By supplementing Spring’s property placeholder facility with val-

ues from the OSGi Configuration Admin Service

• By autowiring Spring bean properties with values taken from the

OSGi Configuration Admin Service

Let’s start by seeing how to use Spring’s property placeholder facility

to configure the index bundle’s index path. Then, we’ll configure the

spider bundle’s Maven repository URL using Spring-DM’s support for

autowiring bean properties from the Configuration Admin Service.

Configuring Spring Beans with Property Placeholders

The Spring Framework supports externalization of configuration details

with a utility element known as <util:property-placeholder>. This

handy element makes it possible to replace hard-coded values in a

Spring context definition with placeholder variables. Then, at runtime,

Spring replaces those placeholders with values from some separate

source of property values.

For example, using <util:property-placeholder>, we can swap out the

hard-coded path to the Compass index with a placeholder variable:

<compass:compass name="compass" >

<compass:connection>

<compass:file path="${index.location}" />

</compass:connection>

<compass:mappings>

<compass:class name="dwmj.domain.JarFile"/>

</compass:mappings>

</compass:compass>

Instead of configuring Compass with a specific path for the index, we’re

giving it a placeholder variable called ${index.location}. We will use

<util:property-placeholder> to replace that placeholder variable with

a value that is configured elsewhere.

Typically, <util:property-placeholder> pulls property values from a

properties file, as specified by its location= attribute. But we want it to

pull configuration details from the OSGi Configuration Admin Service.

That means we’re going to pull off some special Spring magic.

As of Spring 2.5.6, <util:property-placeholder> has a new properties-ref=

attribute to indicate that it should pull its property values from another

Spring bean of type java.util.Properties.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=192

CONFIGURING APPLICATION DETAILS 193

For example, we could add the following XML to the index bundle’s

index-context.xml:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:compass="http://www.compass-project.org/schema/spring-core-config"

xmlns:ctx="http://www.springframework.org/schema/context"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.compass-project.org/schema/spring-core-config

http://www.compass-project.org/schema/spring-compass-core-config-2.0.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

<!-- ... -->

<ctx:property-placeholder properties-ref="cmProps" />

<!-- ... -->

</beans>

In this case, the properties-ref= attribute specifies that <util:property-

placeholder> should refer to another Spring bean whose ID is cmProps.

Presumably, the cmProps bean is an instance of java.util.Properties.

But where does the Configuration Admin Service come into play?

As it turns out, Spring-DM provides an <osgix:cm-properties> element

in a compendium Spring namespace. This element reads properties

from the Configuration Admin Service and creates a bean in the Spring

context that holds those property values. It just so happens that the

bean created by <osgix:cm-properties> is of the type java.util.Properties—

perfectly suitable for wiring into <util:property-placeholder>.

So, if we’re going to use the OSGi Configuration Admin Service to pro-

vide properties for <util:property-placeholder>, then we need to add

the following <osgix:cm-properties> to index-osgi.xml:

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/osgi-compendium

http://www.springframework.org/schema/osgi-compendium/

spring-osgi-compendium-1.2.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=193

CONFIGURING APPLICATION DETAILS 194

com.dudewheresmyjar.index.properties

index.location=/tmp/dudeindex

index-osgi.xml

<osgix:cm-properties id="cmProps"

 persistent-id="com.dudewheresmyjar.index"/>

index-context.xml

<ctx:property-placeholder

 properties-ref="cmProps" />

...

<compass:file

 path="${index.location}" />

...

OSGi Configuration
Admin Service

Figure 10.2: Spring-DM’s <osgix:cm-properties> pulls configuration

details from the OSGi Configuration Admin Service and makes it avail-

able to Spring’s property placeholder facility.

<osgix:cm-properties id="cmProps" persistent-id="dwmj.index">

<beans:prop key="index.location">/tmp/dudeindex</beans:prop>

</osgix:cm-properties>

<service ref="indexService"

interface="dwmj.index.IndexService" />

</beans:beans>

As illustrated in Figure 10.2, the persistent-id= attribute specifies that

<osgix:cm-properties> should consult the Configuration Admin Ser-

vice using dwmj.index as its PID. Therefore, we’ll need to create a new

dwmj.index.properties file:

Download dwmjs/dist/src/main/etc/conf/services/dwmj.index.properties

index.location=/tmp/dudeindex

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/src/main/etc/conf/services/dwmj.index.properties
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=194

CONFIGURING APPLICATION DETAILS 195

It Works with util:property-override Too!

Spring’s <util:property-placeholder> isn’t the only way to exter-
nalize configuration in Spring. There’s also a <util:property-
override> element that overrides a bean’s property values
where the key of a property is made up of a bean ID and a
property name.

For instance, when using <util:property-override>, if a prop-
erty has a key of spider.repositoryUrl, then the value of the prop-
erty will be injected into the repositoryUrl property of the bean
whose ID is spider.

If <util:property-override> looks useful to you, then you may
be interested to know that it also has a properties-ref= attribute.
That means you can use <util:property-override> with the OSGi
Configuration Admin Service by wiring the java.util.Properties

produced by <osgix:cm-properties> into the properties-ref=

attribute.

And there’s the value that Spring’s <util:property-placeholder> will

plug into the ${index.location} variable when configuring Compass.

Remember that we’ve added Pax ConfMan only to the distribution build

and not to the provisioning pom.xml. That means if we run the appli-

cation using pax-provision in the development environment, there won’t

be a Configuration Admin Service. And that means the index location

won’t be populated.

In other words, it won’t be populated unless we provide a default value.

That’s why I’ve nested a <beans:prop> element within the <osgix:cm-

properties> element. The <beans:prop-element> defines a default

value for the index.location property in the event that the Configura-

tion Admin Service isn’t available or doesn’t have a value defined for

that property.

Autowiring Bean Properties from the Configuration Admin Service

An even more direct way to configure Spring beans in OSGi is to use

Spring-DM’s <osgix:managed-service> element. When nested within a

Spring <bean> declaration, this handy element will autowire the bean’s

properties with values taken from the Configuration Admin Service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=195

CONFIGURING APPLICATION DETAILS 196

com.dudewheresmyjar.spider.properties

repositoryUrl=http://www.dudewheresmyjar.com/repo/

spider-context.xml

<bean class="MavenSpider">

<osgix:managed-service

 persistent-id="com.dudewheresmyjar.spider"/>

...

 <property name="repositoryUrl"

 value="http://www.dudewheresmyjar.com/repo/" />

...

</bean>

OSGi Configuration
Admin Service

Autowired from
Config Admin Service

Figure 10.3: Spring-DM’s <osgix:managed-service> autowires a bean’s

properties with values pulled from the OSGi Configuration Admin Ser-

vice.

For example, consider the following change to the MavenSpider bean:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/osgi-compendium

http://www.springframework.org/schema/osgi-compendium/

spring-osgi-compendium-1.2.xsd">

<bean class="dwmj.spider.internal.MavenSpider"

init-method="run" destroy-method="stop">

<osgix:managed-service persistent-id="dwmj.spider"

update-strategy="container-managed" />

<constructor-arg ref="indexService" />

<property name="repositoryUrl" value="http://repo2.maven.org/maven2/" />

<property name="jarFilePopulators">

<list>

<bean class=

"dwmj.spider.internal.PomBasedJarFilePopulator" />

<bean class=

"dwmj.spider.internal.JarContentBasedJarFilePopulator" />

</list>

</property>

</bean>

</beans>

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=196

CONFIGURING THE WEB SERVER 197

By adding <osgix:managed-service> under the bean declaration, we’re

asking Spring-DM to automatically inject values from the Configura-

tion Admin Service (where the PID is dwmj.spider) into the MavenSpider’s

properties. More specifically, we want Spring-DM to inject the reposi-

toryUrl property. Therefore, we’ll need to be sure to include a value for

repositoryUrl in the dwmj.spider.properties file:

Download dwmjs/dist/src/main/etc/conf/services/dwmj.spider.properties

repositoryUrl=http://www.dudewheresmyjar.com/repo/

The relationship between the Spring context file and the properties file

is illustrated in Figure 10.3, on the previous page.

Again, the Configuration Admin Service will be available only in the

distribution build. Therefore, in the event that the values can’t be auto-

wired from the Configuration Admin Service (such as when running the

application using pax-provision), we can provide a default value for the

property by simply using the <property> element. Any values found by

<osgix:managed-service> will always override those specified by

<property>.

10.5 Configuring the Web Server

We’ve configured logging, the Felix Web Console, and our application’s

Spring beans. Before we put the topic of configuration to rest, we have

one more thing that we can configure: the web server itself.

We’ve already configured the HTTP Service that serves the Felix Web

Console. But remember that our application is served by a separate

Jetty instance and not by the HTTP Service. The web server that serves

our application is a full-blown Jetty (or Tomcat) server and is configured

separately from the HTTP Service.

The trick to configuring the application’s web server is to wrap up a

configuration file in a fragment that is hosted by the web server’s starter

bundle. In the case of Jetty, that means creating a jetty.xml file and

packaging it in a fragment that is hosted by the Jetty starter bundle.

The first thing we need to do is create a new bundle project for our

fragment. Once again we turn to our old friend, the pax-create-bundle

script. Since we’re not going to need the sample Java files produced by

pax-create-bundle, we’ll be sure to set the interface and internals settings

to false.

http://media.pragprog.com/titles/cwosg/code/dwmjs/dist/src/main/etc/conf/services/dwmj.spider.properties
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=197

CONFIGURING THE WEB SERVER 198

dwmjs% pax-create-bundle -p jetty -n jetty-config -g com.dudewheresmyjar

-v 1.0.0 -- -Dinterface=false

-Dinternals=false

[INFO] Scanning for projects...

[INFO] --

[INFO] Building com.dudewheresmyjar.dude (OSGi project)

[INFO] task-segment: [org.ops4j:maven-pax-plugin:1.4:create-bundle]

(aggregator-style)

[INFO] --

[INFO] Setting property: classpath.resource.loader.class => 'org.codehaus.plexus.

velocity.ContextClassLoaderResourceLoader'.

[INFO] Setting property: velocimacro.messages.on => 'false'.

[INFO] Setting property: resource.loader => 'classpath'.

[INFO] Setting property: resource.manager.logwhenfound => 'false'.

[INFO] **
...

[INFO] Archetype created in dir: /Users/wallsc/Projects/bookProjects/CWOSG/Book/

code/dwmjs/jetty-config

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 9 seconds

[INFO] Finished at: Mon Jan 05 23:14:29 CST 2009

[INFO] Final Memory: 10M/19M

[INFO] --

dwmjs%

When pax-create-bundle is finished, the project will have only two files in

it: the Maven pom.xml file and the osgi.bnd file. We’ll leave pom.xml alone,

but we need to edit osgi.bnd to include a Fragment-Host: header that will

identify the bundle that hosts the fragment. So, we’re going to replace

the entire contents of the generated osgi.bnd file with the following one

line:

Download dwmjs/jetty-config/osgi.bnd

Fragment-Host: org.springframework.osgi.jetty.start.osgi

Inside the Jetty starter bundle2 is a default Jetty configuration file. But

when the starter bundle hosts a fragment containing an /etc/jetty.xml

file, it will favor the fragment’s Jetty configuration over its own.

As for the content of the /etc/jetty.xml file, it’s a standard Jetty configu-

ration file—no different from a jetty.xml file that you may use to configure

Jetty in a non-OSGi setting. That means you can configure pretty much

2. The Jetty starter bundle is the one whose symbolic name is org.

springframework.osgi.jetty.start.osgi.

http://media.pragprog.com/titles/cwosg/code/dwmjs/jetty-config/osgi.bnd
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=198

CONFIGURING THE WEB SERVER 199

every facet of Jetty. For example, let’s suppose we want to change the

port that Jetty listens for HTTP requests on from 8080 (the default) to

8180. Then we’d need to change the settings on Jetty’s channel con-

nector as follows:

Download dwmjs/jetty-config/src/main/resources/etc/jetty.xml

<Call name="addConnector">

<Arg>

<New class="org.mortbay.jetty.nio.SelectChannelConnector">

<Set name="host"><SystemProperty name="jetty.host" /></Set>

<Set name="port"><SystemProperty name="jetty.port" default="8180"/></Set>

<Set name="maxIdleTime">30000</Set>

<Set name="Acceptors">2</Set>

<Set name="statsOn">false</Set>

<Set name="confidentialPort">8143</Set>

<Set name="lowResourcesConnections">5000</Set>

<Set name="lowResourcesMaxIdleTime">5000</Set>

</New>

</Arg>

</Call>

Or suppose that we want to adjust Jetty’s thread pool settings. In that

case, we’d tweak the following portion of jetty.xml:

Download dwmjs/jetty-config/src/main/resources/etc/jetty.xml

<Set name="ThreadPool">

<!-- Default bounded blocking threadpool

-->

<New class="org.mortbay.thread.BoundedThreadPool">

<Set name="minThreads">10</Set>

<Set name="maxThreads">250</Set>

<Set name="lowThreads">25</Set>

</New>

</Set>

The HTTP port and thread pool are just two examples of how you can

configure Jetty, and these examples are just excerpts from a larger

jetty.xml configuration. See Jetty’s documentation3 for more information

on what can go into jetty.xml.

We’re nearing the finish line on the Jetty configuration fragment. The

only thing left to do is to build it.

3. http://docs.codehaus.org/display/JETTY/Jetty+Documentation

http://media.pragprog.com/titles/cwosg/code/dwmjs/jetty-config/src/main/resources/etc/jetty.xml
http://media.pragprog.com/titles/cwosg/code/dwmjs/jetty-config/src/main/resources/etc/jetty.xml
http://docs.codehaus.org/display/JETTY/Jetty+Documentation
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=199

CONFIGURING THE WEB SERVER 200

jetty-config% mvn clean install

[INFO] Scanning for projects...

[INFO] --

[INFO] Building jetty-config [jetty]

[INFO] task-segment: [clean, install]

[INFO] --

...

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 9 seconds

[INFO] Finished at: Tue Jan 06 13:21:59 CST 2009

[INFO] Final Memory: 15M/27M

[INFO] --

jetty-config%

With the fragment (and our settings in jetty.xml) in place, the next time

we start our application (either with pax-provision or by running the start-

Dude.sh script in the distribution), Jetty will serve it on port 8180 and

with any other adjustments we may have made.

In this chapter we’ve taken advantage of the OSGi Configuration Admin

Service to configure various facets of our application. This included

using Spring-DM’s configuration support to replace values in the Spring

application context with configuration details from the Configuration

Admin Service.

Now our application is complete. What’s more, it is composed of several

modules, each having a cohesive purpose and being loosely coupled

with the other modules. Recalling the benefits of modularity, we can

now develop and test each module of the application independently. We

can even swap out any module for a new version or different implemen-

tation with no impact to the rest of the application.

Not only is our application complete, but so is our adventure in creating

modular applications with OSGi and Spring. It was a lot of fun, and I

think we learned a little something along the way. As modularity comes

to the forefront in the Java platform, you’ll be prepared to develop the

next generation of web applications that take advantage of OSGi.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=200

CONFIGURING THE WEB SERVER 201

What About Tomcat?

If instead of Jetty you were to choose Tomcat as the web server,
you would configure it in much the same way. You’d still need to
create a fragment. But instead of being hosted by the bundle
whose name is org.springframework.osgi.jetty.start.osgi, the Tomcat
configuration fragment should be hosted by the bundle whose
symbolic name is org.springframework.osgi.catalina.start.osgi. And
instead of etc/jetty.xml, Tomcat’s configuration should be in
conf/server.xml (within the fragment). The conf/server.xml file
should be a standard Tomcat configuration file.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=201

Appendix A

Manifest Headers
A.1 OSGi R4 Headers

Bundle-ActivationPolicy

Specifies how the framework should activate the bundle once it is

started.

Bundle-Activator

Identifies the fully qualified name of the class used to start and

stop the bundle.

Bundle-Category

A comma-separated list of category names.

Bundle-ClassPath

A comma-separated list of one or more path specifications (either

JAR files or directories) contained within the bundle. The default

is “.” to indicate the root of the bundle’s JAR file.

Bundle-ContactAddress

Provides the contact address for the bundle’s vendor.

Bundle-Copyright

Details the copyright specification for the bundle.

Bundle-Description

Provides a brief description of the bundle.

Bundle-DocURL

Specifies a URL the points to documentation for the bundle.

Bundle-Localization

Identifies the location in the bundle where localization files can be

found. The default value is OSGI-INF/I10N/bundle.

OSGI R4 HEADERS 203

Bundle-ManifestVersion

Declares the version of the OSGi specification that this bundle

adheres to. A value of 1 (the default) indicates OSGi R3, while 2

indicates OSGi R4.

Bundle-Name

Defines a brief, human-readable name for the bundle.

Bundle-NativeCode

Specifies a native code library contained within the bundle.

Bundle-RequiredExecutionEnvironment

Identifies one or more execution environments that must be avail-

able.

Bundle-SymbolicName

A unique, nonlocalizable name for the bundle. By convention, the

name should be based on reverse domain name.

Bundle-UpdateLocation

Specifies a URL from which updates to this bundle can be found.

Bundle-Vendor

Identifies the vendor of the bundle.

Bundle-Version

Specifies the version of the bundle.

DynamicImport-Package

A comma-separated list of packages to be dynamically imported

when needed.

Export-Package

Specifies one or more packages to be exported by the bundle.

Fragment-Host

Used to identify a bundle (by its symbolic name) that will be the

host for a bundle fragment.

Import-Package

Specifies one or more packages imported for use by the bundle.

Require-Bundle

Specifies a bundle that is required by this bundle. The bundle

cannot be resolved unless the required bundle is available.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=203

Appendix B

Spring-DM Configuration
Spring Dynamic Modules (Spring-DM) works wonders at eliminating the

hassle of publishing and consuming OSGi services, among other things.

And it accomplishes much of its magic by providing a few configura-

tion namespaces that enable declarative publication of Spring beans as

OSGi services and wiring of consumed services into properties of Spring

beans.

This appendix catalogs the configuration namespaces provided by

Spring-DM, as of version 1.2.

B.1 Spring-DM Core Configuration Elements

Spring-DM’s core namespace provides a handful of elements for publi-

cation and consumption of OSGi services in Spring. To use the Spring-

DM namespace, include it in the root element as follows:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:beans="http://www.springframework.org/schema/osgi"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

...

</beans>

In this case, it uses the osgi prefix. Alternatively, if all (or most) of

the configuration within a given Spring context definition file is OSGi-

oriented, you should consider making the Spring-DM namespace the

default namespace. That way, you won’t have to prefix any of the ele-

ments except for those that aren’t part of the Spring-DM namespace.

SPRING-DM CORE CONFIGURATION ELEMENTS 205

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

xmlns="http://www.springframework.org/schema/osgi"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

...

</beans:beans>

<osgi:bundle>

Defines a bean that represents a bundle. This is useful for times

when you need to interact with a bundle programmatically, be-

cause you can wire the bundle bean into the bean that will interact

with the bundle.

Attributes:

action

Life-cycle action to perform on the bundle. Valid values: start,

stop, install, uninstall, update.

depends-on

Specifies a bean that this bundle depends on. The bundle

bean should not be created until the named bean has been

created.

destroy-action

Life-cycle action to perform on the bundle when the bean is

removed from the Spring container. Valid values: start, stop,

install, uninstall, update.

location

The location to install, update, and/or identify the bundle.

start-level

Specifies the bundle’s start level. Defaults to 0.

symbolic-name

The bundle’s symbolic name. Normally used to identify an

already-installed bundle to interact with.

<osgi:comparator>

Defines a comparator that will be used to sort a list or set of ser-

vices. The comparator either can be a nested Spring <bean> of

type java.util.Comparator or can be a <natural> element to indicate

natural ordering.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=205

SPRING-DM CORE CONFIGURATION ELEMENTS 206

Included in: <osgi:list>, <osgi:set>.

May contain: <bean>, <osgi:natural>.

<osgi:interfaces>

A collection of service interface names. When nested within

<osgi:service>, this element defines one or more interfaces that a

service should be advertised as to the OSGi service registry. When

used with <osgi:reference>, <osgi:list>, or <osgi:set>, it identifies

the interface(s) of the service(s) to be consumed.

Included in: <osgi:list>, <osgi:reference>, <osgi:service>, <osgi:

set>.

May contain: <value>.

<osgi:list>

Defines a list of services matching a given criteria. The list mem-

bers are managed dynamically, because services may come and

go.

Included in: <beans>.

May contain: <osgi:comparator>, <osgi:interfaces>, <osgi:

listener>.

Attributes:

bean-name

Specifies a filter expression that matches on the bean-name

property that is automatically advertised for beans that have

been published using the <osgi:service> element.

cardinality

Defines the cardinality of the relationship to the services. Can

be 1..N, meaning that at least one service must exist, or 0..N,

meaning that the services are optional. If not specified, the

default cardinality is used.

comparator-ref

Refers to a bean that implements the Comparator interface

used to sort the matching services.

context-class-loader

Defines how the context class loader is managed when invok-

ing methods on the referenced service. If client, the context

class loader has visibility of all the classes in this bundle’s

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=206

SPRING-DM CORE CONFIGURATION ELEMENTS 207

classpath. If service-provider, the context class loader has visi-

bility into the bundle classpath of the bundle that exports the

service. If unmanaged, then there is no context class loader

management.

Valid values: client, service-provider, unmanaged.

Default value: client.

depends-on

Specifies a bean that this list of services depends on. The

named bean must be created before the service list is created.

filter

Defines an OSGi filter expression that is used to select a list

of matching services in the service registry.

greedy-proxying

Indicates whether proxies will be created for all the classes

exported by the service (true) and visible to the bundle or only

just the classes specified (false). Default value: false.

interface

The service interface that the services obtained are required

to support.

<osgi:listener>

Defines a listener that will be notified when a service is bound or

unbound.

Included in: <osgi:list>, <osgi:reference>, <osgi:set>.

Attributes:

bind-method

The name of the method to call on the referenced <bean>

when a service is bound.

ref

A reference to a <bean> that is the service listener.

unbind-method

The name of the method to call on the referenced <bean>

when a service is unbound.

<osgi:natural>

Specifies natural ordering for a list or set of services.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=207

SPRING-DM CORE CONFIGURATION ELEMENTS 208

Included in: <osgi:comparator>.

Attributes:

basis

Selects whether the natural ordering should be applied on the

service itself or on the service reference.

Valid values: service, service-reference.

<osgi:reference>

Defines a reference to a service in the OSGi service registry.

Included in: <beans>.

May contain: <osgi:interfaces>, <osgi:listener>.

Attributes:

bean-name

Shortcut for specifying a filter that matches on the bean name

that is advertised for the service if the service was published

using Spring-DM’s <service> element.

cardinality

Stipulates the cardinality of the service reference. The car-

dinality can either be 0..1, which indicates an optional ref-

erence (that is, the service doesn’t have to be available), or

1..1, which indicates a required reference (the service must

be available).

Valid values: 0..1, 1..1.

context-class-loader

Defines how the context class loader is managed when invok-

ing methods on the referenced service. If client, the context

class loader has visibility of all the classes in this bundle’s

classpath. If service-provider, the context class loader has visi-

bility into the bundle classpath of the bundle that exports the

service. If unmanaged, then there is no context class loader

management.

Valid values: client, service-provider, unmanaged.

Default value: client.

depends-on

Specifies a bean that this list of services depends on.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=208

SPRING-DM CORE CONFIGURATION ELEMENTS 209

filter

Defines an OSGi filter expression that is used to select a list

of matching services in the service registry.

greedy-proxying

Indicates whether proxies will be created for all the classes

exported by the service (true) and visible to the bundle or only

just the classes specified (false). Default value: false.

timeout

Specifies a timeout, in milliseconds, when waiting for the ref-

erenced service to become available.

<osgi:registration-listener>

Defines a listener that will be notified when a service is registered

or unregistered.

Included in: <osgi:service>.

Attributes:

ref

Identifies a Spring <bean> that is the registration listener.

registration-method

The name of the method to call when a service is registered.

unregistration-method

The name of the method to call when a service is unregistered.

<osgi:service>

Publishes a Spring bean as a service in the OSGi service registry.

Included in: <beans>.

May contain: <osgi:interfaces>, <osgi:registration-listener>,

<osgi:service-properties>.

Attributes:

auto-export

Enables Spring-DM to automatically determine the set of ser-

vice interfaces for which this service would be advertised. If

set to interfaces, the service will be advertised under all the

interfaces that it implements. If set to class-hierarchy, the ser-

vice will be advertised under all of the classes in the ser-

vice implementation’s class hierarchy. If set to all-classes, both

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=209

SPRING-DM CORE CONFIGURATION ELEMENTS 210

interfaces and the classes in the service class’s hierarchy will

be used.

Valid values: all-classes, class-hierarchy, disabled, and interfaces.

Default value: disabled.

context-class-loader

Specifies how the context class loader will be managed when

methods are invoked on the published service. By default, the

context class loader is unmanaged. If set to service-provider,

then the context class loader will be given visibility into the

classpath of the bundle that publishes the service.

Valid values: service-provider, unmanaged.

Default value: unmanaged.

depends-on

Identifies a <bean> that must be created before publishing

the service to the service registry.

interface

The interface that the service should be advertised under

when published to the service registry.

ranking

Specifies the service ranking to use when advertising the

service.

Default value: 0.

ref

A reference to a Spring <bean> that implements the service.

<osgi:service-properties>

Defines properties for a published service.

Included in: <osgi:service>.

May contain: <entry> (from the Spring beans namespace).

<osgi:set>

Defines a set of services that match given criteria. The set mem-

bership is managed dynamically, because services may come and

go.

Included in: <beans>.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=210

SPRING-DM CORE CONFIGURATION ELEMENTS 211

May contain: <osgi:comparator>, <osgi:interfaces>, <osgi:

listener>.

Attributes:

bean-name

Specifies a filter expression that matches on the bean-name

property that is automatically advertised for beans that have

been published using the <osgi:service> element.

cardinality

Defines the cardinality of the relationship to the services. Can

be 1..N, meaning that at least one service must exist, or 0..N,

meaning that the services are optional. If not specified, the

default cardinality is used.

comparator-ref

Refers to a bean that implements the Comparator interface

used to sort the matching services.

context-class-loader

Defines how the context class loader is managed when invok-

ing methods on the referenced service. If client, the context

class loader has visibility of all of the classes in this bundle’s

classpath. If service-provider, the context class loader has visi-

bility into the bundle classpath of the bundle that exports the

service. If unmanaged, then there is no context class loader

management.

Valid values: client, service-provider, unmanaged.

Default value: client.

depends-on

Specifies a bean that this list of services depends on. The

named bean must be created before the service list is created.

filter

Defines an OSGi filter expression that is used to select a list

of matching services in the service registry.

greedy-proxying

Indicates whether proxies will be created for all the classes

exported by the service (true) and visible to the bundle or only

just the classes specified (false). Default value: false.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=211

SPRING-DM COMPENDIUM CONFIGURATION ELEMENTS 212

interface

The service interface that the services obtained are required

to support.

B.2 Spring-DM Compendium Configuration Elements

In addition to the core namespace, Spring-DM also provides a com-

pendium namespace that is primarily focused on enabling <bean> con-

figuration from the OSGi Configuration Admin Service. It is typically

used by declaring it under the osgix prefix in the root element:

<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd

http://www.springframework.org/schema/osgi-compendium

http://www.springframework.org/schema/osgi-compendium/

spring-osgi-compendium-1.2.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

...

</beans:beans>

<osgix:cm-properties>

Exposes properties from OSGi’s Configuration Admin Service as

Spring bean of type java.util.Properties. Useful for wiring into

Spring’s property placeholder configurer

Included in: <beans>.

Attributes:

id

The ID of the bean.

local-override

If true, local properties will override properties from the Con-

figuration Admin service Defaults to false.

Valid values: true, false.

Default value: false.

persistent-id

The persistent ID to bind to when retrieving properties from

the OSGi configuration admin service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=212

SPRING-DM COMPENDIUM CONFIGURATION ELEMENTS 213

<osgix:interfaces>

The set of service interfaces to advertise in the service registry.

Included in: <osgix:managed-service-factory>.

<osgix:managed-service>

Defines a bean to be autowired by name using properties from the

OSGi Configuration Admin Service for a given persistent ID.

Included in: <bean> (from the Spring beans namespace).

Attributes:

persistent-id

The persistent ID under which the configuration for the

<bean> is stored in the Configuration Admin Service.

update-method

The method on the bean to invoke when the values in the

Configuration Admin Service are updated. Used with the bean

managed updated strategy.

update-strategy

The strategy to use for updating the <bean>’s properties

when the backing configuration changes. By default no

updates are applied after the bean is initially wired. The bean

managed strategy means that the method identified by up-

date-method will be invoked. Container managed means that

the container will autowire the <bean> properties.

Valid values: bean-managed, container-managed, none.

Default value: none.

<osgix:managed-service-factory>

Defines a collection of one or more <bean>s whose properties

should be autowired with values from the OSGi Configuration

Admin Service for a given persistent ID. Also functions similarly

to <osgix:service> in that it publishes the <bean>s as services.

May contain: <bean> (from Spring’s bean namespace).

Attributes:

auto-export

Enables Spring-DM to automatically determine the set of ser-

vice interfaces for which this service would be advertised. If

set to interfaces, the service will be advertised under all of

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=213

SPRING-DM COMPENDIUM CONFIGURATION ELEMENTS 214

the interfaces that it implements. If set to class-hierarchy, the

service will be advertised under all of the classes in the ser-

vice implementation’s class hierarchy. If set to all-classes, both

interfaces and the classes in the service class’s hierarchy will

be used.

Valid values: all-classes, class-hierarchy, disabled, and interfaces.

Default value: disabled.

context-class-loader

Specifies how the context class loader will be managed when

methods are invoked on the published service. By default, the

context class loader is unmanaged. If set to service-provider,

then the context class loader will be given visibility into the

classpath of the bundle that publishes the service.

Valid values: service-provider, unmanaged.

Default value: unmanaged.

depends-on

Identifies a <bean> that must be created before publishing

the service to the service registry.

factory-pid

The persistent ID under which the configuration for the

<bean>s are stored in the Configuration Admin Service.

update-method

The method on the bean to invoke when the values in the

Configuration Admin Service are updated. Used with the bean

managed updated strategy.

update-strategy

The strategy to use for updating the <bean>’s properties

when the backing configuration changes. By default no

updates are applied after the bean is initially wired. The bean

managed strategy means that the method identified by up-

date-method will be invoked. Container managed means that

the container will autowire the <bean> properties.

Valid values: bean-managed, container-managed, none.

Default value: none.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=214

SPRING-DM COMPENDIUM CONFIGURATION ELEMENTS 215

<osgix:registration-listener>

Defines a listener that will be notified when a service is registered

or unregistered.

Included in: <osgi:managed-service-factory>.

Attributes:

ref

Identifies a Spring <bean> that is the registration listener.

registration-method

The name of the method to call when a service is registered.

unregistration-method

The name of the method to call when a service is unregistered.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=215

Appendix C

The OSGi Blueprint Service
We’ve spent a lot of time getting to know Spring Dynamic Modules in

this book. Spring-DM’s declarative model has been a real benefit to us

in eliminating the need to write code to the OSGi API when we need to

publish and consume services.

Spring-DM is such a good idea that, in fact, it is being formalized

into part of the OSGi specification as the OSGi Blueprint Service. In

OSGi 4.2, the OSGi Blueprint Service will include the declarative ser-

vice model of Spring-DM along with the core pieces of Spring. As for

what this means to Spring-DM, Spring-DM will become the reference

implementation of the Blueprint Service.

C.1 Comparing the Blueprint Service with Spring-DM

The design of the Blueprint Service borrows many of the ideas from

Spring-DM. Therefore, if you know Spring-DM already, you should be

able to adapt to the Blueprint Service model fairly easy. There are, how-

ever, a few subtle differences that separate it from Spring.

First, where Spring-DM’s extender looks in META-INF/spring for Spring

context definition files, the Blueprint Service will look in META-INF/

module-context for module context definition files. Similarly, where

Spring-DM allows you to override the default context loading behavior

using the Spring-Context: header in the manifest, the Blueprint Service

offers an analogous Module-Context: header.

The content of those context definition files will also be different. Where-

as Spring-DM context definition files leveraged the Spring configura-

tion model, Blueprint Service context definition files use a different

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 217

XML namespace altogether to take on a more neutral (that is, Spring-

agnostic) feel. For example, the spider bundle’s component context

might look like this using the Blueprint Service schema:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<component class="com.dudewheresmyjar.spider.internal.MavenSpider"

init-method="run" destroy-method="stop">

<constructor-arg ref="indexService" />

<property name="repositoryUrl" value="http://repo2.maven.org/maven2/" />

<property name="jarFilePopulators">

<list>

<component class=

"com.dudewheresmyjar.spider.internal.PomBasedJarFilePopulator" />

<component class=

"com.dudewheresmyjar.spider.internal.JarContentBasedJarFilePopulator" />

</list>

</property>

</component>

</components>

And the context definition that references the index service might look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<components xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<reference id="indexService"

interface="com.dudewheresmyjar.index.IndexService" />

</components>

To help keep track of the differences between Spring-DM and the Blue-

print Service and to also guide you in a smooth transition to using the

Blueprint Service, the remainder of this appendix catalogs the elements

in the Blueprint Service schemas.

C.2 OSGi Blueprint Services (RFC-124) Elements

The Blueprint Service’s core configuration namespace offers elements

for declaratively publishing and consuming services (much like Spring-

DM’s core namespace). In addition, it includes some elements that re-

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=217

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 218

create the core elements of the Spring Framework’s beans namespace.

The key difference is in the naming of these elements. For example, the

<beans> element becomes <components>, and the <bean> becomes

<component> (among others).

To use the Blueprint Service’s core namespace, declare it in the root

element of the configuration XML as follows:

<components xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

...

</components>

Note that since the Blueprint Service replaces much of Spring and

Spring-DM, you won’t be using any of the Spring-specific namespaces.

Instead, the <components> element becomes the root element.

<component>

Defines a component in the component context. Analogous to

Spring’s <bean> element.

Included in: <components>.

May contain: <constructor-arg>, <description>, <property>.

Attributes:

class

The fully qualified class name of the component.

depends-on

The ID of another component that must be created before this

component is created.

destroy-method

The method to invoke when this component is removed from

the context.

factory-method

A factory method to create the bean in lieu of a construc-

tor. The factory method is either a method on the component

referenced by the factory-component attribute or, if factory-

component is not specified, a static method on this compo-

nent’s class.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=218

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 219

factory-component

Used with factory-method to identify another component that

provides the factory-method.

id

The ID of the component.

init-method

An initialization method to be invoked by the container after

component creation.

lazy-init

Specifies whether the component will be created eagerly with

creation of the context or lazily when it is first needed.

Valid values: true, false.

Default value: the value of <components>’ default-lazy-init.

scope

Defines the scope of the component. Singleton-scoped com-

ponents have only one instance created. In contrast, a proto-

type-scoped component will have multiple instances created,

once for each time the component is requested. For compo-

nents that will be published as services, bundle scoping will

ensure that one instance of the component will be created for

each client that consumes the service.

Valid values: bundle, prototype, singleton.

Default value: singleton.

<components>

The root element of a component context definition. Analogous to

Spring’s <beans> element.

May contain: <description>, <type-converters>, <component>,

<ref-list>, <ref-set>, <reference>, <service>.

Attributes:

default-availability

Defines the default availability of <reference>s.

default-destroy-method

Specifies the default destroy method of <component>s.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=219

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 220

default-init-method

Specifies the default initialization method of <component>s.

default-lazy-init

The default lazy initialization setting for <component>s.

Valid values: true, false.

Default value: false.

default-timeout

Defines the default timeout for obtaining a reference to a

service.

<constructor-arg>

Provides constructor (or factory method) argument values for a

<component>. Analogous to Spring’s <constructor-arg> element.

Included in: <component>.

May contain: <description>, <component>, <ref>, <idref>,

<value>, <null>, <list>, <set>, <map>, <props>, <ref-list>,

<ref-set>, <reference>, <service>.

Attributes:

index

The index of the constructor argument. (Helpful in resolving

constructor argument ambiguity.)

ref

The ID of a <component> to wire into the constructor argu-

ment.

type

The type of the constructor argument. (Helpful in resolving

constructor argument ambiguity.)

value

A simple value to wire into the constructor argument.

<description>

Describes the component context, a component, a constructor

argument, or a property. Analogous to Spring’s <description>

element.

Included in: <component>, <components>, <constructor-arg>,

<property>.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=220

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 221

<entry>

Defines an entry of a <map>. Analogous to Spring’s <entry>

element.

Included in: <map>.

May contain: <key>, <component>, <ref>, <idref>, <value>,

<null>, <list>, <set>, <map>, <props>, <ref-list>, <ref-set>,

<reference>, <service>.

Attributes:

key

Specifies a key for the entry.

key-ref

Refers to a <component> (by its ID) as the key for the entry.

value

Specifies a value for the entry.

value-ref

Refers to a <component> (by its ID) as the value for the entry.

<idref>

An error-proof way to inject a reference to another <component>

into a property or constructor argument. Analogous to Spring’s

<idref> element.

Attributes:

component

References the ID of the <component> to wire into a property

or constructor argument’s value.

<key>

Defines a key for a <map> or <prop>. Analogous to Spring’s

<key> element.

May contain: <component>, <ref>, <idref>, <value>, <list>,

<set>, <map>, <props>, <ref-list>, <ref-set>, <reference>,

<service>.

<list>

Defines a list component. Analogous to Spring’s <list> element.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=221

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 222

May contain: <component>, <ref>, <idref>, <value>, <null>,

<list>, <set>, <map>, <props>, <ref-list>, <ref-set>,

<reference>, <service>.

<map>

Defines a map component. Analogous to Spring’s <map> element.

May contain: entry.

Attributes:

key-type

Specifies the type of the entry keys.

<null>

Defines a null value. Useful for wiring null into a <component>’s

property or constructor argument. Analogous to Spring’s <null>

element.

<prop>

Defines an entry of a <props> element. Analogous to Spring’s

<prop> element.

Attributes:

key

The key of the property.

value

The value of the property.

<property>

Injects a value or component reference into a component property.

Analogous to Spring’s <property> element.

May contain: <description>, <component>, <ref>, <idref>,

<value>, <null>, <list>, <set>, <map>, <props>, <ref-list>,

<ref-set>, <reference>, <service>.

Attributes:

name

The name of the property.

ref

A reference to the ID of a <component> to inject into the

property.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=222

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 223

value

A value to inject into the property.

<props>

Defines a properties (java.util.Properties) collection. Analogous to

Spring’s <props> element.

May contain: <prop>

<ref>

Defines a reference to a <component>. Analogous to Spring’s

<ref> element.

Attributes:

component

The ID of the referenced <component>.

<reference>

Creates a reference to a published OSGi service. Analogous to

Spring-DM’s <osgi:reference> element.

Attributes:

availability

Specifies the expected availability of the referenced service.

Valid values: required, optional.

Default value: required.

component-name

A convenient shortcut for creating a filter to select a service

using the component name that should be provided as a prop-

erty if the service is published by the Blueprint Service.

filter

Defines an OSGi filter expression used to select a list of

matching services in the service registry.

interface

The service interface that the services obtained are required

to support.

timeout

The timeout for waiting for the referenced service to become

available.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=223

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 224

<ref-list>

Defines a list collection of referenced services. Analogous to

Spring-DM’s <osgi:list> element.

May contain: <comparator>.

Attributes:

availability

Specifies the expected availability of the referenced service.

Valid values: required, optional.

Default value: required.

comparator-ref

A reference to a <component> that implements java.util.

Comparator. Used for ordering the collection.

component-name

A convenient shortcut for creating a filter to select a service

using the component name that should be provided as a prop-

erty if the service is published by the Blueprint Service.

Defines an OSGi filter expression used to select a list of

matching services in the service registry.

The service interface that the services obtained are required

to support.

<ref-set>

Defines a list collection of referenced services. Analogous to

Spring-DM’s <osgi:list> element.

May contain: <comparator>.

Attributes:

availability

Specifies the expected availability of the referenced service.

Valid values: required, optional.

Default value: required.

comparator-ref

A reference to a <component> that implements java.util.

Comparator. Used for ordering the collection.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=224

OSGI BLUEPRINT SERVICES (RFC-124) ELEMENTS 225

component-name

A convenient shortcut for creating a filter to select a service

using the component name that should be provided as a prop-

erty if the service is published by the Blueprint Service.

filter

Defines an OSGi filter expression used to select a list of

matching services in the service registry.

interface

The service interface that the services obtained are required

to support.

<service>

Publishes a <component> as a service in the OSGi service reg-

istry.

Included in: <components>. Analogous to Spring-DM’s

<osgi:service> element.

Attributes:

auto-export

Enables the container to automatically determine the set of

service interfaces for which this service would be advertised.

If set to interfaces, the service will be advertised under all of

the interfaces that it implements. If set to class-hierarchy, the

service will be advertised under all of the classes in the ser-

vice implementation’s class hierarchy. If set to all-classes, both

interfaces and the classes in the service class’s hierarchy will

be used.

Valid values: all-classes, class-hierarchy, disabled, and interfaces.

Default value: disabled.

depends-on

Identifies a <component> that must be created before pub-

lishing the service to the service registry.

interface

The interface that the service should be advertised under

when published to the service registry.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=225

OSGI BLUEPRINT SERVICES (RFC-124) COMPENDIUM ELEMENTS 226

ranking

Specifies the service ranking to use when advertising the

service.

Default value: 0.

ref

A reference to a <component> that implements the service.

<set>

Defines a set component. Analogous to Spring’s <set> element.

May contain: <component>, <ref>, <idref>, <value>, <null>,

<list>, <set>, <map>, <props>, <ref-list>, <ref-set>,

<reference>, <service>.

<type-converters>

Declares one or more embedded <component>s as type convert-

ers. Type converters enable complex properties to be configured

with simpler String representations. This is similar to how Spring

supports property editors through java.beans.PropertyEditor. In

OSGi’s blueprint service, however, type converters must imple-

ment org.osgi.module.context.convert.Converter.

Included in: <components>.

May contain: <component>, <entry>, <list>, <ref>, <set>.

<value>

Defines a value for injection into a property or constructor argu-

ment. Analogous to Spring’s <value> element.

Included in: <constructor-arg>, <property>.

Attributes:

type

Stipulates the type of the value.

C.3 OSGi Blueprint Services (RFC-124) Compendium Elements

Just like the Spring-DM compendium namespace, the OSGi Blueprint

Service’s compendium namespace offers elements for coordinating

component configuration with the OSGi Configuration Admin Service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=226

OSGI BLUEPRINT SERVICES (RFC-124) COMPENDIUM ELEMENTS 227

To use the Blueprint Service compendium namespace, include it in

the <components> element of your Blueprint Service context definition

XML:

<components xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:osgix="http://www.osgi.org/xmlns/blueprint/compendium/v1.0.0"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd

http://www.osgi.org/xmlns/blueprint/compendium/v1.0.0

http://www.osgi.org/xmlns/blueprint/compendium/v1.0.0/

blueprint-compendium.xsd">

...

</components>

<config-properties>

Used to configure an exported service’s service-properties using

values from the OSGi Configuration Admin Service.

Included in: <service-properties>.

Attributes:

persistent-id

The persistent ID for which the values should be pulled from

the OSGi Configuration Admin Service.

update

Specifies whether the properties will be updated if they

change in the Configuration Admin Service.

Valid values: true, false.

Default value: false.

<default-properties>

This is a collection of default properties to be applied in <property-

placeholder>.

Included in: <property-placeholder>.

May contain: <prop> (from the Blueprint Service namespace).

Attributes:

persistent-id

The persistent ID under which the configuration for the

<component> is stored in the Configuration Admin Service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=227

OSGI BLUEPRINT SERVICES (RFC-124) COMPENDIUM ELEMENTS 228

update

Specifies whether the properties will be updated if they

change in the Configuration Admin Service.

Valid values: true, false.

Default value: false.

<managed-component>

A component that is managed under a <managed-component-

factory>.

Attributes:

class

The fully qualified class name of the component.

destroy-method

The method to invoke when this component is removed from

the context.

factory-component

Used with factory-method to identify another component that

provides the factory method.

factory-method

A factory method to create the bean in lieu of a construc-

tor. The factory method is either a method on the component

referenced by the factory-component attribute or, if factory-

component is not specified, a static method on this compo-

nent’s class.

init-method

An initialization method to be invoked by the container after

component creation.

<managed-properties>

Defines a component to be autowired by name using properties

from the OSGi Configuration Admin Service for a given persistent

ID.

Included in: <component>.

Attributes:

persistent-id

The persistent ID under which the configuration for the

<component> is stored in the Configuration Admin Service.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=228

OSGI BLUEPRINT SERVICES (RFC-124) COMPENDIUM ELEMENTS 229

update-method

The method on the component to invoke when the values in

the Configuration Admin Service are updated. Used with the

bean managed updated strategy.

update-strategy

The strategy to use for updating the <component>’s proper-

ties when the backing configuration changes. By default no

updates are applied after the component is initially wired.

The bean managed strategy means that the method identified

by update-method will be invoked. Container managed means

that the container will autowire the <component> properties.

Valid values: bean-managed, container-managed, none.

Default value: none.

<managed-service-factory>

Defines a collection of one or more <component>s whose proper-

ties should be autowired with values from the OSGi Configuration

Admin Service for a given persistent ID. Also functions similarly to

<service> in that it publishes the <component>s as services.

May contain: <managed-component>.

Attributes:

auto-export

Enables Spring-DM to automatically determine the set of ser-

vice interfaces for which this service would be advertised. If

set to interfaces, the service will be advertised under all of

the interfaces that it implements. If set to class-hierarchy, the

service will be advertised under all of the classes in the ser-

vice implementation’s class hierarchy. If set to all-classes, both

interfaces and the classes in the service class’s hierarchy will

be used.

Valid values: all-classes, class-hierarchy, disabled, and interfaces.

Default value: disabled.

factory-pid

The persistent ID under which the configuration for the

<bean>s are stored in the Configuration Admin Service.

interface

The interface under which the service will be advertised.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=229

OSGI BLUEPRINT SERVICES (RFC-124) COMPENDIUM ELEMENTS 230

ranking

Specifies the service ranking to be used when advertising the

service.

<property-placeholder>

Configures a property placeholder that pulls configuration details

from the OSGi Configuration Admin Service. Roughly analogous to

Spring’s <util:property-placeholder> when used with Spring-DM’s

<osgi:cm-properties>.

Included in: <components>.

May contain: <default-properties>.

Attributes:

persistent-id

The persistent ID to bind to when pulling configuration prop-

erties from the OSGi Configuration Admin Service.

placeholder-prefix

The prefix of the placeholder delimiter.

Default value: ${.

placeholder-suffix

The suffix of the placeholder delimiter.

Default value: }.

defaults-ref

References a <component> of type java.util.Properties that con-

tains default property values for the placeholder.

http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=230

Appendix D

Resources
Apache Felix .http://felix.apache.org

Felix is one of the leading open source OSGi framework implementations from

the Apache Software Foundation. Felix was originally known as Oscar and was

contributed to Apache from ObjectWeb.

BND . http://www.aqute.biz/Code/Bnd

Peter Kriens, one of the founders of OSGi, has created a tool called BND that

offers several facilities for working with bundles, including wrapping nonbundle

JARs with OSGi metadata. BND is the basis for the Felix Maven Bundle Plugin.

Compass .http://www.compass-project.org

Compass is a framework for enabling keyword search on Java objects.

Eclipse Equinox . http://www.eclipse.org/equinox/

Equinox is one of the leading open source OSGi framework implementations

and is the basis for the Eclipse IDE.

Maven: The Definitive Guide. . .
. . . http://www.sonatype.com/products/maven/documentation/book-defguide

Sonatype has made its Maven book available as a free download. This is an

excellent “getting started” guide as well as a handy reference for working with

Maven.

jQuery .http://www.jquery.com

jQuery is a JavaScript library that enables simple manipulation of a web page’s

DOM.

OPS4J .http://www.ops4j.org

The Open Participation Software for Java (OPS4J) project is a community-

oriented open source project that has developed several very useful libraries,

bundles, tools, and utilities for OSGi development.

http://felix.apache.org
http://www.aqute.biz/Code/Bnd
http://www.compass-project.org
http://www.eclipse.org/equinox/
http://www.sonatype.com/products/maven/documentation/book-defguide
http://www.jquery.com
http://www.ops4j.org

APPENDIX D. RESOURCES 232

OSGi Alliance. .http://www.osgi.org

The OSGi Alliance is an open standards organization made up of significant

technology players; it defines the OSGi specification.

Pax Construct http://wiki.ops4j.org/display/ops4j/Pax+Construct

Pax Construct is a command-line toolkit based on Maven for developing OSGi

bundle-based projects.

Pax Exam . http://wiki.ops4j.org/display/ops4j/Pax+Exam

Pax Exam is an extension to JUnit 4 for testing OSGi bundles within one or

more OSGi frameworks.

Pax Runner .http://wiki.ops4j.org/display/ops4j/Pax+Runner

Pax Runner is a tool for launching an OSGi framework, installing a selection of

bundles, and starting those bundles.

Spring Dynamic Modules (Spring-DM). . .
. . . http://www.springframework.org/osgi

Spring Dynamic Modules offers a declarative service model for OSGi that is

based on the Spring Framework.

SpringSource Enterprise Bundle Repository. . .
. . . http://www.springsource.com/repository

SpringSource, the company behind Spring and Spring Dynamic Modules, pro-

vides a repository of commonly used open source libraries in OSGi bundle form.

http://www.osgi.org
http://wiki.ops4j.org/display/ops4j/Pax+Construct
http://wiki.ops4j.org/display/ops4j/Pax+Exam
http://wiki.ops4j.org/display/ops4j/Pax+Runner
http://www.springframework.org/osgi
http://www.springsource.com/repository
http://books.pragprog.com/titles/cwosg/errata/add?pdf_page=232

Appendix E

Bibliography

[Com08] Sonatype Company. Maven: The Definitive Guide. O’Reilly &

Associates, Inc, Sebastopol, CA, 2008.

[GP70] Richard Gauthier and Stephen Pont. Designing Systems Pro-

grams. Prentice Hall, Englewood Cliffs, NJ, 1970.

[Wal07] Craig Walls. Spring in Action, 2nd Edition. Manning Publi-

cations Co., Greenwich, CT, 2007.

Index
Symbols
. classpath, 154

Dude, Where’s My JAR application

see also Configuration Admin

Service; Spring-DM; Web bundles

* symbol, 119

-- command option, 162

A
addJarFile(), 81

Administration console, 181–185

Apache Felix, see Felix

Apache Lucene, 89–91

Applications, see Dude, Where’s My

JAR application

Assembly descriptor, 176

B
Backport bundle, 117

Backslashes, 75

Beans

autowiring, 192, 195

declaring in Spring-DM, 116

defining, 205

interaction in Spring-DM, 117

MavenSpider, 196

spider, 124

Blueprint Service, 128, 216–230

BND tool, 60, 72, 118, 231

BRITS, 131

bundle command, 43, 121

Bundle activator, 38, 42

publishing service, 84–86

for spider, 103

timeouts, 103

for Tomcat, 133

Bundle Repository in the Sky, 131

bundleContextShouldNotBeNull(), 97

Bundles, 59–79

Hello World example, 33, 34f

creating, 31–33

installing, 35–36

service, 36–44

contents of, 17

context, testing, 95

described, 15

domain bundles, creating, 59–69

building, 64–66

deployment, 66–69

domain class, defining, 61–64

Dude, Where’s My JAR application,

49f, 48–49

extending, 159–170

fragments, building and cleaning

up, 167–170

fragments, creating, 161–166,

167f

fragments, introduced, 160f,

159–161

Felix, 29

fragment, 159

JARs, wrapping vs. embedding,

69–77

Jetty starter, 198

Jetty, installation of, 134–137

life cycle, 78f, 78–79

listing in Equinox, 26

manifest, 39

naming, 19

OSGi, 17f

parallel versions of, 18f, 18

root package of, 60

Spring-DM set up, 115

Spring-DM web extender, 138–142

tasks of, 36

Tomcat, installation of, 130–134

CATALINA BUNDLE 235 ECLIPSE EQUINOX

web bundles, deploying, 158f,

150–158

web bundles, developing, 143f,

142–150

see also Production; Web bundles

C
Catalina bundle, 130

CGLIB bundle, 142

Changeability, 13

Collections, Spring-DM and, 117

Commons Logging, 87

Compass, 47

beans and, 116

dependencies, 72, 89

as dependency, 65

indexing files, 62

Jakarta Commons Logging, 87

repository, 65

resources, 231

website information, 65

Comprehensibility, of modules, 13

Concurrent collection, 117

Configuration Admin Service, 186

adding to application, 186

application configuring, 194f, 196f,

191–197

Beans, autowiring, 195

described, 186

logging adjustments, 190–191

Pax ConfMan and, 187–188

Tomcat vs. Jetty, 137, 201

web console configuration, 189f,

188–190

web server configuring, 197–201

Console, administrative, 181–185

Containers, 24–30

Eclipse Equinox, 25–28

Felix, 28–30

Content hiding, 17

Context files, Spring-DM, 114

Context, testing, 95

Controllers, 146–148

Customization, 56–58

D
Declarative Services (DS), 113

Dependencies

Commons Logging, 87

Compass and Lucene, 89

for distribution project, 175, 178

domain bundles, 84

Jetty server, 135

Maven, 94

OSGi web bundle, 143f

Pax ConfMan, 187

Pax Construct and, 115

Pax Logging, 88

Pax Runner and Equinox, 178

pom.xml file, 94

Tomcat and Jasper, 133

Dependency injection, Spring and, 111

Designing Systems Programs (Gauthier

& Ponto), 13

diag command, 72, 76

Distribution, 172–181

Distribution ZIP file, structure of, 180f

Domain bundles, 48

creating, 59–69

building, 64–66

deploying, 66–69

domain class, defining, 61–64

dependencies, 84

directory, 61

Domain class, defining, 61–64

doSearch(), 147, 148

Double dash, 162

Dude, Where’s My JAR application,

45–58

administrative console, 181–185

bundle life cycle, 78f, 78–79

bundling components, 49f, 48–49

customization, 56–58

distributing, 180f, 172–181

domain bundles, creating, 59–69

file searches, 45–46

index service component, 47

JAR-file domain component, 47

Maven repository spider component,

46–47

nonbundle dependencies, 69–77

Pax Construct installation, 52f,

51–53

project setup, 50–51

top-level project, creating, 54f, 53–56

web application component, 48

Dynamic modularity, 19

E
Eclipse Equinox, 25–28

vs. Eclipse IDE, 25

help commands, 26

ECLIPSE IDE VS. ECLIPSE EQUINOX 236 JASPER

IDE files and, 57

licensing, 28

OSGi backdoor into, 27

prompt, 26

resources, 231

runtime download, 25

service bundle installation, 39

Eclipse IDE vs. Eclipse Equinox, 25

Embedding JAR files, 70–74

equinox(), 96

Extending bundles, 159–170

fragments, building and cleaning up,

167–170

fragments, creating, 161–166, 167f

fragments, introduced, 160f,

159–161

F
Felix, 28–30

bundles in, 30

fragment support and, 161

help commands, 29

prompt, 29

resources, 231

testing, 96

versions, 28

felix(), 96

Felix Web Console, 181–184, 185f

configuration, 189f, 188–190

logging adjustments, 190–191

Files, moving in Spring, 114

see also JAR (Java Archive) files;

WAR files

findJarFiles(), 81

Fragments, 167f

application start up, 168–170

building, 167

defined, 141

Felix and, 161

host bundles and, 160f

host, specifying, 166

overview of, 159–161

project set up, 161–162

purpose of, 159

search results page, 169f

web bundle clean up, 168

web files, adding, 162–166

Framework, see Containers

G
Gauthier, Richard, 13

getRawUrl(), 63

getService(), 102

H
Headers, bundle, 31

Headers, manifest, 202

Hello World example, 30–44

bundle, creating, 31–33

bundle, installing, 35–36

bundle, service, 36–44

HTTP Service vs. Spring-DM, 138

I
IBiblio, 105

Index bundles, 49

index service, publishing, 86, 121

Spring-DM and, 115–122

start (), 85

Index directory, 108

Index service, 47, 62

beans, declaring, 117

checking use of, 127

injecting into MavenSpider, 123

rebuilding, 118

testing, 91, 98–100

troubleshooting, 87

IndexService interface, 81

IndexServiceImpl class, 83

install (Maven), 34

Integration test, 92

Interface, for service, 37

iPOJO, 113

J
Jakarta Commons Logging, 87

JAR (Java Archive) files, 14f, 14

domain bundle, building, 64–66

domain bundle, deploying, 66–69

domain class, defining, 61–64

embedding vs. wrapping, 69–90

Equinox, 25

Hello World example, 33, 39

index service, 47

JAR-File domain, 47

Maven repository spider, 46–47

Pax Runner, script for, 178

searching, 45–46

web application and, 48

see also Fragments

Jasper, 132, 136

JAVA 237 PAX CONSTRUCT

Java

drawbacks of, 10

Maven and, 56

modularity in, 14

Open Participation Software, 231

OSGi code, eliminating, 86

see also POJOs

Jetty, 134–137, 141, 184, 197, 199,

201

jQuery, 231

JUnit4TestRunner, 95

K
Knopflerfish, 57, 96

knopflerfish(), 96

Kriens, Peter, 231

L
Life cycle, bundle, 78f, 78–79

Log4J, 87

Logging adjustments, 190–191

Logging service, 86–89

Lucene, embedding, 89–91

M
Manifest, 154, 202

Maven, 34

assembly plugin, 173, 178

build instructions, bundle project,

60

dependencies, 94

distribution, assembly of, 179

Pax Construct and, 64

plugins for, 56

release plugin, 173

repository spider, 46

spiders and, 105

test command, 97, 99

test set up, 93–94

WAR files and, 156

Maven: The Definitive Guide (Sonatype),

34, 231

mavenBundle(), 96

Missing services, 42

mkdir(), 176

Modularity, 11–15

benefits of, 12–14

defined, 12

Eclipse Equinox and, 25

in Java, 14

in OSGi, 17–19

Spring-DM and, 112

mvn install command, 75, 77, 86, 125

N
Naming bundles, 19

Nash, Michael, 13

Nonbundle dependencies, 69–77

O
OPS4J, 231

options(), 96

OSGi

bundles in, 17f

containers, 24–30

Eclipse Equinox, 25–28

Felix, 28–30

declarative services, 113

described, 10, 15

4.2 Specification, 128

framework of, 16f, 176

Hello World example, 30–44

bundle, creating, 33f, 31–33, 34f

bundle, installing, 35–36

bundle, service, 36–44

key elements of, 15–17

manifest headers, 202

Maven and, 34

modularity in, 11–15, 17–19

source code for book, 101n

specifications for, 10n

versions, 15

OSGi Alliance, 232

OSGi Blueprint Service, 216–230

<osgix:cm-properties>, 193, 194f

<osgix:managed-service>, 195, 196f,

197

P
package (Maven), 34

Parallel bundle versions, 18f, 18

Parallel development, 13

Pax ConfMan, 187–188

Pax Construct, 50, 51

BND tool, 60, 72

installation, 51–53

Maven and, 64

new projects, creating, 54f, 53–56

production setting, 172

reasons to use, 51

resources, 232

PAX EXAM 238 SPRING-DM

scripts for, 52f

Spring-DM and, 115

versions, updating, 53

Pax Exam, 92, 95, 97, 232

Pax Logging, 87, 88, 190, 191

Pax Runner, 67, 68, 172, 175, 178, 232

logging level, 190

see also Production

Pax tools, 50

Pax Web, 184

pax-add-dependency script, 105, 106

pax-create-bundle script, 59, 60, 80, 162

pax-create-project script, 53

pax-embed-jar script, 70, 90

pax-import-bundle script, 83, 115

pax-provision script, 54, 56, 66, 67, 75,

125, 168

pax-update command, 53

pax-wrap-jar script, 75, 89

Placeholders, property, 192, 193, 194f,

196f

Plain Old Java Objects, see POJOs

Plugins

assembly, Maven, 173, 178

descriptor file, 176

for Maven, 56

release, Maven, 173

WAR files, 156

POJOs, 84, 124

Spring and, 111

Ponto, Richard, 13

Ports, changing, 184

Production, 172–185

administrative console, 181–185

application distribution, 180f,

172–181

Property placeholders, 192, 193, 194f,

196f

provision(), 96

Publishing, with bundle activator,

84–86

R
registerService(), 85

Require-Bundle:, use of, 155

Resources, 231

retrieveIndexService(), 99

Reuse, of modules, 13

Root package, bundle, 60

run(), 125

S
@Searchable keyword, 63

Security

administration console, 181–185

Felix Web Console, 181–184

Telnet console access, 182

username and password, 189

Security layer, 16

Service bundle

Hello World example, 39f, 36–44

Service consumers, 100–108, 122–128

Service registry, 16, 18, 38, 42, 61

beans, publishing in, 116

Service trackers, 101–105

Services, 80–108

availability of, 126

consuming, 100–108

creating, 80–86

declaring, 115–122

injecting into consumers, 122–128

logging, 86–89

Lucene, embedding, 89–91

publishing, with bundle activator,

84–86

testing, 91–100

showSearchForm(), 147, 148

Skinning, 161

SNAPSHOT repository, 130

Source code, 101n

Spider bundles, 48, 100

deploying, 105–108

permissions for crawling, 105

Spider implementation class, 101–105

Spring Dynamic Modules, 232

Spring in Action, 2nd Ed (Walls &

Breidenbach), 112

Spring-DM, 110–128

application configuring, 194f, 196f,

191–197

benefits and features of, 111–112

vs. Blueprint Service, 216–217

configuration of, 204–215

context files, moving, 114

controllers, 146

declarative services, 113

extender, 114f, 112–114, 115

framework and background, 112

vs. HTTP Service, 138

vs. native OSGi services, 111

as OSGi specification, 128

<osgix:cm-properties>, 114f

SPRINGSOURCE 239 WRAPPING JAR FILES

vs. Pax Exam testing support, 92

property placeholders, 192, 193,

194f, 196f

publish-context directive, 122

repository, adding, 130

repository, future of, 131

service availability, 126

services, declaring, 115–122

services, injecting into consumers,

122–128

set up, 115

synergy with OSGi, 112

versions, 115

web extender, 138–142

see also Web bundles

SpringSource, as resource, 232

ss command, 26, 35, 36, 43, 107, 168,

181

start(), 85, 105

start.sh script, 180

stop(), 79, 125

Strong-naming, 19

T
Telnet, console access, 182

test (Maven), 34

Testing

bundle context, 95–98

index service, 98–100

modularity and, 13

Pax Exam and, 92

Pax Exam vs. Spring-DM, 92

services, 91–100

Timeouts, 103

Tomcat, 130–134, 137, 197, 201

Trackers, service, 101–105

U
UI fragment, see Fragments

<util:property-override>, 195

<util:property-placeholder>, 192, 193

V
Versions

bundles, 18f, 18

Compass, 69

Equinox, 25

Felix, 28, 161

Jetty’s JSP API, 133

Lucene, 89

OSGi, 15

Pax Construct, 53

Pax Exam and Spring-DM, 92

of projects, 173

Spring-DM, 115, 147

Spring-DM and Java, 117

--vmOptions command option, 184

W
waitForService(), 103

WAR files, 138, 139, 143f, 154, 156

see also Web bundles

Web bundles, 49, 129–158

building, 158f, 155–158

deploying, 158f, 150–158

developing, 143f, 142–150

Jetty installation, 134–137

manifest, 154

Spring-DM web extender, 138–142

Tomcat installation, 130–134

web server, assembling, 129–137

see also Bundles

Web console configuration, 189f,

188–190

application details, 194f, 196f,

191–197

logging adjustments, 190–191

web server, 197–201

Web extender, see Spring-DM, web

extender

Web requests, 146–148

Web server configuration, 197–201

Web servers, 184

assembling, 129–137

Jetty bundles, installing, 134–137

Spring-DM web extender, 138–142

Tomcat bundles, installing, 130–134

Web views, 148–150

Wrapping JAR files, 74–77

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of June 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Continued on next page

pragprog.com

Title Year ISBN Pages

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

Continued on next page

Title Year ISBN Pages

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

More on Java

Stripes
Tired of complicated Java web frameworks that just

get in your way? Stripes is a lightweight, practical

framework that lets you write lean and mean code

without a bunch of XML configuration files. Stripes

is designed to do a lot of the common work for you,

while being flexible enough to adapt to your

requirements. This book will show you how to use

Stripes to its full potential, so that you can easily

develop professional, full-featured web

applications. As a bonus, you’ll also get expert

advice from the creator of Stripes, Tim Fennell.

Stripes: ...And Java Web Development Is Fun

Again

Frederic Daoud

(375 pages) ISBN: 978-1934356-21-0. $36.95

http://pragprog.com/titles/fdstr

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real-world customers from 100

different countries? Are you ready for a world filled

with flaky networks, tangled databases, and

impatient users?

If you’re a developer and don’t want to be on call at

3 a.m. for the rest of your life, this book will help.

Release It! Design and Deploy Production-Ready

Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragprog.com/titles/mnee

http://pragprog.com/titles/fdstr
http://pragprog.com/titles/mnee

Expand Your Horizons

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(200 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

http://pragprog.com/titles/cfcar2
http://pragprog.com/titles/ahptl

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Modular Java’s Home Page

http://pragprog.com/titles/cwosg

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/cwosg.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/cwosg
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/cwosg
www.pragprog.com/catalog

	Contents
	Introduction
	A New Set of Wheels
	Modularity
	Introducing OSGi
	Road Map
	Who Is This Book For?
	Acknowledgments

	OSGi Fundamentals
	Getting Started
	Getting to Know the OSGi Container
	Hello, OSGi
	A Hello World Service Bundle

	Dude, Where's My JAR?
	Searching for JAR Files
	Designing the Application Components
	Bundling the Application Components for OSGi
	Setting Up the Project

	Working with Bundles
	Creating the Domain Bundle
	Contending with Nonbundle Dependencies
	Following the Bundle Life Cycle

	OSGi Services
	Creating an OSGi Service
	Testing the Service
	Consuming OSGi Services

	Spring Dynamic Modules and Web Bundles
	Spring and OSGi
	Introducing Spring-DM
	Declaring Services
	Injecting Services into Consumers

	Creating Web Bundles
	Assembling a Web Server
	The Spring-DM Web Extender
	Developing a Web Bundle
	Deploying the Web Bundle

	Extending Bundles
	Introducing Fragments
	Creating a UI Fragment
	Trying It

	Finishing Touches
	OSGi in Production
	Distributing the Application
	Adding an Administration Console

	Configuring the Application
	Installing Pax ConfMan
	Configuring the Web Console
	Adjusting Logging
	Configuring Application Details
	Configuring the Web Server

	Manifest Headers
	OSGi R4 Headers

	Spring-DM Configuration
	Spring-DM Core Configuration Elements
	Spring-DM Compendium Configuration Elements

	The OSGi Blueprint Service
	Comparing the Blueprint Service with Spring-DM
	OSGi Blueprint Services (RFC-124) Elements
	OSGi Blueprint Services (RFC-124) Compendium Elements

	Resources
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

