
Prepared exclusively for ALESSANDRO CAROLLO

What Readers Are Saying About Domain-Driven Design

Using Naked Objects

Over the years I have watched Dan strive to find the best ways

to develop complex systems, and I’m glad he has taken this

opportunity to share with you just some of his insights and

experiences. As well as a champion of using the Naked Objects

framework, Dan has now become one of its major contributors and

committers, and I must say we are lucky to have his energy and

enthusiasm directed at this project.

Robert Matthews

Creator, the Naked Objects framework

This is a tutorial, a Naked Objects manifest, a software architecture

book, and a user reference, all at the same time and combined

amazingly well. You’ll find this book to be the best way of developing

enterprise apps without repeating yourself.

Sebastián Slutzky

Software engineer, Department of Family and Social Affairs,

Ireland

Domain-driven design comes alive in this book, as it is demonstrated

by example on every page. Furthermore, Naked Objects is shown to

be the ideal support for the approach, focusing as it does on the core

concepts of a system’s domain. Dan Haywood’s easy style means that

the complex ideas in this book come across very clearly. Don’t just

read this book...mark, learn, and inwardly digest!

Andy Carmichael

CEO, OpenXprocess Ltd

This is a great hands-on guide to implementing domain-driven

solutions using the innovative Naked Objects open source framework.

Dylan Hayes

Solutions architect, Deloitte Consulting

Prepared exclusively for ALESSANDRO CAROLLO

Dan does an excellent job of bringing domain-driven design out of the

realm of theory and into practical reality.

Dave Klein

Author, Grails: A Quick-Start Guide

This book is an excellent piece of work. It’s well written, thorough,

engaging, and interesting.

Eoin Woods

Coauthor, Software Systems Architecture: Working with

Stakeholders Using Viewpoints and Perspectives

This is a must-read book for CIOs, IT architects, and developers who

want to understand how to build agile IT systems.

Barry Keane

Senior manager, BearingPoint

This book is an indispensable companion in your Naked Objects

journey whether you are starting with it or you have been using it for

some time.

Enrique Albert-Gleiser

Enterprise software engineer

If you are already developing with Naked Objects or are just starting

out on a new project or merely curious, buy this book! Coming from

one of the main drivers in the Naked Objects community, you will get

an insight to this range of technologies that is absolutely invaluable.

Aidan Coughlan

Independent software developer

Prepared exclusively for ALESSANDRO CAROLLO

Prepared exclusively for ALESSANDRO CAROLLO

Domain-Driven Design
Using Naked Objects

Dan Haywood

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for ALESSANDRO CAROLLO

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Dan Haywood.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-44-1

ISBN-13: 978-1-934356-44-9

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2009-12-15

Prepared exclusively for ALESSANDRO CAROLLO

http://www.pragprog.com

Contents
Preface 14

Who This Book Is For . 15

How the Book Is Organized . 16

Case Study and Exercises . 17

Conventions . 18

Further Resources . 18

I Tools 20

1 Getting Started 21

1.1 Understanding Domain-Driven Design 21

1.2 The Essentials of DDD 22

1.3 Introducing Naked Objects 26

1.4 Naked Objects in About Five Minutes 28

1.5 How Naked Objects Helps with DDD 34

1.6 The Big Picture . 37

2 Identifying the Domain Concepts 41

2.1 Introducing CarServ . 41

2.2 Getting Ready . 43

2.3 Creating the Domain Classes 45

2.4 Using Repositories to Locate Objects 49

2.5 Identifying Objects to the User 53

2.6 Capturing Simple Business Rules 59

2.7 Providing Choices for Properties 61

3 Relating Objects Together 64

3.1 Associating Objects . 64

3.2 Adding Describing Concepts 71

3.3 Capturing Business Rules for Collections 77

Prepared exclusively for ALESSANDRO CAROLLO

CONTENTS 8

4 Rapid Prototyping 80

4.1 Fixtures for Setting Up Domain Objects 81

4.2 Fixtures for Setting Up the Clock 84

4.3 Fixtures for Setting Up User Sessions 87

4.4 Organizing Fixtures into Hierarchies 91

5 Creating Behaviorally Complete Objects 95

5.1 Adding Behavior to Domain Objects 96

5.2 Validating Action Arguments 98

5.3 Making Actions Friendlier to Use 101

5.4 Adding Finders to Repositories 103

6 Implementing Business Rules 106

6.1 Validation Recap . 107

6.2 Disabling Class Members 110

6.3 Hiding Class Members 113

6.4 Declarative Rules and the Object Life Cycle 117

6.5 Validating the Entire Object 120

7 Using Value Types 124

7.1 Identifying Value Types 125

7.2 Pushing Business Rules onto a Value Type 126

7.3 Adding a Third-Party Value Type 129

7.4 Specifying Defaults and Other Characteristics 137

8 Isolating Infrastructure Services 140

8.1 A Taxonomy of Services 141

8.2 The Domain Object Container 143

8.3 Dependency Injection . 145

8.4 Using Services in Fixtures 146

8.5 Requirements for Writing Services 147

8.6 Using Interfaces for Repositories 149

8.7 Implementing a Calendar Service 151

8.8 Hints and Tips for Writing Services 154

II Techniques 157

9 Distributing Class Responsibilities 158

9.1 Applying Coad Colors . 159

9.2 Factoring Out Objects 161

9.3 Balancing Responsibilities 166

9.4 Representing Large Collections with Finder 168

9.5 Contributing Actions from Services 172

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=8

CONTENTS 9

10 Applying Domain Patterns 176

10.1 Type as Factory Pattern 177

10.2 Knowledge Level Pattern 184

10.3 Null Object Pattern . 187

10.4 Role Object Pattern . 189

10.5 User Peer Object Pattern 194

10.6 Strategy Pattern . 195

10.7 Process Object Pattern 200

11 Keeping the Model Maintainable 206

11.1 Analyzing the Structure of CarServ 207

11.2 Decoupling by Moving Responsibilities 210

11.3 Decoupling by Introducing Interfaces 212

11.4 Layering Modules . 219

11.5 Decoupling by Splitting Classes 221

11.6 Introducing an Application Package 222

11.7 An Application Architecture Blueprint 225

12 Scenario Testing 229

12.1 Writing Developer Tests 230

12.2 Scenario Testing Using FitNesse 235

12.3 Getting Ready to Write Scenario Tests 236

12.4 Writing Scenario Tests 241

12.5 Hints and Tips . 249

III Practices 252

13 Developing Domain Applications 253

13.1 The Layered Architecture 254

13.2 Deployment Options . 255

13.3 Which Option to Choose? 258

13.4 Development Activities 261

13.5 Configuration Management 264

13.6 Working Effectively . 267

14 Naked Objects as a Design Tool 271

14.1 Using Naked Objects Only in Development 271

14.2 Decoupling from the Framework 272

14.3 Programming Model Interaction Protocol 276

14.4 Changing the Programming Model 278

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=9

CONTENTS 10

15 Integrating with Web Frameworks 281

15.1 Deploying an Embedded Metamodel 282

15.2 Integrating Layers with the Custom Presentation Option 293

16 Integrating with the Database 299

16.1 Configuring XML Persistence 300

16.2 Mapping Entities Using JPA Annotations 302

16.3 Mapping Value Objects Using JPA Annotations 308

16.4 Mapping Relationships 310

16.5 Porting over Repositories 314

16.6 Deploying and Running the Application 317

17 Integrating Within the Enterprise 323

17.1 Bounded Context Patterns 324

17.2 Exposing a RESTful Web Service for Other Systems . . 326

17.3 Integrating Using an Enterprise Service Bus 332

18 Deploying the Full Runtime 345

18.1 Deploying the Application 345

18.2 Securing the Application 354

18.3 Deploying the Sister Projects 359

18.4 A CarServ Retrospective 364

18.5 The DSFA Application 365

18.6 Closing Thoughts . 366

IV Appendixes 374

A Programming Model Cheat Sheet 375

B Eclipse Templates 379

C Bibliography 383

Index 386

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=10

Foreword
Synergy—from the Greek for “working together”—occurs when a com-

bination has a greater value than the sum of its parts. It would be hard

to find a better example of synergy than between domain-driven design

and Naked Objects. The former is an approach to designing application

software that advocates capturing the very essence of the business in

the form of a domain model; the latter is a technology for developing

and deploying object-oriented applications, where the only thing you

actually develop are the domain objects.

The Naked Objects pattern arose, at least in part, from my own frustra-

tion at the lack of success of the domain-driven approach. (Eric Evans

coined the term domain-driven design in his 2004 book of that name,

but the broad principles of the approach are as old as object modeling

itself.) Good examples were hard to find—as they are still.

A common complaint from DDD practitioners was that it was hard

to gain enough commitment from business stakeholders, or even to

engage them at all. My own experience suggested that it was nearly

impossible to engage business managers with UML diagrams. It was

much easier to engage them in rapid prototyping—where they could

see and interact with the results—but most forms of rapid prototyp-

ing concentrate on the presentation layer, often at the expense of the

underlying model and certainly at the expense of abstract thinking.

Even if you could engage the business sponsors sufficiently to design a

domain model, by the time you’d finished developing the system on top

of the domain model, most of its benefits had disappeared. It’s all very

well creating an agile domain object model, but if any change to that

model also dictates the modification of one or more layers underneath

it (dealing with persistence) and multiple layers on top (dealing with

presentation), then that agility is practically worthless.

The other concern that gave rise to the birth of Naked Objects was

how to make user interfaces of mainstream business systems more

Prepared exclusively for ALESSANDRO CAROLLO

CONTENTS 12

“expressive”—how to make them feel more like using a drawing program

or CAD system. Most business systems are not at all expressive; they

treat the user merely as a dumb process-follower, rather than as an

empowered problem-solver. Research had demonstrated that the best

way to achieve expressiveness was to create an object-oriented user

interface (OOUI). In practice, though, OOUIs were notoriously hard to

develop.

Sometime in the late 1990s, it dawned on me that if the domain model

really did represent the “ubiquitous language” (Evans’ term) of the busi-

ness and those domain objects were behaviorally rich (that is, business

logic is encapsulated as methods on the domain objects rather than in

procedural scripts on top of them), then the UI could be nothing more

than a reflection of the user interface. This would solve both of my con-

cerns. It would make it easier to do domain-driven design, because one

could instantly translate evolving domain modeling ideas into a work-

ing prototype. And it would deliver an expressive, object-oriented user

interface for free. Thus was born the idea of Naked Objects.

In my opinion, this book performs an immensely valuable service both

in explaining the synergy between these two ideas and in providing

practical guidance for applying them. I cannot think of a better person

to write it than Dan Haywood. Over the years that I have known him,

he continues to astound me with the speed at which he acquires, inte-

grates, and deploys new ideas and new technologies: he reminds me

of that scene in The Matrix where Trinity, with agents in hot pursuit,

runs toward an empty helicopter, calling her colleague Tank on her

mobile phone and demanding to have the skill for flying a helicopter

downloaded immediately! (Dan doesn’t like the analogy.)

I have worked extensively with Dan at the Department of Social and

Family Affairs in Ireland—one of the largest and purest applications

both of Naked Objects and of domain-driven design anywhere in the

world. During that time, Dan has not only helped formulate many best

practices but has also made significant contributions to the technology

itself. Much as I would have liked to see Dan’s work published sooner,

now that we have the book, I can say that it was definitely worth the

wait.

Richard Pawson

Henley-on-Thames, UK, 2009

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=12

Acknowledgments
First thanks should go to Richard Pawson and Robert Matthews for,

respectively, conceiving the Naked Objects pattern and for implement-

ing it in the Naked Objects framework. I’ve been working with Richard

and Rob since meeting them in 2002, and we are still learning from

each other.

I must also thank all those at the Irish government’s Department of

Social and Family Affairs (DSFA). Back in 2004, the DSFA gave the go-

ahead for the development of a major application for the administration

of state benefits, running on Naked Objects. Developed jointly by Bear-

ing Point Ireland and Naked Objects Group Limited, the system went

fully live in 2006 and is now the strategic platform for all future ben-

efits administration in the department. In the process, we’ve learned

a lot about large-scale domain-driven design and how Naked Objects

makes this achievable, but we couldn’t have done so without DSFA’s

original commitment to the project.

My deep thanks to my editor, Susannah Pfalzer, who has worked tire-

lessly and patiently to help me tighten up and focus this book on the

stuff that matters. Thanks also to Dave Thomas and Andy Hunt for

publishing me; the Pragmatic Bookshelf is the ideal vehicle for a book

such as this.

Thanks too of course to the reviewers of the book: Gojko Adzic, George

Ball, Aidan Coughlan, Eelco Hillenius, Kevin Gisi, Dave Klein, Robert

Matthews, Richard Pawson, Sebastián Slutzky, Jeremy Sydik, Phil

Wills, and Eoin Woods. Your feedback was invaluable!

Finally, my love and thanks to my wonderful wife, Sue, and beauti-

ful daughter, Phoebe. I couldn’t have done this without your love and

support.

Prepared exclusively for ALESSANDRO CAROLLO

Preface
There’s no doubt that writing enterprise applications is hard. To bring

the thing together, you must master numerous technologies: frame-

works to handle presentation, APIs to deal with persistence, yet more

technology for remoting and authentication. . . the list goes on. Yet none

of this matters to the business users asking for the system in the first

place.

Domain-driven design is an approach to building application software

that focuses on the bit that matters in enterprise applications: the core

business domain. Rather than putting all your effort into technical con-

cerns, you work to identify the key concepts that you want the applica-

tion to handle, you try to figure out how they relate, and you experiment

with allocating responsibilities (functionality). Those concepts might be

easy to see (Customers, Products, Orders, and so on), but often there are

more subtle ones (Payable, ShippingRecipient, and RepeatingOrder) that

won’t get spotted the first time around. So, you can use a team that con-

sists of business domain experts and developers, and you work to make

sure that each understands the other by using the common ground of

the domain itself.

Even with your domain experts’ help, building these domain models

isn’t always that easy. You need to be precise as to what the domain

concepts actually mean, but that’s easier said than done, especially

if you’re automating previously manual business processes. But if you

can develop a deep and insightful model, then the benefits can be enor-

mous. Not only will it deliver benefits to the business (reduced opera-

tional costs and the like), it will also be easy to extend and maintain

(reducing time to market for future requirements).

So, there’s your challenge: how do you bring the domain model to life

so that it can be checked, verified, and refined? Static UML diagrams

don’t hack it; they are too technical for business users to understand.

Prepared exclusively for ALESSANDRO CAROLLO

WHO THIS BOOK IS FOR 15

No, what a nontechnical audience needs to see is rapidly developed

working prototypes. And Naked Objects, an open source Java frame-

work, gives you this capability. You write the classes that make up the

domain model as plain old Java objects (pojos). Naked Objects then

automatically renders those domain classes in an object-oriented user

interface, running either as a rich client app or (with no extra coding)

as a web application. You run the application using whichever user

interface the business users find most comfortable.

With Naked Objects taking care of the presentation layer for you, you

can focus solely on the domain. If you make a change to a domain

class, you’ll see the change immediately when you run the application,

and that gives you the feedback loop you need for experimentation.

You work with the business’s domain experts trying out new ideas;

if they come to naught, then it will have cost you little in terms of

development effort, and your compensation will be a deeper knowledge

of the domain.

This book is about using Naked Objects for domain-driven design, but

it’s not just about building prototypes. You will also see how Naked

Objects defines a straightforward architecture for your domain-driven

applications, making it easy to get started. You use Naked Objects’

integration with the FitNesse acceptance testing framework, allowing

you and your domain experts to work together to specify your applica-

tion’s functionality through scenario tests. And you see how to deploy

a domain model as a fully working application using either Naked Ob-

jects’ own object-oriented user interfaces or a custom user interface.

Who This Book Is For

This book is mostly targeted at developers working on enterprise appli-

cations, especially those working on line-of-business operational appli-

cations. When I say “developer,” I use a broad brush. Naked Objects

uses Java as its language, so if you have a Java background, then

you’ll be right at home. However, even if you typically use only the .NET

languages or another object-oriented language, you’ll find nothing too

complex in the code here.1

1. If you are a .NET developer, you might like to know there is a commercial version

of Naked Objects offering broadly equivalent functionality. See http://www.nakedobjects.net

for further details.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.nakedobjects.net
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=15

HOW THE BOOK IS ORGANIZED 16

More specifically, this book is for developers who also do business anal-

ysis, or at least work with business analysts; after all, domain-driven

design requires an interest in thinking about domains. If your job title

is plain business analyst, then you’ll get a lot out of this book too—so

long as the thought of some code doesn’t scare you. And if you are a

database specialist, you’ll also find something of interest; there’s a lot of

common ground between logical data modeling and domain modeling.

If you are a project manager, you’ll find this book opens up some new

approaches for your development process. In particular, you might be

interested in the ability to rapidly prototype (which takes in require-

ments capture), in writing scenario tests, and in the various deployment

options that Naked Objects makes available. And if you were originally

from a development background, you might also fancy the chance to do

a bit of coding again!

How the Book Is Organized

This book is not a theoretical discourse on how to practice domain-

driven design; instead, it’s a “wade in there and get your hands mucky”

sort of book. It breaks down into three parts.

In the first part, Tools, you’ll learn the building blocks for develop-

ing domain-driven applications. You’ll use Naked Objects to build up

a single domain application, learning the conventions that make up

the Naked Objects programming model as you go.

In the second part, Techniques, you’ll look at ways to develop deeper

insight within your domain models and to ensure that your domain

applications are maintainable. You will lean on existing “prior art” for

building object-oriented applications, but always from our domain-

driven design/Naked Objects perspective. You’ll also learn about two

different ways to test your domain-driven applications.

In the third part, Practices, you’ll explore the development process and

deployment options. At one end of the spectrum, you’ll look at using

Naked Objects just as a design tool within development; at the other,

you’ll look in detail at how to integrate and deploy Naked Objects appli-

cations into production (taking in custom web interfaces, persistence,

and enterprise integration). We finish up by looking at the various ways

to deploy your domain-driven application and briefly discuss one of

the largest domain-driven applications (600+ users), built with and

deployed on Naked Objects.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=16

CASE STUDY AND EXERCISES 17

There are also several reference appendixes, covering the Naked Objects

programming model and other resources.

The book has an accompanying website from which you can download

(as a single ZIP) the various code snippets scattered throughout the

book.2 The code download also includes the various versions of the

example case study (discussed in the next section) as we build it up

through the chapters.

By the end of the book your hands should be well and truly dirty! You

will have seen the power of the Naked Objects approach for building

domain-driven applications firsthand and will be ready to put it into

use for your own domain applications.

Case Study and Exercises

Throughout the book you’ll be using a single case study called CarServ,

a vehicle-servicing application for a garage. CarServ suits a domain-

driven approach because it’s an enterprise system supporting core

operational business requirements. It also suits our purposes as an

example to learn from because it’s a domain that most can relate to.

As each new idea is introduced, you’ll immediately apply it to CarServ;

and because Naked Objects generates the user interface for you, you’ll

also be able to see it in use. In the first two parts of the book, all the

changes you need are fully described, so you can follow along either at

your computer or in your head. As already mentioned, though, mul-

tiple versions of CarServ are available for download from the book’s

website. Each of these are self-contained and runnable without refer-

ence to previous versions, so you can pick up the story at any point. In

Part III, because we are integrating with some other technologies, the

CarServ downloads already have the necessary changes made, so you

can download them and try them out; all the relevant code snippets are

also in the book if you’re not at your computer.

CarServ also acts as a good basis for structuring your own applications.

One of the things that domain-driven design requires is a strict layered

architecture, but figuring out how to put this together can be a chal-

lenge. CarServ demonstrates how Naked Objects provides a standard

approach for the domain layer. As mentioned previously, the chapters

2. http://www.pragprog.com/titles/dhnako

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.pragprog.com/titles/dhnako
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=17

CONVENTIONS 18

in Part III explain how to integrate the domain layer with the other lay-

ers of the architecture.

At the end of every chapter are a number of exercises. Many of these ask

you to enhance CarServ—for example, by adding an additional type of

business rule. But the point of the book isn’t about developing CarServ;

it’s so you can learn the skills to develop your own domain applications.

Therefore, an ongoing exercise is for you to select an application and

build it up alongside the case study; I guarantee it’ll be worth your time.

Conventions

You’ll see a few conventions throughout this book:

• Short sidebars (with a “DDD” icon) briefly explain domain-driven

design terminology. Since this is a practical book rather than the-

oretical, use these sidebars as jumping-off points to further read-

ing. I’ve used the same terms for domain-driven design as Eric

Evans does in his book, Domain-Driven Design [Eva03].

• You’ll occasionally see sidebars with a “Joe Asks” icon. Joe is the

Pragmatic Bookshelf’s mythical developer, and he likes to ask the

odd question related to the text.

• Bold italics indicate when there is a version of the CarServ case

study. You’ll find these in the code download ZIP under the cases-

tudy directory.

• Each code snippet appears with a little gray lozenge above it, spec-

ifying its location in the code download ZIP. This should save you

typing if you are following along. And if you have bought the PDF

version of the book, clicking the link goes directly to the code.

Before we start, let me just provide you with some further pointers.

Further Resources

This book will give you a great start toward writing fully fledged domain-

driven applications. However, it’s not the be-all and end-all; you should

know about some other places. Since this is a “PragProg” book, there

are the usual resources:

• The book’s website is at http://www.pragprog.com/titles/dhnako.

• The book’s errata is at http://www.pragprog.com/titles/dhnako/errata.

• The discussion group is at http://forums.pragprog.com/forums/106.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.pragprog.com/titles/dhnako
http://www.pragprog.com/titles/dhnako/errata
http://forums.pragprog.com/forums/106
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=18

FURTHER RESOURCES 19

In addition, I’ve put together a blog that aims to supplement and extend

the ideas in this book:

• http://danhaywood.com, “the blog of the book”

Finally, there are the websites for Naked Objects and its sister projects:

• Naked Objects is hosted via http://nakedobjects.org.

• Scimpi is hosted at http://scimpi.org.

• The sister projects that we use in some of the later chapters are

collectively signposted from http://starobjects.org.

So, that’s about it. I’m eager to get started, and I hope you are too. In

Chapter 1 we’re going to look at some of the key concepts of domain-

driven design and see them in action by running our first Naked Objects

application. See you there!

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://danhaywood.com
http://nakedobjects.org
http://scimpi.org
http://starobjects.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=19

Part I

Tools

Prepared exclusively for ALESSANDRO CAROLLO

Chapter 1

Getting Started
To stop himself from procrastinating in his work, the Greek orator

Demosthenes would shave off half his beard. Too embarrassed to go

outside and with nothing else to do, his work got done.

We could learn a lesson or two from old Demosthenes. After all, we

forever seem to be taking an old concept and inventing a new technology

around it (always remembering to invent a new acronym, of course)—

anything, it would seem, instead of getting down to the real work of

solving business problems.

Domain-driven design (hereafter DDD) puts the emphasis elsewhere,

“tackling complexity in the heart of software.” And Naked Objects—an

open source Java framework—helps you build your business applica-

tions with ease. No beard shaving necessary, indeed.

In this chapter, we’re going to briefly describe the key ideas underlying

DDD, identify some of the challenges of applying these ideas, and see

for ourselves how Naked Objects makes our task that much easier.

1.1 Understanding Domain-Driven Design

There’s no doubt that we developers love the challenge of understanding

and deploying complex technologies. But understanding the nuances

and subtleties of the business domain itself is just as great a chal-

lenge, perhaps more so. If we devoted our efforts to understanding and

addressing those subtleties, we could build better, cleaner, and more

maintainable software that did a better job for our stakeholders. And

there’s no doubt that our stakeholders would thank us for it.

Prepared exclusively for ALESSANDRO CAROLLO

THE ESSENTIALS OF DDD 22

A couple of years back Eric Evans wrote his book Domain-Driven Design

[Eva03], which is well on its way to becoming a seminal work. In fact,

most if not all of the ideas in Evans’ book have been expressed before,

but what he did was pull those ideas together to show how predom-

inantly object-oriented techniques can be used to develop rich, deep,

insightful, and ultimately useful business applications.

So, let’s start off by reviewing the essential ideas of DDD.

1.2 The Essentials of DDD

There are two central ideas at the heart of domain-driven design. The

ubiquitous language is about getting the whole team (both domain ex-

perts and developers) to communicate more transparently using a

domain model. Meanwhile, model-driven design is about capturing that

model in a very straightforward manner in code. Let’s look at each in

turn.

Creating a Ubiquitous Language

It’s no secret that the IT industry is plagued by project failures. Too

often systems take longer than intended to implement, and when finally

implemented, they don’t address the real requirements anyway.

Over the years we in IT have tried various approaches to address this

failing. Using waterfall methodologies, we’ve asked for requirements to

be fully and precisely written down before starting on anything else. Or,

using agile methodologies, we’ve realized that requirements are likely to

change anyway and have sought to deliver systems incrementally using

feedback loops to refine the implementation.

But let’s not get distracted talking about methodologies. At the end

of the day what really matters is communication between the domain

experts (that is, the business) who need the system and the techies

actually implementing it. If the two don’t have and cannot evolve a

shared understanding of what is required, then the chance of delivering

a useful system will be next to nothing.

Bridging this gap is traditionally what business analysts are for; they

act as interpreters between the domain experts and the developers.

However, this still means there are two (or more) languages in use,

making it difficult to verify that the system being built is correct. If the

analyst mistranslates a requirement, then neither the domain expert

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=22

THE ESSENTIALS OF DDD 23

DDD
in context. . .

Ubiquitous Language

Build a common language between the domain experts and
developers by using the concepts of the domain model as the
primary means of communication. Use the terms in speech, in
diagrams, in writing, and when presenting.

If an idea cannot be expressed using this set of concepts, then
go back and extend the model. Look for and remove ambigu-
ities and inconsistencies.

nor the application developer will discover this until (at best) the appli-

cation is first demonstrated or (much worse) an end user sounds the

alarm once the application has been deployed into production.

Rather than trying to translate between a business language and a

technical language, with DDD we aim to have the business and devel-

opers using the same terms for the same concepts in order to create

a single domain model. This domain model identifies the relevant con-

cepts of the domain, how they relate, and ultimately where the respon-

sibilities are. This single domain model provides the vocabulary for the

ubiquitous language for our system.1

Creating a ubiquitous language calls upon everyone involved in the sys-

tem’s development to express what they are doing through the vocab-

ulary provided by the model. If this can’t be done, then our model is

incomplete. Finding the missing words deepens our understanding of

the domain being modeled.

This might sound like nothing more than me insisting that the develop-

ers shouldn’t use jargon when talking to the business. Well, that’s true

enough, but it’s not a one-way street. A ubiquitous language demands

that the developers work hard to understand the problem domain, but

it also demands that the business works hard in being precise in its

naming and descriptions of those concepts. After all, ultimately the

developers will have to express those concepts in a computer program-

ming language.

1. In Extreme Programming, there is a similar idea called a system of names. But ubiq-

uitous language is much more evocative.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=23

THE ESSENTIALS OF DDD 24

Also, although here I’m talking about the “domain experts” as being

a homogeneous group of people, often they may come from different

branches of the business. Even if we weren’t building a computer sys-

tem, there’s a lot of value in helping the domain experts standard-

ize their own terminology. Is the marketing department’s “prospect”

the same as sales’ “customer,” and is that the same as an after-sales

“contract”?

The need for precision within the ubiquitous language also helps us

scope the system. Most business processes evolve piecemeal and are

often quite ill-defined. If the domain experts have a very good idea of

what the business process should be, then that’s a good candidate for

automation, that is, including it in the scope of the system. But if the

domain experts find it hard to agree, then it’s probably best to leave

it out. After all, human beings are rather more capable of dealing with

fuzzy situations than computers.

So, if the development team (business and developers together) continu-

ally searches to build their ubiquitous language, then the domain model

naturally becomes richer as the nuances of the domain are uncovered.

At the same time, the knowledge of the business domain experts also

deepens as edge conditions and contradictions that have previously

been overlooked are explored.

We use the ubiquitous language to build up a domain model. But what

do we do with that model? The answer to that is the second of our

central ideas.

Model-Driven Design

Of the various methodologies that the IT industry has tried, many advo-

cate the production of separate analysis models and implementation

models. A recent example is that of the OMG’s Model-Driven Archi-

tecture (MDA) initiative, with its platform-independent model (the PIM)

and a platform-specific model (the PSM).

Bah and humbug! If we use our ubiquitous language just to build up

a high-level analysis model, then we will re-create the communication

divide. The domain experts and business analysts will look only to the

analysis model, and the developers will look only to the implementation

model. Unless the mapping between the two is completely mechanical,

inevitably the two will diverge.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=24

THE ESSENTIALS OF DDD 25

DDD
in context. . .

Model-Driven Design

There must be a straightforward and very literal way to repre-
sent the domain model in terms of software. The model should
balance these two requirements: form the ubiquitous language
of the development team and be representable in code.

Changing the code means changing the model; refining the
model requires a change to the code.

What do we mean by model anyway? For some, the term will bring

to mind UML class or sequence diagrams and the like. But this isn’t

a model; it’s a visual representation of some aspect of a model. No, a

domain model is a group of related concepts, identifying them, nam-

ing them, and defining how they relate. What is in the model depends

on what our objective is. We’re not looking to simply model everything

that’s out there in the real world. Instead, we want to take a relevant

abstraction or simplification of it and then make it do something use-

ful for us. Oft quoted and still true is that a model is neither right nor

wrong, just more or less useful.

For our ubiquitous language to have value, the domain model that

encodes it must have a straightforward, literal representation to the

design of the software, specifically to the implementation. Our soft-

ware’s design should be driven by this model; we should have a model-

driven design.

Here also the word design might mislead; some might again be thinking

of design documents and design diagrams. But by design we mean a

way of organizing the domain concepts, which in turn leads to the way

in which we organize their representation in code.

Luckily, using object-oriented (OO) languages such as Java, this is rel-

atively easy to do; OO is based on a modeling paradigm anyway. We

can express domain concepts using classes and interfaces, and we can

express the relationships between those concepts using associations.

So far so good. Or maybe, so far so much motherhood and apple pie.

Understanding the DDD concepts isn’t the same as being able to apply

them, and some of the DDD ideas can be difficult to put into practice.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=25

INTRODUCING NAKED OBJECTS 26

What this book is about is how Naked Objects eases that path by apply-

ing these central ideas of DDD in a very concrete way. So, now would

be a good time to see how.

1.3 Introducing Naked Objects

Naked Objects is both an architectural pattern and a software frame-

work. The pattern was originally conceived and articulated by Richard

Pawson as a means of engaging business stakeholders and experts in

developing more expressive domain-driven applications. Richard dis-

cusses this in more detail in the foreword.

The framework, then, is an implementation of the pattern to help you

rapidly prototype, develop, and deploy domain-driven applications:

• Rapid prototyping comes from the fact that you can develop an

application without spending any time writing user interface code

or persistence code. This creates a very tight feedback loop with

your domain experts.

• The development support comes from the close integration with

developer tools such as Eclipse (for coding), FitNesse (for testing),

Maven (for building and packaging), and Hudson (for continuous

integration).

• The deployment support comes from Naked Objects’ pluggable

architecture allowing different viewers, persistence mechanisms,

and security. In fact, the domain model has no runtime depen-

dencies on the framework, so you can deploy your application on

any Java-based enterprise architecture with any UI you want.

For more on the original philosophy that drove Naked Objects’ develop-

ment, see Richard Pawson and Robert Matthews’ book, Naked Objects

[PM02], and Richard’s later PhD thesis.2

I could talk at length in a highly theoretical fashion about Naked

Objects and how it relates to DDD for the next thirty pages, but what

we’re going to do instead is see Naked Objects in action.

2. http://www.nakedobjects.org/downloads/Pawson%20thesis.pdf

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.nakedobjects.org/downloads/Pawson%20thesis.pdf
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=26

INTRODUCING NAKED OBJECTS 27

Joe Asks. . .

How Does Naked Objects Compare to Other Frameworks?

Many other frameworks promise rapid application develop-
ment and provide automatically generated user interfaces, so
how do they compare to Naked Objects?

Some of most significant are Rails (for the Ruby program-
ming language), Grails (Groovy), and Spring Roo (Java with
AspectJ).∗ These frameworks all use the classic model-view-
controller (MVC) pattern for web applications, with scaffold-
ing, code-generation, and/or metaprogramming tools for the
controllers and views, as well as convention over configuration
to define how these components interact. The views provided
out of the box by these frameworks tend to be simple CRUD-
style interfaces. More sophisticated behavior is accomplished
by customizing the generated controllers.

For many developers, the most obvious difference of Naked
Objects is its deliberate lack of an explicit controller layer; non-
CRUD behavior is automatically made available in its generic
object-oriented UIs. More sophisticated UIs can be built either
by skinning Naked Objects (see Chapter 15, Integrating with
Web Frameworks, on page 281) or by using a newer viewer that
supports easy customization (see Chapter 18, Deploying the Full
Runtime, on page 345).

Like all of these frameworks, Naked Objects can expose
domain objects as a RESTful web service. However, it has some
other tricks you may not find in a typical MVC framework: it sup-
ports client-server (rich-client) deployments as well as on the
Web; it supports non-RDBMS as well as RDBMS object stores,
with an in-memory object store for rapid prototyping; it sup-
ports domain-driven concepts such as values, repositories, and
domain services; it supports agile scenario testing using Fit-
Nesse; and it puts the domain metamodel at the center, allow-
ing the programming model to be redefined.

∗. The frameworks mentioned here are hosted at http://rubyonrails.org/,
http://www.grails.org, and http://www.springsource.org/roo.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://rubyonrails.org/
http://www.grails.org
http://www.springsource.org/roo
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=27

NAKED OBJECTS IN ABOUT FIVE MINUTES 28

1.4 Naked Objects in About Five Minutes

Throughout the book we’re going to be using Naked Objects 4.0 for

Java, an open source framework licensed under Apache License v2.3

All the other products we’re going to use in this book are also open

source with similar nonrestrictive licenses. Without further ado, let’s

get our development environment set up.4

Set Up the Development Environment

Naked Objects is a Java framework, so we need Java 5 or higher in-

stalled along with an IDE. In this book I’m going to be using Eclipse

3.5: it’s extremely capable and freely available. However, there’s nothing

stopping you from using some other IDE.

In addition, we need to set up Maven, one of the most commonly used

tools for building Java software.5 Naked Objects provides a Maven

archetype (a project template) to help get us started, and the case study

we’ll develop through the book builds on this archetype and so is also a

Maven-based project. We won’t be using particularly advanced features

of Maven, but if you are interested in learning more, then take a look

at Maven, The Definitive Guide [Com08].

We also need Maven support in our IDE (or at least the ability to import

Maven projects). In the case of Eclipse, this means installing a plug-

in; if you’re using an IDE other than Eclipse, then make sure it has

equivalent Maven support. Both NetBeans 6.7 onward and IntelliJ IDEA

7.0 onward have out-of-the-box support, so there’s plenty of choice.

And finally, we also need to download the Naked Objects distribu-

tion itself. We don’t need this for the Naked Objects JARs—we’ll get

those courtesy of Maven—but the distribution does include a number

of resources (such as icons) that we will need, along with an example

application that we’re going to try in the next section.

So, do the following:

1. Install Java 5 or 6 from http://java.sun.com. Either the JRE or the

JDK is fine. I used JDK 1.5_014 for this book. Set the JAVA_HOME

environment variable, and update the PATH to include $JAVA_HOME/

bin.

3. http://www.apache.org/licenses/LICENSE-2.0.html

4. If you have any problems setting up or running the application, don’t forget the book’s

forum as a place to get help.
5. Maven is hosted at http://maven.apache.org.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://java.sun.com
http://www.apache.org/licenses/LICENSE-2.0.html
http://maven.apache.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=28

NAKED OBJECTS IN ABOUT FIVE MINUTES 29

2. Download and install Maven 2.0.9 or higher, from http://maven.

apache.org/download.html. The Maven website has instructions on

installing Maven, but it basically amounts to extracting the ZIP,

setting up the M2_HOME environment variable, and updating your

PATH to pick up the mvn.bat or mvn.sh batch file.

3. Download and unzip Eclipse 3.5 or higher, http://www.eclipse.org/

downloads. You can use either the standard distribution or the

full-blown Java EE enterprise distribution.

4. Install the m2eclipse plug-ins into Eclipse, v0.9.7 or higher, http://

m2eclipse.sonatype.org/update. This is an update site from which

Eclipse can download and install the software. If you aren’t an

Eclipse regular, the incantation is: select the Help > Install New

Software menu and then press the Add. . . button to add this site.

5. Download Naked Objects 4.0 from https://sourceforge.net/projects/

nakedobjects/; the file you need is nakedobjects-4.0.0-for-maven.zip

(or whichever is the latest release). Unzip this wherever you want;

I’ll refer to this location as $NO_HOME (though there’s no need to

set an environment variable).

Included in the Naked Objects download are a number of Eclipse tem-

plates that we can use to quickly write short code fragments using Con-

tent Assist (that is, Ctrl + Spacebar). We won’t need these until the next

chapter, but now is a good time to set them up. So, start up Eclipse in

a new workspace, select Window > Preferences > Java > Editor > Tem-

plates, and then select Import. Navigate to the $NO_HOME/resources/ide/

eclipse/templates directory, and select the nakedobjects-templates.xml file.

Finally, hit OK.

Note, by the way, that these templates are effectively stored in the work-

space; if you use File > Switch Workspace, then you’ll need to reim-

port the templates. For easy reference, all the templates are listed in

Appendix B, on page 379. When we get to using them, I’ll also indicate

some of the main ones to use in the text.

OK, let’s test our setup by importing and running a very simple claims-

processing application written using Naked Objects.

Import and Explore a Naked Objects Application

With Eclipse still running, first make sure you are in the Java perspec-

tive (use Window > Open Perspective > Other > Java). Then, use File >

Import > General > Maven Projects, and browse to $NO_HOME/examples/

claims. Hit Enter, and a set of Maven projects should be listed.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://m2eclipse.sonatype.org/update
http://m2eclipse.sonatype.org/update
https://sourceforge.net/projects/nakedobjects/
https://sourceforge.net/projects/nakedobjects/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=29

NAKED OBJECTS IN ABOUT FIVE MINUTES 30

Figure 1.1: The imported dom project

Now hit Finish, and you should be left with a parent project (no suffix)

and five further child projects with various suffices. This is the standard

way that we tend to organize Naked Objects applications:

• The dom (domain object model) is where most of the action is,

containing the domain classes that make up the application.

• The fixture project contains fixtures that provide a working set of

objects for demonstration purposes; we cover this in Chapter 4,

Rapid Prototyping, on page 80.

• The service project provides supporting services to the domain

objects; we cover this mostly in Chapter 8, Isolating Infrastruc-

ture Services, on page 140 and in Chapter 16, Integrating with the

Database, on page 299.

• The commandline project is where we run the application from dur-

ing development (throughout the book).

• The webapp project allows us to deploy the application to a web

container; we use this at the end of the book, in Chapter 18,

Deploying the Full Runtime, on page 345.

Open the dom project, as shown in Figure 1.1. There should be three

concrete classes: Employee, Claim, and ClaimItem. Employees make

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=30

NAKED OBJECTS IN ABOUT FIVE MINUTES 31

Claims, and Claims are made up of ClaimItems. In addition, there are

some interfaces implemented by these domain classes (Approver and

Claimant), as well as some repository interfaces (EmployeeRepository and

ClaimRepository). These are used to look up Employees and, um, Claims;

the implementations are in the services project.

Poke around inside these domain classes. We are of course going to

be covering how to write such classes in detail (starting in Chapter 2,

Identifying the Domain Concepts, on page 41), but for now it should

at easy enough to see that an Employee has a Name and an Approver

property:

Download chapter01/Employee.java

public class Employee extends AbstractDomainObject

implements Claimant, Approver {

// {{ Title

public String title() {

return getName();

}

// }}

// {{ Name

private String name;

@MemberOrder(sequence="1")

public String getName() {

return name;

}

public void setName(String lastName) {

this.name = lastName;

}

// }}

// {{ Approver

private Approver approver;

@MemberOrder(sequence="2")

public Approver getApprover() {

return approver;

}

public void setApprover(Approver approver) {

this.approver = approver;

}

// }}

}

Now here’s the thing: the domain model we’ve been looking at is the

entire application. Fundamentally, writing a Naked Objects application

means writing a domain model, and that’s it.

It’s time to run the application, methinks.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter01/Employee.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=31

NAKED OBJECTS IN ABOUT FIVE MINUTES 32

Figure 1.2: The claims app in the DnD viewer

Run the Application

Naked Objects is so called because it automatically displays the domain

objects in an object-oriented user interface (OOUI). These OOUIs are also

generic because they can display any domain object in a standardized

fashion.

Out of the box, Naked Objects ships with two main OOUI viewers. The

drag-n-drop (DnD) viewer is a rich client intended for client-side deploy-

ment, while the HTML viewer is designed to host your application on the

Web. Let’s look at the DnD viewer first.

In Eclipse, use Run > Run Configurations to bring up the generated

launch configurations. Listed as a Java Application launch configu-

ration should be claims_exploration_dnd.launch (defined in the comman-

dline project). Select this, and then click Run. If using another IDE,

all we are doing is running org.nakedobjects.runtime.NakedObjects with a

command-line option of --type exploration --viewer dnd.

All being well, the DnD viewer should launch, showing the two reposito-

ries as icons. By right-clicking these icons, we can invoke actions on the

repositories to retrieve objects. Once we have an object, we can use it

to navigate to other referenced objects (click/double-click icons), right-

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=32

NAKED OBJECTS IN ABOUT FIVE MINUTES 33

Figure 1.3: The claims app in the HTML viewer

click to invoke actions, and generally have a good old browse around.

We can see the DnD viewer in action in Figure 1.2, on the previous

page.

OK, let’s now run the same application using the HTML viewer. Again,

using Run > Run Configurations, this time select claims_exploration_html.

launch, and click Run. Again, if using another IDE, this is running the

same class with flags of --type exploration and --viewer html.

What Naked Objects will do is run the application on an embedded

Jetty web server, listening on port 8080. If for some reason you need

to use another port number, just edit the nakedobjects.embedded-web-

server.port property in the config/embedded-web-server.properties file in

the commandline project.

Eclipse’s console view should indicate that the server is up and run-

ning. Now start your favorite web browser, and go to http://localhost:8080/

logon.app. You should be logged in automatically and then see links

representing the two repositories; these are the HTML equivalents of

the icons in the DnD desktop view. Click one of these, and then use the

action links to navigate the application as before. We can see the HTML

viewer in action in Figure 1.3.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://localhost:8080/logon.app
http://localhost:8080/logon.app
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=33

HOW NAKED OBJECTS HELPS WITH DDD 34

Try running the two viewers side-by-side. Although they look differ-

ent, they both provide the same functionality, and that functionality is

defined entirely by the domain classes.

We’re going to be using both of these viewers extensively throughout the

book; they are, after all, the default viewers provided by Naked Objects.

I should point out, though, that these aren’t the only viewers available.

In Chapter 18, Deploying the Full Runtime, on page 345, we’ll see a

number of other viewers either developed or in active development. It’s

also possible to use a custom interface; see Chapter 15, Integrating with

Web Frameworks, on page 281.

Before our quick Naked Objects demo, I was asserting that putting DDD

ideas into practice isn’t necessarily that easy but that Naked Objects

eases the path. Now that you’ve seen Naked Objects “in the flesh” (so to

speak!), let’s see how.

1.5 How Naked Objects Helps with DDD

The case for DDD might be compelling, but that doesn’t necessarily

make it easy to do. Let’s take a look at some of the challenges that DDD

throws up and see how Naked Objects helps address them.

DDD Takes a Conscious Effort

Here’s what Evans says about ubiquitous language: “With a conscious

effort by the [development] team the domain model can provide the

backbone for [the] common [ubiquitous] language...connecting team

communication to the software implementation.”

The word I want to pick up on here is conscious. It takes a conscious

effort by the entire team to develop the ubiquitous language. Everyone

in the team must challenge the use of new or unfamiliar terms, must

clarify concepts when used in a new context, and in general must be

on the lookout for sloppy thinking. This takes willingness on the part

of all involved, not to mention some practice.

With Naked Objects, though, the ubiquitous language evolves with

scarcely any effort at all. For the business experts, the Naked Objects

viewers show the domain concepts they identify and the relationships

between those concepts in a straightforward fashion. Meanwhile, the

developers can devote themselves to encoding those domain concepts

directly as domain classes. There’s no technology to get distracted by;

there is literally nothing else for the developers to work on.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=34

HOW NAKED OBJECTS HELPS WITH DDD 35

DDD Must Be Grounded

Employing a model-driven design isn’t necessarily straightforward, and

the development processes used by some organizations positively hin-

der it. It’s not sufficient for the business analysts or architects to come

up with some idealized representation of the business domain and then

chuck it over the wall for the programmers to do their best with.

Instead, the concepts in the model must have a very literal representa-

tion in code. If we fail to do this, then we open up the communication

divide, and our ubiquitous language is lost. There is literally no point

having a domain model that cannot be represented in code. We cannot

invent our ubiquitous language in a vacuum, and the developers must

ensure that the model remains grounded in the doable.

In Naked Objects, we have a very pure one-to-one correspondence be-

tween the domain concepts and its implementation. Domain concepts

are represented as classes and interfaces, easily demonstrated back to

the business. If the model is clumsy, then the application will be clumsy

too, and so the team can work together to find a better implementable

model.

Abstract Models Are Difficult to Represent

If we are using code as the primary means of expressing the model,

then we need to find a way to make this model understandable to the

business.

We could generate UML diagrams and the like from code. That will work

for some members of the business community, but not for everyone. Or

we could generate a PDF document from Javadoc comments, but com-

ments aren’t code and so the document may be inaccurate. Anyway,

even if we do create such a document, not everyone will read it.

A better way to represent the model is to show it in action as a working

prototype. As we’ve seen, Naked Objects enables this with ease. Such

prototypes bring the domain model to life, engaging the audience in a

way that a piece of paper never can.

Moreover, with Naked Objects prototypes, the domain model will come

shining through. If there are mistakes or misunderstandings in the

domain model, they will be obvious to all.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=35

HOW NAKED OBJECTS HELPS WITH DDD 36

DDD
in context. . .

Layered Architecture

We partition a complex program into layers, with each layer
cohesive and depending only on the layers below.

In particular, we have a layer dedicated to the domain model.
The code in this layer is unencumbered with the (mostly tech-
nical) responsibilities of the other layers and so can evolve to
tackle complex domains as well as simple ones.

Layered Architectures Are Expensive and Easily Compromised

DDD rightly requires that the domain model lives in its own layer within

the architecture. The other layers of the application (usually presenta-

tion, application, and persistence) have their own responsibilities, and

are completely separate.

However, there are two immediate issues. The first is rather obvious:

custom coding each of those other layers is an expensive proposition.

Picking up on the previous point, this in itself can put the kibosh on

using prototyping to represent the model, even if we wanted to do so.

The second issue is more subtle. It takes real skill to ensure the correct

separation of concerns between these layers, if indeed you can get an

agreement as to what those concerns actually are. Even with the best

intentions, it’s all too easy for custom-written layers to blur the bound-

aries and put (for example) validation in the user interface layer when it

should belong to the domain layer. At the other extreme, it’s quite pos-

sible for custom layers to distort or completely subvert the underlying

domain model.

Because of Naked Objects’ generic OOUIs, there’s no need to write the

other layers of the architecture. And as we’ve seen, this makes pro-

totyping cheap. But more than that, there will be no leakage of con-

cerns outside the domain model. All the validation logic must be in the

domain model because there is nowhere else to put it.

Moreover, although Naked Objects does provide a complete runtime

framework, there is no direct coupling of your domain model to the

framework. That means it is very possible to take your domain model

prototyped in Naked Objects and then deploy it on some other J(2)EE

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=36

THE BIG PICTURE 37

architecture, with a custom UI if you want. Naked Objects guarantees

that your domain model is complete.

Naked Objects Extends the Reach of DDD

Domain-driven design is often positioned as being applicable only to

complex domains; indeed, the subtitle of Evans book is Tackling Com-

plexity in the Heart of Software. The corollary is that DDD is overkill

for simpler domains. The trouble is that we immediately have to make

a choice: is the domain complex enough to warrant a domain-driven

approach?

This goes back to the previous point, building and maintaining a lay-

ered architecture. It doesn’t seem cost effective to go to all the effort of

a DDD approach if the underlying domain is simple.

However, with Naked Objects, we don’t write these other layers, so we

don’t have to make a call on how complex our domain is. We can start

working solely on our domain, even if we suspect it will be simple. If it

is indeed a simple domain, then there’s no hardship, but if unexpected

subtleties arise, then we’re in a good position to handle them.

If you’re just starting out writing domain-driven applications, then

Naked Objects should significantly ease your journey into applying

DDD. On the other hand, if you’ve used DDD for a while, then you

should find Naked Objects a very useful new tool in your arsenal.

In this chapter we’ve discussed DDD in the context of a layered archi-

tecture. We’re going to finish off this chapter with a refinement of that

idea, which moreover will act as a road map to the rest of the book.

1.6 The Big Picture

A few years ago Alistair Cockburn reworked the traditional layered

architecture diagram and came up with the hexagonal architecture, as

shown in Figure 1.4, on the next page.6

What Cockburn is emphasizing is that there’s usually more than one

way into an application (what he called the user-side’ ports) and more

than one way out of an application too (the data-side ports). This is very

similar to the concept of primary and secondary actors in use cases: a

6. http://alistair.cockburn.us/Hexagonal+architecture. Another similar (same?) pattern is the

onion architecture; see http://jeffreypalermo.com/blog/the-onion-architecture-part-3/.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://alistair.cockburn.us/Hexagonal+architecture
http://jeffreypalermo.com/blog/the-onion-architecture-part-3/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=37

THE BIG PICTURE 38

Remoting

Protocols

External

Web Service

RESTful

Web Service

In-memory

Access
Persistence

Messaging

Domain

Model

Figure 1.4: The hexagonal architecture emphasizes multiple implemen-

tations of the different layers.

primary actor (often a human user but not always) is active and initi-

ates an interaction, while a secondary actor (almost always an external

system) is passive and waits to be interacted with.

Associated with each port can be an adapter (in fact, Cockburn’s alter-

native name for this architecture is ports and adapters). An adapter is

a device (piece of software) that talks in the protocol (or API) of the port.

Each port could have several adapters.

Naked Objects maps very nicely onto the hexagonal architecture. As

shown in Figure 1.5, on the following page, most of the user-side adapters

(that is, viewers) run in the same memory space as the domain layer

and so (using Cockburn’s terminology) access the domain layer through

an in-memory port. However, rich client/desktop-based viewers such

as the DnD viewer can also access the domain layer using a remot-

ing protocol port. Naked Objects also supports RESTful web services,

which I’ve drawn as an adapter, but one could also think of it as an

implementation of a third port providing access to other non-Java on

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=38

THE BIG PICTURE 39

in-memory service

persistence

DnD

viewer

RCP

viewer

HTML

web viewer

Scimpi
web viewer

3rd party
(Wicket)

FitNesse

Headless

viewer

RESTful

web service

ESB

inbound

In-memory
object store

XML

object store

JPA

object store

Service impl
(app-specific)

ESB

outbound

1~18

18

8

1~18

18

15

12

15

17

17

1~18

15

15

17

Domain

Model

a
p
p
li
ca

ti
o
n
 l
a
y
e
r

8

9~11

remoting

Figure 1.5: The hexagonal architecture for Naked Objects

the user side. An inbound adapter from an enterprise service bus (ESB)

could also consume events from any other system in the enterprise.

For the data side, we are mostly concerned with persisting domain

objects to some sort of object store; this is the persistence port. We

might also invoke services; the implementation of these services is spe-

cific to the application. These could, for example, call out to an external

web service. Alternatively, the service could be a generic mechanism

to publish events asynchronously onto an ESB, removing any runtime

dependency between our application and the external system.

Doing double duty, Figure 1.5 is a road map for the book; as you might

have guessed, the overlaid numbers correspond to the chapters where

that component is discussed. As you would expect, much of the book

(most of the chapters in Parts I and II) is focused on the domain model.

The chapters in Part III focus more on the adapters (viewers and object

stores) that interact with the domain model.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=39

THE BIG PICTURE 40

Coming Up Next

In this chapter, we talked about the two central ideas of domain-driven

design, that of the ubiquitous language and of a model-driven design.

We also got our development environment up and running and used

it to run our first Naked Objects application. We then looked at how

Naked Objects addresses several issues that you might otherwise strug-

gle with when applying DDD and recast the traditional layered archi-

tecture instead as the hexagonal architecture.

This is very much a learning-by-doing book. Throughout, we’re going

to be developing our own domain application as a single case study, so

in the next chapter we’re going to start at the beginning, identifying the

main concepts of its domain. See you there.

Exercises

In each chapter of the book there is an “Exercises” section like this,

where I’ll be asking you to implement the techniques covered in the

chapter text.

In addition to the case study in the main text, you might want to develop

your own application alongside, something that’s close to your heart.

So, get your thinking hat on and decide what you’d like to implement

as your first Naked Objects (and perhaps domain-driven design) appli-

cation. In the next chapter’s exercises, you’ll be in a position to start

implementing it.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=40

Chapter 2

Identifying the Domain Concepts
The domain model is at the heart of all domain-driven applications,

capturing the key domain concepts as classes or as responsibilities of

those classes. Our goal is to make the domain model into the ubiquitous

language that the business domain experts and the IT development

team can use to communicate with each other.

But we need a domain to work on. So, allow me to introduce. . .

2.1 Introducing CarServ

CarServ is an application to allow the service manager to manage car

servicing for a garage. Even if you don’t own a car, it’s a domain that

we can all relate to pretty easily. It’s a good idea to have some sort of

domain vision statement, so here’s one to start off with:

CarServ should enable the service manager to record Customers and

their Cars and to track the Services performed on the Cars. This infor-

mation will be used for billing, service reminders, and reordering parts.

DDD
in context. . .

Domain Vision Statement

A domain vision statement describes how the domain model
serves its stakeholders interests, in other words, its “value propo-
sition.” It provides a focus for development at project initiation.

Prepared exclusively for ALESSANDRO CAROLLO

INTRODUCING CARSERV 42

Working with the Case Study

This is a hands-on book, so download the case study from the
book’s website, and follow along on your computer if possible.∗

There are at least two versions of the case study per chapter
(as at the beginning of the chapter and as at the end), some-
times more. Whenever there’s a version to download, you’ll
see it in parentheses. For example, (chapter03-02) refers to the
casestudy/chapter03-02 directory in the extracted ZIP.

In Parts I and II, you should be able to start with a version and
then follow the guidance in the text to reach the objective.
In Part III—when we look in detail at some complex integration
and deployment issues—I take a slightly different approach: the
case study versions tend to have the changes already made,
and the text picks up on the salient points. That’s because for
these chapters I expect you’ll almost certainly want to look at
some working code to see how to do likewise for your own
domain applications.

To pick up the story at any point, import it into Eclipse using
File > Import and then General > Maven Projects. Specify the
chapterXX-XX directory as the root directory, refresh, and then
click Finish.

∗. http://www.pragprog.com/titles/dhnako

We’re going to be using CarServ throughout the book to develop a

domain-driven application using the Naked Objects framework. Dur-

ing Part I of this book, we’re mostly going to be learning about Naked

Objects’ capabilities, so the number of classes in our domain will be

very modest. Initially, it might also seem a little naive. However, devel-

oping domain applications is an exploration process, with the domain

experts our coexplorers. There’s nothing wrong with building up the

domain model piecemeal.

In Part II we’ll be deepening the domain, so things will get a little richer.

Here we’ll introduce a number of techniques and patterns, as well as

learn how to test applications using scenario tests. In Part III, we’ll

discuss development processes and reflect on how the tools and tech-

niques can be brought to play within real-world development. And then

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.pragprog.com/titles/dhnako
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=42

GETTING READY 43

Joe Asks. . .

What’s a Maven Archetype?

Maven archetypes are effectively templates for creating
Maven projects. They typically generate some example code,
and they always generate the Maven-specific pom.xml file that
(among other things) defines the classpath and specifies how
the code should be compiled, tested, and packaged.

we’ll see how to integrate and deploy our CarServ domain model with a

number of technologies.

That said, CarServ is always going to be a toy application. We’re not

actually going to be consulting real domain experts as we build CarServ,

and in any case I doubt you bought this book to learn about the vehi-

cle servicing domain. We do discuss the development process and the

importance of involvement with domain experts in Chapter 13, Devel-

oping Domain Applications, on page 253, and by that stage in the book

you’ll be seeing how Naked Objects lets us genuinely work with domain

experts. Meanwhile, CarServ gives us a familiar context to explore new

ideas and learn new skills; you can then try out your skills in the book’s

exercises as you develop your own domain applications.

For this chapter, our objectives are to get to grips with the domain,

identify and name our key domain classes, and capture a number of

their properties. But before we do that, we need somewhere to put our

model.

2.2 Getting Ready

First off, if you haven’t yet set up your development environment in the

previous chapter, then you’ll need to do so. See Section 1.4, Set Up the

Development Environment, on page 28 for instructions.

As already mentioned, Naked Objects provides a Maven archetype to

create an initial project structure. We can use this either at the com-

mand line or within Eclipse; let’s look at Eclipse first.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=43
v@v
Text Box
Download at WoweBook.com

GETTING READY 44

Figure 2.1: Eclipse lets us create a Naked Objects project using Maven.

Generating the CarServ Projects Within Eclipse

In Eclipse, use File > New > Maven Project to bring up a wizard. Skip

to the second page, and make sure that the Nexus Indexer catalog is

selected. This catalog automatically indexes and searches for arche-

types in the central Maven repository. (It can take several minutes

to download the first time around—see the Updating Indexes task in

Eclipse’s Progress view—so if you are impatient, you can always gener-

ate from the command line, described in the next section.)

When Nexus is ready, choose the latest version of the org.nakedobjects:

application-archetype archetype, as shown in Figure 2.1. Hit Next, and

on the next page, enter the following:

• A group ID of com.pragprog.dhnako (or anything else, but I’ll use

this domain name throughout)

• An artifact ID of carserv

• A version of 0.0.1-SNAPSHOT (the default)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=44

CREATING THE DOMAIN CLASSES 45

The “SNAPSHOT” suffix is a Maven convention, indicating that the

code is not yet released.

• A package of com.pragprog.dhnako.carserv

Hit Finish, and the projects should be created and structured the same

as the claims project from the previous chapter.

Generating the CarServ Projects from the Command Line

As mentioned earlier, we can alternatively generate the projects from

the command line:

Download chapter02/mvn-archetype-generate.session

$ mvn archetype:generate \

-D archetypeGroupId=org.nakedobjects \

-D archetypeArtifactId=application-archetype \

-D archetypeVersion=4.0.0 \

-D groupId=com.pragprog.dhnako \

-D artifactId=carserv

I’ve shown this over multiple lines, but you should type it in as a single

line. We then import the generated projects into Eclipse using File >

Import > General > Maven Projects.

Tidying Up

Whichever way you prefer to create the project, you’ll find that the

archetype automatically generates a single class, DomainObject, in the

carserv-dom project and another, DomainObjectRepository, in the carserv-

service project. Delete these to get us to a nice clean sheet.

The previous steps have also been done in the code download, so if you

prefer, you can just import the relevant version (chapter02-01).

OK, after that preamble, let’s start thinking about CarServ’s domain.

2.3 Creating the Domain Classes

At the heart of our model are the domain classes themselves, so you

will need to spend a little up-front time learning something about the

domain before you start. Meeting with the domain experts and just

talking about their business area is a good starting point, looking out

for jargon, concepts, and terms. Even an hour’s meeting will give you

plenty to go on.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/mvn-archetype-generate.session
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=45

CREATING THE DOMAIN CLASSES 46

Figure 2.2: Initial sketch of the CarServ domain model

You might also be working in a domain where there is formal literature

(the finance industry is an obvious example). So, do some prereading if

you can; it shows some respect to the domain expert and builds some

trust if you are not a complete greenhorn about their domain.

That said, I don’t recommend spending too long on analysis. We’re going

to be getting a domain application up and running very quickly, so the

sooner we start putting prototypes in front of our domain experts, the

sooner they’ll be able to tell us what’s missing or wrong. We should

also start with very concrete classes rather than try to second-guess

inheritance hierarchies and interfaces. We’ll have plenty of opportunity

to generalize as we develop.

With CarServ, I’ve purposefully chosen a simple domain to understand

and for which the concrete classes are pretty easy to spot. So, let’s just

wade right in.

Sketch the Domain

In Figure 2.2, we can see an initial sketch of what I reckon are the

key classes in the CarServ domain: Customer, Car, and Service. Every

Car is owned by a Customer (who can own several Cars), and Cars have

Services. The identity of each of these matters—we can’t just swap one

red Car with another—so they are all entities.

We have the beginnings of a domain model; now is the time to start

converting it into code.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=46

CREATING THE DOMAIN CLASSES 47

DDD
in context. . .

Entity

An entity, also called a reference object, is an object whose
identity must be preserved, principally because its state can
change over time. Classic examples are Customer or Order.

When entities are persisted (for example into an RDBMS), they
are often given a unique ID to preserve their identity across mul-
tiple instantiations.

Name the Classes

For our nascent CarServ application, we have three classes to create:

Customer, Car, and Service. Select the carserv-dom project; then create a

new class in Eclipse (File > New > Class), and specify the following:

• The source folder: carserv-dom/src/main/java (should be the default)

• The package: com.pragprog.dhnako.carserv.dom.customer

• The class: Customer

• The superclass: org.nakedobjects.applib.AbstractDomainObject (more

on this in a moment)

Hit Finish. We should end up with this:

Download chapter02/Customer.java

package com.pragprog.dhnako.carserv.dom.customer;

import org.nakedobjects.applib.AbstractDomainObject;

public class Customer extends AbstractDomainObject {

...

}

Repeat for the other two classes, but put Car in the dom.vehicle sub-

package and Service in a dom.service subpackage.

So, what’s with the AbstractDomainObject superclass? Well, this is part

of the Naked Objects application library (or applib), and using it will

simplify our code a little. The applib also provides a set of annotations

that can be used to extend the semantics of the domain model. We’ll

see some of these in just a moment.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=47

CREATING THE DOMAIN CLASSES 48

I hasten to add, though, that it isn’t necessary to subclass from Abstract-

DomainObject, and you don’t necessarily need to use any annotations

either. We will be doing so within our case study, but that said, your

domain classes can truly be plain old Java objects (pojos) if you want.

Chapter 14, Naked Objects as a Design Tool, on page 271 covers this

topic in more detail.

It’s always important to choose a good name for classes, and in Naked

Objects it will be apparent if we haven’t because that name is going to

appear directly in the UI. If the name we want to use isn’t acceptable

as a Java class name (for example, is a keyword or a name containing

symbols or punctuation), then we can override the inferred name using

the @Named annotation from the applib. Don’t use it otherwise, though;

it erodes the ubiquitous language.

Another annotation you might also want to apply is @DescribedAs. This

allows a longer description of the class to be provided, for example, so

that the viewer can display it as a tooltip or equivalent.

Annotations play a big part in Naked Objects. We’ll be using many of

them as we go through the book, but for the full set, take a look at the

Annotations Reference on page 376.

OK, we’ve defined some classes, so let’s flesh them out a little.

Add Basic Properties

A couple of basic properties will make our entities seem a little more

real. Using the nop (p=property) template (as we imported when we

set up the development environment), add a FirstName property for Cus-

tomer, of type String. You should end up with something like this:

Download chapter02/Customer-FirstName.java

// {{ FirstName

private String firstName;

@MemberOrder(sequence = "1")

public String getFirstName() {

return firstName;

}

public void setFirstName(final String firstName) {

this.firstName = firstName;

}

// }}

You’ll see that a getter and a setter method are both generated for

the property, as well as an instance variable. This is just the standard

JavaBean convention. You might also have noticed the @MemberOrder

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-FirstName.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=48

USING REPOSITORIES TO LOCATE OBJECTS 49

Use Regions for a Bird’s-Eye View

You’ll notice when you use the Eclipse templates that they use
comments to group together class members that represent
each property (or more generally responsibility) of the object.

This convention allows code folding in the editor of the IDE. The
Coffee-Bytes plug-in for Eclipse can be configured so that each
of these regions will fold into a single line.∗

Not everyone is a fan of code folding, but I find it invaluable
to help navigate a large domain class and get a sense of its
responsibilities. If you don’t like it, you’re free of course to adapt
the templates to your preferred coding style.

∗. Coffee Bytes is hosted at http://www.realjenius.com/platform_support.

annotation. This is another of the applib annotations, this time being a

hint to the viewer as to the order to display the fields in the UI.

Go ahead and add some further properties:

• For the Customer class, add a LastName property (String).

• For the Car class, add a RegistrationNumber property (again, String).

• For the Service class, add a BookedIn property and also an Estimate-

dReady property (both of type java.sql.Date).

Now that we’ve defined some classes, let’s think about how the end user

might want to use the application.

2.4 Using Repositories to Locate Objects

The OOUIs provided by Naked Objects purposefully don’t provide wiz-

ards and such; instead, the end user goes straight to the domain object

that has the functionality they need for, well, whatever it is they are

doing.

So, how might our end user want to use the CarServ application; where

would they likely start? Well:

• A customer might call on the phone; the service manager would

want to look them up on the system.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.realjenius.com/platform_support
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=49

USING REPOSITORIES TO LOCATE OBJECTS 50

DDD
in context. . .

Factory and Repository

A factory provides a mechanism that encapsulates the cre-
ation of objects (or possibly graphs of objects). It also decou-
ples the rest of the model from the concrete classes.

A repository provides a mechanism to acquire references to
existing objects. It decouples the rest of the model from the
persistence mechanism of such objects.

• A mechanic working on a car might want to look at its previous

services.

So, most likely the Customer and Car objects are our start points. There

probably isn’t any valid reason to start with a Service, though, because

every Service object belongs to a Car object.

For each of the likely start points—Car and Customer—we create a com-

bined factory and repository class, with which the end user can either

create new objects or locate existing objects. Let’s do this now.

Create and Register the Repository Class

Naked Objects allows us to define classes to act as our factory and

repository. Normally we combine these responsibilities into a single

class; as a consequence, we usually just use the term repository even if

it can also act as a factory.

So, select File > New > Class, and specify the following:

• The source folder: carserv-dom/src/main/java (should be the default)

• The package: com.pragprog.dhnako.carserv.dom.customer

• The class: CustomerRepository

• The superclass: org.nakedobjects.applib.AbstractFactoryAndRepository

Then repeat for CarRepository, but placing it in the vehicle subpackage.

The AbstractFactoryAndRepository is another of our convenience super-

classes from the applib.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=50

USING REPOSITORIES TO LOCATE OBJECTS 51

Next, we need to register these classes with the framework. We do

that by editing the nakedobjects.services property key in the naked-

objects.properties file (in the commandline project). This will already have

some entries from the archetype, so replace them with the following:

Download chapter02/nakedobjects.properties

nakedobjects.services.prefix = com.pragprog.dhnako.carserv.dom

nakedobjects.services = customer.CustomerRepository,\

vehicle.CarRepository

This property tells Naked Objects to do a couple of things. First, it will

instantiate each of these classes as managed singletons. Second, it will

display the repositories as icons on the GUI.1

While we’re here, let’s also comment out the fixtures property key:

Download chapter02/nakedobjects.properties

#nakedobjects.fixtures.prefix= com.pragprog.dhnako.carserv.fixture

#nakedobjects.fixtures=

We’ll be looking at fixtures in Chapter 4, Rapid Prototyping, on page 80.

Adding Behavior to Create and List Objects

Now let’s have both the repositories be able to create a new instance

of their corresponding domain object. For CustomerRepository, then, use

the noft (ft=factory-transient) template (as installed in Section 1.4, Set

Up the Development Environment, on page 28) to add the following:

Download chapter02/CustomerRepository-newCustomer.java

// {{ Create new (still transient) Customer

public Customer newCustomer() {

Customer customer = newTransientInstance(Customer.class);

return customer;

}

// }}

The newTransientInstance() method is inherited from the convenience

superclass and will return a nonpersisted Customer instance (that is,

one that still needs to be inserted into the database). Add a similar

method for the CarRepository to return a Car.

1. Strictly speaking, the repositories are displayed as icons only provided that they

haven’t been annotated as @Hidden and the user has permission to use them. You can

find more about authorization in Chapter 18, Deploying the Full Runtime, on page 345.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/nakedobjects.properties
http://media.pragprog.com/titles/dhnako/code/chapter02/nakedobjects.properties
http://media.pragprog.com/titles/dhnako/code/chapter02/CustomerRepository-newCustomer.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=51

USING REPOSITORIES TO LOCATE OBJECTS 52

At this early stage of development, it’d also be useful to list all the

objects (or rather, those that have been persisted). So, let’s add another

method to CustomerRepository, using the nosa (sa = “search for all”)

template:

Download chapter02/CustomerRepository-allCustomers.java

// {{ all Customers

@Exploration

public List<Customer> allCustomers() {

return allInstances(Customer.class);

}

// }}

The inherited allInstances() method just returns all known instances of

the specified type, while the @Exploration annotation indicates that this

action should be made available only while in exploration mode (more

on modes in Chapter 4, Rapid Prototyping, on page 80). Write a similar

method for CarRepository to return all Cars.

I think we ought to give the application a go. Use Run > Run Configura-

tions. . . , and then under the Java Application node, select NakedObjects

(DnD) or NakedObjects (HTML). With this launch configuration selected,

choose Run. All being well, you should see the application running,

with our two repositories showing as icons, as shown in Figure 2.3, on

the following page. In the DnD viewer, for example, you should now be

able to right-click either of the repositories to create a new, nonper-

sisted Customer or Car. Because it is still transient, it is automatically

rendered with a Save button; clicking this will cause the object to be

persisted. Create and persist a couple more instances of Customer, say;

close their windows; and then retrieve them using allCustomers() (on Cus-

tomerRepository).

Before we move on, let’s just do a little tidying up. It’s a bit strange

in the GUI to see the icons called CustomerRepository and CarRepository.

Better names would probably be Customers and Cars. We can do this

using the @Named annotation, mentioned earlier:

Download chapter02/CustomerRepository-Named.java

import org.nakedobjects.applib.annotation.Named;

@Named("Customers")

public class CustomerRepository extends AbstractFactoryAndRepository {

// code omitted

}

Make this change, and try the application again.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/CustomerRepository-allCustomers.java
http://media.pragprog.com/titles/dhnako/code/chapter02/CustomerRepository-Named.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=52

IDENTIFYING OBJECTS TO THE USER 53

Figure 2.3: Creating a Customer

You’ll have noticed that I haven’t talked at all about setting up any sort

of back-end database. Well, Naked Objects is component-based, and

one of those components is the object store (also called a persistor). By

altering the runtime configuration, we can choose to persist the objects

in an RDBMS, as XML, or indeed just stored in-memory.

The default configuration is to use the in-memory object store. Since

this requires no configuration, it is ideal for rapid development. More-

over, because the objects are stored only in memory, it is also great for

unit testing our domain objects because there is no need to reset the

database to a known state.

Of course, the downside to using the in-memory object store is that the

objects aren’t persisted between runs of your application. We’ll live with

the inconvenience for now, but (just so you know where we’re heading)

we’ll address it in Chapter 4, Rapid Prototyping, on page 80.

OK, so the application works, but it’s hard to distinguish objects or

even the types of objects. It’s time to fix that.

2.5 Identifying Objects to the User

Everything that the end user sees in the OOUI is a representation of an

object or of a collection of objects. To help the user, we emphasize that

objects of the same type do the same thing by associating an icon with

the class’s type. We also help the user distinguish between different

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=53

IDENTIFYING OBJECTS TO THE USER 54

An Icon?! Now?!

I remember clearly my own reaction when I first learned about
Naked Objects; I honestly couldn’t believe it when, having writ-
ten just a tiny bit of code, we were asked to select icons for the
domain objects we had created.

But icons are important—they connect the image-oriented
right side of your brain to the domain object as well as the logi-
cal left side. You start to have a fuller grasp of the concept.∗

They can also be fun. If I don’t have an icon that fits, then I’ll
temporarily choose another one based on a pun or joke. It’s a
good way to start working together with the domain experts.

∗. See Andy Hunt’s Pragmatic Thinking & Learning [Hun08] for similar ideas.

instances of the same type by giving each object a title (a label). Let’s

look at both of these.

Choose Icons

Though not dependent on them, the Naked Objects viewers use icons

to allow us to rapidly distinguish the different types of domain objects.

Some viewers also use icons for the repositories. Usually the icon of a

repository should be the same as the icon of the objects that it creates

or retrieves.

You can use any icons you want, but Naked Objects provides a set

that you are free to use in your own applications. You’ll find these in

$NO_HOME/resources/icon-library. So, let’s copy and rename the following

icons into the carserv-dom project:

From To

hal-icons/32/regular/customer.gif Customer.gif

hal-icons/32/regular/Car.png Car.png

tango-icons/32x32/categories/preferences-system.png Service.png

Naked Objects will automatically match the names of the files with the

class names. We also need icons for the two repositories. Although we

could copy over an icon with the same name as the repository, an alter-

native is to write an iconName() method that returns a string indicating

the image to use.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=54

IDENTIFYING OBJECTS TO THE USER 55

Download chapter02/CustomerRepository-iconName.java

// {{ Identification

public String iconName() {

return "Customer";

}

// }}

Go ahead and make these changes; you can use the noid and noidicon

templates to speed you. Then we’ll move onto the title.

Add a Title

Although an icon is primarily used to distinguish between different

types of objects, we also need to distinguish between different instances

of the same type. Here we use a title—a label for each object. This is just

a method called title() that returns a String, typically built up using key

properties of the object.

Since we already have some suitable properties for each of our domain

classes, we can write our title() methods with no further ado. Using the

noid and noidtitle templates if you want, write a title() method for each of

Customer, Car, and Service. For example:

Download chapter02/Customer-Title.java

// {{ Identification

public String title() {

TitleBuffer buf = new TitleBuffer();

buf.append(getFirstName()).append(getLastName());

return buf.toString();

}

// }}

The TitleBuffer class is just a helper utility provided by the applib that

takes care of adding spaces and similar annoyances. OK, we’re ready for

another try. Run your application, and have a go at creating a Customer.

Then, fill in the properties, and check that the title is updated, as per

Figure 2.4, on the following page. Also, make sure you can create a

customer via the HTML interface.

The icon and the title aren’t the only things we can do that influence

the presentation of our domain objects in the user interface. Let’s look

at some other techniques.

Add Rendering Hints

Earlier, in Section 2.3, Name the Classes, on page 47, we saw that

the @Named annotation can be used to rename classes, and that the

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/CustomerRepository-iconName.java
http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-Title.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=55

IDENTIFYING OBJECTS TO THE USER 56

Figure 2.4: Creating a (titled) Customer

@DescribedAs annotations can be used to provide a tooltip-like descrip-

tion of the class. These annotations can also be applied to the

properties:

Download chapter02/Customer-Members-Named-Annotation.java

@DescribedAs(

"The name given to this customer, or by which he/she is known")

public String getFirstName() { ... }

Another annotation we can apply is @MemberOrder, mentioned ear-

lier. For those classes where there are multiple properties, update the

sequence attribute to specify the relative order that the properties

should appear in the user interface. For example:

Download chapter02/Customer-Members-MemberOrder-Annotation.java

public class Customer ... {

@MemberOrder(sequence="1.2")

public String getFirstName() { ... }

...

@MemberOrder(sequence="1.1")

public String getLastName() { ... }

...

}

This will render the LastName property before the FirstName property. For

the sequence attribute, you can just use numbers, but it also supports

the Dewey decimal format (as used for cataloging in libraries). This cun-

ning plan is so that subclasses can specify where their properties reside

relative to the superclass’s.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-Members-Named-Annotation.java
http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-Members-MemberOrder-Annotation.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=56

IDENTIFYING OBJECTS TO THE USER 57

Joe Asks. . .

Does the Title Need to Be Unique?

There’s no need for the title to be unique, at least not so far
as Naked Objects is concerned. However, it should be unique
enough that the end user can distinguish between different
objects viewed at the same time.

This isn’t something to agonize over, though; your end users will
soon tell you whether they need additional information in the
title.

Another annotation that we can apply to string properties is @Typical-

Length. This is used by the viewer to determine the length of a text field

widget. One further annotation I’ll just mention, again for string prop-

erties, is @MultiLine. Using this, we can specify whether the widget used

should be a text box rather than a text field. For example, suppose we

add a Notes property to Customer:

Download chapter02/Customer-Notes-MultiLine-Annotation.java

import org.nakedobjects.applib.annotation.MultiLine;

public class Customer ... {

...

@MultiLine(numberOfLines = 10, preventWrapping = false)

@MemberOrder(sequence = "1.3")

public String getNotes() { ... }

}

In Figure 2.5, on the following page, we see the effect of the @MultiLine

annotation under the DnD viewer.

It makes sense to add these annotations early on. Although you might

argue they are merely just improving the cosmetics of the user inter-

face, for a nontechnical domain expert’s viewpoint this is often impres-

sive stuff. It does no harm to build a little credibility early on!

Now we have some of the basics out of the way, let’s turn to slightly

more weighty matters and implement some simple business rules.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-Notes-MultiLine-Annotation.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=57

IDENTIFYING OBJECTS TO THE USER 58

Figure 2.5: Effect of the @MultiLine annotation

Joe Asks. . .

Should Annotations Capture UI-Specific Details?

Annotations such as @MemberOrder and @MultiLine influence the
UI but do not otherwise have domain semantics, so it’s reason-
able to ask whether this is right.

Then again, we could equally ask whether it is right for a domain
object to be annotated with JPA annotations such as @Many-

ToOne that capture semantics relating to the persistence layer,
such as whether to lazy load.

Ultimately this is a trade-off: we could separate the presenta-
tion semantics into separate metadata (just as Hibernate does
for persistence with its hibernate.cfg.xml file), and indeed Naked
Objects’ internal architecture does support this. However, it
would give the developer two separate sets of artifacts to keep
in sync. Naked Objects prefers annotations to keep the infor-
mation together.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=58

CAPTURING SIMPLE BUSINESS RULES 59

2.6 Capturing Simple Business Rules

Because we are focusing in this chapter on domain objects’ properties,

we should also think about any business rules associated with those

properties.

In fact, we’ve already started doing this; the very act of deciding on a

datatype for a property (such as Integer or String) constrains the values of

that property. But over and above the datatype, we might have further

business rules, such as only positive numbers, for example, or a date

might be allowed only prior to “today.”

Naked Objects allows us to capture such business rules in two different

ways. Let’s look at each.

Capture Declarative Rules

Our first means of capturing business rules is using annotations. These

are called declarative semantics because they are, well, a declaration of

something that should always be true.

A good example is @MaxLength, indicating the maximum number of

characters for a String property. Every layer of the application will reflect

this characteristic of the property: the viewer’s text field will prevent

more characters than this from being entered, and similarly the object

store will only ever persist this many characters. So, let’s revisit our

string properties and specify @MaxLength for each:

• A maximum length of 30 for Customer’s FirstName.

• Likewise, a maximum of 30 for Customer’s LastName.

• 255 for the Customer’s Notes.

• An appropriate maximum length for the Car’s RegistrationNumber

property. In the United Kingdom where I live, the maximum num-

ber of characters is 7, as it is in the United States, for example.

Another useful declarative annotation that applies to any type of prop-

erty is @Optional. If specified, it means that the object can be persisted

without any value set for that property. If we look at our Customer

and Car objects, then we can see that most properties are mandatory.

However, the Customer’s Notes property should probably be marked as

optional. Go ahead and make this change.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=59

CAPTURING SIMPLE BUSINESS RULES 60

When done, our Notes property, for example, should look like this:

Download chapter02/Customer-Notes-MaxLength-Optional-Annotation.java

@MultiLine(numberOfLines = 10, preventWrapping = false)

@Optional

@MaxLength(255)

@MemberOrder(sequence = "1.3")

public String getNotes() { ... }

Although annotations are simple to apply, if there isn’t an annotation

for the rule you want to specify, then too bad. Naked Objects therefore

also provides a more powerful mechanism.

Capture Imperative Rules

How’s your Latin? Imperator is Latin, broadly meaning “commander,”

and is the root of the French word Empereur and the English word

Emperor.2

And in Naked Objects, an imperative semantic represents a rule that is

implemented programmatically rather than declaratively.

Previously we added the @MaxLength annotation to specify the maxi-

mum number of characters for a Car’s RegistrationNumber. However, the

number of characters might vary by country. If we wanted to deploy our

application to run in different countries, we couldn’t use a declarative

semantic; we need to program the rule instead.

We do this by writing a method for the property with a validate prefix.

This returns a String that—if not null—is taken to be the reason that the

proposed value is wrong. For example, we could validate the registra-

tion number as follows:

Download chapter02/Car-RegistrationNumber-validate.java

public String validateRegistrationNumber(String registrationNumber) {

if (registrationNumber == null) return null;

String country = Locale.getDefault().getCountry();

int length = registrationNumber.length();

if (("US".equals(country) && length > 7) ||

("GB".equals(country) && length > 7) ||

length > 12) { // everywhere else

return "Registration number is too long";

}

return null;

}

2. I double-checked this on the Internet, so it must be right!

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-Notes-MaxLength-Optional-Annotation.java
http://media.pragprog.com/titles/dhnako/code/chapter02/Car-RegistrationNumber-validate.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=60

PROVIDING CHOICES FOR PROPERTIES 61

Figure 2.6: Validating registration numbers

In this particular example, the business logic itself isn’t too tricky to

follow, but much more complex rules could be implemented.

Go ahead and add in this rule; use the nopval template if you want. In

Figure 2.6, we can see the rule in action: the save buttons are disabled,

there is a warning icon against the field, and (inlaid in the figure) there

is a message in the status bar.

Before we wrap up this chapter, there’s just one more thing we could

do to make our application a bit easier to use. Let’s look at this now.

2.7 Providing Choices for Properties

As we saw in the preceding section, sometimes the values that are valid

for a property are restricted. When the set of valid values is relatively

small, then (rather than the end user having to guess what the valid

values might be), we can ask the domain object to return a list of such

values. The Naked Objects viewer uses this information to present the

list of values in a drop-down.

For example, we might want to capture the formal title of a Customer

as a Title property (not to be confused with Naked Objects’ own reserved

title() method) where the range of available values is Mr, Mrs, Ms, and

Miss.

Let’s try this by adding a new Title property in the usual way. Then,

add a new method called choicesTitle() (using the nopcho template), and

complete its implementation like so:

Download chapter02/Customer-TitleProperty-choices.java

public List<String> choicesTitle() {

return Arrays.asList("Mr", "Mrs", "Ms", "Miss");

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-TitleProperty-choices.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=61

PROVIDING CHOICES FOR PROPERTIES 62

Figure 2.7: The choices are displayed as a drop-down list box.

We could also update our Customer’s title() implementation to incorpo-

rate this new Title property:

Download chapter02/Customer-Title-updatedWithTitleProperty.java

public String title() {

TitleBuffer buf = new TitleBuffer();

buf.append(getTitle());

buf.append(getFirstName()).append(getLastName());

return buf.toString();

}

If you run the application, you should see a drop-down list box. In

Figure 2.7, we can see what this looks like in the DnD viewer.

Note that providing a selection of choices does not actually prevent

the user from typing in some other value. So, we should also add a

validateTitle() method. I’ll leave that as an exercise for now.

Coming Up Next

In this chapter, we used Maven to create a project and started popu-

lating it with the domain classes that make up our little CarServ appli-

cation. We have some objects that we can demonstrate to our domain

expert that are identifiable and relevant, look OK in the UI, and even

implement some simple business rules.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter02/Customer-Title-updatedWithTitleProperty.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=62

PROVIDING CHOICES FOR PROPERTIES 63

Right now, though these domain objects are stand-alone, they don’t

have any relationship to each other. So, in the next chapter, we’ll start

relating those domain concepts together.

Exercises

If you have just been reading rather than actually coding, now would

be a good time to load the final CarServ application (chapter02-02), in-

spect the code, and run the application. Note, by the way, that I updated

the banner and some of the CSS for the HTML viewer (in the comman-

dline project under src/main/webapp). I’ve also renamed the launch con-

figurations to exploration#viewer_dnd.launch and exploration#viewer_html.

launch. . . as the case study develops, we’ll be running our application

in other ways, so it’ll help to distinguish them from the outset.

Try adding a validateTitle() method to ensure that only those titles listed

in choicesTitle() may be selected. You could also explore iconName(). We

saw this for repositories, but it works for domain objects too, and more-

over it is dynamic. So, you could change the icon based on the selected

Title if you wanted.

In the previous chapter’s exercise, I suggested you think about an appli-

cation of your own you might want to write. So, why not start it now

and develop it side-by-side with my CarServ one? If you’re not feeling

inspired, try one of these: a to-do list manager, a recipe organizer, a

dinner party planner, an album organizer, or (a perennial favorite) a

library management system.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=63

Chapter 3

Relating Objects Together
In the previous chapter, we made a start on our ubiquitous language for

the CarServ domain. We have three domain classes—Car, Customer, and

Service—with properties, icons, and titles for each. In short, we under-

stand that these are indeed meaningful classes within our domain.

However, in order for our ubiquitous language to be useful for the team,

we need to start linking these concepts together, explaining how they

relate. For example, we want to be able to say that Cars are owned by

Customers and that Cars have Service histories. In terms of code, that

means associating the domain objects that correspond to these domain

concepts.

In this chapter (chapter03-011), we’re going to associate our objects

using both uni- and bidirectional relationships. We’ll also be extending

our ubiquitous language by adding some describing concepts. But let’s

start with relationships.

3.1 Associating Objects

Much of the richness of object-oriented designs comes from the way in

which the objects interact. This is as true for domain objects as it is for

any other type of object.

Some of the key insights that (we hope) we’ll uncover about our domain

objects will revolve around these interactions and associations. For

now, though, we’ll start with very concrete relationships, just as we

did with domain entities.

1. Includes solutions to Chapter 2’s exercises

Prepared exclusively for ALESSANDRO CAROLLO

ASSOCIATING OBJECTS 65

Looking back to the initial sketch of the domain model in Figure 2.2,

on page 46, we can see that the relationships we need are between Car

and its owning Customer, as well as between Service and Car.

Adding Scalar Associations

To add scalar associations between classes, we just use properties,

meaning we can use the same nop template as we used in the pre-

ceding chapter. However, rather than the property’s type being a String

or a java.sql.Date, instead it will be the type of the referenced object. For

instance, the reference from Car to its owning Customer is as follows:

Download chapter03/Car-OwningCustomer.java

private Customer owningCustomer;

@Optional

@MemberOrder(sequence = "1.2")

public Customer getOwningCustomer() {

return owningCustomer;

}

public void setOwningCustomer(final Customer owningCustomer) {

this.owningCustomer = owningCustomer;

}

Add this property now. Note that I’ve made it @Optional so that we can

create Cars without necessarily having to specify who owns them.

When you run your application in the DnD viewer, you should be able

to drag and drop one of your Customers into the slot representing the

Car’s OwningCustomer property. For the HTML viewer, there is no drag

and drop. Instead, first retrieve the object that you want to associate,

so that is “known” to the viewer. When you go to do the association, the

object should appear in the drop-down list.

OK, this works and will do for now, but it is also rather manual and

open to user error. Don’t worry, it’ll get more sophisticated in Chapter 5,

Creating Behaviorally Complete Objects, on page 95.

Now you’ve created a reference from Car to Customer, repeat for Service

and Car. Then, update the title of the Service to include the Car’s regis-

tration number:

Download chapter03/Service-TitleAndCarProperty.java

public class Service extends AbstractDomainObject {

public String title() {

TitleBuffer buf = new TitleBuffer();

buf.append(getCar().getRegistrationNumber())

.append(":", getBookedIn());

return buf.toString();

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Service-TitleAndCarProperty.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=65

ASSOCIATING OBJECTS 66

private Car car;

public Car getCar() { ... }

public void setCar(final Car car) { ... }

...

}

Right, we’re halfway there. We can associate one object with another

single object, but we also need to be able to associate an object with a

whole collection of objects.

Adding Vector Associations

Our Car knows its owning Customer (and Service knows its owning Car).

However, a Customer could own multiple Cars, and Cars undoubtedly

require more than one Service throughout their lifetimes. We need to

manage collections of objects.

Like a property, a collection has a getter and a setter along with some

supporting methods. However, the type of the collection is either a java.

util.List (order preserved, duplicates optionally allowed) or a java.util.Set

(order may or may not be preserved, duplicates not allowed).

To quickly add a collection, we can use either the nocl (collection-list)

or nocs (collection-set) template. Let’s add a list for the Customer-to-Car

relationship:

Download chapter03/Customer-Cars.java

private List<Car> cars = new ArrayList<Car>();

@MemberOrder(sequence = "1.4")

public List<Car> getCars() {

return cars;

}

public void setCars(final List<Car> cars) {

this.cars = cars;

}

When we run the application, we should see that the Customer has a

collection of Cars. In the DnD viewer, you should be able to drag and

drop objects into this collection, and likewise, in the HTML viewer, you

should (once you’ve initially retrieved the object to add) be able to add

new objects from the drop-down. Compare your application against that

shown in Figure 3.1, on the next page.

That’s a big step forward. . . but we’re not done quite yet. For a start, we

need to manually associate the Customer with the Car and then (once

the Car is saved) associate the Car with the Customer. As a consequence,

it is possible to have a Car reference a Customer but not vice versa.

Equally, a Customer can reference a Car, but that Car could refer to

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=66

ASSOCIATING OBJECTS 67

Figure 3.1: Customer’s Cars collection in the DnD viewer

some other Customer. In other words, there is no referential integrity

here.

What we really need to do is ensure that these associations keep in

sync. The most straightforward approach is the mutual registration pat-

tern, whereby the object on one side of the relationship (say Customer)

is responsible for wiring up both associations, and the other (say Car)

just delegates up.2

To accomplish this, we need to add some supporting methods. If a col-

lection has an addToXxx() or a removeFromXxx() method, then the frame-

work will call these rather than simply calling add() and remove() on

the collection returned from the getter. Similarly, if a property has a

modifyXxx() or a clearXxx() method, then these will be called rather than

the setter. This allows us to implement the mutual registration in these

supporting methods.

Let’s make the changes we need. For the Customer’s Cars collection,

use the nocmod template to add new addToCars() and removeFromCars()

methods.

2. For more on the mutual registration pattern, see

http://www.two-sdg.demon.co.uk/curbralan/papers/MutualRegistration.pdf.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.two-sdg.demon.co.uk/curbralan/papers/MutualRegistration.pdf
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=67

ASSOCIATING OBJECTS 68

Download chapter03/Customer-Cars-nocmod.java

public void addToCars(final Car car) {

// check for no-op

if (car == null || getCars().contains(car)) {

return;

}

// associate new

getCars().add(car);

// additional business logic

onAddToCars(car);

}

public void removeFromCars(

final Car car) {

// check for no-op

if (car == null || !getCars().contains(car)) {

return;

}

// dissociate existing

getCars().remove(car);

// additional business logic

onRemoveFromCars(car);

}

protected void onAddToCars(final Car car) {

}

protected void onRemoveFromCars(final Car car) {

}

The implementation generated by this template does the exact same

thing that the framework would otherwise have done. Likewise, for the

Car’s Customer property, use the nopmod template to add supporting

modifyOwningCustomer() and clearOwningCustomer() methods:

Download chapter03/Car-OwningCustomer-nopmod.java

public void modifyOwningCustomer(final Customer owningCustomer) {

Customer currentOwningCustomer = getOwningCustomer();

// check for no-op

if (owningCustomer == null ||

owningCustomer.equals(currentOwningCustomer)) {

return;

}

// associate new

setOwningCustomer(owningCustomer);

// additional business logic

onModifyOwningCustomer(currentOwningCustomer, owningCustomer);

}

public void clearOwningCustomer() {

Customer currentOwningCustomer = getOwningCustomer();

// check for no-op

if (currentOwningCustomer == null) {

return;

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars-nocmod.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer-nopmod.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=68

ASSOCIATING OBJECTS 69

// dissociate existing

setOwningCustomer(null);

// additional business logic

onClearOwningCustomer(currentOwningCustomer);

}

protected void onModifyOwningCustomer(

final Customer oldOwningCustomer,

final Customer newOwningCustomer) {

}

protected void onClearOwningCustomer(

final Customer oldOwningCustomer) {

}

Again, this generated implementation doesn’t change what the frame-

work would have done.

Now we can implement the mutual registration pattern. First, in the Cus-

tomer’s addToCars(), we update both the Customer’s own Cars collection

and also the Car’s reference to the Customer. We replace this:

Download chapter03/Customer-Cars-replaced.java

// associate new

getCars().add(car);

with the following:

Download chapter03/Customer-Cars-Bidir.java

// dissociate arg from its current parent (if any).

car.clearOwningCustomer();

// associate arg

car.setOwningCustomer(this);

getCars().add(car);

In the removeFromCars() method, we have similar functionality to clear

the relationship from both sides, replacing this:

Download chapter03/Customer-Cars-replaced.java

// dissociate existing

getCars().remove(car);

with the following:

Download chapter03/Customer-Cars-Bidir.java

// dissociate arg

car.setOwningCustomer(null);

getCars().remove(car);

Meanwhile, in the Car’s modifyOwningCustomer() method, we simply del-

egate up to the provided Customer (because, as we’ve seen, the Customer

will set up the relationship on both sides).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars-replaced.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars-Bidir.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars-replaced.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars-Bidir.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=69

ASSOCIATING OBJECTS 70

We replace this:

Download chapter03/Car-OwningCustomer-replaced.java

// associate new

setOwningCustomer(owningCustomer);

with the following:

Download chapter03/Car-OwningCustomer-Bidir.java

// delegate to parent to associate

owningCustomer.addToCars(this);

And similarly, in the clearOwningCustomer() method, we delegate to the

current owning Customer to clear the relationship on both sides, replac-

ing this:

Download chapter03/Car-OwningCustomer-replaced.java

// dissociate existing

setOwningCustomer(null);

with the following:

Download chapter03/Car-OwningCustomer-Bidir.java

// delegate to parent to dissociate

getOwningCustomer().removeFromCars(this);

OK, with those edits done, run the application again. This time the

associations stay in sync.

In the generated implementations, note some additional methods: onAd-

dToCars(), onRemoveFromCars(), onModifyOwningCustomer(), and onClear-

OwningCustomer(). These are the places to put any additional business

logic you might need to perform over and above maintaining a bidirec-

tional relationship. If we need to convert a unidirectional relationship

into bidirectional, we can then apply other templates rather than man-

ually edit the code.

For example, the noc-1m template sets up a bidirectional one-to-many

relationship for a collection, and the nop-m1 template sets up a cor-

responding bidirectional many-to-one relationship for a property. We

can find variants, such as bidirectional one-to-one relationships, in

Appendix B, on page 379. All of these templates replace the supporting

methods but leave untouched any hook methods with business logic

you might have added.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer-replaced.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer-Bidir.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer-replaced.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer-Bidir.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=70

ADDING DESCRIBING CONCEPTS 71

In our CarServ domain model, there is another relationship, namely,

Car-to-Service. We already have one direction (from Service back up

to Car). Add a list of Services for a Car, and then (using the mutual

registration pattern) convert it into a bidirectional relationship in the

same way.

We’ve now associated our three main domain objects together. Let’s see

how relationships can further enrich our model.

3.2 Adding Describing Concepts

Our objective is to develop a rich model to act as the ubiquitous lan-

guage for the domain. If this is to succeed, then we should look to

extend that domain model as and when we need to.

There’s very often a reluctance to do this, because by using “traditional”

frameworks, the impact of adding a new domain class to the model

can be quite substantial. For example, using a web framework such as

Struts, you would need to write new web forms, write new controllers,

and develop data transfer objects (DTOs)—all this as well as the domain

model and its back-end database schema. A similar degree of work

would be required if writing a rich client.

When developing in Naked Objects, many of these artifacts just don’t

exist. The (small) cost of having to develop a new domain object is

more than outweighed by the expansion of our ubiquitous language.

The common language with our business means we don’t have to waste

time translating between the actual domain concepts and an incom-

plete domain model that doesn’t adequately capture them.

We can enrich our language by introducing additional domain classes

that describe or are related to the existing classes. Very often proper-

ties start off being defined using simple Strings or ints but then later

become references to full-blown domain classes. And once we have

these classes, we can start to push responsibilities onto them. The

classes introduced are very often read-only—what in RDBMS terms

might be called reference data or standing data. (And by the by, the

term I use for nonreference classes is transactional classes.)

So, let’s introduce some describing objects in our CarServ domain.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=71

ADDING DESCRIBING CONCEPTS 72

Introducing the Title Concept

In Section 2.7, Providing Choices for Properties, on page 61, we added a

Title property to Customer. Our code currently looks something like this:3

private static List<String> TITLES =

Arrays.asList("Mr", "Mrs", "Ms", "Miss");

public List<String> choicesTitle() {

return TITLES;

}

public String validateTitle(final String title) {

if (title == null) return null;

if (!TITLES.contains(title)) {

return "Invalid title";

}

return null;

}

The list of titles that we want to allow is quite restricted: Mr, Mrs, Ms,

and Ms. In other words, it is a well-defined, bounded set. We could

instead create a new domain class (an entity in DDD terms) to represent

this concept. Let’s do so and call it Title (in the customer package):

Download chapter03/Title.java

import org.nakedobjects.applib.annotation.Bounded;

@Bounded

public class Title extends AbstractDomainObject {

}

Note the @Bounded annotation of Title. This tells Naked Objects that

there is only a static, well-defined set of instances and therefore (as for

an enum) likely to be small in number. The viewers use this information

by displaying all instances of the class as a drop-down list.

Update the Title class by adding a Name property (of type String), and

write a title() method using this Name property. Also select an icon from

the icon library.

Then, let’s update the Customer’s Title property to simply be of this type:

private Title title;

public Title getTitle() { ... }

public void setTitle(final Title title) { ... }

3. This assumes you’ve done the exercises at the end of Chapter 2. Download

chapter03-01 if not.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Title.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=72

ADDING DESCRIBING CONCEPTS 73

Also remove the earlier choicesTitle() and validateTitle() methods; they are

about to become defunct.

Now that we have Title as a domain concept, we can give it some respon-

sibilities. One of the exercises for Chapter 2 (implemented in the

chapter03-01 version of the case study) suggested using the icon-

Name() method to dynamically change the icon based on the Title prop-

erty. The best implementation I could come up with was nevertheless

rather clunky:

Download chapter03/Customer-iconName.java

public String iconName() {

if ("Mr".equals(getTitle()))

return "Man";

if ("Mrs".equals(getTitle()))

return "Woman";

if ("Ms".equals(getTitle()))

return "Woman";

if ("Miss".equals(getTitle()))

return "Woman";

return null; // default

}

So, let’s add an IconName property (of type String, with a getter and

setter as usual) to the Title domain class and then refactor Customer:

Download chapter03/Customer-iconName-refactored.java

public String iconName() {

return getTitle() != null? getTitle().getIconName(): null;

}

That’s all very nice, but where does this bounded set of valid Titles come

from? Let’s look at this now.

Setting Up Titles

We’ve said that there are a bounded set of Titles, but it’d be nonsen-

sical to require the user to have to create them; they should exist

already. When we get to production, they will have been seeded into the

database. However, for the moment, we’re using the in-memory object

store, meaning objects are not persisted between runs of the applica-

tion. We therefore need to create a TitlesFixture to populate the object

store and instruct the framework to install the fixture for us as part of

its initialization.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-iconName.java
http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-iconName-refactored.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=73

ADDING DESCRIBING CONCEPTS 74

Because fixtures are not part of the domain model, we put them instead

into the fixture project. So, select the carserv-fixture project and then,

using File > New > Class, specify the following:

• The package name: com.pragprog.dhnako.carserv.fixture.customer

• The name: TitlesFixture

• The superclass: org.nakedobjects.applib.fixtures.AbstractFixture

AbstractFixture is another of the convenience superclasses in the applib.

Modify the class to read as follows:

Download chapter03/TitlesFixture.java

public class TitlesFixture extends AbstractFixture {

public void install() {

createTitle("Mr", "Man");

createTitle("Mrs", "Woman");

createTitle("Ms", "Woman");

createTitle("Miss", "Woman");

}

private void createTitle(final String name, final String iconName) {

Title title = newTransientInstance(Title.class);

title.setName(name);

title.setIconName(iconName);

persist(title);

}

}

The persist() method, inherited from AbstractFixture, saves the object to

the (in-memory) object store.

Then, register in nakedobjects.properties (in the commandline project’s

config directory):

Download chapter03/nakedobjects-fixture-Titles.properties

nakedobjects.fixtures.prefix=com.pragprog.dhnako.carserv.fixture

nakedobjects.fixtures=customer.TitlesFixture

With all that done, run your application again. This time there should

be some Titles to select from automatically.

Now we have that working, but I doubt it seems like a particularly

compelling addition to our ubiquitous language. Let’s add some more

concepts with a little more meat on them.

Introducing the Concepts of Make and Model

Since this is a car-servicing application, one of the concepts that seems

relevant is the make and model of the car. For example, a Ford Focus is

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/TitlesFixture.java
http://media.pragprog.com/titles/dhnako/code/chapter03/nakedobjects-fixture-Titles.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=74

ADDING DESCRIBING CONCEPTS 75

serviced every 12,500 miles, whereas a Toyota Corolla is serviced every

10,000 miles. These are properties of the Car’s Model rather than the

Car itself.

So, have a go at adding the following:

1. Add a Make class (in dom.vehicle package).

Give the Make class a Name property, implement its title() method,

and choose an icon.

Annotate as being @Bounded so that the Make instances appear as

a drop-down. But we should also annotate them as @Immutable.

This makes them noneditable in the viewer and triggers an excep-

tion if there is any attempt to modify them programmatically. Very

often reference data classes are annotated with both @Bounded

and @Immutable.

2. Add a Model class (also in the dom.vehicle package).

Give the Model class a Name property, and, like for Make, imple-

ment its title() method, choose an icon, and add the @DescribedAs

annotation. Also annotate as being @Bounded and @Immutable.

3. Add a bidirectional relationship between Make and Model.

A Make has a collection of Models, and a Model has a reference to

its associated Make.

Because Make and Model are reference data, we will need fixtures for

them. Since the two classes have a bidirectional relationship, the easi-

est approach is to set up both in the same fixture.

Therefore, create a new MakesAndModelsFixture (in the fixture.vehicle pack-

age) to set up Model instances (for example Ford or Toyota), and also

set up Make instances (for example, Ford Focus, Ford Mustang, Toyota

Corolla, Toyota Yaris). The following code will do the job:

Download chapter03/MakesAndModelsFixture.java

public class MakesAndModelsFixture extends AbstractFixture {

public void install() {

Make fordMake = createMake("Ford");

Make toyotaMake = createMake("Toyota");

createModel(fordMake, "Focus");

createModel(fordMake, "Mustang");

createModel(toyotaMake, "Corolla");

createModel(toyotaMake, "Yaris");

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/MakesAndModelsFixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=75

ADDING DESCRIBING CONCEPTS 76

Title

Customer

Service

Car

Model Make

- services1..*

1 - car

- model1

- make

11..*

- models

- cars

1..*1

- owningCustomer

+ ownedEnd

1 - title

Figure 3.2: CarServ with describing concepts

private Make createMake(String name) {

Make make = newTransientInstance(Make.class);

make.setName(name);

persist(make);

return make;

}

private Model createModel(Make make, String name) {

Model model = newTransientInstance(Model.class);

model.setName(name);

make.addToModels(model);

persist(model);

return model;

}

}

Finally, we need to register our new fixture with Naked Objects so that

it is installed when we run the application:

Download chapter03/nakedobjects-fixture-Titles-MakesAndModels.properties

nakedobjects.fixtures.prefix=com.pragprog.dhnako.carserv.fixture

nakedobjects.fixtures=customer.TitlesFixture,\

vehicle.MakesAndModelsFixture

We’re done adding the Make and Model classes, so let’s now add a simple

unidirectional association from Car to Model. In Figure 3.2, we can see

(as a UML class diagram) the new classes in our model. We’ll be able to

exploit this relationship in subsequent chapters. Run the application

again to make sure all is in order.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/nakedobjects-fixture-Titles-MakesAndModels.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=76

CAPTURING BUSINESS RULES FOR COLLECTIONS 77

As already discussed, adding classes that act as describing concepts

extends the vocabulary of our ubiquitous language. As we saw with the

Title’s IconName property, it also enables more natural implementations:

we were able to replace a horrid set of if statements in the original icon-

Name() method with polymorphism. You’ll find much more on patterns

such as this in Part II of the book, by the way.

In the previous chapter, we saw how to validate proposed values for

properties. One thing missing from our toolbox is to perform similar

validation when modifying collections. Let’s look at that now.

3.3 Capturing Business Rules for Collections

You’ll recall that we can specify simple business rules on properties to

restrict the set of values that they can take. In the previous chapter, we

did this for simple value types (such as String); the same approach also

works for properties representing associations between classes.

We can similarly restrict the objects that can be placed in a collection:

• To prevent a new object from being added to a collection, we use a

validateAddToXxx() method (where Xxx is the name of the collection).

• To prevent an existing object from being removed from a collection,

we use a validateRemoveFromXxx() method.

For example, suppose we want to prevent a Customer from owning more

than three Cars. We can do this as follows (using the nocval template):

Download chapter03/Customer-Cars-validate.java

public String validateAddToCars(final Car car) {

return getCars().size() >= 3 ?

"No more than 3 cars per customer":null;

}

public String validateRemoveFromCars(final Car car) {

return null;

}

To try this, create a Customer and then create three Cars, associating

each with the customer. Now add a fourth Car, but don’t associate with

the Customer; just save instead. Now try to add the Car to the Customer’s

collection by dragging and dropping; the viewer should prevent this. In

Figure 3.3, on the next page, we can see what this looks like in the DnD

viewer (I’ve inlaid the validation message that appears in the viewer’s

status bar).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Customer-Cars-validate.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=77

CAPTURING BUSINESS RULES FOR COLLECTIONS 78

Figure 3.3: Validation prevents objects from being added or removed.

However, there’s a bug in this code. Instead of adding the Car to the

Customer, drop the Customer into the Car’s OwningCustomer property slot.

There is no validation for this property, so the modifyOwningCustomer()

method is called, setting up the bidirectional relationship and breaking

our rule. The fix is to add a validateOwningCustomer() method and make

it delegate up to Customer (just as the modifyOwningCustomer() method

does):

Download chapter03/Car-OwningCustomer-validate.java

public String validateOwningCustomer(final Customer owningCustomer) {

if (owningCustomer != null) {

return owningCustomer.validateAddToCars(this);

} else {

// clearing association

if (getOwningCustomer() == null) {

return null;

}

return getOwningCustomer().validateRemoveFromCars(this);

}

}

Now it shouldn’t be possible to associate too many Cars with the Cus-

tomer, no matter which way we approach it.

Coming Up Next

In this chapter, we’ve come a long way in developing a ubiquitous lan-

guage for our little CarServ application. Our domain classes are now

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter03/Car-OwningCustomer-validate.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=78

CAPTURING BUSINESS RULES FOR COLLECTIONS 79

associated together using references and collections, and we’ve seen

how introducing additional relatively simple describing concepts (such

as Title, Make, and Model) extends the language further.

With the ability to add properties and collections to our objects, we

should be able to start validating our domain model with our customer.

To do that, we’re going to need to be able to demonstrate the application

in use with some realistic business data. So, in the next chapter, that’s

what we’ll be focusing on.

Exercises

If you weren’t coding along, load this chapter’s version of CarServ from

the book’s website (chapter03-02), and make sure you understand

how associations and their respective validation are implemented. Also

review the use of fixtures in the nakedobjects.properties file.

As an additional exercise, add a new property to allow a Customer to

specify their favorite Car. Add validation to ensure that they can refer-

ence only one of their own Cars, not some other Customers.

And then, I suspect you’re itching to get back to developing your own

application. Have a go at adding the following:

• A reference property and a collection in a bidirectional relation-

ship.

• A new describing class (like our Title) to represent a concept in the

domain. Create and register a fixture for this describing class, and

annotate it as @Immutable and (possibly) as @Bounded.

• A property from one of the transactional classes to this describing

class.

• Validation of at least one of your reference properties and your

collections.

Then, run your application and admire your work!

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=79

Chapter 4

Rapid Prototyping
As we’ve seen over the past few chapters, Naked Objects allows us to

develop and demonstrate our domain model very quickly, because we

only having to worry about one layer: the domain layer. The framework

takes care of the presentation layer for us, and because we are only

storing objects in-memory, there is no coding needed for the persistence

layer either.

However, we want our prototypes to do more than just demonstrate

some classes; they should tell a story. In the previous chapter, we

learned how fixtures can be used to create an initial set of reference

objects. . . but they can also be used to create transactional objects too.

We can therefore use different fixtures sets for each scenario that we

want to explore, demonstrating the application to our domain experts

in the context of that scenario.

More generally, a fixture in Naked Objects is anything that sets up the

runtime environment in some way. There are a number of other types of

fixtures in addition to those that simply create instances of objects. In

this chapter (chapter04-01), we’ll be looking at all the different fixture

types, and we’ll also see how to organize fixtures. We’ll end up with a

single fixture, CustomerCarsMaintenanceFixture, that we’ll use for much

of the rest of the book; as I say, you’ll normally have one fixture per

scenario being prototyped.

We’ll start off with fixtures that set up the object store.

Prepared exclusively for ALESSANDRO CAROLLO

FIXTURES FOR SETTING UP DOMAIN OBJECTS 81

4.1 Fixtures for Setting Up Domain Objects

From the framework’s viewpoint, there are only object fixtures, but from

our viewpoint, it’s worth splitting them into two:

• First we have reference object fixtures creating instances of read-

only domain classes. Such domain classes can reference each

other but must not (since they are immutable) reference trans-

actional domain classes that get created and deleted. Examples of

such classes in CarServ are Title, Make, and Model.

The reference domain objects are often the same between pro-

totyping and ultimate deployment into production, so developing

such fixtures is a good way of developing the seed scripts to give

to the DBA. Such reference fixtures are typically shared between

scenarios.

• We also have transactional object fixtures that create sets of ob-

jects for a particular scenario. Examples of such classes in Car-

Serv are Customer, Car, and Service.

Unlike reference objects, the transactional objects created are

merely representative for the scenario. We probably would want to

have a few Customers, one with a single Car, one with a few Cars,

and one with maybe no Cars. And for each of those Cars, there

should be differing numbers of Services. However, they ought to

be as realistic as possible: we want to demo an application to our

domain experts that looks credible.

We’ve already had a first look at reference object fixtures in Section 3.2,

Introducing the Title Concept, on page 72. The process for creating sam-

ple transactional objects is exactly the same: we write the fixture class

and then configure the framework to install this fixture for us.

However, the fixtures we’ve written so far have been self-contained. In

contrast, fixtures for transactional objects often need to get hold of an

already persisted object in order to create further objects. For example,

in CarServ, we will need to get hold of a Title before we can create a

Customer, and we will need to get hold of a Customer and a Model in

order to create a Car. If we use AbstractFixture as the fixture superclass

(as we did previously), then we can use one of its helper methods to

locate these dependent objects.

Let’s see this by creating a JoeBloggsCustomerFixture and then a JoeBlog-

gsCarFixture, starting with the Customer first. Since we will most likely

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=81

FIXTURES FOR SETTING UP DOMAIN OBJECTS 82

want to create lots of Customers, create a new AbstractCustomerFixture

class (in the fixture.customer subpackage) as follows:

Download chapter04/AbstractCustomerFixture.java

public abstract class AbstractCustomerFixture extends AbstractFixture {

public abstract void install();

protected Customer createCustomer(

final String titleName,

final String lastName, final String firstName) {

Customer customer = newTransientInstance(Customer.class);

customer.setTitle(findTitle(titleName));

customer.setLastName(lastName);

customer.setFirstName(firstName);

persist(customer);

return customer;

}

protected Title findTitle(final String titleName) {

return firstMatch(Title.class, new Filter<Title>() {

public boolean accept(Title title) {

return title.getName().equals(titleName);

}

});

}

}

The interesting bit here is the call to the inherited firstMatch() method.

Naked Objects will iterate through all known instances and return the

first instance matching the supplied Filter (from the applib). There are

other methods such as allMatches() and uniqueMatch() that work in a

similar way.

Now we can write the JoeBloggsCustomerFixture fixture (again in fixture.

customer):

Download chapter04/JoeBloggsCustomerFixture.java

public class JoeBloggsCustomerFixture extends AbstractCustomerFixture {

public void install() {

createCustomer("Mr", "Bloggs", "Joe");

}

}

Add this to the end of the (comma-separated value for the) naked-

objects.fixtures property key in the nakedobjects.properties configuration

file, and then run your application. You should automatically have a

Joe Bloggs Customer created. (If you don’t, try putting a breakpoint on

the install() method to ensure that the fixture gets called, or look at the

logging messages from the framework itself.)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/AbstractCustomerFixture.java
http://media.pragprog.com/titles/dhnako/code/chapter04/JoeBloggsCustomerFixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=82

FIXTURES FOR SETTING UP DOMAIN OBJECTS 83

We can write an AbstractCarFixture and JoeBloggsCarsFixture similarly. Let

us do AbstractCarFixture first:
Download chapter04/AbstractCarFixture.java

public abstract class AbstractCarFixture extends AbstractFixture {

public abstract void install();

protected Car createCar(

final Customer customer, final Model model,

final String registrationNumber) {

Car car = newTransientInstance(Car.class);

car.modifyOwningCustomer(customer);

car.setModel(model);

car.setRegistrationNumber(registrationNumber);

persist(car);

return car;

}

protected Make findMake(final String name) {

return firstMatch(Make.class, new Filter<Make>() {

public boolean accept(Make make) {

return make.getName().equals(name);

}

});

}

protected Model findModel(final Make make, final String name) {

return firstMatch(Model.class, new Filter<Model>() {

public boolean accept(Model model) {

return model.getMake() == make &&

model.getName().equals(name);

}

});

}

protected Customer findCustomer(

final String lastName, final String firstName) {

return firstMatch(Customer.class, new Filter<Customer>() {

public boolean accept(Customer customer) {

return customer.getLastName().equals(lastName) &&

customer.getFirstName().equals(firstName);

}

});

}

}

And now JoeBloggsCarsFixture:
Download chapter04/JoeBloggsCarsFixture.java

public class JoeBloggsCarsFixture extends AbstractCarFixture {

public void install() {

Customer joeBloggs = findCustomer("Bloggs", "Joe");

createCar(joeBloggs,

findModel(findMake("Ford"), "Focus"), "M321RNP");

createCar(joeBloggs,

findModel(findMake("Toyota"), "Yaris"), "KL56WGF");

}

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/AbstractCarFixture.java
http://media.pragprog.com/titles/dhnako/code/chapter04/JoeBloggsCarsFixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=83

FIXTURES FOR SETTING UP THE CLOCK 84

Again, update the nakedobjects.fixtures property key in the nakedob-

jects.properties configuration file, and run your application. Joe should

have some Cars.

I should point out that it is up to the object store implementation

whether the fixtures that are defined in nakedobjects.properties are actu-

ally used. The in-memory object store that we use for prototyping does

of course load up all fixtures every time; that’s the whole point of us cre-

ating them. However, object store implementations that persist objects

between runs (such as the ones we’ll see in Chapter 16, Integrating

with the Database, on page 299) generally use fixtures only for the ini-

tial population of the persistence store but otherwise ignore the fixtures

at runtime.

Most of the time the fixtures we create are to set up objects. There are

other fixture types too, though, so let’s look at them now.

4.2 Fixtures for Setting Up the Clock

We use date fixtures to “mock the clock,” allowing us to create repre-

sentative object sets that look like they were created at some previous

point in history; this is great for demos. We can also use date fixtures

to set the effective date/time that the application itself is running; any

time an object asks for the current time, the time set up in the fixture

will be provided. This way, the domain experts will be able to validate

any time-specific behavior being demoed.

Instead of using java.util.Calendar to obtain the time, our domain objects

should use the applib’s Clock class. Clock is a singleton that allows dif-

ferent implementations to be installed, but by default will lazily instan-

tiate an implementation that just returns the time according to the

computer’s system clock.

Specifying any fixtures at all will automatically install a different imple-

mentation; FixtureClock.FixtureClock behaves the same as SystemClock un-

less we call the setDate() and/or setTime() methods on it, typically using

helper methods in AbstractFixture. Subsequent calls will then return the

date/time that’s been set. Calling resetClock() will get us back to using

the system’s time.

Let’s see how to do this.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=84

FIXTURES FOR SETTING UP THE CLOCK 85

Changing the Clock While Installing Fixtures

Suppose we wanted to know who our long-standing customers are, per-

haps so we can send them a Christmas greeting each year. Go ahead

and model this by adding a new Since property (as in “customer since

1988”) to the Customer class. Make it of type java.sql.Date.

Now we want this property to be defaulted to the current date when

the Customer is first created, something we can do with a defaultXxx()

supporting method. Therefore, go ahead and add a defaultSince() (using

the nopdef template if you want):

Download chapter04/Customer-Since.java

public Date defaultSince() {

return new java.sql.Date(Clock.getTime());

}

Back in the JoeBloggsCustomerFixture, set the date to 23 Sep 1988 (to

choose a date at random):

Download chapter04/JoeBloggsCustomerFixture-SetDate.java

public class JoeBloggsCustomerFixture extends AbstractCustomerFixture {

public void install() {

setDate(1988,9,23);

createCustomer("Mr", "Bloggs", "Joe");

}

}

When we run the application, we should see the property’s time set

correctly, as shown in Figure 4.1, on the following page.

As things stand, this set of fixtures will leave the clock set to some his-

torical value, which is probably not what we want. Instead, we should

leave the application running with a (well-defined) date to represent

“now.” We can solve this by refactoring the previous example.

Setting the Clock for the Running Application

Rather than setting up the clock on an ad hoc basis, an alternative is

to have a fixture whose only job is to set the date, and to support this,

the Naked Objects applib has a DateFixture. When browsing through the

fixtures, this makes it easier to see what the effective date is, which is

useful when there are lots of objects being set up for some scenario.

This approach also solves the problem already highlighted; we can also

use a DateFixture to set the clock at the end, once all the other fixtures

have been installed.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/Customer-Since.java
http://media.pragprog.com/titles/dhnako/code/chapter04/JoeBloggsCustomerFixture-SetDate.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=85

FIXTURES FOR SETTING UP THE CLOCK 86

Figure 4.1: Property defaulted from FixtureClock

So, let’s refactor to use this approach instead:

1. Remove the setDate() call in JoeBloggsCustomerFixture.

2. Subclass DateFixture (in the root fixture package). First let’s have a

historical date fixture:

Download chapter04/DateIs23Sep1988Fixture.java

public class DateIs23Sep1988Fixture extends DateFixture {

public DateIs23Sep1988Fixture() {

super(1988,9,23);

}

}

and then let’s have another more recent date fixture to represent

“now”:

Download chapter04/DateIs09Jul2008Fixture.java

public class DateIs09Jul2008Fixture extends DateFixture {

public DateIs09Jul2008Fixture() {

super(2008,7,9);

}

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/DateIs23Sep1988Fixture.java
http://media.pragprog.com/titles/dhnako/code/chapter04/DateIs09Jul2008Fixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=86

FIXTURES FOR SETTING UP USER SESSIONS 87

3. Finally, update nakedobjects.properties, putting the historical date

fixture first and the “now” fixture last:

Download chapter04/nakedobjects-fixture-Date.properties

nakedobjects.fixtures.prefix=com.pragprog.dhnako.carserv.fixture

nakedobjects.fixtures=DateIs23Sep1988Fixture,\

customer.TitlesFixture,\

vehicle.MakesAndModelsFixture,\

customer.JoeBloggsCustomerFixture,\

vehicle.JoeBloggsCarsFixture,\

DateIs09Jul2008Fixture,\

Run the application, and check it still works as required.

Setting up the clock is one way in which we can take control of the

runtime environment. Another thing we can do is use fixtures to control

who has actually logged on.

4.3 Fixtures for Setting Up User Sessions

A session encapsulates the identity of the user who has logged onto the

application, as well as their roles. Whereas a date fixture changes the

“when,” a session fixture changes the “who.” So, we can use a session

fixture to influence who the effective user is for subsequent objects set

up by our object fixtures, and (a great time-saver when prototyping) we

can also use a session fixture to simulate logging onto the application

as such-and-such a user.

Note that we’re not talking here about authorization. Naked Objects

does support authorization, but we don’t enable it during initial proto-

typing; we can worry about restricting permissions later. Also, gener-

ally our domain objects don’t care who is using them, and it’s arguably

bad practice to hard-code information about specific user roles (such

as “supervisor”) within them. There’s further coverage of authorization

in Section 18.2, Securing the Application, on page 354. Let’s start by

changing the effective user.

Changing the User While Installing Fixtures

To change the effective user running a fixture, we use the AbstractFix-

ture’s switchUser() method (analogous to the setDate() method used ear-

lier to change the date and time).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/nakedobjects-fixture-Date.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=87

FIXTURES FOR SETTING UP USER SESSIONS 88

Figure 4.2: Effective user when fixture installed

To see this, let’s add a new (optional) NotedBy property, of type String,

in our Customer. The idea is that if someone adds a Note, we can also

capture who made that note:

Download chapter04/Customer-NotedBy.java

@MemberOrder(sequence = "1.5.5")

@Optional

@MaxLength(16)

public String getNotedBy() { ... }

Since we want to perform some additional processing when we add

a note, use the nopmod template to also add hook methods for the

Customer’s Notes property:

Download chapter04/Customer-Notes-nopmod.java

public void modifyNotes(String notes) {...}

public void clearNotes() {...}

public void onModifyNotes(String oldNotes, String newNotes) {...}

public void onClearNotes(String oldNotes) {...}

Then we change our onModifyNotes() hook method:

Download chapter04/Customer-Notes-onModify.java

protected void onModifyNotes(String oldNotes, String newNotes) {

setNotedBy(getUser().getName());

}

Note the use of the inherited getUser() method from AbstractDomainOb-

ject; we’ll look at this in Chapter 8, Isolating Infrastructure Services, on

page 140.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/Customer-NotedBy.java
http://media.pragprog.com/titles/dhnako/code/chapter04/Customer-Notes-nopmod.java
http://media.pragprog.com/titles/dhnako/code/chapter04/Customer-Notes-onModify.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=88

FIXTURES FOR SETTING UP USER SESSIONS 89

Let’s now update JoeBloggsCustomerFixture and create a note:

Download chapter04/JoeBloggsCustomerFixture-withNotes.java

public class JoeBloggsCustomerFixture extends AbstractCustomerFixture {

public void install() {

Customer customer = createCustomer("Mr", "Bloggs", "Joe");

switchUser("sven");

customer.modifyNotes("One of our best customers!");

}

}

In Figure 4.2, on the previous page, we can see the NotedBy property

picking up the effective user when the fixture was installed.

As an alternative to the switchUser() method, we can subclass from

SwitchUserFixture, analogous to DateFixture. Switching users in this way

lets us control who fixtures are installed as but doesn’t tackle the prob-

lem of automatically logging in as a known user. For this we use a

different fixture class. But first, a quick digression.

Setting the User for the Running Application

So far, we’ve been running our application in exploration mode (using

the exploration#viewer_dnd or exploration#viewer_html launch configura-

tions). This means that there’s no need to log on explicitly. Nevertheless,

there is a current user set up for us: the “exploration” user.

We can get hold of a representation of this user through any object,

including repositories, using the getUser() method. For example, add

the following to the CustomerRepository:

Download chapter04/CustomerRepository-currentUser.java

@Debug

public UserMemento currentUser() {

return getUser();

}

If we run the application using the DnD viewer, we’ll see a representa-

tion of this exploration user, as shown in Figure 4.3, on the following

page.

The useful @Debug annotation, by the way, indicates that the action

is for diagnostics or debugging and so can be invoked only through

an accompanying “gesture.” For the DnD viewer, this means that by

pressing the Shift key at the same time for the HTML viewer, it calls

http://localhost:8080/debugon.app first to enable debug mode.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/JoeBloggsCustomerFixture-withNotes.java
http://media.pragprog.com/titles/dhnako/code/chapter04/CustomerRepository-currentUser.java
http://localhost:8080/debugon.app
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=89

FIXTURES FOR SETTING UP USER SESSIONS 90

Figure 4.3: The “exploration” user

If we want to demonstrate a “real” user, then we have a choice. One

option is to add a new nakedobjects.exploration.users property key into

nakedobjects.properties, for example:

Download chapter04/nakedobjects-exploration-users.properties

nakedobjects.exploration.users=sven:role1, dick:role2, bob:role1|role2

This defines three users (sven, dick, and bob) in different roles. When

we run the application, the user will be sven, but the viewers let us

easily switch to another user. For example, in the DnD viewer, just

right-click the background workspace; for the HTML viewer, there’s a

Swap User link at the top right by the Log Out link.

Alternatively, we can run the application in prototype mode (using the --

type prototype command-line flag); doing so will require us to log in. The

default authentication manager is a simple file-based implementation

that reads the config/passwords file in the commandline project, so you

can see for example that there is a user called sven with a password of

pass. Run the application in prototype mode, and you’ll be presented

with a logon dialog. You should be able to log in using sven or any of

the other defined users.

OK, digression over; let’s get back to the fixtures. By subclassing Logon-

Fixture (in the applib as ever), we can provide an autologon as a specified

user.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/nakedobjects-exploration-users.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=90

ORGANIZING FIXTURES INTO HIERARCHIES 91

Add the following in the root fixture package:

Download chapter04/LogonAsFredSmithFixture.java

public class LogonAsFredSmithFixture extends LogonFixture {

public LogonAsFredSmithFixture() {

super("fsmith",

"service_manager", "user");

}

}

The first parameter in the constructor is the username; the remainder

is the (varargs) set of roles.

Update the nakedobjects.properties configuration file with this fixture

class, and then run your application. If you now run in either explo-

ration or prototype mode, you should be automatically logged in as the

user fsmith.

We’ve now seen how to create domain objects, controlling when they

were created and who they were created by. We’ve also seen ways to

ensure that the clock and also the current user are set up as well. Let’s

now see how we might organize them.

4.4 Organizing Fixtures into Hierarchies

Currently, all the fixtures we’ve created are listed in the nakedobjects.

fixtures property key in the nakedobjects.properties file. This is a some-

what error-prone approach, though. It’s better to organize our fixtures

according to the different scenarios that they represent.

If we assemble fixtures into a hierarchy, then the root is a single fixture

that effectively names the scenario that we’re setting up. This top-level

fixture recursively delegates to more finely grained fixtures, which in

turn can potentially be reused across scenarios at any level of the hier-

archy that makes sense.

In Figure 4.4, on the next page, we can see a design to assemble

our existing fixtures into a hierarchy. The top-level CustomerCarsMain-

tenanceFixture fixture represents the scenario. It references a FredSmith-

SessionFixture, which sets up the session for user Fred Smith. It also

includes ReferenceDataFixture, which references the fixtures we have for

our reference domain objects. And finally, it has CustomerCarsMainte-

nanceTransactionalFixture, the actual representative transactional objects

for the scenario. Using the same base name for the top-level fixture and

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/LogonAsFredSmithFixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=91

ORGANIZING FIXTURES INTO HIERARCHIES 92

CustomerCars

Maintenance

Fixture

JoeBloggs

Cars

Fixture

JoeBloggs

Customer

Fixture

Makes

And

Models

Fixture

Titles

Fixture

Datels

09Jul2008

Fixture

CustomerCars

Maintenance

Transactional

Fixture

Reference

Data

Fixture

Datels

23Sep1988

Fixture

FredSmith

Session

Fixture

Figure 4.4: Fixtures can be arranged into a hierarchy.

the underlying transactional object fixture makes it easy to see these

go together.

The AbstractFixture superclass (that we’ve used so far) has built-in sup-

port for creating composite fixtures, through its addFixture() method.

Let’s create the top-level CustomerCarsMaintenanceFixture as follows:

Download chapter04/CustomerCarsMaintenanceFixture.java

public class CustomerCarsMaintenanceFixture extends AbstractFixture {

public CustomerCarsMaintenanceFixture() {

addFixture(new FredSmithSessionFixture());

addFixture(new DateIs23Sep1988Fixture());

addFixture(new ReferenceDataFixture());

addFixture(new CustomerCarsMaintenanceTransactionalFixture());

addFixture(new DateIs09Jul2008Fixture());

}

}

Similarly, create the other two composite fixtures:

1. ReferenceDataFixture should compose TitlesFixture and MakesAndMod-

elsFixture.

2. CustomerCarsMaintenanceTransactionalFixture should compose Joe-

BloggsCustomerFixture and JoeBloggsCarsFixture.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/CustomerCarsMaintenanceFixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=92

ORGANIZING FIXTURES INTO HIERARCHIES 93

With this fixture hierarchy defined, we then register just the top-level

fixture within nakedobjects.properties:

Download chapter04/nakedobjects-fixture-CustomerCarsMaintenance.properties

nakedobjects.fixtures.prefix=com.pragprog.dhnako.carserv.fixture

nakedobjects.fixtures=CustomerCarsMaintenanceFixture

Run the application, and check that Joe and his Cars, plus all the refer-

ence domain objects, are still being created automatically. Alternatively,

we can run the application with a command-line option:

-D nakedobjects.fixtures=CustomerCarsMaintenanceFixture

In fact, any of the properties in nakedobjects.properties can be overrid-

den in this way, very much following the approach for overriding Java

system properties.

Coming Up Next

Putting fixtures together takes a little time, but it is time worth spend-

ing. When you are doing your demos to the domain expert, you’ll appre-

ciate having a consistent set of objects to work with, and you’ll soon get

to know those objects (like Joe and his Cars). In Chapter 12, Scenario

Testing, on page 229, we’ll learn about an alternative way to manage

our fixtures, at which time they become an even more valuable asset as

an integral part of our testing.

It’s time to move on. Right now our domain objects are still not partic-

ularly behaviorally rich; they don’t do very much yet. For example, in

our fixtures when we created Joe and his Cars, we had to create each

separately and then manually wire them together. So, it’s time to start

making our objects work harder for us, which is the topic of Chapter 5,

Creating Behaviorally Complete Objects, on page 95.

Exercises

If you weren’t coding along, then load up this chapter’s version of

CarServ (chapter04-02), and inspect the fixture hierarchy. In particu-

lar, note the use of date fixtures and session fixtures and of compos-

ite fixtures. Note that I’ve also created two additional launch configu-

rations, prototype#viewer_dnd.launch and prototype#viewer_html.launch, so

that we can easily run the application in prototype mode.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter04/nakedobjects-fixture-CustomerCarsMaintenance.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=93

ORGANIZING FIXTURES INTO HIERARCHIES 94

Then, if you’ve been developing your own application, have a go at sort-

ing out your fixtures:

• Create a logon fixture to specify the current username and the set

of roles.

• Create a set of fixtures for your reference domain objects, orga-

nized into a composite using the addFixture() method.

• Create fixtures for the transactional domain objects. Use the in-

herited firstMatch() or uniqueMatch() to look up other objects. Use a

composite fixture that represents the scenario you are developing

and have a separate fixture per instance of your core transactional

classes.

Once you’ve done all this, you should be in a good position to demon-

strate more in-depth functionality of your application.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=94

Chapter 5

Creating
Behaviorally Complete Objects

Naked Objects is sometimes dismissed as merely being a way to build

simple CRUD-style applications—in other words, those of limited appli-

cability. Sure, you can use Naked Objects to create simple CRUD-style

applications; then again, you could just use Microsoft Access.

Now, some architectures do use CRUD-style domain models and use

an application layer to expose richer functionality, coordinating inter-

actions between the underlying domain objects. However, such archi-

tectures can lead to a procedural rather than OO programming style:

behavior (in the application layer) is separated from data (in the domain

layer).

In contrast, Naked Objects deliberately has no explicitly coded appli-

cation layer. Instead, its ability to expose actions in the user interface

means that we go beyond simple CRUD applications while reinforc-

ing an OO approach. Actions elegantly allow us to create behaviorally

complete objects, each with their own distinct responsibilities. And it’s

these actions that deliver much of the business benefit of the system,

automating previously manual business processes.

This then is the focus of this chapter (chapter05-01): adding actions

to our domain objects and repositories. We’ll also look at how the pro-

gramming model supports validation and other usability features.

Prepared exclusively for ALESSANDRO CAROLLO

ADDING BEHAVIOR TO DOMAIN OBJECTS 96

5.1 Adding Behavior to Domain Objects

In Naked Objects an action is basically just a public method, exposed

automatically in the user interface. Both domain objects and reposito-

ries/factories can have actions, though their representation in the UI

will depend on which is being viewed.

Actions can accept parameters, with each of the parameters being ei-

ther a domain object or a scalar value.1 If the action returns a non-null

value (of any type), then this is rendered automatically by the viewer.

Actions are one of the defining characteristics of Naked Objects. Where-

as other architectures require custom code to marshal between the ges-

tures in the presentation layer (menu item clicks and button presses)

through to the objects in the domain layer, in Naked Objects there is

a direct equivalence between the two. Being able to directly see the

responsibilities of the underlying domain objects helps us to decide

with our domain experts whether they are correctly assigned.

Looking at CarServ, in fact we’ve already created a couple of simple

actions on our repositories: the allCustomers()/allCars() and the new-

Customer()/newCar() methods. But let’s now add some actions to our

domain objects; we’ll beef up our repositories later in the chapter.

Create a Car Through the Customer

Right now our application is a little fiddly to use because one must sep-

arately create the Customer and the Car and only separately associate

the two together. A cleaner design would be to have the Customer create

the Car object: the Customer could then automatically associate itself

with the Car.

In the CarRepository, we still have a newCar() action. Since Cars should

now only ever be created by Customers, let’s start by removing this

action from CarRepository. Then, let’s add a newCar() action to Customer

(using the noa template or by just typing it in):

Download chapter05/Customer-newCar.java

@MemberOrder(sequence = "1.1")

public Car newCar(

final Model model,

@Named("Registration Number")

1. Neither collections nor arrays can be a parameter to an action. This restriction might

be lifted in a future version of the Naked Objects framework.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/Customer-newCar.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=96

ADDING BEHAVIOR TO DOMAIN OBJECTS 97

final String registrationNumber) {

Car car = newTransientInstance(Car.class);

car.setModel(model);

car.setRegistrationNumber(registrationNumber);

car.modifyOwningCustomer(this);

persist(car);

return car;

}

The persist() method we can see here is inherited from the AbstractDo-

mainObject convenience superclass (similar to the method in the Ab-

stractFixture we used in the previous chapter). As you might imagine, it

saves the domain object to the object store.

This is a common idiom for “owning” relationships: the owner (in our

case Customer) has an action that prompts for all the mandatory prop-

erties of the child object (in our case, Car) and then creates the child

object and sets up the relationships in one go.

Run the application using either viewer. In the DnD viewer, actions can

be invoked by right-clicking the object’s icon (similar to repositories),

while for the HTML viewer, actions are shown as links. Verify that it all

works as expected.

Delete Car

So much for creating the Car. If a Customer sells their Car, then we

presumably no longer care about it; we should delete it along with its

service history.

One design would be to simply have a delete() action on the Car itself:

Download chapter05/Car-delete.java

@MemberOrder(sequence="1.1")

public void delete() {

clearOwningCustomer();

remove(this);

}

The remove() method is also inherited from the convenience superclass.

Go ahead and make this change to the CarServ application, and then

run the application and verify that it all works as expected.

An alternative design for deleting the Car would be to have a delete-

Car() action on Customer. However, it would only make sense to try to

delete a Car that the Customer owned. We know from previous chapters

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/Car-delete.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=97

VALIDATING ACTION ARGUMENTS 98

that we can validate changes to properties (Section 2.6, Capturing Sim-

ple Business Rules, on page 59) and collections (Section 3.3, Capturing

Business Rules for Collections, on page 77), so it’ll come as no surprise

to learn that action arguments can be validated too.

5.2 Validating Action Arguments

As we’ve learned already, if we want to modify the value of a property

or the contents of a collection, then we can validate the change first.

These are preconditions to the modification.

Many actions will also change the state of an object (indeed, possibly

of several objects), so we can likewise specify an action’s preconditions

by validating its arguments. When identifying actions, we should also

think about these preconditions. Although it might seem like more work

to do, they simplify the implementation of the action itself because the

action does not need to deal with invalid arguments.

We can validate arguments either imperatively or declaratively.

Adding Imperative Validation

We validate action arguments imperatively using a validateXxx() method,

where xxx() is the name of the action. As for property and collection val-

idation, this returns a String value where any non-null value is taken to

be the reason why the (in this case) arguments are invalid. The param-

eters to the validateXxx() method must be identical to that of the action

method itself.

So, let’s add that deleteCar() action on the Customer, along with its val-

idation (use the noa and noaval templates):

Download chapter05/Customer-deleteCar.java

@MemberOrder(sequence = "1.2")

public void deleteCar(final Car car) {

car.delete();

}

public String validateDeleteCar(final Car car) {

return getCars().contains(car) ?

null :"Customer does not own this car";

}

To test this, you’ll need to create a couple more Customers and Cars.

Go ahead and do this by writing a few fixtures and adding them to the

transactional objects fixture.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/Customer-deleteCar.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=98

VALIDATING ACTION ARGUMENTS 99

Figure 5.1: Actions with invalid arguments cannot be invoked.

Now, if we attempt to remove a Car that isn’t owned by the Customer, we

should see a warning message and be unable to invoke the action. In

Figure 5.1, we can see how this appears in the DnD viewer. Try this for

yourself, and make sure it works as expected.

Just as we can use annotations to validate properties, we can use

declarative validation for action parameters too. Let’s see how.

Adding Declarative Validation

The newCar() action we added a few pages back for Customer takes a

Model and a (string) registration number. Suppose we now realize that

there are rules for the format of a registration number—that it should

contain only alphanumeric characters. We can express this using a

regular expression:

Download chapter05/Customer-newCar-regex.java

public Car newCar(

final Model model,

@RegEx(validation="[A-Z0-9]+")

@Named("Registration Number")

final String registrationNumber) {

// omitted

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/Customer-newCar-regex.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=99

VALIDATING ACTION ARGUMENTS 100

Figure 5.2: Action arguments can be validated declaratively.

The @RegEx annotation ensures that the registration number complies

with the specified regular expression. In Figure 5.2, we see that Naked

Objects won’t allow the action to be invoked until we fix the argument

value.

However, we’re only halfway there in terms of implementing this rule

because our errant user could still change the registration number

property of the Car to an invalid format. Therefore, we should also

update the property definition itself in the Car class:

Download chapter05/Car-RegistrationNumber-regex.java

private String registrationNumber;

@RegEx(validation="[A-Z0-9]+")

public String getRegistrationNumber() { ... }

If you haven’t already done so, apply these changes, and test for your-

self that registration numbers must follow the pattern for both the

action and the property.

Note by the way that we’ve violated the don’t repeat yourself (DRY)

principle (from Andy Hunt and Dave Thomas’ Pragmatic Programmer

[HT00] book): we’ve needed to specify the @RegEx annotation in two

places. If the State of California were to suddenly allow exclamation

marks in registration numbers, then we would have to update our code

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/Car-RegistrationNumber-regex.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=100

MAKING ACTIONS FRIENDLIER TO USE 101

Joe Asks. . .

Shouldn’t @RegEx Be on the Setter?

Since @RegEx (and some other annotations) validates the input,
you might think it should go on the setter rather than the getter.

For simplicity, though, the Naked Objects framework always
looks for these annotations on the getter. These conventions
aren’t cast in stone, though; if you wanted to, you could modify
the framework to search for such annotations on the setter too;
see Chapter 14, Naked Objects as a Design Tool, on page 271
for some further discussion.

in at least two places. Not nice—in this way bugs are born. Fear not;

we’ll be addressing this in Chapter 7, Using Value Types, on page 124.

You’ll remember with the Customer’s Title property that we were able

to provide a drop-down list of choices. Let’s see how to do something

similar for action parameters.

5.3 Making Actions Friendlier to Use

In the same way that we use supporting methods to validate, we can

provide choices and indeed defaults using similarly named methods.

As we saw in Section 2.7, Providing Choices for Properties, on page 61, if

the set of valid values for a property is well-defined, then we can imple-

ment our domain object to provide this set of valid values. It therefore

makes sense for us to do this for action parameters at the same time as

thinking about validation. In addition, we can also indicate the default

value of the parameter.

The Naked Objects viewer shows this as a drop-down list, with the

default indicating the initially selected item. For example, if a Customer

owns two Cars, then only these Cars should be offered as valid argu-

ments to the deleteCar() action. And if a Customer has only a single Car,

then we should provide this as a default argument to the action. In

Figure 5.3, on the next page, we see how this would look in the DnD

viewer.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=101

MAKING ACTIONS FRIENDLIER TO USE 102

Figure 5.3: Parameter choices help the user supply the correct argu-

ments.

Let’s add the supporting method to offer up parameter choices first (use

the noacho template):

Download chapter05/Customer-choices0DeleteCar.java

public List<Car> choices0DeleteCar() {

return getCars();

}

Similarly, we can provide a default, such as if the Customer owns only a

single Car (use the noadef template):

Download chapter05/Customer-default0DeleteCar.java

public Car default0DeleteCar() {

return getCars().size() == 1? getCars().get(0): null;

}

There can be multiple choices and default methods per action, one per

parameter. The digit in the method name indicates the parameter to

which the method corresponds.

Implementing choices and defaults is a really nice way to give your

application that professional touch, and I’d certainly expect the major-

ity of your actions to provide choices and defaults, as well as validation.

As you can see, writing actions is really pretty straightforward. But they

are also at the very heart of the Naked Objects approach to domain-

driven design.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/Customer-choices0DeleteCar.java
http://media.pragprog.com/titles/dhnako/code/chapter05/Customer-default0DeleteCar.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=102

ADDING FINDERS TO REPOSITORIES 103

Let’s finish off the chapter by beefing up our repositories with some

additional actions of their own.

5.4 Adding Finders to Repositories

Currently in CarServ our repositories let us create new objects and list

all objects. In a real-world application, we’re likely to want to search

for a specific domain object using some sort of identifier (such as a

customer ID). We might also want to provide a more generic search

capability based on other properties (such as the customer’s name).

Applying this to CarServ, what we probably need is the means to search

for Customer(s) and Car(s). Let’s add an action to look up a Car first,

using its RegistrationNumber. Clearly this should live on the CarRepository:

Download chapter05/CarRepository-findByRegistrationNumber.java

public Car findByRegistrationNumber(

@RegEx(validation="[A-Z0-9]+")

@Named("Registration Number")

final String regNumber) {

return firstMatch(Car.class, new Filter<Car>() {

public boolean accept(final Car car) {

return car.getRegistrationNumber().equals(regNumber);

}});

}

If you’re getting a sense of deja-vu, that’s because we used the same

firstMatch() method when writing object fixtures in Chapter 4, Rapid

Prototyping, on page 80. Note also the @RegEx annotation again on the

registration number parameter.

For Customers, let’s write a similar finder that uses the Customer’s First-

Name and LastName properties. Since there might be more than one

matching Customer, we should return a List:

Download chapter05/CustomerRepository-findByName.java

public List<Customer> findByName(

@Optional

@Named("Last Name")

final String lastName,

@Optional

@Named("First Name")

final String firstName) {

return allMatches(Customer.class, new Filter<Customer>() {

public boolean accept(final Customer customer) {

return matches(customer, firstName, lastName);

}});

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter05/CarRepository-findByRegistrationNumber.java
http://media.pragprog.com/titles/dhnako/code/chapter05/CustomerRepository-findByName.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=103

ADDING FINDERS TO REPOSITORIES 104

Repositories vs. Start Points

Because the repositories are the first things an end user sees,
they are in a sense a facade to the entire application. In this
book, we use repositories for this purpose, but an alternative
approach is to think of them as “start points” and provide
actions around a number of common use cases.

The implementation of start points is actually the same as repos-
itories, so in a sense this just comes down to the naming of the
classes. You could, though, have start points delegate to under-
lying (and hidden) repositories; we’ll be revisiting the broader
topic of services in Chapter 8, Isolating Infrastructure Services,
on page 140.

public String validateFindByName(

final String lastName, final String firstName) {

if (lastName == null && firstName == null) {

return "Must specify at least one name";

}

return null;

}

private static boolean matches(

final Customer customer,

final String firstName, final String lastName) {

return nullSafeEquals(customer.getFirstName(), firstName) &&

nullSafeEquals(customer.getLastName(), lastName);

}

private static <T> boolean nullSafeEquals(final T s1, final T s2) {

return s1 == null || s2 == null ||

s1 != null && s2 != null && s1.equals(s2);

}

This action uses the allMatches() method to return a List of Customers.

If you weren’t already doing so, add these new finders into the reposito-

ries (use the noa template), and run the application. You might want to

tweak your fixtures to demonstrate the various possibilities (for exam-

ple, two Customers with the same last name).

And that just about wraps up this chapter. Quite short, very sweet!

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=104

ADDING FINDERS TO REPOSITORIES 105

Coming Up Next

In this chapter, we saw how to implement actions on domain objects

and on repositories. Ultimately, actions are little more than public meth-

ods, with supporting methods to validate parameters and to provide

choices and a default for parameters.

Looking back over the past few chapters, we’ve learned how to write

domain classes, properties, collections, and now actions: the real core

of writing Naked Objects applications. We’ve also seen how to write

supporting methods to validate values, provide choices, and provide

defaults, all types of business rules.

The Naked Objects programming model supports additional types of

business rules too, though. In the next chapter, we’re going to see how.

Exercises

Load up this chapter’s version of CarServ, and make sure you under-

stand how actions appear as menus and can be invoked (chapter05-

02).

If you’ve been developing your own application, then try the following:

• Add actions in existing objects to create new objects. Use the

inherited newTransientInstance() method to create objects, and use

getContainer().persist(obj) to persist them once initialized.

• Add some new repository actions; mark them as @Exploration if

they are only for demo purposes or @Debug if they provide debug-

ging/diagnostics.

• Add validation of parameters to one of your new actions, either

declarative or imperative.

• Provide a default and/or also choices for one of your actions’

parameters.

Then show your application to your granny. She might not understand

it, but she’ll probably say something nice.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=105

Chapter 6

Implementing Business Rules
Picture the scene. There you are demonstrating your prototype applica-

tion to the domain expert, and he or she asks to have a go. You agree (of

course!), but in the back of your mind you’re waiting for the application

to crash when they do something that they “shouldn’t.”

As developers, when we use our own application, we tend to do so in

a way that we know will work. However, the application isn’t for us or

even (often) our domain experts; it’s for a broader end-user community.

When we eventually roll out our application into production, it needs to

be usable by everyone.1

What we’re focusing on in this chapter is how to safeguard the applica-

tion so that the domain objects can be interacted with correctly so that

the application doesn’t crash. And we do this by writing business rules

that enforce preconditions for object interactions.

In fact, we’ve already met one type of precondition: the various declara-

tive and imperative validation mechanisms. For example, new values for

an object’s property must be valid, and its actions should not invoked

with nonsense arguments. But validation is just one of three types of

business rule supported by Naked Objects, with the other two being

disabling and hiding. Or more pithily: Can you see it? Can you use it?

Can you do it?

1. Douglas Adams: “A common mistake people make when trying to design something

completely foolproof is to underestimate the ingenuity of complete fools.” Of course, I’m

sure your application won’t be used by fools, but you can never be sure.

Prepared exclusively for ALESSANDRO CAROLLO

VALIDATION RECAP 107

In this chapter (chapter06-01), we’ll look at each of these in turn. But

since we have encountered validation already, let’s kick off with a quick

recap.

6.1 Validation Recap

We can add validation for properties, for collections, and for actions:

• We can validate a property to check a new candidate value before

it is accepted.

One way to do this is declaratively, using annotations. We can

use an @MaxLength annotation to specify the maximum length of a

string property. Or the lack of the @Optional annotation can indi-

cate that a property is mandatory.

Alternatively and more flexibly, we can perform validation imper-

atively using the supporting validateXxx() method. If this returns

a non-null value, then this is used as the error message, and the

proposed new value is rejected.

• We can also validate collections to check new objects being added

or verify that objects may be removed.

We do this imperatively using a supporting validateAddToXxx() or

validateRemoveFromXxx() method.

• We can validate action parameters before invoking the action.

Again, we can use the imperative approach, using a validateXxx()

method. Or, we can perform some declarative validation on action

arguments using any of the annotations we saw for properties.

Whenever we can (if there’s an annotation available), we prefer the de-

clarative approach to the imperative; another developer reading our

code can take the declaration at face value (for example, @MaxLength)

rather than wading through lines of code and wondering whether there

is a bug in it.

Of course, there’s a big “if” at the beginning of that sentence: if there’s a

suitable annotation. Although it is possible to extend the set of annota-

tions that Naked Objects understands (discussed in Chapter 14, Naked

Objects as a Design Tool, on page 271), Naked Objects also has a declar-

ative annotation that is a sort of halfway house, allowing us to write

declarative-style validations with the full power of the imperative ap-

proach underneath. Let’s explore this now.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=107

VALIDATION RECAP 108

DDD
in context. . .

Specification

A specification captures a business rule that does not obviously
fit the responsibility of an entity or value. It is a predicate that
indicates whether the domain object (or a member) does or
does not satisfy some criteria.

Validating Using Specifications

A specification is used to say something about how an object, or object’s

property or parameter, should be. We use the @MustSatisfy annotation to

indicate that such-and-such a specification applies. The implementa-

tion of the specification is imperative, but the name of the specification

can at least indicate the intent in a declarative style.

Let’s convert one of our existing imperative validations into a specifi-

cation. Currently we have logic on a Car’s RegistrationNumber property

that says that the maximum length is 7 in the United Kingdom and the

United States and 12 everywhere else:

Download chapter06/Car-RegistrationNumber-validate.java

public String validateRegistrationNumber(final String registrationNumber) {

if (registrationNumber == null) return null;

String country = Locale.getDefault().getCountry();

int length = registrationNumber.length();

if (("US".equals(country) && length > 7) ||

("GB".equals(country) && length > 7) ||

length > 12) { // everywhere else

return "Registration number is too long";

}

return null;

}

We write a specification by implementing Specification in the applib, but

the easiest way is to subclass AbstractSpecification:

Download chapter06/RegistrationNumberSpecification.java

public class RegistrationNumberSpecification

extends AbstractSpecification<String> {

@Override

public String satisfiesSafely(final String registrationNumber) {

if (registrationNumber == null) return null;

String country = Locale.getDefault().getCountry();

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Car-RegistrationNumber-validate.java
http://media.pragprog.com/titles/dhnako/code/chapter06/RegistrationNumberSpecification.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=108

VALIDATION RECAP 109

Health Warning

One downside to specifications is that they can lead to slightly
unbalanced domain objects. Specifications place the pre-
condition business rules into a separate object, but the post-
conditions (for example, the body of the action) are still imple-
mented in the domain model. There’s a lack of symmetry here.

But we could argue in their favor too, because specifications
are very easy to test and separate out the “unhappy” cases
(where the validation fails for such-and-such a reason) from the
“happy” case (where the validation succeeds and the action
is performed). Experiment with them to see what you think.

int length = registrationNumber.length();

if (("US".equals(country) && length > 7) ||

("GB".equals(country) && length > 7) ||

length > 12) { // everywhere else

return "Registration number is too long";

}

return null;

}

}

Then for the Car’s RegistrationNumber property, add the annotation, and

remove the validateRegistrationNumber() method:

Download chapter06/Car-RegistrationNumber-MustSatisfy.java

@MemberOrder(sequence = "1.1")

@RegEx(validation="[A-Z0-9]+")

@MustSatisfy(RegistrationNumberSpecification.class)

public String getRegistrationNumber() { ... }

We ought also to apply the annotation to the Customer’s newCar() action:

Download chapter06/Customer-newCar-MustSatisfy.java

@MemberOrder(sequence = "1.1")

public Car newCar(

final Model model,

@RegEx(validation="[A-Z0-9]+")

@Named("Registration Number")

@MustSatisfy(RegistrationNumberSpecification.class)

final String registrationNumber) {

// ...

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Car-RegistrationNumber-MustSatisfy.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-newCar-MustSatisfy.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=109

DISABLING CLASS MEMBERS 110

Run your application to make sure it all works as expected.

So much for validation. However, implementing such rules still allows

our user to attempt to modify the property or collection or to attempt

invoke the action. What if we said that once it’s set, you shouldn’t be

able to modify the Car’s RegistrationNumber at all? For this, we need to

make the property read-only. In Naked Objects parlance, we disable it.

6.2 Disabling Class Members

Disabling a class member is a stronger constraint than validation; it

prevents the property or collection from being modified or an action

from being invoked. . . period. Typically this is because using the class

member doesn’t make sense given the current state of the domain

object. For example, if one action is called “go” and the other “stop,”

then presumably only one is active at a time.

In terms of the user interface, you can think of a disabled class mem-

ber as being grayed out, and you might want to describe it in these

terms when demonstrating and discussing the domain model with your

domain experts. Indeed, in non–Naked Objects applications you have

built, you’ve almost certainly implemented this responsibility within the

presentation layer. But this is an area where Naked Objects has strong

opinions: such responsibilities should reside in the domain layer, not

the presentation layer. In any case, the discussion is moot; we imple-

ment the rule on the domain object because in Naked Objects there is

literally nowhere else to put it!

As for all the business rules, we can disable class members either

declaratively or imperatively. Let’s use CarServ to look at each.

Disabling Declaratively

Preventing our user from changing the Car’s RegistrationNumber property

declaratively really couldn’t be much simpler:

Download chapter06/Car-RegistrationNumber-disabled.java

@Disabled

public String getRegistrationNumber() { ... }

Make this change, and then run the application. As shown in Fig-

ure 6.1, on the next page, you shouldn’t be able to modify the property.

The @Disabled annotation can also be applied to collections and to

actions. Indeed, it is one of the most commonly used annotations, and

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Car-RegistrationNumber-disabled.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=110

DISABLING CLASS MEMBERS 111

Figure 6.1: Disabled properties cannot be edited.

there a couple of places in CarServ where we ought to use it. Cars are

now created only by Customers (as opposed to using the CarRepository).

However:

• Currently we can remove a Car from a Customer’s Cars() collection,

leaving an orphaned Car with no owner. We can fix this by anno-

tating the collection as @Disabled.

• For the other side of this relationship, Car’s OwningCustomer prop-

erty, we should also annotate this property as @Disabled (and re-

move the redundant @Optional annotation).

Similarly, we should make the Car-Service bidirectional relationship

read-only, by annotating both Car’s Services collection and Service’s Car

property as @Disabled.

In a similar vein, it doesn’t really make sense to change the Model of a

Car once it has been created. So, also add the annotation to the Car’s

Model property.

Go ahead and apply all these changes and check that this works. Then

we’ll move onto the imperative approach.

Disabling Imperatively

To disable imperatively, we write a disableXxx() supporting method, anal-

ogous to the validateXxx() methods we saw for validation. The framework

looks for the presence of this method and, if it exists, will call it first to

determine whether to make the property or collection modifiable/action

invokable.

To demonstrate this, let’s consider the Customer’s deleteCar() action. It

doesn’t make much sense to try to invoke this for a Customer that has

no Cars, so we should disable it in these cases.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=111

DISABLING CLASS MEMBERS 112

Figure 6.2: The object’s state may disable members.

That’s easily done:

Download chapter06/Customer-deleteCar-disable.java

public String disableDeleteCar() {

return getCars().size() == 0? "No cars to delete": null;

}

Add this code, and try your revised application (use the nopdis tem-

plate). As shown in Figure 6.2, the action should be disabled.

As I already mentioned, we can also use a disableXxx() method for prop-

erties and collections. To see this in action, let’s add a rule to prevent

the Customer’s Notes property from being updated unless the Customer

has at least one Car. It’s a bit contrived as an example but easy enough

to implement:

Download chapter06/Customer-Notes-disable.java

public String disableNotes() {

return getCars().size() == 0?

"Can only add notes for customers with cars":null;

}

Disabling is stricter than validation because although validation might

let a change through (so long as the value you provide is valid), dis-

abling will never do so. Our final category of business rule is even

stricter—not being able to see the class member in the first place.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-deleteCar-disable.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Notes-disable.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=112
v@v
Text Box
Download at WoweBook.com

HIDING CLASS MEMBERS 113

Factor Out Ruthlessly

Both our deleteCar() action and our Notes property now have a
rule that has to do with there being no Cars in the Cars collec-
tion. To better express intent, factor this out:

Download chapter06/Customer-Notes-disable-refactored.java

public String disableDeleteCar() {
return doesntOwnAnyCars()? "No cars to delete": null;

}
...
public String disableNotes() {

return doesntOwnAnyCars()?
"Can only add notes for customers with cars":null;

}
private boolean doesntOwnAnyCars() {

return getCars().size() == 0;
}

It’s a simple change but a great improvement!

6.3 Hiding Class Members

The strongest of our three rules is the first one that the framework

checks: should the class member even be visible?

For disabling class members, I made the observation that you may be

more accustomed to implementing that type of rule in the presenta-

tion layer. If that’s the case, then you almost definitely will have imple-

mented this rule in the presentation layer too. Even so, it too is fun-

damentally a domain responsibility. For example, when an object tran-

sitions between two states, some of its members might be relevant in

only one of those states. If the user selects to pay by credit card, then

the properties for capturing the credit card details are relevant (and so

should be shown); if they pay by cash, then these same properties are

irrelevant (and so should be hidden).

Having said that, the most common reason for hiding a class member

is because it is really part of the “inner workings” of the object, not

to be exposed in a Naked Objects viewer. This occurs with methods

that are intended to be called programmatically but that—for whatever

implementation reason—happen to have public visibility.

As for the other two rule types, we can hide the class member either

declaratively or imperatively. Let’s look at the declarative case first.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Notes-disable-refactored.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=113

HIDING CLASS MEMBERS 114

Hiding Declaratively

In Section 5.4, Adding Finders to Repositories, on page 103, we imple-

mented a version of the findByName() action on the CustomerRepository.

Let’s take a look at this code again:

Download chapter06/CustomerRepository-findByName.java

public List<Customer> findByName(

@Optional

@Named("Last Name")

final String lastName,

@Optional

@Named("First Name")

final String firstName) {

return allMatches(Customer.class, new Filter<Customer>() {

public boolean accept(final Customer customer) {

return matches(customer, firstName, lastName);

}});

}

// ...

private static boolean matches(

final Customer customer,

final String firstName, final String lastName) {

return nullSafeEquals(customer.getFirstName(), firstName) ||

nullSafeEquals(customer.getLastName(), lastName);

}

private static <T> boolean nullSafeEquals(final T s1, final T s2) {

return s1 == null && s2 == null ||

s1 != null && s2 != null && s1.equals(s2);

}

That matches() method doesn’t look right on CustomerRepository. Far

nicer would be for Customer to do the matching itself. Let’s change Cus-

tomerRepository first:

Download chapter06/CustomerRepository-findByName-refactored.java

public List<Customer> findByName(

@Optional

@Named("Last Name")

final String lastName,

@Optional

@Named("First Name")

final String firstName) {

return allMatches(Customer.class, new Filter<Customer>() {

public boolean accept(final Customer customer) {

return customer.matches(firstName, lastName);

}});

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/CustomerRepository-findByName.java
http://media.pragprog.com/titles/dhnako/code/chapter06/CustomerRepository-findByName-refactored.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=114

HIDING CLASS MEMBERS 115

Subtractive Programming

One of the main responsibilities of a business analyst is to iden-
tify business rules, documenting them in specifications docu-
ments or in UML, or even semiformally using the Object Con-
straint Language (OCL). Meanwhile, the developer’s responsi-
bility is to implement the functionality up to the point where the
constraints are. . . but no further!

If there’s a gap between what the application can do and
what the spec says it mustn’t do, then we’re left wondering:
is this an omission in the application or an omission in the spec?

With Naked Objects this problem doesn’t arise. We start off with
an application that has all degrees of freedom, just like a UML
diagram with no constraints. Then, as we analyze and explore
our domain and identify the constraints, we can write code just
as we might have once added an OCL constraint.

I call this subtractive programming: adding constraints subtracts
functionality. Putting aside the fact that Naked Objects is a
highly productive development environment, this is also a much
more honest way of developing software.

And now let’s move the matches() method to Customer:

Download chapter06/Customer-matches.java

@Hidden

public boolean matches(final String firstName, final String lastName) {

return nullSafeEquals(this.getFirstName(), firstName) ||

nullSafeEquals(this.getLastName(), lastName);

}

private static <T> boolean nullSafeEquals(final T s1, final T s2) {

return s1 == null && s2 == null ||

s1 != null && s2 != null && s1.equals(s2);

}

To ensure that this new public method of Customer doesn’t appear as

an action in the user interface, we annotate it as @Hidden. Run your

application to make sure. To double-check, temporarily comment out

the @Hidden annotation and see the action appear.

Let’s now look at the imperative method of hiding members.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-matches.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=115

HIDING CLASS MEMBERS 116

Hiding Imperatively

Suppose we’d like to capture feedback from our most valuable Cus-

tomers, which we’ll (slightly naively) define as those that own two or

more Cars. To do this, let’s define a new (multiline, optional) Feedback

property on Customer, using the nop template. You should end up with

the following methods:

Download chapter06/Customer-Feedback.java

private String feedback;

@MultiLine(numberOfLines = 5, preventWrapping = false)

public String getFeedback() { ... }

public void setFeedback(final String feedback) { ... }

Now let’s implement the business rule. Since there’s no point in dis-

playing the Feedback property for Customers that don’t qualify as being

valuable, we’ll just hide it (use the nophid template):

Download chapter06/Customer-Feedback-hide.java

public boolean hideFeedback() {

return !isValuableCustomer();

}

private boolean isValuableCustomer() {

return getCars().size() >= 2;

}

Note that hideFeedback() must be public for the framework to call; on

the other hand, because isValuableCustomer() is private, it won’t appear

in the UI. If we wanted to (and there’s probably a good argument for

this because it does sound like it is part of the ubiquitous language),

we could make the latter public too; it would then appear as a derived

read-only property.

Try adding this code and then adding and removing Cars to your Cus-

tomers. You should find that when they have two or more Cars, then

the Feedback property magically appears; otherwise, it will be hidden,

as illustrated in Figure 6.3, on the following page.

Note that whereas the disableXxx() and validateXxx() supporting methods

return the reason as a String, the hideXxx() method simply returns a

boolean. All that the framework needs to know is, should the class

member be displayed or not?

That takes us through the three main categories of business rules that

Naked Objects supports. However, the declarative forms of disabling

and hiding (@Disabled and @Hidden) are a little more powerful than I let

on. Let’s look at that now.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Feedback.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-Feedback-hide.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=116

DECLARATIVE RULES AND THE OBJECT LIFE CYCLE 117

Figure 6.3: The object’s state may hide members.

6.4 Declarative Rules and the Object Life Cycle

Very often class members can be used or are visible dependent on

the object’s state only, in particular whether the object is persistent.

A property may be disabled if the object is still unsaved; conversely, an

action might be visible only when the object has been saved.

Because this is a common requirement, the @Disabled and @Hidden

annotations both provide support for this. Each optionally takes an

attribute—an instance of the When enumerated type (also in the applib).

The default value is When.ALWAYS, so if omitted, we are stating that the

class member should be disabled or hidden at all times. The other val-

ues of the When enum, though, allow us to qualify when these annota-

tions apply, based on whether the object is persistent or not.

For example, imagine we were building a security management sys-

tem where we capture Users as domain objects. When first created,

the administrator might select the username and enter an initial pass-

word; to do that, they will obviously need a field in the UI to fill in.

However, once the new User object has been persisted, we almost cer-

tainly don’t want the password visible, not even to the administrator.

To capture this rule, we would use an @Hidden(When.ONCE_PERSISTED).

Conversely, an action to change the password would be annotated as

@Hidden(When.UNTIL_PERSISTED).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=117

DECLARATIVE RULES AND THE OBJECT LIFE CYCLE 118

Joe Asks. . .

Shouldn’t Domain Objects Be Persistence Agnostic?

In Naked Objects, domain objects don’t know how persistence
is done. However, that’s not the same thing as saying that they
don’t know that persistence is done.

For example, if I have a CreditCard object, then I might want to
display it in full while it is being initially entered, but thereafter
(that is, once persisted), I might only ever want the title to show
the last four digits.

To see this in action, let’s revisit the newCar() action for Customer that

we looked at earlier:

Download chapter06/Customer-newCar-MustSatisfy.java

@MemberOrder(sequence = "1.1")

public Car newCar(

final Model model,

@RegEx(validation="[A-Z0-9]+")

@Named("Registration Number")

@MustSatisfy(RegistrationNumberSpecification.class)

final String registrationNumber) {

// ...

}

There’s a subtle violation of the DRY principle going on here. Right now

the only mandatory properties of Car are Model and RegistrationNumber.

But if we were to add another mandatory property, we’d most likely

need to update this action to either prompt for its initial value or at

least default it somehow.

The problem really arises from the fact that the action needs to persist

the Car before it returns it. Let’s mark the original version of newCar()

as @Hidden and then write a new version like so:

Download chapter06/Customer-newCar-transient.java

public Car newCar() {

Car car = newTransientInstance(Car.class);

car.setOwningCustomer(this);

return car;

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-newCar-MustSatisfy.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Customer-newCar-transient.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=118

DECLARATIVE RULES AND THE OBJECT LIFE CYCLE 119

Rather than prompt for all the parameters, we just instantiate the Car,

wire it up to its OwningCustomer, and then return it still transient.

Notice, though, that we now call setOwningCustomer() rather than mod-

ifyOwningCustomer(). The Car needs to know who its owning Customer

will be, but the Customer shouldn’t be associated with the Car until we

persist the latter:

Download chapter06/Car-persisting.java

public void persisting() {

getOwningCustomer().addToCars(this);

}

This persisting() method is called automatically by the framework when

we save the Car; its job is to complete the wiring up between the own-

ing Customer and the Car. This persisting() method is just one of a bunch

of so-called life-cycle-aware methods. You’ll find them all listed in Sec-

tion A, Reserved Methods, on page 377. There are also a number of

templates to use (called nol*).

With our new design for creating Cars, we now need to loosen up those

constraints on its Model and RegistrationNumber properties a little.

Rather than a simple @Disabled annotation, replace each with @Dis-

abled(When.ONCE_PERSISTED), and for RegistrationNumber add back in the

@RegEx and @MustSatisfy constraints:

Download chapter06/Car-disabled-oncePersisted.java

@MemberOrder(sequence = "1.1")

@Disabled(When.ONCE_PERSISTED)

@RegEx(validation="[A-Z0-9]+")

@MustSatisfy(RegistrationNumberSpecification.class)

public String getRegistrationNumber() { ... }

...

@MemberOrder(sequence = "1.3")

@Disabled(When.ONCE_PERSISTED)

public Model getModel() { ... }

Try this, and you’ll notice a couple of things. First, the transient Car is

automatically displayed with a Save button, as shown in Figure 6.4, on

the following page. Second, the Model and RegistrationNumber properties

remain editable up until we save the Car, at which point they become

disabled just as we require.

The previous little refactoring focused on the @Disabled annotation, but

exactly the same usage applies for the @Hidden annotation.

In this section, we’ve seen how @Disabled and @Hidden can be extended

to interact with the object’s life cycle. But we’ve still only ever been

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Car-persisting.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Car-disabled-oncePersisted.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=119

VALIDATING THE ENTIRE OBJECT 120

Figure 6.4: Transient objects display with a save button.

validating a single property or collection at a time. Often we also need

to check that an object’s properties and collections are consistent with

each other. Let’s see how.

6.5 Validating the Entire Object

Using the persisting() life-cycle method, we’ve seen that we can perform

additional processing when an object is saved. But it is also possible to

perform additional validation before allowing the save to proceed. This

allows us to ensure that the object’s state (its properties and collections)

is internally consistent.

To illustrate this, we’ll flesh out CarServ a bit. As of now we don’t actu-

ally have the capability to book Cars in for servicing. Let’s fix this by

adding a new bookService() action on Car:

Download chapter06/Car-bookService.java

@MemberOrder(sequence="1.1")

public Service bookService() {

Service service = newTransientInstance(Service.class);

service.setCar(this);

return service;

}

As you can see, we’re using the same general design as for the Customer-

Car relationship. That means we also need to have a persisting() method

to fix up the bidirectional relationship as we persist the Service:

Download chapter06/Service-persisting.java

public void persisting() {

getCar().addToServices(this);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Car-bookService.java
http://media.pragprog.com/titles/dhnako/code/chapter06/Service-persisting.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=120

VALIDATING THE ENTIRE OBJECT 121

Figure 6.5: Booking in a Car for Service

As you might recall, a Service has two dates, one being the date the

Car is booked in and the other the date that the Car is expected to be

ready. To make our application a little easier to use, let’s default both

to tomorrow:

Download chapter06/Service-BookedIn-EstimatedReady-default.java

public Date defaultBookedIn() {

return todayPlus(1);

}

// ...

public Date defaultEstimatedReady() {

return todayPlus(1);

}

// ...

private static final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

private static Date todayPlus(final int days) {

Date midnight = new Date(Clock.getTime());

return new Date(midnight.getTime() + MILLIS_PER_DAY * days);

}

Run your updated application to make sure this functionality all works

as expected, as shown in Figure 6.5.

Now it’s time for a bit of validation. Most of the time a Car will be ready

for pickup the same day as it is booked in. On occasion, the Estimate-

dReady might be a day or two after the BookedIn date. The trouble is,

at the moment there’s nothing to prevent the user from entering an

EstimatedReady date that is before the BookedIn date.

To fix this, we use the validate() method, which allows us to validate an

object’s entire state. If this method exists, then Naked Objects will call

it prior to persisting a new object or indeed when updating an existing

object.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Service-BookedIn-EstimatedReady-default.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=121

VALIDATING THE ENTIRE OBJECT 122

Figure 6.6: Use the validate() method to check the entire object.

So, make the following changes (use the noval template):

Download chapter06/Service-validate.java

public String validate() {

return getEstimatedReady() != null &&

getBookedIn() != null &&

getEstimatedReady().getTime() < getBookedIn().getTime() ?

"The 'estimated ready' date cannot be before "+

"the 'booked in' date"

:null;

}

Run your application, and check first that the object cannot be saved if

the EstimatedReady date is before the BookedIn date, and check second

that once saved, it also isn’t possible to update either of the Estimate-

dReady or BookedIn dates to violate this rule. In Figure 6.6, we can see

this in action.

While we are on the subject, the AbstractDomainObject convenience

superclass also defines isValid() and validate() methods, both accepting

an Object as an argument. These allow your code to discover whether a

given object is valid—that is, that all its properties and collections are

valid and that the object is valid with respect to its validate() (no-args)

method.

Coming Up Next

In this chapter, we saw how Naked Objects allows us to implement both

declarative and imperative business rules for properties, collections,

and actions, and along the way we learned something about the object

life cycle and how to validate entire objects rather than just single class

members. Using these tools, we should be able to write applications

that can be safely used by anyone.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter06/Service-validate.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=122

VALIDATING THE ENTIRE OBJECT 123

Thus far, the properties in our objects have ultimately consisted of sim-

ple numbers, dates, and strings. If we wanted to manipulate or validate

these values, then that logic would have to live in our domain objects.

However, Naked Objects allows us to shift these responsibilities on the

value objects themselves. This powerful idea is the topic of the next

chapter.

Exercises

As ever, if you weren’t coding along, then load up this chapter’s version

of CarServ (chapter06-02), and test the different business rules that

are implemented there.

As a couple of additional exercises, go through the application, and

make sure that all actions are disabled when necessary. Also, have

a go at rewriting Service’s validate() method as an object-level speci-

fication (BookedInBeforeEstReadySpec or something similar). Finally, we

could simplify the AbstractCustomerFixture’s newCar() method to use Cus-

tomer’s newCar() action instead.

If you’ve been developing your own application, then try one of each of

the following:

• Use the @Disabled and/or @Hidden annotations to ensure that

class members that are maintained through actions cannot be

edited directly.

• Use the disableXxx() and hideXxx() supporting methods to add more

complex imperative-style business rules.

• Modify existing actions to return still-transient objects, and then

use the validate() and persisting() methods to ensure the object is

valid before it is persisted.

• Experiment with using created() and the other life-cycle methods;

set a breakpoint in them to see when they are called.

Your application should be progressing nicely. Don’t give up the day job

just yet, though.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=123

Chapter 7

Using Value Types
When we start developing domain applications, it’s usually pretty easy

to find some likely looking entities (in CarServ, Customer, Car, and Ser-

vice); we identify and implement their properties and start giving them

behavior. However, if we just charge on headlong, we can end up with

a less maintainable and more complex system than we bargained for.

Here’s why. Our entities are made up of more basic objects—such as

Strings and Dates—or of primitives. These building blocks are called

value objects or value types because, well, all they represent are val-

ues. Generic value types get us going quickly, but because they are

generic, they cannot implement any business rules themselves. So, if

we used an Integer to store a number and had a rule that said only

positive numbers could be stored, we end up putting that rule in the

only place we’re able: the entity object. If the same rule is repeated in

every entity, that’s where we get unmaintainability. Good OO design is

all about assigning responsibilities correctly. Rather than use generic

value types, we can write our own types and implement those rules

once and only once.

We can go further than this, though. Value types often define a closed or

semiclosed set of operations. Think of numbers (add(), multiply(), . . .) or

dates and intervals (overlap(), between(), . . .). Making the manipulation

of values a responsibility of the value type itself will also substantially

simplify the entity objects whose state they represent.

The Naked Objects framework has a number of its own value types,

but we can also define our own value types or, indeed, use third-party

types. Learning how is the topic of this chapter (chapter07-011).

1. Includes solutions to Chapter 6’s exercises

Prepared exclusively for ALESSANDRO CAROLLO

IDENTIFYING VALUE TYPES 125

DDD in Context: Value Objects

Value objects capture the state of other (entity) objects. What
is interesting about them is not their identity but the value
that they represent. Classic examples are numbers, strings, and
dates (think: number 5, “Bloggs,” or 1-May-2009).

Value objects should be immutable and often have a closed
set of operations that define an “algebra” for the type.

7.1 Identifying Value Types

Whether writing domain-driven applications or otherwise, my experi-

ence is that value types tend to be underused. It’s worth contrasting

them with entity types.

Characteristic Value Types Entity Types

Mutability Should be immutable Usually mutable

Equality Compare by value, as in

a.equals(b)

Compare by identity, as

in a==b

Scale Typically small in scale Of any size

Serializability Should be serializable;

may be parseable

Need not be serializable

Comparability Often have a natural

order: 1, 2, 3. . .

Typically no natural sort

order

Defaults Often have a natural

default: the number 0, or

“today”

No natural default

Closure (or

Algebra)

Often have a closed set of

operations: 2 + 2 = 4

Unlikely to have any

closed set of operations

Identity May represent an identi-

fier, such as an SSN

Something that is identi-

fied, such as a Person

User Interface Have dedicated widgets:

checkbox, calendar. . .

Coded by hand (unless

using Naked Objects!)

Some immutable, small-scale value types are also internable, meaning

that they are taken from an internal pool of constants. java.lang.String

is internable, for example, as are some java.lang.Integer values. This is

not quite an implementation detail because it means more than one

object could reference a value object. Value objects are therefore not

aggregated (or wholly owned) by the object that references them.

With these insights, let’s see what value types look like in practice.
Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=125

PUSHING BUSINESS RULES ONTO A VALUE TYPE 126

7.2 Pushing Business Rules onto a Value Type

Back in Section 5.2, Validating Action Arguments, on page 98, we no-

ticed a violation of the DRY principle; we had to annotate with @RegEx

both the Car’s RegistrationNumber property and an action parameter in

Customer representing this registration number. Since then, we have

worked around that by removing the problematic action, but there is

still at least one other place where registration number crops up, which

is in the CarRepository finders.

Our problem is that the regular expression and the maximum length

are characteristics of the concept of “registration numberness,” rather

than a characteristic of the fact that a Car has a registration number.

In object-oriented languages, each concept is a class, so what we need

to do is introduce a RegistrationNumber class.

However, it doesn’t make sense to make RegistrationNumber an entity

object; all we really need is a wrapper for a String. Crucially, though, it

will also include the additional business rules that will then automati-

cally apply wherever we use our new value type.

Writing the Value Type

Create the RegistrationNumber type (in the vehicle subpackage):

Download chapter07/RegistrationNumber.java

@RegEx(validation="[A-Z0-9]+")

@MustSatisfy(RegistrationNumberSpecification.class)

public final class RegistrationNumber implements Serializable {

private static final long serialVersionUID = 1L;

public RegistrationNumber(String value) {

this.value = value;

}

private final String value;

public String getValue() {

return value;

}

@Override

public boolean equals(final Object other) {

return other != null &&

RegistrationNumber.class == other.getClass() &&

equals((RegistrationNumber)other);

}

public boolean equals(final RegistrationNumber other) {

return other != null &&

getValue().equals(other.getValue());

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/RegistrationNumber.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=126

PUSHING BUSINESS RULES ONTO A VALUE TYPE 127

@Override

public int hashCode() {

return getValue().hashCode();

}

@Override

public String toString() {

return getValue();

}

}

Note this class is immutable (it has no methods to modify its state) and

has equal-by-content semantics (overridden equals() and hashCode()

methods). Now we have our value type, let’s use it in the domain model.

Refactor Our Domain Objects

Let’s update the Car’s RegistrationNumber property so that it is a reference

to a RegistrationNumber value type rather than a String.

Download chapter07/Car-RegistrationNumber.java

@MemberOrder(sequence = "1.1")

@Disabled(When.ONCE_PERSISTED)

public RegistrationNumber getRegistrationNumber() { ... }

We also need to change a finder in CarRepository:

Download chapter07/CarRepository-findByRegistrationNumber.java

public Car findByRegistrationNumber(

final RegistrationNumber registrationNumber) { ... }

Remember to remove the @RegEx and @MustSatisfy annotations in both of

these. We can also remove the @Named annotation from the parameter,

because Naked Objects can infer the parameter’s name from the type.

Finally, we also need to modify the AbstractCarFixture:

Download chapter07/AbstractCarFixture-createCar.java

protected Car createCar(

final Customer customer, final Model model,

final String registrationNumber) {

Car car = newTransientInstance(Car.class);

car.modifyOwningCustomer(customer);

car.setModel(model);

car.setRegistrationNumber(

new RegistrationNumber(registrationNumber));

persist(car);

return car;

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/Car-RegistrationNumber.java
http://media.pragprog.com/titles/dhnako/code/chapter07/CarRepository-findByRegistrationNumber.java
http://media.pragprog.com/titles/dhnako/code/chapter07/AbstractCarFixture-createCar.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=127

PUSHING BUSINESS RULES ONTO A VALUE TYPE 128

That’s pretty straightforward. However, the missing bit of the puzzle is

to tell Naked Objects to treat RegistrationNumber as a value rather than

as an entity. Let’s see how.

Write a Provider and Configure Naked Objects

Although we have our value type, Naked Objects doesn’t yet know it is a

value type. We tell it using the @Value annotation. So, add the following

to your RegistrationNumber:

Download chapter07/RegistrationNumber-ValueAnnotation.java

@Value(semanticsProviderClass=

RegistrationNumberValueSemanticsProvider.class)

@RegEx(validation="[A-Z0-9]+")

@MustSatisfy(RegistrationNumberSpecification.class)

public final class RegistrationNumber {

...

}

What we’re doing here is providing the framework with a class by which

it can obtain the information it requires to treat RegistrationNumber as a

value type. The class provided (RegistrationNumberValueSemanticsProvider)

has to implement the ValueSemanticsProvider interface in the applib.

To make life easier, we can just subclass from the convenience Abstract-

ValueSemanticsProvider adapter (put the class in the vehicle subpackage):

Download chapter07/RegistrationNumberValueSemanticsProvider.java

public class RegistrationNumberValueSemanticsProvider extends

AbstractValueSemanticsProvider<RegistrationNumber> {

@Override

public Parser<RegistrationNumber> getParser() {

return new Parser<RegistrationNumber>() {

public RegistrationNumber parseTextEntry(

RegistrationNumber context, String entry) {

return new RegistrationNumber(entry);

}

public String displayTitleOf(RegistrationNumber object) {

return object.getValue();

}

public String displayTitleOf(RegistrationNumber object,

String usingMask) {

return displayTitleOf(object);

}

public String parseableTitleOf(

RegistrationNumber existing) {

return displayTitleOf(existing);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/RegistrationNumber-ValueAnnotation.java
http://media.pragprog.com/titles/dhnako/code/chapter07/RegistrationNumberValueSemanticsProvider.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=128

ADDING A THIRD-PARTY VALUE TYPE 129

public int typicalLength() {

return 8;

}

};

}

}

The bit of magic is the getParser() method, which returns an instance

of Parser (again, in the applib). As you can see, we are also required to

provide the title of the value, both for display once entered and in a

potentially simpler parseable form. For RegistrationNumber, there is no

difference between these two, but the second example in this chapter

will make a distinction.

It’s time to try your application. You should still be able to create a

new Car for a Customer, and the regular expression validation should

carry on working. Behind the scenes, the framework is delegating to

the parser to convert the string into a RegistrationNumber and is setting

that as the property on the Car.

Now that you know how to add value types, do use them in your

domain. Although simple, they can make a significant contribution to

your ubiquitous language. You may also find that these value types—

basic building blocks as they are—end up being reusable across differ-

ent applications. Identifiers, especially those that reside in a hierarchy,

are good ones to start with, such as a file path or an XPath expression.

Or (slightly more domain specific) how about a URN to a piece of hard-

ware within a network? Indeed, you might want to consider creating

your own in-house library of such value types.

But why write your own library if there’s already one out there? An

increasing number of open source projects are dedicated to developing

value types, so let’s look at integrating one now.

7.3 Adding a Third-Party Value Type

Value types are arguably easier to write than entities, but it’s still pos-

sible to get them wrong. A good example is Java’s own java.util.Date

class. As a value type, there are multiple things awry: it’s misnamed

(it represents both a date and a time), it’s mutable (all the mutating

methods were deprecated in Java 1.1 but have never been removed),

and it doesn’t define much of an algebra (there are before() and after()

methods, but not between(), for example).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=129

ADDING A THIRD-PARTY VALUE TYPE 130

Joe Asks. . .

Are There Any Downsides to Value Types?

As you’ve seen, using value types requires some Naked
Objects–specific configuration. It’s possible that the persistent
object store may also require equivalent configuration.

If you are using Naked Object’s own in-memory object store,
then there’s nothing to be done. However, the object stores we
use in Chapter 16, Integrating with the Database, on page 299
do require some configuration.

The java.util.Date class is also not final, which means that it can be sub-

classed. As Joshua Bloch explains in his excellent book, Effective Java

[Blo08], allowing subclasses breaks the contract for equality, the most

fundamental of the rules for value types. And sure enough, we have

java.sql.Date and java.sql.Time, both of which subclass java.util.Date but

do not even honor the substitutability (“is-a-kind-of”) principle. It’s all a

bit of a mess to be honest.

There’s a good lesson here: if even the designers of Java—a lot of very

smart people—can get it wrong, we should tread carefully when writing

our own value types, following the guidelines in Section 7.1, Identifying

Value Types, on page 125 carefully.

Better still then would be to reuse a (good!) third-party library. After

all, our domain application probably has no specific requirements for

dates; they are something that we should be able to take for granted.

We shouldn’t be devoting effort building a replacement for java.util.Date.

Some of the more significant third-party libraries are JScience (which

deals primarily with scientific measures) and JodaTime (which reworks

Java’s date and time classes).2 As I write this, JScience is the basis

for JSR-275 and JodaTime is the basis for JSR-310, so something like

them may appear in a future version of Java.

Another good example of a third-party library is Eric Evan’s own time-

andmoney library, which provides value types relating to, well, time

2. The JScience library is at http://jscience.org/. The JodaTime library is at

http://joda-time.sourceforge.net/.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://jscience.org/
http://joda-time.sourceforge.net/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=130

ADDING A THIRD-PARTY VALUE TYPE 131

and money.3 Focusing on the “time” bit of it, the library goes further

than just dates and times; by supporting a more complete algebra of

operations, it also brings in concepts such as intervals.

We can put this to good use in CarServ. The Service class has two prop-

erties, BookedIn and EstimatedReady, both of which are java.sql.Dates. We

also have a business rule that says that the EstimatedReady date comes

after the BookedIn date. Although the implementation of that business

rule (using a validate() method or a Specification) is not that complex, its

presence at all is a hint that we’re missing the concept of an interval of

time.

Let’s see how we can use timeandmoney’s interval concept to simplify

the Service class. To start with, we’d better grab hold of the library.

Add the Library to the Classpath

Before we get going, we’re going to need to add the library to our class-

path. Since this hasn’t been published to any Maven repository, we’ll

have to do a bit of the grunt work ourselves.

First, download both the library (timeandmoney-v0_5_1.jar) and its source

(timeandmoney-src-v0_5_1.zip) from the project website.

Next, install the library into your local Maven repository:

Download chapter07/mvn-install.session

$ mvn install:install-file \

-D file=timeandmoney-v0_5_1.jar \

-D groupId=com.domainlanguage \

-D artifactId=timeandmoney \

-D version=0.5.1 \

-D packaging=jar \

-D generatePom=true

Enter this all on one line; I’ve just broken it up to fit onto the page.

If you want to browse to the source in the IDE, then you’ll need to unzip

timeandmoney-src-v0_5_1.zip and then rezip just the source code:

Download chapter07/jar-sources.session

$ jar xvf timeandmoney-src-v0_5_1.zip

$ cd TimeAndMoney/src

$ jar cvf timeandmoney-src.jar com

3. The timeandmoney library is at http://timeandmoney.sourceforge.net/.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/mvn-install.session
http://media.pragprog.com/titles/dhnako/code/chapter07/jar-sources.session
http://timeandmoney.sourceforge.net/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=131

ADDING A THIRD-PARTY VALUE TYPE 132

Then, we can install the library’s source code similarly:

Download chapter07/mvn-install-sources.session

$ mvn install:install-file \

-D file=timeandmoney-src.jar \

-D groupId=com.domainlanguage \

-D artifactId=timeandmoney \

-D version=0.5.1 \

-D packaging=jar \

-D classifier=sources \

-D generatePom=true

The file property is different, and there is also a classifier property.

Now we need to declare which version of timeandmoney we are using.

In the parent pom.xml (in the carserv directory), add the following under

project/dependencyManagement/dependencies:

Download chapter07/pom.xml

<dependency>

<groupId>com.domainlanguage</groupId>

<artifactId>timeandmoney</artifactId>

<version>0.5.1</version>

</dependency>

Finally, we must add the dependency itself. In the carserv-dom project’s

pom.xml, add the following under project/dependencies:

Download chapter07/pom-dom.xml

<dependency>

<groupId>com.domainlanguage</groupId>

<artifactId>timeandmoney</artifactId>

</dependency>

OK, with the housekeeping done, let’s get on with our implementation.

Refactor Our Domain Objects

Since we’re reusing a third-party library, there’s no value type to write,

but we still need to find the appropriate class to use. Casting about

in the timeandmoney library, we can see that there is a CalendarInter-

val class (in the com.domainlanguage.time package). A quick check up

the class hierarchy shows it is immutable and has equal-by-content

semantics, while the documentation confirms it is intended to be used

as a value type.

Let’s change our Service class first so that we know where we’re headed.

Delete the BookedIn and EstimatedReady properties in Service, and add

instead a new BookedInAndReady property.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/mvn-install-sources.session
http://media.pragprog.com/titles/dhnako/code/chapter07/pom.xml
http://media.pragprog.com/titles/dhnako/code/chapter07/pom-dom.xml
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=132

ADDING A THIRD-PARTY VALUE TYPE 133

Download chapter07/Service-BookedInAndReady.java

@MemberOrder(sequence = "1.1")

public CalendarInterval getBookedInAndReady() { ... }

Doing that is going to introduce some compile errors, so let’s fix ’em.

First up, the Service’s own title() method:

Download chapter07/Service-title.java

public String title() {

TitleBuffer buf = new TitleBuffer();

if (getCar() != null) {

buf.append(getCar().getRegistrationNumber());

}

buf.append(":",

getBookedInAndReady().start().toString("MMM dd, yyyy"));

return buf.toString();

}

The original properties used to have a default, so likewise let’s provide

a default for our new BookedInAndReady property:

Download chapter07/Service-BookedInAndReady-default.java

public CalendarInterval defaultBookedInAndReady() {

CalendarDate start =

CalendarDate.from(todayPlus(1).toString(), "yyyy-MM-dd");

return CalendarInterval.startingFrom(start, Duration.days(1));

}

The BookedInAndEstReadySpecification class can simply be deleted: it will

not be possible to create a CalendarInterval that violates the rule of its

start before its end. Remove the @MustSatisfy annotation from Service as

well.

The next step—just as for our custom value types—is to tell Naked

Objects about this type.

Write a Provider

As for RegistrationNumber, we need to write an implementation of Value-

SemanticsProvider. Since there’s a bit more to this implementation, we’ll

look at it in sections:

Download chapter07/CalendarIntervalValueSemanticsProvider.java

public class CalendarIntervalValueSemanticsProvider extends

AbstractValueSemanticsProvider<CalendarInterval> {

private static final String PARSEABLE_PATTERN = "yyyyMMdd";

private static final String TITLE_PATTERN = "MMM dd, yyyy";

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/Service-BookedInAndReady.java
http://media.pragprog.com/titles/dhnako/code/chapter07/Service-title.java
http://media.pragprog.com/titles/dhnako/code/chapter07/Service-BookedInAndReady-default.java
http://media.pragprog.com/titles/dhnako/code/chapter07/CalendarIntervalValueSemanticsProvider.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=133

ADDING A THIRD-PARTY VALUE TYPE 134

@Override

public Parser<CalendarInterval> getParser() {

return new Parser<CalendarInterval>() {

// more to follow

};

}

}

We’ve defined two PATTERN constants that we’re going to use for format-

ting the date in two different ways. The first is used in the business end

of our Parser implementation, the parseTextEntry() method:

Download chapter07/CalendarIntervalValueSemanticsProvider-parseTextEntry.java

@Override

public Parser<CalendarInterval> getParser() {

return new Parser<CalendarInterval>() {

public CalendarInterval parseTextEntry(

final CalendarInterval context, final String entry) {

String[] split = entry.split(":");

String dateEntry = split[0];

String durationEntry = split.length > 1?split[1]:null;

CalendarDate start = parseDate(dateEntry, PARSEABLE_PATTERN);

int howMany = parseDays(durationEntry);

return start != null?

CalendarInterval.startingFrom(

start, Duration.days(howMany+1)):

null;

}

private CalendarDate parseDate(

final String dateEntry, final String candidatePattern) {

try {

return CalendarDate.from(dateEntry, candidatePattern);

} catch(NullPointerException ex) {

return null;

} catch(IllegalArgumentException ex) {

return null;

}

}

private int parseDays(final String daysEntry) {

if (daysEntry == null) { return 0; }

try {

return Integer.parseInt(daysEntry);

} catch(NumberFormatException ex) {

return 0;

}

}

// more to follow...

};

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/CalendarIntervalValueSemanticsProvider-parseTextEntry.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=134

ADDING A THIRD-PARTY VALUE TYPE 135

This parses a string in the form yyyyMMdd:NNN, where the first com-

ponent (up to the : separator) is a start date and the second component

is a number of days duration. If the string is invalid and doesn’t match

this format, we just return null.

The other PATTERN constant is used in the last bit of our implementation,

which has methods for the title and typical length:

Download chapter07/CalendarIntervalValueSemanticsProvider-title.java

public String displayTitleOf(CalendarInterval object) {

return String.format("%s ~ %s",

object.start().toString(TITLE_PATTERN),

object.end().toString(TITLE_PATTERN));

}

public String displayTitleOf(CalendarInterval object,

String usingMask) {

return displayTitleOf(object);

}

public String parseableTitleOf(CalendarInterval object) {

return String.format("%s:%d",

object.start().toString(PARSEABLE_PATTERN),

object.lengthInDaysInt());

}

public int typicalLength() {

return 30;

}

Unlike the RegistrationNumber example earlier, here we distinguish the

parseable title from the displayable title. This allows viewers to poten-

tially display an easily edited and parseable representation of the object

that we give focus in the UI, as well as a more user-friendly represen-

tation as we leave the field.4

One more thing to do: tell Naked Objects that CalendarInterval is a value

type, not an entity.

Configure Naked Objects

With RegistrationNumber, we used the @Value annotation on the value

type itself, but because CalendarInterval is third-party code, that isn’t

an option here. Instead, we register the value type using the naked-

objects.properties file.

4. Note that the DnD viewer and HTML viewers don’t yet support this and only ever show

the display title. To enter a new value, it is therefore necessary to delete the displayed

title and enter in its parseable form.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/CalendarIntervalValueSemanticsProvider-title.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=135

ADDING A THIRD-PARTY VALUE TYPE 136

Figure 7.1: Enter the value in its parseable form.

Download chapter07/nakedobjects-VSP.properties

nakedobjects.reflector.java.facets.value.XXX.semanticsProviderName=YYY

where:

• XXX is the fully qualified class name of the value type that we are

registering:

com.domainlanguage.time.CalendarInterval.

• YYY is the fully qualified name of the value semantics provider

implementation:

com.pragprog.dhnako.carserv.dom.service.CalendarIntervalValueSe-

manticsProvider

Incidentally, this approach can be used for our own custom value types

as well; there’s no need to include the @Value annotation. I prefer to use

@Value annotation where possible.

Anyway, make the changes shown earlier, and give your application a

whirl. Create a new Service for a Car, and enter a valid value such as

20090403:2 (two days starting on the April 3, 2009), as in Figure 7.1.

When you hit Enter, Naked Objects will parse the string by delegating

to our parser and will then rerender the value using the displayTitleOf()

method, as shown in Figure 7.2, on the next page.

So far we’ve been focusing on parsing, and this is where you’ll need to

put in the most effort. However, it’s also possible to tell Naked Objects

about other characteristics of our value types. For example, we are

currently defaulting the CalendarInterval to tomorrow, using the default-

BookedInAndReady() supporting method. However, we could argue that

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/nakedobjects-VSP.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=136

SPECIFYING DEFAULTS AND OTHER CHARACTERISTICS 137

Figure 7.2: Once entered, the display title is used.

this is a reasonable default for a CalendarInterval wherever it is used.

Let’s see how to make this default intrinsic to the value type.

7.4 Specifying Defaults and Other Characteristics

For some value types there will be a sensible default value. A numeric

value might default to 0 (or perhaps 1), a date might default to today

(or perhaps an epoch value like Unix’s 1-Jan-1970), and a color might

default to white (or perhaps black). Rather than specify this default

everywhere that we use the value, we can instead specify this once and

only once for the value type.

As we’ve seen, the @Value annotation tells Naked Objects to use the

nominated ValueSemanticsProvider to interact with the value type, which

in turn supplies a Parser to parse and rerender the string representa-

tions of the object. This provider class can also supply a DefaultsProvider

(in the applib):

public interface DefaultsProvider<T> {

T getDefaultValue();

}

Let’s refactor CarServ to exploit this capability by deleting the default-

BookedInAndReady() supporting method and moving its logic into the

provider:

Download chapter07/CalendarIntervalValueSemanticsProvider-defaultsProvider.java

@Override

public DefaultsProvider<CalendarInterval> getDefaultsProvider() {

return new DefaultsProvider<CalendarInterval>() {

public CalendarInterval getDefaultValue() {

CalendarDate start = CalendarDate.from(

todayPlus(1).toString(), "yyyy-MM-dd");

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/CalendarIntervalValueSemanticsProvider-defaultsProvider.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=137

SPECIFYING DEFAULTS AND OTHER CHARACTERISTICS 138

return CalendarInterval.startingFrom(

start, Duration.days(1));

}

private static final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

private Date todayPlus(final int days) {

Date midnight = new Date(Clock.getTime());

return new Date(midnight.getTime() + MILLIS_PER_DAY * days);

}

};

}

Run the application again, and make sure it still works as expected.

In addition to defining a Parser and a DefaultsProvider, the ValueSeman-

ticsProvider also allows us to optionally return an EncoderDecoder. This

is used by some of the object stores (see Chapter 16, Integrating with

the Database, on page 299) and for client-server remoting (Chapter 18,

Deploying the Full Runtime, on page 345).

The ValueSemanticsProvider also allows us to specify whether the class

is immutable and has equals-by-content semantics. This information

isn’t used by Naked Objects v4.0 but may be in the future. The default

is true in both cases.

We’ve now seen how to implement and support both our own and third-

party value types. Although some of that implementation might have

seemed a little complex, it really just boils down to three things:

• Either write the value type to define the concept or locate a preex-

isting third-party implementation of the value type.

• Write an implementation of a ValueSemanticsProvider that provides

parsing and other related capabilities.

• Tell Naked Objects about this provider using either a @Value anno-

tation or the nakedobjects.properties file (with the latter being the

only option if you are using a third-party value type).

As I said in the introduction, value types tend to be underused, but as

we’ve now seen, they are a great way of pushing complexity out of the

domain objects. So, please, do try to use them.

Coming Up Next

In this chapter, we spent some time untangling what a value type is,

and we saw how to write our own value types and use preexisting third-

party values.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=138

SPECIFYING DEFAULTS AND OTHER CHARACTERISTICS 139

Although CarServ still isn’t very large, we now have the ability to build

a very rich domain model, with the ability to define business rules all

the way down to value types. In the next chapter, we’re going to shift

focus and see how to enable our domain objects to use the services of

lower-level infrastructure technology.

Exercises

Another chapter, and another version of CarServ for you to load up

(chapter07-02). Note that this version uses the timeandmoney library,

so you’ll need to download the library and install into your local Maven

repository, as discussed in Section 7.3, Adding a Third-Party Value

Type, on page 129.

As a hands-on exercise, we now have both RegistrationNumberSpecifica-

tion and Registration. There’s only one concept here, so we should have

only a single class. Have a go at removing the specification, writing it

instead as a validate() method on RegistrationNumber.

You might also have noticed the first context parameter in the parseText-

Entry() method. This allows for more sophisticated parsing. For example,

with our CalendarInterval value type, we might imagine that +1 means

extending the date range by an extra day. This would be a nice little

enhancement to try.

For your own application, you might want to start by reusing the Calen-

darInterval value type that we set up. Once you have that working, have

a go at putting together your very own value type.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=139

Chapter 8

Isolating Infrastructure Services
Up until now we’ve focused exclusively on coding the core entity objects

and their supporting value objects. But there comes a point when, to

get things done, our shiny new domain application needs to use func-

tionality provided by lower-level infrastructure technology.

For example, in the case of CarServ, we might want to send out stock

emails to a customer, which means somehow integrating with an email

API. Or we might want to print details of a customer, which means

somehow being able to submit jobs to a print queue.

We might also want to isolate our application from environmental de-

pendencies—such as the time—so that it is easier to test. Or, we might

want to get Naked Objects itself to do something for us, such as display

a warning message box.

In Naked Objects, the solution is the same in all cases. We represent

the required functionality in terms of a service (not to be confused with

CarServ’s Service domain object), and then we provide that service to

the domain objects that need to use it.

In this chapter (chapter08-011), we’re going to extend CarServ to use a

couple of such services. But before we do, let’s just clarify some terms.

1. Includes solutions to Chapter 7’s exercises

Prepared exclusively for ALESSANDRO CAROLLO

A TAXONOMY OF SERVICES 141

DDD in Context: Services

Sometimes know-how-to responsibilities aren’t natural to assign
to domain objects, typically when the behavior is stateless
(holds no state on behalf of its clients). Such behavior should
be modeled as services, available to be called by any domain
object that requires it.

8.1 A Taxonomy of Services

In the world of DDD, the term service is rather overloaded. But things

get clearer when we distinguish domain services from infrastructure ser-

vices from application services. Let’s see what each of these mean.

Domain Services

A domain service is a place to put functionality that doesn’t naturally

fit into any domain object. A domain service can invoke (be a client of)

the domain object, or the domain object can invoke the domain service.

In Naked Objects, repositories are examples of domain services (which

is why, incidentally, we register them in the nakedobjects.properties file

with a nakedobjects.services property key). They act as the natural

starting point for the user to locate existing domain objects (the icons/

links on the user interface), and those repositories are free to call to the

domain objects if required. Equally, though, repositories can be called

by domain objects.

Factories are also domain services: they can both call to domain objects

(for example, to set up their initial state) or can be called by a domain

object. In CarServ, we don’t have any stand-alone factories because

we’ve folded the factory functionality we need into our repositories by

subclassing from AbstractFactoryAndRepository. This is common; from a

user’s point of view, the responsibilities of creating a new instance and

finding an existing instance are related.

Infrastructure Services

Another category of service is an infrastructure service. Infrastructure

services are called by domain objects, but the dependency is strictly

one way; an infrastructure service should never call a domain object.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=141

A TAXONOMY OF SERVICES 142

Infrastructure services act as adapters to, or encapsulate, some exter-

nal API, filtering out the irrelevant technical detail and translating it

into our domain model’s own ubiquitous language. Examples of infras-

tructure services include the following:

• An EmailService for sending out emails

• A CalendarService to obtain the date

• A BarCodeManager to add bar codes to PDFs

• A RulesService to encapsulate a rules engine such as Drools

And, indeed, these are the main focus of this chapter.

Application Services

Although domain services are part of the domain layer (they may call

and may be called by domain objects) and infrastructure services are

“underneath” the domain layer (solely called by domain objects), appli-

cation services sit on top of the domain layer and solely call domain

services and domain objects.

We can think of application services as controllers, managing the cur-

rent state for a particular user’s use case and interpreting requests

from the presentation layer to the domain layer.

A wizard in a word processing application is a good metaphor for, or

example of, an application service. The wizard itself represents the use

case (of performing a mail-shot, say). The dialog we fill in (to specify the

contacts to send to) captures state for the use case. We click Next, and

the wizard collects further information (such as the template to merge

to). When we click Finish, the wizard interacts with the domain services

and domain objects (to actually perform the mail-shot).

So, that’s what an application service is. Naked Objects, though, very

deliberately does not require you to explicitly code any application ser-

vices; this layer (and the presentation layer itself, of course) is handled

automatically by the framework. Instead, the user interacts directly

with the domain layer.

That said, you can explicitly code these layers if you want, which is

something we look at in Chapter 15, Integrating with Web Frameworks,

on page 281. And you can if you want write domain objects that are akin

to a wizard, something we’ll look at in Chapter 10, Applying Domain

Patterns, on page 176.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=142

THE DOMAIN OBJECT CONTAINER 143

Another way to think of services is as adapters to some underlying

technology. When we do this, the distinction between infrastructure

services and domain services starts to blur. We could, after all, think of

a repository as an adapter that hides the retrieval API of some underly-

ing persistence technology. And a factory service also hides the fact that

returned objects are registered with Naked Objects itself through using

the inherited newTransientInstance() method (we’ll see the significance of

this in Section 8.3, Dependency Injection, on page 145).

As well as making technology available to domain objects, we can also

use services to access functionality of other systems in the enterprise.

There are, after all, probably a number of existing applications that

CarServ might need to integrate with, such as invoicing, stock pur-

chases, or the general ledger. We’ll leave this for now and pick up on it

in Chapter 17, Integrating Within the Enterprise, on page 323.

In addition to repositories and factories that we explicitly write, Naked

Objects also provides an additional service, the DomainObjectContainer.

We’ve used this implicitly already, but let’s now look at its full set of

functionality.

8.2 The Domain Object Container

You can think of the DomainObjectContainer as the single “touch point”

between your domain objects and the framework itself. Our domain

classes haven’t used it directly, but if you have explored the implemen-

tation of the helper methods in the AbstractDomainObject convenience

superclass, you’ll see that they all just delegate to one or another of the

DomainObjectContainer’s methods:

• newTransientInstance() is used to create a new instance of some

domain object. Normally this is called by way of a factory.

• allInstances(), allMatches(), firstMatch(), and uniqueMatch() allow re-

trieval of objects. Again, we normally use a repository for this, but

behind the scenes in-memory repositories use these methods.

• persist() is used to save objects to the persistent object store, while

isPersistent() checks whether a given object is already persistent.

• remove() allows persistent objects to be removed (deleted).

• informUser(), warnUser(), and raiseError() allow the domain object to

explicitly inform the user of something, at three different severity

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=143

THE DOMAIN OBJECT CONTAINER 144

Customer

Repository/

Factory

General

Ledger

Service

Figure 8.1: Services act as boundaries to the domain.

levels. The Naked Objects viewer then renders the message in the

UI.

• getUser() returns a representation of the currently logged in user,

using the UserMemento and RoleMemento classes from the applib.

Since we can call any of these methods from any domain object, another

way of thinking about the DomainObjectContainer is as an all-purpose

(or generic) factory or repository. During early prototyping, for exam-

ple, it can be useful to directly call the creational and retrieval meth-

ods (newTransientInstance(), allMatches(), firstMatches(), and so on) from

domain objects. But later you should look to refine this and replace

those calls with factories and/or repositories. Introducing a factory

helps us explain the intent of the code and can be important when we

consider modularity, the topic of Chapter 11, Keeping the Model Main-

tainable, on page 206. For repositories there’s a similar argument, and

having repositories also allow us to easily substitute their implemen-

tations when we integrate the application, as discussed in Chapter 16,

Integrating with the Database, on page 299.

Collectively, the various types of services act as a boundary to our

domain application, as shown in Figure 8.1.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=144

DEPENDENCY INJECTION 145

So far, so good, but how does the domain object get hold of a (domain

or infrastructure) service in order to call it? The answer is dependency

injection.

8.3 Dependency Injection

Dependency injection separates the responsibility of locating the service

from that of using it. Rather than the domain object looking up a service

from some central registry of services, it instead simply declares its

dependency on that service. The runtime environment then injects the

service into the domain object automatically.

Naked Objects provides this capability. It automatically performs

setter-based dependency injection of services directly into domain ob-

jects. So, as a sketch (don’t bother to add this to CarServ), suppose we

wanted to allow our Customer to trade up by searching for Cars that are

the same Model as those already owned by that Customer. CarRepository

could have a method to find a number of new Cars of a given Model.

public class CarRepository extends AbstractFactoryAndRepository {

...

@Hidden

public List<Car> findNewerCarsOfSameModelAs(final Car car) {

...

}

}

All the Customer class needs to do is provide a place for the CarRepository

to be injected, that is, a setter:

public class Customer {

...

private CarRepository carRepository;

public void setCarRepository(CarRepository carRepository) {

this.carRepository = carRepository;

}

}

We would then write our action on Customer, delegating to the CarRepos-

itory as required:

public List<Car> suggestTradeUps() {

List<Car> newerCars = new ArrayList<Car>();

for(Car car: getCars()) {

newerCars.addAll(

carRepository.findNewerCarsOfSameModelAs(car);

}

return eliminateDuplicates(newerCars);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=145

USING SERVICES IN FIXTURES 146

And that’s all there is to it. If your domain object needs a service, it just

asks for it by providing a public setter.

You might be wondering how the magic happens, though. Well, for per-

sistent objects, the framework is responsible for instantiating and ini-

tializing these instances. At the same time, it looks to see whether the

object has any setters for the services that the framework knows about

and, if so, injects those services before returning the object. For tran-

sient instances, a similar process happens when we use the newTran-

sientInstance() method to instantiate our objects. And just to reiterate,

one of the services injected is the DomainObjectContainer discussed pre-

viously.

By the way, every service is injected into every other service if they

declare a dependency, meaning that services can be layered. Services

are also automatically injected into fixtures. Let’s see how we can use

this to simplify them.

8.4 Using Services in Fixtures

If we look at CarServ’s fixtures, they all create objects, and between them

there are searches of Makes, Models, Titles, and Customers. Creating and

finding objects are the responsibilities of factories and repositories, so

we could inject repositories into our fixtures and have the fixtures del-

egate to those repositories if we wanted.

That said, there’s no point writing repositories if they are only to be

used by fixtures. But we should use a repository if the functionality we

need already exists.

The only case in CarServ where we have duplicated functionality is in

AbstractCarFixture, which currently does a search for Customers using

their LastName and FirstName. Let’s remind ourselves of that code:

Download chapter08/AbstractCarFixture.java

protected Customer findCustomer(

final String lastName, final String firstName) {

return firstMatch(Customer.class, new Filter<Customer>() {

public boolean accept(Customer customer) {

return customer.getLastName().equals(lastName) &&

customer.getFirstName().equals(firstName);

}});

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter08/AbstractCarFixture.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=146

REQUIREMENTS FOR WRITING SERVICES 147

Let’s refactor to use CustomerRepository instead:

Download chapter08/AbstractCarFixture-usingRepositories.java

protected Customer findCustomer(

final String lastName, final String firstName) {

List<Customer> customers =

customerRepository.findByName(lastName, firstName);

return customers.size() > 0 ? customers.get(0): null;

}

private CustomerRepository customerRepository;

public void setCustomerRepository(

final CustomerRepository customerRepository) {

this.customerRepository = customerRepository;

}

Run the application to double-check everything still works.

So much for using existing services such as repositories. Let’s now

see what it takes to write new services for use by our CarServ domain

objects.

8.5 Requirements for Writing Services

Pretty much any vanilla JavaBean (or pojo) can be used as a service.

There are a few rules that you should follow, though.

Write an Interface

Strictly, this is an optional step but is highly recommended. For each

service, you should write a Java interface that defines the functionality

available to the domain object. This allows different implementations to

be used during development and testing.

Although the implementation of this interface is not part of the domain

model, the interface itself is and so should live somewhere in the dom

project.

Provide a Public No-Arg Constructor

So that our service can be instantiated by the framework, it should

provide a no-arg constructor. The framework will instantiate each reg-

istered service only once, however, so effectively the services are single-

tons. There is no need, though, to explicitly implement the service as a

singleton (that is, no need for a static getInstance() method).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter08/AbstractCarFixture-usingRepositories.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=147

REQUIREMENTS FOR WRITING SERVICES 148

Register in nakedobjects.properties

With the service class defined, it then needs to be registered in the

nakedobjects.properties file using the nakedobjects.services.prefix and

nakedobjects.services property keys.

Either Write an iconName Method or Annotate as @Hidden

By default, all services will be rendered as icons on the desktop, using

the fully qualified class name of the service to determine the icon to

use. We usually do want repositories and factories to appear, and since

they are normally for a particular entity, they should have the same

icon as that entity. To save us from having two copies of the same icon,

we can (as we’ve seen) use the iconName() method to indicate which

icon to use.

If a service object is to appear as an icon, then it is subject to the same

programming conventions as any other domain object. So, if you want

to use business rules (such as the validateXxx() supporting method) for

your actions, then you can.

For infrastructure services, though, it usually doesn’t make sense to

allow these to be used directly by the user; they are there to be injected

into the domain objects. These services should therefore be annotated

as @Hidden. This isn’t a hard-and-fast rule, however. You might have a

service to allow domain objects to send instant messages; by not hiding

the service, it will appear as an icon and let the end user send instant

messages too.

Provide Public Methods for the Domain Object to Invoke

This is the guts of the service, and the methods will depend on what the

service is there for. So, for example, the CarRepository provides (among

others) a findByModel() method. An EmailService, on the other hand,

would probably have a method such as sendEmail().

Your implementation can if you want inherit from AbstractService (in the

applib), and if writing an in-memory repository, then you can subclass

from AbstractFactoryAndRepository, as we have already done.

Now that we know a little more about the anatomy of services, we

should refactor our repositories to reflect best practices.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=148

USING INTERFACES FOR REPOSITORIES 149

8.6 Using Interfaces for Repositories

As discussed in the previous section, all services should have a cor-

responding interface. In CarServ, our repositories don’t yet follow this

rule, so let’s fix them. First, copy the existing implementations into the

(until now, empty) services project. Then, rename them to indicate that

these are implementations that use the in-memory object store:

From dom project To service project

dom.customer.CustomerRepository inmemory.customer.

CustomerRepositoryInMemory

dom.vehicle.CarRepository inmemory.vehicle.CarRepositoryIn-

Memory

These are both relative to the com.pragprog.dhnako.carserv package. You

will need to fix up some imports, but otherwise the code should compile

with no problems.

Now, convert the original repositories into interfaces, either by using

Eclipse’s extract interface refactoring or doing it by hand. For example:

Download chapter08/CustomerRepository.java

@Named("Customers")

public interface CustomerRepository {

public Customer newCustomer();

public List<Customer> findByName(

@Optional

@Named("Last Name")

final String lastName,

@Optional

@Named("First Name")

final String firstName);

@Exploration

public List<Customer> allCustomers();

@Debug

public UserMemento currentUser();

}

Then, make the in-memory implementations implement the interfaces:

Download chapter08/CustomerRepositoryInMemory.java

public class CustomerRepositoryInMemory

extends AbstractFactoryAndRepository

implements CustomerRepository {

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter08/CustomerRepository.java
http://media.pragprog.com/titles/dhnako/code/chapter08/CustomerRepositoryInMemory.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=149

USING INTERFACES FOR REPOSITORIES 150

public String iconName() {

return "Customer";

}

public Customer newCustomer() {

Customer customer = newTransientInstance(Customer.class);

return customer;

}

public List<Customer> findByName(

final String lastName,

final String firstName) {

return allMatches(Customer.class, new Filter<Customer>() {

public boolean accept(final Customer customer) {

return customer.matches(firstName, lastName);

}});

}

public String validateFindByName(

final String lastName,

final String firstName) {

if (lastName == null && firstName == null) {

return "Must specify at least one name";

}

return null;

}

public List<Customer> allCustomers() {

return allInstances(Customer.class);

}

public UserMemento currentUser() {

return getUser();

}

}

Note that we have annotations in the interfaces but not in the imple-

mentations; they will be inherited. Finally, update the registration of

these services in nakedobjects.properties:

Download chapter08/nakedobjects.properties

nakedobjects.services.prefix = com.pragprog.dhnako.carserv.inmemory

nakedobjects.services = customer.CustomerRepositoryInMemory,\

vehicle.CarRepositoryInMemory

Run the application, and confirm that everything is still hunky-dory.

In the previous refactoring, I’ve chosen to keep allCustomers() on the

interface and annotated it as @Exploration. There’s also an argument

for keeping this method only in the in-memory implementation; after

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter08/nakedobjects.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=150

IMPLEMENTING A CALENDAR SERVICE 151

all, it’s unlikely to be supported for a repository implementation that

delegates to an RDBMS, for example.

In the introduction to this chapter, we identified a couple of scenarios

where we might want to extend CarServ using services, so let’s look at

how to implement one of these nonrepository services in practice.

8.7 Implementing a Calendar Service

In the previous chapter, we refactored the Service’s bookedInAndReady

property to use a CalendarInterval value type. This is defaulted using its

DefaultsProvider:

Download chapter07/CalendarIntervalValueSemanticsProvider-defaultsProvider.java

@Override

public DefaultsProvider<CalendarInterval> getDefaultsProvider() {

return new DefaultsProvider<CalendarInterval>() {

public CalendarInterval getDefaultValue() {

CalendarDate start = CalendarDate.from(

todayPlus(1).toString(), "yyyy-MM-dd");

return CalendarInterval.startingFrom(

start, Duration.days(1));

}

private static final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

private Date todayPlus(final int days) {

Date midnight = new Date(Clock.getTime());

return new Date(midnight.getTime() + MILLIS_PER_DAY * days);

}

};

}

The call to Clock.getTime() (which ultimately traces back to Section 4.2,

Fixtures for Setting Up the Clock, on page 84) returns the time according

to applib Clock singleton. The default implementation set up for us in

exploration or prototype mode is the settable FixtureClock; otherwise, we

are given an implementation that uses the system time.

We can write a CalendarService to bootstrap a different implementation

for the applib. Our domain objects then either can continue to use

the applib’s Clock system clock or, to make their dependencies more

obvious, can have the CalendarService injected into them. Let’s go work

through the latter approach and use it to “mock the clock.”

Define the Interface

As for our previous example, we start off with an interface.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter07/CalendarIntervalValueSemanticsProvider-defaultsProvider.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=151

IMPLEMENTING A CALENDAR SERVICE 152

Here’s CalendarService:

Download chapter08/CalendarService.java

public interface CalendarService {

public CalendarDate today();

}

Since we already have a precedent, I’ve chosen to use the timeand-

money library’s CalendarDate class to represent a date. Note since we

want it to appear as an icon, it is not annotated as @Hidden.

Write the Implementation

Next we need an implementation. While in exploration or prototype

mode, we get a FixtureClock by default, but let’s write an implementa-

tion that actually explicitly initializes FixtureClock. We’ll also expose the

ability to change the clock:

Download chapter08/CalendarServiceDemo.java

public class CalendarServiceDemo

extends AbstractService

implements CalendarService {

static {

FixtureClock.initialize();

}

public CalendarDate today() {

Calendar cal = Clock.getTimeAsCalendar();

int year = cal.get(Calendar.YEAR);

int month = cal.get(Calendar.MONTH) + 1;

int day = cal.get(Calendar.DATE);

return CalendarDate.date(year, month, day);

}

public void turnTo(

@Named("Year") int year,

@Named("Month") int month,

@Named("Day") int day) {

getFixtureClock().setDate(year, month, day);

}

public int default0TurnTo() {

return Clock.getTimeAsCalendar().get(Calendar.YEAR);

}

public int default1TurnTo() {

return Clock.getTimeAsCalendar().get(Calendar.MONTH)+1;

}

public int default2TurnTo() {

return Clock.getTimeAsCalendar().get(Calendar.DATE);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter08/CalendarService.java
http://media.pragprog.com/titles/dhnako/code/chapter08/CalendarServiceDemo.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=152

IMPLEMENTING A CALENDAR SERVICE 153

private FixtureClock getFixtureClock() {

return (FixtureClock) Clock.getInstance();

}

}

The static initializer does the required magic, explicitly installing Fixture-

Clock as the Clock singleton. Meanwhile, the turnTo() action gives us the

ability to change the time if we want.

Register, Inject, and Use the Service

Next we need to register the CalendarServiceDemo into nakedobjects.prop-

erties. This is straightforward, so I’ll leave you to complete this step.

Most of the time we inject services into domain objects. For CalendarSer-

vice, though, we actually need to inject into the CalendarInterval’s Value-

SemanticsProvider:

Download chapter08/CalendarIntervalValueSemanticsProvider-defaultsProvider.java

public static final class CalendarIntervalDefaultsProvider

implements DefaultsProvider<CalendarInterval> {

public CalendarInterval getDefaultValue() {

return CalendarInterval.startingFrom(

calendarService.today().plusDays(1), Duration.days(1));

}

private CalendarService calendarService;

public void setCalendarService(

final CalendarService calendarService) {

this.calendarService = calendarService;

}

}

@Override

public DefaultsProvider<CalendarInterval> getDefaultsProvider() {

return new CalendarIntervalDefaultsProvider();

}

One slight subtlety here; it is no longer possible to use anonymous

inner classes because the setter would not be visible. Instead, we’ve

refactored the class to be a public nested static class.

Run the application again. The CalendarService should be shown as an

icon, as in Figure 8.2, on the next page (I’ve copied over an icon image),

but the application should behave just the same. Now set the Calen-

darService to a different date. When you next create a Service, the date

defaulted for the BookedInAndEstReady property should be this new date.

Let’s finish off this chapter with a few more general observations on

writing services.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter08/CalendarIntervalValueSemanticsProvider-defaultsProvider.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=153

HINTS AND TIPS FOR WRITING SERVICES 154

Figure 8.2: CalendarService lets the date be modified.

8.8 Hints and Tips for Writing Services

Writing services is pretty straightforward, but there are a couple things

worth emphasizing.

Use Coarse-Grained Interfaces

Sometimes service implementations are actually thin proxies for a web

service that’s implemented elsewhere. If there’s a chance that an imple-

mentation may need to make RPC calls across the network, then the

service interface should be relatively coarse-grained. A too “chatty” in-

terface will have a negative impact on performance. For example, if we

wanted to use an RPC-based spell-checking service, then we might call

it with a paragraph or an entire document; we probably wouldn’t call it

to check each word or on each keystroke.

In our implementation of CalendarService, we just got the time from our

computer’s system clock. However, we could equally have written an

implementation that used the Network Time Protocol (NTP) to obtain

the time from some time server running either within our enterprise or

up on the Internet. In other words, our service’s implementation is a

proxy to the “real” implementation running remotely.

Keep the Service Stateless

Services should not hold state, except perhaps for implementation rea-

sons such as caching. Any state held should most definitely not relate

to their callers (for example, the domain objects).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=154

HINTS AND TIPS FOR WRITING SERVICES 155

For example, to minimize network traffic, it would be permissible for a

CalendarService to check against NTP once a minute and to service the

request using the system clock in between. Such an implementation

would need to remember how long since the NTP service was called,

but such state would not relate to callers so would be OK.

Even then, the state should be persisted rather than being held in-

memory. Although in prototyping mode services are long-lived, in con-

trast when running in client-server mode, any services on the server-

side are very short-lived, re-created for each action invocation. This also

allows for more complex deployment scenarios, such as clustering.

For similar reasons, it would be a very unwise for a service to provide

a callback mechanism by holding a reference to domain objects. On

the server side, the domain objects are similarly short-lived and may

have been garbage collected before any callback could be called. But an

alternative is to use an enterprise service bus, which is something we

discuss in Chapter 17, Integrating Within the Enterprise, on page 323.

Shadow Persistent State

Another reason for keeping your services stateless is to prevent domain

logic from “leaking” into your services. If you find yourself wishing you

could add some state to an existing service, then step back and think

what that state represents in the wider domain and introduce a new

domain object to capture that state, possibly “shadowing” state held in

the remote service’s own underlying persistence store.

For example, an Employee domain object is in a sense a shadow of a

user held by a security authentication mechanism. Similarly, a Doc-

ument or Communication domain object could act as a domain model

representation of some sort of a document URI provided for a Docu-

mentManagementService.

Coming Up Next

In this chapter, we identified different types of services, refactored our

existing domain services (repositories), and saw how to use and write

infrastructure services. And it brings us to the end of Part I of the book.

We’ve now pretty much covered most of the features that Naked Objects

has, and CarServ is perfectly presentable. We can locate Customers and

Cars from the repositories, bidirectional relationships are automati-

cally maintained, we have used value types to centralize value-related

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=155

HINTS AND TIPS FOR WRITING SERVICES 156

business rules, and we have actions (with user-friendly choices and

defaults) so that we can implement behaviorally complete objects. How-

ever, our design is not particularly sophisticated or necessarily insight-

ful. So, in the next part of the book, we’re going to look at various

approaches to deepen the design.

Exercises

If you weren’t coding along, then load up the latest version of CarServ

(chapter08-02) with the service we defined in this chapter, and give it

the once-over.

Then, have a go at writing a new EmailService so that we can send email

reminders to Customers. Add a new emailAddress property to Customer,

and add a remind() action that sends a fixed message using the injected

service. In the EmailService, define a single method sendEmail() accepting

four string parameters (from, to, subject, and body).

You might want to have a go at writing a new implementation of Calen-

darService that acts as an NTP client to a time server. To get you going,

you’ll find that the timeandmoney library (that we used in Chapter 7,

Using Value Types, on page 124) has a class called NISTClient that should

help.

With your own application, you might want to reuse the services that

we have defined or CarServ. Or, you could use some of the other ideas

for services that were mentioned and have a go at writing them.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=156

Part II

Techniques

Prepared exclusively for ALESSANDRO CAROLLO

Chapter 9

Distributing Class
Responsibilities

In the first part of this book, we’ve seen how Naked Objects can be

used to develop a simple domain model, bringing in many of the funda-

mental DDD concepts. We’ve identified and associated domain entities,

composed those entities out of value objects, and developed a number

of services and repositories for them to call upon. We’ve also seen how

fixtures enable rapid prototyping with an in-memory object store.

In mastering the Naked Objects programming model, we now have the

tools to build a domain model, and we’ve used them to build a version

of CarServ that’s usable, if basic. Right now it’s also pretty easy to

understand how CarServ fits together, but that’s probably only because

it is so small. Back in the real-world, though, our domains are going to

have considerably larger scope. If we just start coding away, then we’re

likely to end up with a domain model that’s a tangled mass, hard to

understand, and almost impossible to maintain.

The overall goal for Part II of this book is to focus on the techniques

to help us deal with larger, more complex domains. But there’s noth-

ing new under the sun. The object-oriented paradigm has been around

since the 60s, so there’s a wealth of ideas and literature already out

there that we can mine for inspiration. By the end of Part II, we’ll have

added a whole bunch of techniques to our tool set, and that will set us

up well for Part III when we discuss how to put all this into practice.

We’re going to keep with CarServ to illustrate the ideas, refactoring it

as we go. In the ideal world, we would want to apply the techniques in

Prepared exclusively for ALESSANDRO CAROLLO

APPLYING COAD COLORS 159

Part II from the outset, involving our domain experts as we go, so in

a sense we’re starting from a less-than-perfect situation. But applying

the refactorings themselves will also be useful.

I’m also going to up the pace a little so that there’s room to get through

as many techniques as possible. To compensate, there’ll be more ver-

sions of CarServ to download so you can pick up the story wherever

you want.

So. . . that’s the plan for Part II of this book; what of this chapter? Well,

we’ve already had a couple of chapters focusing on identifying class

responsibilities. In this chapter (chapter09-011), we’re going to use

techniques that help us distribute those responsibilities appropriately

across the domain classes. Some of the techniques you may recognize,

and we’ll note any “prior art” as we go. But one at least is specific to

Naked Objects, and we’ll get to that at the end.

Let’s kick off with a nice little technique from Peter Coad.

9.1 Applying Coad Colors

When faced with a large domain model, the immediate question is,

“Which bits are the most important?” What we need is a highlighted

core.

Coad’s technique is to use colors, described in Java Modeling in Color

[CLL99]. It grew out of using class-responsibility-collaboration (CRC)

cards as a way of identifying or initially modeling domain classes. These

are usually captured on 6x4-inch index cards. Rather than use plain

cards, Coad uses colored cards. So, we have red ones, yellow ones,

green ones, and blue ones. However, reading black text on dark colors

can be tricky, so instead we add a dash of white to each and end up

with pink, light yellow, light green, and light blue. Coad calls these

archetypes:

• Pink (red) is the most important (the color of stop on a traffic light

or the color of a fire engine), and we use this for classes that rep-

resent a moment of time or an interval of time—a moment-interval.

Pink classes often represent transactions, which are the lifeblood

of the enterprise.

1. This version has a solution to the EmailService exercise from Chapter 8, though none

of the other exercises.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=159

APPLYING COAD COLORS 160

DDD
in context. . .

Highlighted Core

A highlighted core is a means to identify the most significant
domain concepts within a domain model. This is useful when
the most significant classes aren’t immediately obvious from the
structure or partitioning of the model itself.

• Yellow is next (after red in the traffic light) and indicates a role that

an object plays with respect to some other object.

• Green comes next (bottom of the traffic light) and represents a

party, place, or thing. Greens tend to be concrete—something you

could stub your toe on.

• Blue is the last of the Coad archetypes and is the most neutral (the

color of your bathroom?). Blues are used to describe or catalog

other objects; they are descriptions.

If you use these colors, then you’ll find your eye naturally drawn to the

pinks first and then to the yellows, then to the greens, and finally to

the blues.

Coad’s colors might seem trite, but they can be very handy. For exam-

ple, if we were developing a library application (sorry, hackneyed exam-

ple), then what color should Book be? If you said blue, then you are

probably thinking of Book in the sense of Title, with an ISBN number. If

you said green, then you are probably thinking of a particular Copy of

a book, perhaps that one with a torn cover page.

As another example, an Airbus A318-100 is a type of plane (a PlaneType);

the aircraft with the marking “F-GUGJ” identifies a instance of a Plane.

PlaneType is blue, and Plane is green.2

Or much more generally, a CatalogItem is blue, and a StockItem is green.

Coad archetypes also tend to follow well-defined relationships. Pinks

play or use a role (yellow) with respect to greens, which are in turn

2. The correct term for a Plane—as used by domain experts—is apparently Tail, because

the aircraft’s number was traditionally painted on the tail. This is part of the ubiquitous

language for air-traffic control.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=160

FACTORING OUT OBJECTS 161

described by blues. So, if we go to the library and borrow a book, then

we’ll create a Loan (pink) of a Loanable (yellow) Book (green), which is

of a Title (blue). This is by no means an exact science; I’ve observed

that pinks are also sometimes described by blues too. But it can help

determine which way dependencies “ought” to go.

Let’s try applying Coad’s colors to CarServ:

• The most important object in CarServ is Service. It’s a car-servicing

application after all; its raison d’etre is to manage the servicing of

cars. Since Service represents an interval of time, we color it pink.

• Both the Customer and the Car classes are green, falling into the

concrete party/place/thing category. These are very much things

you could stub your toe on.

• Both the Model and the Make classes are blue; both are used to

describe Car. And Title describes Customer, so it is blue too. When

we first met these in Chapter 3, Relating Objects Together, on

page 64, I called them describing; now you know why.

There are no yellows yet in CarServ, but we’ll add some in time.

Unlike Coad’s book, unfortunately this one isn’t in color. But we can at

least indicate the Coad archetypes, as shown in Figure 9.1, on the next

page.3

Enough on colors (for now at least). I fancy doing a bit more coding, so

let’s get our hands dirty.

9.2 Factoring Out Objects

If we want our domain model to be understandable, then any single

domain class must be understandable too. But when modeling domain

classes, it’s quite possible to suddenly find oneself staring at a class of

1,000 lines or more, and that’s too large for comfort.

One reason is that in Naked Objects all our business logic lives only in

domain objects; there are no other layers to hide the business rules.

That’s a benefit, of course, because we’ll more quickly realize that we’ve

3. This diagram was created using the freeware edition of Omondo,

http://www.omondo.com. Another similar commercial tool is Borland Together,

http://www.borland.com.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.omondo.com
http://www.borland.com
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=161

FACTORING OUT OBJECTS 162

Figure 9.1: CarServ with Coad archetypes applied

heaped too many responsibilities on a single class. But we still need to

do something about it.

It’s time to draw on a little more “prior art.” Back in the 90s Robert

Martin’s (alias “Uncle Bob”) wrote a series of articles for C++ Report

magazine, collectively called the “Principles of OO Design.” He’s since

written them up in his book Principles, Patterns and Practices [Mar02].

The one we care about right now, though, is his single responsibility

principle, which states that there should never be more than one reason

for a class to change. In other words, the need to change any of a class’s

more fine-grained know-what or know-how-to responsibilities should

be equally likely.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=162

FACTORING OUT OBJECTS 163

The corollary of this is that if one of these responsibilities is more (or

indeed less) likely to change than another, then it should be factored

out into its own class.

A good example in CarServ is a Customer’s name. We can envisage that

new properties or actions might be added to a Customer, but it’s pretty

unlikely that the set of properties making up its name—title, firstName,

and lastName—are likely to change.

Let’s therefore introduce a new Name class to hold these three proper-

ties and cut and paste them out of Customer. Then, make the Customer

reference the Name:

Download chapter09/Customer-Name.java

public class Car extends AbstractDomainObject {

...

public void created() {

setName(newTransientInstance(Name.class));

}

public String title() {

return getName() != null? getName().title(): null;

}

public String iconName() {

return getName() != null?

getName().getTitle().getIconName(): null;

}

private Name name;

@MemberOrder(sequence="1")

@Disabled

public Name getName() { ... }

public void setName(final Name name) { ... }

@Hidden

public boolean matches(String firstName, String lastName) {

return getName() != null?

getName().matches(firstName, lastName): false;

}

...

}

The most important method here is created(), one of the callback meth-

ods (we saw another one in Section 6.5, Validating the Entire Object,

on page 120, and all are summarized in Appendix A, on page 375). It

is called once the object has been instantiated; this is where Customer

should create its Name object. The changes to the title(), the iconName(),

and the helper matches() method are all pretty mechanical.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter09/Customer-Name.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=163

FACTORING OUT OBJECTS 164

Figure 9.2: Name factored out from Customer

The result of the refactoring is shown in Figure 9.2. In addition to

the previous refactoring, you’ll also need to change CustomerRepository

and AbstractCustomerFixture. Again, the changes are straightforward, so

I won’t detail them here; or, you can load up the examples from the

book’s download (chapter09-02).

An alternative might have been to factor out the Name class as an

(immutable) value object. However, it doesn’t really have value seman-

tics; there’s no closed set of operations, it doesn’t act as an identifier to

a Customer, and it’s not necessarily immutable. We might also want to

subclass for cultures dealing with different ways of addressing some-

one. In fact, Name is an aggregated object, with Customer as its root.

Unlike regular entities, aggregated objects should not be shared by

roots. In UML terms, the relationship between a root and an aggre-

gated object is one of composition or containment (in a UML class dia-

gram you would fill in the black diamond on the relationship’s line).

Compare: two Cars may reference the same Model, but two Customers

should not reference the same Name. The Naked Objects applib pro-

vides an @Aggregated annotation to document that a class is intended

to be aggregated within a root, and if you use the @Disabled annotation

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=164

FACTORING OUT OBJECTS 165

DDD
in context. . .

Aggregates

Aggregates are used to restrict the number of references
allowed between entities, defining a boundary within which
invariants can be enforced while reducing the overall intellec-
tual weight of a model.

A root entity contains aggregated objects, and the only per-
manent references allowed to aggregated objects are by
the root or by other aggregated objects. Objects outside the
aggregate interact only through the root.

on the reference, it will at least ensure that the reference cannot be

modified through the UI.4

I’ve seen objections to Naked Objects itself on the basis that it gives rise

to monstrous, barely intelligible forms in the user interface. That isn’t

the case if you factor out objects wherever you see them. In fact, I could

argue it the other way: when you see a monstrous, barely intelligible

form in the UI, then that’s a sure sign that you need to tease out the

root object into some aggregates.

Not only does factoring out objects make the original object more eas-

ily understood (by reducing its size), it also extends our ubiquitous lan-

guage. For example, in CarServ we just introduced the concept of Name.

And although for now we only moved out know-what responsibilities,

we now have a class where we could start to introduce know-how-to

responsibilities. So in the future, the Name object might know how to

create an AddressLabel, for example.

So, that’s useful. In the next section, what is under consideration is

not where the responsibility should live but what type of responsibility

it should be. Read on, MacDuff.

4. Note, though, that Naked Objects isn’t smart enough (at least, not in v4.0) to enforce

the nonshareable semantic for us.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=165

BALANCING RESPONSIBILITIES 166

9.3 Balancing Responsibilities

Here’s a well-known OO antipattern: the anaemic domain model.5 The

domain objects hold lots of data, sure, but they just sit there, inert,

doing nothing. They have plenty of know-what responsibilities (proper-

ties and collections), but no know-how-to responsibilities (actions).

In conventional layered architectures, anaemic domain models are

rather common. The know-how-tos tend to shift into an explicitly coded

application layer that takes responsibility for mediating between the

dumb data objects. From the end users’ point of view, the application

broadly has the functionality it requires, but the application is in effect

procedural rather than object-oriented, separating function (in the app

layer) and data (in the domain layer). Such architectures throw away

lots of the goodness of object orientation.

Naked Objects deliberately has no explicitly coded application layer, so

we can’t fall into the anaemic domain model trap by accident. If our

objects are too dumb and expose no useful actions, our end users will

be sure tell us! On the other hand, we don’t want to go too far the

other way either by having objects that can be used and modified only

through a very restricted number of actions.

We could think of this as a spectrum, as shown in Figure 9.3, on the

next page. Domain objects that consist only of know-whats are flexible

and support many business processes but are relatively fine-grained

and thus labor intensive for the end user to work with. On the other

hand, domain objects that have more know-how-tos are easier for the

end user to use (they can do more), but the actions are necessar-

ily hard-coded to specific business processes requirements and can’t

(without recompiling the application) be changed to do something else.

This tells us that for business processes that are new or are changing,

we should keep left; but as the business activity becomes more well-

defined and common (and probably as transaction volumes increase),

the further to the right we want to be. Put another way, we only reify

the business activities into domain object actions as the business

processes that they support mature. The know-whats are the atoms,

and the know-how-tos are the molecules made up of those atoms.

So, let’s see a small example of this. Suppose in CarServ that there

was a requirement to find the most recent Service for a Car so that a

5. See, for example, http://martinfowler.com/bliki/AnemicDomainModel.html.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://martinfowler.com/bliki/AnemicDomainModel.html
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=166

BALANCING RESPONSIBILITIES 167

fine-grained, flexible

labor-intensive

atoms

coarse-grained, inflexible

labor-saving

molecules

Know-whats Know-how-tos

Figure 9.3: Know-whats vs. know-how-tos

Figure 9.4: Car can tell us its most recent Service.

reminder letter could be sent out for those Cars overdue a Service. We

could just let the user navigate through the collection of Services for the

Car and inspect each one individually, but that would be too far to the

left on our spectrum. Better would be if a Car could simply return the

most recent Service automatically:

Download chapter09/Car-mostRecentService.java

@MemberOrder(sequence = "1.3")

@Disabled(When.UNTIL_PERSISTED)

public Service mostRecentService() {

TreeSet<Service> sortedServices =

new TreeSet<Service>(new Comparator<Service>() {

public int compare(Service s, Service t) {

return s.getBookedInAndReady().compareTo(

t.getBookedInAndReady());

}

});

sortedServices.addAll(getServices());

return sortedServices.size() > 0? sortedServices.last(): null;

}

In Figure 9.4, we can see this new know-how-to responsibility.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter09/Car-mostRecentService.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=167

REPRESENTING LARGE COLLECTIONS WITH FINDER 168

Behaviorally Complete != Bloated

A behaviorally complete domain object is one that exposes a
know-how-to set of actions for the end user (or other objects)
to call.

However, it doesn’t mean that the implementation of those
actions needs to be in the domain object. There’s nothing to
prevent the domain object from delegating to other objects—
possibly not visible in the user interface—that implement the
actual behavior required.

A good example is the state pattern, which uses a different
object to represent each state.∗ These state objects are inter-
nal but hold the knowledge as to the valid state transitions and
may also implement behavior that varies polymorphically by
state.

∗. More on patterns in the next chapter; the state pattern is described in the
classic Design Patterns [GHJV95] book.

This new responsibility (chapter09-036) can of course be called pro-

grammatically by other objects as well as by the user. Indeed, we’ll use

it in the next section, which also looks at different ways to implement

the same general responsibility.

9.4 Representing Large Collections with Finder

When starting out with a new and unfamiliar domain, our goal as we

identify likely looking domain concepts is then to figure out how they

relate. However, just because there is a relationship between two con-

cepts in the “real world,” it doesn’t follow that there should be a cor-

responding relationship between the classes in our domain model. Or

more to the point, it doesn’t follow that there should be a navigable

relationship. One case in particular where we should remove the rela-

tionship is when the number of objects in that collection is large.

For example, in CarServ a Customer has a collection of Cars, and a Car

has a collection of Services. Neither is likely to get too large, so using a

collection is reasonable. We also have a relationship between Car and

6. Includes fixtures to set up some Services

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=168

REPRESENTING LARGE COLLECTIONS WITH FINDER 169

Joe Asks. . .

Does Naked Objects Support Paging of Collections?

No, Joe, the standard Naked Objects viewers don’t support
paging. Although we’ve thought several times of adding such
a capability, we’ve always done fine without. The lack of this
functionality in the viewer means we think more deeply about
the domain model, specifically, to consider the maximum car-
dinality of each of our collections. If the collection is too big,
we model the relationship with a finder.

Model: every Car is of a particular Model, and for a given Model, there

could be many Cars. Here, though, there could be thousands of Cars

for a given Model. If we naively added this collection and then ran the

application, we’d quickly realize (as the user waded through those Car

instances) that the collection shouldn’t be there. Instead, we should

model this responsibility as a finder action, with some additional crite-

ria to restrict the results.

Continuing the example of the previous section, suppose that on occa-

sion a manufacturer issues a recall for Cars of a certain Model. We might

want to support that by finding those Cars of a certain Model without

a Service in the last year.7 The usual pattern for finder actions such as

this is to delegate up to a repository, so let’s add an action and inject

the CarRepository into the Model class:

Download chapter09/Model-findCarsWithoutRecentService.java

public class Model extends AbstractDomainObject {

...

public List<Car> findCarsWithoutRecentService(

@Named("Months since")

final Integer monthsSince) {

return carRepository.findCarsWithoutRecentService(

this, monthsSince);

}

...

private CarRepository carRepository;

public void setCarRepository(final CarRepository carRepository) {

this.carRepository = carRepository;

7. This is, admittedly, slightly contrived.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter09/Model-findCarsWithoutRecentService.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=169

REPRESENTING LARGE COLLECTIONS WITH FINDER 170

}

}

In the CarRepository interface as well as in the CarRepositoryInMemory

implementation, we add the new finder that in turn uses an injected

CalendarService.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=170

REPRESENTING LARGE COLLECTIONS WITH FINDER 171

Download chapter09/CarRepositoryInMemory-findCarsWithoutRecentService.java

public class CarRepositoryInMemory

extends AbstractFactoryAndRepository

implements CarRepository {

...

@Hidden

public List<Car> findCarsWithoutRecentService(

final Model model, final Integer months) {

final CalendarDate earlierDate =

calendarService.today().plusMonths(-months);

return allMatches(Car.class, new Filter<Car>() {

public boolean accept(Car car) {

if (car.getModel() != model) return false;

Service service = car.mostRecentService();

return service != null &&

service.getBookedInAndReady()

.start().isBefore(earlierDate);

}});

}

...

private CalendarService calendarService;

public void setCalendarService(

final CalendarService calendarService) {

this.calendarService = calendarService;

}

}

Since this is an in-memory implementation of the CarRepository, it sim-

ply checks every Car using the mostRecentService() method we added

previously. An RDBMS implementation would use some clever SQL,

but the end result would be the same. Note also the @Hidden annota-

tion on this method; it is designed to be called programmatically, so we

suppress it from the view. In Figure 9.5, on the next page, we see the

ModelRepository and Model’s new behavior.

There’s also one thing missing here: how to get hold of the Models in the

first place. We should also add a new ModelRepository and ModelReposi-

toryInMemory implementation and register it in nakedobjects.properties:

Download chapter09/ModelRepositoryInMemory.java

public class ModelRepositoryInMemory

extends AbstractFactoryAndRepository

implements ModelRepository {

public String iconName() {

return "Model";

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter09/CarRepositoryInMemory-findCarsWithoutRecentService.java
http://media.pragprog.com/titles/dhnako/code/chapter09/ModelRepositoryInMemory.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=171

CONTRIBUTING ACTIONS FROM SERVICES 172

Figure 9.5: Model has a finder instead of a large collection.

@Exploration

public List<Model> allModels() {

return allInstances(Model.class);

}

}

To summarize, if the number of instances in a collection is large, we

should remove that collection and if necessary replace it with a finder

that restricts the number of instances using some criteria (chapter09-

04).

To implement this finder, we needed to inject the CarRepository into

Model. However, it turns out that we can remove that dependency com-

pletely. Let’s see how.

9.5 Contributing Actions from Services

Now pay attention, because our last technique is specific to Naked

Objects, so you probably haven’t seen it before!

In the previous section, we added a new findCarsWithoutRecentServices()

action to the Model domain class. But the price we paid for that new

functionality was to add a dependency from Model to CarRepository.

The trouble with dependencies, of course, is they make the domain

model more difficult to understand. If that dependency is closely rela-

ted, then that’s probably OK. But if the dependency is off to a far-flung

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=172
v@v
Text Box
Download at WoweBook.com

CONTRIBUTING ACTIONS FROM SERVICES 173

corner of the model, then perhaps not. For example, if you saw a rela-

tionship between the Model class and Customer, you might be scratching

your head as to what it represented (I know I would be).

So, a key weapon in battling complexity is to decouple wherever possi-

ble, something we’ll look at in detail in Chapter 11, Keeping the Model

Maintainable, on page 206. By adding that dependency into the Model

class, we seem to have been going in the wrong direction. However,

Naked Objects has a trick up its sleeve. Let’s look again at how the

Model class uses its injected CarRepository:

Download chapter09/Model-findCarsWithoutRecentService.java

public class Model extends AbstractDomainObject {

...

public List<Car> findCarsWithoutRecentService(

@Named("Months since")

final Integer monthsSince) {

return carRepository.findCarsWithoutRecentService(

this, monthsSince);

}

...

private CarRepository carRepository;

public void setCarRepository(final CarRepository carRepository) {

this.carRepository = carRepository;

}

}

The called method on CarRepository is annotated @Hidden because it is

intended to be invoked only programmatically:

Download chapter09/CarRepository-findCarsWithoutRecentService-Signature.java

@Hidden

public List<Car> findCarsWithoutRecentService(

Model model,

@Named("Months since")

Integer months);

);

Let’s remove that @Hidden annotation and run the application. As we

see in Figure 9.6, on the next page, if we bring up a Model instance,

there is now a submenu called Cars, which has a findCarsWithoutRe-

centService() action. Although in the UI this action appears to belong to

the Model, the implementation still lives on the CarRepository.

This submenu action is called a contributed action, because it is seem-

ingly contributed to the object by the repository. The framework does

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter09/Model-findCarsWithoutRecentService.java
http://media.pragprog.com/titles/dhnako/code/chapter09/CarRepository-findCarsWithoutRecentService-Signature.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=173

CONTRIBUTING ACTIONS FROM SERVICES 174

Figure 9.6: The CarRepository contributes an action to Model.

this for us because the CarRepository’s findCarsWithoutRecentService()

action accepts a Model as one of its parameters.

Since we now have the contributed action, we can just remove the

findCarsWithoutRecentService() action from the Model class and indeed

remove the dependency injection of CarRepository. We still have the func-

tionality we want but no longer any dependency (chapter09-05).

Contributed actions are reminiscent of extension methods in .NET or

introduced methods in AspectJ. It would theoretically be possible to

accomplish the same effect using aspects, but why bother? Naked Ob-

jects combines the domain object and the related service actions dy-

namically in the UI for you, with no effort at all.

So, that’s quite a nice trick, but why did I start off this section claiming

it is so important? Well, it’s because contributed actions also apply to

interfaces too, and it’s that which lets us decouple further.

For example, right now in CarServ, Car and CarRepository depend on the

Model class, which does make sense (green depends on blue). But if we

had a reason to, we could decouple these classes through an interface.

As a sketch:

1. We would introduce a CarClassifier interface.

2. We would make Car and CarRepository reference CarClassifier instead

of Model.

3. We would make Model implement CarClassifier.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=174

CONTRIBUTING ACTIONS FROM SERVICES 175

In the UI, we’d still see the CarRepository’s action contributed into the

Model class, because Model would-be-a CarClassifier. However, Car and

CarRepository would no longer depend on the Model class directly. This

change isn’t needed for the tutorial, but you can see how it would work.

As I said, we’ll come back to the topic of decoupling in Chapter 11,

Keeping the Model Maintainable, on page 206. But that wraps it up for

this chapter.

Coming Up Next

In this chapter, we used a number of techniques to help us reduce both

the size of our domain objects and the coupling between those objects.

We also saw how Coad’s colors help us rationalize about dependencies.

Applying these techniques to larger-scale domain models than CarServ

will help keep them understandable.

Some of these techniques we could call implementation patterns. Pat-

terns have been enthusiastically adopted by the software community,

which is no surprise, because they provide us with a vocabulary to

explain how objects interact. In our next chapter, we’re going to work

through a number of higher-level design and analysis patterns and see

how they too let us deepen the design.

Exercises

Download the various versions of CarServ, and check that you under-

stand what each of the refactorings has done to the model.

As a bit of revision, in Chapter 8, Isolating Infrastructure Services, on

page 140, we talked about how services are injected into fixtures and

how fixtures should use repositories if available. Now that we have a

ModelRepository, go back and move any finder logic from the fixtures and

into the ModelRepository. Since Make and Model are so closely linked,

you might also want to introduce a MakeRepository too.

In your own application, try the following:

• Identify the Coad colors of each of your domain objects. See if they

fit the general pattern of pink – yellow – green – blue.

• Factor out new (aggregated) objects.

• Replace large collections with finders on repositories.

• Ensure that finder actions are contributed to their parameters.

Then go to bed. It’s late, you know.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=175

Chapter 10

Applying Domain Patterns
Design patterns are named solutions for certain common design prob-

lems, and what makes them so useful is that they provide a vocabulary

that raises the level of abstraction of the discussion. So, assuming that

you and I both know what, say, the composite pattern is for, then I

could say, “I think we’ve got a hierarchical relationship going on here,

so why don’t we apply the composite?” You would immediately know the

solution I’m envisaging, so the discussion can focus on the important

stuff: whether my analysis is correct.

The original seminal Design Patterns [GHJV95] book catalogued twenty-

one such patterns, but there are many more than this (and indeed

many more pattern books have followed). Evans mentions a couple of

design patterns in his book, specifically composite (mentioned already)

and strategy. These two in particular do seem to be applicable to most

domains. But as Evans says, it’s possible that other design patterns

might also work at the domain level. . . it depends what your domain is.

Patterns aren’t applicable to only design. They can also apply down at

the implementation level (when they are sometimes called idioms) and

up to larger-scale analysis patterns, where the intent is to provide a

precanned and reusable object model, sometimes targeted at a specific

domain. A couple of good books with this ambition are Martin Fowler’s

Analysis Patterns [Fow96] and also David Hay’s Data Model Patterns

[Hay96]. The latter of these is targeted at data modelers rather than OO

developers, but both are good places to hunt for inspiration.

Prepared exclusively for ALESSANDRO CAROLLO

TYPE AS FACTORY PATTERN 177

In this chapter (chapter10-011), we’re going to continue refactoring

CarServ using design patterns and analysis patterns. All but one of

the patterns have been documented before (some of them many times

before), and so for these I’ve provided references to further reading.

Again, I don’t have space to do a detailed walk-through of every pat-

tern in this chapter, but I’ll try to compensate with plenty of diagrams.

If there’s not quite enough detail for you, remember you can always

download the refactored code from the book’s website.

Let’s begin with a pattern that aptly enough has to do with creation.

10.1 Type as Factory Pattern

One of the most powerful features of OO languages is of course poly-

morphism, giving us the ability to extend a model without needing to

know what those extensions might be at the outset. This is key to the

open-closed principle, another of Robert Martin’s principles. (See Princi-

ples, Patterns and Practices [Mar02].)

The open-closed principle says that classes should be open for extension

and closed for modification. In practice, this means we can extend the

model by implementing an interface or subclassing an abstract class.

But we also need to be able to create instances of these new types:

polymorphic constructors, in effect.

The objective of the type as factory pattern is to do just this.2 As usual,

let’s make this concrete with an example from CarServ.

Create New Vehicle Hierarchy

Suppose we wanted CarServ to support vehicles other than Cars. For

example, we might want to service Vans and Motorcycles as well, in other

words, Vehicles. If we were building CarServ for real, then we’d only do

this once we’d identified some actual responsibilities (properties, col-

lections, and actions) that were specific to one of the Vehicle subtypes;

otherwise, we could make do simply by renaming Car to Vehicle.

1. Includes solutions to Chapter 9’s exercises
2. The type as factory pattern is a variation on the type object pattern, described for

example in Pattern Languages of Program Design, vol3 [MRB97].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=177

TYPE AS FACTORY PATTERN 178

But for the purpose of the book, let’s continue to make these changes:

• Use the refactoring support in your IDE to globally rename Car

to Vehicle. Then mark Vehicle as abstract since it is our base class.

Similarly, rename CarRepository and CarRepositoryInMemory, and

update nakedobjects.properties.

• Change all uses of Car to Vehicle throughout. For example, rename

the methods in Customer that make up its Cars collection: getCars()

to getVehicles(), addToCars() to addToVehicles(), and so on. Do the

same for Service and for VehicleRepository.

• Reintroduce Car as a new subclass of Vehicle, and add the Van

subclass and the Motorcycle subclasses. Add icons for the new

classes.

• Update fixtures to create concrete Cars, not abstract Vehicles.

So far, so good. Let’s now get to the guts of this pattern and consider

how we create new Vehicles.

Introducing the VehicleType Power Type

We currently create Cars using the newCar() action on Customer. We

want to replace this with the ability to create any type of vehicle. Put

another way, we want to create a Vehicle of a specified VehicleType.

Here’s the plan. We’re going to have VehicleType (in the vehicle package)

as a factory to create instances of the subclasses of Vehicle. There will be

one instance of VehicleType for each of the subclasses of Vehicle. In his

book Advanced Object-Oriented Analysis & Design Using UML [Ode98],

James Odell calls such classes powertypes; Coad would color them

blue. In Figure 10.1, on the following page, we can see the domain

model we’re aiming for.

To make these changes, you should do the following:

1. Create the VehicleType class like so:
Download chapter10/VehicleType.java

@Bounded

@Immutable(When.ONCE_PERSISTED)

public class VehicleType extends AbstractDomainObject {

public String title() {

return vehicleSubclass().getSimpleName();

}

public String iconName() {

return title();

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/VehicleType.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=178

TYPE AS FACTORY PATTERN 179

Figure 10.1: VehicleType enumerates the Vehicle subclasses.

private String fullyQualifiedClassName;

public String getFullyQualifiedClassName() { ... }

public void setFullyQualifiedClassName(... }

@Hidden

public Vehicle create() {

try {

Vehicle vehicle = newTransientInstance(

vehicleSubclass());

vehicle.setType(this);

return vehicle;

} catch (Exception ex) {

throw new ApplicationException(ex);

}

}

@SuppressWarnings("unchecked")

private Class<? extends Vehicle> vehicleSubclass() {

try {

return (Class<? extends Vehicle>)

Class.forName(getFullyQualifiedClassName());

} catch (ClassNotFoundException e) {

throw new ApplicationException("No such vehicle type");

}

}

}

The FullyQualifiedClassName property is the key to the pattern, hold-

ing the fully qualified class name of a subclass of Vehicle. The (hid-

den) create() method then uses the container to instantiate the

correct subclass.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=179

TYPE AS FACTORY PATTERN 180

2. Also create a VehicleTypeRepository and a VehicleTypeRepositoryIn-

Memory implementation, and register in nakedobjects.properties.

3. Update MakesAndModelsFixture to set up the VehicleType instances:
Download chapter10/MakesAndModelsFixture-VehicleTypes.java

public void install() {

VehicleType carVehicleType =

createVehicleType(Car.class);

VehicleType vanVehicleType =

createVehicleType(Van.class);

VehicleType motorcycleVehicleType =

createVehicleType(Motorcycle.class);

...

}

private VehicleType

createVehicleType(Class<? extends Vehicle> subclass) {

VehicleType vehicleType =

newTransientInstance(VehicleType.class);

vehicleType.setFullyQualifiedClassName(subclass.getName());

persist(vehicleType);

return vehicleType;

}

The reasons for updating the MakesAndModelsFixture fixture class

will become apparent shortly.

4. Update Vehicle to reference its VehicleType so that it knows its type:
Download chapter10/Vehicle-VehicleType.java

private VehicleType type;

@Disabled

public VehicleType getType() { ... }

public void setType(final VehicleType type) { ... }

Note the @Disabled annotation; a vehicle can’t change its type.

5. Update the Customer’s newVehicle() no-arg action to take a Vehicle-

Type as a parameter:
Download chapter10/Customer-newVehicle-VehicleType.java

public Vehicle newVehicle(final VehicleType vehicleType) {

Vehicle vehicle = vehicleType.create();

vehicle.setOwningCustomer(this);

return vehicle;

}

6. Inject the VehicleTypeRepository into AbstractCarFixture so that cre-

ateCar() can look up the VehicleType corresponding to the Car, and

use the Customer’s newVehicle() action to actually create the Car.

In Figure 10.2, on the next page, we can see how this action looks in

the user interface.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/MakesAndModelsFixture-VehicleTypes.java
http://media.pragprog.com/titles/dhnako/code/chapter10/Vehicle-VehicleType.java
http://media.pragprog.com/titles/dhnako/code/chapter10/Customer-newVehicle-VehicleType.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=180

TYPE AS FACTORY PATTERN 181

Figure 10.2: The user can select which type of Vehicle to create.

We can now polymorphically create subtypes of Vehicle. Have a go at

making these changes, or just download the latest version of CarServ

(chapter10-02).

Deepening the Design

The previous steps outline the general form of the type as factory pat-

tern. The powertype drop-down both enumerates the subclasses and is

responsible for creating instances of them.

In our particular case, we can go a little further, though. When we

create a new Car, we at some point must specify its Model. Thinking this

through, the Model in fact determines the VehicleType. In Figure 10.3,

on the following page, we can see the relationship between these two

classes.

And now, we suddenly get (what Evans called) a cascade of insights: we

don’t need that reference from Vehicle to VehicleType after all, because

there is already a reference up to Model from which we can infer the

VehicleType. Similarly, the argument to the newVehicle() action shouldn’t

be a VehicleType; it should be a Model. We can then delegate to the Model

to have it create the correct subclass of Vehicle.

To make these changes, you should do the following:

1. In Model, add a VehicleType reference, and add a create() action:

Download chapter10/Model-VehicleType.java

public class Model ... {

...

private VehicleType vehicleType;

public VehicleType getVehicleType() { ... }

public void setVehicleType(VehicleType vehicleType) { ... }

public Vehicle create() {

return getVehicleType().create(this);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Model-VehicleType.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=181

TYPE AS FACTORY PATTERN 182

Figure 10.3: VehicleType is determined by Model.

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=182

TYPE AS FACTORY PATTERN 183

2. In VehicleType, update its create() action to take the Model:

Download chapter10/VehicleType-create.java

@Hidden

public Vehicle create(final Model model) {

try {

Vehicle vehicle = newTransientInstance(vehicleSubclass());

vehicle.setModel(model);

return vehicle;

} catch (Exception ex) {

throw new RuntimeException(ex);

}

}

3. Update MakesAndModelsFixture to set up the reference from Model

to VehicleType. (Now you see why we used this fixture earlier.)

4. In Vehicle, remove that reference to VehicleType; we can infer it from

the Model.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/VehicleType-create.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=183

KNOWLEDGE LEVEL PATTERN 184

5. In Customer, modify the newVehicle() action to take a Model rather

than a VehicleType:

Download chapter10/Customer-newVehicle-Model.java

public Vehicle newVehicle(final Model model) {

Vehicle vehicle = model.create();

vehicle.setOwningCustomer(this);

return vehicle;

}

6. Finally, in AbstractCarFixture’s createCar() method, there’s no longer

any need to look up the VehicleType, so remove that logic and

indeed the injected VehicleTypeRepository.

The previous example (chapter10-03) nicely demonstrates how apply-

ing some standard patterns, such as type as factory, can lead us to

deeper insights into our domain model. Previously the Model class was

a pretty boring bit of reference data, whereas now it is integral to our

approach for supporting different types of vehicles.

The next design pattern we’re going to look at will also get our boring

blue reference data classes working harder for us. Let’s see how.

10.2 Knowledge Level Pattern

These days, when you buy a new car, a little warning light might appear

after six months or so telling you it’s due for a service. But a different

car might warn you after twelve months or some other period. Or, you

might get a warning after you’ve driven 10,000 miles or so. For another

car, perhaps it’s some other distance. But it’s not so much the Car that

is determining the interval between Services; it’s the Car’s Model.

The knowledge level pattern is about splitting responsibilities between

those objects that know how things should be and those objects that

capture how things are.3 The former objects constitute the knowledge

level, and the latter objects constitute the operational level. Using

Coad’s colors, knowledge-level objects are usually blue; operational-

level objects are the greens and pinks. The operational-level objects

reference the knowledge-level objects.

Separating these responsibilities is in line with the Robert Martin’s

single responsibility principle mentioned in Section 9.2, Factoring Out

Objects, on page 161. Rather than a single domain object with a tan-

3. The knowledge level pattern is described both in Evans’ Domain Driven Design [Eva03]

and in Fowler’s Analysis Patterns [Fow96].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Customer-newVehicle-Model.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=184

KNOWLEDGE LEVEL PATTERN 185

Figure 10.4: Model holds the knowledge about Service intervals.

gle of responsibilities, we end up with two smaller objects with a well-

defined relationship between them; our model should be easier to

understand.

In CarServ, let’s formalize Model as the knowledge level for Vehicle, as

shown in Figure 10.4. The Model class captures the knowledge about

how often Services should occur. The Vehicle and Service classes mean-

while capture what is happening “on the ground.” If we consider the

other classes in our model, then Customer (green) will also be at the

operational level, while Make and VehicleType (both blues) will be in the

knowledge level. To make these changes, you should do the following:

1. Update the Model class with a new serviceInterval property to rep-

resent the number of months between Services. Also update the

MakesAndModelsFixture with suitable values.

2. Add a new action to Vehicle so it can tell us whether it is overdue

for servicing with respect to its Model:

Download chapter10/Vehicle-isServiceOverdue.java

@Hidden

public boolean isServiceOverdue() {

if (mostRecentService() == null) return false;

final CalendarDate lastService =

mostRecentService().getBookedInAndReady().start();

final CalendarDate serviceDue =

lastService.plusMonths(model.getServiceInterval());

return calendarService.today().isAfter(serviceDue);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Vehicle-isServiceOverdue.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=185

KNOWLEDGE LEVEL PATTERN 186

DDD
in context. . .

Knowledge Level

A knowledge level, according to Fowler [Fow96], is a group of
objects that describes how another group of objects should
behave. Evans notes that it is an application of reflection for
domain models.

This also needs CalendarService to be injected into Vehicle.

3. Refactor our findVehiclesWithoutRecentService() action on VehicleRe-

pository. Currently it takes a parameter for the number of months,

so remove this parameter (and its defaults and choices) and in-

stead use the Vehicle’s new isServiceOverdue() action:

Download chapter10/VehicleRepository-findCarsWithoutRecentService-isServiceOverdue.java

public List<Vehicle> findVehiclesWithoutRecentService(

final Model model) {

return allMatches(Vehicle.class, new Filter<Vehicle>() {

public boolean accept(Vehicle vehicle) {

if (vehicle.getModel() != model) return false;

return vehicle.isServiceOverdue();

}});

}

The CalendarService no longer needs to be injected into VehicleRe-

pository, so remove the setter.

In Chapter 9, Distributing Class Responsibilities, on page 158, we deci-

ded that a Model should not have a collection of Vehicles; instead, we

should use a finder. Our argument then was pragmatic: there would

have been too many Vehicles in the collection. Considering knowledge

levels and operation levels gives us another (better?) reason not to have

this collection; the knowledge level should not know about the opera-

tional level. You shouldn’t navigate from blues to greens (chapter10-

04).

The next pattern we’re going to look at shows that inspiration can come

from the code itself.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/VehicleRepository-findCarsWithoutRecentService-isServiceOverdue.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=186

NULL OBJECT PATTERN 187

10.3 Null Object Pattern

In the preceding pattern, we refactored findCarsWithoutRecentService()

several times, but in every implementation we have a null check within

isServiceOverdue():

Download chapter10/Vehicle-isServiceOverdue-abbreviated.java

@Hidden

public boolean isServiceOverdue() {

if (mostRecentService() == null) return false;

// ... remainder of the method ...

}

That bothers me. Why should we have a special case processing for the

very first Service? And how would we know when the first Service is due,

anyway?

If we could guarantee that there would always be a Service, then we

wouldn’t need any special processing at all. What we want is a sort of

do-nothing marker Service, created automatically when the Vehicle itself

is created. This is the null object pattern.4

The user will need to be able to distinguish between this null service

and a regular service, and there are a couple of ways we could model

this. The simplest approach would be to just have a boolean isNull prop-

erty. Slightly more sophisticated (and the discussion that follows pro-

vides some justification for this) would be to create an inheritance hier-

archy so that Service becomes abstract with subclasses to represent the

different service types. As shown in Figure 10.5, on the following page,

we can start off with just two.

To make these changes, you should do the following:

1. Create a new RegularService and subclass from Service. Mark Service

as abstract.

2. Similarly, create a new NullService and subclass from Service.

3. Add icon images for both, and provide a title() for NullService to

easily distinguish from RegularService:

Download chapter10/NullService-title.java

public String title() {

return super.title() + " (null)";

}

4. The null object pattern is described in Pattern Languages of Program Design, vol3

[MRB97].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Vehicle-isServiceOverdue-abbreviated.java
http://media.pragprog.com/titles/dhnako/code/chapter10/NullService-title.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=187

NULL OBJECT PATTERN 188

Figure 10.5: Service becomes a hierarchy.

4. In Vehicle’s bookService() action, change the implementation to in-

stantiate a RegularService rather than the (now abstract) Service.

5. Also in Vehicle, add a created() life-cycle method to create a new

NullService:
Download chapter10/Vehicle-created.java

public void created() {

addToServices(newTransientInstance(NullService.class));

}

6. Update the AbstractCarFixture subclasses so that the effective date

when each Vehicle is first created is prior to its first RegularService

booked (if any).

Now we get to the payback. Since we know there will always be at least

one Service, we can simplify that isServiceOverdue() method and remove

that if (mostRecentService() == null) return false; check.

My problem with this pattern is in explaining it to the domain expert;

just what does a “null” service mean in our ubiquitous language any-

way? And yet it feels like we’re going in the right direction, because we

can now determine when the first regular Service is due, whereas we

couldn’t before.

The question to ask our domain expert is, how do they determine when

a vehicle’s first service is due? It might be that there’s special-case pro-

cessing where the vehicle’s initial registration date is used, rather than

the previous service. In that case, we should update our model to reflect

this business process. Alternatively, it might be that there is such a

thing as our initial “null” Service, except it is actually a predelivery ser-

vice (if a new car) or an initial assessment service (if the customer just

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Vehicle-created.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=188

ROLE OBJECT PATTERN 189

Figure 10.6: Every Vehicle has at least one Service.

bought a secondhand car). The introduction of a hierarchy for Services

now looks like a good idea; we can start to vary charging policies and

other matters based on service type.

To close off this discussion, let’s go with the second of these alternatives

and rename NullService to InitialService. In Figure 10.6, we see this version

of CarServ (chapter10-05).

Our next pattern is from the other end of the spectrum; it’s really an

analysis pattern.

10.4 Role Object Pattern

Sometimes we come across two domain concepts that seem to share

a lot in common but feel distinct. It often turns out that they are the

same concept but playing different roles with respect to other parts

of the model. In this case, we can model the role as a simple (Java)

interface.

But on occasion the role itself is important (has its own know-what

or know-how-to responsibilities), meaning that it needs to be modeled

separately. This is the role object pattern.5 What’s nice about this pat-

tern is that it allows the roles that an object plays to change over time.

5. The role object pattern is described in Pattern Languages of Program Design, vol4

[HFR00].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=189

ROLE OBJECT PATTERN 190

Whereas with a role modeled by an interface, the relationship is per-

manent (SomeClass implements SomeInterface), with a role object we can

attach and detach roles over time. We can also keep a history of roles

as an audit trail.

Let’s make this concrete again. Suppose in CarServ we want to keep

track of the time spent per Service per employee so we can charge for

labor. The rate depends on the experience of the mechanic, so we’ll need

an Employee class with an hourlyChargeRate property. We’ll also identify

each Employee by Name.

Noticing that Name is shared with Customer, we might be tempted to

create a superclass Person to hold the Name reference and have both

Customer and Employee inherit from it. Not so fast, though! Suppose we

also had a requirement that Employees get a 10 percent discount. We

would need to start associating each Employees with their correspond-

ing Customers. But what then if an Employee/Customer changes their

Name? We’d need to update that Name twice over.

The problem with the previous design is that we have two different

instances of a Person entity (one a Customer and one an Employee) when

“in the real world” there’s only a single person. It was the right idea

to introduce a Person entity, but Employee isn’t a subclass of Person.

Instead, it’s a role that a Person plays. Likewise for Customer.

In Figure 10.7, on the following page, we see the relevant classes and

properties in our revised domain model. To get here, you’ll first need to

refactor Customer into a role:

1. Create a new person package, and move Name and Title into it.

2. Create a Person class in the new person package, and add a refer-

ence to Name class (or copy Customer and remove the unwanted

stuff). Implement title() and iconName() as follows:
Download chapter10/Person-title-iconName.java

public String title() {

TitleBuffer buf = new TitleBuffer();

if (getName() != null) {

buf.append(getName().title());

}

buf.append(" (Person)");

return buf.toString();

}

public String iconName() {

return getName() != null?

getName().getTitle().getIconName(): null;

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Person-title-iconName.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=190

ROLE OBJECT PATTERN 191

Figure 10.7: Employee and Customer become roles of Person.

3. Create an abstract PersonRole class (again in the person package).

Choose an icon for the class. Add a bidirectional unmodifiable one-

to-many relationship between Person and PersonRole, and imple-

ment title() as follows:
Download chapter10/PersonRole-title.java

public String title() {

return getPerson() != null?

getPerson().title() + " (" + roleName() + ")": null;

}

public String iconName() {

return getPerson() != null? getPerson().iconName() : null;

}

protected abstract String roleName();

In PersonRole, add a persisting() life-cycle method so the role is

added to the Person when it is saved:
Download chapter10/PersonRole-persisting.java

public void persisting() {

getPerson().addToRoles(this);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/PersonRole-title.java
http://media.pragprog.com/titles/dhnako/code/chapter10/PersonRole-persisting.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=191

ROLE OBJECT PATTERN 192

4. Add helper hasRole() and getRole() methods to Person:
Download chapter10/Person-getRole-hasRole.java

@SuppressWarnings("unchecked")

@Hidden

public <T extends PersonRole> T getRole(Class<T> roleType) {

for(PersonRole role: getRoles()) {

if (roleType.isAssignableFrom(role.getClass())) {

return (T) role;

}

}

return null;

}

@Hidden

public boolean hasRole(Class<? extends PersonRole> roleType) {

return getRole(roleType) != null;

}

5. Make Customer subclass PersonRole. Remove its Name property and

title(); also implement roleName();

6. Rework the CustomerRepository’s newCustomer() action so that it re-

turns a still-transient Person object with a Customer role attached.

Leave the finders alone, though.

7. Rework AbstractCustomerFixture to use CustomerRepository’s newCus-

tomer() action.

With those changes done, add the Employee role also:

1. Add an Employee class as a subclass of PersonRole in a new em-

ployee package. Add the hourlyChargeRate property, implement role-

Name(), and choose an icon for the class.

2. Create a new EmployeeRepository, similar to CustomerRepository, and

register in nakedobjects.properties.

3. Create a new AbstractEmployeeFixture, and then create a FredSmith-

EmployeeFixture subclass and for other employees too. Make sure

the logic copes with creating a new Employee who is already a Cus-

tomer. Add to CustomerCarsMaintenanceFixture.

In Figure 10.8, on the next page, we can see what our application now

looks like (the icons distinguish the role types).

You can load up a version of CarServ with these changes applied (chap-

ter10-06). With this refactoring done, it would now be easy to start

implementing some of our requirements. For example, for the 10 per-

cent employee discount, it’d be easy to find out whether the Person of the

Customer in question also has an Employee role (this is just a sketch).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Person-getRole-hasRole.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=192

ROLE OBJECT PATTERN 193

Figure 10.8: Customer and Employee are roles of Person.

public class Service ... {

...

public void calculateTotal() {

this.total =

(sumParts() + sumLabor()) * (1.0 - employeeDiscountIfAny());

}

private double employeeDiscountIfAny() {

return getCar().getCustomer().getPerson()

.hasRole(Employee.class)) ? 0.1: 0.0;

}

}

Before we move on, we ought to note one of the downsides of this pat-

tern, which is that it is quite complex for the end user. There is no is-

a-kind-of relationship between the role objects (Customer and Employee)

and the object that has the roles (Person). So, although the end user

might informally talk about a Customer’s Name, strictly speaking what

we now have is the Name of the Person that happens to be a Customer.

If the end user wanted to modify a “customer’s name,” then they would

need to walk the graph (click through) from Customer up through Person

to get to Name.

That said, if the Customer’s Name (or some other property that belongs

to Person) changes frequently, then there’s nothing to prevent us from

providing a convenience action to modify the Name from the Customer.

Indeed, if we put the action in the PersonRole superclass, then any sub-

class role would inherit this convenience action.

It’s time to move on. Next we’re going to consider the relationship be-

tween the newly introduced Employee object and the users of the appli-

cation themselves.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=193

USER PEER OBJECT PATTERN 194

10.5 User Peer Object Pattern

We spend a lot of time thinking about the domain objects with which the

user of our application will interact. But for some systems, especially

those with a workflow element, what also matters is who is doing the

interacting, and that is the users themselves.

To model this, we need a representation of those users in the model,

which we then need to integrate that with the system’s own represen-

tation of the user (that is, their login).

In the case of CarServ, we already have an Employee object. So when

our user logs in, how does that user quickly bring up “their” Employee

object? What we need is some way of associating the system-level user

identity (login) with the domain-level concept of Employee, which we can

do using the user peer object pattern.6 The Employee is the peer domain

object of the system-level user identity, in a one-to-one correspondence.

This is a simple pattern to implement:

1. First, link the Employee to the user by adding an (unmodifiable)

UserId string property.

2. Update the AbstractEmployeesFixture and its subclasses to specify

the UserId. As we learned in Section 4.3, Fixtures for Setting Up

User Sessions, on page 87, the current user depends on whether

you have a logon fixture (as is the case in the CarServ down-

loads, specifically LogonAsFredSmithFixture) but otherwise depends

on whether you log in using exploration or prototype mode.

3. Finally, provide a new me() action to search for the current user.

Something like this:

Download chapter10/EmployeeRepository-me.java

public Person me() {

return firstMatch(Person.class, new Filter<Person>() {

final String currentUserId =

getContainer().getUser().getName();

public boolean accept(final Person person) {

Employee employee = person.getRole(Employee.class);

return employee != null &&

employee.getUserId().equals(currentUserId);

}});

}

6. I couldn’t find a description of this pattern in existing literature, so even though it’s

a well-known technique, this might be the first time it has been given a name.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/EmployeeRepository-me.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=194

STRATEGY PATTERN 195

Figure 10.9: Employee is the user peer object.

Remember, we can find the current user’s name using the injected

DomainObjectContainer; for a recap, see Section 8.2, The Domain

Object Container, on page 143.

In Figure 10.9, we can see what the application should look like when

you run it (chapter10-07).

Now that we have linked our Employee domain object to the system

user—now that the application knows who’s using it—we could start

adding further functionality. For example, we could provide a workflow

capability using different types of work items, where one work item type

might represent the labor required on a Service. Other related function-

ality we could add might include auditing and quality control, but all of

it follows on from this pattern.

Let’s now look at one of the all-time classic design patterns.

10.6 Strategy Pattern

The strategy pattern, sometimes also called policy, allows us to repre-

sent pluggable behaviors as objects themselves.7 These strategies effec-

tively define the behavior of the object that references them.

The object acting as a strategy can be one of several Coad colors. If

the strategy holds no intrinsic state, then it’ll be blue, representing

the know-how-to responsibilities for the operational know-what objects.

7. The strategy pattern is described in Design Patterns [GHJV95].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=195

STRATEGY PATTERN 196

But going the other way, it’s also possible for strategy to be pink, repre-

senting the interval of time that the strategy was attempted. For exam-

ple, a debt collection agency might use a variety of strategies to recover

a debt. Each strategy could keep track of when it was applied and

whether it was successful. Or it might be green and hold just enough

state to control the workflow for a particular owning object. Coad’s col-

ors can really help to tease out the nature of the strategy.

It’s time to make this concrete again. At some point we’re going to need

to charge our Customers for Services, so let’s add some functionality

around that requirement. Most Customers will probably want to pay by

credit card, so we can model that as one method of payment. But we

might also allow our regular Customers to pay on account, and there

will be those Customers who prefer to pay by cash.

Each of these are PaymentMethods, and they represent a strategy by

which we charge for work done. The different ways—strategies—for pay-

ing (CreditCard, Cash, and Account) are subclasses of PaymentMethod. In

Figure 10.10, on the next page, we can see this sketched out, once

again using the type as factory pattern.

To get there from here, you’ll need to do the following:

1. Create a PaymentMethodType powertype in a new payment package,

and create a corresponding PaymentMethodTypesFixture fixture.

2. Create an abstract PaymentMethod superclass (also in payment)

with an unmodifiable Type property to its PaymentMethodType. To

make it a little more interesting, you could also add a Current flag.

3. Create CreditCard, Account, and Cash as subclasses of Payment-

Method in the customer package, with appropriate properties.

For example, CreditCard would capture the cardNumber and expiry-

Date, Account might detail the current balance and a limit, and Cash

perhaps has no additional properties.

4. Add a bidirectional unmodifiable collection of PaymentMethods to

Customer, and in PaymentMethod add a corresponding Owner.

5. In Customer again, write a newPaymentMethod() action taking

PaymentMethodType as a parameter. This should return a still-

transient instance of the appropriate subclass of PaymentMethod.

In the PaymentMethod’s persisting() life-cycle method, it should add

itself to its owning Customer’s paymentMethods collection.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=196

STRATEGY PATTERN 197

Figure 10.10: PaymentMethod provides strategies for paying.

6. Update the AbstractCustomerFixture and subclasses to create some

initial PaymentMethods for each.

7. Add icons for all new domain classes (PaymentMethodType, Pay-

mentMethod, Cash, CreditCard, and Account).

With this scaffolding out of the way, we can implement the payment

functionality. The PaymentMethod is going to act as the pluggable strat-

egy, providing two responsibilities. First, validatePay() will make sure

that the amount to pay is within the limit, and second, pay() will actu-

ally process the payment. Therefore:

1. In PaymentMethod, add abstract pay() and validatePay() methods,

each taking a Service.

2. In Service, add an Amount property (ultimately this would be cal-

culated; for now we’ll make do with an editable property). Also add

an unmodifiable Paid flag.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=197

STRATEGY PATTERN 198

3. Also in Service, add a payUsing() action that accepts a Payment-

Method:

Download chapter10/Service-payUsing.java

public void payUsing(final PaymentMethod paymentMethod) {

paymentMethod.pay(this);

}

public String validatePayUsing(PaymentMethod paymentMethod) {

final ReasonBuffer buf = new ReasonBuffer();

buf.appendOnCondition(

paymentMethod.getOwner() !=

getVehicle().getOwningCustomer(),

"Payment method must belong to this customer");

buf.appendOnCondition(

!paymentMethod.getCurrent(),

"Payment method must be current");

buf.append(paymentMethod.validatePay(this));

return buf.getReason();

}

public List<PaymentMethod> choices0PayUsing() {

return getVehicle().getOwningCustomer().getPaymentMethods();

}

public String disablePayUsing() {

final ReasonBuffer buf = new ReasonBuffer();

buf.appendOnCondition(getAmount() == 0, "Nothing to pay");

buf.appendOnCondition(getPaid(), "Already paid");

return buf.getReason();

}

4. Finally, in the PaymentMethod subclasses, implement the pay()

and validatePay()strategy methods. The Cash implementation prob-

ably just needs to use warnUser() to pop up a message and then

mark the Service as paid:

Download chapter10/Cash-pay.java

public void pay(Service service) {

warnUser("Paid in Cash");

service.setPaid(true);

}

The CreditCard implementation would most likely use an infras-

tructure service (as discussed in Chapter 8, Isolating Infrastructure

Services, on page 140), but for now we can just write a stub.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/Service-payUsing.java
http://media.pragprog.com/titles/dhnako/code/chapter10/Cash-pay.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=198

STRATEGY PATTERN 199

Figure 10.11: Service can be paid for using any PaymentMethod.

Download chapter10/CreditCard-pay.java

@Override

public void pay(Service service) {

// stub implementation, would probably delegate to

// a CreditCardService.

warnUser("NOT YET IMPLEMENTED - ignoring");

}

The Account implementation would add the Service’s Amount to its

Balance, again marking the Service as paid:

Download chapter10/Account-pay.java

@Override

public void pay(Service service) {

warnUser("Put onto Account");

setBalance(getBalance() + service.getAmount());

service.setPaid(true);

}

@Override

public String validatePay(Service service) {

int available = getLimit().intValue() - getBalance().intValue();

return service.getAmount() > available?

"Amount exceeds available credit": null;

}

With all that done, we can see the application in use in Figure 10.11.

Thanks to the type as factory pattern we saw earlier, adding other pay-

ment strategies will be straightforward.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/CreditCard-pay.java
http://media.pragprog.com/titles/dhnako/code/chapter10/Account-pay.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=199

PROCESS OBJECT PATTERN 200

Note that in this implementation (chapter10-08), the strategy object

is green; it’s a thing belonging to the Customer. To finish off this chap-

ter, let’s look at a pattern designed to support labor-intensive business

processes.

10.7 Process Object Pattern

Sometimes we have use cases that need to create or update a whole

graph of objects together in a single go. For example, in an expense

system, this would be entering a week’s expenses. It would be frus-

trating for the user to have to navigate around the object graph and

enter each expense item in turn. Instead, our system should provide

the ability to bulk upload the week’s expenses in a single hit.

With the process object pattern, we introduce a domain object whose

purpose is solely to make such bulk updates easier.8 This domain

object is never persisted, so we annotate it using @NotPersistable. Instead

of a save action, it provides a means to “take on” the update.

Another way of thinking about this is in terms of “problem spaces”

and “solution spaces.” The domain model we’ve developed belongs to

the problem space: it organizes the concepts of the domain (Customers,

Vehicles, Services, and so on) in a way that is useful for us. The process

object, however, belongs to the solution space; it helps solve a particular

use case in a particular way.

Let’s see this in operation. In CarServ, it’s a pretty reasonable bet that

whenever we enter a new Customer, we’ll also be entering details about

their Vehicle(s), along with their PaymentMethods. We could combine all

of these into a single CustomerTakeOn object, as shown in Figure 10.12,

on the following page.

To make these changes, do the following:

1. Create the CustomerTakeOn object, consisting of mandatory prop-

erties Title, FirstName, and LastName, and of the optional properties

Vehicle1Model, Vehicle1RegNo, Vehicle2Model, Vehicle2RegNo, Credit-

CardNumber, CreditCardExpiryDate, AccountLimit, and SetUpCash.

Annotate the class as @NotPersistable.

8. The process object pattern is a variation on the transaction script pattern; see Patterns

of Enterprise Application Architecture [Fow03].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=200

PROCESS OBJECT PATTERN 201

Figure 10.12: CustomerTakeOn simplifies the common use case.

2. Also add a disabled TakenOn boolean property, which we’ll use for

state tracking. Add a disableXxx() supporting method for each of

the properties to disable it when this boolean is set.

3. Create a PaymentMethodTypeRepository and in-memory implemen-

tation, annotated as @Hidden. Inject into CustomerTakeOn.

4. Add an ok() action to the CustomerTakeOn. This is the action that

does the take-on itself:

Download chapter10/CustomerTakeOn-ok.java

@Named("OK")

public Person ok() {

Person person = customerRepository.newCustomer();

person.getName().setFirstName(getFirstName());

person.getName().setLastName(getLastName());

person.getName().setTitle(getTitle());

Customer customer = person.getRole(Customer.class);

if (enteredAllOf(getVehicle1Model(),

getVehicle1RegistrationNumber())) {

Vehicle vehicle = customer.newVehicle(getVehicle1Model());

vehicle.setRegistrationNumber(

getVehicle1RegistrationNumber());

customer.addToVehicles(vehicle);

}

if (enteredAllOf(getVehicle2Model(),

getVehicle2RegistrationNumber())) {

Vehicle vehicle = customer.newVehicle(getVehicle2Model());

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter10/CustomerTakeOn-ok.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=201

PROCESS OBJECT PATTERN 202

vehicle.setRegistrationNumber(

getVehicle2RegistrationNumber());

customer.addToVehicles(vehicle);

}

if (enteredAllOf(getCreditCardNumber(),

getCreditCardExpiryDate())) {

CreditCard creditCard =

(CreditCard) customer.newPaymentMethod(

findPaymentMethodType(CreditCard.class));

creditCard.setCardNumber(getCreditCardNumber());

creditCard.setExpiryDate(getCreditCardExpiryDate());

customer.addToPaymentMethods(creditCard);

}

if (enteredAllOf(getAccountLimit()) &&

getAccountLimit() > 0) {

Account account =

(Account) customer.newPaymentMethod(

findPaymentMethodType(Account.class));

account.setLimit(getAccountLimit());

customer.addToPaymentMethods(account);

}

if (getSetupCash()) {

Cash cash = (Cash) customer.newPaymentMethod(

findPaymentMethodType(Cash.class));

customer.addToPaymentMethods(cash);

}

persist(person);

setTakenOn(true);

return person;

}

public String disableOk() {

String invalidReason = validate(this);

if (invalidReason != null) {

return invalidReason;

}

return getTakenOn()?"Already taken on":null;

}

At the end of the method, this sets the TakenOn flag when complete,

thereby disabling the object once the take-on has occurred. Also,

note the use of the validate() method, mentioned in Section 6.5,

Validating the Entire Object, on page 120. This disables the ok()

action if the object (which includes any property of the object) is

invalid.

5. Add a new takeOnCustomer() action to CustomerRepository. This

should instantiate and return the CustomerTakeOn. Also, mark the

newCustomer() action as @Hidden.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=202

PROCESS OBJECT PATTERN 203

With these changes made, try the application (chapter10-09).9

It’s also possible to create more complex process objects that have col-

lections, possibly prepopulated to create a grid-like form. For example,

CustomerTakeOn might have had a Vehicles collection (of VehicleTakeOn

objects). When the takeOn() action is invoked, any completed Vehicle-

TakeOns would be used to create corresponding Vehicles.

I should point out that with the process object pattern, we’re on a slip-

pery slope. As we discussed in Section 9.3, Balancing Responsibilities,

on page 166, Naked Objects’ lack of an explicitly coded application layer

helps prevent an anaemic domain model. But with the process object

pattern, what we’re doing is reintroducing that layer. We may end up

duplicating validation logic in both our domain objects and our pro-

cess objects, potentially introducing bugs. But more significantly, we

are encouraging our business users to interact with our system in very

narrow ways. One of the hallmarks of Naked Objects’ applications is

that they empower users by placing as few constraints on the usage of

the system as possible. But if the domain objects are hidden beneath

process objects, this flexibility gets lost.

However, process objects do have their place. You should start out pro-

viding the functionality in the domain objects. Then, you can add pro-

cess objects where necessary; you’re unlikely to need too many. There’s

an analogy here with database denormalization, where we start fully

normalized and then denormalize for performance reasons. Except here

we’re not denormalizing data; we’re “denormalizing” functionality.

Coming Up Next

In this chapter, we substantially enlarged the scope of CarServ, but it

remains understandable because we can now think of it at a higher

abstraction level as a collection of patterns. The overall number of con-

cepts we need to hold in our heads is still manageable.

Admittedly, there’s nothing in the Naked Objects approach that says

where patterns have been applied or why. To help future developers

honor the design decisions you make, you’ll need to document their

usage separately (see the sidebar on the next page). But at least we

9. At the time of writing, the HTML viewer does not currently support the process object

pattern.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=203

PROCESS OBJECT PATTERN 204

Documenting the Usage of Patterns

When we apply a design pattern, the code represents the
effect of applying the pattern; however, the pattern instance
itself (the cause of the effect, if you like) has no direct repre-
sentation in code. Future generations looking only at the code
might not spot that the pattern was applied, so the design deci-
sion we took will be lost.

One option for documenting pattern instances is to represent
the pattern in a class name. For example, a class named
XxxComposite would presumably represent the composite pat-
tern. However, this doesn’t work if there are lots of participants
in the pattern (it would be hard to determine the leaf objects
in the composite). One could also argue we are polluting the
ubiquitous language in choosing these names.

An alternative is to use humble Javadoc. And that is fine,
except of course that (not being code) it may get ignored,
either never read or never updated.

Another approach is to use a UML modeling tool that reverse
engineers the code into UML class diagrams and then allows
the patterns to be annotated over the top. TogetherJ was an
early tool that did this (see the book [CH02] I coauthored from
a few years ago), and there are similar tools around now that
integrate with Eclipse and other IDEs. They still require the devel-
oper to load up the diagram to update it, though.

only have to look in the domain layer for them, not the other layers,

and they will all work at similar levels of abstraction.

Remember that the patterns listed here aren’t exhaustive. There are

plenty of other patterns to experiment with that may help deepen your

design, such as composite, chain of responsibility, and state. A pattern-

rich model will be much easier to understand than one without.

Still, although from a business functionality standpoint CarServ has

been extended substantially, from a technical viewpoint it is still rather

naive. Even with patterns, we’re still thinking of it as a single big lumpy

domain model, and at some point it will get too big to fully comprehend.

So in the next chapter, we’re going to look at techniques to organize our

domain model into smaller chunks. And that too will help deepen our

design.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=204

PROCESS OBJECT PATTERN 205

Exercises

Given I only sketched the implementation of the patterns, there are

plenty of exercises to tackle in the main text of this chapter. Or if you

want, just download the various versions of CarServ, and make sure

you are happy with the resultant refactorings.

In the downloads, I’ve used simple Integers for all monetary amounts.

If you want some revision, you could use replace this with the Money

value types from the timeandmoney library.

For your own application, the exercise—you guessed it—is to refactor

it by applying patterns. Perhaps you could ask a friend to think of

some enhancements to your app and then try to implement one of their

suggestions by applying one of the patterns listed here.

Finally, consider how you might document pattern instances in your

code. In the sidebar on the preceding page, there are some suggestions

as to how you might do this.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=205

Chapter 11

Keeping the Model Maintainable
We human beings are remarkable machines, fantastically adept at

higher-order processing such as pattern recognition. Yet remember-

ing more digits than in the average phone number will be beyond the

ability of most (me, at least).

Software development is a battle against complexity, and to win that

battle, we need to keep the number of things we have to consider at any

one time manageable. Your own applications will have tens or hundreds

of classes and tens of thousands of lines of code. Heck, even CarServ

has a couple dozen classes! Since we can’t hope to fully comprehend a

domain model made up of lots of little parts, there’s only one thing we

can do: break it up into larger chunks that can be understood in their

own right.

Programming languages such as Java provide us with mechanisms to

modularize our software: classes and interfaces, packages, JARs. But

the question is, which modules should we create? This chapter is all

about answering that question and chunking up or decoupling the ele-

ments within our domain model to keep the number of modules man-

ageable. And in doing so, it will again help us to deepen our design.

In the previous chapter, we substantially extended the functionality of

CarServ. Let’s kick off this chapter (chapter11-01) with a review of its

current structure; then we’ll look at how to start decoupling it.

Prepared exclusively for ALESSANDRO CAROLLO

ANALYZING THE STRUCTURE OF CARSERV 207

DDD
in context. . .

Module

Modules group related concepts together, reducing the num-
ber of things we need to think about at the same time.

In Java, modules are implemented as packages. Typically this
means their subpackages as well, so we can also think of mod-
ules in their distributed form, as JARs, as Maven modules, or as
OSGi bundles.

11.1 Analyzing the Structure of CarServ

In Figure 11.1, on the next page, we can see the domain classes of Car-

Serv, with each of the refactorings from the previous chapters applied.

As you can see, the diagram uses the familiar UML notation.1

Now there are twenty-one classes (count them!) plus repositories, val-

ues, and other supporting services. That’s too many to remember, so we

are going to need to do something before CarServ becomes too complex

to handle. One thing we can do—and indeed have been doing—is to put

our classes into packages, of which we have six. I’ve annotated the UML

diagram with dotted lines to show where the package boundaries are.

But is it an improvement?

In Figure 11.2, on the following page, we see another visualization of

the dependencies between classes and/or packages that might be less

familiar, called a dependency structure matrix (DSM).2 The cells in the

matrix sum up the dependencies of the classes in the column pack-

age upon the classes in the row package. For example, payment has

two dependencies on service, while service has seven dependencies on

payment.

For domain models where there are no cyclic dependencies between

packages, there will be numbers in the bottom-left diagonal only (the

tool will reorder the columns and rows to make this so). As we can see,

1. Reverse engineered using Omondo’s EclipseUML, previously mentioned
2. This visualization was created using Structure101, a commercial product from Head-

way Software, http://www.headwaysoftware.com.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.headwaysoftware.com
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=207

ANALYZING THE STRUCTURE OF CARSERV 208

Figure 11.1: CarServ class diagram with package boundaries

Figure 11.2: The CarServ DSM shows cyclic dependencies.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=208

ANALYZING THE STRUCTURE OF CARSERV 209

Figure 11.3: CarServ dependency diagram shows cycles.

though, that ain’t the case here. That “tangle” indicates that there are

four packages involved in a big cyclic dependency.

Why do we care? Well, that tangle means it’s not possible for us to

think about any one of those packages without having to think about

the other three also; they’re all interrelated. Any change on any class

in those packages could potentially impact any of these other classes.

The bigger the tangle, the more difficult the impact analysis.

Back in Section 9.2, Factoring Out Objects, on page 161, we used Robert

Martin’s single responsibility principle to help guide us. Most of his guid-

ance relates to coupling, cohesion, and dependencies, at both the class

level and the package level. The principle we’re violating right now is

his acyclic dependencies principle (ADP). This states that the depen-

dency structure between packages must be a directed acyclic graph,

allowing us to understand the depended-upon packages without refer-

ence to those that depend on them. The direction of the dependencies

also gives us our layering.

In Figure 11.3, we see the same information as the DSM we saw in Fig-

ure 11.2, on the previous page, but this time represented as a depen-

dency diagram. Again, we can see a bidirectional dependency between

payment and service. There are seven dependencies from service to pay-

ment, but only two in the other direction.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=209

DECOUPLING BY MOVING RESPONSIBILITIES 210

Figure 11.4: The payment package has dependencies on Service.

One way in which we might be able to remove dependencies is just by

shifting responsibilities; let’s see if we can do precisely that.

11.2 Decoupling by Moving Responsibilities

One of the oft-quoted mantras for good software design is that the

modules should be “loosely coupled, highly cohesive.” Conversely, if

a responsibility is spread out (the module is not highly cohesive), then

that will give us higher coupling (that is, more dependencies between

modules). Bringing together related responsibilities should reduce

dependencies.

We can see this in Figure 11.4, which is the drill-down for how the

payment package depends on the service package.3 The dependencies

result from PaymentMethod being responsible for paying Services.

We can see this in the code, too, of course:

Download chapter11/PaymentMethod-pay.java

public abstract void pay(Service service);

public abstract String validatePay(Service service);

I suppose in a real system there would be a Javadoc to tell us what

PaymentMethods are meant to do with Services, but we’ll make do by

looking at the actual implementations.

3. Again, these screenshots are taken from the analysis provided by Structure101.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/PaymentMethod-pay.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=210

DECOUPLING BY MOVING RESPONSIBILITIES 211

Figure 11.5: The customer package has dependencies on Service.

For example, the Account implementation is as follows:

Download chapter11/Account-pay.java

@Override

public void pay(Service service) {

warnUser("Put onto Account");

setBalance(getBalance() + service.getAmount());

service.setPaid(true);

}

@Override

public String validatePay(Service service) {

int available = getLimit().intValue() - getBalance().intValue();

return service.getAmount() > available?

"Amount exceeds available credit": null;

}

There are two dependencies on Service: to read the amount to pay

(getAmount()) and then to mark the Service as paid (setPaid()). In fact,

all the classes implementing PaymentMethod are in the customer pack-

age, so we can use the drill-down, as shown in Figure 11.5, to confirm

these are the only dependencies.

Let’s instead change the design so that pay() just accepts an amount

and returns a boolean to indicate whether it was paid. If so, then the

Service can mark itself as paid. Account is refactored to this:

Download chapter11/Account-pay-refactored.java

@Override

public boolean pay(Integer amount) {

warnUser("Put onto Account");

setBalance(getBalance() + amount);

return true;

}

@Override

public String validatePay(Integer amount) {

int available = getLimit().intValue() - getBalance().intValue();

return amount > available? "Amount exceeds available credit": null;

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/Account-pay.java
http://media.pragprog.com/titles/dhnako/code/chapter11/Account-pay-refactored.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=211

DECOUPLING BY INTRODUCING INTERFACES 212

Figure 11.6: Package dependencies after moving responsibility

Similarly, Service’s payUsing() action becomes the following:

Download chapter11/Service-payUsing.java

public void payUsing(final PaymentMethod paymentMethod) {

setPaid(paymentMethod.pay(getAmount()));

}

In Figure 11.6, we can see the updated dependency diagrams; the

dependency from payment to service is gone (chapter11-02).

But there is only so much untangling we can do by moving responsi-

bilities. And in fact, one might argue that our new design isn’t as good

as the previous one, because both objects (Service and PaymentMethod)

need to agree to update their respective state, rather than just one

object (the PaymentMethod) doing all the work.

To untangle our model further, we’re going to have to apply another of

Martin’s principles, one that lets us modularize the software in pretty

much any way we want.

11.3 Decoupling by Introducing Interfaces

The underlying reason that we have all these bidirectional dependen-

cies between our packages is because the classes in our domain model

violate the interface segregation principle (ISP). This states that a client

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/Service-payUsing.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=212

DECOUPLING BY INTRODUCING INTERFACES 213

object should not be dependent on interfaces that it does not use. In

other words, the compile-time type that an object uses to reference its

collaborators should only expose the behavior that the object will use,

and nothing else.

If we consider more carefully exactly how each class uses the function-

ality of another class, then we’ll be able to identify more precisely what

these interfaces are. When we do this, two (good) things are going to

happen:

• First, if we put those interfaces in the correct package, we’ll be

able to remove our cyclic dependencies. That is, it’ll be possible to

understand subsets of the domain model without having to con-

sider the rest of the model.

• Second, we’ll find that these interfaces represent some missing

domain concepts; our design is going to deepen.

Identifying the roles that different classes play with respect to one

another is key to decoupling the design. This is where Coad’s yellows

come in; it’s the distinct lack of yellows in our design that’s giving rise

to all the coupling. What we want to ask is, “What role does object A

play with respect to object B?”

Identifying Payable

Let’s start off with the payment/service bidirectional dependency we

were looking at in the previous section. We resolved it then by mov-

ing responsibilities, but the solution wasn’t ideal. Let’s rewind and try

a different tack (chapter11-01).

Looking again at Figure 11.5, on page 211, we see that the only meth-

ods called on Service by the PaymentMethod implementations are getA-

mount() and setPaid(). What we could do is introduce a Payable inter-

face (in the payment package, natch) and make Service implement this

interface:

Download chapter11/Payable.java

public interface Payable {

public Integer getAmount();

public void setPaid(final Boolean paid);

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/Payable.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=213

DECOUPLING BY INTRODUCING INTERFACES 214

Figure 11.7: Package dependencies after introducing interface

The PaymentMethod (and its subclasses) then just uses Payable:

Download chapter11/PaymentMethod-pay-refactored.java

public abstract void pay(Payable payable);

public abstract String validatePay(Payable payable);

In Figure 11.7, we can see the updated dependencies.

Let’s use interface segregation to remove a couple more dependencies.

Identifying PaymentMethodOwner

Looking at Figure 11.7, we can see that the service package has just

three dependencies on customer. In Figure 11.8, on the following page,

we can see the drill-down on these dependencies.

It looks like all that Service needs is a list of PaymentMethods. We

are already committed to service depending on payment (Service is-a

Payable), so let’s remove the dependency on Customer using a Payment-

MethodOwner interface:

1. Create PaymentMethodOwner in the payment package:

Download chapter11/PaymentMethodOwner.java

public interface PaymentMethodOwner {

public List<PaymentMethod> getPaymentMethods();

}

2. Make Customer implement this interface.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/PaymentMethod-pay-refactored.java
http://media.pragprog.com/titles/dhnako/code/chapter11/PaymentMethodOwner.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=214

DECOUPLING BY INTRODUCING INTERFACES 215

Figure 11.8: Service dependencies on the customer package

We now hit a problem, though. Service gets the Customer by asking its

Vehicle for it. If instead the Service needs a PaymentMethodOwner, where

does it get this from? Well, we’ve just made the Customer implement

PaymentMethodOwner, so the Vehicle could just return its Customer prop-

erty upcast as a PaymentMethodOwner. However, vehicle doesn’t explic-

itly depend on payment, except transitively by way of customer. Getting

rid of one dependency will mean adding another.

Still, we shouldn’t be too downhearted, because it has given us some

interesting questions to ask our domain experts. After all, just because

a Vehicle is owned by a Customer, does it mean that that Customer should

pay for all its Services? There’s probably more than one car gifted to a

newly qualified driver that is maintained by the parents.

For now, let’s go with this design (so that the Service does gets its Pay-

mentMethodOwner from its Vehicle) and simply make a note that things

are a little muddy here. As we continue to decouple, we might be able

to reach a deeper insight. Therefore:

1. In Vehicle, introduce a new derived property PaymentMethodOwner

(that is, just the getter method), returning the Vehicle’s Customer:

Download chapter11/Vehicle-getPaymentMethodOwner.java

@Hidden

public PaymentMethodOwner getPaymentMethodOwner() {

return getOwningCustomer();

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/Vehicle-getPaymentMethodOwner.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=215

DECOUPLING BY INTRODUCING INTERFACES 216

Figure 11.9: Updated service dependencies on the customer

package

2. Update Service to use this new property in Vehicle (in the vali-

datePayUsing() and choices0PayUsing() supporting methods).

In Figure 11.9, we can see our progress so far. As we expected, we’ve

now gained a dependency from vehicle to payment, but we haven’t quite

gotten rid of the dependency from service to customer.

Investigating further, that last remaining dependency is because of pay-

mentMethod.getOwner(), which returns a Customer. We originally intro-

duced PaymentMethodOwner to be the owner of a collection of Payment-

Methods, but now (rather obviously in retrospect) this is of course a

bidirectional relationship: PaymentMethod’s Owner ought to be a Pay-

mentMethodOwner. Therefore:

1. Make PaymentMethod reference PaymentMethodOwner, adding any

required methods to the interface (Customer already implements

them, of course).

In Figure 11.10, on the following page, we see our final dependencies as

the result of this last refactoring. Wowee! That’s a significant improve-

ment.

This is good fun (we’ll, I’m enjoying it, anyway). Let’s just do one more.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=216

DECOUPLING BY INTRODUCING INTERFACES 217

Figure 11.10: Service dependencies on customer removed

Identifying VehicleOwner

If you don’t have access to the analysis tools I’ve been using in this

chapter, then an approach that works surprisingly well is to simply

take the property or collection name and convert it into an interface. We

saw this in the previous example with the PaymentMethod’s Owner prop-

erty, and there’s another example, too—the Vehicle’s OwningCustomer

property.

Let’s do a similar refactoring and make Customer implement a new Vehi-

cleOwner interface. With a bit of luck, the dependency counts will be

lower:

1. Create a new VehicleOwner interface in the vehicle package.

2. Factor out methods relating to Vehicle from Customer into Vehicle-

Owner, and make Customer implement this interface.

3. Make Vehicle reference VehicleOwner instead of (owning) Customer;

also, rename the property from OwningCustomer to just Owner.

So far, so good, but the code won’t quite compile. Remember Vehicle’s

getPaymentMethodOwner() method that we puzzled over before.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=217

DECOUPLING BY INTRODUCING INTERFACES 218

This now reads as follows:

Download chapter11/Vehicle-getPaymentMethodOwner-puzzle.java

@Hidden

public PaymentMethodOwner getPaymentMethodOwner() {

return getOwner();

}

Now we see much more clearly the issue we swept under the carpet

a couple of sections ago: who’s to say that the vehicle’s owner is also

the payment method owner? Of course, Customer happens to implement

them both, but Vehicle certainly can’t assume that.

For now, let’s resolve the problem by saying that, yes, the vehicle owner

will indeed be paying the bills. The code is the model, so let’s say it

through code:

Download chapter11/VehicleOwner.java

public interface VehicleOwner extends PaymentMethodOwner {

...

}

This in turn simplifies Customer:

Download chapter11/Customer.java

public class Customer extends PersonRole implements VehicleOwner {

...

}

And now our code compiles (chapter11-03). In Figure 11.11, on the

next page, we can see the impact of this new interface on our decoupling

efforts.

What’s nice about these refactorings is that the interfaces can be intro-

duced with very little risk. As we saw earlier, generally speaking extract-

ing interface does not break existing code. In the one place where it did,

it helped us to deepen the design.

Decoupling the model isn’t just a game of removing dependencies,

though; it also helps make implicit concepts explicit. In our ubiquitous

language, we can now talk about payment method owners and vehicle

owners and talk about the relationship between the two. When all we

had was Customer, that was much harder to do. Evans talks about the

conceptual contours of a domain model; to extend that metaphor, the

interfaces we introduce define the hills and valleys that make up the

contours.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter11/Vehicle-getPaymentMethodOwner-puzzle.java
http://media.pragprog.com/titles/dhnako/code/chapter11/VehicleOwner.java
http://media.pragprog.com/titles/dhnako/code/chapter11/Customer.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=218

LAYERING MODULES 219

Figure 11.11: VehicleOwner removes further dependencies.

So far in this chapter we’ve been breaking dependencies in whichever

direction has seemed most natural. But what if the dependencies must

flow in a certain direction? For example, we might have some existing

code that we want to reuse, or indeed we might want to create domain

models that could be reused in the future. It’s time to take a somewhat

more architectural approach and talk about layering.

11.4 Layering Modules

In our CarServ case study, there are still two packages in a bidirec-

tional relationship, vehicle and service. Let’s resolve the issue with an

architect’s hat on.

In Figure 11.12, on the following page, we see an alternative represen-

tation of CarServ’s package dependencies, with packages shown in lay-

ers. The packages in each layer depend on the layers below; the heavy

dotted lines indicate dependencies that violate the layering.

There are three options. In option (A), we take the easiest approach and

declare that vehicle and service are so interrelated that we may as well

combine them into a single package. In this case, those packages will

probably become subpackages of a new parent package. That’s easy to

do and sometimes the right thing to do, but it’s not right for us in this

case.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=219

LAYERING MODULES 220

Figure 11.12: CarServ layering options

Options (B) and (C) show two further layerings. In (B), vehicle depends

on service, while in (C), service depends on vehicle; in each case, the

lower package is the one that has no knowledge with respect to the

upper. If we already have (or wanted to develop) a generic work man-

agement model, then we could think of Services as work. In this case,

(B) might best reflect our architecture, with Vehicles implementing an

interface in the service package but service itself being unaware of Vehi-

cles. On the other hand, if we already have a rich asset management

model, with Vehicles being one particular type of asset, then (C) is better

(with Vehicles unaware that they can be serviced).

Whichever we go with, we should follow another of Martin’s princi-

ples: the stable dependencies principle (SDP). This says that a package

should only depend on those packages that are more stable than it is.

There’s no point trying to reuse code that is forever changing.

If we decide on option (B) and make vehicle depend on service (and

remove the dependency from Service to Vehicle), then we should again

be able to use the technique of the previous section and decouple by

having Service reference a Serviceable interface (instead of referencing

Vehicle directly). Instead, though, let’s go with the alternative option (C)

and make service depend on vehicle; doing so will allow us to explore

another technique for decoupling.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=220

DECOUPLING BY SPLITTING CLASSES 221

Figure 11.13: Vehicle dependencies on service

11.5 Decoupling by Splitting Classes

In Figure 11.13, we can see the dependencies for option (C) at the class

level (with some irrelevant classes excluded). As we can see, the main

culprit is Vehicle.

Again, the drill-down, as shown in Figure 11.14, on the following page,

gives us the detail; Vehicle holds a collection of Services and is respon-

sible for creating the RegularService and InitialService subtypes.

To get the architectural layering we desire, we are going to have to

split Vehicle into two and move all its knowledge about Services into a

ServiceableVehicle subclass, which then moves into the service package.

The following are the steps to make this refactoring:

1. Move Vehicle and all of its subclasses from vehicle into service, and

rename it to ServiceableVehicle (we’ll extract the Vehicle superclass

back out in a minute).

2. Similarly, move VehicleRepository, rename it to ServiceableVehicle-

Repository (plus its implementations), and update nakedobjects.

properties.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=221

INTRODUCING AN APPLICATION PACKAGE 222

Figure 11.14: Drill-down of vehicle’s dependencies on service

3. Now use an IDE to extract Vehicle as a superclass of ServiceableVe-

hicle. Include everything except the Services collection, the book-

Service() action, the PaymentMethodOwner (derived) property, the

created() life-cycle method, the injected CalendarService, and the

mostRecentService() and isServiceOverdue() helpers.

4. Similarly, use an IDE to extract VehicleRepository back out from Ser-

viceableVehicleRepository and again the implementations. Include

everything except the findVehiclesWithoutRecentService() action.

When I used Eclipse to do these refactorings, it left a number of ref-

erences to ServiceableVehicle rather than Vehicle. So, go through Cus-

tomer (its Vehicles collection), CustomerTakeOn, Model, VehicleType, and

anything else that references ServiceableVehicle, and use Vehicle if

possible.

There’s one further quick refactoring I’d like to do, if you’ll indulge me,

and then we’ll check our progress.

11.6 Introducing an Application Package

The CustomerTakeOn class doesn’t really have anything to do with the

customer domain; instead, it is a process object introduced for the pur-

poses of this application. This should be reflected in the package struc-

ture, with a new application package. (In fact, there’s even an argument

for moving this into a different Maven module/Eclipse project, but we’ll

make do with a new package.)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=222

INTRODUCING AN APPLICATION PACKAGE 223

Figure 11.15: The final architecture has no layering violations.

However, if we just move CustomerTakeOn out into its own application

package, we’ll end up with a bidirectional dependency because we cur-

rently use CustomerRepository to create CustomerTakeOns. So, we should

split out CustomerRepository, similar to the way in which we split Vehi-

cleRepository.

The other thing that the application package should hold is any concrete

classes specific to this application. So, rather than Car, Van, and Motor-

cycle living in the service package, we could move them instead to the

application package. One might also move the PaymentMethod subtypes

here too.

Let’s make these refactorings:

1. Create the new application package.

2. Move CustomerTakeOn into the application package.

3. Move CustomerRepository into the application package, and rename

to CustomerApplicationRepository. Then extract back out the Cus-

tomerRepository interface. Do the same with the implementations,

and update nakedobjects.properties.

And now (drumroll, maestro) for the moment of truth. In Figure 11.15,

we can see the refactored CarServ architecture layers. Or, if you pre-

fer, in Figure 11.16, on the following page, we can see the DSM and

dependency diagram. Look, Ma! No cyclic dependencies!

And of course, we can also view CarServ as a UML class diagram, as

shown in Figure 11.17, on the next page. Note all those new interfaces

we’ve added are the yellows (“role” stereotype); I promised we’d get some

into the model eventually (chapter11-04).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=223

INTRODUCING AN APPLICATION PACKAGE 224

Figure 11.16: The final DSM shows no tangles.

Figure 11.17: The refactored CarServ class diagram has roles.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=224

AN APPLICATION ARCHITECTURE BLUEPRINT 225

It’s good to know that by applying some techniques and principles we

can decouple pretty much any tangled mess. . . but it’d be even better

not to get into a tangle in the first place! Let’s see how.

11.7 An Application Architecture Blueprint

Let’s just recap the techniques we’ve applied in the preceding sections

of this chapter:

• Bundle classes with similar responsibilities into packages (see

Vehicle, Make, and Model).

• Consider moving responsibilities to split out bidirectional depen-

dencies (see payment and service).

• Use interfaces to decouple relationships (see Vehicle and Vehicle-

Owner).

• Split different responsibilities across super/subclasses, in differ-

ent packages (see Vehicle and ServiceableVehicle).

• Use an application package as the highest-level package, and put

process objects there (see CustomerTakeOn).

• Use higher-level packages (if necessary, the application package)

for the concrete classes, binding together a set of responsibili-

ties through the interfaces they implement. For example, Customer

implements VehicleOwner and PaymentMethodOwner; Van is a Ser-

viceableVehicle.

• Use higher-level packages (if necessary the application package)

to hold factory implementations (see ServiceableVehicleRepository).

Any factory implementations need to be at the same level (or

higher) as the concrete classes that they instantiate.

Another way to think about decoupling is in terms of “slicing” the

design. As in Figure 11.15, on page 223, the domain model slices hori-

zontally into layered subdomains, with application sitting on top of cus-

tomer and service, both sitting on top of vehicle, and so on.

As we go down the layers, the subdomains are more likely to become

abstract. This is Martin’s stable abstractions principle (SAP). In CarServ,

we can indeed see this: customer, near the top, is completely concrete,

whereas payment, near the bottom, defines two interfaces and an ab-

stract class. Sometimes too there is a base on which everything else

rests, an abstract base. CarServ doesn’t yet have one of its own, though

we could perhaps argue that the AbstractDomainObject (from the Naked

Objects applib) is in effect performing this role.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=225

AN APPLICATION ARCHITECTURE BLUEPRINT 226

production

bootstrapping

d
e
p
e
n
d
e
n
c
ie
s

sub domain #1

production

implementation

prototype

implementation

common

value types

services

production

implementation

prototype

implementation

Figure 11.18: An application architecture blueprint

Our domain model may also slice vertically into a number of subdo-

mains that are peers of each other and have no dependencies. So, again

in CarServ, we can see that service and customer are independent sub-

domains and so are person and payment.

Using these techniques we’ve decoupled CarServ using a whole bunch

of bottom-up refactorings. That’s OK, of course; it’s just a learning

example. But if we were doing this “for real,” we should recognize from

the outset that we want a decoupled domain model and plan for it

accordingly. In Figure 11.18, we can see one way to structure a domain

application.

In the diagram, you’ll see that I’ve identified one of these subdomains

as being the core domain. The subdomains are unlikely to be of equal

importance to the business; we should be focusing our efforts on the

core—the stuff whose correct design is a make-or-break decision for

the business. Although it might sound vaguely irresponsible, we should

consciously devote less effort to the subdomains that fall outside this

core domain. In the case of CarServ, I’d identify the customer and service

packages as representing the core domain; it’s the domain classes in

these packages that provide the most value to the business.

Often the supporting subdomains are generic, such as asset manage-

ment or human resources. In these cases, we may choose to use an

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=226

AN APPLICATION ARCHITECTURE BLUEPRINT 227

DDD in Context: Core Domains and Generic Subdomains

The core domain is the heart of the system, containing the most
valuable and specialized concepts. It should consist of a single
module or a small number of modules.

The supporting subdomains provide additional functionality
that is very often generic and whose precise analysis and
implementation is not critical to the overall success of the
domain application. These should be separated from the
core domain as different modules. Some generic subdomains
may be implemented using third-party systems, linked through
domain services.

external system to implement the functionality. The classes in these

generic subdomains may then act as proxies to these external systems

and interact using injected domain services (as described in Chapter 8,

Isolating Infrastructure Services, on page 140).

The blueprint diagram also shows infrastructure/domain services as

well as value types and utilities. Some of these may be scoped with the

subdomains, but it’s possible that some (especially infrastructure ser-

vices such as EmailService) will have enterprise-wide applicability. The

utilities package meanwhile is just a place to put all those silly little

helper classes such as StringUtils.

You’ll notice also that the architecture provides for different implemen-

tations of the repositories (scoped to each subdomain) and of the ser-

vices. Thus far, we’ve only ever used in-memory repository implemen-

tations suitable for prototyping. When we get to integrating for produc-

tion, we’ll need to replace them with real implementations that query

the database using Hibernate or what have you. But more on that in

Chapter 16, Integrating with the Database, on page 299.

To summarize:

• Decide what’s core and what’s not. Spend more time on the core

domain, and spend less on the supporting subdomains.

• For the supporting subdomains, determine whether it is generic.

If so, see whether it can be implemented using existing third-party

libraries or by interfacing to an external system. (There’s more

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=227

AN APPLICATION ARCHITECTURE BLUEPRINT 228

on this topic in Chapter 17, Integrating Within the Enterprise, on

page 323, by the way.)

• Decide on the layering of your domains, using the stable abstrac-

tions principle to guide you.

I reckon that’s a good point to bring this chapter to a close.

Coming Up Next

Although there’s nothing in domain-driven design that requires your

domain models to be implemented using object-oriented paradigms,

most DDD models will also be OO. And that certainly is the case if

using Naked Objects.

In the past few chapters, we’ve seen a number of idioms, patterns,

principles, and techniques that together have substantially extended

the business functionality of CarServ while ensuring it remains main-

tainable from a technical standpoint. Can I suggest that (if you aren’t

already familiar with them) they are good ones to master initially? How-

ever, once you get beyond them, do start to mine the rich seam of OO

literature to help you build better domain models.

In the next and final chapter of the second part of the book, we’re going

to be looking at a couple of approaches for testing, focusing mostly on

scenario testing.

Exercises

You want some exercises? Really? Well, OK, if you insist.

For CarServ, rework the service/vehicle dependency that we resolved in

Section 11.5, Decoupling by Splitting Classes, on page 221, but instead

introduce a Serviceable interface so that vehicle depends on service. And

as a further exercise, why not have a go at moving the application pack-

age out of the dom project and into its own carserv-app project?

And then, of course, you need to decouple your own application. Unless

you’ve been reading the book backward (!) and thought about all this up

front, your application is quite possibly a tangle of bidirectional depen-

dencies, just as CarServ was. See whether you can tease it apart, think-

ing about the layering as you go.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=228

Chapter 12

Scenario Testing
Software applications are among the most complex things that human

beings create. A suspension bridge is constructed from thousands of

cables and box sections, but at least those components are standard-

ized and the mathematics that say the thing won’t fall down have been

known for more than hundreds of years.

A software program in contrast will have at least thousands and possi-

bly millions of parts, but with software each of those parts is different.

Moreover, there isn’t any big calculation that you can perform to ensure

that all those variables, loops, if statements, and polymorphic methods

interact correctly. . . there just isn’t.

Thus far in the book we’ve been flat-out focused on developing our

domain model but paid scant regard as to whether the code we’re writ-

ing really works as expected. So in this chapter, we’re going to redress

the balance using two testing techniques that work at different levels of

granularity. We’ll start off with developer (or unit) tests that work down

at the method level. They are easy to write, give us good test coverage,

and are great for picking up silly little bugs in our code.

However, developer tests aren’t something you could show to a business

domain expert to ask, “Does this test establish the behavior we want?”

So, we’ll spend a larger portion of the chapter writing scenario tests that

exercise a bunch of objects involved in a scenario. These second set of

tests will be much more accessible to a nontechnical audience. . . to the

extent that they could even write them themselves!

Let’s kick off this chapter with those developer tests. As usual, we’ll be

using CarServ to plot our path.

Prepared exclusively for ALESSANDRO CAROLLO

WRITING DEVELOPER TESTS 230

12.1 Writing Developer Tests

We use developer tests to verify the functionality of a single unit of code,

which generally means a method. There’s no need to instantiate a whole

graph of domain objects and wire them together; we simply instantiate

the domain object we want to test and verify it behaves as we want.

In “classic” test-driven development (TDD), we write the tests first and

use them to define the signatures of the methods and the responsibili-

ties of those methods. We can do this with a Naked Objects–developed

domain model too; we just must bear in mind the naming conventions

of the programming model.

Our Developer Testing Toolkit

The testing toolkit we’re going to be use—and already added to the

Maven pom.xml files for CarServ (chapter12-01)—consists of JUnit 4.x,

JMock 2.x, and Hamcrest 1.x.1 These are all well-respected and estab-

lished testing toolkits: JUnit is the testing framework proper, JMock

provides the ability to write mocks for each of collaborators of the object

under test, and Hamcrest is a predicates library that we use to write

both mock expectations (that is, interactions that should occur between

the object and its collaborators) and test assertions (changes in state of

the object under test).2

To speed us up, there are some additional templates. Use Windows >

Preferences > Java > Editor > Templates, and browse to the $NO_HOME/

resources/ide/eclipse/templates directory. Then import junit4-templates.xml

and jmock2-templates.xml. The first provides a bunch of templates pre-

fixed with ju, and the second provides templates prefixed with jm. We’re

now set to write some tests.

Developer Tests Using Given/When/Then

Let’s make this concrete by writing a test for some existing functional-

ity, the Customer’s deleteVehicle() action, and its supporting methods.

1. JUnit is hosted at http://junit.org, JMock at http://jmock.org, and Hamcrest at

http://code.google.com/p/hamcrest/.
2. There is still plenty of innovation going on in testing frameworks. For example, a more

recent mocking library is Mockito (hosted at http://mockito.org/), which some prefer over

JMock. You should have no difficulty using Mockito with Naked Objects.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://junit.org
http://jmock.org
http://code.google.com/p/hamcrest/
http://mockito.org/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=230

WRITING DEVELOPER TESTS 231

Download chapter12/Customer-deleteVehicle.java

public void deleteVehicle(final Vehicle vehicle) {

vehicle.delete();

}

public String validateDeleteVehicle(final Vehicle vehicle) {

return getVehicles().contains(vehicle)?

null: "Customer does not own this vehicle";

}

public List<Vehicle> choices0DeleteVehicle() {

return getVehicles();

}

public Vehicle default0DeleteVehicle() {

return getVehicles().size() == 1? getVehicles().get(0): null;

}

public String disableDeleteVehicle() {

return doesntOwnAnyVehicles()? "No vehicles to delete": null;

}

To pick up on just three of these methods, let’s test (in the order that

the framework would call them):

• disableDeleteVehicle(): We can attempt to delete a Vehicle if the Cus-

tomer owns any, otherwise not.

• validateDeleteVehicle(): It is valid (returns null) if the Customer owns

the Vehicle; otherwise, it’s not valid (non-null).

• deleteVehicle(): The Customer should ask the Vehicle (a collaborator)

to delete itself.

So, in the carserv-dom project, use File > New > Source Folder to create

a new src/test/java directory; this is Maven’s standard location for tests.

Then let’s write our first test for the disableDeleteVehicle() method (use

the jubefore, jutest, and juassert templates to save some keystrokes):

Download chapter12/GivenCustomerWithNoVehiclesTest.java

public class GivenCustomerWithNoVehiclesTest {

private Customer customer;

@Before

public void setUp() throws Exception {

customer = new Customer();

}

@Test

public void whenAttemptToDeleteVehicleThenShouldBeDisabled()

throws Exception {

assertThat(customer.disableDeleteVehicle(), is(nullValue()));

}

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/Customer-deleteVehicle.java
http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithNoVehiclesTest.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=231

WRITING DEVELOPER TESTS 232

Here I’m using the given/when/then style of test writing, where the

“given” tells us the state of objects under test, the “when” tells us what

happens in the test, and the “then” tells us what the result should

be.3 Translating this to JUnit, the “given” is the test name, and the

@BeforesetUp() method (which is run before each of the tests) specifies

this initial state. The “when” and the “then” combine to give us the test

method name.

Let’s write a similar test for the validateDeleteVehicle() method:

Download chapter12/GivenCustomerWithSomeVehiclesTest.java

@RunWith(JMock.class)

public class GivenCustomerWithSomeVehiclesTest {

private Mockery context = new JUnit4Mockery();

private Vehicle mockOwnedVehicle, mockOtherVehicle;

private Customer customer;

@Before

public void setUp() throws Exception {

customer = new Customer();

mockOwnedVehicle = context.mock(Vehicle.class, "owned");

mockOtherVehicle = context.mock(Vehicle.class, "other");

customer.getVehicles().add(mockOwnedVehicle);

}

@Test

public void

whenAttemptToDeleteVehicleNotOwnedByCustomerThenShouldBeInvalid()

throws Exception {

assertThat(

customer.validateDeleteVehicle(mockOtherVehicle),

is(not(nullValue())));

}

@Test

public void

whenAttemptToDeleteVehicleOwnedByCustomerThenShouldBeValid()

throws Exception {

assertThat(

customer.validateDeleteVehicle(mockOwnedVehicle),

is(nullValue()));

}

}

We have this in a new test class because it has a different “given”: the

method would only ever be called for Customers that have Vehicles. The

@BeforesetUp() method again sets up the state of this given.

3. Given/when/then was, I believe, first described by Dan North in his blog article,

http://dannorth.net/introducing-bdd.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithSomeVehiclesTest.java
http://dannorth.net/introducing-bdd
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=232

WRITING DEVELOPER TESTS 233

We’re also now using JMock to create mock Vehicles; the context field

acts as JMock’s mock factory. We could have created concrete instances

such as Car, I suppose, but written this way, the test emphasizes that

the logic being tested applies to any type of Vehicle. Also, because we

haven’t written any expectations for the mocks, the test implicitly says

that we aren’t expecting any method calls on Vehicle itself. Note that

we’re using JMock’s test runner (the @RunWith annotation); this is what

validates the mocks’ expectations for us. Again, if you’re typing the

previous, use the jmmock, jmcontext, and jmrunwith templates.

To test the last method, deleteVehicle(), we can use the same given, so

it’s just a new test method in the same class. If Customer interacted with

Vehicle through an interface (as many of the domain objects do), then

we would mock out that interface. However, in this particular case, Cus-

tomer actually references the class, Vehicle. Because we want to define

expectations on this Vehicle class, we need to change the way we create

JMock’s context:

Download chapter12/GivenCustomerWithSomeVehiclesTest-v2.java

private Mockery context = new JUnit4Mockery() {{

setImposteriser(ClassImposteriser.INSTANCE);

}};

The test itself is where those expectations appear:

Download chapter12/GivenCustomerWithSomeVehiclesTest-v2.java

@Test

public void

whenDeleteVehicleThenShouldAskVehicleToDeleteItself()

throws Exception {

context.checking(new Expectations() {{

one(mockOwnedVehicle).delete();

}});

customer.deleteVehicle(mockOwnedVehicle);

}

This says that we expect the method to work by calling the Vehicle object

with the specified method. This is really quite a specific assertion about

the design: in effect we’re explaining the way in which we’ve distributed

responsibilities.

We shouldn’t only write developer tests for entity objects such as Cus-

tomer, though.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithSomeVehiclesTest-v2.java
http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithSomeVehiclesTest-v2.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=233

WRITING DEVELOPER TESTS 234

Other Developer Tests

In addition to testing entity objects (chapter12-02), we should also

write developer tests for the following:

• Value types: In particular, make sure you test equals() and hash-

Code() to ensure that they work correctly. Many of them will im-

plement Comparable too, which should also be tested.

• Value semantics providers: As we learned in Chapter 7, Using

Value Types, on page 124, we need to write implementations of

ValueSemanticProviders so that Naked Objects can interact with our

value types. These need tests.

• Specifications: Earlier, in Chapter 6, Implementing Business Rules,

on page 106, we learned how to use the @MustSatisfy annotation

as a way of declaratively specifying business rules implemented

by specification objects. These specifications are easy to test in

isolation.

• Domain object interactions with services: We provide a mock for

each injected service and then use an expectation to ensure that

the domain object calls the service with the correct arguments.

• Service implementations themselves: We should make sure that

the “real” services that we inject also work as expected. Note that

this includes repositories.

You should find that the JUnit/JMock/Hamcrest toolkit is sufficient

for all of these tests.

Is it worth the effort, though? Well, TDD is actually about more than

just ensuring that there are no bugs in the code; it also helps us drive

out the internal design. In the sidebar on page 168, we noted that a

domain object does not need to become bloated and implement all its

behavior itself; it may well have inner workings that are not otherwise

visible to the end user. We can use TDD to help drive out the design of

such helper objects.

Applying TDD also gives us a regression test suite, which in turn allows

us to experiment with refactorings without fear of breaking the appli-

cation. I think of refactorings as just-in-time design, so this is a key

enabler to adopting agile development practices. Developer tests also

act as documentation to explain the code both back to ourselves and

other developers.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=234

SCENARIO TESTING USING FITNESSE 235

This isn’t a book on TDD, but there are plenty of good books out there

that tackle the topic more thoroughly than I have the space to do. One I

would heartily recommend is Michael Feathers’ Working Effectively with

Legacy Code [Fea04]. Please don’t be put off by that horrid word legacy

as I nearly was!

But if you are already “test-obsessed,” then as we’ve seen, there’s noth-

ing about a Naked Objects–developed domain model that is incompati-

ble with writing small, tightly focused tests.

Still, looking at these developer tests, we definitely wouldn’t want to

show them to our average nontechnical domain expert because they are

at a level of detail that will make little sense. They also provide very little

context (we just instantiate the domain object and set it up however we

want), so a domain expert would find them hard to understand for this

reason too.

Instead, we need another higher level of testing that will be understand-

able by domain experts and developers alike, that provides an explicit

business context for the test, that can be written in a nontechnical

format, and that is expressed in terms of the ubiquitous language.

These higher-level tests are scenario tests. Using them, we should, with

our domain experts, be able to agree not only on what the model is but

also on what the model does. Let’s see how.

12.2 Scenario Testing Using FitNesse

Naked Objects supports scenario testing by integrating with FitNesse,

a popular open source testing framework where the tests are written as

tables within a wiki.4 Built upon the earlier Fit framework, FitNesse’s

objective is to allow nontechnical business users—the domain experts—

to specify the requirements of the application in a natural way; the

table structure is really there to separate out the nouns from the verbs.

The developers on the team (that is, us) then relate these tests to the

functionality being tested in the application.

The trick that FitNesse has up its sleeve is that not only can it execute

these tests, but it also shows the output of the tests by annotating the

cells of the original acceptance tests. Green means pass, red is fail, and

yellow is an unexpected error. This creates the feedback loop we want.

4. FitNesse’s home page is http://fitnesse.org.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://fitnesse.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=235

GETTING READY TO WRITE SCENARIO TESTS 236

Of course, it needn’t be just the domain experts who write tests. One of

FitNesse’s goals is to increase collaboration between the business peo-

ple and the technical people in the team. Requirements might start out

being jotted down at a high level by the business, with only a sketch of

what its acceptance tests might look like, perhaps even just as prose.

As the implementation progresses, the acceptance tests act as a com-

mon ground for the team to flesh out the requirements by formalizing

the acceptance tests into tables. Indeed, Rick Mugridge and Ward Cun-

ningham, the originators of Fit and FitNesse, describe Fit tests as a

“natural way to help develop the ubiquitous language” (see Fit for Devel-

oping Software [MC05]).

Writing tests in a wiki also makes the test writing very quick. As often

as not, a test will fail not because the code is at fault, but because there

is an error in the test itself. Avoiding the complete compile/deploy cycle

to fix these errors substantially speeds up development.

To allow FitNesse to do its magic, we write what are called fixtures. Don’t

think of these as quite the same thing as the Naked Objects fixtures we

met in Chapter 4, Rapid Prototyping, on page 80, because they have

a somewhat larger responsibility. In common with Naked Objects’ own

fixtures, FitNesse’s fixtures set up initial state prior to a test. But they

also drive the application itself, representing the interactions by the

end user (or any other actor, for that matter). To distinguish between

the two, I’ll use the term table fixtures to represent FitNesse’s fixtures

and programmatic fixtures to represent the Naked Objects variety.

If we were using FitNesse to test a “conventional” application, then at

least some part of the development effort would go into designing the

table structure and implementing the table fixtures to drive the under-

lying application. I have good news! Using Naked Objects, these table

fixtures are fully generic, so no additional table fixtures are required.

Using CarServ as usual, let’s see how.

12.3 Getting Ready to Write Scenario Tests

Naked Objects’ support for FitNesse is actually provided by a sister

open source project, namely, Tested Objects, under the same license as

Naked Objects itself.5 It also bundles FitNesse, so there’s no need to

install FitNesse first.

5. Tested Objects and a number of other sister projects are collectively all referenced

from http://www.starobjects.org. The code itself is hosted on SourceForge.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.starobjects.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=236

GETTING READY TO WRITE SCENARIO TESTS 237

Figure 12.1: The carserv-fitnesse project

The Tested Objects sister project provides a Maven archetype that gen-

erates a new Maven submodule, which in turn sets up the FitNesse soft-

ware and contains an initial FitNesse wiki to hold the tests. By default,

some sample tests are generated to exercise the demo claims applica-

tion that we used in Chapter 1, Getting Started, on page 21. If you want

to try this archetype, see the Tested Objects documentation.

We’re going to pick up the story with a version of CarServ that has

already had this archetype run (chapter12-03) and contains a new

subproject called carserv-fitnesse (see Figure 12.1). This project:

• Contains the FitNesse wiki pages; this is the FitNesseRoot directory

highlighted in the screenshot

• Runs the FitNesse wiki server from Eclipse (the .launch file)

• Runs our FitNesse tests from a JUnit harness (the InteractionFix-

tureTest class)

To get us started, I’ve already done some of the initial legwork for our

tests, including removing the example tests that were generated by the

archetype for the demo claims application. Let’s get FitNesse started,

and then we’ll walk through what’s been done and what’s still to do.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=237

GETTING READY TO WRITE SCENARIO TESTS 238

Figure 12.2: Tested Objects’ FitNesse user guide

Starting FitNesse

Navigate to the ide/eclipse/launch directory in the fitnesse project, and

then right-click Run As to start the fitnesse-wiki-server.launch launch con-

figuration. Point your favorite web browser at http://localhost:9090, and

you should see the FitNesse front page.

As the front page tells us, if we want FitNesse to run our tests, then we

need to build the CarServ application using mvn clean install in the root

(carserv) directory. FitNesse runs our tests by spawning a test runner

as a separate Java process, and this test runner needs its classpath

configured correctly to pick up both the domain application classes

and Naked Objects framework itself. The archetype does this for us by

preconfiguring FitNesse to point to a target/dependency directory and

using the Maven dependency plug-in to copy over all the JARs.

Note that you’ll need to repeat running mvn clean install whenever you

make a change to the application code and want to retest through Fit-

Nesse. OK, we’re now ready to explore the main content.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://localhost:9090
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=238

GETTING READY TO WRITE SCENARIO TESTS 239

Figure 12.3: CarServAppSuite test hierarchy

The User Guide

From the front page, click through to the .FitNesse.UserGuide link (or

click the button on the left side). This will take you to the built-in user

guide (generated by the Tested Objects archetype), which lists the vari-

ous types of table fixtures that we can use to write tests.6 You can see

this in Figure 12.2, on the preceding page.

Take a look around; when done, return to the FrontPage (click the Fit-

Nesse logo on the top left).

Exploring the Test Suite Hierarchy

From the front page, click through to the CarServAppSuite, as shown

in Figure 12.3. This lists a series of test suites, in hierarchical order.

6. Note that FitNesse’s own user guide has been pruned from this wiki; if you

want to learn more about what FitNesse itself can do, see the online user guide at

http://fitnesse.org/FitNesse.UserGuide.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://fitnesse.org/FitNesse.UserGuide
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=239

GETTING READY TO WRITE SCENARIO TESTS 240

Figure 12.4: SetUpModel setup page

This is where I’ve done some work already:

• The CarServAppSuite is the main container for all the tests. As we

can see, it breaks down into a series of subsuites, broadly corre-

sponding to the main packages of the application.

These pages are for the most part empty; the tree is generated

automatically by FitNesse (using its !contents directive).

• Within each subsuite there is a Ref Data suite and/or a Trans-

actional Data suite, which in turn contain “SetUpXxx” pages for

setting up a test scenario. More on these in a moment.

In Chapter 4, Rapid Prototyping, on page 80, we learned how to write

programmatic fixtures to set up the object, date, and session; using

these, we could run a prototype with some representative sample ob-

jects. In FitNesse, we need to do the exact same thing; only now it is

done using the setup pages mentioned earlier. I’ve already completed

these pages in the download, but rather than take them for granted, we

should look at them in more detail.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=240

WRITING SCENARIO TESTS 241

The SetUp Fixtures

Our FitNesse tests—like our prototypes and for that matter our JUnit

tests—need a sample set of objects to work on. Like everything in Fit-

Nesse, these are set up using table fixtures.

Why not just use the same programmatic fixtures that we’ve used thus

far? Well, we want to be able to write tests that are completely self-

contained and understandable to a (potentially nontechnical) domain

expert. And to do that, the domain expert must be able to understand

the initial state of the system in order to determine the expected results.

Programmatic fixtures aren’t really suitable for this task, so instead we

put the same information in table fixtures.

For example, in SetUpModel (in the VehicleSuite.RefData suite), we use

the set up object table fixture to set up instances of the Model domain

class, as shown in Figure 12.4, on the previous page. This page and the

other two in the same suite correspond broadly to the MakesAndModels-

Fixture programmatic fixture we’ve used elsewhere. Notice also the “alias

as” column; this gives us a name to reference the objects in the tests

themselves.

Similarly, the SetUpJoeBloggsCustomer page (in the CustomerSuite.

TransactionalData suite) sets up (and aliases) a Customer object, equiv-

alent to the JoeBloggsCustomerFixture programmatic fixture, as shown in

Figure 12.5, on the following page. You might notice that the transac-

tional objects tend to be set up using the using naked objects viewer for set

up table fixture (rather than the set up object fixture); we’ll discuss this

in Section 12.5, Hints and Tips, on page 249.

In addition to the programmatic fixtures for setting up objects, we also

have fixtures to set up the date and the current user. These also have

setup pages, for example DateIs9July2008 (which uses the date is table

fixture) and LogonAsFsmith (which, no surprise, uses the logon as table

fixture). You’ll see these linked from the front page.

Now that we’re acquainted with the test set ups, let’s get to it and write

some scenario tests.

12.4 Writing Scenario Tests

To illustrate scenario tests, we’ll rewrite the tests relating to deleting

vehicles, but this time in such a way that the behavior we’re establish-

ing can be verified by a nontechnical domain expert.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=241

WRITING SCENARIO TESTS 242

Figure 12.5: SetUpJoeBloggsCustomer setup page

Designing a Test Scenario Hierarchy

We can place test scenarios anywhere, but we’ll put them in the appro-

priate functional subsuite. Since we’re testing the functionality of a Cus-

tomer, we’ll use the CustomerSuite.

One way to structure the test scenario is as a given/when/then hierar-

chy: a “given” may have many “whens,” and a “when” may have many

“thens.” So, let’s create the hierarchy as follows:

• GivenCustomersWithNoVehiclesSuite

– TheGiven (more on this in a moment)

– WhenAttemptToDeleteVehicleSuite

* TheWhen (more on this in a moment)

* ThenShouldBeDisabledTest

The convention I’m using here is to put the actual setup in a sub-

page, TheGiven. This uses FitNesse’s !include syntax to bootstrap Naked

Objects and set up the data (fixture) for the test. The parent page (Given-

CustomersWithNoVehiclesSuite) is then free to put any related docu-

mentation (FitNesse is a wiki, after all), as well as to list any subpages

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=242

WRITING SCENARIO TESTS 243

(the !contents -R2 keyword). Similarly, the TheWhen subpage separates

out the actual event that’s being tested from its parent page. We’ll be

exploiting this separation in a minute.

Let’s now fill in “the given” itself.

Writing the Given

We’ll be able to test this particular scenario if we have Boris Customer

with some Cars and Mary Customer with none. Therefore, in the The-

Given page, use !include to include the following:

Download chapter12/GivenCustomerWithNoVehiclesSuite/TheGiven/content.txt

!include -c .BootstrapNakedObjects

!include -c .AliasServices

!include -c .LogonAsFsmith

Ref data

!include -c <CarServAppSuite.VehicleSuite.RefData.SetUpVehicleType

!include -c <CarServAppSuite.VehicleSuite.RefData.SetUpMake

!include -c <CarServAppSuite.VehicleSuite.RefData.SetUpModel

!include -c <CarServAppSuite.PersonSuite.RefData.SetUpTitles

Boris has some Cars...

!include -c <CarServAppSuite.CustomerSuite.TransactionalData.\

SetUpBorisFrederiksonCustomer

!include -c <CarServAppSuite.ServiceSuite.TransactionalData.\

SetUpBorisFrederiksonCarsAndServices

Mary has none...

!include -c <CarServAppSuite.CustomerSuite.TransactionalData.\

SetUpMaryBloggsCustomer

I’ve wrapped some lines to fit the book’s margins; you mustn’t, though.

Let me explain what’s going on:

1. The first two !includes start up Naked Objects itself (in a headless

mode, with no GUI); the AliasServices page (accessible from the

front page of the wiki) is broadly analogous to the services entries

in the nakedobjects.properties file.

2. The next !include specifies who the effective user is for the test.

This particular test is not date sensitive, so there is no need to

specify the date as well.

3. The next block of !includes sets up the necessary reference data

objects. In general, we should only include the objects we need;

for this method, we aren’t setting up any PaymentMethodTypes, for

example.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithNoVehiclesSuite/TheGiven/content.txt
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=243

WRITING SCENARIO TESTS 244

4. The remaining !includes set up the transactional objects we need

for the test. Again, we only include those that are required.

It’d be nice to check that this “given” is correct, and indeed we can.

Verifying the Given

Modify the GivenCustomersWithNoVehiclesSuite page to read as follows:

Download chapter12/GivenCustomerWithNoVehiclesSuite/content.txt

!contents -R2 -g -p -f -h

!include -c GivenCustomerWithNoVehiclesSuite.TheGiven

!|Run Viewer|

This run viewer table fixture will actually start up the DnD viewer at the

point of the test, allowing us to inspect the current state of the objects.7

It’s a bit like a breakpoint, but from an end user’s perspective.

To try this out, though, we need to do two things. First, remember the

instruction on the front page of the wiki? We need to make our appli-

cation available for Fitnesse to find, so run mvn clean install. Second, we

need to temporarily alter the GivenCustomersWithNoVehiclesSuite suite

page to run as a test page. To do this, update the page’s properties (the

Properties button on the left side), and check the test box.

OK, now click Test. The DnD viewer should appear with Mary and Boris.

Click around and confirm the other setup is as we expect. Once this is

working, update the page back to being just a suite.

Being able to debug test fixtures like this is extremely valuable; it’s the

main reason for separating the TheGiven subpage from its parent.

Completing the Test

To complete the test, we need a “when” and a “then.” First modify the

TheWhen page, as shown here and in Figure 12.6, on the following

page:

Download chapter12/GivenCustomerWithNoVehiclesSuite/When/content.txt

!|using naked objects viewer|

|on object|perform|using member|that it|with arguments|

|mary...Customer|check action|delete vehicle|is disabled|boris...Focus|

7. At the time of writing the HTML viewer is not supported.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithNoVehiclesSuite/content.txt
http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithNoVehiclesSuite/When/content.txt
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=244

WRITING SCENARIO TESTS 245

Figure 12.6: When attempting to delete a vehicle. . .

The using naked objects viewer table fixture interacts with the domain

model in the same way that a “real” viewer would. (Note in the code

snippet I’ve abbreviated some of aliases to fit the page margins.)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=245

WRITING SCENARIO TESTS 246

Figure 12.7: . . . then should be disabled

And finally, to the test itself, the “then.” In this particular case, there

are no post-conditions to check, so we simply include the pages that

make up the scenario:

Download chapter12/GivenCustomerWithNoVehiclesSuite/When/Then/content.txt

!include -c <GivenCustomerWithNoVehiclesSuite.TheGiven

!include <WhenAttemptToDeleteVehicleSuite.TheWhen

then...

no change.

Note that the TheWhen !include doesn’t have a -c flag, meaning it

shouldn’t be collapsed. It’s up to you whether to collapse included pages

using -c, but in this case because there aren’t any postconditions to

assert upon, I think the reader of the test would want to see the “when”

in full.

And so, finally. . . running this test should confirm the behavior we

want, as shown in Figure 12.7.

On the other hand, what if it didn’t? After all, here we’re just testing

code that we know works, but in reality there’s every likelihood that the

test could fail. If that were the case, then we’d want to use all the power

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/GivenCustomerWithNoVehiclesSuite/When/Then/content.txt
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=246

WRITING SCENARIO TESTS 247

of our IDE to look into the issue. Help is at hand: we can run the test

from JUnit too.

Running the Test from JUnit

The Tested Objects archetype also provides another way of running the

tests, using a JUnit 4–based test harness called Trinidad.8 Rather than

have the FitNesse wiki server spawn off our tests, Trinidad parses the

wiki pages itself and runs the tests in-process. We can therefore put

breakpoints in our domain objects and inspect state or step through

the code as necessary.

Open up the generated InteractionFixtureTest class (in src/test/java). Most

of this is boilerplate; the only bit that matters is the list of pages to test.

Normally we comment out all except the test we’re debugging:

Download chapter12/InteractionFixtureTest.java

@RunWith(Parameterized.class)

public class InteractionFixtureTest {

@Parameters

public static Collection<Object[]> data() {

return Arrays.asList(new Object[][]{

{"CarServAppSuite.CustomerSuite."+

"GivenCustomersWithNoVehiclesSuite."+

"WhenAttemptToDeleteVehicleSuite."+

"ThenShouldBeDisabledTest"},

...

});

}

...

}

Try this as an alternative way of running the tests using Eclipse’s Run

> Run As (or indeed, Debug > Debug As having set a breakpoint).

A further benefit of testing this way is that—because FitNesse isn’t

actually running the tests anymore—it is no longer necessary to run

the mvn clean install command after each code modification.

The Remaining Tests

We set out to write three scenario tests and have completed the first

(chapter12-04). Let’s take a look at the other two. The second scenario

8. Trinidad was originally hosted at http://code.google.com/p/trinidad but is now part of

the main FitNesse distribution. See also http://www.fitnesse.info/trinidad.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter12/InteractionFixtureTest.java
http://code.google.com/p/trinidad
http://www.fitnesse.info/trinidad
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=247

WRITING SCENARIO TESTS 248

checks that we may only delete a Vehicle that is owned by the Customer.

Here’s a design for this test:

• GivenCustomersEachWithVehiclesSuite

The corresponding TheGiven page should include (say) Mary and

her Cars and Boris and his Cars.

• WhenAttemptToDeleteOtherCustomersVehicleSuite

The corresponding TheWhen should (like the previous test) use

the “naked objects with viewer” table to attempt to delete one of

Boris’ Vehicles for Mary.

• ThenShouldBeInvalidTest

Like the previous test there are no post-conditions, so this page

just consists of !includeing the given and the “when.”

The check in the “when” should this time, though, check that the argu-

ment is invalid (rather than the action being disabled).

Our final test, where we succeed in actually deleting the Vehicle, has

the following design:

• GivenCustomerWithSomeVehiclesSuite

The corresponding TheGiven page should include (say) Boris and

his Cars.

• WhenDeleteVehicleSuite

The TheWhen should use the using naked objects viewer table to

invoke the action.

• ThenVehicleShouldBeRemovedFromCollectionTest

This time there are some post-conditions; we should check that

the Car has been removed from the collection.

You can check whether the Car has been removed using the using naked

objects viewer table fixture to check that Boris’ vehicles collection no

longer contains the reference. Alternatively, you could use the check

list table fixture to inspect the actual contents.

There aren’t any additional techniques to learn to write these last two

tests, so I’m going to leave it to you to complete them. Yes, I thought

you’d enjoy that! Actually, though, all the hard work has been done, so

you won’t find there’s much to it.

Before we wrap up the chapter, a few handy pointers.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=248

HINTS AND TIPS 249

12.5 Hints and Tips

FitNesse can be a very effective way of developing, but like any tool it

needs to be used effectively.

Use !include Pages

The most significant downside of FitNesse (at the time of writing, at

least) is the lack of refactoring support. If I change a property name in

the Java code, then that will break any test that references it.

The best workaround for this at the moment is to use !include wher-

ever possible to factor out any duplicated setup. That way, following a

refactoring, we have a much smaller number of places to manually fix

up. The name of the included page should use a declarative style (for

example SetUpJoeBloggsPaymentMethods) to make it easier to do this

impact analysis.

Use Given/When/Then

Try to follow the given/when/then style of structuring tests, and re-

member the following:

• The “given” will be the largest page of the three, even accounting

for the fact that it should consist mostly of !includes.

• The “when” should really consist only of a single action or event.

Most of the time this will be using the using naked objects viewer.

• The “then” post-condition should only read and validate the state

of the system. If there is more than one post-condition, then have

more than one “then” page.

If you prefer to flatten into single pages, that’s fine too, so long as you

use !include to remove any duplication between them. I do suggest that

you keep the TheGiven subpage separate, because it makes it easy to

test the given using the run viewer table fixture.

Structure Tests Similarly to the Application

In the CarServAppSuite, we had separate subsuites for each of the main

packages. That makes it easy to locate tests once written.

You might also choose to have a “WorkInProgressSuite” for anything

that is being currently being developed, for example in the current itera-

tion. When the iteration is done, move the tests to the correct subsuite.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=249

HINTS AND TIPS 250

We’ll be discussing development practices in Chapter 13, Developing

Domain Applications, on page 253.

Where Possible, Prefer Tables to Scripting

In the CarServAppSuite, you’ll see that the reference object pages are set

up using the generic set up objects table fixture, while the transactional

objects tend to be set up using the using naked objects viewer for set up

table fixture.

Of the two, the set up objects approach is probably to be preferred. For

one thing, it’s easier for the domain expert to review the state of the

object prior to the test; and ultimately, scenario tests are all about

improving communication.

Another reason for preferring set up objects is that it is possible to gener-

ate such pages. For example, one could generate pages for all reference

data (or even sample transactional data) from the production database.

This will give the domain experts realistic data to work with.

On the other hand, the using naked objects viewer for set up is powerful,

because it can invoke actions on the domain object that could perform

a whole bunch of work. For some scenarios, it may make more sense to

describe a “given” in terms of actions that have previously occurred.

Use Symbolic Links to Support Multiple Environments

FitNesse has support for symbolic links, which—in combination with

declared variables—can be used to run the same test suite in differ-

ent environments. Explaining this is beyond the scope of this book,

but it would allow us, for example, to run the same test in both in-

memory mode and then against a real database once the integration

with the DBMS has been performed (see Chapter 16, Integrating with

the Database, on page 299). See the web site http://fitnesse.org/FitNesse.

UserGuide.SymbolicLinks for more information.

For more on scenario testing and the broader topic of agile acceptance

testing, have a look at Gojko Adzic’s excellent book Bridging the Com-

munication Gap [Adz09].

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://fitnesse.org/FitNesse.UserGuide.SymbolicLinks
http://fitnesse.org/FitNesse.UserGuide.SymbolicLinks
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=250

HINTS AND TIPS 251

Coming Up Next

In this chapter, we saw two complementary approaches for testing ap-

plications. Developer tests ensure the code is built right; scenario tests

ensure that the right code is built.9

This chapter concludes Part II of the book. In the final part, we’re going

to think about how to use Naked Objects in “the real world.” We’ll talk

about approaches for organizing the development process, about using

Naked Objects just as a design tool, and about integration with web

frameworks and the database, and we’ll finish up describing how to

deploy our domain application as a web app or client-server.

Exercises

Starting with the developer tests, it’s common practice to use code cov-

erage tools such as Cobertura to establish how much of the code is

being exercised through tests.10 Write some further tests for CarServ,

and verify that the code coverage improves. On your own application

too, put together some developer tests, and then steadily improve the

test coverage.

For the scenario tests, the first exercise (if you didn’t already do this) is

to complete the two tests whose design was sketched out in the chapter.

Then, use scenario testing to develop a new feature. Rather than simply

marking Services as being paid, instead have them save a reference to

the PaymentMethod that was used to pay them.

Then likewise, using the Tested Objects archetype (see Tested Objects’

documentation), add FitNesse support for your own application. Use

the built-in user guide and the CarServ download to guide you.

9. I can’t take credit for this pithy motto. That goes to Andy Dassing; see

http://tech.groups.yahoo.com/group/fitnesse/message/10115.
10. The Maven Cobertura plug-in is at http://mojo.codehaus.org/cobertura-maven-plugin.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://tech.groups.yahoo.com/group/fitnesse/message/10115
http://mojo.codehaus.org/cobertura-maven-plugin
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=251

Part III

Practices

Prepared exclusively for ALESSANDRO CAROLLO

Chapter 13

Developing Domain Applications
In Part I of this book, we learned the tools to build a basic domain model

using Naked Objects, while in Part II we learned some techniques to

create a much more sophisticated model using idioms, patterns, and

other OO principles, as well as how to test our application.

Part III of the book focuses on practices to develop, integrate, and

deploy DDD applications written using Naked Objects. In this chapter,

we’re going to identify a number of ways to deploy Naked Objects, dis-

cuss why you might choose one over another, and see how this impacts

exactly what you need to develop in each of these cases. Subsequent

chapters in this final part of the book will explore these deployment

options in more detail.

We’ll continue to use CarServ during Part III, but in a slightly different

way than in the previous two parts. Since we are integrating with other

technologies, it isn’t practical (or relevant) for me to explain all the non–

Naked Objects code that we are integrating with. So, from here on, the

CarServ downloads are already complete, and I ask you to download

them so we can review the code. But if you aren’t at your computer as

you read the book, then don’t worry; all the relevant code snippets are

also listed in the book.

In this chapter, we’re also going to discuss development practices. Dif-

ferent activities are involved in developing enterprise applications, and

to be effective, we need to think about how they are done and also when

they are done. But let’s start off the discussion by considering what it

is exactly we’re aiming to develop and integrate.

Prepared exclusively for ALESSANDRO CAROLLO

THE LAYERED ARCHITECTURE 254

Presentation

Layer

Persistence

Layer

Domain

Layer

Application

Layer

1 2

4

3

Figure 13.1: Interactions within a layered architecture

13.1 The Layered Architecture

Back in Section 1.5, How Naked Objects Helps with DDD, on page 34,

we briefly discussed how Naked Objects helps DDD by rigorously en-

forcing the separation between the domain layer and the other layers of

the architecture. One of the points that Evans makes is that domain-

driven design requires only one particular layer—the domain layer—to

exist. Using Naked Objects helps ensure that this domain layer has in

it all the business logic that it should.

But what of the other layers? What are their responsibilities? Well:

• The presentation layer has the logic for rendering a user interface

through which the user can interact with the application.

• The application layer has the logic that manages the user’s cur-

rent session- and conversation-level state and possibly controls

interactions between those states.

• The domain layer (as we know) holds the business logic applicable

to all users and all applications, that is, across the entire domain.

• The persistence layer (perhaps labeled more generally as an infras-

tructure layer) is where domain object state and perhaps applica-

tion logic state is stored.

One of the main purposes of an architecture is to define and ideally

constrain how these layers interact. After all, if any object could inter-

act with any other object irrespective of layering, then the architecture

wouldn’t really be providing much organization. In Figure 13.1, we see

the typical interactions between these four layers.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=254

DEPLOYMENT OPTIONS 255

For example, to view an object, follow these steps:

1. The presentation layer asks to read the state of existing objects.

2. The application layer interacts with the persistence layer to re-

trieve the objects from storage.

3. The application layer reads the state of the retrieved objects and

assembles it to be returned to the presentation layer.

If we are modifying an object, then the interactions are similar, but

there is an additional step:

1. The presentation layer requests to modify the state of existing

objects.

2. The application layer interacts with the persistence layer to re-

trieve the objects from storage.

3. The application layer modifies state of the object(s); in Naked Ob-

jects terms, this means modifying a property/collection or invok-

ing an action.

4. The application layer flushes any changes of state to the persis-

tence layer.

In the diagram, I’ve shown the application layer interacting directly with

the persistence layer. This is simplifying things slightly; using DDD

terminology, the application layer would probably call a domain service

or repository whose interface is part of the domain layer but whose

implementation is within the persistence layer. The diagram also doesn’t

show how domain objects can be retrieved from the persistence layer

by traversing associations. But the diagram is close enough for our

purposes.

Let’s now relate this to the various deployment options.

13.2 Deployment Options

Naked Objects provides four ways to deploy our domain applications.

“Pure Pojo” Deployment Option

As we’ve seen, domain classes written to follow the Naked Objects pro-

gramming model are basically pojos. There’s therefore nothing to stop

us from taking our domain model and deploying it with a handcrafted

presentation layer, persistence layer, and everything else required. This

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=255

DEPLOYMENT OPTIONS 256

Presentation

Layer

Persistence

Layer

Domain

Layer

Application

Layer

1 3

4

2

Naked Objects

Meta Model

Runtime

Context

Figure 13.2: Interactions with the “embedded metamodel” deployment

option

is the pure pojo deployment option. In effect, we restrict Naked Objects’

use solely to the development environment.

We discuss this option in more detail in Chapter 14, Naked Objects as

a Design Tool, on page 271. But let’s move onto our next deployment

option where Naked Objects starts working for us in the runtime envi-

ronment too.

“Embedded Metamodel” Deployment Option

While a pure pojo deployment requires custom code for every layer, with

an embedded metamodel deployment we use the Naked Objects meta-

model to enforce the business rules (such as @Disabled or @MaxLength)

that are intrinsic to the domain.

In Figure 13.2, we can see a modified version of the previous diagram,

this time embedding the metamodel. The interactions between the lay-

ers are ultimately the same, but the metamodel does all the interaction

with the domain objects on our behalf. We still handcraft the presen-

tation layer and persistence layer, and we provide a runtime context to

enable the metamodel to interact with our custom persistence layer.

With this option we’re still doing a good deal of the work in handling all

of the persistence concerns, and in Chapter 15, Integrating with Web

Frameworks, on page 281, we’ll see what this means with a fully worked

example. But let’s now look at our next deployment option where we

leverage a little more of Naked Objects’ functionality.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=256

DEPLOYMENT OPTIONS 257

“Custom Presentation” Deployment Option

The next step on from embedded metamodel is to allow Naked Objects

to handle persistence as well and only write a custom presentation

layer. For want of a better name, this is the custom presentation deploy-

ment option.

Again, there’s a full worked example of this option in Chapter 15, Inte-

grating with Web Frameworks, on page 281, demonstrating how you

can evolve from one option to the next.

Note that asking Naked Objects to do the persistence for us doesn’t nec-

essarily mean there is no work to do here. True, the in-memory object

store we’ve used for prototyping requires no configuration. However,

in production, we will most likely use a relational database, so Naked

Objects’ own persistence mechanisms will require some configuration.

Indeed, this is the topic of Chapter 16, Integrating with the Database,

on page 299.

Let’s now go on one further step to examine the final deployment option.

“Full Runtime” Deployment Option

With a full runtime deployment, we are basically deploying the same

application that we’ve prototyped, but with a properly persistent (rather

than in-memory) object store and possibly a different viewer. The full

Naked Objects runtime is deployed and takes care of the presentation

layer, application layer, and persistence for us automatically. Again,

depending on the persistence mechanism used, there may be some

integration work, but that is pretty much the only work we need to do.

However, we needn’t restrict ourselves to the two viewers we’ve used

thus far. Naked Objects has a number of sister projects that provide

other viewers. Some of these viewers offer customization capabilities,

blurring the boundaries between this deployment option and the pre-

vious one. We’re going to look at this option in detail in two chapters,

Chapter 17, Integrating Within the Enterprise, on page 323 and Chap-

ter 18, Deploying the Full Runtime, on page 345.

So, there’s more detail on the “how to” for all of these options in the

chapters that follow, but we still need to decide why you might choose

one option over another.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=257

WHICH OPTION TO CHOOSE? 258

13.3 Which Option to Choose?

Two key factors will determine which deployment option you select. The

first is a good old-fashioned risk/benefit assessment; how much frame-

work code are you happy to deploy into your own production environ-

ment? The second relates to the type of user using your application.

Let’s explore each in turn.

Assessing Risk/Benefit

If you’ve ever tried to introduce some new technology or framework into

your workplace, I suspect you have encountered some pushback. The

architects will want to know about its scalability, performance, and

reliability; the CIO might want to know about licensing costs; the pro-

duction support manager will want to know what support options are

available; and so on it goes. Realistically, you can expect the same types

of questions if you argue to adopt Naked Objects in your organization.

To help make your case, the following table summarizes where frame-

work or custom code is used for each of the options:

Option Presentation Application Domain Persistence

Pure Pojo Custom Custom Custom Custom

Embedded

Metamodel

Custom Custom /

Framework

Custom Custom

Custom

Presentation

Custom Framework Custom Framework

Full

Runtime

Framework Framework Custom Framework

What that means is:

• A pure pojo deployment introduces no particular risk because

Naked Objects isn’t part of the deployment. You are basically using

Naked Objects as a design tool in the same way that you might

otherwise have used a UML case tool.

• An embedded metamodel deployment does include an element of

Naked Objects technology in the runtime deployment, so although

you get some benefit, you might also equate that with some risk.

• The custom presentation layer is further along the scale; now you

are relying on the framework to take care of persistence for you.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=258
v@v
Text Box
Download at WoweBook.com

WHICH OPTION TO CHOOSE? 259

• And the full runtime deployment option of course provides the

most bang for your buck, but by the same token some will view it

as the riskiest.

Of course, one could argue this the other way: there’s at least as much

likelihood of a defect in custom written code as there would be in frame-

work code. Even so, most developers I know would rather contend with

a bug in their code than a bug in some framework code (even if that

framework’s code is open source).

How you determine the risk/benefit I’ll leave to you and your team, but

there’s also a second factor that you should take into account.

Matching Deployment Option to User Experience

The other factor to consider is the background and skill level of the user

audience. Here’s a useful distinction, originally made by Alan Cooper:1

• A sovereign application is one that its user would use intensively

for several hours at a time, and often every day.

Examples include a word processor for a writer or an IDE for a

developer. The UNIX shell is also a good example.

• A transient application, on the other hand, is one used for much

briefer periods, and often much more occasionally.

An example might be a time-tracking application. Kiosk applica-

tions also fall into this category, as do many websites.

The object-oriented UIs provided by Naked Objects are generic in nature

(they work for any domain), but that means they are not particularly

suitable for transient applications. There are two reasons for this. First,

a casual user will not know and does not care for the subtleties or com-

plexity of the domain model; they need to be presented with the min-

imum necessary to get the task at hand done. A custom presentation

layer may bear very little relation to the underlying domain model.

The second reason why Naked Objects’ object-oriented interfaces are

not suitable for transient applications is that a casual user generally

needs explicit guidance in how to actually use the application. Tran-

sient applications therefore tend to be more task- or process-oriented,

with lots of step-by-step wizards. The next time you fly, consider the

1. The original citation was the online article “Your Program’s Posture” published on

Cooper’s website, http://www.cooper.com. However, the article is no longer available.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.cooper.com
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=259

WHICH OPTION TO CHOOSE? 260

Using Presentation Models

The presentation layer of most transient applications still inter-
acts with the underlying domain model; it just selects which
objects, collections, and actions to expose, and often it aggre-
gates information from several objects into a single screen.

Some DDD practitioners go further than this, though, by cre-
ating a separate simplified model just for presentation pur-
poses, sometimes called a presentation model. This presenta-
tion model is then linked back to the domain model.

We should be careful if we do this, though, because it can
undermine the idea of a ubiquitous language. The presenta-
tion model underpinning the presentation layer (which after all
is what the business users see) effectively defines one vocab-
ulary, while the classes of domain model within the domain
layer define another. It’s difficult enough to ensure that a single
model is self-consistent; ensuring that these two vocabularies
match up can become a major problem.

If you really do believe that you need a simplified presentation
model, then of course you can use Naked Objects to develop
both the presentation model and the “real” domain model. If
deployed in the same physical tier of the system, then the inte-
gration between the two may be quite simple: the presentation
objects simply call the domain objects, with the real domain
objects always hidden from view. Alternatively, though, the pre-
sentation model may reside on one tier and the domain model
on another, in which case the integration effort to link the two
will be substantial.

kiosk application you use to check in at the airport. That is a classic

transient application. So, if you are building a transient application,

then you probably should choose a deployment option that allows you

to write your own presentation layer specific to your domain model.

All that said, most internal line-of-business operational systems fall

into the sovereign application category. Such users tend to have a good

understanding of the domain and need to understand the subtleties

of the domain. So, for these applications, the Naked Objects’ generic

OOUIs are ideal.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=260

DEVELOPMENT ACTIVITIES 261

Going down the generic OOUI route also leaves the door open to lever-

age future improvements in Naked Objects viewers. In Chapter 18,

Deploying the Full Runtime, on page 345, we see some of the newer

viewers currently in development, and the existing DnD viewer also has

a road map for future improvement. There’s also currently a lot of inno-

vation going on in user interface technology in general (think Ajax, Flex,

Silverlight, JavaFX, iPhone, Android), any of which could be platforms

for new (possibly customizable) viewers.

As mentioned in the introduction, the subsequent chapters in this final

part of the book go into the various deployment options in more detail.

But irrespective of which deployment option we select, we also need

to organize our development efforts. So, let’s now turn to consider the

development process—how we go about developing our applications.

13.4 Development Activities

You can develop domain applications with Naked Objects using any

development process—agile, waterfall, whatever. However, it’s worth

separating the three activities of exploration, implementation, and inte-

gration. Let’s start with exploration.

Exploration

During exploration, we use exploration stories to actively work with the

domain experts in the team, trying ideas and hunting for the domain

concepts and their broad responsibilities, in effect identifying the re-

quirements of the application. The domain experts will typically have a

number of key business problems to act as their focus, but we’re also

looking to understand the broader business processes, to understand

the actors (human or otherwise) involved in those processes, and to

figure out where the system boundary might be. It’s quite possible we

may solve some business problems by adjusting—outward or inward—

the scope of the system.

This sounds like a tall order, but because Naked Objects requires us

to write only the domain layer, it’s quite feasible for the team to rapidly

build working prototypes exercising the main domain concepts. A good

way to drive this is with a strong business analyst to guide a workshop

with the domain experts, along with a strong developer to act as scribe.

It’s even feasible to develop the prototype in real time, and it can be

quite exhilarating if you do.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=261

DEVELOPMENT ACTIVITIES 262

Agile Modeling

Scott Ambler describes a similar activity to exploration in his
book Agile Modeling [Amb02]. In Ambler’s world, what he is
doing is developing fairly classical UML diagrams, with the idea
being to do “just barely enough modeling” that implementa-
tion can start.

In exploration we’re trying to explore just barely enough of
the domain that we feel comfortable starting the main imple-
mentation work. What’s different, though, is that our models of
the domain are not UML diagrams but are functional Naked
Objects prototypes.

To organize these sessions, we need a fixture to represent the scenario

being explored. This can be a programmatic fixture (as described in

Chapter 4, Rapid Prototyping, on page 80), or alternatively you might

use a set of table fixtures (making up a “given,” as described in Chap-

ter 12, Scenario Testing, on page 229). One advantage of the FitNesse

approach is that you can also capture any working notes about the

scenario directly in the FitNesse wiki. It also leads very naturally into

the next activity (implementation) discussed. However, not every explo-

ration scenario necessarily gets implemented. That’s the point really;

there will be some dead ends. If using FitNesse from the start, then

make sure you clean up any such dead ends; you don’t want the wiki

to become an unmanaged jungle.

Code written during exploration should not have any tests. Tests and

test-driven development are an important way of driving out detailed

designs, but they aren’t appropriate during exploration; we’re still doing

requirements analysis. To use agile jargon, explorations are spikes.

It’s a good idea for the domain experts to take the outputs of the

exploration workshops and expose them to a wider audience. After all,

although the domain experts are empowered to represent the larger

business community, realistically they cannot know every detail and

nuance. The domain experts can take the working prototype, complete

with a realistic set of fixtures, and demonstrate it to their peers.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=262

DEVELOPMENT ACTIVITIES 263

Alternatively, the team can use a screen capture tool to provide an

animated and annotated walk-through of the prototype.2 These can be

made available on the Web and so reviewed by anyone (including per-

haps rank ’n’ file members of the user community) without having to

deploy any code onto users’ desktops.

In terms of practicalities, it’s a good idea to perform exploration in a

separate code branch, because the quality of the code may well be low,

especially if doing live coding in workshops. We’ll look more at this in

Section 13.5, Configuration Management, on the following page.

Let’s now move onto the next of our three activities, implementation.

Implementation

Following on from exploration is implementation, where we more for-

mally specify the requirements by confirming implementation stories

and writing scenario tests (the topic of Chapter 12, Scenario Testing,

on page 229) for those stories. The domain experts must decide on the

priority of the user stories, and the developers in the team provide the

estimates.

Whereas exploration code has no tests and uses a relatively broad

brush, implementation is where much of the effort in identifying subtle

business rules goes. We use scenario tests to verify these are imple-

mented correctly. If using table fixtures during exploration, you will

already have a “given” to represent your scenario; this will probably

represent the happy case (that is, when the system performs some-

thing useful). During implementation you should flesh out this “given”

by considering different “whens” and documenting more of the post-

conditions (in the “thens”). But you should spend even more time iden-

tifying alternative “givens” to represent the error scenarios (the sad

cases) as well as the happy case.

As we implement, we should be looking to apply the techniques in Part

II of the book; why invent the wheel when there are already idioms and

patterns to draw upon? And as we’ve seen, ensuring that the model

remains decoupled not only keeps it manageable, but it may also draw

out new concepts relating to the roles between the domain classes.

2. A good open source tool for creating animated demos is Wink

(http://www.debugmode.com/wink); another is CamStudio (http://www.camstudio.org). There

are also some very good commercial tools.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.debugmode.com/wink
http://www.camstudio.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=263

CONFIGURATION MANAGEMENT 264

It is possible to perform implementation on the same code branch as

exploration, but it’s risky. Remember that exploration code is written

without tests, and it’s easy to lose track of what code has formal tests

and what does not. It’s much better to start a new branch and discard

the exploration code as a spike. If you use the same code branch, then

don’t do too much exploration, and find a way by which you can switch

off any untested code so it doesn’t accidentally get released. For exam-

ple, you can annotate actions with @Exploration so that they won’t be

available in production.

Let’s now discuss the final of the three activities, integration.

Integration

The deliverable from implementation is a tested domain model that

supports the user stories identified. The integration activity that fol-

lows uses implementation stories where the focus is to bind this tested

domain model into the other layers of the application for a particular

deployment environment.

As discussed in Section 13.2, Deployment Options, on page 255, Naked

Objects supports a number of different deployment options allowing

us to mix and match framework code with custom code for each of

the layers of our application. The deployment option chosen directly

impacts the amount of work to be done during integration.

The output of the integration activity is a version of the application that

can be run end to end in a production-like environment. This is usually

the point where system testing (automated or manual) kicks in.

Integration may be performed in the same branch as implementation,

or the implemented code may be promoted into a different branch

where it is integrated.

In fact, let’s pull together the various suggestions on branching and put

them into context with the rest of the codebase.

13.5 Configuration Management

No matter what your development process is, you need a decent config-

uration management mechanism to control your code. Not only should

your source code control system do the usual things such as file ver-

sioning, but it should also support robust branching and merging of

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=264

CONFIGURATION MANAGEMENT 265

Production

UAT /

System Test

Feature X

(Integration)
Feature Y

(Integration)

ImplementationExplorationImplementationExploration

C
o

d
e

 c
a

tc
h

-u
p

s

C
o

d
e

 p
ro

m
o

ti
o
n

s

Merge ?

Figure 13.3: Suggested branching strategy

code. The ability for small teams to develop in parallel is especially

important if you are using agile development practices.

In Figure 13.3, we see a suggested branching strategy for exploration,

implementation, and integration. At the top we have the code currently

running in production. Below this is a branch for user acceptance test-

ing (UAT) and for system testing; this is the code being made ready

for the next production release. I’ve bundled UAT and system testing

together, but you might of course have several testing environments

(UAT, performance load testing, system test, and so on).

Underneath this we have a number of parallel developments, which I’ve

called features. Each has its own branch. The scope of these and their

duration will depend on your development process. They may last for

many months or even years, in which case project is probably a better

name. Or they may last just a few weeks; they could even be down to

an individual story. Whichever—they need to be substantial enough to

justify the effort of the keeping the branches in sync.

For a given feature/project/story, we have an exploration branch and

an implementation branch. Initial work is done in the exploration; once

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=265

CONFIGURATION MANAGEMENT 266

prototypes start popping out, we can start over in the implementation

branch. Optionally, we might do merges from exploration to implemen-

tation. Once implementation is done and the acceptance tests are pass-

ing, the code can be promoted up to the parent feature branch. This is

where integration can be performed.

Let’s also note the close relationship between branching and contin-

uous integration. With continuous integration, we use an automated

server to monitor the code branch. Whenever a code change is made

(which includes code catch-ups), then the server notices the change,

checks out the latest version of the code, compiles the code, and reruns

our tests. This keeps all the code within a branch consistent, providing

early visibility of any problems.

The diagram shown is just a suggestion, and there are several possi-

ble variations to it.3 You might decide not to have separate branches

for exploration and implementation; just be sure to understand the

risk here in mixing nontested code with tested code. You might also

want to perform integration in the same place as implementation. That

would probably mean just having an exploration branch and perform-

ing implementation in the parent feature branch.

You might also have an intermediary development branch between

UAT/system test and the feature branches. This would be a good place

for production defects to be fixed and minor enhancements to be imple-

mented. Or, this bug fix branch might be a peer of the feature branches.

The rule of thumb with branching is, only do so if you need to isolate

and decouple different pieces of work.

Of course, while we are working on our feature, other teams will be

working on their features, and production defects will be getting fixed.

It’s important to never let branches get too far out of sync with each

other, so every so often (every week, say) child branches should do a

code catch-up, that is, merge any changes from their parent down. Con-

versely, any completed work should be promoted (merged back to its

parent). We should always do a catch-up before a promotion, though,

and rerun any regression tests to minimize the chance of breaking code

in the parent once we promote.

3. A very useful white paper on branching strategies is available from Microsoft at

http://www.codeplex.com/BranchingGuidance. Although it targets its (rather good) Team

Foundation Server product, much of its advice is generally applicable.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.codeplex.com/BranchingGuidance
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=266

WORKING EFFECTIVELY 267

DDD
in context. . .

Continuous Integration

Continuous integration (CI) means continually verifying that the
current codebase is sound.

In practical terms, this usually means running a CI server that
continually monitors the source code repository for a particular
branch. If there is more than one branch, then there is more CI
“job” setup.

The CI job compiles the latest version of the code and runs
all regression tests whenever a change is detected. Most CI
servers also come with monitors to alert team members working
on that branch if the tests fail.

Configuration management is hardly the most glamorous of subjects,

but its importance cannot be underestimated. Indeed, robust config-

uration management combined with continuous integration is pretty

much a prerequisite if you want to use agile development practices.

There’s an overhead in keeping all those plates spinning, of course, but

it more than pays for itself in terms of being able to ship our regular

releases month after month.

We’ll finish off this chapter with a suggestion as to how you might work

more effectively.

13.6 Working Effectively

Your overarching development process will influence the amount of

time between the three activities of exploration, implementation, and

integration.

If you are a waterfall shop, then these activities naturally correspond to

project phases: exploration will happen in an exploration phase lasting

several months, followed by an implementation phase again of several

months, followed by an integration phase again of, well, whatever.

If you are an agile shop, then the activities of exploration, implemen-

tation, and integration are performed user story by user story, each

activity done on a just-in-time basis. You may well be used to counting

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=267

WORKING EFFECTIVELY 268

Iteration #0 Iteration #1 Iteration #2 Iteration #3 Iteration #4 Iteration #5 Iteration #6

Figure 13.4: Consciously defer work.

the user story as “done” only once all the activities are complete (if fully

integrated). However, this changes under Naked Objects. Instead, you

must separate your original user stories into exploration stories, imple-

mentation stories, and integration stories. Typically the exploration will

happen in iteration n; the implementation will happen in iteration n+2,

and the integration will happen in iteration n+4 or n+5. This is illus-

trated in Figure 13.4.

What we are doing by introducing these gaps is consciously deferring

work that might never need to be done. The gap between exploration

and implementation is needed to allow for feedback “from the field”;

something missed by the domain expert could invalidate any imple-

mentation stories. Similarly, a gap is also needed between implemen-

tation and integration to allow the team to deepen their design as fur-

ther stories are implemented. Any integration work done prematurely

as the domain model is still stabilizing would only need to be redone.

This also means that deployment options that require more integration

work should have a longer gap, but in any event it shouldn’t be less

than two to three iterations if using agile development practices.

Coming Up Next

In this chapter, we talked about the various ways to deploy a domain

application developed using Naked Objects, identified the main activ-

ities that make up the development process, saw how to use configu-

ration management to manage these activities, and discussed how we

can prevent rework by consciously deciding when to decide.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=268

WORKING EFFECTIVELY 269

Deciding When to Decide

If I own a “buy” option to purchase a stock for $100 and the
price goes up to $110, that option still lets me buy for the original
cheaper price. I can then immediately sell the stock and take
my profit. So, that buy option itself has a worth based on the
length of time it is valid and the volatility of the underlying stock.
If the stock doesn’t go up, then of course I don’t exercise the
option. I still had to buy the option in the first place, so I am
down on the deal. The wonderful world of derivatives!

Chris Matts and Olav Maasen use the term real options to apply
similar thinking to software development.∗ If I defer implemen-
tation or integration work, then I am in effect buying the option
to change my mind. If I do change my mind, then I’ve exercised
the option by saving more downstream rework. But if I don’t
change my mind (that is, the analysis was spot-on first time),
then overall the cost of development will be more because it
would have been more efficient to just do the exploration, inte-
gration, and implementation all in one go.

The gap between the steps is therefore a function of how much
uncertainty there is in the requirements and how much work
you would incur to redo the later steps.

∗. For more details, see http://www.infoq.com/articles/real-options-enhance-agility.

The remaining chapters in Part III go into more detail on the deployment

options. We start with the pure pojo option where we use Naked Objects

solely in the development environment as a design tool.

Exercises

Consider the most recent enterprise application that you worked on.

Was it a sovereign application or a transient application? If it was a

sovereign application, what accommodation did it make for being used

by users who have a deep understanding of the domain? How much

of the user interface might be considered generic, and how much was

specific to the domain?

It’s good practice to have a continuous integration (CI) environment

running on your code branch, and certainly you should by the time you

get into implementing user stories. Luckily, if using Maven (which we

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.infoq.com/articles/real-options-enhance-agility
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=269

WORKING EFFECTIVELY 270

are), it’s very easy to do this using the open source Hudson continuous

integration server.4

Therefore, check in your code to a supported source code repository

(Subversion is a good bet), and then have a go at setting up Hudson.5

Plenty of blogs show how to do it, so with a following wind, it might only

take five minutes.

4. Hudson is downloadable from http://hudson.dev.java.net.
5. Subversion is downloadable from http://subversion.tigris.org.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://hudson.dev.java.net
http://subversion.tigris.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=270

Chapter 14

Naked Objects as a Design Tool
Here’s the scenario for this chapter: you like using Naked Objects in

the development environment, and you’re happy that the domain mod-

els you’re producing are better than you might otherwise have devel-

oped. Even so, you’re not ready or able to use Naked Objects as part

of the runtime environment. This is the pure pojo deployment option

introduced in the previous chapter.

We’re going to spend most of this short chapter seeing how to decou-

ple our domain model from the framework completely and identifying

what custom code you’ll need to write to do the work that the frame-

work would otherwise do. But we’ll start off by considering how this

deployment option impacts the development process.

14.1 Using Naked Objects Only in Development

Even if you’re “only” going to use Naked Objects for development, you

still have a choice:

• You could use Naked Objects for just initial exploration and pro-

totyping but then once implementation starts switch to a different

technology.

• Alternatively, you might want to continue using Naked Objects to

develop the domain layer even while you use other technologies to

implement the other layers of the application.

The first option might be suitable if your organization tends to out-

source development. You can use Naked Objects to help you explore

the domain and to scope the system and thus write the system’s spec.

The resultant prototype could even be part of this spec. The outsourced

Prepared exclusively for ALESSANDRO CAROLLO

DECOUPLING FROM THE FRAMEWORK 272

development team could implement the application using whichever

technology was most suited.

The second option is more suitable for applications that are built incre-

mentally and are likely to have multiple releases (so probably devel-

oped in-house). Because the domain layer remains “compatible” with

Naked Objects, you can continue to explore and prototype new features

even after the application has been shipped. Naked Objects also helps

define the boundaries between the layers, preventing business logic

from seeping out of the domain model. But that could be viewed as a

negative too; your developers might have difficulty in switching between

two different mind-sets for the different layers of the application.

You should also think about how the application will be tested. If you

want to adopt the testing approach described in Chapter 12, Scenario

Testing, on page 229, then you would need to use the second option.

But if you already have a substantial investment in automated testing

using other technologies, then this probably isn’t the deciding factor.

Whichever option you choose, it’s going to be important that your do-

main model is decoupled from the Naked Objects runtime. So, let’s see

what that means.

14.2 Decoupling from the Framework

While the Naked Objects’ Maven archetype generated five different proj-

ects for us, the only project that will be used in the runtime environ-

ment is the dom project that contains our domain model.

You’ll see from the Maven pom.xml for this project that its only depen-

dency in our domain project is on the Naked Objects applib, which

is very deliberately separate from the rest of the framework. In fact,

the purpose of the applib is to distill down all the semantics and gen-

eral services that an enterprise application might need (irrespective of

whether the application is deployed using Naked Objects).

If we look further into the applib, most of our dependencies relate to

the use of annotations (such as @RegEx or @Named) and most likely

the convenience superclasses (such as AbstractDomainObject). As we’ll

see shortly, there’s also an implicit—if not explicit—dependency on the

DomainObjectContainer interface.

We’ll tackle the superclasses and the container in the sections that

follow, but for now let’s start with the issue of annotations.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=272

DECOUPLING FROM THE FRAMEWORK 273

Annotations

One way to think of our annotations is as a specification:

• Annotations that capture declarative business rules (such as

@RegEx or @MaxLength) in effect specify the behavior of the applica-

tion layer and persistence layer (“make sure any value you provide

for this property or parameter meets this regular expression and

is no longer than this length”).

• Annotations that provide rendering hints (such as @MemberOrder

or @Named) act as a specification for the presentation layer (“make

sure that this property comes before this one, and has this label”).

Alternatively, you could take the view that it’s not enough to just specify

these rules in the domain layer; their implementation should be in the

domain layer too. In that case, you have two options:

• First, you could replace the declarative business rules with imper-

ative business rules, using the supporting methods. OK, you still

need to ensure that the application layer calls these imperative

rules, but the implementation is in the domain layer.

• Or, you could write your own code that processes the annotations

in the same way that Naked Objects does itself. One option is to

write some aspects using AspectJ; alternatively, you might con-

sider using APT.1,2

Let’s now turn our attention to those convenience superclasses.

Not Using the Convenience Superclasses

Although throughout we’ve been subclassing from the convenience

superclasses (such as AbstractDomainObject) in the applib, this has been

just for convenience. If you have a reason for your classes to subclass

from some other superclass, you can. By the way, this applies to all the

deployment options, not just the pure pojo deployment option.

If you take a look at the source code of these classes, you’ll see that all

they really do for us is provide a setter so that a DomainObjectContainer

can be injected and then provide convenience methods that delegate to

that container.

1. http://www.eclipse.org/aspectj/

2. http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.eclipse.org/aspectj/
http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=273

DECOUPLING FROM THE FRAMEWORK 274

For example, the persist() method is as follows:

Download chapter14/AbstractContainedObject-persist.java

protected void persist(final Object transientDomainObject) {

getContainer().persist(transientDomainObject);

}

It’s therefore trivial to inline this functionality within your own classes

and remove the superclass or replace it with a superclass of your own.

Of course, what we haven’t done yet is remove the dependency on

DomainObjectContainer, which is now explicit, whereas previously it was

implicit. So, let’s discuss that next.

Implementing DomainObjectContainer

As we learned earlier in Chapter 8, Isolating Infrastructure Services, on

page 140, most domain objects applications use the DomainObjectCon-

tainer one way or another, including generic searches for objects, per-

sisting objects, instantiating new objects, raising warning messages,

and obtaining the security context.

While you could rip out the dependency on this interface from your

classes, you’d end up replacing it with something very similar. In any

case, DomainObjectContainer is an interface, so my suggestion is to leave

this dependency as is and just provide your own implementation. At the

end of the day, it’s just another domain service that your domain object

depends upon.

One method that is in the DomainObjectContainer that might puzzle you

is newTransientInstance(). Why not simply instantiate the class using its

constructor? We’ll answer that in the next section.

Injecting Dependencies

Again, as we learned in Chapter 8, Isolating Infrastructure Services,

on page 140, Naked Objects uses dependency injection to inject both

domain and infrastructure services into domain objects that need them.

In CarServ, we’ve injected an EmailService and a CalendarService, for

example, but in fact Naked Objects will inject any of the services regis-

tered in nakedobjects.properties.

If we’re not using the Naked Objects runtime, then we need to do this

dependency injection ourselves. There are two cases to consider: inject-

ing into already persisted objects that are being pulled back from the

persistence layer and injecting into newly instantiated objects.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter14/AbstractContainedObject-persist.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=274

DECOUPLING FROM THE FRAMEWORK 275

Dealing with the first of these isn’t too difficult to implement if using an

object-relational mapping (ORM) framework, because most provide APIs

to allow this. For example, Hibernate has a LoadEventListener interface:

Download chapter14/InjectServicesLoadEventListener.java

public class InjectServicesLoadEventListener

implements LoadEventListener {

public void onLoad(

final LoadEvent event,

final LoadEventListener.LoadType loadType)

throws HibernateException {

Object domainObject = event.getResult();

// ... inject services into domainObject ...

}

}

The second is also easy enough, thanks to the newTransientInstance()

method. Our implementation of the DomainObjectContainer could be as

simple as this:

Download chapter14/DomainObjectContainerImpl-newTransientInstance.java

public <T> T newTransientInstance(final Class<T> ofClass) {

try {

T domainObject = ofClass.newInstance();

// ... inject services into domainObject ...

return domainObject;

} catch (InstantiationException e) {

throw new RuntimeException(e);

} catch (IllegalAccessException e) {

throw new RuntimeException(e);

}

}

These are not the only implementation options available to you. For

example, if you use the Spring Framework, then you can achieve the

same effect using its @Configurable annotation.3

By the way, If you really don’t like that newTransientInstance() method,

you could replace it with an AspectJ aspect associated with a construc-

tor join point. And if you are using Spring, then you’ll find AspectJ is

already part of its runtime.

The previous takes care of the compile-time dependencies, but there’s

a more subtle dependency that we also must understand.

3. Spring Framework is hosted at http://www.springsource.com. For usage of @Configurable,

see http://www.gridshore.nl/2009/01/27/injecting-domain-objects-with-spring/.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter14/InjectServicesLoadEventListener.java
http://media.pragprog.com/titles/dhnako/code/chapter14/DomainObjectContainerImpl-newTransientInstance.java
http://www.springsource.com
http://www.gridshore.nl/2009/01/27/injecting-domain-objects-with-spring/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=275

PROGRAMMING MODEL INTERACTION PROTOCOL 276

14.3 Implementing the Programming Model Interaction Protocol

We spent a good chunk of Part I of the book learning the set of con-

ventions that make up a Naked Objects domain model, that is, its pro-

gramming model. This programming model in effect defines a protocol

for the interaction between the application layer and the domain layer

so that the domain objects’ business rules are honored.

With the other deployment options, we don’t need to worry too much

about this protocol because one way or another there is framework

code in the application layer that implements it. But with the pure pojo

deployment option, we are writing all the layers ourselves and so we do

need to ensure our application layer interacts with the domain layer in

the same way that the Naked Objects framework would.

We can visualize this protocol as a sequence diagram, as shown in Fig-

ure 14.1, on the following page.

So:

1. When the user goes to use a Customer object, the presentation

layer (UI) requests from the application layer a list of those prop-

erties (and collections and actions) that are visible, and for each

asks whether they are enabled or disabled.

2. Then, for an enabled property (such as the Customer’s lastName),

the presentation layer requests to set a new value. The application

layer again checks that the property is visible and usable. Assum-

ing that it is, it then also checks whether the proposed new value

is valid. If that passes, then the property is set.

Adding and removing from collections works in the same way, as does

invoking actions.

In general, the application layer should check whether the class mem-

ber is visible; if so, whether it is usable; and finally (if being modified) if

the new value is valid. Or as we summarized in Chapter 6, Implement-

ing Business Rules, on page 106: Can you see it? Can you use it? Can

you do it?

Ultimately then, decoupling our domain model from the framework

boils down to providing to a DomainObjectContainer implementation,

implementing dependency injection into domain objects, and ensur-

ing that the application layer interacts with the domain model “in the

right way.”

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=276

PROGRAMMING MODEL INTERACTION PROTOCOL 277

Figure 14.1: Naked Objects’ interactions with domain objects

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=277

CHANGING THE PROGRAMMING MODEL 278

To finish off this chapter, there’s one more thing to explore: how to

go about changing the conventions of the Naked Objects programming

model itself.

14.4 Changing the Programming Model

To hide a property, we can either use the @Hidden annotation or write a

hideXxx() supporting method that returns true. These are just a couple of

the conventions that make up the Naked Objects programming model.

These conventions have been refined over a number of years, so I don’t

suggest you change them arbitrarily. On the other hand, if you want

your code to coexist with some other (less flexible!) framework, you

might have good reason to do so.

The programming model is defined by a set of FacetFactorys, each of

which is responsible for identifying and handling a particular element

of the programming model. For example, here’s how we pick up the

@MemberOrder annotation:

Download chapter14/MemberOrderAnnotationFacetFactory.java

public class MemberOrderAnnotationFacetFactory

extends AnnotationBasedFacetFactoryAbstract {

public MemberOrderAnnotationFacetFactory() {

super(

NakedObjectFeatureType.PROPERTIES_COLLECTIONS_AND_ACTIONS);

}

@Override

public boolean process(

final Class<?> cls,

final Method method, final MethodRemover methodRemover,

final FacetHolder holder) {

Class<MemberOrder> annotationClass = MemberOrder.class;

final MemberOrder annotation =

getAnnotation(method, annotationClass);

return FacetUtil.addFacet(create(annotation, holder));

}

private MemberOrderFacet create(

final MemberOrder annotation, final FacetHolder holder) {

return annotation == null ? null :

new MemberOrderFacetAnnotation(

annotation.name(), annotation.sequence(), holder);

}

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter14/MemberOrderAnnotationFacetFactory.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=278

CHANGING THE PROGRAMMING MODEL 279

The viewers then look for these Facets in the metamodel to render the

domain object.

It’s too large a topic for us to go into detail, but using the naked-

objects.properties file, you can easily remove existing facets or add your

own:

Download chapter14/nakedobjects-FacetIncludes.properties

nakedobjects.reflector.facets.include=\

com.mycompany.nakedobjects.facets.MyFacetFactory

Or, alternatively you could subclass Naked Objects’ own Programming-

ModelFacetsJava5 class (which lists all the FacetFactorys) and define your

very own programming model:

Download chapter14/nakedobjects-ProgModel.properties

nakedobjects.reflector.facets=\

com.mycompany.nakedobjects.facets.MyProgrammingModel

And that’s it for this chapter.

Coming Up Next

In this chapter, we focused on the pure pojo deployment option. We

discussed two different approaches for Naked Objects in your devel-

opment process and also learned how to decouple our domain model

from both compile-time and more subtle runtime dependencies on the

Naked Objects framework.

In the next chapter, we’re going to look at two more of our deploy-

ment options, the embedded metamodel option and custom presentation

option.

Exercises

Thinking about the organization or client you work for, which of the

two approaches to using Naked Objects might fit best? Would you just

use Naked Objects to bootstrap a new project, or might you be able

to continue following the conventions of a (possibly customized) Naked

Objects programming model once initial exploration is complete?

Why don’t you also try customizing the standard programming model?

Can you can find the FacetFactory that looks for the hideXxx() supporting

methods and write a new one that uses an “invisible” suffix instead?

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter14/nakedobjects-FacetIncludes.properties
http://media.pragprog.com/titles/dhnako/code/chapter14/nakedobjects-ProgModel.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=279

CHANGING THE PROGRAMMING MODEL 280

(Indeed, if you are working on a non-English-speaking project, you

might want to change all the suffixes or annotations to your preferred

language.) Register your new FacetFactory in nakedobjects.properties, and

remove the original one.

And if you want to explore further in terms of implementing your own

business rules and annotations, then the InteractionAdvisorFacet is a

good place to begin your investigations.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=280

Chapter 15

Integrating with Web Frameworks
There sometimes seems to be as many Java web frameworks out there

as there are Java developers. Well, perhaps not quite that many, but

looking around I found 58 catalogued on a single website alone!1 So,

there’s a good chance you’ve spent at least some of your time as a

developer using one of these frameworks.

In this chapter, we’re going to see how to integrate our domain model

using one such web framework and, in so doing, provide worked exam-

ples of the embedded metamodel deployment option (whereby both pre-

sentation and persistence is handled using custom code) and also the

custom presentation deployment option (where just the presentation

layer is custom coded).

The framework we’ll use is Apache Wicket, which I’ve chosen because

it’s easy to learn and has an architecture that targets the layers we want

to write ourselves.2 But the techniques we cover here equally apply to

other mainstream web frameworks (such as Struts, JSF, Spring MVC,

Tapestry, and even GWT).

We’re not going to spend lots of time learning how Wicket works; if

you like what you see and are interested in learning more, then the

definitive book is Wicket in Action [DH08]. But, we will look at how

Wicket can use the facilities that Naked Objects provides.

We’ll start off with the embedded metamodel deployment option.

1. http://java-source.net/open-source/web-frameworks

2. http://wicket.apache.org

Prepared exclusively for ALESSANDRO CAROLLO

http://java-source.net/open-source/web-frameworks
http://wicket.apache.org

DEPLOYING AN EMBEDDED METAMODEL 282

Fast Track to a Customized Web App

In this chapter, I’ve chosen Wicket to demonstrate that we
can integrate with an existing third-party web framework. But
if you have no particular prejudice as to which framework to
use, then the shortest route to a customized web application is
probably Scimpi.∗

You could think of Scimpi as a “preintegrated” web framework
for Naked Objects (it is in fact a next-generation viewer). We
discuss it in a little more detail in Chapter 18, Deploying the Full
Runtime, on page 345.

∗. Scimpi is hosted at http://scimpi.org, licensed under Apache Software
License v2. The project lead for Scimpi is Robert Matthews (the project lead
for Naked Objects itself).

15.1 Deploying an Embedded Metamodel

We don’t want to get distracted by lots of code relating to the specifics

of the Wicket APIs, so (as I explained in the introduction of Chapter 13,

Developing Domain Applications, on page 253) in this chapter we start

off with a version of CarServ (chapter15-013) that has already had the

changes made to it.

Running the Application

First things first. Let’s run the application. You can either:

• Use Run > Run Configurations and then create a “Maven Build”

launch configuration with a base directory of carserv-wicket and a

goal of jetty:run. When we run this launch configuration, Maven will

launch a Jetty web server for us. Then navigate to http://localhost:

8080/carserv-wicket.

• Or, somewhat quicker, you can navigate to the Start class under

src/test/java and simply run it as a Java application. This “test

class” launches its own instance of Jetty. The URL to navigate

to is simply http://localhost:8080.

3. Based on chapter12-03; also includes a solution to the Chapter 12 exercise for Services

to hold a reference to the PaymentMethod by which they were paid.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://scimpi.org
http://localhost:8080/carserv-wicket
http://localhost:8080/carserv-wicket
http://localhost:8080
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=282

DEPLOYING AN EMBEDDED METAMODEL 283

Figure 15.1: CarServ running on Wicket

In Figure 15.1, we can see the application once it’s running. Initially

the page shows just the panel on the left side listing all the Customers.

If you click the “vehicles” link for Joe Bloggs, then you’ll see his list

of vehicles. Similarly, click the “edit” link, and you’ll see some of the

details that you can then modify.

As you can see, this little application doesn’t expose the vast major-

ity of the functionality in the domain model, but it’s sufficient for our

purposes. Play around to familiarize yourself, and then let’s move on to

look at the code.

The Application Class

In Wicket the application object acts as a shared top-level container

for all the components and resources that make up the application. As

such, it’s an ideal place to hold the Naked Objects metamodel.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=283

DEPLOYING AN EMBEDDED METAMODEL 284

We start off by subclassing Wicket’s WebApplication class:

Download chapter15/NakedObjectsApplication-MetaModel.java

public class NakedObjectsApplication extends WebApplication {

private final NakedObjectsMetaModel nakedObjectsMetaModel;

...

public NakedObjectsApplication() {

...

nakedObjectsMetaModel = new NakedObjectsMetaModel(

embeddedContext,

CustomerApplicationRepositoryInMemory.class,

ServiceableVehicleRepositoryInMemory.class,

EmployeeRepositoryInMemory.class,

VehicleTypeRepositoryInMemory.class,

ModelRepositoryInMemory.class,

MakeRepositoryInMemory.class,

PaymentMethodTypeRepositoryInMemory.class,

EmailServiceDemo.class,

CalendarServiceDemo.class);

nakedObjectsMetaModel.init();

...

}

...

}

You’ll probably recognize most of the (varargs) arguments passed to the

NakedObjectsMetaModel constructor; these are the services that we’ve

previously seen in the nakedobjects.properties file. Naked Objects uses

the services to discover the classes that make up the metamodel.

The first argument, embeddedContext, is new, though. This is an imple-

mentation of EmbeddedContext, an adapter interface that acts as the

runtime context shown in Figure 13.2, on page 256. Our implemen-

tation is called EmbeddedContextWicket. Some of its implementation is

very straightforward, for example, instantiating a new object:

Download chapter15/EmbeddedContextWicket.java

public Object instantiate(Class<?> type) {

try {

return type.newInstance();

} catch (InstantiationException ex) {

throw new RuntimeException(ex);

} catch (IllegalAccessException ex) {

throw new RuntimeException(ex);

}

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsApplication-MetaModel.java
http://media.pragprog.com/titles/dhnako/code/chapter15/EmbeddedContextWicket.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=284

DEPLOYING AN EMBEDDED METAMODEL 285

Some of the calls delegate to the web framework’s APIs, for example,

raising messages:

Download chapter15/EmbeddedContextWicket.java

public void informUser(String message) {

Session.get().info(message);

}

And many of the remainder delegate to some persistence store:

Download chapter15/EmbeddedContextWicket.java

public void makePersistent(Object object) {

getObjectStore().persist(object);

}

The implementation of the persistence store is up to you (that’s one of

the points of this deployment option). I’ve implemented an ObjectStore,

which—as might be apparent if you look at its code—is similar to Naked

Objects’ own in-memory object store. But you could use JPA or JDBC

or any other persistence technology.

One bit of EmbeddedContextWicket that is a little tricky is its getPersis-

tenceState() method:

Download chapter15/EmbeddedContextWicket-getPersistenceState.java

public PersistenceState getPersistenceState(Object object) {

if (getObjectStore().isPersistent(object)) {

return PersistenceState.PERSISTENT;

}

NakedObjectSpecification spec =

getSpecificationLoader().loadSpecification(object.getClass());

if (!spec.containsFacet(ValueFacet.class)) {

return PersistenceState.TRANSIENT;

} else {

return PersistenceState.STANDALONE;

}

}

If you recall Chapter 6, Implementing Business Rules, on page 106,

you’ll remember we can write business rules such as @Hidden(When.UNTIL_

PERSISTED). To enforce these rules, the metamodel needs to know if a

given domain object is persistent or not, something our object store

tells us.

However, this applies only to entity objects. Value objects are considered

“stand alone”; after all, it doesn’t make sense to talk about the persis-

tence of the number 5. The spec variable (of type NakedObjectSpecifica-

tion) in the previous code is a reference into Naked Objects’ metamodel;

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/EmbeddedContextWicket.java
http://media.pragprog.com/titles/dhnako/code/chapter15/EmbeddedContextWicket.java
http://media.pragprog.com/titles/dhnako/code/chapter15/EmbeddedContextWicket-getPersistenceState.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=285

DEPLOYING AN EMBEDDED METAMODEL 286

it’s broadly analogous to java.lang.Class. Using this, we can tell whether

the object is an entity or a value by checking for the presence of the

ValueFacet facet. This basically corresponds to the @Value annotation

that we learned about in Chapter 7, Using Value Types, on page 124.

Going back to NakedObjectsApplication, you’ll see there’s a method called

getHomePage(). This is part of Wicket’s API, and it determines which

page to render initially. Let’s look at this now.

The Home Page

If you’re browsing the code, you might already have noticed that Wicket

pages come in pairs: an HTML page and a corresponding Java class.

Wicket uses the HTML page to render the page and dynamically re-

places content using code from the Java class.

In the application class, the home page is specified as Index.class, and

so Wicket initially renders Index.html. The <div> element with wicket:id=

customerList is replaced using this code from the Index class:

Download chapter15/Index-customerList.java

PageableListView customerList =

new PageableListView(

"customerList",

getCustomerRepository().allCustomers(), 5) {

...

protected void populateItem(ListItem item) {

Customer customer = (Customer) item.getModelObject();

String customerName =

customer.getPerson().getName().title();

item.add(

new Label("name", customerName));

item.add(

new ReplaceLink<Customer>("showVehiclesLink", ...));

item.add(

new ReplaceLink<Customer>("editCustomerLink", ...));

}

...

};

add(customerList);

This calls the CustomerRepository to retrieve all the Customers; these are

then rendered in the left-hand panel.

When we click the “vehicles” link, a vehicles panel appears on the right

side. Let’s look at how this works in a little more detail.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/Index-customerList.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=286

DEPLOYING AN EMBEDDED METAMODEL 287

Customer Vehicle Panel

Drilling into the code in the Index class a little deeper, the “vehicles” link

corresponds to the following:

Download chapter15/Index-showVehiclesLink.java

item.add(new ReplaceLink<Customer>(

"showVehiclesLink", item.getModel()){

...

protected Panel getReplacementPanel(

String id, Customer selected) {

return new CustomerVehiclesPanel(id, selected);

}

});

Here ReplaceLink is a little helper class subclassing Wicket’s own Link

class that replaces an empty panel on the right side with the Cus-

tomerVehiclePanel.

Like pages, panels also come in pairs, an HTML file and a corresponding

Java class, with dynamic content being generated similarly.

Because the vehicle panel is read-only, there’s not much else to talk

about, so let’s now move onto the more interesting edit customer panel.

Edit Customer Panel

So far in our Wicket application, we’ve simply displayed information.

When it comes to editing the Customer, though, there are some busi-

ness rules that we want to enforce. The embedded metamodel works by

allowing our presentation code to request a view object for each under-

lying domain object. This view object is just a proxy or decorator; in

the same way that mocking libraries work, it is the same type as the

underlying object, and our presentation code can use it in the same

way as the original domain object.

Well, not quite. What the view object also does is to enforce the business

rules of the domain object, in the way as described in Section 14.3, Pro-

gramming Model Interaction Protocol, on page 276. If a property is hid-

den and we attempt to read it, it will throw a HiddenException (a subclass

of RuntimeException). If a collection is disabled and we attempt to add to

it, it will throw a DisabledException. If an action argument is invalid and

we attempt to invoke the action, it will throw an InvalidException.

More generally, the view object checks visibility, then usability, and

finally validity. If all three checks are OK, it will delegate to the under-

lying object and return the value. Otherwise, it throws an exception.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/Index-showVehiclesLink.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=287

DEPLOYING AN EMBEDDED METAMODEL 288

Persisting Objects using the Interface

View objects have a further trick up their sleeve; they also
implement the ViewObject interface. The ViewObject interface
has a save() method. This is the programmatic equivalent of hit-
ting the save button in the DnD or HTML viewer.

We can therefore downcast the view object to ViewObject and
invoke this save() method. If the underlying domain object is
transient and is in a valid state, then it will be persisted; other-
wise, an InvalidException will be thrown.

Moreover, the view object also restricts the methods we may invoke to

getters and setters for properties, the getter, the addTo() and remove-

From() methods for collections, any public method representing an ac-

tion, the title() method, and the defaultNXxx() or choicesNXxx() supporting

methods for properties and action parameters.

Invoking the supporting methods that implement business rules (such

as hideXxx(), disableXxx(), or validateXxx()) will throw an UnsupportedOp-

erationException. The view object also restricts which methods can be

invoked on collections obtained from a getter; any methods that mutate

its state (such as add() or removeAll()) will similarly throw an exception.

Let’s see how this is put together in the Wicket application. Similar

to the CustomerVehiclesPanel we saw previously, the EditCustomerPanel

appears on the right side (replaces the empty panel) when we click the

“edit” link for a Customer. In EditCustomerPanel, we have the following

code:

Download chapter15/EditCustomerPanel-addForm.java

private void addForm(final Customer customer) {

EditCustomerForm form =

new EditCustomerFormUsingViewObjects(

"editCustomerForm", getContainer(), customer);

add(form);

...

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/EditCustomerPanel-addForm.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=288

DEPLOYING AN EMBEDDED METAMODEL 289

where EditCustomerFormUsingViewObjects inherits from EditCustomerForm,

which in turn subclasses Wicket’s own Form class. The job of EditCus-

tomerForm is to set up the form components; the interesting code is in

subclass. In its constructor, it is passed a Naked Objects HeadlessViewer;

this is actually just an implementation of DomainObjectContainer that

also acts as a factory for view objects:

Download chapter15/EditCustomerFormUsingViewObjects-constructor.java

EditCustomerFormUsingViewObjects(

String id, HeadlessViewer headlessViewer, Customer customer) {

super(id, headlessViewer.view(customer));

}

As we can see, the first thing that the constructor does is to wrap the

provided Customer domain object in a view object using HeadlessViewer’s

view() method. With this done, we can then apply the business rules.

For example:

Download chapter15/EditCustomerFormUsingViewObjects-configureEmailFieldRules.java

protected void configureEmailFieldRules(LabelAndFormComponent lafc) {

try {

String emailAddress = getCustomer().getEmailAddress();

getCustomer().setEmailAddress(emailAddress);

} catch (HiddenException ex) {

lafc.setVisible(false);

} catch (DisabledException ex) {

lafc.setEnabled(false);

}

}

At first glance, this code seems to do nothing; it reads the value of

emailAddress and then sets it back. However, that call to getCustomer()

is in fact returning the view object. When we read the emailAddress prop-

erty using the getter, the view object checks to see that the property is

visible; if not, an exception is thrown, and so we in our code we hide

the field. Similarly, when we write the value back using the setter, the

view object checks whether the emailAddress property is usable; again,

an exception is thrown if not, and we disable the field.

The previous shows how visibility and usability rules are applied, but

what of validity such as the maximum length of the notes property?

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/EditCustomerFormUsingViewObjects-constructor.java
http://media.pragprog.com/titles/dhnako/code/chapter15/EditCustomerFormUsingViewObjects-configureEmailFieldRules.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=289

DEPLOYING AN EMBEDDED METAMODEL 290

Using the Headless Viewer in Domain Objects

It’s possible to use view objects in our own domain classes. This
is sometimes useful if we want to interact with other objects as
if through a Naked Objects viewer.

To use this feature, set the nakedobjects.persistor.domain-object-

container property in the nakedobjects.properties file; the gen-
erated Maven archetype has (commented out) the value to
use. You also need to include the org.nakedobjects.plugins :
headless-viewer Maven module in your commandline project’s
pom.xml. If you need to use the ViewObject interface, then
your domain project’s pom.xml will also need to reference the
org.nakedobjects.plugins : headless-applib module.

Here we need to gently persuade Wicket to play nicely by overriding the

inherited process() method and dealing with any InvalidException:

Download chapter15/EditCustomerFormUsingViewObjects-process.java

public boolean process() {

try {

return super.process();

} catch (WicketRuntimeException ex) {

Throwable cause = ex.getCause();

if (cause instanceof InvalidException) {

error(cause.getMessage());

return false;

} else {

throw ex;

}

}

}

Let’s see this in action. Looking at the Customer class, we can see the

following:

• The feedback property should be visible only for valuable Cus-

tomers (those with two or more Vehicles).

• The notes property is disabled for Customers with no Vehicles.

• The notes property has a maximum length of 255 characters.

Navigate to the MaryBloggsCarFixture and comment out the call to cre-

ateCar(), and for JoeBloggsCarFixture comment out the lines that give

him a second Car. That will give us Mary with no Cars, Joe with one

Car, and Boris with three. Now run the application and click “edit” for

each of Mary, Joe, and Boris. For Mary and Joe, you shouldn’t be able

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/EditCustomerFormUsingViewObjects-process.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=290

DEPLOYING AN EMBEDDED METAMODEL 291

Figure 15.2: CarServ business rules in Wicket

to view the feedback property, and for Mary only the notes property

should be disabled. For Boris, both feedback and notes should be vis-

ible and usable. Finally, for either Joe or Boris, attempt to update the

notes property to a string longer than 255 characters; the change should

be rejected. All this is shown in Figure 15.2.

If we look at the validation message, it isn’t clear whether it is the notes

or feedback property that is invalid. That’s because we only handle the

InvalidException at the form level (that overridden process() method). Let’s

see how to improve on this.

Validating Individual Properties

Like many frameworks, Wicket allows us to install validators at the field

level. This will give us the more specific error messages that we’re after.

If you have downloaded the code, then you might have noticed that

there is another subclass of EditCustomerForm, namely, EditCustomerFor-

mUsingViewObjectsExtended. This overrides configureNotesFieldRules():

Download chapter15/EditCustomerFormUsingViewObjectsExtended-configureNotesFieldRules.java

@Override

protected void configureNotesFieldRules(

final LabelAndFormComponent lafc) {

super.configureNotesFieldRules(lafc);

installMaxLengthValidator(

Customer.class, lafc.getFormComponent());

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/EditCustomerFormUsingViewObjectsExtended-configureNotesFieldRules.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=291

DEPLOYING AN EMBEDDED METAMODEL 292

private void installMaxLengthValidator(

final Class<?> domainClass, final FormComponent field) {

NakedObjectAssociation association =

getAssociation(domainClass, field);

MaxLengthFacet maxLengthFacet =

association.getFacet(MaxLengthFacet.class);

if (maxLengthFacet != null) {

field.add(StringValidator.maximumLength(

maxLengthFacet.value()));

}

}

What this code is doing is reaching into the Naked Objects metamodel

and looking for a specific facet that represents the @MaxLength annota-

tion. If found, it then installs a corresponding Wicket validator.

To see this in action, go back to the EditCustomerPanel, and modify its

addForm() method to use this extended version of EditCustomerForm:

Download chapter15/EditCustomerPanel-addForm-Extended.java

private void addForm(final Customer customer) {

EditCustomerForm form =

new EditCustomerFormUsingViewObjectsExtended(

"editCustomerForm", getContainer(), customer);

add(form);

...

}

When you run the application, you should see that the error message

has changed; it is being generated by Wicket rather than Naked Objects.

I’m not sure this new version is necessarily an improvement, though.

To me, it violates the DRY principle because we have to remember to

install a Wicket validator for each and every Naked Objects facet that

represents as a validity rule. In practice, I would stay with the original

version.

The HeadlessViewer is only one way of interacting with the Naked Objects

metamodel. We can also reach deeper into the metamodel and, for

example, be able to determine which property is invalid. It’s time now to

move onto the last deployment option for this chapter, the custom pre-

sentation option, where Naked Objects does the persistence (so there

is no longer any EmbeddedContext to implement). We’ll also see how to

use the alternative way of exploiting the metamodel.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/EditCustomerPanel-addForm-Extended.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=292

INTEGRATING LAYERS WITH THE CUSTOM PRESENTATION OPTION 293

15.2 Integrating Layers with the Custom Presentation Option

For the custom presentation deployment option, we again have a new

version of CarServ (chapter15-02). So, once more, download and follow

along (but if you’re not at your computer, all the relevant code is in the

text).

Running the Application

You can run this new version of CarServ in the same way as the last

version. The only difference is that if using mvn jetty:run, then the URL

to navigate to changes is http://localhost:8080/carserv-wicket2.

The first thing you’ll notice when you browse to the web app is a

sign-on page; this version also integrates Wicket’s security with Naked

Objects’ own authentication mechanism. We’ll look at how this works in

a moment, but for now sign on with a username of sven and a password

of pass. You should then arrive at the same home page as previously,

except that we can also see (in a footer) the username we have logged

in as. Browse around; you should see the application is pretty much

the same.

It’s time once again to look at the code.

The Application Class

As before, we use a subclass of WebApplication to bootstrap Naked

Objects, in the NakedObjectsApplication class. However, this time we’re

bootstrapping all the Naked Objects runtime, not just the metamodel:

Download chapter15/NakedObjectsApplication-constructor.java

ConfigurationBuilderDefault configurationBuilder =

new ConfigurationBuilderDefault();

configurationBuilder.add(SystemConstants.NOSPLASH_KEY, ""+true);

NakedObjectsSystemBootstrapper systemBootstrapper =

new NakedObjectsSystemBootstrapper(configurationBuilder, getClass());

system = systemBootstrapper.bootSystem(DeploymentType.EXPLORATION);

The NakedObjectsSystem object is the Naked Objects runtime; the boot-

strapper class reads the configuration to determine which components

make up the runtime. Once instantiated, the components are made

available to us using static methods in NakedObjectsContext. They have

different scopes, but one that has global scope is the AuthenticationMan-

ager. Let’s see how we integrate with this.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://localhost:8080/carserv-wicket2
http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsApplication-constructor.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=293

INTEGRATING LAYERS WITH THE CUSTOM PRESENTATION OPTION 294

Authentication

In this version of CarServ, the NakedObjectsApplication class actually

subclasses Wicket’s AuthenticatedWebApplication (rather than plain

WebApplication as previously). We override getSignInPage() to indicate

which HTML/Java class pair to use to render a sign-in page.

There’s nothing to see in the sign-in page itself. Instead, the Authenticat-

edWebApplication has another hook method that we override, namely,

getWebSessionClass(). Here we return a custom subclass, NakedObject-

sAuthenticatedWebSession. The integration code is in its authenticate()

method:

Download chapter15/NakedObjectsAuthenticatedWebSession-authenticate.java

import org.apache.wicket.authentication.AuthenticatedWebSession;

import org.nakedobjects.metamodel.authentication.AuthenticationSession;

import org.nakedobjects.runtime.authentication.AuthenticationManager;

...

public class NakedObjectsAuthenticatedWebSession

extends AuthenticatedWebSession {

...

private AuthenticationSession authenticationSession;

public boolean authenticate(

final String username, final String password) {

AuthenticationRequestPassword authenticationRequest =

new AuthenticationRequestPassword(username, password);

authenticationSession =

getAuthenticationManager().authenticate(

authenticationRequest);

return authenticationSession != null;

}

private static AuthenticationManager getAuthenticationManager() {

return NakedObjectsContext.getAuthenticationManager();

}

...

}

We subclass Wicket’s AuthenticatedWebSession to store a Naked Objects’

AuthenticationSession. And as you can see, getAuthenticationManager()

uses the NakedObjectsContext to obtain the Naked Objects’ bootstrapped

AuthenticationManager.

Since we haven’t said otherwise, we’re using Naked Objects’ default

implementation of AuthenticationManager. This is discussed in more de-

tail in Section 18.2, Securing the Application, on page 354, but for now

all we need to know is that it reads usernames and passwords from the

config/passwords file. The format is as follows:

user1:password1:roleA|roleB|roleC

user2:password2:roleA|roleD|roleF

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsAuthenticatedWebSession-authenticate.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=294

INTEGRATING LAYERS WITH THE CUSTOM PRESENTATION OPTION 295

Look at this file, and you’ll see each of our users is in the USER role:

Download chapter15/passwords

sven:pass:USER

dick:pass:USER

bob:pass:USER

joe:pass:USER

We use this to secure the Index page:
Download chapter15/Index.java

@AuthorizeInstantiation("USER")

public class Index extends NakedObjectsWebPage { ... }

This takes care of Wicket’s view of authentication, but we also need to

propagate the current user principal into the Naked Objects runtime.

We do this by overriding yet another hook method in NakedObjectsAp-

plication, namely, newRequestCycle(). Here we return our own NakedOb-

jectsWebRequestCycle that does the necessary:

Download chapter15/NakedObjectsWebRequestCycle.java

public class NakedObjectsWebRequestCycle extends WebRequestCycle {

...

protected void onBeginRequest() {

super.onBeginRequest();

NakedObjectsAuthenticatedWebSession wicketSession =

NakedObjectsAuthenticatedWebSession.get();

if (wicketSession == null) {

return;

}

AuthenticationSession nakedObjectsSession =

wicketSession.getAuthenticationSession();

if (nakedObjectsSession == null) {

return;

}

NakedObjectsContext.openSession(nakedObjectsSession);

getTransactionManager().startTransaction();

}

...

protected void onEndRequest() {

if (NakedObjectsContext.inSession()) {

NakedObjectTransaction transaction =

getTransactionManager().getTransaction();

if (transaction != null) {

getTransactionManager().endTransaction();

}

NakedObjectsContext.closeSession();

}

super.onEndRequest();

}

...

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/passwords
http://media.pragprog.com/titles/dhnako/code/chapter15/Index.java
http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsWebRequestCycle.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=295

INTEGRATING LAYERS WITH THE CUSTOM PRESENTATION OPTION 296

This is analogous to Hibernate’s open session in view pattern. It

provides us with a persistence context for the domain objects we are

using.4 We also start a transaction, with one transaction per session.

Let’s now move on to see how we implement business rules using the

full Naked Objects runtime.

Implementing Business Rules

As before, EditCustomerForm is the class that sets up the form widgets.

This time, though, most of the heavy lifting is done by a helper class

that I’ve called NakedObjectsPropertyAdapter, a descendant of LabelAnd-

FormComponent from the previous version of CarServ. The bit we care

about is the configureRules() method:

Download chapter15/NakedObjectsPropertyAdapter-configureRules.java

private void configureRules() {

setVisible(visibilityConsent().isAllowed());

setEnabled(usabilityConsent().isAllowed());

final class NakedObjectsPropertyValidator

extends AbstractValidator {

...

protected void onValidate(IValidatable validatable) {

Object proposedValue = validatable.getValue();

Consent validityConsent = validityConsent(proposedValue);

if (validityConsent.isVetoed()) {

String reason = validityConsent.getReason();

reasonBuf.setLength(0); // clear

this.reasonBuf.append(reason);

error(validatable);

}

}

};

getFormComponent().add(new NakedObjectsPropertyValidator());

}

This method does three things. First, it configures visibility using the

visibilityConsent() helper method:

Download chapter15/NakedObjectsPropertyAdapter-visibilityConsent.java

private Consent visibilityConsent() {

return getAssociation().isVisible(

getAuthenticationSession(), getModelAdapter());

}

private NakedObjectAssociation getAssociation() {

NakedObjectSpecification noSpec =

getSpecificationLoader().loadSpecification(getModelClass());

return noSpec.getAssociation(getFormComponent().getId());

}

4. See http://www.hibernate.org/43.html for more on the open session in view pattern.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsPropertyAdapter-configureRules.java
http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsPropertyAdapter-visibilityConsent.java
http://www.hibernate.org/43.html
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=296

INTEGRATING LAYERS WITH THE CUSTOM PRESENTATION OPTION 297

Large-Scale Widgets

The NakedObjectsPropertyAdapter class wraps up a single prop-
erty of an object, but it would be easy enough to write a Nake-

dObjectsForm that wraps up all the properties of a given domain
object. This could do a lot of the donkey work but allow you to
break out into custom presentation code as you’d like.

Indeed, this is exactly the objective of the MetaWidget open
source project.∗ This is unrelated to Naked Objects, but it pro-
vides a series of components built from various metamodel
sources. In principle, the Naked Objects metamodel could act
as a back end for MetaWidget’s various front ends.

∗. http://www.metawidget.org.

Second, it similarly sets up usability using the usabilityConsent() helper:

Download chapter15/NakedObjectsPropertyAdapter-usabilityConsent.java

private Consent usabilityConsent() {

return getAssociation().isUsable(

getAuthenticationSession(), getModelAdapter());

}

And lastly, it installs a Wicket validator for each field using the validity-

Consent() helper:

Download chapter15/NakedObjectsPropertyAdapter-validityConsent.java

private Consent validityConsent(final Object proposedValue) {

return getOneToOneAssociation().isAssociationValid(

getModelAdapter(), adapterFor(proposedValue));

}

It’s this last piece that’s significant. Whereas in the previous version

installing Wicket validators was fragile because it violated the DRY prin-

ciple (see Section 15.1, Validating Individual Properties, on page 291),

we now can support all Naked Objects validation rules generically. Have

metamodel, will use!

To see this in action, try entering more than 255 characters for Boris’

notes property; it should be rejected, and moreover you should see that

the invalid field is highlighted.

And that’s as far as we’re going to take this example.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.metawidget.org
http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsPropertyAdapter-usabilityConsent.java
http://media.pragprog.com/titles/dhnako/code/chapter15/NakedObjectsPropertyAdapter-validityConsent.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=297

INTEGRATING LAYERS WITH THE CUSTOM PRESENTATION OPTION 298

Coming Up Next

In this chapter, we saw firsthand how to put a custom user inter-

face to an existing domain model. We used two different approaches:

the embedded metamodel deployment option (that lets us also provide

our own custom persistence layer) and the custom presentation option

(where persistence is taken care of by the Naked Objects framework).

We also saw two different ways of using the metamodel, either through

the headless viewer or using the Naked Objects metamodel API directly.

In this chapter, we were looking mostly at the layers “in front” of the

domain model. In the next, though, we’ll look in more detail at the per-

sistence layer that sits “behind” the domain model. We’ll start looking at

the XML object store provided by Naked Objects itself, but we’ll spend

most of our time configuring the JPA object store provided by one of

Naked Objects’ sister projects, allowing us to store our domain objects

in a relational database.

Exercises

Have a go at enhancing the NakedObjectsWebRequestCycle (in the chap-

ter15-02 version of CarServ) to support the info() and warn() meth-

ods provided by DomainObjectContainer. When called, these messages

ultimately end up in a transaction-scoped component called the Mes-

sageBroker. In the onEndRequest() method, you can therefore retrieve the

MessageBroker and copy over any messages and warnings into the Nake-

dObjectsAuthenticatedWebSession. These will appear wherever a Wicket

feedback panel exists (for example, on the EditCustomerForm).

You also have the statutory exercise to do: put a custom front end onto

your own application. You might want to start with one of the versions

of CarServ and adapt it as need be. If you don’t know Wicket, you might

want to explore using Scimpi.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=298

Chapter 16

Integrating with the Database
These days it’s fairly common to build systems by initially mocking out

the persistence layer and focusing on the domain layer and other layers.

As we’ve seen, Naked Objects supports this with the in-memory object

store that we’ve been using throughout.

But there comes a point when the rubber hits the road. We are going

to need to persist our domain objects in some sort of persistence store;

after all, the data we create today needs to be there tomorrow. For the

vast majority of enterprises, and for us too, this means storing our

objects as data in a relational database. That will allow the business

users to use the data in other ways, such as slicing and dicing it using

dedicated reporting or business intelligence tools. And from an opera-

tional perspective, our DBAs will be able to manage (performance tune,

back up, and archive) our domain objects using standard tools, just as

in any other enterprise application.

The Naked Objects framework defines an ObjectStore interface so that

alternative implementations can be switched in; the in-memory object

store we’ve been using to date is one such implementation. It’s beyond

the scope of this book (and a reasonably large undertaking) to see how

to implement this API, but it is certainly possible, and I expect that

further implementations will follow in the future.

In this chapter, we’re going to see how to configure two existing object

store implementations (also called persistors in Naked Objects par-

lance). We’re going to warm up with Naked Objects’ own XML object

store, and then we’ll move onto an RDBMS-based object store. Let’s

start with the XML implementation.

Prepared exclusively for ALESSANDRO CAROLLO

CONFIGURING XML PERSISTENCE 300

16.1 Configuring XML Persistence

The XML object store stores the state of domain objects in a series

of XML files, one file per object. There’s no need for us to define the

schema of these XML files; their format is internal to the persistor and

reflects the Naked Objects metamodel.

To use the XML object store, we need to do just two things: tell it how

to persist our value types, and tell the framework to use the object

store. As with the other downloads in Part III of this book, all the

required modifications have already been made in CarServ (chapter16-

01). Download it to verify the changes, but all the important code snip-

pets are also in the text that follows.

Updating Value Types

You might remember from Chapter 7, Using Value Types, on page 124

that using value types may require additional configuration in order

to persist them. In CarServ we have two value types, RegistrationNum-

ber and CalendarInterval. Each of these has a ValueSemanticsProvider that

provides parseability by returning a Parser implementation. This is suf-

ficient for the viewers.

However, the XML object store also requires the semantics providers

to supply EncoderDecoders, which in effect serialize the value’s state.

The implementations of these is simple enough; for example, Registra-

tionNumberValueSemanticsProvider is as follows:

Download chapter16/RegistrationNumberValueSemanticsProvider.java

@Override

public EncoderDecoder<RegistrationNumber> getEncoderDecoder() {

return new EncoderDecoder<RegistrationNumber>() {

public RegistrationNumber fromEncodedString(

String encodedString) {

return new RegistrationNumber(encodedString);

}

public String toEncodedString(RegistrationNumber toEncode) {

return toEncode.getValue();

}};

}

The semantics provider for CalendarInterval is similarly straightforward.

All we now need to do is run the application correctly.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/RegistrationNumberValueSemanticsProvider.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=300

CONFIGURING XML PERSISTENCE 301

Joe Asks. . .

How Is the –persistor Flag Interpreted?

Naked Objects uses the xml value of the --persistor command-
line option to look up an implementation listed in the installer-

registry.properties file, which is a resource within the Naked
Objects runtime-4.0.0.jar file.

This is just a convenient shortcut; instead of xml, we could also
have provided the fully qualified class name of the persistor’s
installer implementation.

Running the Application

To run the application, we specify the object store either using a com-

mand-line flag or using the nakedobjects.properties configuration file.

Open the exploration#viewer_dnd#persistor_xml or exploration#viewer_html#

persistor_xml launch configurations; you’ll see that both have the

--persistor command-line flag as an argument, specifying the value xml.

For example:

--viewer dnd --persistor xml

Run the application and make a change to one of the Customers; then

shut down the application. When you next relaunch the application,

the change should still be there.

Alternatively, we can specify the persistor in nakedobjects.properties:

Download chapter16/nakedobjects-xml.properties

nakedobjects.persistor=xml

Give this a go too; remember to run up the application without using

the --persistor flag.

If we look in the commandline project, there should be a new xml/objects

subdirectory. The first time we run our application, this subdirectory

doesn’t exist, so the framework installs the same fixtures we’ve been

using to seed the in-memory object store. On subsequent runs, the

fixtures are ignored because the object store is already initialized (the

subdirectory isn’t empty).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/nakedobjects-xml.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=301

MAPPING ENTITIES USING JPA ANNOTATIONS 302

So, that’s the XML object store. As we’ve seen, it’s very easy to use, it

required no changes to our domain model code, and it required minimal

changes to supporting code. It’s also resilient to schema change (prop-

erties can be added or removed from domain objects without losing

data). You’ll find it useful for setting up demos to your domain experts,

and you could use it as an alternative to writing fixtures by hand (just

zip up the xml/objects directory).

However, the XML object store isn’t really suitable for anything other

than very basic single-user applications. For that we need an object

store that persists to a relational database.

16.2 Mapping Entities Using JPA Annotations

Although Naked Objects does have its own Hibernate object store, in

this book we use a newer object store implementation provided by the

JPA Objects sister project.1 Integration primarily consists of annotating

our domain classes with the Java Persistence API (JPA) annotations; it

can then create a relational database schema and persist our objects

to that schema. Under the covers, it too uses the industry-standard

Hibernate as the JPA implementation.

Like the Tested Objects sister project we used in Chapter 12, Scenario

Testing, on page 229, JPA Objects also provides a Maven archetype

that does most of the scaffolding and provides annotated versions of

the demo claims application that we used in Chapter 1, Getting Started,

on page 21. If you want to try this archetype, refer to the JPA Objects

documentation.

Instead, we’ll use a version of CarServ where all the required modifica-

tions have already been made (chapter16-02). You can therefore just

download it and verify the following changes identified here. Again, if

you’re not at your computer, all the relevant code is in the text.

Before we get into the detail, I should do some expectation manage-

ment. Configuring ORMs such as Hibernate can be complex, and there

are 900+ page books (such as the bible for Hibernate, Bauer and King’s

Java Persistence with Hibernate [BK06]) devoted to the topic. What fol-

lows is packed with useful information (of course!), but if you’ve never

done this before, then you might also want to do a little prereading.

1. JPA Objects is signposted from http://starobjects.org.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://starobjects.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=302

MAPPING ENTITIES USING JPA ANNOTATIONS 303

That said, JPA Objects tries to set some best practice in order to reduce

the complexity of the mappings. So, you shouldn’t need to be an out-

and-out expert in Hibernate to use JPA Objects.

OK, let’s get to it. Remember that these changes have already been done

in the download; all we’re doing here is inspecting the changes.

Declaring Entities Using @Entity and @Embeddable

First up we need to declare which domain classes in the model are (JPA)

entities. If you look through the code, you should see that most of the

domain classes are annotated with @Entity, abstract superclasses, and

concrete subclasses. For example, Customer is as follows:

Download chapter16/Customer-Entity.java

@Entity

public class Customer ... { ... }

However, we don’t annotate the repositories or any interfaces. We also

don’t need to annotate the CustomerTakeOn process object because it is

not persisted. And we don’t annotate value types either.

Also not annotated with @Entity is Name. JPA allows us to embed enti-

ties within other entities so that they are persisted in the same database

table as their containing entity. Because Name is aggregated, we anno-

tate it as @Embedded:

Download chapter16/Name-Embeddable.java

@Embeddable

public class Name ... { ... }

The full list of entities that are annotated, along with the other annota-

tions we’ll be looking at shortly, is summarized in Section 16.2, Anno-

tation Summary, on page 307.

Next on our list is a mechanism to distinguish different types within

the domain.

Distinguishing Concrete Types Using @DiscriminatorValue

When we have inheritance hierarchies in our domain model, JPA allows

us to optionally use the @DiscriminatorValue annotation to discriminate

between the different concrete subclasses. These are held in “type”

columns.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Customer-Entity.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Name-Embeddable.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=303

MAPPING ENTITIES USING JPA ANNOTATIONS 304

JPA Objects makes this a mandatory requirement for every concrete

class, whether it is part of an inheritance hierarchy or not. These

discriminators should be strings, three or perhaps four characters in

length; for example, Employee is as follows:

Download chapter16/Employee-DiscriminatorValue.java

@Entity

@DiscriminatorValue("EMP")

public class Employee ... { ... }

Again, Section 16.2, Annotation Summary, on page 307 summarizes

which classes have been annotated.

While the JPA object store needs this information internally, as we’ll see

in Section 16.4, Mapping Relationships, on page 310, it’s also necessary

to select a discriminator when mapping relationships to interfaces. It’s

therefore good practice to have these aliases defined; after all, any class

could implement an interface. If you keep them short (no more than

four characters), they also act as handy type identifiers; team members

will use them as aliases in SQL queries, for example.

Next we need a way to distinguish different instances of entities.

Identifying Entities Using @Id

The JPA specification offers a number of ways to uniquely identify enti-

ties, but at the time of this writing, JPA Objects currently requires that

every entity has a numeric surrogate key. The Hibernate team strongly

recommends this practice anyway.

Therefore, every (nonembedded) entity has defined in it—or inherits

from its superclass—an Id property. The form of this is as follows:

Download chapter16/Id-property.java

private Long id;

@Hidden

@Optional

@Id

@GeneratedValue(strategy=GenerationType.AUTO)

public Long getId() {

return id;

}

public void setId(Long id) {

this.id = id;

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Employee-DiscriminatorValue.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Id-property.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=304

MAPPING ENTITIES USING JPA ANNOTATIONS 305

The name of the property doesn’t need to be Id, but it does need to be

annotated with @Id. It’s also important to use a numeric wrapper class

(such as java.lang.Long) and to annotate the class using the (Naked

Objects) @Optional annotation; this enables Hibernate to manage the

persistence life cycle. We also use @GeneratedValue annotation so that

the JPA object store will automatically assign unique values for us. In

the usual way, the (Naked Objects) @Hidden annotation hides the prop-

erty in the user interface (if not hidden, then it should be @Disabled).

Closely related to identifying objects is versioning them.

Versioning Entities Using @Version

We use the JPA@Version attribute to enforce optimistic locking, anno-

tated on a Version property. This is needed on transactional entities, but

we don’t need it for any immutable reference entities. The form of this

property is as follows:

Download chapter16/Version-property.java

private Long version;

@Hidden

@Optional

@Version

public Long getVersion() {

return version;

}

public void setVersion(Long version) {

this.version = version;

}

As for the Id property, the name of the property doesn’t matter. Any

of the types supported by @Version can be used (int, Integer, short, Short,

long, Long, or java.sql.Timestamp).

We’ve already touched on inheritance hierarchies with the @Discrimina-

torValue annotation, but there’s more to say on this topic. Namely. . .

Inheritance Hierarchies Using @Inheritance

JPA lets us map inheritance hierarchies using one of three strategies:

• The SINGLE_TABLE inheritance type maps the entire hierarchy to a

single table. This table has a column for each of the properties of

all the subtypes; each of these columns for the “rolled-up” prop-

erties is nullable.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Version-property.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=305

MAPPING ENTITIES USING JPA ANNOTATIONS 306

This inheritance type is simple to implement and generally per-

forms well, but from a DBA’s viewpoint, a single table can get

rather unwieldy to manage/archive. A single table could also be a

possible point of contention within the development process with

lots of user stories potentially requiring its modification.

• The JOINED inheritance type has one table for the superclass and

one table for each subclass.

Retrieving data in this inheritance type is likely to perform less

well than the SINGLE_TABLE strategy, because it requires outer joins

to each of the subclass tables. Updates will also probably perform

worse. The DBA is also likely to find it easier to manage, though,

and there should be less contention in the development process.

• The TABLE_PER_CLASS inheritance type has one table per concrete

class, but unlike the JOINED strategy has no table for the super-

class. Instead, the properties of the superclass are “rolled down”

into each subclass’s table.

This strategy is possibly the most efficient for updates. Retriev-

ing data for a single subclass will also be efficient, but a poly-

morphic query finding all instances for a superclass will require

a SQL UNION, which could well be less effective than the other

two inheritance strategies. Another disadvantage is that generat-

ing unique IDs cannot use an identity column, which is the pre-

ferred approach (where supported) for some RDBMS. On the other

hand, this strategy is probably the easiest for DBAs to manage,

with the least contention in the development process.

We use @Inheritance to specify the mapping strategy, annotating the

superclass. In CarServ, there are four inheritance hierarchies: Payment-

Method, PersonRole, Vehicle, and Service.

For example, I selected the SINGLE_TABLE strategy for the PaymentMethod

hierarchy since the subclasses don’t have much additional state. The

strategies that I chose to use are summarized in Section 16.2, Anno-

tation Summary, on the following page. For your own applications, you

should give serious thought as to which strategy to use for each inher-

itance hierarchy.

In addition to the @Inheritance annotation, we also specify the @Discrimi-

natorColumn annotation, which goes hand in hand with the @Discrimina-

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=306
v@v
Text Box
Download at WoweBook.com

MAPPING ENTITIES USING JPA ANNOTATIONS 307

torValue annotation we saw earlier. This is where we specify the discrim-

inator column’s name, type (a String), and length (3 or 4).

For example, PaymentMethod is as follows:

Download chapter16/PaymentMethod-Inheritance.java

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(

name="payment_method_type",

discriminatorType=DiscriminatorType.STRING, length=3)

public abstract class PaymentMethod ... { ... }

Ignoring Nonpersisted Properties

Throughout the domain classes there are a handful of derived prop-

erties or methods that we need JPA/Hibernate to ignore. We do this

by annotating them with the @Transient annotation. For example, the

Customer class has an isValuableCustomer() helper method:

Download chapter16/Customer-isValuableCustomer.java

@Transient

private boolean isValuableCustomer() {

return getVehicles().size() >= 2;

}

Note we need to do this even though the method has private visibility.

The other examples are in Service (its getPaid() method) and in Service-

ableVehicle (its getPaymentMethodOwner() and isServiceOverdue() meth-

ods).

Annotation Summary

In the preceding sections we’ve seen a half dozen or so annotations.

The following table summarizes which annotations are applied to which

CarServ entities.

All of the classes tend to fall into one of four main categories:

• Abstract transactional superclasses, annotated with @Inheritance

and also @Version (such as PaymentMethod, PersonRole, and Vehicle)

• Concrete transactional classes that do have a (possibly inherited)

@Version property (such as Account, Person, and Car)

• Concrete reference classes, with no @Version property either inher-

ited or declared (for example PaymentMethodType, Title, and Make)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/PaymentMethod-Inheritance.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Customer-isValuableCustomer.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=307

MAPPING VALUE OBJECTS USING JPA ANNOTATIONS 308

• Embedded classes that are annotated with @Embeddable (for ex-

ample Name).

Class Embedding @DiscriminatorValue @Inheritance Id Version

PaymentMethodType @Entity PMT @Id

PaymentMethod @Entity SINGLE_TABLE @Id @Version

Account @Entity ACC

Cash @Entity CSH

CreditCard @Entity CCD

Person @Entity PRS @Id @Version

Name @Embeddable

PersonRole @Entity JOINED @Id @Version

Customer @Entity CUS

Employee @Entity EMP

Title @Entity TTL @Id

Make @Entity MAK @Id

Model @Entity MDL @Id

VehicleType @Entity VTP @Id

Vehicle @Entity SINGLE_TABLE @Id @Version

ServiceableVehicle @Entity

Car @Entity CAR

Motorcycle @Entity MCY

Van @Entity VAN

Service @Entity SINGLE_TABLE @Id @Version

InitialService @Entity ISV

RegularService @Entity RSV

Let’s now turn our attention to value types.

16.3 Mapping Value Objects Using JPA Annotations

In CarServ we have two value types, RegistrationNumber and CalendarIn-

terval. As discussed already in this chapter, we need to write implemen-

tations of Naked Objects’ ValueSemanticProvider so that Naked Objects

can parse and display these types. Hibernate also requires adapters so

that it can persist (what it calls) user types to the database.

Defining Hibernate User Types

Hibernate’s adapters are implementations of org.hibernate.usertype.User-

Type or org.hibernate.usertype.CompositeUserType. The former is used for

values that are basically a single scalar value, such as RegistrationNum-

ber. The latter is used for value types such as CalendarInterval that are

made up of several underlying values.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=308

MAPPING VALUE OBJECTS USING JPA ANNOTATIONS 309

In JPA Objects’ applib there are a couple of convenience superclasses to

help us write these adapters, namely, ImmutableUserType and Immutable-

CompositeUserType. For example, here is the implementation for Registra-

tionNumber:

Download chapter16/RegistrationNumberType.java

public class RegistrationNumberType extends ImmutableUserType {

public Class<RegistrationNumber> returnedClass() {

return RegistrationNumber.class;

}

public Object nullSafeGet(

final ResultSet rs,

final String[] names,

final Object owner) throws SQLException {

final String value = rs.getString(names[0]);

return rs.wasNull() ? null : new RegistrationNumber(value);

}

public void nullSafeSet(

final PreparedStatement st,

final Object value,

final int index) throws SQLException {

if (value == null) {

st.setNull(index, Hibernate.STRING.sqlType());

} else {

RegistrationNumber regNum = (RegistrationNumber) value;

st.setString(index, regNum.getValue());

}

}

public int[] sqlTypes() {

return new int[] { Hibernate.STRING.sqlType() };

}

}

The user type for CalendarInterval is a little more involved (it persists to a

date column and an integer column to represent the interval duration),

though most of its complexity has to do with getting values in and out

of CalendarInterval itself rather than the database!

Now we have some Hibernate UserTypes, so we need to wire them into

the domain model.

Annotating the Domain Classes

For each domain class that has user-defined value types (in CarServ,

this is Service and Vehicle), we must add two (Hibernate-specific)

annotations.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/RegistrationNumberType.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=309

MAPPING RELATIONSHIPS 310

The first is on the class itself and defines the type and an alias for the

type. For this we use @TypeDefs/@TypeDef annotations. For example, on

the Service class, we have the following:

Download chapter16/Service-TypeDefs.java

@TypeDefs({

@TypeDef(name="calint", typeClass=CalendarIntervalType.class)

})

public abstract class Service ... { ... }

The second is on the property, using the @Type annotation and the

@Columns/@Column annotations. So, the Service’s bookedInAndReady

property is annotated thusly:

Download chapter16/Service-Type.java

@Type(type="calint")

@Columns(columns={

@Column(name="bookedInAndReady_dt"),

@Column(name="bookedInAndReady_duration")

})

public CalendarInterval getBookedInAndReady() {

return bookedInAndReady;

}

And that’s values taken care of. Now we have to tell the object store

how the classes relate to each other.

16.4 Mapping Relationships

In Java we associate objects using references or collections of refer-

ences. If we want a relationship to be bidirectional, then we need to

have a reference in both directions. In a relational database, though,

we associate instances of different tables together through the values

of their respective primary and foreign keys. It’s as easy to traverse

foreign key relationships in one direction as another.

The point of this little preamble is that relationships in Java-land and

in RDBMS-land are quite different in nature, and it’s important to map

our relationships the correct way. Let’s go through each of the relation-

ships in CarServ in turn.

Embedded Relationships

You’ll recall that we annotated Name as @Embeddable rather than an

@Entity. This now allows us to map the one-to-one relationship from

Person to Name using the @Embedded annotation.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Service-TypeDefs.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Service-Type.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=310

MAPPING RELATIONSHIPS 311

Download chapter16/Person-name.java

@Embedded

public Name getName() { ... }

The Name object will then be stored inline (in the same table) as the

Person object. That’s really all there is to embedded relationships. So,

let’s move onto something slightly more complex.

Unidirectional Many-to-One Relationships

A unidirectional many-to-one (or indeed one-to-one) relationship is

where there’s the most similarity between Java and an RDBMS. In the

former, we have a simple reference; in the latter, we have a foreign key.

In CarServ, we have plenty of examples of this relationship. For exam-

ple, the relationship from Vehicle to Model is mapped using an @Many-

ToOne annotation:

Download chapter16/Vehicle-model.java

@ManyToOne(fetch=FetchType.EAGER)

public Model getModel() { ... }

For the record, the other examples in CarServ are Name to Title, Service

to PaymentMethod, PaymentMethod to PaymentMethodType, and Model to

VehicleType.

One decision we do have to make is whether the relationship should be

loaded lazily or eagerly. Associations to reference data objects (such as

Model and Make) can probably be eagerly loaded, because (if we have

enabled second-level caching in Hibernate) these objects are probably

already in cache. Other associations should probably be lazily loaded,

however. Our next relationship type follows on naturally by making the

relationship bidirectional.

Bidirectional One-to-Many Relationships

When we have a bidirectional one-to-many relationship in the code,

then we have two references: a collection on the one side and a back

reference on the other. As already noted, though, in an RDBMS, this

relationship requires only a foreign key.

We therefore map a bidirectional relationship with both an @OneToMany

annotation on the collection side and an @ManyToOne annotation for the

back reference. But for the @OneToMany annotation, we use a mappedBy

attribute that says, in effect, that the relationship can be navigated

using the foreign key introduced by the @ManyToOne annotation.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Person-name.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Vehicle-model.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=311

MAPPING RELATIONSHIPS 312

Again, there are plenty of examples in CarServ. For example, a Service-

ableVehicle can have many Services. In ServiceableVehicle, we have the

following:

Download chapter16/ServiceableVehicle-services.java

@OneToMany(mappedBy="vehicle", cascade=CascadeType.ALL)

public List<Service> getServices() { ... }

while in the Service class we have this:

Download chapter16/Service-vehicle.java

@ManyToOne(fetch=FetchType.LAZY)

public ServiceableVehicle getVehicle() { ... }

Note the mappedBy attribute already mentioned. The other attribute to

note is cascade, for the @OneToMany annotation. Among other things

this ensures persistence-by-reachability: any still-to-be-persisted Ser-

vices attached to a (persisted) ServiceableVehicle will be automatically

saved to the database.

There are two other such relationships in CarServ: Person to PersonRole

and Make to Model.

Let’s take a look now at one-to-many relationships where the relation-

ship isn’t bidirectional.

Unidirectional One-to-Many Relationships

We map a unidirectional one-to-many relationship using the @One-

ToMany annotation. However, because there is no back reference, we

omit the mappedBy attribute.

For example, in CarServ, there is one-to-many relationship from Cus-

tomer to Vehicle:

Download chapter16/Customer-vehicles.java

@OneToMany(fetch=FetchType.LAZY)

public List<Vehicle> getVehicles() { ... }

So far, so unremarkable. What is noteworthy, though, is that because

there is no back reference, there is therefore no foreign key in the table

for Vehicle. Instead, we will get a new association table, Customer_Vehicle,

to hold the (customer_id, vehicle_id) tuples.

One type of relationship we don’t have in CarServ is a many-to-many

relationship. If present, these can be mapped using an @ManyToMany

annotation, and they also give rise to association tables.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/ServiceableVehicle-services.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Service-vehicle.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Customer-vehicles.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=312

MAPPING RELATIONSHIPS 313

So, one way to understand the association table introduced by an

@OneToMany is to think of it as a degenerate case of the more general

@ManyToMany mapping. For the record (as well as Customer to Vehicles),

there is one other unidirectional one-to-many relationship in CarServ,

namely, Customer to PaymentMethod. And the reason that both of these

relationships are unidirectional is because the back reference is to an

interface: VehicleOwner and PaymentMethodOwner, respectively.

Surely mapping to an interface rather than a class doesn’t make much

difference, does it? Er, yes, it does, so let’s see how.

Unidirectional Many-to-One Relationships Using Interfaces

One of the most obvious mismatches between relational databases and

object orientation is the former’s lack of support for polymorphism.

As we’ve seen, we can adequately map class inheritance hierarchies

such as Vehicle or PaymentMethod. Things get rather muddier when we

consider interface inheritance, such as a Customer implementing Vehi-

cleOwner. Recall that the reason we added the VehicleOwner abstraction

in Chapter 11, Keeping the Model Maintainable, on page 206 was (as the

chapter title said) to keep the model maintainable by decoupling. This

allows us to polymorphically substitute other implementors of Vehicle-

Owner. But these other implementations need not be in the Customer

class hierarchy.

What we need is a means to reference any arbitrary object. At the time

of writing, this isn’t supported by the JPA specification, but we can

still accomplish what we want using Hibernate’s own @Any annotation,

along with @Column, @AnyMetaDef, @MetaValue, and @JoinColumn.

So, we map the Vehicle to VehicleOwner relationship as follows:

Download chapter16/Vehicle-owner.java

@Any(metaColumn=@Column(name="owner_type", length=3),

fetch=FetchType.LAZY)

@AnyMetaDef(

idType="long",

metaType="string",

metaValues={

@MetaValue(targetEntity=Customer.class, value="CUS")

}

)

@JoinColumn(name="owner_id")

public VehicleOwner getOwner() { ... }

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Vehicle-owner.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=313

PORTING OVER REPOSITORIES 314

This, admittedly, is not the prettiest set of annotations you ever saw,

but here’s what it does: first, in the Vehicle table, the @Any annota-

tion will create the owner_type column, and the @JoinColumn will create

the owner_id column. As specified by the @AnyMetaDef annotation, the

owner_type will store the identifier to represent the referenced class,

namely, CUS for Customer. The owner_id will store the id of the refer-

enced Customer. If we had other implementations of VehicleOwner, then

they would be listed as additional @MetaValues.

A couple of points. First, although strictly the CUS identifier does not

need to be the same as the @DiscriminatorValue annotation we added ear-

lier, it’d be pretty silly not to keep them in sync. Second, mapping using

@Any requires that any implementing class is identified by a single Long

property. This is the primary reason why JPA Objects only supports @Id

properties and not any of the more esoteric ways of identifying objects.

There is one further @Any mapping in CarServ, from PaymentMethod

to PaymentMethodOwner (coincidentally also implemented by Customer).

Although we don’t have any examples in CarServ, it is also possible to

map to collections of interfaces using @ManyToAny.

We now have all the classes mapped over, but there is still the matter

of the repository implementations.

16.5 Porting over Repositories

Repositories were one of the first things we covered in Chapter 2, Iden-

tifying the Domain Concepts, on page 41, and we’ve been pretty much

letting them get on with their job ever since. However, although the

existing implementations will work against the JPA object store, they

won’t perform well in a production environment; we must port them

over.

The AbstractFactoryAndRepository convenience superclass provides the

three main methods to search for objects: allMatches(), firstMatch(), and

uniqueMatch(). Each of these has the same four overloads. For example,

the overloaded versions of allMatches() are as follows:

• allMatches(final Class<T> ofType, final Filter<T> filter)

• allMatches(final Class<T> ofType, final String title)

• allMatches(final Class<T> ofType, final T pattern)

• allMatches(final Query<T> query)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=314

PORTING OVER REPOSITORIES 315

Joe Asks. . .

Don’t the Annotations for Interface Relationships Create
Dependencies Between Classes?

Hmmm, I was hoping you wouldn’t ask that! Yes, because we
must list the concrete implementations of classes when map-
ping an interface relationship, we do in effect re-create a bidi-
rectional dependency between the modules, in part undoing
the good work of Chapter 11, Keeping the Model Maintain-
able, on page 206.

There are some solutions to this. The first is simple—don’t worry
about it, and if using a tool to visualize dependencies, then use
its filtering mechanisms if it has them to ignore dependencies
arising only from annotations.

An alternative is to push the troublesome annotations into sub-
classes, all the way into the application package if neces-
sary (see Section 11.7, An Application Architecture Blueprint ,
on page 225). Such subclasses effectively provide a binding
between the application’s modules.

A third alternative (though not supported by JPA Objects at the
time of writing) is to remove the annotations and instead use
XML to configure the relationships.

All object store implementations are expected to support the first three

of these (so the simple stuff is always supported), but not necessarily

efficiently. In CarServ, we’ve exclusively used the first of these over-

loads (passing in a Filter<T>), so it should still work, but for the JPA

object store, the database query will retrieve all instances of the class,

and then the instances will be filtered in Java code. Instead, we want

the RDBMS to do the filtering for us and only return the matching

instances.

To accomplish this, we should use the last of the overloads and pass

in a Query<T> object. The implementation of a Query<T> is dependent on

the object store, and some, like the in-memory object store and the XML

object store, don’t support it at all. For the JPA object store, though, it

is supported and equates to the queries defined using the JPA @Named-

Query annotation. The implementation we use is a convenience one pro-

vided in the Naked Objects applib, namely, QueryDefault.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=315

PORTING OVER REPOSITORIES 316

For example, let’s look at EmployeeRepository’s me() action. First we

annotate the returned entity (Employee) with the @NamedQuery:

Download chapter16/Employee-NamedQuery.java

@NamedQueries({

@NamedQuery(

name="findEmployeeByUserId",

query="from Employee where userIdName=:userId"),

})

@Entity

public class Employee { ... }

Then, in EmployeeRepositoryJpa, we instantiate a QueryDefault object

(specifying the query name and a vararg list of parameter name/argu-

ment pairs) and pass it into allMatches():

Download chapter16/EmployeeRepositoryJpa-me.java

public Employee me() {

final String currentUserId = getContainer().getUser().getName();

return firstMatch(

QueryDefault.create(

Employee.class,

"findEmployeeByUserId",

"userId", currentUserId));

}

It’d perhaps seem more logical to have the @NamedQuery definitions on

the repository rather than on the returned entity, but that doesn’t work

because Hibernate knows only about the entities, not the repositories.

The CustomerRepositoryJpa’s implementation for finding Customers by

name is similar. First, here’s the @NamedQuery, annotated on Customer:

Download chapter16/Customer-NamedQuery.java

@NamedQueries({

@NamedQuery(

name="findCustomersByName",

query="from Customer " +

"where person.name.firstName=:firstName " +

"and person.name.lastName=:lastName")

})

@Entity

public class Customer { ... }

Note the use of the JPA Query Language (JPA QL) to walk the graph to

the Customer’s Person’s Name.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/Employee-NamedQuery.java
http://media.pragprog.com/titles/dhnako/code/chapter16/EmployeeRepositoryJpa-me.java
http://media.pragprog.com/titles/dhnako/code/chapter16/Customer-NamedQuery.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=316

DEPLOYING AND RUNNING THE APPLICATION 317

Next, here’s the action method:

Download chapter16/CustomerRepositoryJpa-findByName.java

public List<Customer> findByName(

final String lastName,

final String firstName) {

return allMatches(

QueryDefault.create(

Customer.class,

"findCustomersByName",

"firstName", firstName,

"lastName", lastName));

}

The rest of the repository methods are similar.

There’s one final modification that’s also been made to the repositories.

If you look in CustomerApplicationRepositoryJpa, you’ll see a set of do-

nothing actions like this one:

Download chapter16/CustomerApplicationRepositoryJpa-registerEntity.java

@Hidden

public void registerEntity(Cash cash) {}

The JPA object store works by walking the graph of classes and inter-

faces from the registered repositories outward. All classes that are

found are then mapped with Hibernate. For any classes that wouldn’t

otherwise be discoverable—usually subclasses—we use these dummy

hidden actions to ensure that all classes get mapped.

That completes our run-through of the steps taken to integrate CarServ

using the JPA object store. All we need to do now is set up a database,

and then we should be able to run our application end to end.

16.6 Deploying and Running the Application

Before we can run the application, we need a database.

Creating the Database

If you already have a database set up, know its JDBC URL, and have

a JDBC driver for it, then by all means use that. Otherwise, though,

we need to install a database server. There are a number of very good

open source relational databases around, and the one I’ve chosen to use

is PostgreSQL.2 It’s cross-platform, is easy to set up, has Java JDBC

2. http://www.postgresql.org

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter16/CustomerRepositoryJpa-findByName.java
http://media.pragprog.com/titles/dhnako/code/chapter16/CustomerApplicationRepositoryJpa-registerEntity.java
http://www.postgresql.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=317

DEPLOYING AND RUNNING THE APPLICATION 318

database drivers, and comes with a nice GUI administration tool so we

can see what’s going on.

So, go to the PostgreSQL website, and download the prebuilt binary

install (I selected PostgreSQL 8.3.7) for your operating system. Do the

install, remembering the password for the postgres superuser.

Once installed, run the PgAdmin III GUI admin tool. The RDBMS server

should already be running; right-click Connect, and provide the pass-

word for the postgres administrator.

We could leave it at that, but it’s bad practice to use superuser accounts

and built-in databases. So, let’s create our own login and databases:

1. On the top-level PostgreSQL server node, right-click and select

New Object > New Login Role.

2. In the resultant dialog box, enter a role name of carserv and a

password of carserv also. Hit OK.

3. Right-click the Databases node (under the server node), and select

New Database.

4. In the resultant dialog box, enter the name carserv_db, and specify

the owner as carserv.

Double-check that everything is set up correctly by logging out and

reconnecting as the new carserv login.

Next we need to configure Naked Objects to use this database.

Configure Naked Objects

To run the application, we need to update various configuration files

in CarServ, which mostly boils down to updating the classpaths and

switching in the new repository implementations.

These steps are spelled out in full in the JPA Objects documentation,

so refer there for the details. In our CarServ download, though, the

necessary changes have already been done:

1. The nakedobjects.properties configuration file has been updated to

reference the JPA implementations in carserv-jpa-service.

2. It has also been updated to disable the bytecode providers.

Internally Naked Objects uses bytecode enhancement to support

lazy loading of object graphs so that it can detect when an object

is modified. When using Hibernate, however, we can (indeed must)

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=318

DEPLOYING AND RUNNING THE APPLICATION 319

switch this off. We do this by updating the nakedobjects.reflector.

class-substitutor and nakedobjects.persistor.object-factory prop-

erty keys.

3. It has also been updated to specify the JPA reflector and persistor.

The persistor property key simply indicates we want to use the JPA

object store. The reflector key meanwhile specifies JPA Objects’

extensions to the Naked Objects programming model, thereby

allowing Naked Objects to pick up and interpret the JPA anno-

tations.

4. The various project pom.xml files have been updated correctly for

versions and dependencies.

5. The hibernate.cfg.xml file (in the carserv-jpa-service project, under

src/main/resources) references the PostgreSQL database called

carserv_db and is accessed with a login of carserv and a password

of carserv.

We’ll set this up in the next section. Or, if you’re using a differ-

ent database, then update the hibernate.cfg.xml configuration file

to point to your database.

Next, we need to build the database schema.

Exporting the Schema

Neither the in-memory object store nor the XML object store required

us to define the structure of the data being persisted. For JPA Objects,

however, we do need to explicitly define the database schema using

create table SQL commands and such.

JPA Objects provides a couple of command-line tools to help us, and

one of them is the SchemaManager. So, locate the dba - SchemaManager

- create only launch configuration and then Run. Inspect your database

using the PgAdmin III GUI admin tool (or equivalent, if using your own

database). We should end up with a database schema, as shown in

Figure 16.1, on the next page.3

3. If you are using PostgreSQL and wondering how I generated the diagram, actually I

cheated. This is taken using Microsoft SQL Server Management Studio, freely available for

Windows SQL Server Express product. Microsoft SQL Server is another excellent product,

but, of course, it isn’t open source and runs only on Windows.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=319

DEPLOYING AND RUNNING THE APPLICATION 320

Figure 16.1: CarServ database schema

That’s our database schema defined, but a database with no data would

be no use! As ever, we use fixtures to populate the object store.

Installing Fixtures

The XML object store figures out on the fly whether any data has been

loaded and installs fixtures only when first run. The JPA object store,

however, takes a rather more conservative approach: it never loads fix-

tures at all. After all, we don’t want to accidentally trash a production

database by loading test data into it.

If we do want to load fixtures, for a system test, say, then we use

another of JPA Objects’ command-line tools, namely, FixtureManager.

So, locate the dba - Fixture Manager launch configuration, and run. Rows

representing the domain objects should be inserted into the database.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=320

DEPLOYING AND RUNNING THE APPLICATION 321

Figure 16.2: CarServ database being updated

Running the Application

Finally, it’s time to run the application, using the exploration#viewer_dnd

or exploration#viewer_html launch configurations. Try various actions

and edits, and verify the database is updated, as shown in Figure 16.2.

In the Console view in Eclipse, you should also be able to see Hibernate

submitting SQL (SELECTs, INSERTs, UPDATEs, and so on).

We’ve now seen all the steps it takes to integrate a domain model into

a relational database. It’s good to know that pretty much any domain

model we come up with can be integrated, but it’s also clear that it does

take some effort.

As discussed earlier in Chapter 13, Developing Domain Applications, on

page 253, this is a good demonstration of why we defer the integration

as late as possible. If we did all this integration work at the same time as

the implementation work, then (being human) we would naturally tend

to resist any requests to change the model (not wanting to go through

the integration phase again).

That said, once the implementation of a particular user story is stabiliz-

ing, we should do its integration (typically lagging an iteration or two).

We shouldn’t—as we have done here—leave it to one big piece of work

at the end.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=321

DEPLOYING AND RUNNING THE APPLICATION 322

Coming Up Next

In the previous chapter, we integrated forward to the presentation layer,

and in this chapter we integrated backward to the persistence layer.

In particular, we saw in detail how to use JPA annotations to map

domain objects to a relational database and saw how to rewrite reposi-

tory implementations to effectively retrieve the objects stored there.

The next chapter is the last of our integration chapters, where we’re

going to integrate—er—sideways. That is, we’re going to look at inte-

grating with other systems using messaging and web services.

Exercises

Of the four inheritance hierarchies in CarServ, we mapped three to SIN-

GLE_TABLE and one to JOINED. Experiment by changing these inheritance

types, and check what is generated when you export the schema.

And then, well, I hardly need say, do I? Get to it—map your own domain

model to a relational database using JPA Objects.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=322

Chapter 17

Integrating Within the Enterprise
Applications don’t live in isolation within an organization. Businesses

are organized into different operational units (purchasing, marketing,

and so on), and each tends to have its own systems to support it.

Even if we wanted to, it’s not feasible to build a single system to take

care of all operational and reporting requirements of an entire enter-

prise. There would be too many stakeholders, for one thing. In any case,

some operational units have very good commercial off-the-shelf (COTS)

systems (general ledger and payroll, for example), so why reinvent the

wheel? We should concentrate our efforts on supporting those domains

that distinguish our business from our competitors.

What that means is we need ways to link our domain application into

the wider IT landscape. In the case of CarServ, we might want to send

messages to a separate invoicing application once a service is complete.

Or, we might want to expose information about customers so that a

marketing application can do a mail-shot.

In this, the last of our integration chapters, we’re going to see how other

systems in our organization can call into a domain application using a

web service, and we’ll learn how our application can interact with other

systems asynchronously using Apache Camel, part of Apache’s suite

of open source enterprise service bus (ESB) products.1 Although this

isn’t a book about enterprise architecture, we’ll also look at some of the

considerations for using one interaction mode over another.

Now, the existing DDD literature has quite a lot to say about integrating

systems, so we would be remiss not to review it.

1. http://camel.apache.org

Prepared exclusively for ALESSANDRO CAROLLO

http://camel.apache.org

BOUNDED CONTEXT PATTERNS 324

Anticorruption

Layer

Customer /

Supplier
Open Host

Service

Single

Context

Published

Language
Shared

Kernel
Conformist

Separate

Ways

Figure 17.1: Bounded context patterns form a spectrum.

17.1 Bounded Context Patterns

Using DDD terminology, our application and each of these external

systems we integrate with is a bounded context. Every bounded context

contains a single domain model, but the idea of a bounded context is to

make explicit the relationship between one system and another.

As well as coining the term bounded context, in his book Eric Evans has

a whole catalog of ways in which systems can interact with each other.

As shown in Figure 17.1, they form a spectrum of cooperation:

• In the separate ways pattern, the two systems don’t interact di-

rectly at all (other than through nonautomated means).

• In the anticorruption layer pattern, one system uses the API of

another but protects itself against changes in that API through

its own thin translation layer. This is good practice for writing

infrastructure services, too, by the way.

• In the conformist pattern, one system conforms to the API of an-

other but does not wrap it. In effect, we adopt the domain model

of the other system (for the parts of the other system whose func-

tionality we need). For example, if interfacing to a COTS system

(which are often strategic investments costing millions and which

have a large API that would be too expensive to wrap), we might

choose to do this.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=324

BOUNDED CONTEXT PATTERNS 325

DDD
in context. . .

Bounded Context

Every model has a context in which it applies, usually corre-
sponding to the wider organizational structure of the business.

An explicit boundary to the model keeps it focused on the
problems it was designed to solve.

• In the customer/supplier pattern, the downstream system con-

sumes information from an upstream system. We make the down-

stream system a stakeholder of that upstream system so that it is

possible to change the upstream system and properly impact the

downstream system.

• In the shared kernel pattern, both systems use a common code-

base or database schema and interact through that.

• In the open host pattern, one system defines a simple, coherent

protocol that exposes its functionality in a standardized way; other

systems are free to use that functionality as required.

• In the published language pattern, the systems interact using a

separately defined language, defined either in-house or possibly

by an industry standards organization.

• In the single context pattern, we combine two systems into a single

codebase and use continuous integration (as discussed in Chap-

ter 13, Developing Domain Applications, on page 253) to ensure

that the codebase stays consistent.

So, if an external system provides a library that exposes its domain

concepts directly to us, then we are being conformist, and the exter-

nal systems’ domain concepts will become part of our domain’s too. If

we choose to wrap that library, we are using an anticorruption layer,

which gives us more control of our domain, but then we also have to

maintain that layer of software. Going the other way, if we can work

with that external system and influence that library, then we have a

customer/supplier relationship.

Many systems not only have an online application but also have a

reporting subsystem and a batch subsystem. We could think of these

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=325

EXPOSING A RESTFUL WEB SERVICE FOR OTHER SYSTEMS 326

subsystems as separate bounded contexts, mapped through a shared

kernel: the common database schema. Or, if we used views and INSTEAD

OF triggers for the online application, then we in effect isolate the online

application from the database schema in another example of an anti-

corruption layer.

We can think of web services (especially in their RESTful flavor that we’ll

see shortly) as examples of the open host service pattern. Although the

format of the data provided is defined and owned by the implementing

system, the web service itself is available for any other system to call.

Meanwhile, messaging buses and their big brothers, ESBs, are one

way of implementing the published language pattern. With an ESB, we

define a set of standardized message types; this is our published lan-

guage. The ESB takes responsibility for routing these messages from

one system to another, if necessary translating both network protocols

and message formats as required.

It’s worth taking the time to decide which pattern to adopt when in-

tegrating systems; using the wrong pattern (consciously or unconsci-

ously) can be an exercise in frustration. If your organization already

has a well-managed ESB, then that may well be the way to go, but as

ever with these things, one shouldn’t adopt an architectural pattern

blindly.

Enough preamble; it’s time to get our fingers dirty.

17.2 Exposing a RESTful Web Service for Other Systems

Suppose we want to let other systems access the functionality in our

application, following the open host service pattern. One way to do this

is using a web service.

Web services have been around for a while now, of course, but we

should be clear that the web services we’ll be exposing are the newer

RESTful style rather than the original SOAP style.

SOAP vs. REST

We can distinguish two main styles of web services:

• The first is a remote procedure call (RPC) style, effectively exposing

a single function, most typically using SOAP. A typical example of

a SOAP-style web service is one to look up a stock price.2

2. There are lots of examples of web services at http://xmethods.net.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://xmethods.net
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=326

EXPOSING A RESTFUL WEB SERVICE FOR OTHER SYSTEMS 327

• The second more recent style is the REpresentational State Trans-

fer, or REST, style of web service. REST web services are in many

ways modeled after websites, exposing a system’s functionality

as a set of resources (in the same way that a website exposes a

set of pages). REST also exploits the HTTP protocol so that these

resources can be manipulated.

With an RPC-based service, the primary concept is that of a function.

This doesn’t map easily onto a DDD approach because it’s not clear

which object the function being invoked belongs to (it ends up being

a facade to the system). In REST, though, the primary concept is a

resource, which maps naturally to the idea of a domain object or a

domain service (repository).

Naked Objects’ own support for REST is provided by Restful Objects,

another sister project. This provides an out-of-the-box RESTful web

service for our domain objects; all that’s needed is to add the RESTful

viewer onto the classpath.3

The latest download of CarServ (chapter17-01) has had this change

made (see the Restful Objects documentation for details). The download

also has a new project, carserv-restful; more on this in a minute.

Running the CarServ Web Service

Using Run > Run Configurations, find the exploration#viewer_restful

launch configuration, and run it. This will start up a Jetty web server

on port 8080.

Now what? Well, the point of this web service is so that systems in

other bounded contexts can interact with our system, CarServ. We have

an example client application to play in the role of the “other” system.

Calling a RESTful Web Service from a Java Client

In the carserv-restful project, there is a small Java class, FindCustomer.

This inherits from a convenience superclass provided in Restful Objects’

own applib, which gives us the ability to submit RESTful web service

calls. We’ll look at its code in a moment.

To try it, though, locate the FindCustomer -n Joe Bloggs launch configu-

ration, and run it. In the console, you should see three different XML

3. Restful Objects and a number of other sister projects are collectively all referenced

from http://www.starobjects.org. The code itself is hosted on SourceForge.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.starobjects.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=327

EXPOSING A RESTFUL WEB SERVICE FOR OTHER SYSTEMS 328

documents being printed, the last of these being the details about the

Joe Bloggs Customer:

Download chapter17/FindCustomer-output.xml

<?xml version="1.0" encoding="UTF-8"?>

<html xml:base="">

<head>

<title>Mr Joe Bloggs</title>

...

</head>

<body id="body">

<div>

... lots more here...

</div>

</body>

</html>

What FindCustomer (in its findCustomer() method) does is make a succes-

sion of calls to the RESTful web service:

1. First we obtain the domain services available, using the get()

method inherited from the convenience superclass.

Download chapter17/FindCustomer.java

Document customersDoc = get(

combine(getHostUri(),"/services"));

prettyPrint(customersDoc);

The URL that we hit, http://localhost:8080/services, is a REST re-

source, specifically one that represents the list of domain services

(that is, repositories) available to us. That inherited get() method

does an HTTP GET to this URL.

We parse the response using XPath to obtain the resource repre-

senting the Customers service:

Download chapter17/FindCustomer.java

String customersServicePath = getAttributeValueElseException(

customersDoc,

"//a[@class='nof-service'][text()='Customers']/@href",

"Unable to find 'Customers' service");

This somewhat complex XPath expression gives us the string

/object/OID:1. OIDs are unique object identifiers that Naked Ob-

jects automatically assigns to all objects and services; this one

identifies the Customers service. We’ll see why the XPath is quite

as complex as it is in the next section, by the way.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/FindCustomer-output.xml
http://media.pragprog.com/titles/dhnako/code/chapter17/FindCustomer.java
http://localhost:8080/services
http://media.pragprog.com/titles/dhnako/code/chapter17/FindCustomer.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=328

EXPOSING A RESTFUL WEB SERVICE FOR OTHER SYSTEMS 329

2. Next, we invoke the findByName() action by using the inherited

post() method against http://localhost:8080/object/OID:1/action/find-

ByName(java.lang.String,java.lang.String):

Download chapter17/FindCustomer.java

Document customerFindByNameDoc = post(

combine(

getHostUri(), customersServicePath,

"/action/findByName(java.lang.String,java.lang.String)"),

"arg0", lastName,

"arg1", firstName);

prettyPrint(customerFindByNameDoc);

This URL is a resource to represent the invocation of an action on

a particular object instance (the CustomerRepository, in fact), and

the post() method performs an HTTP POST. We can use the same

technique to invoke an action on any object. Again, we parse the

output using XPath:

Download chapter17/FindCustomer.java

String customerPath = getAttributeValueElseException(

customerFindByNameDoc,

"//a[@class='nof-action-result']/@href",

"No Customer found");

The string we get (something like “/object/OID:29”) is the OID of

the matching Customer.

3. Finally, we perform a get() on http://localhost:8080/object/OID:29 to

retrieve the resource representing the Customer’s itself:

Download chapter17/FindCustomer.java

Document customerDoc = get(

combine(getHostUri(), customerPath));

prettyPrint(customerDoc);

Most of us are very familiar with the HTTP GET and POST methods;

these are the ones supported by web browsers. However, REST also

specifies the use of the less well-known PUT and DELETE methods.

The following table shows how these four methods map onto domain

objects.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/FindCustomer.java
http://media.pragprog.com/titles/dhnako/code/chapter17/FindCustomer.java
http://localhost:8080/object/OID:29
http://media.pragprog.com/titles/dhnako/code/chapter17/FindCustomer.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=329

EXPOSING A RESTFUL WEB SERVICE FOR OTHER SYSTEMS 330

HTTP

Method

Object Property Collection Action

GET Current

state of

properties

— Retrieve

contents of

collection

—

PUT Persist

object

Sets prop-

erty

Adds object

to collection

—

DELETE Delete

persisted

object

Clears

property

Removes

object from

collection

—

POST — — — Invoke

Locate the ObjectResource interface in Restful Objects’ applib. This

interface isn’t actually used by our FindCustomer client, but the javax.rs

annotations indicate the format of these method calls. For example, the

modifyProperty() method has the following annotations:

Download chapter17/ObjectResource.java

@PUT

@Path("/{oid}/property/{propertyId}")

@Produces({ "application/xhtml+xml", "text/html" })

public String modifyProperty(

@PathParam("oid") final String oidStr,

@PathParam("propertyId") final String propertyId,

@QueryParam("proposedValue") final String proposedValue);

This tells us we can perform an HTTP PUT to a URL such as http://

localhost:8080/OID:123/property/lastName, with a parameter holding the

new proposed value. This should modify the lastName property of the

object with OID of OID:123.

So, we’ve now seen how to call a RESTful web service from an applica-

tion. What we’ve not yet discussed is the data format of the represen-

tations themselves. That brings us to. . .

Using a RESTful Web Service from a Web Browser

As we saw from the FindCustomer application, when we invoke a REST-

ful web service, Restful Objects generates XML that we can parse and

process.

REST doesn’t mandate the format of this XML. In fact, it doesn’t even

mandate that we return XML at all. Indeed, many RESTful web ser-

vices return JavaScript Object Notation (JSON) instead, while others

use bespoke XML defined using XML Schema.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/ObjectResource.java
http://localhost:8080/OID:123/property/lastName
http://localhost:8080/OID:123/property/lastName
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=330

EXPOSING A RESTFUL WEB SERVICE FOR OTHER SYSTEMS 331

However, REST does say that it should be possible to navigate from

one resource to another. So, Restful Objects follows the advice found in

Richardson and Ruby’s excellent book, RESTful Web Services [RR07],

in that it returns XML, but more precisely XHTML, using CSS styles to

define a microlanguage within the XHTML. The complex XPath expres-

sions we saw in FindCustomer rely on this microlanguage to extract the

information that they require.

The big payback comes from the fact that we can actually browse our

RESTful web service using a web browser.4

To see this in action, point your browser at the web service (http://

localhost:8080). As shown in Figure 17.2, on the following page, you

should be able to navigate around, inspect objects, and invoke actions

on those objects.

If you dig into these pages, you’ll see that they also embed a little

JavaScript so that we can perform HTTP PUTs and DELETEs. That’s

because at the time of writing, web browsers do not provide this capa-

bility (it’s planned for HTML 5).

Now we’ve seen how to expose our domain model’s functionality as web

services, let’s flip it over to consider how to use an external system’s

web service.

Calling Web Services from Our Domain Model

We’ve already seen (in Chapter 8, Isolating Infrastructure Services, on

page 140) how our domain model can call external infrastructure ser-

vices. We can use exactly the same approach to call an external web

service. The only real difference is that instead of calling some infras-

tructure API (such as sending email), we’d be calling a business-focused

API (such as checking a customer’s credit rating). Otherwise, though,

there’s not much else to say.

The trouble with using web service calls like this (whether calling or

being called) is that it creates a coupling between the systems involved.

Since the call is synchronous, if the called system is unavailable for

any reason, then the calling system fails. Also—since we are applying

the open host pattern—the calling system must be prepared to use the

protocol of the called system (the format of the URLs and the need to

parse the resultant XHTML).

4. At the time of writing, only Firefox 3.0.x support has been tested.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://localhost:8080
http://localhost:8080
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=331

INTEGRATING USING AN ENTERPRISE SERVICE BUS 332

Figure 17.2: Restful Objects serves up XHTML pages.

We can address both of these problems using asynchronous messag-

ing and introducing a published language. And as mentioned in this

chapter’s introduction, we can achieve both of these objectives using

an ESB.

17.3 Integrating Using an Enterprise Service Bus

Before we wade into the detail, it might be a good idea to quickly review

what an ESB is. Then we can get our fingers dirty again integrating our

domain application.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=332

INTEGRATING USING AN ENTERPRISE SERVICE BUS 333

Originating

System

Figure 17.3: A typical ESB architecture

ESB 101

An ESB works by linking all the systems that need to interact to a com-

mon service (or message) bus. In Figure 17.3, we see the key elements

of a typical ESB deployment.

The ESB message bus typically runs on the network somewhere; under

the covers there is usually a lower-level messaging system (for example,

implementing JMS).

Each system interacts with the message bus through an ESB adapter,

responsible for converting network protocols and transforming mes-

sages into one of the standard message types used by a given business

process. These standard message types are understood by (the adapter

of) every system on the ESB and are sometimes called the enterprise

message model or normalized messages. In other words, the published

language.

In addition, the ESB can provide orchestration, meaning that it will

route a series of messages representing a single business process be-

tween all systems involved in that process. The orchestration imple-

mentation can vary from relatively simple mappings through to full-

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=333

INTEGRATING USING AN ENTERPRISE SERVICE BUS 334

blown execution engines supporting Business Process Execution Lan-

guage (BPEL). In effect, we take the business process implicit in the

interaction of two (or more) systems and externalize it.

For example, in CarServ, the business process of performing a Service

on a Car is also going to require us to invoice the Customer and to replen-

ish any parts that might have been used in that Service. So, when the

customer comes to pick up their car, the CarServ application could send

a message to the ESB with the details of the completed service. The

orchestration module would route this message to a separate invoicing

system, which would then send out the invoice to the customer. At the

same time, the message would be sent to the parts management system

to order replacement parts from the manufacturer.

We’re going to be using Apache Camel to represent our ESB. Camel

isn’t an ESB in itself; instead, it allows us to write adapters to an ESB.

Camel’s adapters are made up of routes, which define how to receive

and process messages. In the context we’re going to use Camel, a route

describes how to read a message from the ESB and/or how to publish a

message to the ESB. In effect, Camel is the bit of an ESB that our code

“touches.” The ESB implementation (the bit that lives on the network)

could be anything; for Camel, an obvious choice would be Apache’s

ServiceMix.5

If you haven’t encountered ESBs before, then please don’t conclude

that this short introduction covers everything there is to say! A good

resource for further study of enterprise integration in general (and that

forms the basis of Camel’s concept of routes) is Gregor Hohpe and

Bobby Wolfe’s Enterprise Integration Patterns [HW04]. But here we have

enough context to carry on.

Calling Our Domain Application from an ESB

ESBs are quite capable of calling web services, so one option for calling

our domain application from an ESB would be to write an ESB adapter

that calls the RESTful web service we used in Section 17.2, Exposing a

RESTful Web Service for Other Systems, on page 326.

However, that would give us two separate Java applications to manage:

the Naked Objects application acting as a server and the ESB adapter

acting as a client. An alternative approach is to embed Naked Objects

5. Apache ServiceMix is an open source ESB hosted at http://servicemix.apache.org. To

integrate ServiceMix and Camel, see http://servicemix.apache.org/servicemix-camel.html.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://servicemix.apache.org
http://servicemix.apache.org/servicemix-camel.html
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=334

INTEGRATING USING AN ENTERPRISE SERVICE BUS 335

Figure 17.4: The example adapter uses directories as a simplified ESB.

and our domain model into some custom ESB adapter code, similar

to the way we embedded Naked Objects into Wicket in Chapter 15,

Integrating with Web Frameworks, on page 281. That way, we’ll just

have a single application to run and won’t need to parse any XML either.

To motivate this section, let’s consider the use case of looking up Cus-

tomer email addresses from CarServ; it’s a bit contrived perhaps, but

it’ll do. In the next download of CarServ (chapter17-02), there’s an

implementation of such an ESB adapter, using Apache Camel. Again, if

you’re not at your computer, all the relevant code snippets are listed in

the following pages.

To keep the demo small, the adapter just processes messages retrieved

from a directory and writes out updated messages to another directory,

as shown in Figure 17.4.

The adapter itself lives in the new carserv-camel-inout project. To run

the demo, copy the files from src/testdata into the messages/in directory.

While you’re at it, take a look at one of the messages:

Download chapter17/message1-in.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<customerMessage>

<firstName>Joe</firstName>

<lastName>Bloggs</lastName>

</customerMessage>

“In real life,” such messages would be much more complex, but this

simple one will do for us. Now run the CamelEsbAdapter launch config-

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/message1-in.xml
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=335

INTEGRATING USING AN ENTERPRISE SERVICE BUS 336

uration. You should see the files in messages/in disappear and new files

appear in messages/out, populated with the email address:

Download chapter17/message1-out.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<customerMessage>

<firstName>Joe</firstName>

<lastName>Bloggs</lastName>

<email>joe@bloggs.com</email>

</customerMessage>

It’s time to look at the code. In CamelEsbAdapter’s bootstrapCamel()

method, we have the following route that tells Camel how to process

the messages:

Download chapter17/CamelEsbAdapter-LookUpEmailRoute.java

private final class LookUpEmailRoute extends RouteBuilder {

@Override

public void configure() throws Exception {

String packageName =

CustomerMessage.class.getPackage().getName();

JaxbDataFormat jaxb = new JaxbDataFormat(packageName);

from("file:messages/in")

.setOutHeader("nakedObjectsSession")

.constant(currentAuthenticationSession())

.convertBodyTo(String.class)

.unmarshal(jaxb)

.process(new LookUpEmailProcessor())

.marshal(jaxb)

.to("file:messages/out");

}

}

Let’s untangle that long chain of method calls:

1. The from() method—inherited from RouteBuilder—tells Camel where

to pick up messages from (the messages/in directory).

2. The setOutHeader() attaches credentials for the LookupEmailProces-

sor later in the chain.

3. The convertBodyTo() and unmarshal() methods convert the XML into

a corresponding Java object.

4. The process() method delegates to the LookupEmailProcessor (more

on this in a moment).

5. The marshal() and to() methods convert the output into XML and

dump to the messages/out output directory.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/message1-out.xml
http://media.pragprog.com/titles/dhnako/code/chapter17/CamelEsbAdapter-LookUpEmailRoute.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=336

INTEGRATING USING AN ENTERPRISE SERVICE BUS 337

It’s a pretty standard technique using JAXB or similar to convert the

XML messages (the published language, remember) to and from corre-

sponding Java objects, and it means the processing can just work with

regular objects rather than fiddling around with XML.6 You’ll find tools

to generate such Java classes from XML schema definitions, so there’s

no need to violate the DRY principle.

The LookUpEmailProcessor is where the actual work is done:

Download chapter17/LookUpEmailProcessor.java

public class LookUpEmailProcessor

extends AbstractNakedObjectsProcessor {

public void doProcess(Exchange exchange) {

Message message = exchange.getIn();

CustomerMessage customerMessage =

(CustomerMessage) message.getBody();

NakedObject customerRepositoryAdapter =

getService("customers");

CustomerRepository customerRepository =

(CustomerRepository)customerRepositoryAdapter.getObject();

List<Customer> customers = customerRepository.findByName(

customerMessage.getFirstName(),

customerMessage.getLastName());

Customer customer = first(customers);

if (customer != null) {

customerMessage.setEmail(customer.getEmailAddress());

}

message.setBody(customerMessage);

exchange.setOut(message);

}

private <T> T first(List<T> list) {

return list.size() > 0? list.get(0): null;

}

}

We first look up the CustomerRepository (the customers service) and then

use information from the inbound CustomerMessage to invoke the find-

ByName() action. Finally, we update the same CustomerMessage and set

it as the outbound message.

Note that this implementation bypassess any business rules that might

be encoded in the domain model. If we wanted our ESB to honor those

6. JAXB is part of Java 6. The reference implementation is hosted at

https://jaxb.dev.java.net/.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/LookUpEmailProcessor.java
https://jaxb.dev.java.net/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=337

INTEGRATING USING AN ENTERPRISE SERVICE BUS 338

Eliminating Overnight Batch Jobs

It has been a good many years since mainframes ruled the
roost, but many systems still have a sizable suite of overnight
batch jobs.

When the batch functionality is also in domain objects, it violate
the DRY principle. And since the batch and the domain model
tend to be implemented with different technologies, it is difficult
to verify they are consistent.

So long as the throughput requirements are low to moderate,
having an ESB offers an alternate architecture. Rather than
batching up lots of work to do overnight, we can perform
this processing continually throughout the online day using the
functionality of the domain model.

There are multiple advantages to this: we keep to the DRY prin-
ciple, resulting in a system that is easier to maintain and modify;
if we have no batch, then we can make the system available
to users for longer, perhaps even 24/7; the information gets pro-
cessed more quickly (there was a time not so long ago when it
would take a week for a check to clear); and finally we can
explore, prototype, and implement the business functionality
exclusively through the domain model.

rules (and I imagine that we would), then we could interact with the

domain model either using the headless viewer approach or through the

Naked Objects metamodel. We used these same techniques when inte-

grating with Wicket; refer to Chapter 15, Integrating with Web Frame-

works, on page 281 if need be.

We could make several other improvements to this code. For a start,

the ESB message bus and adapter should probably interact using a

JMS queue rather than directories.7 The adapter should also be able to

cope with various types of messages by routing each to its own specific

processor. And we would need to use a proper authentication scheme

7. I’m simplifying here. Java Business Integration (JBI) is the Java standard for ESBs,

so our Camel adapter would probably use JBI endpoints to interact; under the covers

this would still probably map to a JMS queue, though. See http://camel.apache.org/jbi.html

for more details.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://camel.apache.org/jbi.html
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=338

INTEGRATING USING AN ENTERPRISE SERVICE BUS 339

(Naked Objects supports pluggable authentication, as we’ll see in Chap-

ter 18, Deploying the Full Runtime, on page 345).

This adapter integrates our domain application when it is being called

from the ESB. But we haven’t yet seen how our application might send

to the ESB. Well, as you might have guessed, sending to an ESB means

writing a service that uses Camel to publish messages onto the bus for

us. Since we’d like these messages to be XML, the main design decision

we have to make is where to do the conversion from the domain objects

into XML. One option is to simply pass domain objects to Camel and let

it do all the work in a custom processor. But an alternative is to let the

Naked Objects framework do some of the XML marshaling for us.

It’s time for a quick digression.

Generating XML Snapshots

Thanks to its metamodel, Naked Objects has the ability to generate

an XML snapshot for any domain object (along with the corresponding

XML schema definition). We can put this to good use in a variety of

integration scenarios, as we’ll soon see.

Download CarServ (chapter17-03), and run the application using the

DnD viewer. Retrieve a Customer; it should have a takeSnapshot() action

(as a submenu). Invoke this action, and as Figure 17.5, on the following

page shows, a web browser should be launched displaying the XML.

The action we’ve invoked is not actually on the Customer class; instead,

it is a contributed action from the new SnapshotService (see Section 9.5,

Contributing Actions from Services, on page 172 for a refresher on con-

tributed actions):

Download chapter17/SnapshotService.java

@Named("Snapshots")

public interface SnapShotService {

public void takeSnapshot(Snapshottable snapshottableObject)

throws ApplicationException;

public void takeSnapshotXsd(Snapshottable snapshottableObject)

throws ApplicationException;

}

We get the action appearing for the Customer class because that class

implements Snapshottable (in the applib). Because Snapshottable is a

marker interface, there is no code we need to write to make any class

be snapshottable; we just implement the interface.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/SnapshotService.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=339

INTEGRATING USING AN ENTERPRISE SERVICE BUS 340

Figure 17.5: Customer objects can be snapshotted.

If you look at Customer, you’ll see it actually implements a subinterface,

SnapshottableWithInclusions. This does specify an additional method to

return a list of XPath-like expressions to include in the snapshot. In the

case of Customer, it returns the string person/name. What that means

is for Naked Objects to not only include details of the Customer but also

the object referenced by the Customer’s person property (a Person) and in

turn the object referenced by the Person’s name property (a Name). You

can see this in the screenshot.

The snapshotting magic is done by the XmlSnapshot class in the Naked

Objects framework, which is wrapped by the SnapshotServiceImpl service:

Download chapter17/SnapshotServiceImpl.java

public void takeSnapshot(Snapshottable snapshottable)

throws ApplicationException {

try {

XmlSnapshot xmlSnapshot = createSnapshot(snapshottable);

viewSnapshot(xmlSnapshot.getXmlDocument());

} catch(Exception ex) {

throw new ApplicationException(ex);

}

}

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/SnapshotServiceImpl.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=340

INTEGRATING USING AN ENTERPRISE SERVICE BUS 341

public void takeSnapshotXsd(Snapshottable snapshottable)

throws ApplicationException {

try {

XmlSnapshot xmlSnapshot = createSnapshot(snapshottable);

viewSnapshot(xmlSnapshot.getXsdDocument());

} catch(Exception ex) {

throw new ApplicationException(ex);

}

}

private XmlSnapshot createSnapshot(Snapshottable snapshottable) {

return XmlSnapshot.create(snapshottable).build();

}

End of digression. Let’s see how we can use this snapshotting capability

with ESBs.

Calling the ESB from our Domain Application

Suppose a Customer pays for a Service using the payUsing() action. What

we’d like to do is publish (a normalized version of) the updated Service

onto the bus, specifying the PaymentMethod details.

Here’s the design, then: we’ll inject a MessagePublisher infrastructure

service into the Service domain object. When the Service is paid, it calls

the MessagePublisher, which snapshots the calling Service to obtain the

XML. Based on the type of message, the MessagePublisher applies XSLT

to normalize the message. For demo purposes, we’ll just dump the nor-

malized messages into a directory.

We have another version of CarServ to download (chapter17-04) with

the changes already made, so let’s try it:

1. Run the exploration#viewer_dnd launch configuration, and navigate

to a Customer with a CreditCard payment method.

2. Navigate to one of the Customer’s (unpaid) Services.

3. Ensure there is a nonzero amount; then use the payUsing() action,

and select the Customer’s CreditCard. Hit OK.

Now look at the messages/service/creditcard directory in the carserv-com-

mandline project; there should be a file there capturing the details of the

updated Service; look inside, and you’ll see it is XML.

Let’s trace the code. The Service’s payUsing() action calls to our Pay-

mentMethod, which calls back to the Service (as a Payable)’s markAsPaid()

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=341

INTEGRATING USING AN ENTERPRISE SERVICE BUS 342

method. This in turn calls modifyPaymentMethod(). The hook for this,

onModifyPaymentMethod(), is where the MessagePublisher is called:

Download chapter17/Service-onModifyPaymentMethod.java

protected void onModifyPaymentMethod(PaymentMethod paymentMethod) {

try {

messagePublisher.publish(this);

} catch (Exception ex) {

throw new ApplicationException(

"Failed to publish Service object onto ESB", ex);

}

}

The implementation of MessagePublisher is MessagePublisherImpl in the

carserv-camel-out project. The bit that matters is the setting up of the

Camel route:

Download chapter17/MessageBrokerImpl-ServiceMessageRoute.java

private final class ServiceMessageRoute extends RouteBuilder {

@Override

public void configure() throws Exception {

from("direct:in")

.choice()

.when().xpath(

"/app:RegularService/app:paymentMethod/app:CreditCard",

regularServiceNamespaces())

.to("xslt:RegularServiceToServiceMessage.xslt")

.to("file:messages/service/creditcard")

.otherwise()

.convertBodyTo(String.class)

.to("file:messages/unknown");

}

}

This accepts the XML snapshot, uses XPath to check that the payment

is indeed for a credit card, and then applies some XSLT to normalize

the message. If the payment is not for a credit card, then it just writes

the file out.

The only thing that’s missing is the XSLT. The structure of the resultant

XML is defined by ServiceMessage.xsd, which also lives in the carserv-

camel-out project in src/main/resources, This schema belongs to our en-

terprise message model, defining the set of normalized messages that

are permitted to be sent across the bus. To translate between the input

XML snapshot and the desired XML standard message, we use XSLT,

which admittedly isn’t everyone’s cup of tea. However, since we have

a schema for both input and output, we can use a graphical mapping

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter17/Service-onModifyPaymentMethod.java
http://media.pragprog.com/titles/dhnako/code/chapter17/MessageBrokerImpl-ServiceMessageRoute.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=342

INTEGRATING USING AN ENTERPRISE SERVICE BUS 343

Figure 17.6: Messages can be normalized using XSLT.

tool.8 In Figure 17.6, we can see a screenshot of such a tool (don’t strain

your eyes trying to read it; my point is that we can wire together XML

schemas with simple drag and drop).

Going back to Camel, I think its Java-fluent API is rather elegant. But

if you prefer to represent routes using other notations, Camel also sup-

ports XML configuration using Spring and an intriguing Scala DSL.

Coming Up Next

In this chapter, we saw how to open up our domain model so that

it can be accessed synchronously through a RESTful interface and

either synchronously or asynchronously using an ESB. We also saw

how the Naked Objects framework is able to provide XML snapshots of

any object (and learned a bit about Apache Camel along the way).

The next chapter is our last. We’re going to be wrapping up the book

by reviewing the different ways to deploy Naked Objects applications,

8. The (commercial) tool shown in Altova MapForce, http://altova.com.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://altova.com
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=343

INTEGRATING USING AN ENTERPRISE SERVICE BUS 344

taking in authentication and authorization. We’ll also review a major

deployment of Naked Objects and look into the future for other initia-

tives that will help make your domain-driven applications that much

easier to develop.

Exercises

Here’s a nice, easy one to start; currently only Customer and Service are

Snapshottable. Add this capability to other classes too. Also explore Snap-

shottableWithInclusions. You might want to add this to your own domain

application too.

Building on this, you could write an AuditService, integrating into an

ESB. This would use snapshotting to capture the current state of any

object before and/or after an action. The MessagePublisher code would be

a good start; you could just remove the XSLT processing and leave the

snapshots in their “raw” form. Snapshots are also useful when creating

communications. A technology to explore here is FDF, used for filling

in PDF forms.

We learned earlier that Restful Objects serves up XHTML, meaning we

can navigate around using a web browser. OK, so it works, but it ain’t

pretty. However, most web browsers provide the ability to perform XSLT

transforms on the client side. So, an interesting (but big) exercise would

be to write some stylesheets to provide your very own web interface to

your Naked Objects application. If applying XSLT on the client side

sounds a little kooky, then alternatively you could apply it in a servlet

filter.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=344

Chapter 18

Deploying the Full Runtime
It’s all very well being able to develop wonderful domain applications,

but eventually our application needs to leave the IDE and enter the big

wide world. In this chapter, we’ll see how to package up our domain

application for deployment in a variety of modes, with authentication

and authorization fully enabled. We’ll also see how to implement cus-

tom security mechanisms to integrate with any existing infrastructure

you might have.

We’re also going to briefly review some of the sister projects available

since these offer alternative deployment options. At the time of writing,

some of these are prerelease, but they offer an idea as to what will

become available.

And finally, we going to wrap up the book by reviewing a major deploy-

ment of Naked Objects and considering once again the strengths and

synergies of DDD and Naked Objects. Before that, though, there’s work

to do.

18.1 Deploying the Application

There are four typical/common options to deploying our domain appli-

cation into a production environment:

• Single-user: A rich-client application running the DnD viewer,

stand-alone against a local single-user database

• Web app: The HTML viewer running within a JEE web application

• Client-server: A rich-client application running the DnD viewer,

connecting to a remote stand-alone server using sockets

• Client-server: A rich-client application running the DnD viewer,

connecting to a remote web application server (that is, using HTTP)

Prepared exclusively for ALESSANDRO CAROLLO

DEPLOYING THE APPLICATION 346

Our focus here is on how Naked Objects is running (that is, as a client

or as a server), rather than which viewer is running. Some of the sister

projects provide alternative viewers, but for the purpose of this discus-

sion, we’ll stick with the DnD and HTML viewers that ship with Naked

Objects.

In each of the various deployment permutations, we specify what Naked

Objects calls the deployment type. The table below summarizes these,

along with the default authentication policy and object store of each:

Deployment Type Authentication Object Store

Exploration LogonFixture if avail-

able; or else a special

exploration user

In-memory

Prototype LogonFixture if avail-

able; or else must log

on

In-memory

Single-user Must log on XML

Client Must log on; authen-

ticated by server

N/A

server-prototype Client must provide

valid user ID

In-memory

Server Client must provide

valid user ID

XML

We’ve already seen the object store being overridden (in Chapter 16,

Integrating with the Database, on page 299); we’ll see the authentica-

tion mechanism changed in Section 18.2, Securing the Application, on

page 354.

For command-line deployments, the deployment type is specified using

the --type flag. In a web application, there is of course no opportunity

to specify a --type flag, so instead we use a <context-param> in the

web.xml file. For example:

Download chapter18/web.xml

<web-app>

...

<context-param>

<param-name>deploymentType</param-name>

<param-value>SERVER-PROTOTYPE</param-value>

</context-param>

...

</web-app>

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/web.xml
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=346

DEPLOYING THE APPLICATION 347

With that preamble over with, let’s start by deploying our application

for use in stand-alone mode by a single user.

Single-User Deployment

Suppose we’ve written ourselves a rinky-dink application for personal

use to be used with the DnD viewer. It will probably be using the XML

object store, or we could use the JPA object store configured to refer-

ence a JDBC database running in-process mode.1 We’d hardly want to

boot up an IDE to run the app; instead, we want to start it from a batch

file or JAR file.

We can use Maven to do this packaging for us, and in fact the Naked

Objects Maven archetype that we ran way back when already included

the necessary configuration and supporting files for us.

So, download the latest version of CarServ (chapter18-01), which has

been configured to be deployed as a single-user application. We will use

the Apache Derby database here, so it has the following changes:

• The pom.xmls have been updated to reference the Derby JARs.

• The hibernate.cfg.xml specifies an embedded Derby database:

Download chapter18/single-user/hibernate.cfg.xml

<hibernate-configuration>

<session-factory>

...

<property name="connection.driver_class">

org.apache.derby.jdbc.EmbeddedDriver

</property>

<property name="connection.username">sa</property>

<property name="connection.password"></property>

<property name="connection.url">

jdbc:derby:carservDB;create=true

</property>

<property name="dialect">

org.hibernate.dialect.DerbyDialect

</property>

...

</session-factory>

</hibernate-configuration>

1. For example, see http://db.apache.org/derby/papers/DerbyTut/embedded_intro.html for

Apache Derby or http://hsqldb.org/doc/guide/ch01.html#N101A8 for HSQLDB.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/single-user/hibernate.cfg.xml
http://db.apache.org/derby/papers/DerbyTut/embedded_intro.html
http://hsqldb.org/doc/guide/ch01.html#N101A8
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=347

DEPLOYING THE APPLICATION 348

Figure 18.1: Running as a client requires logging in.

• The SchemaManager and FixtureManager tools that we used in

Chapter 16, Integrating with the Database, on page 299 have been

run to create an initial “seed” database.

• The resultant database has been copied to src/main/db in the com-

mandline project. The descriptor.xml file, which specifies what to

package up (in src/main/assembly), has then been updated to in-

clude this database.

• The nakedobjects.bat and nakedobjects.sh batch files that will be

used as the startup (in src/main/assembly/scripts) specify single-user

mode:

Download chapter18/single-user/nakedobjects.bat

set DEPLOYMENT_FLAGS=--type single-user --viewer dnd

To package up the application, we just need to run mvn clean package

in the root project. If we now look in the commandline/target directory;

there should be a ZIP file that contains our code, dependencies, and

the seed database.

Let’s test this deployment. Copy this ZIP file to a new directory, and

unzip. You should then be able to start CarServ using nakedobjects.bat

or nakedobjects.sh.

Because the application is no longer running in exploration or pro-

totype mode, we’ll be prompted with a login dialog box, as shown in

Figure 18.1. As we’ve done in previous chapters, we can log in using a

username of sven and a password of pass.

If you don’t want to have to log in, you can add the --user and --password

flags to the nakedobjects.bat/nakedobjects.sh batch file.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/single-user/nakedobjects.bat
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=348

DEPLOYING THE APPLICATION 349

Let’s now move onto a slightly more involved scenario, that of the web

app deployment.

Web App Deployment

Thus far, we’ve been running the HTML viewer in an embedded web

server, but for deployment what we want is a standard WAR file. Again,

we can get Maven to do the heavy lifting.

When we first ran our Maven archetype for CarServ back in Chapter 2,

Identifying the Domain Concepts, on page 41, you might remember there

was a carserv-webapp project created. We’ve been ignoring it so far, but

now it’s time to put it to use. This webapp project contains a web.xml

file that is preconfigured to run the HTML viewer. If you look inside the

web.xml file, you’ll see it sets up the following:

• The NakedObjectsWebAppBootstrapper servlet context listener,

which bootstraps Naked Objects

• The LogonServlet, ControllerServlet, and ResourceServlet servlets

The first of these displays the initial login, the controller manages

the application state, and the resource servlet serves up any static

content such as CSS files and images.

• The NakedObjectsSessionFilter filter, which sets up a Naked Objects

session if the user is authenticated, or redirects to the LogonServlet

otherwise

• The StaticContentFilter filter, which decorates any static content

with the HTTP headers so that they are cached by the browser

The idea is that you can add other servlets or filters in here as need be,

and indeed we’ll be doing this when we look at client-server remoting

shortly.

For now, though, we need to adjust for the fact that Naked Objects

is going to boot from the webapp project instead of the commandline

project. So, the contents of the commandline project’s config directory

need copying into the webapp project’s equivalent src/main/webapp/

WEB-INF directory. The viewer_html.properties (which holds configuration

settings specific to the HTML viewer) should be renamed web.properties

(its equivalent name when running as a web app). Finally, the comman-

dline project’s static web content (in src/main/webapp)—namely, the CSS

files and the images—needs copying to the webapp project’s src/main/

webapp directory.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=349

DEPLOYING THE APPLICATION 350

Download the next version of CarServ (chapter18-02) where these

changes have been made. Like the previous version, this one also uses

an embedded database, although this time configured with a connec-

tion pool (in its hibernate.cfg.xml) to support multiple concurrent users.

It’d be easy enough to switch this to a regular client-server (instead of

embedded) JDBC connection if you wanted.

The packaging process is again the same: run mvn clean package in

the root project. This time, there should be a WAR file in the webapp

project’s target directory.

Unlike the previous deployment, this time we haven’t bundled up the

database in the packaging. Instead, the database is specified using an

absolute path name for the database, namely, /tmp/carservDB. As we’ll

see in just a moment, there are several ways we can run our web app, so

an absolute directory saves us trying to figure out where the “current”

directory is in each case.

This does mean, though, that we need to set up this database sep-

arately. Therefore, use the SchemaManager and FixtureManager to cre-

ate and populate the database (or use the copy in the chapter18-01

download), and copy the carservDB directory to c:\tmp (Windows) or /tmp

(Linux or Mac).

We can run the web app in one of several ways:

• Deploy to an external servlet container.

For example, in Tomcat this means copying the WAR file to its

webapp directory.

• From the command line, get Maven to run using a goal of jetty:run.

Or, in Eclipse, you can create a run configuration of a Maven build

(as we did with Wicket in Chapter 15, Integrating with Web Frame-

works, on page 281).

• If using the enterprise edition of Eclipse, then you can use its Web

Tools Platform (WTP) functionality to run the application as a web

application.

Select the webapp project, then use Run > Run As > Run on

Server, and then point to an instance of any JEE container.

• Run the application as a Naked Objects WebServer.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=350

DEPLOYING THE APPLICATION 351

This differs from using the HTML viewer in the commandline proj-

ect because the WebServer simply runs whatever it finds in the

web.xml file. To use this option, temporarily comment back in the

webserver module in the webapp project’s pom.xml, and then use

the launch configurations in the same project’s ide/eclipse/launch.

When you deploy for real, you’ll want to use the first of these options

(copying the WAR file to an external runtime). Any of the other options

are useful for checking that the web.xml file is correct, though.

Our next option goes back to using the DnD viewer, but this time client-

server.

Client-Server Remoting Over Sockets

Naked Objects comes with the ability to run in client-server mode. The

client application runs the DnD viewer and (just as in single-user mode)

holds a cache of objects that the user has searched for or navigated to.

However, when we invoke an action on these objects, the action is not

performed locally. Instead, the request is sent to a remote server, which

retrieves the (latest version of the) object from the database and invokes

the action there. Any changes are then sent back to the client.

Before we deploy the application in this mode, let’s just see the applica-

tion running in client-server mode from within Eclipse (chapter18-03):

1. In the commandline project, first start up the server using the

server#viewer_encoding-sockets.launch launch configuration.

2. Also, in the commandline project, then start up the client using the

client#viewer_dnd#connector_encoding-sockets launch.

As for single-user mode, we’ll need to log in first (user sven, password

pass). It probably won’t immediately be obvious that we’re running in

client-server mode, so if you’re curious to see the messages being sent

between the client and server, add the following to the logging.properties

file:

Download chapter18/sockets/logging.properties

log4j.logger.org.nakedobjects.metamodel.commons.encoding.FieldType=DEBUG

Restart the application, and in Eclipse’s console view (as shown in Fig-

ure 18.2, on the next page) you should see the message requests and

their responses.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/sockets/logging.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=351

DEPLOYING THE APPLICATION 352

Figure 18.2: Messages flow between client and server.

OK, but what we want to do is to deploy the application as a client or as

a server. Since both client and server are run from the command line,

all we need is to assemble the application to run with different com-

mand options. In the commandline project, you’ll see the original naked-

objects.bat/sh batch files has been replaced by equivalent client.bat/sh

and server.bat/sh files. This is the line that is different for the client:

Download chapter18/sockets/client.bat

set DEPLOYMENT_FLAGS=--type client --viewer dnd \

--connector encoding-sockets

while for the server the line that is different is as follows:

Download chapter18/sockets/server.bat

set DEPLOYMENT_FLAGS=--type server --viewer encoding-sockets

Before we package up the application, also specify the hostname or

IP address of the host that will run the server. This is specified in

config/transport-sockets.properties; the original version just specifies local-

host:

Download chapter18/sockets/transport-sockets.properties

nakedobjects.transport.sockets.host = localhost

nakedobjects.transport.sockets.port = 9580

The location of the database for this deployment is again absolute (in

/tmp/carservDB), so if necessary, set it up in the same way as previously.

Then, we just need to assemble the ZIP file, using mvn clean package

once more. The ZIP file is in the commandline project’s target directory

and can then be unzipped on both client and server and run using the

appropriate batch file. Obviously, make sure you run the server on the

correct host, or the client won’t find it!

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/sockets/client.bat
http://media.pragprog.com/titles/dhnako/code/chapter18/sockets/server.bat
http://media.pragprog.com/titles/dhnako/code/chapter18/sockets/transport-sockets.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=352

DEPLOYING THE APPLICATION 353

Let’s move onto our most involved deployment, client-server over HTTP.

Client-Server Remoting Over HTTP

Although client-server over sockets works well enough, in production

we probably would not want to run a server from the command line.

Instead, we’d want it deployed to some managed infrastructure soft-

ware. We might also want access to the server through firewalls.

So, Naked Objects lets us run the server side of our application within a

web app. The client performs an HTTP POST to a single servlet, namely,

EncodingOverHttpRemotingServlet, passing the request as a serialized byte

stream. The servlet then delegates to the rest of the Naked Objects

runtime in the usual manner and returns the result as another bunch

of bytes. So, this isn’t a servlet that supports HTML, but it does let us

do what we want—to deploy the server within a managed environment.

Again, let’s start by running client-server within Eclipse (chapter18-

04). In the commandline project, first start up the server using the

server#viewer_encoding-http.launch launch configuration; this bootstraps

Naked Objects and its servlet in an embedded web server. Then, start

up the client using the client#viewer_dnd#connector_encoding-http launch

config. It should then work as before.

To deploy the server side of this application, we use the webapp project

that we previously used to package the HTML viewer. The web.xml has

been updated with the single entry for EncodingOverHttpRemotingServlet

entries, with the HTML viewer’s servlets removed:

Download chapter18/http/web.xml

<web-app>

...

<servlet>

<servlet-name>EncodingOverHttpRemotingServlet</servlet-name>

<servlet-class>

org.nakedobjects.plugins.remoting.http.EncodingOverHttpRemotingServlet

</servlet-class>

</servlet>

...

<servlet-mapping>

<servlet-name>RemotingServlet</servlet-name>

<url-pattern>/remoting.svc</url-pattern>

</servlet-mapping>

...

</web-app>

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/http/web.xml
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=353

SECURING THE APPLICATION 354

Likewise, the commandline project has been updated with the naked-

objects.bat/sh batch files renamed to client.bat/sh:

Download chapter18/http/client.bat

set DEPLOYMENT_FLAGS=--type client --connector encoding-http

Before we package up the application, we should also change the URL

to point to the location where the remoting servlet will be deployed. This

lives in the config/transport-http.properties file:

Download chapter18/http/transport-http.properties

nakedobjects.transport.http.url = http://localhost:8080/remoting.svc

Packaging the application up is once more just a matter of running mvn

clean package. The server WAR will be in the webapp project’s target

directory, and the client’s ZIP will be in the commandline project’s target

directory. Use them the same as before.

Let’s now turn to the topic of securing the application.

18.2 Securing the Application

We’re going to focus on the two main aspects of security here: authen-

tication (who are you?) and authorization (what can you do?). Let’s

look at Naked Objects’ (purposefully simple) default implementations

for each; then we’ll talk about alternatives.

Authentication

As we have seen, the default implementation for authentication just

reads logins from the passwords file. This resides in the config directory

if running from the command line (stand-alone or server) or in the WEB-

INF directory if running within a web app. The format of this file is as

follows:

Download chapter18/authentication/passwords

tom:p4ssw0rd:user_role

dick:s3cr3t:oper_role

harry:0bv10us:user_role|supervisor_role

This sets up three users, tom, dick, and harry. They have their own

respective passwords and are in different roles.

The class that implements this logic is FileAuthenticator, which is created

in turn by the FileAuthenticationManagerInstaller. These “installers” act as

component factories, with the InstallerLookupDefault class acting as a sort

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/http/client.bat
http://media.pragprog.com/titles/dhnako/code/chapter18/http/transport-http.properties
http://media.pragprog.com/titles/dhnako/code/chapter18/authentication/passwords
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=354

SECURING THE APPLICATION 355

Other Security Concerns

We’ve only focused here on authentication and authorization,
but of course there’s a lot more involved in securing an enter-
prise application.

You’ll probably want to introduce auditing (“what did you
do?”) somewhere in the mix; the database is an obvious place
to implement this.

For client-server deployment, we should also think about net-
work encryption (“no, you can’t look”); otherwise, passwords
will be sent around in plain text. The easiest way to do this is to
use HTTP remoting and then deploy the remoting servlet using
SSL (that is, using a URL starting with https://).

For client-side deployments, you’ll also want to ensure that the
configuration files are read-only for the end user so that they
cannot disable security. You might also want to consider pack-
aging up the application as a single signed JAR set up so that
the configuration files are read only from the classpath rather
than from files in directories.

of factory of factories. If you were to look at the InstallerLookupDefault’s

authenticationManagerInstaller() method, you’d see this:

Download chapter18/InstallerLookupDefault.java

public AuthenticationManagerInstaller

authenticationManagerInstaller(String requested) {

return getInstaller(

AuthenticationManagerInstaller.class, requested,

SystemConstants.AUTHENTICATION_INSTALLER_KEY,

SystemConstants.AUTHENTICATION_DEFAULT);

}

This attempts to look up the nakedobjects.authentication property key

from the nakedobjects.properties file and falls back to the default value file

otherwise. The value is then used to look up the implementation from

the installer-registry.properties file part of the Naked Objects runtime JAR,

namely, the FileAuthenticationManagerInstaller mentioned earlier.

That takes care of configuring the default file-based authentication.

We will look at alternatives in a minute, but for now let us move onto

authorization.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/InstallerLookupDefault.java
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=355

SECURING THE APPLICATION 356

Authorization

Naked Objects supports authorization at two levels—whether a class

member (property, collection, or action) is visible and whether it is

usable. Out of the box, though, authorization is disabled (even in client

or server deployment types); whereas a default authenticator can al-

ways be provided, authorization is specific to an application. To enable

authorization, we need to uncomment the following in the nakedobjects.

properties file:

Download chapter18/authorization/nakedobjects.properties

nakedobjects.reflector.facets.include=\

org.nakedobjects.runtime.authorization.standard.\

AuthorizationFacetFactoryImpl

nakedobjects.authorization.learn=true

The first key enables authorization, while the second puts the autho-

rization manager into a special mode so that it can “learn” about the

protected resources and therefore help us create our allow configuration

file.

It’s probably easiest to see this by doing. Start up CarServ, logging in

with a user who has at least one role (look in the passwords file men-

tioned earlier). You should be able to use the application as normal.

Then take a look at the allow configuration file. There will be an entry

in the file for the class member accessed, for example:

Download chapter18/authorization/allow

com.pragprog.dhnako.carserv.dom.customer.Customer#notes:role1

com.pragprog.dhnako.carserv.dom.customer.Customer#vehicles:role1

com.pragprog.dhnako.carserv.dom.customer.Customer#since:role1

com.pragprog.dhnako.carserv.dom.customer.Customer#\

newVehicle(com.pragprog.dhnako.carserv.dom.vehicle.Model):role1

...

com.pragprog.dhnako.carserv.dom.vehicle.Model#name:role1

com.pragprog.dhnako.carserv.dom.vehicle.Model#make:role1

com.pragprog.dhnako.carserv.dom.vehicle.Model#vehicleType:role1

...

You can now edit this file by doing the following:

• Using just the class name as a wildcard for all its class members

• Using just the class name and action name as a wildcard for all

overloaded versions of the action

• Specifying multiple roles, in a comma-separated list

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/authorization/nakedobjects.properties
http://media.pragprog.com/titles/dhnako/code/chapter18/authorization/allow
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=356

SECURING THE APPLICATION 357

• Qualifying a permission as visible but not usable using a -ro suffix

(for example, role1-ro) and removing the original unqualified role

name from the list

For example, here’s an updated allow file:

Download chapter18/authorization/allow-updated

com.pragprog.dhnako.carserv.dom.customer.Customer#notes:user_role

com.pragprog.dhnako.carserv.dom.customer.Customer#vehicles:user_role

com.pragprog.dhnako.carserv.dom.customer.Customer#since:admin_role

com.pragprog.dhnako.carserv.dom.customer.Customer#newVehicle:user_role

...

com.pragprog.dhnako.carserv.dom.vehicle.Model:user_role-ro,admin_role

...

Sometimes, though, it’s easier to specify the permissions that users

don’t have rather than the permissions than they do. To do this, in

the allow file, grant permissions to everything, and then in a new dis-

allow file specify the permissions that users don’t have. The format is

the same. You also need to tell Naked Objects about this file in the

nakedobjects.properties file:

Download chapter18/authorization/nakedobjects-blacklist.properties

nakedobjects.authorization.file.blacklist=disallow

The class that implements all the previous is FileAuthorizor, which has

its own installer, FileAuthorizationManagerInstaller.

As mentioned, these default implementations for authentication and

authorization are purposefully simple. However, it is easy to change the

implementation to integrate with whatever security infrastructure your

company uses, so let’s see how.

Alternative Implementations

Rather than administer security on an application-by-application basis,

many organizations prefer to use centralize administration of authen-

tication, certainly, and sometimes authorization too. Typically this is

done using a technology such as Active Directory or LDAP.

Because Naked Object’s security is pluggable, we can replace both the

authenticator and the authorizer with different implementations. For

example, Naked Objects does also ship with an implementation of both

for LDAP.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/authorization/allow-updated
http://media.pragprog.com/titles/dhnako/code/chapter18/authorization/nakedobjects-blacklist.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=357

SECURING THE APPLICATION 358

Deploying Naked Objects = Choosing the Components

As I’m sure you now appreciate, Naked Objects is a
component-based framework, so deployment is really a matter
of choosing and configuring the correct set of components.

The minimum components you need to configure are those for
persistence (the object store), the presentation layer (viewers),
and security. There are a number of other components that
we can customize too, though. For space reasons, we won’t
be covering them here, but if customizing frameworks is your
thang, then see Naked Objects’ own documentation for fur-
ther details, or hit the Web.

To specify LDAP authentication, add the following (changing the LDAP

server as required):

Download chapter18/authentication/nakedobjects-ldap.properties

nakedobjects.authentication=ldap

nakedobjects.authentication.ldap.server=ldap://localhost:10389

nakedobjects.authentication.ldap.dn= dc=nakedobjects, dc=org

The Naked Objects documentation has full details.

Similarly, we can use LDAP for authorization:

Download chapter18/authorization/nakedobjects-ldap.properties

nakedobjects.authorization=ldap

nakedobjects.authorization.ldap.server=ldap://localhost:10389

nakedobjects.authorization.ldap.dn= dc=nakedobjects, dc=org

nakedobjects.authorization.ldap.application.dn= \

cn=expenses, dc=apps, dc=nakedobjects, dc=org

Again, the Naked Objects documentation has full details.

If you aren’t using LDAP, though, it is an easy enough job to implement

your own authenticators and authorizers. Since Naked Objects’ default

implementations are quite simple, they make good starting points on

which to base your own implementation that integrates with whatever

security infrastructure your company uses. You might also find that

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/authentication/nakedobjects-ldap.properties
http://media.pragprog.com/titles/dhnako/code/chapter18/authorization/nakedobjects-ldap.properties
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=358

DEPLOYING THE SISTER PROJECTS 359

existing open source products such as Spring Security or Apache Shiro

can do much of the heavy lifting for you.2

Suppose you’ve now written your own SuperDuperAuthenticator and cor-

responding SuperDuperAuthenticationManagerInstaller. Obviously, you’re

not expected to crack open and recompile Naked Objects with an up-

dated installer-registry.properties. Instead, you can just specify the authen-

ticator in nakedobjects.properties using the fully qualified class name:

Download chapter18/authentication/nakedobjects-superduper.properties

nakedobjects.authentication=\

com.mycompany.auth.SuperDuperAuthenticationManagerInstaller

The process for replacing this authorization with your own implemen-

tation is the same (using the nakedobjects.authorization property key).

So, that’s our application deployed and secured. We’ve focused so far

on deploying the DnD viewer and the HTML viewer, but as has been

mentioned in earlier chapters, several sister projects offer alternative

viewers. Let’s review those now.

18.3 Deploying the Sister Projects

First, a caveat: at the time of writing, some of the following are still

prerelease. Still, open source moves quickly; by the time you read this,

they could well be released.

Restful Objects

We met Restful Objects in Chapter 17, Integrating Within the Enterprise,

on page 323, and saw how it provides an XHTML-based RESTful API

so that client programs can use our domain application through web

services. Since this is just a web app, it can also be deployed as a

WAR file, similar to the HTML viewer and the HTTP remoting servlets

discussed in Section 18.1, Deploying the Application, on page 345.

One thing that Restful Objects does not provide at the time of writing

is any authentication support; there is no built-in way to propagate

the identity of the client application to the RESTful server. This will

undoubtedly be rectified in time.

2. Spring Security (previously called Acegi) is hosted at

http://static.springsource.org/spring-security/site/index.html. Apache Shiro (previously called

JSecurity) is hosted at http://cwiki.apache.org/confluence/display/SHIRO.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/authentication/nakedobjects-superduper.properties
http://static.springsource.org/spring-security/site/index.html
http://cwiki.apache.org/confluence/display/SHIRO
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=359

DEPLOYING THE SISTER PROJECTS 360

Figure 18.3: Scimpi provides customizable HTML views.

Scimpi

Scimpi describes itself as “an ultra-light framework for developing web

applications based on strong domain models.”3 Essentially it provides

a set of XML tags that you can include within your XHTML; these tags

allow domain objects to be easily displayed. It lets the Naked Objects

framework take care of the rest.

As you can see in Figure 18.3, out-of-the-box Scimpi is similar to the

original HTML viewer, providing a generic view for any domain object.

This view is specified using a generic template:

Download chapter18/scimpi/generic/object.shtml

<swf:page-title><swf:title icon="no" /></swf:page-title>

<swf:template file="../style/template.shtml" />

<h2><swf:title /></h2>

<swf:long-form link="_generic.shtml" />

<swf:methods />

3. Scimpi is licensed under the Apache License 2.0 and is hosted at SourceForge. Its

home page is http://www.scimpi.org.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/scimpi/generic/object.shtml
http://www.scimpi.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=360

DEPLOYING THE SISTER PROJECTS 361

<swf:long-form> shows properties and collections for the object, while

<swf:methods> lists the actions available to us.

The clever bit, though, comes through the use of simple naming conven-

tions to identify the HTML page to use to render the object. For example,

a Claim object would use Claim.shtml if available, and it would fall back to

the standard view otherwise. These custom views can include a variety

of more sophisticated tags.

Here’s an example:

Download chapter18/scimpi/Claim/object.shtml

<div id="content">

<h1>Claim</h1>

<h3><swf:title/></h3>

<swf:long-form >

<swf:link name="approver"/>

<swf:exclude name="claimant"/>

</swf:long-form>

<swf:specification always="yes"/>

<div class="form">

<div>

<swf:label field="claimant"/>:

<swf:field field="claimant" icon="false"/>

</div>

<div>

<swf:label field="description"/>:

<swf:field field="description" truncate="16"/>

</div>

<div>

<swf:label field="status"/>:

<swf:field field="status"/>

</div>

</div>

<swf:edit>

<swf:selector field="approver" object="service:claims"

methods="allClaims"/>

</swf:edit>

<swf:action-link object="service:claimants" method="allClaimants"/>

<swf:methods/>

</div>

Because Scimpi is a web app, deployment is done the same way as

the other web apps. Authentication and authorization is done through

Naked Objects; Scimpi really just replaces the HTML viewer.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://media.pragprog.com/titles/dhnako/code/chapter18/scimpi/Claim/object.shtml
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=361

DEPLOYING THE SISTER PROJECTS 362

Figure 18.4: The Rich Client Objects viewer uses familiar idioms.

Rich Client Objects

Like the DnD viewer, the Rich Client Objects viewer is a desktop appli-

cation but uses Eclipse RCP as its base platform.4 This gives a more

familiar UI, as shown in Figure 18.4.

Its user-interaction paradigm is approximately halfway between the

DnD viewer and the HTML viewer. Like the DnD viewer, it supports

drag and drop, with a Shelf view used as a place to hold references tem-

porarily. However, like the HTML viewer, only a single object has focus

in the editor, similar to the way that a developer using the Eclipse IDE

is only ever working on one Java file at a time. The Actions view shows

the methods available for the object whose editor has focus.

One of the key objectives for Rich Client Objects is to allow the viewer to

be extended, using Eclipse extension points. For example, in

4. Rich Client Objects is licensed under Eclipse Public License v1.0 and is hosted on

SourceForge. Its home page is accessed from http://starobjects.org.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://starobjects.org
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=362

DEPLOYING THE SISTER PROJECTS 363

Figure 18.5: Rich Client Objects supports custom views.

Figure 18.5, we can see an Address object displayed in an embedded

Google Maps mashup.

It’s still a bit too early in this project’s development to talk about deploy-

ment. However, I expect at some point that the Naked Objects runtime

will also be made available as an OSGi bundle, meaning that it can eas-

ily integrate into all the existing mechanisms that the Eclipse platform

provides for distributing applications.

Wicket

While not a sister project, we did see in Chapter 15, Integrating with

Web Frameworks, on page 281 that we can integrate Naked Objects

with third-party web frameworks such as Apache Wicket. If you are

taking this route, then at some point you’ll want to package them up

for deployment.

If you go back to that chapter’s versions of CarServ (chapter15-01 and

chapter15-02), you’ll see that the Wicket projects are just regular web

app modules, so you’ll be to package up the WAR file using mvn clean

package.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=363

A CARSERV RETROSPECTIVE 364

Of the various ways to deploy Naked Objects, four of them involve web

apps (HTML viewer, HTTP remoting, Restful Objects, and Scimpi). I

probably don’t need to point this out, but there’s no intrinsic reason

not to run all of these concurrently in a single web app context, thereby

supporting multiple different types of clients concurrently. Moreover,

doing so will give you the benefit that any second-level caching by

object stores will be shared by all clients. The only fiddly part of such a

megadeployment would be ensuring that the various servlet and filter

mappings are compatible with each other.

And with that, it’s about time we started wrapping up this book.

18.4 A CarServ Retrospective

Throughout the book, we’ve used CarServ to illustrate how to develop

domain applications using Naked Objects. Let’s just reflect on what

we’ve learned:

• We have seen how to build a ubiquitous language consisting of

domain objects, where every class (such as Customer and Car) has

meaning to both the domain expert and the developer.

• We learned to push complexity out of entities and into value types

(such as RegistrationNumber), extending the ubiquitous language

further.

• By refactoring and decoupling, we’ve found deeper abstractions

that weren’t immediately obvious (such as Payable and Vehicle-

Owner). We used design patterns to further deepen the design.

• We saw how to test the application from both the domain experts’

perspective using scenario tests and from the developers’ imple-

mentation perspective using developer tests.

• Using injected domain and infrastructure services, we linked our

domain objects into the outside world.

• We saw how to integrate our application with other layers of the

application putting on custom user interfaces on the one hand

and integrating to an RDBMS on the other.

• We learned how to deploy our domain application in multiple

ways, allowing its domain logic to be reused in different contexts.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=364

THE DSFA APPLICATION 365

• And throughout we’ve used standard tools such as Eclipse and

Maven within a productive development environment.

Now you’ve been through the book, I doubt you’ll have much need to

refer to the earlier versions of CarServ. But as you develop your own

domain applications, you might find some of the later versions to be a

useful reference: “How do you go about deploying RESTful web services

again? What was that thing about a headless viewer?”

18.5 The DSFA Application

Many of the ideas and techniques in this book are borne out of a sub-

stantial Naked Objects project that’s been running in Ireland for the last

five years. So, let me give a flavor of what a Naked Objects real-world

application looks like.

The Department of Social and Family Affairs (DSFA) is an Irish govern-

ment department responsible for administering and paying out benefits

such as pensions, child benefits, and about forty other benefits. The

online benefits administration system is an application implemented

using Naked Objects, rolled out to 600+ users in multiple offices around

the country. The system as a whole paying out something like C5bn a

year to claimants.

Development started in 2004, and the system went live in 2006.

Richard Pawson and I wrote the bulk of the common domain object

model (120 classes and about 60,000 lines of code); three others wrote

the main pensions domain object model of comparable size. The scope

of the system is steadily expanding, with a new release each month;

the department intends to eventually migrate all its benefits systems

to run on it. Microsoft’s Team Foundation Server is used for configu-

ration management; Cruise Control is used for continuous integration,

and FitNesse is used for scenario testing. The scenario tests run both

against an in-memory object store and also end to end.

The system runs in client-server mode using the DnD viewer as the

front end. The server side is deployed on a pair of multicore application

servers that act as hot standby to each other; network infrastructure

balances the load over the two servers. The customized remoting mech-

anism invokes SOAP web services.

The application servers in turn talk to two databases. Most of the data

lives on a SQL Server database (about 0.5Tb at the time of writing),

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=365

CLOSING THOUGHTS 366

and there is also a legacy database. Most transactions are local and hit

only the SQL Server database, but where necessary distributed trans-

actions are used. Because of the legacy database, a custom object store

implementation was used. To date, no second-level caching has been

introduced.

Authentication is performed against Active Directory, and authoriza-

tion uses a custom implementation. According to their roles, differ-

ent officers have access to different repositories (icons) and actions;

some specialize in pensions, others in administering child benefit, and

so on. Auditing is performed both in the database level and also at

the domain layer using RecordedActions, which are domain objects that

represent changes. These can optionally be signed for nonrepudiation,

implemented as a secondary password against a certificate server.

In addition to the online system, there is a batch system that performs

bulk processing, such as the generation of the payments. Low-volume

batch jobs are also performed using logic within the domain model.

The system interacts with a number of other systems both within the

department and in other government departments. BizTalk acts as a

messaging bus, in effect defining a published language. Other systems

publish messages onto the bus, which are received and processed by

domain objects. Forms completed on the Web are processed this way,

for example. Conversely, the domain objects can also publish messages

onto the bus; SMS text is sent out in this fashion.

As you read the previous text, I’m sure you’ll have noticed many of the

same areas as we’ve covered in this book. It’s my ongoing involvement

with the DSFA application that has played a large part in scoping what

is in this book: I’d like you to be able to build Naked Objects applica-

tions as substantial and successful as the DSFA’s.5

18.6 Closing Thoughts

Throughout all the preceding chapters we’ve been assiduously learning

the tools, techniques, and practices for developing domain application

using Naked Objects. No doubt by now you’ve started to develop your

own ideas as to how you might put Naked Objects to work to develop

5. Niall Barry, the DSFA’s Directory of Information Systems, stated, “In thirty years of

managing IT projects, I have never been more satisfied [than with the Naked Objects

application].” See http://www.nakedobjects.org/case-study/dsfa-intro.shtml for more details.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://www.nakedobjects.org/case-study/dsfa-intro.shtml
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=366

CLOSING THOUGHTS 367

your next masterpiece. But I’d like to conclude the book with a few

thoughts of my own. As they say in those legalese disclaimers, all views

expressed herein are those of the author!

Naked Objects and DDD

I first learned about Naked Objects at the Object Technology (now SPA)

conference at Oxford in 2002. Richard Pawson, the inventor of the pat-

tern, and Robert Matthews, the chief architect of the framework, were

demonstrating an early version of the framework. Only really suitable

back then for prototyping, it nevertheless caught my imagination. I had

just cowritten a book, Better Software Faster [CH02] on TogetherJ, and

the synergies between the two technologies were immediately obvious;

TogetherJ synchronized the code and UML class diagrams at design

time, while Naked Objects synchronized the code and the user inter-

face at runtime.

A couple of years on, Eric Evans published his classic book, Domain

Driven Design, and that gave another set of synergies to explore.

Although strictly speaking DDD doesn’t require that we use object-

oriented models, it does seem that most people, most of the time, are

applying DDD with the context of OO-based systems. In the Naked

Objects community, we started adopting the DDD terminology and

used it to influence the design of newer versions of the framework. For

example, in Naked Objects 3.0, we replaced static methods on classes

with actions on repositories and services, while Naked Objects 4.0 has

introduced support for value types using the @Value annotation.

Earlier this year (2009), Evans gave a presentation on what he has

learned about DDD since he published his book. One thing he empha-

sized was how essential exploration and experimentation are—to be

prepared to shape and reshape the ubiquitous language, while requir-

ing the creative collaboration of domain experts and software experts.

So (I hope!) by now you’ll agree that with Naked Objects we have a

rich tool set to do this. Whether we skin the domain model later with

a custom UI, being able to rapidly prototype our application is key to

fostering this experimentation.

Strategic Design

Evans also now emphasizes the value of strategic design: recognize that

no substantial system will be perfectly well-designed, so put the effort

into the core domain and not the supporting subdomains.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=367

CLOSING THOUGHTS 368

A great example of a supporting domain is the persistence layer; we

use ORMs such as Hibernate to do the heavy lifting. Indeed, a quote

recently doing the rounds on the blogosphere: “If you’re writing [data-

base] code by hand, then you are stealing from your. . . client.”6

We could say that Naked Objects’ philosophy is that the presentation

layer is also a supporting domain for many enterprise applications, per-

haps especially so for sovereign applications (see Section 13.3, Which

Option to Choose?, on page 258). All other things being equal, we should

spend our efforts improving the design of the core domain, not tweak-

ing font sizes on the user interface (see the sidebar on the next page for

more of a rant on this subject).

Be a Problem Solver. . .

While the objectives of DDD and Naked Objects overlap substantially,

it’s not a perfect intersection. Naked Objects doesn’t have much to

say about non-OO models, for example. Similarly, the DDD ideas of

bounded contexts and context maps (as catalogued in Chapter 17, Inte-

grating Within the Enterprise, on page 323) are very helpful and are

something you can use with or without Naked Objects.

Conversely, Naked Objects isn’t only about domain-driven design. One

of the metaphors that Richard Pawson developed to explain Naked

Objects at the DSFA was in the shape of the game the Incredible

Machine.7

In this game, the player must use objects in order to meet some goal,

which might be something like “help Newton Mouse get to his mouse

hole,” as shown in Figure 18.6, on page 370. To solve the problem,

the game player must move the cheese, connect the pulley, blow up the

balloon, or any of a hundred other different activities. These things have

state, have behavior, have identity. . . they’re objects. But objects are

also what underpin enterprise business systems. What Richard asked

was, “Why can’t business systems be as engaging as the Incredible

Machine game?”

So, this is one of the core Naked Objects philosophies; allow the end

user to be a problem solver, not a mere process follower. One of the most

6. Quotation taken from http://codebetter.com/blogs/jeremy.miller/archive/2008/11/07/how-to-design-your-data-connectivity-

7. This game is also known as Contraptions. It doesn’t appear to be sold anymore, but

if you do an Internet search for Even More Contraptions Demo, you should be able to

download a copy to play with.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://codebetter.com/blogs/jeremy.miller/archive/2008/11/07/how-to-design-your-data-connectivity-strategy.aspx
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=368

CLOSING THOUGHTS 369

The Dangers of Custom UIs

Although the viewers that ship with Naked Objects and its sis-
ter projects are steadily becoming more sophisticated, many
developers will want to put a custom skin on their domain appli-
cations (as we did with Wicket in Chapter 15, Integrating with
Web Frameworks, on page 281).

There’s nothing wrong with that, but—just as we do with the
database—we should defer that step as late as possible. Once
implemented, database schemas and user interfaces tend to
bake in a domain model and make it that much harder to
refactor.

Jumping too prematurely to a custom UI also means that
insights into the domain can get lost. In the main text, I said
not to waste time tweaking font sizes, but we should also ask
why we would want the font size larger in one place in the UI
than another. It presumably isn’t arbitrary, which means there’s
probably some domain knowledge waiting to be discovered.

Another example is in grouping fields together, such as first-
Name, lastName, and title. That user interface group could well
be masking an undiscovered Name domain object.

And the most obvious danger of having a custom-written UI is
that we can very easily start writing business logic directly in the
presentation layer. What starts out as a quick check for a non-
negative number soon mushrooms into a huge chunk of logic
that really should reside on a domain object.

difficult aspects in building any enterprise application is figuring out

where the boundary of the system should lie. Computers are great for

highly repetitive, well-defined tasks but pretty poor at anything that

requires a bit of discretion or good old common sense. And human

beings are just the opposite. Too often, though, enterprise applications

encroach on the human being’s territory, unsuccessfully automating

behavior that should remain in the end users’ heads. Naked Objects

lets us build applications that give the end user the flexibility to interact

with whichever domain objects they need to in order to get the job done.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=369

CLOSING THOUGHTS 370

Figure 18.6: The Incredible Machine was an early metaphor for Naked

Objects.

It’s Not About the Viewers

Naked Objects’ unique selling point is its ability to automatically gen-

erate the user interface for free, so the title of this section might seem

strange. Surely, Naked Objects is all about the viewers?

Well, no, not really. If you were to walk around the project room in Ire-

land where the DSFA application is developed, you won’t hear anyone

talk about the user interface. Instead, the talk relates to the domain

objects for benefits administration: Customers, Schemes, Entitlements,

Addresses. Moreover, the business’s domain experts use these same

terms too. So, what Naked Objects genuinely delivers a ubiquitous

language.

So, for me at least, what Naked Objects is about is the ability to rapidly

develop domain models quickly. Whether they are rendered automati-

cally by Naked Objects or skinned in a custom presentation layer really

is secondary. It’s the rapid development coupled with a ubiquitous lan-

guage that gives the team more time to uncover the subtleties and

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=370
v@v
Text Box
Download at WoweBook.com

CLOSING THOUGHTS 371

nuances in future iterations; moreover, Naked Objects ensures that

domain semantics stay put where they should, in the domain layer.

From a technical perspective, Naked Objects is about the metamodel

as much as the viewers; all of the clever wizardry that Naked Objects

also supports (such as FitNesse and RESTful web services) can only be

accomplished because of this metamodel. The way in which the meta-

model was built was completely rewritten in Naked Objects 4.0, mak-

ing it easy to customize the programming conventions. In this book I’ve

hinted about the capabilities of Naked Objects’ metamodel, but it’s a

rich area to explore.

As a developer, not having to explicitly code the user interface means

that one tends to start to ignore or forget about it. What I find more

unexpected is that in using the application one tends to ignore or for-

get about the user interface too. The connection between presentation

layer and domain objects is so immediate that you forget that you are

seeing a representation of a domain object; instead, it seems that you

are dealing with the actual domain object.

It’s been said (though I can’t find out who said it first) that the best

user interface is no user interface. A VCR that automatically picks up

the time is an improvement on one that requires you to set the time

through some fiddly buttons. In building our enterprise applications,

we can’t get rid of the user interface, but one that becomes invisible

over time is the next best thing.

Coming Up Next

In this chapter, we saw how to package up our domain application to

run either from the command line or as a web app, and we learned how

to configure security and the basis for rolling our own. We also reviewed

some of viewers of the Naked Objects’ sister projects. Finally, we saw

how DDD and Naked Objects intersect—and how they don’t.

This is the final chapter, so what’s coming up next is, well, whatever you

decide. In the five-plus years since Eric Evans wrote his book, domain-

driven design continues to garner interest, and that can only be a good

thing. There are now dedicated tracks at major conferences, and there

has been at least one conference devoted solely to the topic.

Meanwhile, Naked Objects exists on both the Java and .NET platforms,

under the stewardship of Richard Pawson and Robert Matthews’ com-

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=371

CLOSING THOUGHTS 372

pany, Naked Objects Group Ltd. In this book we’ve been using the open

source Java version, so you are free to develop and deploy your appli-

cations as you will. If you use the .NET platform, then (as mentioned

briefly in the preface) there are prototyping and enterprise editions

available.

The Java and .NET versions tend to track each other (they both origi-

nate from the same codebase), so innovations on one tend to get imple-

mented on the other sooner or later. With respect to the open source

version, the following are some of the things on the radar:

• Extending the capabilities of the DnD viewer.

• Ongoing development of Scimpi and Rich Client Objects to provide

alternative extensible viewers for both the Web and the desktop.

• Ongoing development of Restful Objects to include support for

authentication and the JSON protocol.

• Further new RIA viewers, perhaps using Flex, JavaFX, GWT, and

(who knows?) Silverlight. Some of these may exploit the Restful

Objects project.

• Restarting development on the Eclipse-based IDE (mothballed

while I wrote this book!).

• Developing a Maven plug-in to validate domain models at compile

time.

• More built-in support for further value types, such as JSR-310,

JScience, or JodaTime.8

• A user action recorder to allow scenario tests and user guides to

be automatically generated just by using the application.

• The ability to provide auditing at the domain layer (rather than in

the database), such as using an @Audited annotation.

• Support for authenticated actions requiring the presence of some

credentials (for example, using a fingerprint reader) to invoke.

• The ability to contribute properties as well as actions.

8. JSR-310 is a proposed replacement for the JDK’s date and time classes; see

https://jsr-310.dev.java.net. JScience is hosted at http://jscience.org/. JodaTime is hosted at

http://joda-time.sourceforge.net/.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

https://jsr-310.dev.java.net
http://jscience.org/
http://joda-time.sourceforge.net/
http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=372

CLOSING THOUGHTS 373

As project lead of many of the sister projects and a committer to the

core framework, I intend to push forward on as many of the previous

as I have capacity to do, but open source projects live or die first from

their community and second by their contributors. If you’re interested

in helping out on any of the previous (or any of your own ideas, of

course), then I’d love to hear from you.

But otherwise, that’s us just about done. Good luck writing your do-

main applications. Let me know how you get on!

Exercises

Just because it’s the last chapter doesn’t mean there aren’t any exer-

cises, you know!

First up, try bundling your application as a single-user application.

Make sure when you unzip the ZIP file that it runs fine. Then, have a

go bundling it up as a WAR file (remember to copy the configuration

files from the config directory to the src/main/webapp/WEB-INF directory).

Finally, try client-server remoting mode first using sockets and then

over HTTP.

Once you’re done with that, enable authorization. Try the authoriza-

tion’s “learn” mode, and use the entries to try some whitelisting or

blacklisting.

As mentioned in the main text, Naked Objects does actually ship with

an LDAP authenticator and authorizer, so if you have an LDAP server,

then you could have a go at configuring these. Alternatively, you might

want to try implementing your own authenticator and authorizer.

And finally, if you’ve been doing the exercises at the same time, then by

this stage you’ll also have your own domain application. Having written

one, why don’t you go and write another, but this time with the full set

of tools, techniques, and practices under your belt?

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=373

Part IV

Appendixes

Prepared exclusively for ALESSANDRO CAROLLO

Appendix A

Programming Model Cheat Sheet
The Naked Objects programming model is a set of naming conven-

tions and supporting annotations for writing domain-driven applica-

tions. Any application written to these conventions will run on Naked

Objects with any of the standard viewers. The programming model can

also be extended to support your own conventions (though that isn’t

something we cover in this book).

Convenience Superclasses

The applib provides a number of convenience superclasses to inherit

from. It isn’t mandatory to inherit from these, but it does simplify

the code. For further discussion, see Section 14.2, Decoupling from the

Framework, on page 272.

Superclass Description

AbstractDomainObject Any domain object, though usually an

entity.

AbstractFactoryAndRepository Factories and in-memory repository

implementations.

AbstractFixture Fixture for use in prototyping or testing

using the in-memory object store.

AbstractService Any service (superclass of AbstractFacto-

ryAndRepository).

AbstractSpecification As referenced by @MustSatisfy annota-

tion, specifies validation of an object,

object member, or action parameter.

AbstractValueSemanticsProvider As referenced by @Value annotation to

provide value semantics to framework.

Prepared exclusively for ALESSANDRO CAROLLO

APPENDIX A. PROGRAMMING MODEL CHEAT SHEET 376

Annotations Reference

Declarative business rules and other metadata are provided through

annotations. Many of these are discussed in Part I of the book.

Annotation Description

@ActionOrder Order of actions in the UI, comma-separated. Pre-

ferred is @MemberOrder.

@Aggregated Indicates that object is wholly contained within

another. Not currently used in Naked Objects 4.0.

@Bounded The number of instances of a type is fixed and (rela-

tively) small. Typically shown as drop-down lists.

@Debug Action intended for diagnostics or debugging, typi-

cally for use only by support staff. Use Shift +right-

click in DnD viewer; use debugon.app and debu-

goff.app in HTML viewer. See also @Exploration.

@Defaulted Specify a DefaultsProvider to provide a default for

a property when an object is first instantiated.

@Encodeable and @Parseable are similar; may be

implied by @Value.

@DescribedAs A description of a class, class member, or action

parameter. Shown as a tooltip or similar in the UI.

See also @Named, @Plural.

@Disabled Whether class member is usable, based on object’s

persistence. Grayed out in UI if disabled. See also

@Hidden.

@Encodeable How to serialize type for client-server. @Defaulted and

@Parseable are similar; may be implied by @Value.

@EqualByContent Part of defining value semantics. Not used directly in

Naked Objects 4.0. May be implied by @Value.

@Executed In client-server deployments, whether action should

be invoked on the client or server side.

@Exploration Action not intended for production use. Shown in UI

only in exploration mode. See also @Debug.

@Facets Specify arbitrary facets.

@FieldOrder Order of properties and collections in the UI, comma-

separated. Preferred is @MemberOrder.

@Hidden Whether class member is visible in UI, based on

object’s persistence. See also @Disabled.

@Ignore Instructs framework to ignore this method.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=376

APPENDIX A. PROGRAMMING MODEL CHEAT SHEET 377

Annotation Description

@Immutable Object may not be modified, is read-only in UI. May be

implied by @Value.

@Mask Validation mask for string property. See also @RegEx.

@MaxLength Maximum length of string property. Dictates size of

field in UI. See also @TypicalLength.

@MemberOrder Order of class members, either fields or menu items.

Preferred over @ActionOrder and @FieldOrder.

@MultiLine Displays string property as text box rather than field.

@MustSatisfy Validation against a specification.

@Named Override inferred name, used for title or label in UI.

See also @Plural, @DescribedAs.

@NotPersistable Transient instance; no save button in UI.

@NotPersisted Derived property; read-only in UI.

@Optional Property is not mandatory, can be saved when null.

@Parseable Object can be parsed from string, shown as

editable field rather than reference. @Encodeable and

@Parseable are similar; may be implied by @Value.

@Plural Plural form of name if irregular; used in UI for title of

collections. See also @Named, @DescribedAs.

@RegEx Regular expression validation for string property. See

also @Mask.

@TypeOf Type of element held in collection. In UI, may display

a table where otherwise would have been just a list.

@TypicalLength Typical length of a string property. Determines length

of field. See also @MaxLength.

@Value Has value semantics. May also imply @Defaulted,

@Encodeable, @Parseable, @Immutable, and @EqualBy-

Content.

Reserved Methods
A number of method names are effectively reserved but can be used if

annotated with @Ignore.

Method Name Description

title() Current title of domain object.

iconName() Current icon for domain object (do not include file

extension).

validate() Validate entire object, vetoing persisting or update if

invalid.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=377

APPENDIX A. PROGRAMMING MODEL CHEAT SHEET 378

Supporting Method Prefixes

Imperative business rules are implemented using supporting methods

with well-defined prefixes.

Method Prefix Property Collection Action

modifyXxx() Yes No No

clearXxx() Yes No No

addToXxx() No Yes No

removeFromXxx() No Yes No

validateXxx() Yes No Yes

validateAddToXxx() No Yes No

validateRemoveFromXxx() No Yes No

disableXxx() Yes Yes Yes

hideXxx() Yes Yes Yes

defaultXxx() Yes No Deprecated

defaultNXxx() No No Yes

choicesXxx() Yes No Deprecated

choicesNXxx() No No Yes

Life-Cycle Callback Methods

Life-cycle callbacks are hooks into the object life cycle but will be ig-

nored if annotated with @Ignore.

Method Name Description

created() Transient object just instantiated.

persisting() Transient object just about to be persisted (saved) to

object store.

persisted() Object just persisted (saved) to object store (and is

now persistent).

loading() Persisted object reinstantiated and about to be

reloaded from object store.

loaded() Object just reloaded from object store.

updating() Persisted object about to be updated in object store.

updated() Object just updated in object store.

removing() Persisted object about to be removed (deleted) from

object store.

removed() Object just removed (deleted) from object store (and is

now transient).

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=378

Appendix B

Eclipse Templates
These templates are provided with the Naked Objects’ download. Import

them using Window > Preferences > Java > Editor > Templates.

Domain Objects

These templates speed up developing domain objects.

Properties, Collections, and Actions

These templates follow the general pattern of noXYYY, where X is a

(action), c (collection), or p (property) and optionally YYY stands for a

supporting method: cho (choices), def (defaults), val (validation), dis (dis-

abling) or hid (hiding).

Template Description

nop Getter and setter for property, along with outer comment

region.

nopmod modifyXxx() and clearXxx() supporting methods, plus hooks

for any other business logic.

nopcho choicesXxx() supporting method providing choices for prop-

erty.

nopdef defaultXxx() supporting method, providing default for prop-

erty when first created.

nopval validateXxx() supporting method, validating proposed value

for property.

nopdis disableXxx() supporting method, disabling property based

on object’s state.

nophid hideXxx() supporting method, hiding property based on

object’s state.

Prepared exclusively for ALESSANDRO CAROLLO

APPENDIX B. ECLIPSE TEMPLATES 380

Template Description

nocl Getter and setter for collection of type java.util.List, along

with outer comment region.

nocs Getter and setter for collection of type java.util.Set, along

with outer comment region.

nocmod addToXxx()/removeFromXxx() supporting methods, plus

hooks for any other business logic.

nocval validateAddToXxx() and validateRemoveFromXxx() supporting

methods, validating proposed elements to add to or remove

from collection.

nocdis disableXxx() supporting method, disabling collection based

on object’s state.

nochid hideXxx() supporting method, hiding collection based on

object’s state.

Template Description

noa Action, plus comment region.

noacho choicesNXxx() supporting method providing choices for

action’s Nth argument.

noadef defaultNXxx() supporting method, providing default for

action’s Nth argument.

noaval validateXxx() supporting method, validating all action argu-

ments.

noadis disableXxx() supporting method, disabling action based on

object’s state.

noahid hideXxx() supporting method, hiding action based on

object’s state.

Common

These are other commonly used templates for domain objects.

Template Description

noidtitle title() identification method.

noidicon iconName() identification method.

noval validate() object-level validation method.

nod Comment region for all injected dependencies.

nods Setter for injected service.

Bidirectional Relationships

These templates make it easy to convert unidirectional relationships

into bidirectional relationships.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=380

APPENDIX B. ECLIPSE TEMPLATES 381

Template Description

nop-11c modifyXxx()/clearXxx() supporting methods for 1:1 bidirec-

tional relationship; child side. See also nop-11p.

nop-11p modifyXxx()/clearXxx() supporting methods for 1:1 bidirec-

tional relationship; parent side. See also nop-11c.

nop-m1 modifyXxx()/clearXxx() supporting methods for m:1 bidirec-

tional relationship; implicitly child side. See also noc-1m.

noc-1m addToXxx()/removeFromXxx() supporting methods for 1:m

bidirectional relationship; implicitly parent side. See also

nop-m1.

noc-mmp addToXxx()/removeFromXxx() supporting methods for m:m

bidirectional relationship; parent side. See also noc-mmc.

noc-mmc addToXxx()/removeFromXxx() supporting methods for m:m

bidirectional relationship; child side. See also noc-mmp.

Life-Cycle Methods

These templates create callbacks corresponding to the object’s life cycle.

Template Description

nol Comment region for all life-cycle methods.

nolc created() life-cycle method (called immediately post-

creation).

nols saving() and saved() life-cycle methods (called before/after

initially persisting object).

nolu updating() and updated() life-cycle methods (called

before/after updating persisted object).

nold deleting() and deleted() life-cycle methods (called

before/after deleting persisted object).

In-Memory Repository (Also Fixtures)

These templates are useful for in-memory repository implementations

and will also work within fixtures.

Template Description

nosa Search for all instances.

nosafil Search for all instances matching the provided filter.

nosffil Search for first instance matching the provided filter.

nosufil Search for a unique instance matching the provided filter.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=381

APPENDIX B. ECLIPSE TEMPLATES 382

Factory (Also Fixtures)

These factory methods are typically combined with repository imple-

mentations.

Template Description

noft Factory method to create new still-transient instance.

nofp Factory method to create new already-persisted instance.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=382

Appendix C

Bibliography

[Adz09] Gojko Adzic. Bridging the Communication Gap. Neuri, Ltd.,

London, 2009.

[Amb02] Scott Ambler. Agile Modeling: Effective Practices for Extreme

Programming and the Unified Process. John Wiley & Sons,

New York, 2002.

[BK06] Christian Bauer and Gavin King. Java Persistence with

Hibernate. Manning Publications Co., Greenwich, CT, 2006.

[Blo08] Joshua Bloch. Effective Java. Addison Wesley Longman,

Reading, MA, second edition, 2008.

[CH02] Andy Carmichael and Dan Haywood. Better Software Faster.

Prentice Hall PTR, Englewood Cliffs, NJ, 2002.

[CLL99] Peter Coad, Eric Lefebvre, and Jeff De Luca. Java Model-

ing In Color With UML: Enterprise Components and Process.

Prentice Hall, Englewood Cliffs, NJ, 1999.

[Com08] Sonatype Company. Maven: The Definitive Guide. O’Reilly &

Associates, Inc, Sebastopol, CA, 2008.

[DH08] Martijn Dashorst and Eelco Hillenius. Wicket In Action.

Manning Publications Co., Greenwich, CT, 2008.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in

the Heart of Software. Addison-Wesley Professional, Read-

ing, MA, first edition, 2003.

Prepared exclusively for ALESSANDRO CAROLLO

APPENDIX C. BIBLIOGRAPHY 384

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[Fow96] Martin Fowler. Analysis Patterns: Reusable Object Models.

Addison Wesley Longman, Reading, MA, 1996.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architec-

ture. Addison Wesley Longman, Reading, MA, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Hay96] David C. Hay. Data Model Patterns: Conventions of Thought.

Dorset House Publishing, New York, 1996.

[HFR00] Neil Harrison, Brian Foote, and Hans Rohnert. Pattern Lan-

guages of Program Design 4. Addison-Wesley, Reading, MA,

2000.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Hun08] Andy Hunt. Pragmatic Thinking & Learning: Refactor Your

Wetware. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2008.

[HW04] Gregor Hohpe and Bobby Woolf. Enterprise Integration Pat-

terns: Designing, Building, and Deploying Messaging Solu-

tions. Addison Wesley Longman, Reading, MA, 2004.

[Mar02] Robert C. Martin. Agile Software Development, Principles,

Patterns, and Practices. Prentice Hall, Englewood Cliffs, NJ,

2002.

[MC05] Rick Mugridge and Ward Cunningham. Fit for Developing

Software: Framework for Integrated Tests. Prentice Hall PTR,

Englewood Cliffs, NJ, 2005.

[MRB97] Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pat-

tern Languages of Program Design 3. Addison-Wesley Pro-

fessional, Boston, MA, 1997.

[Ode98] James J. Odell. Advanced Object-Oriented Analysis &

Design using UML. Cambridge University Press, Cambridge,

1998.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=384

APPENDIX C. BIBLIOGRAPHY 385

[PM02] Richard Pawson and Robert Matthews. Naked Objects. John

Wiley & Sons, New York, 2002.

[RR07] Leonard Richardson and Sam Ruby. RESTful Web Services.

O’Reilly & Associates, Inc, Sebastopol, CA, 2007.

Report erratum

this copy is (P1.0 printing, December 2009)
Prepared exclusively for ALESSANDRO CAROLLO

http://books.pragprog.com/titles/dhnako/errata/add?pdf_page=385

Index
A
Abstract base, 225

AbstractCarFixture class, 83

modifying, 127

refactoring to use CustomerRepository,

147

AbstractCustomerFixture class, 82, 164

AbstractDomainObject class, 143

getUser(), 89

isValid(), 122

persist(), 97

subclassing from, 48

validate(), 122

AbstractFactoryAndRepository class, 50,

141, 148

allMatches(), 314

firstMatch(), 314

main methods, overloaded versions

of, 314

uniqueMatch(), 314

AbstractFixture class, 74, 81

addFixture(), 92

switchUser(), 87

AbstractService class, 148

AbstractSpecification class

subclassing, 108

AbstractValueSemanticsProvider class, 128

Acceptance tests, 235

Actions

adding finders to repositories, 103

allMatches(), 104

declarative validation, 99

definition of, 96

imperative validation, 98

looking up a Car by its

RegistrationNumber, 103

offering multiple choices and default

methods per action, 101

“owning” relationships, 97

parameters in, 96

validateXxx(), 98

validating action arguments, 98–101

see also Validation

Acyclic dependencies principle (ADP),

209

Adapters, 38

addFixture(), 92

addForm(), 292

addToCars(), 67, 69

Advanced Object-Oriented Analysis &

Design using UML (Odell)

powertypes, 178

Aggregated objects

@Aggregated annotation, 165

aggregates, definition of, 165

@Disabled annotation, 165

no sharing by roots, 164

teasing out the root object into

aggregates, 165

@Aggregated annotation, 165

Agile methodologies, 22

Agile Modeling (Ambler), 262

AliasServices page, 243

allCustomers(), 52, 150

allInstances(), 52, 143

allMatches(), 82, 104, 143, 314

allow configuration file

editing, 356

Ambler, Scott, 262

Anaemic domain models, 166

Analysis model, 24

Analysis Patterns (Fowler), 176

Annotations

@Aggregated, 165

@Any, 313

@AnyMetaDef, 313

applying to properties, 56

@Bounded, 72

Prepared exclusively for ALESSANDRO CAROLLO

ANTICORRUPTION LAYER PATTERN APACHE WICKET

@Column, 310, 313

@Columns, 310

@Configurable, 275

@Debug, 89

@DescribedAs, 48, 56

@Disabled, 110, 117, 119, 165

@DiscriminatorColumn, 307

@DiscriminatorValue, 303

@Embeddable, 303

@Embedded, 310

@Entity, 303

@Exploration, 52, 150, 264

@GeneratedValue, 305

@Hidden, 115, 117, 119, 148, 171,

278, 305

@Id, 304

@Inheritance, 305

interface relationships and creating

dependencies, 315

@JoinColumn, 313

@ManyToOne, 311

@MaxLength, 59

@MemberOrder, 49, 56, 278

@MetaValue, 313

@MultiLine, 57

@MustSatisfy, 119, 127

@Named, 48, 52, 56, 127

@NamedQuery, 315

@NotPersistable, 200

@OneToMany, 311

@Optional, 59, 65, 111, 305

regarding as a specification, 273

@RegEx, 100, 119, 127

@RunWith, 233

searching for annotations on the

getter, 101

@Transient, 307

@Type, 310

@TypeDef, 310

@TypeDefs, 310

@TypicalLength, 57

@Value, 135, 286

@Version, 305

whether to capture UI-specific

details, 58

Anticorruption layer pattern, 324

@Any annotation, 313

@AnyMetaDef annotation, 313

Apache Camel, 323

Apache ServiceMix, 334

bootstrapCamel(), 336

calling a domain application from an

ESB, 334

calling an ESB from a domain

application, 341

CamelEsbAdapter launch

configuration, 336

Enterprise Integration Patterns

(Hohpe and Wolfe), 334

JMS queue, 338

LookUpEmailProcessor class, 337

routes, definition of, 334

writing a custom ESB adapter, 335

writing adapters to an ESB, 334

Apache Derby database, 347

Apache Shiro, 359

Apache Wicket, 363

AuthenticatedWebApplication class,

294

CustomerVehiclePanel class, 287

EditCustomerForm class, 289

EditCustomerFormUsingViewObjectsEx-

tended class,

291

EditCustomerPanel class, 288

emailAddress property, 289

EmbeddedContextWicket class, 284

getAuthenticationManager(), 294

getHomePage(), 286

getPersistenceState(), 285

getSignInPage(), overriding, 294

getWebSessionClass(), overriding, 294

implementing business rules, 296

Index.class, 286

Index.html, 286

installing validators at the field level,

291

InvalidException class, 290

NakedObjectsApplication class, 286

NakedObjectsAuthenticatedWebSession

class, 294

use of NakedObjectsMetaModel

constructor, 284

NakedObjectsPropertyAdapter class,

296

NakedObjectsWebRequestCycle class,

295

ObjectStore class, 285

pairing pages, 286

pairing panels, 287

process(), 290

ReplaceLink class, 287

387
Prepared exclusively for ALESSANDRO CAROLLO

APPLICATION LAYER BUSINESS RULES

running the CarServ application on,

282

usabilityConsent(), 297

validity rules, applying, 289

validityConsent(), 297

ValueFacet facet, 286

visibilityConsent(), 296

WebApplication class, 284

Wicket in Action (Dashorst and

Hillenius), 281

Application layer, 36, 254

Application library (applib)

AbstractFactoryAndRepository class, 50

annotations and domain model

semantics, 47

dependencies from using

annotations and superclasses,

272

purpose of, 272

subclassing from the convenience

superclasses, 273

Application services

definition of, 142

application package, 222

APT, 273

Archetypes

Java Modeling in Color (Coad), 159

AspectJ, 273, 275

Asynchronous messaging, 332

Auditing, 355

authenticate(), 294

AuthenticatedWebApplication class, 294

getSignInPage(), overriding, 294

getWebSessionClass(), overriding, 294

Authentication, 354

centralizing the administration of,

357

see also Authorization; Security

AuthenticationManager class, 293

config/passwords file, format of, 294

authenticationManagerInstaller(), 355

Authorization

allow configuration file, editing, 356

centralizing the administration of,

357

enabling, 356

FileAuthorizationManagerInstaller class,

357

FileAuthorizor class, 357

levels of, 356

specifying permissions that users

don’t have, 357

see also Authentication; Security

B
@Beforesetup(), 232

Bloch, Joshua, 130

BookedInAndReady property, 132, 310

BookedIn date, 121

BookedIn property, 49

bookService(), 120

bootstrapCamel(), 336

Bounded contexts

anticorruption layer pattern, 324

conformist pattern, 324

customer/supplier pattern, 325

definition of, 324

enterprise service bus (ESB), 326

Evans, Eric, 324

open host pattern, 325

published language pattern, 325

separate ways pattern, 324

shared kernel pattern, 325

single context pattern, 325

using the wrong pattern, 326

see also Business rules;

Domain-driven design (DDD);

Design patterns

@Bounded annotation, 72

BPEL (Business Process Execution

Language), 334

Business rules

analyzing a domain and identifying

constraints, 115

capturing, 59–61

capturing for collections, 77–78

declarative rules, 59

domain objects, refactoring, 127

enforcing preconditions for object

interactions, 106

imperative rules, 60

imperative semantics, 60

Object Constraint Language (OCL),

115

subtractive programming, 115

using annotations (declarative

semantics), 59

validate prefix, 60

validation, 107–110

388
Prepared exclusively for ALESSANDRO CAROLLO

CALENDARDATE CLASS CARSERV

see also Bounded contexts; Design

patterns; Domain-driven design

(DDD)

C
CalendarDate class, 152

CalendarInterval class, 308

equal-by-content semantics, 132

nakedobjects.properties, 135

setting as a value object, not as an

entity, 135

writing an implementation of

ValueSemanticsProvider, 133

CalendarService class

CalendarDate class, 152

defining the interface, 151

FixtureClock class, 152

implementing, 151–153

providing a public nested static class,

153

registering, injecting, and using, 153

turnTo(), 153

writing the implementation, 152

CamelEsbAdapter launch configuration,

336

Car class, 46

bookService(), 120

persisting, 118

returning the most recent Service

automatically, 167

updating the property definition, 100

CarRepository class, 50, 96, 169

CarRepositoryInMemory class, 170

CarServ

AbstractDomainObject class, 47

adding a car’s make and model, 74

adding a list for the Customer-to-Car

relationship, 66

adding finders to repositories, 103

adding payment strategies, 196

allCustomers(), 52

allInstances(), 52

analyzing the structure of its domain

classes, 207

Apache Derby database, 347

application package, creating, 222

applying Coad’s colors to, 161

architecture blueprint of, 225–228

BookedIn date, 121

BookedIn property, 49

bookService(), 120

CalendarInterval class, 308

calling a domain application from an

ESB, 334

calling an ESB from a domain

application, 341

Car class, 46

CarRepository class, 50, 96

CarServAppSuite test hierarchy,

239, 250

carserv-camel-inout project, 335

carserv-camel-out project, 342

carserv-commandline project, 341

carserv_db, configuring Naked

Objects for, 318

carserv_db, creating in PostgreSQL,

318

carserv-dom project, 47

carserv-fitnesse project, 237

carserv-fixture project, 74

carserv-restful project, 327

carserv-webapp project, 349

case studies, using, 42

choicesTitle(), 61

client-server remoting over HTTP,

353–354

client-server remoting over sockets,

351–352

created(), 163

creating a reference from Car to

Customer, 65

creating subtypes of Vehicle

polymorphically, 178

Customer class, 46

CustomerRepository class, 50

CustomerTakeOn class, 200

delete(), 97

deleteCar(), 98

deleting a Car, 97

dependency structure matrix (DSM),

207

domain vision statement, definition

of, 41

embedded classes, 308

Employee class, 192

ensuring the correct format of the

registration number, 99

entities, 46

EstimatedReady date, 121

EstimatedReady property, 49

“exploration” user, 89

FirstName property, 48

389
Prepared exclusively for ALESSANDRO CAROLLO

CARSERV-WEBAPP PROJECT CLASS MEMBERS

formalizing Model as the knowledge

level for Vehicle, 185

generating CarServ projects within

Eclipse, 44

having the Customer create the Car

object, 96

how the payment package depends

on service, 210–212

including the Car registration

number in the Service title, 65

inheritance hierarchies, list of, 306

keeping the number of modules

manageable, 206

LastName property, 49

linking the Employee domain object to

the system user, 194

looking up a Car by its

RegistrationNumber, 103

Make class, 75

Model as determining VehicleType, 181

Model class, 75

Name class, 163

naming each of the domain classes,

47

newCar(), 96

noa template, 98

noidtitle template, 55

nopmod template, 68, 88

nop template, 116

Notes property, 60

NullService class, 187

OwningCustomer property, 65, 78

Payable interface, creating, 213

PaymentMethod class, 196

PaymentMethodOwner interface,

creating, 214

Person class, 190

PersonRole class, 191

prototype mode, running in, 90

refactored architecture layers, 223

refactoring Customer into a role, 190

reference classes, concrete, 307

RegistrationNumber class, 126, 308

RegistrationNumber property, 49

RegularService class, 187

remove(), 97

running in client-server mode from

within Eclipse, 351

running the application, 52

running the CarServ application on

Apache Wicket, 282

running the web service for, 327

ServiceableVehicle class, 221

Service class, 46

serviceInterval property, 185

single-user deployment type,

347–349

sketching the key classes in the

domain, 46

summarizing the application lessons

learned, 364

table summarizing annotations and

entities, 307

transactional classes, concrete, 307

transactional superclasses, abstract,

307

UML class diagram with describing

concepts, 76f

using interfaces for repositories,

149–151

value types in, 308

vehicle and service, resolving the

bidirectional relationship, 219

vehicle’s owner as payment method

owner, 218

Vehicle class, 177

VehicleOwner interface, creating, 217

VehicleType class, 178

web app deployment type, 349–351

webapp project, 349

carserv-webapp project, 349

cascade attribute, 312

Case studies, using, 42

check list table fixture, 248

choicesTitle(), 61

Claims-processing application

claims_exploration_dnd.launch, 32

claims_exploration_html.launch, 33

running, 32–34

claims_exploration_dnd.launch, 32

claims_exploration_html.launch, 33

Class members

comparing disabling to validation,

112

declarative disabling, 110

declarative hiding, 114

declarative rules and the object life

cycle, 117–120

@Disabled annotation, 110, 117, 119

disableXxx(), 111, 116

disabling, 110–112

@Hidden annotation, 117, 119

390
Prepared exclusively for ALESSANDRO CAROLLO

CLEAROWNINGCUSTOMER() CUSTOMER CLASS

hideFeedback(), 116

hideXxx(), 116

hiding, 113–116

imperative disabling, 111

imperative hiding, 116

isValuableCustomer(), 116

life-cycle-aware methods, 119

making a bidirectional relationship

read-only, 111

performing additional validation

before an object is saved, 120

persisting(), 119

public visibility, 113

validate(), 121

validateXxx(), 116

validating an object’s entire state,

120–122

When enum, 117

clearOwningCustomer(), 68, 70

Client-server remoting over HTTP,

353–354

commandline project, 354

EncodingOverHttpRemotingServlet class,

353

packaging the application, 354

webapp project, 353

Client-server remoting over sockets,

351–352

assembling the application to run

with command options, 352

assembling the ZIP file, 352

running in client-server mode from

within Eclipse, 351

setting up the database, 352

Clock class, 84

Code folding, 49

Coffee-Bytes plug-in, 49

Collections

addToCars(), 67, 69

clearOwningCustomer(), 68, 70

converting unidirectional

relationships into bidirectional

relationships, 70

ensuring referential integrity, 67

getters, setters, and supporting

methods, 67

java.util.List class, 66

java.util.Set class, 66

modifyOwningCustomer(), 68, 69, 78

mutual registration pattern, 67

noc-1m template, 70

nop-m1 template, 70

removeFromCars(), 67, 69

restricting objects within, 77

validateAddToXxx(), 77

validateOwningCustomer(), 78

validateRemoveFromXxx(), 77

@Column annotation, 310, 313

@Columns annotation, 310

commandline project, 30, 354

Commercial off-the-shelf (COTS)

systems, 323

CompositeUserType class, 308

config/passwords file

format of, 294

@Configurable annotation, 275

Configuration management, 264–268

agile shops and, 267

branching and continuous

integration (CI), 266

code catch-ups and promotions, 266

“real options”, 269

suggested branching strategy, 265

user acceptance testing (UAT), 265

waterfall shops and, 267

configureRules(), 296

Conformist pattern, 324

Content Assist, 29

<context-param> tag, 346

Continuous integration (CI), 266–267

Contributed actions, 173

Cooper, Alan, 259

Core domain, 226

create(), 179

createCar(), 180

created(), 163

CRUD applications, 95

Cunningham, Ward, 236

Customer/supplier pattern, 325

CustomerCarsMaintenanceFixture class, 80,

92

CustomerCarsMaintenanceTransactionalFixture

class, 92

Customer class, 46

defaultSince(), 85

Feedback property, 116

isValuableCustomer(), 307

matches(), 115

newCar(), 118

NotedBy property, 88

refactoring into a role, 190

Since property, 85

391
Prepared exclusively for ALESSANDRO CAROLLO

CUSTOMERREPOSITORY CLASS DEVELOPMENT ACTIVITIES

Title property, 72

CustomerRepository class, 50, 164

findByName(), 114

CustomerTakeOn class, 200

CustomerVehiclePanel class, 287

“Custom presentation” deployment

option, 257

integrating layers with, 293

D
Data transfer objects (DTOs), 71

Data Model Patterns (Hay), 176

Date fixtures, 84

DateFixture class, 85

@Debug annotation, 89

Declarative semantics, 59

defaultSince(), 85

DefaultsProvider class, 137

delete(), 97

deleteCar(), 98

disabling for a Customer who has no

Car, 111

deleteVehicle()

writing a developer test for, 230, 233

Department of Social And Family

Affairs (DSFA)

application for online benefits

administration, 365

Dependency injection

injecting a service into a domain

object automatically, 145

injecting into already persisted

objects, 274

injecting into newly instantiated

objects, 275

injecting services into fixtures, 146

Naked Objects and, 274

object relational mapping (ORM)

framework, 275

setters and, 145

Dependency structure matrix (DSM),

207

Deployment support, 26

Deployment types

client-server remoting over HTTP,

353–354

client-server remoting over sockets,

351–352

single-user, 347–349

specifying, 346

web app, 349–351

@DescribedAs annotation, 48, 56

Design

definition of, 25

Design patterns

Analysis Patterns (Fowler), 176

Data Model Patterns (Hay), 176

definition of, 176

Design Patterns (Gamma, et al.), 176

documenting pattern instances, 204

knowledge level pattern, 184–186

knowledge-level objects, 184

null object pattern, 187–189

operational-level objects, 184

process object pattern, 200–203

role object pattern, 189–193

state, 168

strategy pattern, 195–200

type as factory pattern, 177–184

user peer object pattern, 194–195

see also Bounded contexts; Business

rules; Domain-driven design

(DDD)

Developer tests

additional recommended tests, 234

@Beforesetup(), 232

deleteVehicle(), writing a test for, 230,

233

disableDeleteVehicle(), writing a test

for, 231

“given/when/then” style of test

writing, 232

Hamcrest 1.x, 230

JMock 2.x, 230, 233

jmock2-templates.xml, 230

JUnit 4.x, 230

junit4-templates.xml, 230

mock expectations, definition of, 230

regression test suite, 234

templates, using, 230

test assertions, definition of, 230

test-driven development (TDD), 230

validateDeleteVehicle(), writing a test

for, 232

Working Effectively with Legacy Code

(Feathers), 235

writing, 230–236

see also Scenario tests

Development activities, 261–264

Agile Modeling (Ambler), 262

configuration management, 264–268

exploration, 261

392
Prepared exclusively for ALESSANDRO CAROLLO

DEVELOPMENT SUPPORT DOMAIN-DRIVEN DESIGN (DDD)

implementation, 263

integration, 264

no test-driven development during

exploration, 262

Development support, 26

@Disabled annotation, 110, 117, 119,

165

disableDeleteVehicle()

writing a developer test for, 231

DisabledException class, 287

disableXxx(), 111, 116

@DiscriminatorColumn annotation, 307

@DiscriminatorValue annotation, 303

displayTitleOf(), 136

DnD (drag-n-drop) viewer, 32, 345

Domain classes

adding basic properties, 48

creating, 45–49

meeting with domain experts, 45

naming, 47

sketching the domain, 46

Domain experts

benefits of precise, standardized

business terminology, 24

Domain layer, 254

Domain model

representing in code, 25

Domain objects

domain services and, 141

Domain services

definition of, 141

domain objects and, 141

factories and, 141

repositories as examples of, 141

Domain vision statement

definition of, 41

Domain-driven design (DDD)

abstract base, 225

adding scalar associations between

classes, 65

adding vector associations between

classes, 66

anaemic domain models, 166

application layer, 36, 254

associating domain objects with

related domain concepts, 64

balancing “know-what” with

“know-how-to” responsibilities,

166–168

battling complexity by decoupling

classes, 173

bounded context patterns, 324–326

calling into a domain application

using a web service, 323

challenges addressed by Naked

Objects, 34–37

coding custom-written layers, 36

conceptual contours of a domain

model, 218

converting a property or collection

name into an interface, 217

core domain, 226

creating a single domain model, 23

“custom presentation” deployment

option, 293

dangers in hiding domain objects

beneath process objects, 203

decoupling a model to make implicit

concepts explicit, 218

decoupling by splitting classes, 221

decoupling dependent classes as

slicing the design, 225

decoupling dependent classes by

introducing interfaces, 212

dependencies and domain models,

172

dependency structure matrix (DSM),

207

deployment options, assessing risks

and benefits, 258

deployment options, assessing user

experience, 259

documenting pattern instances, 204

domain layer, 36, 254

domain model, definition of, 25

“embedded metamodel” deployment

option, 282

essential ideas of, 22

evolving the ubiquitous language, 34

factory, definition of, 50

finder actions and large collections,

168–172

grounding the domain model, 35

highlighted core, 160

infrastructure layer, 254

integrating domain models and web

frameworks, 281

keeping the number of modules

manageable, 206

knowledge-level objects, 184

layered architecture, 36, 254–255

managing collections of objects, 66

393
Prepared exclusively for ALESSANDRO CAROLLO

DOMAINOBJECT CLASS ENTERPRISE SERVICE BUS (ESB)

modules as “loosely coupled, highly

cohesive”, 210

modules, in Java, 207

modules, layering, 219

operational-level objects, 184

persistence layer, 36, 254

presentation layer, 36, 254

presentation models, 260

problem spaces and solution spaces,

200

prototyping the domain model, 35

“pure pojo” deployment option, 271,

276

reflections on Naked Objects and,

367

repository, definition of, 50

representing pluggable behaviors as

objects, 195

runtime context, 256

scoping the system, 24

subclassing from the convenience

superclasses, 273

subdomains, definition of, 226

subdomains, generic, 227

tackling both simple and complex

domains, 37

ubiquitous language, 22–24

untangling cyclic dependencies

between packages, 209

value of strategic design, 367

see also Bounded contexts; Design

patterns; Business rules

DomainObject class, 45

DomainObjectContainer class, 143–145,

272

allInstances(), 143

allMatches(), 143

factories and repositories, 144

firstMatch(), 143

functions of, 274

getUser(), 144

informUser(), 144

isPersistent(), 143

newTransientInstance(), 143, 275

persist(), 143

raiseError(), 144

remove(), 143

removing the dependency on, 274

uniqueMatch(), 143

warnUser(), 144

DomainObjectRepository class, 45

dom project, 30

using in the runtime environment,

272

E
Eclipse, 26

Coffee-Bytes plug-in, 49

Eclipse 3.5, using as an IDE, 28

extract interface refactoring, 149

generating CarServ projects, 44

generating CarServ projects from the

command line, 45

nakedobjects-templates.xml, 29

Nexus Indexer catalog, 44

templates, setting up, 29

EditCustomerForm class, 289

EditCustomerFormUsingViewObjectsExtended

class, 291

EditCustomerPanel class, 288

addForm(), 292

Effective Java (Bloch), 130

emailAddress property, 289

@Embeddable annotation, 303

@Embedded annotation, 310

EmbeddedContextWicket class, 284

getPersistenceState(), 285

“Embedded metamodel” deployment

option, 256, 282

view object, functions of, 287

Employee class, 192

Employee.java, 31

EmployeeRepository class

me(), 316

EncoderDecoder class, 138, 300

EncodingOverHttpRemotingServlet class,

353

Enterprise service bus (ESB), 39

Apache Camel, 323, 334

BPEL (Business Process Execution

Language), 334

calling a domain application from an

ESB, 334

calling an ESB from a domain

application, 341

eliminating overnight batch jobs,

338

enterprise message model, 333

ESB adapter, 333

ESB message bus, 333

input XML snapshot to XML

standard message, 342

394
Prepared exclusively for ALESSANDRO CAROLLO

Enterprise Integration Patterns (HOHPE AND WOLFE) FIXTURES

MessagePublisher class, 341

normalized messages, 333

orchestration, 333

published language pattern, 326

writing a custom ESB adapter, 335

XSLT, 342

Enterprise Integration Patterns (Hohpe

and Wolfe), 334

Entity types, 46

contrasting with value types, 125

@Entity annotation, 303

Equal-by-content semantics, 127, 132

EstimatedReady date, 121

EstimatedReady property, 49

Evans, Eric, 324, 367

Exploration Activity, 261

@Exploration annotation, 52, 150, 264

“Exploration” user, 89

Extension methods (.NET), 174

F
FacetFactory class, 278

Factories

definition of, 50

domain services and, 141

Feathers, Michael, 235

Feedback property, 116

FileAuthenticator class, 354

FileAuthorizationManagerInstaller class, 357

FileAuthorizor class, 357

findByName(), 114, 329

findCarsWithoutRecentService(), 173

FindCustomer class

findCustomer(), 328

firstMatch(), 82, 103, 143, 314

FirstName property, 48

FitNesse, 26

AliasServices page, 243

capturing scenario working notes in

the wiki, 262

CarServAppSuite test hierarchy,

239, 250

carserv-fitnesse project, 237

check list table fixture, 248

collapsing included pages, 246

configuring and starting, 238

Cunningham, Ward, 236

“given/when/then” test scenario,

249

GivenCustomersWithNoVehi-

clesSuite page,

242

GivenCustomersWithNoVehi-

clesSuite page, modifying and

testing, 244

hints and tips for using, 249–250

!include pages, 242, 249

Mugridge, Rick, 236

running tests from JUnit, 247

running the final scenario tests, 247

run viewer table fixture, 244

scenario tests, 235

setup table fixtures, 241

SetUpJoeBloggsCustomer page, 241

SetUpModel page, 241

set up objects table fixture, 250

symbolic links, using, 250

Tested Objects, 236

Tested Objects archetype for the

demo claims application, 237

TheGiven page, writing, 243

TheWhen page, modifying, 244

user guide, 239

using naked objects viewer table fixture,

248

writing table fixtures in, 236

FixtureClock class, 84, 152

FixtureManager utility, 320, 348

fixture project, 30

Fixtures

AbstractCarFixture class, 83

AbstractCustomerFixture class, 82

AbstractFixture class, 74, 81

carserv-fixture project, 74

changing the clock while installing

fixtures, 85

changing the user while installing

fixtures, 87

CustomerCarsMaintenanceFixture class,

80, 92

CustomerCarsMaintenanceTransactional-

Fixture class,

92

date fixtures, setting up, 84

DateFixture class, 85

“exploration” user, 89

fixture, definition of, 80

FixtureClock class, 84

fixtures property key, 51

getUser(), 89

395
Prepared exclusively for ALESSANDRO CAROLLO

FOREIGN KEYS INTERFACE SEGREGATION PRINCIPLE (ISP)

injecting services into fixtures, 146

JoeBloggsCarsFixture class, 83

JoeBloggsCustomerFixture class, 82, 89

LogonFixture class, 90

MakesAndModelsFixture class, 75

nakedobjects.fixtures property key, 82

organizing into hierarchies and

scenarios, 91

reference objects, 81

ReferenceDataFixture class, 92

session fixtures, setting up, 87

setting the clock for the running

application, 85

setting the user for the running

application, 89

setting up domain objects, 81–84

setting up the clock, 84–87

setting up user sessions, 87

TitlesFixture class, 73

transactional objects, 81

writing table fixtures in FitNesse,

236

Foreign keys, 310

Fowler, Martin, 176

“Full runtime” deployment option, 257

FullyQualifiedClassName property, 179

G
@GeneratedValue annotation, 305

GET and POST methods, 329

getAuthenticationManager(), 294

getHomePage(), 286

getParser(), 129

getPersistenceState(), 285

getSignInPage()

overriding, 294

getUser(), 89, 144

getWebSessionClass()

overriding, 294

“Given/when/then” test scenario, 232,

242, 249

GivenCustomersWithNoVehiclesSuite

page, 242, 244

Grails, 27

H
Hamcrest 1.x, 230

Hay, David, 176

HeadlessViewer class

using in domain objects, 290

view(), 289

Hexagonal Architecture, 37–39

ports and adapters, 38

primary and secondary actors in use

cases, 37

Hibernate

adapters, writing, 308

@Any annotation, 313

@AnyMetaDef annotation, 313

@Column annotation, 313

CompositeUserType class, 308

hibernate.cfg.xml, 319, 347

@JoinColumn annotation, 313

LoadEventListener interface, 275

@MetaValue annotation, 313

UserType class, 308

@Hidden annotation, 115, 117, 119,

148, 171, 278, 305

HiddenException class, 287

hideFeedback(), 116

hideXxx(), 116, 278

hourlyChargeRate property, 192

HTML viewer, 32, 345

Hudson, 26

I
IconName property, 73

Icons

distinguishing domain objects, 54

iconName(), 54

@Id annotation, 304

Id property, 304

ImmutableCompositeUserType class, 309

ImmutableUserType class, 309

Imperative semantics, 60

Implementation Activity, 263

Implementation model, 24

In-memory object store, 53, 257

!include pages (FitNesse), 242, 249

Index.class, 286

Index.html, 286

informUser(), 144

Infrastructure layer, 254

Infrastructure services

definition of, 141

examples of, 142

@Inheritance annotation, 305

InstallerLookupDefault class, 355

Integration Activity, 264

InteractionFixtureTest class, 247

Interface segregation principle (ISP),

212

396
Prepared exclusively for ALESSANDRO CAROLLO

INTRODUCED METHODS (ASPECTJ) JPA (JAVA PERSISTENCE API)

Introduced methods (AspectJ), 174

InvalidException class, 287, 290

isPersistent(), 143

isServiceOverdue(), 186

isValid(), 122

isValuableCustomer(), 116, 307

J
Java Modeling in Color (Coad)

applying Coad’s colors to CarServ,

161

archetypes, 159

CRC

(class-responsibility-collaboration)

cards, 159

moment-interval, definition of, 159

Java Persistence with Hibernate (Bauer

and King), 302

java.util.Calendar class, 84

java.util.Date class, 129

java.util.List class, 66

java.util.Set class, 66

Jetty web server, 33

JMock 2.x, 230, 233

jmock2-templates.xml, 230

JMS queue, 338

JodaTime library, 130

JoeBloggsCarsFixture class, 83

JoeBloggsCustomerFixture class, 82, 89

@JoinColumn annotation, 313

JOINED inheritance type, 306

JPA (Java Persistence API)

annotating domain classes, 309

cascade attribute, 312

@Column annotation, 310

@Columns annotation, 310

declaring which domain classes are

entities, 303

discriminating between concrete

subclasses, 303

@DiscriminatorColumn annotation, 307

@DiscriminatorValue annotation, 303

@Embeddable annotation, 303

@Embedded annotation, 310

embedding entities within other

entities, 303

@Entity annotation, 303

FixtureManager utility, 320

@GeneratedValue annotation, 305

Hibernate and, 302

@Hidden annotation, 305

identifying entities uniquely using

@Id, 304

Id property, 304

ignoring non-persisted properties,

307

ImmutableCompositeUserType class, 309

ImmutableUserType class, 309

@Inheritance annotation, 305

Java Persistence with Hibernate

(Bauer and King), 302

JOINED inheritance type, 306

JPA Objects project, 302

keeping discriminators short, 304

keys, primary and foreign, 310

@ManyToOne annotation, 311

mappedBy attribute, 311

mapping entities using JPA

annotations, 302

mapping inheritance hierarchies,

305

mapping to an interface, 313

@NamedQuery annotation, 315

@OneToMany annotation, 311

@Optional annotation, 305

persistence-by-reachability, 312

polymorphism, lack of support for,

313

Query<T> object, 315

relationships, bidirectional

one-to-many, 311

relationships, eagerly loaded or lazily

loaded, 311

relationships, embedded, 311

relationships, mapping in Java and

in relational databases, 310

relationships, unidirectional

many-to-one, 311

relationships, unidirectional

many-to-one using interfaces, 313

relationships, unidirectional

one-to-many, 312

repositories, porting over to the JPA

Object Store, 314

SINGLE_TABLE inheritance type, 305

TABLE_PER_CLASS inheritance type, 306

@Transient annotation, 307

@Type annotation, 310

@TypeDef annotation, 310

@TypeDefs annotation, 310

@Version annotation, 305

Version property, 305

397
Prepared exclusively for ALESSANDRO CAROLLO

JSCIENCE LIBRARY NAKED OBJECTS

see also PostgreSQL database; XML

persistence

JScience library, 130

JSON (JavaScript object notation), 330

JUnit 4.x, 230

junit4-templates.xml, 230

K
Knowledge level pattern, 184–186

Knowledge-level objects, 184

L
LastName property, 49

LDAP

using for authorization and

authentication, 358

Life-cycle-aware methods, 119

LoadEventListener interface, 275

LogonFixture class, 90

LookUpEmailProcessor class, 337

M
Maasen, Olav, 269

Make class, 75

MakesAndModelsFixture class

registering with Naked Objects, 76

@ManyToOne annotation, 311

mappedBy attribute, 311

Martin, Robert (“Uncle Bob”), 162, 177,

209, 212, 220, 225

matches(), 115

Matthews, Robert, 26, 367

Matts, Chris, 269

Maven, 26

Maven archetype, using, 28, 43

pom.xml, 43

@MaxLength annotation, 59

me(), 316

@MemberOrder annotation, 49, 56, 278

MessagePublisher class, 341

@MetaValue annotation, 313

MetaWidget project, 297

Mock expectations, 230

Model-driven design, 24–26

design, definition of, 25

Model Driven Architecture (MDA), 24

object-oriented (OO) languages, 25

Model class, 75

injecting the CarRepository into, 169

ModelRepository class, 171

modifyOwningCustomer(), 68, 69, 78, 119

modifyProperty(), 330

Moment-interval, definition of, 159

mostRecentService(), 171

Mugridge, Rick, 236

@MultiLine annotation, 57

@MustSatisfy annotation, 119, 127

Mutual registration pattern, 67

N
Naked Objects

AbstractDomainObject class, 47

action, definition of, 96

adding behavior to domain objects,

96–98

allowing the end-user to be a

problem solver, 368

annotations as a specification, 273

application library (applib), 47

authentication, 354

AuthenticationManager class, 293

authenticationManagerInstaller(), 355

authorization, enabling, 356

behaviorally complete domain

objects, 168

benefits of developing domain

models quickly, 370

centralizing the administration of

authentication and authorization,

357

commandline project, 30

comparing to other frameworks, 27

configuring for carserv_db, 318

Content Assist, 29

<context-param> tag, 346

contributed actions, 173

Cooper, Alan, 259

creating behaviorally complete

objects, 95

CRUD applications, 95

“custom presentation” deployment

option, 257, 293

decoupling the domain model from

the Naked Objects runtime,

272–275

definition of, 26

dependency injection in, 274

deployment options, assessing risks

and benefits, 258

deployment options, assessing user

experience, 259

398
Prepared exclusively for ALESSANDRO CAROLLO

NAKED OBJECTS NAKED OBJECTS

deployment support, 26

deployment type, specifying, 346

development activities, 261–264

development support, 26

DnD (drag-n-drop) viewer, 32

domain model as the entire

application, 31

domain objects and persistence, 118

DomainObjectContainer class, 272

dom project, 30

dom project, using in the runtime

environment, 272

downloading and installing, 28

DSFA application, 365

Eclipse 3.5, using as an IDE, 28

“embedded metamodel” deployment

option, 256, 282

EncodingOverHttpRemotingServlet class,

353

exploration, 261

FacetFactory class, 278

FileAuthenticator class, 354

fixture project, 30

fixtures property key, 51

“full runtime” deployment option,

257

generating XML snapshots for

domain objects, 339

HeadlessViewer class, 289

Hexagonal architecture and, 38

@Hidden annotation, 278

hideXxx(), 278

hiding a property, 278

HTML viewer, 32

iconName(), 54

icons, selecting for domain objects,

54

implementation, 263

in-memory object store, 53, 257

InstallerLookupDefault class, 355

integration, 264

interaction between the application

layer and domain layer, 276

Jetty web server, 33

LDAP, using for authorization and

authentication, 358

Matthews, Robert, 26

Maven archetype, using, 28

@MemberOrder annotation, 278

minimum components needed for

configuration, 358

Naked Objects Group Ltd., 372

NakedObjectsApplication class, 293

NakedObjectsAuthenticatedWebSession

class, 294

NakedObjectsContext class, 293

nakedobjects.embedded-web-server.port

property, 33

NakedObjectsMetaModel constructor,

284

nakedobjects.properties, 51

nakedobjects.services property key, 51

NakedObjectsSystem class, 293

no direct coupling of domain model

to framework, 36

$NO_HOME directory, 29

object identifiers (OIDs), 328

object-oriented user interface

(OOUI), 32

options for deploying an application

into production, 345

options for deploying domain

applications, 255–261

options for using during

development and testing, 271–272

organizing applications, 30

Pawson, Richard, 26

persistors, 53, 299

pluggable architecture, 26

possible future innovations, 372

presentation models, 260

programming model, changing, 278

programming model, defining one’s

own, 279

ProgrammingModelFacetsJava5 class,

279

“pure pojo” deployment option, 255,

271, 276

QueryDefault class, 315

rapid prototyping, 26

reading logins from the passwords file,

354

reflections on DDD and, 367

requirement for using Java 5 or

higher, 28

Restful Objects, 327, 359

RESTful web services, 39

Rich Client Objects viewer, 362

running in client-server mode, 351

runtime context, 256

security, 354–359

service project, 30

399
Prepared exclusively for ALESSANDRO CAROLLO

NAKEDOBJECTSAPPLICATION CLASS OBJECT -ORIENTED (OO) LANGUAGES

setting valid values for properties, 61

SnapshotService class, 339

SnapshotServiceImpl class, 340

Snapshottable class, 339

SnapshottableWithInclusions class, 340

sovereign applications, 259

spec variable, 286

subclassing from the convenience

superclasses, 273

takeSnapshot(), 339

title(), 55

titles, adding for domain objects, 55

transient applications, 259

--type flag, 346

using as part of the runtime

environment, 271

using Naked Objects 4.0 for Java, 28

ValueFacet facet, 286

ValueSemanticsProvider class, 308

viewers supporting customizable

user interfaces, 257

viewers, default, 32

webapp project, 30

web.xml, 346

XmlSnapshot class, 340

see also Apache Camel; Apache

Wicket; Eclipse; FitNesse;

Hibernate; RESTful web services

NakedObjectsApplication class, 293

getHomePage(), 286

newRequestCycle(), overriding, 295

NakedObjectsAuthenticatedWebSession

class

authenticate(), 294

NakedObjectsContext class, 293

nakedobjects.embedded-web-server.port

property, 33

nakedobjects.exploration.users property

key, 90

nakedobjects.fixtures property key, 82

NakedObjectsMetaModel constructor,

284

nakedobjects.properties, 51, 74, 82, 87,

135

overriding properties in, 93

registering services in, 148

specifying the object store in, 301

NakedObjectsPropertyAdapter class

configureRules(), 296

nakedobjects.services property key, 51

NakedObjectsSystem class, 293

nakedobjects-templates.xml, 29

NakedObjectsWebRequestCycle class, 295

Name class, 163

aggregated objects, 164

@Named annotation, 48, 52, 56, 127

@NamedQuery annotation, 315

Name property, 72

Network encryption, 355

Network time protocol (NTP), 154

newCar(), 96, 109, 118

newRequestCycle()

overriding, 295

newTransientInstance(), 143, 275

Nexus Indexer catalog, 44

noa template, 96, 98

noaval template, 98

noc-1m template, 70

nocl template, 66

nocmod template, 67

nocs template, 66

nocval template, 77

noft template, 51

$NO_HOME directory, 29

noidicon template, 55

noid template, 55

noidtitle template, 55

nopcho template, 61

nopdis template, 112

nophid template, 116

nop-m1 template, 70

nopmod template, 68, 88

nop template, 48, 116

nopval template, 61

Normalized messages, 333

nosa template, 52

NotedBy property, 88

Notes property, 60

@NotPersistable annotation, 200

noval template, 122

Null object pattern, 187–189

NullService class, 187

O
Object Constraint Language (OCL), 115

Object identifiers (OIDs), 328

Object relational mapping (ORM)

framework, 275

Object-oriented (OO) languages

Advanced Object-Oriented Analysis &

Design using UML (Odell), 178

anaemic domain models, 166

400
Prepared exclusively for ALESSANDRO CAROLLO

OBJECT -ORIENTED USER INTERFACES (OOUI) REGISTRATIONNUMBER CLASS

expressing domain concepts, 25

polymorphism, 177

Object-oriented user interfaces (OOUI)

viewers, 32

ObjectStore class, 285

Odell, James, 178

@OneToMany annotation, 311

Open host pattern, 325

Open-closed principle (OCP), 177

Operational-level objects, 184

@Optional annotation, 59, 65, 111, 305

Orchestration, 333

OwningCustomer property, 65, 78

“Owning” relationships, 97

P
Parser class, 137

parseTextEntry(), 134

passwords file

format of, 354

PATTERN constants, 134–135

Pawson, Richard, 26, 365

Payable interface, 213

PaymentMethod class, 196

PaymentMethodOwner interface, 214

persist(), 97, 143, 274

saving an object to the in-memory

object store, 74

Persistence layer, 36, 254

persisting(), 119

--persistor command line flag, 301

Persistors, 53, 299

Person class, 190

PersonRole class, 191

Plain old Java objects (pojos), 48

Polymorphism, 177, 313

pom.xml, 43, 272

Ports, 38

post(), 329

PostgreSQL database

carserv_db, configuring Naked

Objects for, 318

carserv_db, creating, 318

database schema, defining, 319

downloading and installing, 318

FixtureManager utility, 320

installing fixtures, 320

login, creating, 318

PgAdmin III GUI admin tool, 318

verifying that the database is

updating, 321

see also JPA (Java Persistence API);

XML persistence

Powertypes, 178

Presentation layer, 36, 254

Presentation models, 260

Primary keys, 310

Principles, Patterns and Practices

(Martin)

acyclic dependencies principle (ADP),

209

interface segregation principle (ISP),

212

open-closed principle (OCP), 177

single responsibility principle (SRP),

162

stable abstractions principle (SAP),

225

stable dependencies principle (SDP),

220

Problem spaces, 200

process(), 290

Process object pattern, 200–203

ProgrammingModelFacetsJava5 class, 279

Prototype mode

default authentication manager, 90

public visibility, 113

Published language pattern, 325

“Pure pojo” deployment option, 255,

271, 276

PUT and DELETE methods, 329

Q
QueryDefault class, 315

Query<T> object, 315

R
Rails, 27

raiseError(), 144

Rapid prototyping, 26

“Real options”, 269

Reference data, 71

Reference objects

definition of, 81

ReferenceDataFixture class, 92

@RegEx annotation, 100, 119, 127

RegistrationNumber class, 308

creating, 126

equal-by-content semantics, 127

getParser(), 129

RegistrationNumber property, updating,

127

401
Prepared exclusively for ALESSANDRO CAROLLO

REGISTRATIONNUMBER PROPERTY SCENARIO TESTS

RegistrationNumberValueSemanticsProvi-

der class,

128

treating as a value rather than as an

entity, 128

RegistrationNumber property, 49, 108,

127

RegistrationNumberValueSemanticsProvider

class, 128, 300

Regression test suite, 234

RegularService class, 187

Relationships

bidirectional one-to-many, 311

eagerly loaded or lazily loaded, 311

embedded, 311

mapping in Java and in relational

databases, 310

unidirectional many-to-one, 311

unidirectional many-to-one using

interfaces, 313

unidirectional one-to-many, 312

Remote procedure call (RPC), 326

remove(), 97, 143

removeFromCars(), 67, 69

ReplaceLink class, 287

Repositories

definition of, 50

porting over to the JPA Object Store,

314

registering with the framework, 51

using to locate objects, 49

Repositories vs. start points, 104

resetClock(), 84

RESTful web services, 39

asynchronous messaging, 332

calling from a Java client, 327

calling web services from a domain

model, 331

carserv-restful project, 327

enterprise service bus (ESB),

explanation of, 333–334

exposing a system’s functionality as

a set of resources, 327

findByName(), 329

findCustomer(), 328

FindCustomer class, 327

GET and POST methods, 329

JSON, returning, 330

modifyProperty(), 330

post(), 329

problems in using web service calls,

331

published language, 332

PUT and DELETE methods, 329

remote procedure call (RPC) style,

326

Restful Objects, 327, 359

RESTful Web Services (Richardson

and Ruby), 331

running the CarServ web service,

327

SOAP vs. REST web services, 326

using from a web browser, 330

XHTML and CSS styles, defining a

microlanguage, 331

XML, 330

XPath, 328

Rich Client Objects viewer, 362

Role object pattern, 189–193

RoleMemento class, 144

Routes

definition of, 334

Runtime context, 256

RuntimeException class, 287

run viewer table fixture, 244

@RunWith annotation, 233

S
Scenario tests

acceptance tests, 235

AliasServices page, 243

check list table fixture, 248

collapsing included pages, 246

designing a test scenario hierarchy,

242

FitNesse open-source testing

framework, 235

“given/when/then” test scenario,

242

GivenCustomersWithNoVehi-

clesSuite page,

242

GivenCustomersWithNoVehi-

clesSuite page, modifying and

testing, 244

running from JUnit, 247

running the final tests, 247

run viewer table fixture, 244

TheGiven page, writing, 243

TheWhen page, modifying, 244

Trinidad test harness, 247

402
Prepared exclusively for ALESSANDRO CAROLLO

SCHEMAMANAGER CLASS SPECIFICATIONS

using naked objects viewer table fixture,

248

writing table fixtures in FitNesse,

236

see also Developer tests

SchemaManager class, 348

Scimpi, 282, 360–361

Scoping the system, 24

Security, 354–359

allow configuration file, editing, 356

Apache Shiro, 359

auditing, 355

authentication, 354

authenticationManagerInstaller(), 355

authorization, enabling, 356

centralizing the administration of

authentication and authorization,

357

FileAuthenticator class, 354

FileAuthorizationManagerInstaller class,

357

FileAuthorizor class, 357

InstallerLookupDefault class, 355

LDAP, using for authorization and

authentication, 358

network encryption, 355

reading logins from the passwords file,

354

specifying permissions that users

don’t have, 357

Spring Security, 359

see also Authorization;

Authentication

Separate ways pattern, 324

ServiceableVehicle class, 221

Service class, 46

BookedInAndReady property, 132, 310

creating an inheritance hierarchy,

187

title(), 133

serviceInterval property, 185

ServiceMessage.xsd, 342

service project, 30

Services

accessing functionality in other

enterprise systems, 143

adapters to an underlying

technology, 143

application service, definition of, 142

domain service, definition of, 141

extract interface refactoring, 149

@Hidden annotation, 148

hints and tips for writing services,

154–155

indicating which icons to use with

iconName(), 148

infrastructure service, definition of,

141

injecting into fixtures, 146

keeping the service stateless, 154

modeling stateless behavior as

services, 141

network time protocol (NTP), 154

providing public methods for domain

objects to invoke, 148

providing a no-arg constructor, 147

registering in nakedobjects.properties,

148

requirements and guidelines for

writing services, 147–148

shadowing persistent state, 155

using coarse-grained interfaces, 154

using interfaces for repositories,

149–151

writing a CalendarService, 151–153

writing a Java interface, 147

Session fixtures, 87

setOwningCustomer(), 119

SetUpJoeBloggsCustomer page, 241

SetUpModel page, 241

set up objects table fixture, 250

Shared kernel pattern, 325

Since property, 85

Single context pattern, 325

Single responsibility principle (SRP),

162

Single-user deployment type, 347–349

Apache Derby database, 347

logging in to the application, 348

testing the deployment, 348

using Maven for application

packaging, 347

SINGLE_TABLE inheritance type, 305

SnapshotService class, 339

SnapshotServiceImpl class, 340

Snapshottable class, 339

SnapshottableWithInclusions class, 340

Solution spaces, 200

Sovereign applications, 259

Specifications

converting an imperative validation

into a specification, 108

403
Prepared exclusively for ALESSANDRO CAROLLO

SPEC VARIABLE USERMEMENTO CLASS

definition of, 108

testing, 109

unbalanced domain objects, 109

spec variable, 286

Spring Framework

@Configurable annotation, 275

Spring Roo, 27

Spring Security, 359

Stable abstractions principle (SAP), 225

Stable dependencies principle (SDP),

220

Start points vs. repositories, 104

State, 168

Strategy pattern, 195–200

Subdomains

definition of, 226

generic, 227

Subtractive programming

analyzing a domain and identifying

constraints, 115

Superclasses

removing or replacing with a

superclass of one’s own, 274

subclassing from, 273

switchUser(), 87

Symbolic links, 250

SystemClock class, 84

T
Table fixtures

setup table fixtures, using, 241

writing, 236

TABLE_PER_CLASS inheritance type, 306

takeSnapshot(), 339

Templates

noa template, 96

noaval template, 98

nocl template, 66

nocmod template, 67

nocs template, 66

nocval template, 77

noft template, 51

noidicon template, 55

noid template, 55

nopcho template, 61

nopdis template, 112

nophid template, 116

nop template, 48

nopval template, 61

nosa template, 52

noval template, 122

Test assertions, 230

Test-driven development (TDD), 230

Tested Objects, 236

archetype for the demo claims

application, 237

TheGiven page, 243

TheWhen page, 244

timeandmoney library

CalendarDate class, 152

CalendarInterval class, 132

domain objects, refactoring, 132

downloading and installing, 131–132

interval concept, 131

title(), 55, 133

TitleBuffer class, 55

Title class

IconName property, adding, 73

including as a domain concept, 73

Name property, 72

Title property, 72

Titles

adding for domain objects, 55

title(), 55

using unique titles, 57

TitlesFixture class, 73

Transactional classes, 71

Transactional objects

definition of, 81

Transient applications, 259

@Transient annotation, 307

Trinidad

InteractionFixtureTest class, 247

turnTo(), 153

Type as factory pattern, 177–184

@Type annotation, 310

@TypeDef annotation, 310

@TypeDefs annotation, 310

--type flag, 346

@TypicalLength annotation, 57

U
Ubiquitous language, 22–24

bridging the gap between domain

experts and developers, 22

creating, 22

uniqueMatch(), 82, 143, 314

UnsupportedOperationException class, 288

usabilityConsent(), 297

User acceptance testing (UAT), 265

User peer object pattern, 194–195

UserMemento class, 144

404
Prepared exclusively for ALESSANDRO CAROLLO

USERTYPE CLASS Wicket in Action (DASHORST AND HILLENIUS)

UserType class, 308

using naked objects viewer table fixture,

248

V
validate(), 121, 122

Validate prefix, 60

validateAddToXxx(), 77, 107

validateDeleteVehicle()

writing a developer test for, 232

validateOwningCustomer(), 78

validateRegistrationNumber(), 109

validateRemoveFromXxx(), 77, 107

validateXxx(), 98, 107, 116

Validation

AbstractSpecification class,

subclassing, 108

adding for properties, collections,

and actions, 107

comparing validation to disabling

class members, 112

converting an imperative validation

into a specification, 108

performing additional validation

before an object is saved, 120

specification, definition of, 108

validate(), 121

validateAddToXxx(), 107

validateRegistrationNumber(), 109

validateRemoveFromXxx(), 107

validateXxx(), 107

see also Actions

validityConsent(), 297

Value types

adding a third-party value type, 129

CarServ, 308

configuring object stores, 130

contrasting with entity types, 125

DefaultsProvider class, 137

generic, developer-defined, and

third-party, 124

guidelines for using, 138

internable, 125

JodaTime library, 130

JScience library, 130

reusability across different

applications, 129

specifying default values and other

characteristics, 137

timeandmoney library, 131

@Value annotation, 135, 286

ValueFacet facet, 286

ValueSemanticsProvider class, 133, 308

DefaultsProvider class, 137

EncoderDecoder class, 138

Parser class, 137

Vehicle class, 177

VehicleOwner interface, 217

VehicleType class, 178

@Version annotation, 305

Version property, 305

view(), 289

View objects

checking visibility, usability, and

validity, 287

DisabledException class, 287

functions of, 287–290

HiddenException class, 287

InvalidException class, 287

UnsupportedOperationException class,

288

ViewObject interface, implementing,

288

Viewers

customizing user interfaces, 257

visibilityConsent(), 296

W
warnUser(), 144

Waterfall methodologies, 22

Web app deployment type, 349–351

adding servlets and filters, 349

carserv-webapp project, 349

packaging to a WAR file, 350

running the application, 350

using an embedded database, 350

Web frameworks

Apache Wicket, 281, 363

integrating with domain models, 281

Scimpi, 282, 360–361

Wicket in Action (Dashorst and

Hillenius), 281

WebApplication class, 284

webapp project, 30, 349, 353

web.xml, 346

When enum

When.ALWAYS, 117

When.ONCE_PERSISTED, 117

When.UNTIL_PERSISTED, 117

Wicket in Action (Dashorst and

Hillenius), 281

405
Prepared exclusively for ALESSANDRO CAROLLO

Working Effectively with Legacy Code (FEATHERS) XSLT

Working Effectively with Legacy Code

(Feathers), 235

X
XHTML

using CSS styles to define a

microlanguage, 331

XML, 330

ServiceMessage.xsd, 342

XML persistence

EncoderDecoder class, 300

--persistor command line flag, 301

RegistrationNumberValueSemanticsProvi-

der class,

300

resilience to schema change, 302

specifying the object store in

nakedobjects.properties, 301

specifying the object store in the

command line, 301

value types, persisting, 300

XML Object Store, configuring,

300–302

see also JPA (Java Persistence API);

PostgreSQL database

XmlSnapshot class, 340

XPath, 328

XSLT

input XML snapshot to XML

standard message, 342

normalizing messages in, 342

406
Prepared exclusively for ALESSANDRO CAROLLO

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of December 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 250

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Continued on next page

Prepared exclusively for ALESSANDRO CAROLLO

pragprog.com
v@v
Text Box
Download at WoweBook.com

Title Year ISBN Pages

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2009 9781934356494 272

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Continued on next page

Prepared exclusively for ALESSANDRO CAROLLO

Title Year ISBN Pages

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

iPhone SDK Development 2009 9781934356258 576

Prepared exclusively for ALESSANDRO CAROLLO

Fun with Java and the Web

Stripes
Tired of complicated Java web frameworks that just

get in your way? Stripes is a lightweight, practical

framework that lets you write lean and mean code

without a bunch of XML configuration files. Stripes

is designed to do a lot of the common work for you,

while being flexible enough to adapt to your

requirements. This book will show you how to use

Stripes to its full potential, so that you can easily

develop professional, full-featured web

applications. As a bonus, you’ll also get expert

advice from the creator of Stripes, Tim Fennell.

Stripes: ...And Java Web Development Is Fun

Again

Frederic Daoud

(375 pages) ISBN: 978-1934356-21-0. $36.95

http://pragprog.com/titles/fdstr

Prototype and script.aculo.us
Tired of getting swamped in the nitty-gritty of

cross-browser, Web 2.0–grade JavaScript? Get back

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it

a walk in the park. Be it Ajax, drag and drop,

autocompletion, advanced visual effects, or many

other great features, all you need is to write one or

two lines of script that look so good they could

almost pass for Ruby code!

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95

http://pragprog.com/titles/cppsu

Prepared exclusively for ALESSANDRO CAROLLO

http://pragprog.com/titles/fdstr
http://pragprog.com/titles/cppsu

Boost your Career

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(200 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Prepared exclusively for ALESSANDRO CAROLLO

http://pragprog.com/titles/ahptl
http://pragprog.com/titles/cfcar2

Home of Ruby and Rails

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Third

Edition, which goes beyond the award winning

previous editions with new material covering the

latest advances in Rails 2.0.

Agile Web Development with Rails: Third Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(784 pages) ISBN: 978-1-9343561-6-6. $43.95

http://pragprog.com/titles/rails3

Prepared exclusively for ALESSANDRO CAROLLO

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/rails3

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Domain-Driven Design Using Naked Objects’ Home Page

http://pragprog.com/titles/dhnako

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/dhnako.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for ALESSANDRO CAROLLO

http://pragprog.com/titles/dhnako
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/dhnako
www.pragprog.com/catalog

	Home Page
	Contents
	Preface
	Who This Book Is For
	How the Book Is Organized
	Case Study and Exercises
	Conventions
	Further Resources

	Tools
	Getting Started
	Understanding Domain-Driven Design
	The Essentials of DDD
	Introducing Naked Objects
	Naked Objects in About Five Minutes
	How Naked Objects Helps with DDD
	The Big Picture

	Identifying the Domain Concepts
	Introducing CarServ
	Getting Ready
	Creating the Domain Classes
	Using Repositories to Locate Objects
	Identifying Objects to the User
	Capturing Simple Business Rules
	Providing Choices for Properties

	Relating Objects Together
	Associating Objects
	Adding Describing Concepts
	Capturing Business Rules for Collections

	Rapid Prototyping
	Fixtures for Setting Up Domain Objects
	Fixtures for Setting Up the Clock
	Fixtures for Setting Up User Sessions
	Organizing Fixtures into Hierarchies

	Creating Behaviorally Complete Objects
	Adding Behavior to Domain Objects
	Validating Action Arguments
	Making Actions Friendlier to Use
	Adding Finders to Repositories

	Implementing Business Rules
	Validation Recap
	Disabling Class Members
	Hiding Class Members
	Declarative Rules and the Object Life Cycle
	Validating the Entire Object

	Using Value Types
	Identifying Value Types
	Pushing Business Rules onto a Value Type
	Adding a Third-Party Value Type
	Specifying Defaults and Other Characteristics

	Isolating Infrastructure Services
	A Taxonomy of Services
	The Domain Object Container
	Dependency Injection
	Using Services in Fixtures
	Requirements for Writing Services
	Using Interfaces for Repositories
	Implementing a Calendar Service
	Hints and Tips for Writing Services

	Techniques
	Distributing Class Responsibilities
	Applying Coad Colors
	Factoring Out Objects
	Balancing Responsibilities
	Representing Large Collections with Finder
	Contributing Actions from Services

	Applying Domain Patterns
	Type as Factory Pattern
	Knowledge Level Pattern
	Null Object Pattern
	Role Object Pattern
	User Peer Object Pattern
	Strategy Pattern
	Process Object Pattern

	Keeping the Model Maintainable
	Analyzing the Structure of CarServ
	Decoupling by Moving Responsibilities
	Decoupling by Introducing Interfaces
	Layering Modules
	Decoupling by Splitting Classes
	Introducing an Application Package
	An Application Architecture Blueprint

	Scenario Testing
	Writing Developer Tests
	Scenario Testing Using FitNesse
	Getting Ready to Write Scenario Tests
	Writing Scenario Tests
	Hints and Tips

	Practices
	Developing Domain Applications
	The Layered Architecture
	Deployment Options
	Which Option to Choose?
	Development Activities
	Configuration Management
	Working Effectively

	Naked Objects as a Design Tool
	Using Naked Objects Only in Development
	Decoupling from the Framework
	Programming Model Interaction Protocol
	Changing the Programming Model

	Integrating with Web Frameworks
	Deploying an Embedded Metamodel
	Integrating Layers with the Custom Presentation Option

	Integrating with the Database
	Configuring XML Persistence
	Mapping Entities Using JPA Annotations
	Mapping Value Objects Using JPA Annotations
	Mapping Relationships
	Porting over Repositories
	Deploying and Running the Application

	Integrating Within the Enterprise
	Bounded Context Patterns
	Exposing a RESTful Web Service for Other Systems
	Integrating Using an Enterprise Service Bus

	Deploying the Full Runtime
	Deploying the Application
	Securing the Application
	Deploying the Sister Projects
	A CarServ Retrospective
	The DSFA Application
	Closing Thoughts

	Appendixes
	Programming Model Cheat Sheet
	Eclipse Templates
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

