
Prepared exclusively for Alison Tyler

What people are saying about

Developing Facebook Platform Applications with Rails.

Success with Facebook applications is one part idea, one part tech-

nical, and one part execution. Mike’s book does an amazing job cov-

ering all three. He takes you from evaluating your idea and thinking

about platform strategy through every step of building the application

and then even covers advanced strategies and considerations for scal-

ing. This book will save you a tremendous amount of time learning the

platform and building a successful viral application.

Keith Schacht

President, 42 Friends LLC, creators of Growing Gifts

Not only does Mike take the time to explain the technical details

required to build a Facebook application, but he also sheds light on

important ways to make your app successful, something not often

found in a programming book. Mike’s book taught me several new

tricks that I’m already putting into action to help improve the quality

and visibility of my apps.

Kyle Slattery

Lead Social Developer, Viddler

Mike Mangino knows Facebook development. “Sensei Mike’s” Karate

Poke dojo will teach you what it means to go viral, guiding you

through the development of your own Facebook app, and will prepare

you for your application’s success with discussions about optimization

and scaling. He makes Facebook Platform development with Rails as

simple as “wax on, wax off.”

Joseph Annuzzi, Jr.

CTO, PeerDynamic.com

Prepared exclusively for Alison Tyler

Download at Boykma.Com

I had been struggling to integrate Facebook with an existing online

game we had built on Rails. Thanks to this book, we were able to cre-

ate a dedicated Facebook app for GiftTRAP in a couple days. We’re

really excited to have such a cool viral marketing tool to market our

award-winning gift-exchange party game.

Nick Kellett

Inventor of GiftTRAP, gifttrap.com

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Developing Facebook Platform Applications
with Rails

Michael J. Mangino

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Facebook R© is a registered trademark of Facebook, Inc. and used by permission. All screen

shots of the Facebook Platform and the Facebook web site are copyright Facebook and are

used by permission of Facebook. This is not an official guide and was neither created nor

endorsed by Facebook.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Michael J. Mangino.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-12-3

ISBN-13: 978-1-934356-12-8

Printed on acid-free paper.

P1.0 printing, September 2008

Version: 2009-4-20

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.pragprog.com

Contents
Foreword 10

Acknowledgments 12

Preface 13

Understanding a Successful Facebook Application 14

Developing with Rails . 16

About This Book . 17

1 Getting Started with the Facebook Platform 20

1.1 Adding the Karate Poke Application 21

1.2 The Parts of a Facebook Application 21

1.3 Getting Inside the App 26

1.4 Setting Up and Running the App 27

1.5 Summary . 34

2 Starting Your First Application 35

2.1 Creating a Facebook Rails Application 35

2.2 Sending an Invitation . 39

2.3 Giving the Sender Some Feedback 43

2.4 Making Our Invitation Interactive 44

2.5 Updating the Profile . 45

2.6 Refactoring to Use Helpers 49

2.7 Summary . 51

3 Building the Karate Poke Object Model 52

3.1 Building the User Model 52

3.2 Accessing Facebook from Models 57

3.3 Creating the Move Model 59

3.4 Attack! . 60

3.5 Creating the Belt Model 63

3.6 Encouraging Invitations 66

3.7 Getting Data Out of Facebook 67

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CONTENTS 8

3.8 Refactoring and Performance 70

3.9 Summary . 74

4 Testing Our Facebook Application 75

4.1 Controller Tests . 75

4.2 Testing Models . 81

4.3 Summary . 84

5 Getting Into the Facebook Canvas 85

5.1 Getting Interactive with Forms 85

5.2 Building the Battles Page 91

5.3 Adding Navigation . 93

5.4 Hiding Content from Users 97

5.5 Adding Pagination . 101

5.6 Adding Some Style . 103

5.7 Summary . 104

6 Making It More Social 105

6.1 Sending Notifications . 105

6.2 Publishing to News Feeds 113

6.3 Comments and Discussion Boards 124

6.4 Spreading by Invitation 128

6.5 Giving the Profile a Makeover 131

6.6 Testing Facebooker Publishers 141

6.7 Summary . 142

7 Scripting with FBJS 143

7.1 FBJS Overview . 143

7.2 Ajax in FBJS . 150

7.3 Summary . 157

8 Integrating Your App with Other Websites 158

8.1 Making Content Accessible 158

8.2 Actions That Work Both Ways 160

8.3 Handling Facebook-Specific Data 161

8.4 Sharing Sessions . 164

8.5 Accessing Facebook Outside the Canvas 165

8.6 Summary . 169

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=8

CONTENTS 9

9 Scaling and Performance 170

9.1 Getting Faster with Memcached 170

9.2 Caching Our Views . 173

9.3 Caching with refs . 177

9.4 API Performance . 179

9.5 Summary . 185

Bibliography 186

Index 187

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=9

Foreword
In the early summer of 2007, when Facebook opened its doors to free

registrations from the wild and untamed Internet, I remember sarcasti-

cally thinking to myself, “Oh, great. Another social network. Just what

I need.” I had signed up for a number of social networks in the past and

gone through the same routine every time: hundreds of friend requests

lead to building out a friend list with which you can accomplish nothing

new. I assumed Facebook would be more of the same. But I’m a glutton

for punishment, so I signed up anyway.

What I found was remarkably different from the experiences I’d had on

other networks. At first, I got friend requests from the usual suspects.

We all signed up for the same networks as soon as they were available,

and we all looked each other up to connect and try it together. But

then, the requests started to ramp up rapidly. People I hadn’t seen or

thought about in years started to send me friend requests. Within a

couple of days, I had reconnected to people I wouldn’t have thought to

even search for. It was exciting and different in that it worked consid-

erably better than previous networks had in the past.

It was then that the Internet collectively realized the existence of a valu-

able asset that we all started calling the social graph. Your social graph

is the model and codification of your relationships with other people.

These relationships form the basis of the real killer app of the Inter-

net. Facebook brought this concept to the forefront by helping users

construct a real and interesting social graph more effectively than ever

before.

Then it released an API that allowed developers to plug into that pow-

erful social graph management system and create custom applications.

So, suddenly we had a massive install base of users, all well connected

with their personal circles of friends and colleagues, and we could write

applications to operate within this new flourishing ecosystem.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

FOREWORD 11

At my workplace, InfoEther, where I am CTO, we’d been focusing on the

as-yet-nameless concept of the social graph for a long time. We were

(and still are) working on a decentralized social networking platform,

and as soon as the Facebook Platform was announced, we knew we had

to hook into it. To do that, being Ruby developers, we needed a Ruby

Facebook library. Our requirements for this library were that it should

• be written as cleanly and elegantly as possible,

• be pure Ruby with no native extensions,

• be written in idiomatic Ruby style, and

• not depend on any libraries outside the standard Ruby

distribution.

Such a library didn’t exist, so I wrote Facebooker.

It was shortly after this that I met Mike Mangino at a regional Rails con-

ference in Chicago. He started talking about his own work developing

Facebook applications, and I encouraged him to try Facebooker. It was

clear from talking to him that, though I had written a Facebook client

library from scratch, he had a deeper knowledge and understanding

of how Facebook worked than I did. My not-so-secret goal was to coax

Mike into codifying his hard-won knowledge in the form of patches and

enhancements to Facebooker.

That’s exactly what he did. A couple of months later, I received a sub-

stantial patch for Facebooker filled with nice enhancements and fixes.

I decided to immediately give Mike commit rights to the project, and

it wasn’t long before he and another open source contributor, Shane

Vitarana, effectively took over the maintenance of Facebooker.

When Mike asked me to review this book, I was pleased to have the

opportunity but assumed it would be a boring read for me. After all,

I had written what is now the de facto standard Facebook library for

Ruby and Rails users. Surely, I wouldn’t learn anything.

I was very pleasantly surprised (and humbled). Facebook is a powerful

and expansive platform, and Mike Mangino is the most expert developer

in this platform I know. I learned a lot from reading this book, and

I’m happy to be able to add it to my library. If you’re doing Facebook

development on Rails or otherwise, there is no better resource available.

Chad Fowler

CTO, InfoEther Inc.

Longmont, Colorado

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=11

Acknowledgments
This book couldn’t have been written without the help of many people.

I’d like to thank Roy and Keith, who gave me a reason to start doing

Facebook development.

I’d also like to thank my employees. Michael Niessner helped me under-

stand how the Facebook API really works. Jonathan Vaught, Audrey

Eschright, and Jeremy Voorhis all helped carry the load while I was

spending my days writing. All four of them provided helpful feedback

on numerous drafts of this book.

This book builds on top of the excellent Facebooker library from Chad

Fowler and Patrick Ewing. They created a truly beautiful and Ruby-

like interface to Facebook. Thanks to Shane Vitarana, David Clements,

and rest of the Facebooker community for continuing to improve Face-

booker.

Thank you to Joseph Annuzzi, Peter Armstrong, Jon Gilbraith, Freder-

ick Ros, Keith Schacht, and Kyle Slattery, who reviewed copies of this

book. They provided insightful feedback that smoothed out the rough

edges. Special thanks to Charlie O’Keefe for his incredible feedback.

Charlie went above and beyond the call of duty, and the end result is

much better because of it.

I’d also like to give a very special thank you to Susannah Pfalzer. A

first-time author couldn’t ask for more in an editor. She was patient

and helpful throughout the entire process.

Most important, thank you, Jen, my beautiful wife, for your patience

during the many nights filled with writing. I love you and can’t put into

words how much you mean to me.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Preface
The Facebook Platform offers something for nearly every developer. You

might have an idea for the next killer social craze and need a way of

getting it in front of a large number of people. Maybe you have an exist-

ing application and need a new marketing channel. Even if you just like

playing with cutting-edge technology, you’ll find the Facebook Platform

gives you access to a wealth of information. From detailed information

about its users to being easy to develop for the Ruby API, the Facebook

Platform has it all.

The Facebook Platform allows you to build applications that take ad-

vantage of advanced social features without having to build them your-

self. It lets you leverage your users’ existing networks while providing

you with the tools to achieve rapid growth. Quite simply, the Facebook

Platform gets your application in front of more users faster than you

can any other way.

It’s hard to imagine that this comes from a platform that is barely a

year old. Since the platform’s release, more than 400,000 people have

registered as developers. In that time, more than 24,000 applications

have been built, with 140 new applications added every day. Even more

incredibly, 95 percent of Facebook’s 100 million users have used at

least one application built on the Facebook Platform.

So, how do you become one of them? You’ve taken a great first step.

You’ve decided to build a Facebook Platform application using Rails.

Don’t be nervous about everything you need to learn. Building a Face-

book application is like building any other web application. You build

pages in HTML and use JavaScript to make your application more

dynamic. You even spend way too long trying to get your CSS to work in

Internet Explorer. Once your application is ready to launch, you deploy

it to your own servers where it handles HTTP requests like every other

Rails application.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

UNDERSTANDING A SUCCESSFUL FACEBOOK APPLICATION 14

Of course, the application you build isn’t exactly like any other Rails

application. When you build an application for the Facebook Platform,

you’re not just writing code that uses an API; you’re becoming part of

Facebook. To your users, your application can look just like any other

part of Facebook.

Let’s take a look at an example Facebook application and why it is

successful.

Understanding a Successful Facebook Application

On any given day, about 500,000 little gifts are sent by the users of

Growing Gifts, an application created by Keith Schacht. With Growing

Gifts, shown in Figure 1, on the following page, you can send a flower

to any of your Facebook friends. The flower you send starts as just a

sprout and grows over four days in the recipient’s profile.

This seems like a simple little application, but it demonstrates a seri-

ous point about Facebook. Because it is so simple to install and use

applications, your application doesn’t have to provide nearly as much

value as it would outside Facebook. Facebook has reduced the cost of

using an application.

Let’s look at how Growing Gifts would work outside Facebook. If you

saw a gift on your friend’s website, you could click it and be taken to

the Growing Gift site. Once there, you would need to create an account

and verify your email address. Next, you would need to find and enter

the email addresses of your friends. Your friends would then receive an

email and go through the same process of signing up for an account.

Finally, they get to see their flower. They would need to return to the

Growing Gift website every day to watch their gift grow.

Now let’s look at the typical case for a new user sending a gift via Face-

book. If you see a gift you like in your friend’s profile, you can click the

gift. You are then prompted to authorize the Growing Gifts application.

You click Allow and are taken to a screen where you can send other

gifts to your friends. All you need to do is select a gift and then start

typing your friends’ names. Facebook even uses autocomplete to make

friend selection easy. Once you’ve selected a few friends, you can just

hit the Send button. Every day, when they return to Facebook, your

friends can see how your gifts have grown. That’s all it takes to give

your friends a little joy. Can you see why growing gifts is such a hit on

Facebook but would never work as a stand-alone site?

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=14

UNDERSTANDING A SUCCESSFUL FACEBOOK APPLICATION 15

Figure 1: Growing Gifts shows the power of a simple social

application.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=15

DEVELOPING WITH RAILS 16

By making applications easier to find and use, Facebook has opened

the door to a whole new class of application. Things that were too costly

before are suddenly successful. By cost, I don’t mean just the price of

the application; I mean the cost of your time and effort. In economics,

this is called the opportunity cost of your time. After all, I’m sure you

have something better to do than to create yet another account for a

web application.

The tips we’ll learn in this book were used to build Growing Gifts, which

is built using Rails. In fact, many of the features in the Ruby library for

Facebook, as well as the advanced Facebook techniques discussed in

Chapter 9, Scaling and Performance, on page 170, come from Growing

Gifts because Growing Gifts is a hugely successful application. With

more than 5 million users, Growing Gifts can teach us a lot about how

to build a compelling Facebook application.

Developing with Rails

We’re going to do more than just learn how to build a Facebook appli-

cation. Specifically, we’re going to learn how to build a Facebook appli-

cation with Ruby on Rails version 2.0. All the examples should work

on Rails 2.1 as well. There are some very compelling reasons to develop

your Facebook Platform application with Ruby on Rails. It all starts

with Facebooker.

Facebooker, a project originally started by Chad Fowler, has grown

to be an almost complete Ruby implementation of the Facebook API.

Facebooker is not the first Ruby interface to Facebook—that honor

belongs to RFacebook. RFacebook did not include much Rails integra-

tion and is no longer supported by its author. Facebooker is, however,

the first library with deep Rails support. Facebooker was designed to

make developing a Facebook application feel like building any other

Rails application.

With Facebooker, you get access to all the great Rails features that

you’re used to using. You can store information in a user’s session and

have it persisted between requests. You can easily use Ajax to make

your application more dynamic. You can define your database schema

using migrations.

On top of all this, you’ll also get some Facebook-specific features. You’ll

see a suite of view helpers to make integrating with Facebook a snap in

Chapter 5, Getting Into the Facebook Canvas, on page 85. Facebooker

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=16

ABOUT THIS BOOK 17

will provide you with an ActionMailer-like way of sending messages

through Facebook, which is covered in Chapter 6, Making It More Social,

on page 105. Finally, Facebooker makes it painless to turn your exist-

ing application into a Facebook application, as we’ll see in Chapter 8,

Integrating Your App with Other Websites, on page 158.

By developing your Facebook application with Ruby on Rails, you’re

getting the best of both worlds. You’re using a powerful and productive

framework to build an application for an incredible platform.

About This Book

In this book, we’ll do more than just talk about the Facebook Platform.

We’ll build a real application called Karate Poke, which is a game that

allows you to attack your friends. We’ll go on a tour of the API and build

features that use the majority of the platform. Once we have a working

application, we’ll look at the tips and tricks you can use to help your

application handle large amounts of traffic.

You’ll get more than just an introduction to Facebook development.

You’ll also get the complete code to the Karate Poke1 application. The

code for each chapter is available from the book’s website.2 Accessing

the code is even easier if you have the PDF. Just click the gray box

before each code snippet to view the file in your browser.

What You Should Know

We’ll build this application from the ground up, so you don’t need any

previous Facebook development experience. You will need to have a

Facebook account, and it would be helpful to have used Facebook

briefly. As we build our application, we’ll look at the various parts of

Facebook both as a developer and as a user.

Although you don’t need Facebook development experience, you will

need some Rails development experience. You don’t need to be a Rails

expert, but it would be beneficial to have written at least one applica-

tion. If you are new to Rails, I recommend purchasing Agile Web Devel-

opment with Rails [TH05] and working through it as you go.

1. http://apps.facebook.com/karatepoke

2. http://www.pragprog.com/titles/mmfacer

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://apps.facebook.com/karatepoke
http://www.pragprog.com/titles/mmfacer
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=17

ABOUT THIS BOOK 18

How the Book Is Structured

As I mentioned earlier, our goal in this book is to build a Facebook

application. Along the way, we will take a tour of the Facebook API.

We’ll start simple and become more advanced as we go.

We’ll start our tour by looking at the different parts of a Facebook

application. Next, we’ll get our development environment up and run-

ning. From there, we’ll look at some basic Facebook functionality before

building the back end of our application. Next, we’ll learn some Face-

book-specific tricks to make testing easier. Once we have our basic

model in place, we’ll turn our attention to some very Facebook-specific

concepts, starting with the Facebook Markup Language (FBML). Along

the way, we’ll look at how we can make our application more social

before finishing with a look at performance.

This book is not meant to be an exhaustive reference. Instead, it is

meant to be a tutorial that gets you up to speed quickly on the Facebook

Platform. If you are looking for detailed API information, you can find

it on the developer website.3 Throughout the book, I will link to the

developer documentation for features that are lightly covered.

Even though this isn’t an exhaustive reference, we will look at most

of the Facebook API while building our application. We will cover all

the most important features of Facebook Platform development. As we

go, we’ll focus on why we build our application this way and how all

the pieces fit together. We won’t touch on any of the business issues

involved, such as how to make money from our application. For the

most part, those issues are the same as any other website.

Aiming for a Moving Target

I would love for this book to be completely accurate forever, but unfor-

tunately, we’re tracking a moving target. Facebook released sweeping

changes to the way the platform works in the summer of 2008. This

book has been completely updated to include up-to-date descriptions

of the new API elements and new integration strategies. I’m sure next

year will be much the same. As such, occasional inaccuracies will creep

in. To stay up-to-date, check out the forums for this book as well as its

Facebook page.4

3. http://developer.facebook.com/documentation.php

4. http://forums.pragprog.com/forums/59 and http://www.facebook.com/pages/fpdwr/12146405638,

respectively

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developer.facebook.com/documentation.php
http://forums.pragprog.com/forums/59
http://www.facebook.com/pages/fpdwr/12146405638
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=18

ABOUT THIS BOOK 19

Part of being a Facebook developer is embracing change. Facebook

maintains a news site for developers that contains advance notice of

changes.5 Facebook also provides a feed of information about changes

made by each weekly release.6 As a developer, you should subscribe

to both feeds. Although most changes give at least a week or two of

advance notice, Facebook does make the occasional change with no

warning.

Changes will not be limited to just Facebook. The Facebooker library

used throughout this book is relatively new and will continue to evolve

over time. For the most up-to-date documentation, see the Facebooker

website.7

Thanks for joining me on this tour. If you have questions, you can ask

them on this book’s forum.8 If you build a really cool application that

you want to share with the world, post that there too. We have a lot to

do together, so let’s get started.

5. http://developer.facebook.com/news.php

6. http://www.facebook.com/feeds/api_messages.php

7. http://facebooker.rubyforge.org

8. http://forums.pragprog.com/forums/59

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developer.facebook.com/news.php
http://www.facebook.com/feeds/api_messages.php
http://facebooker.rubyforge.org
http://forums.pragprog.com/forums/59
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=19

Chapter 1

Getting Started with the
Facebook Platform

Congratulations on deciding to build a Facebook application using

Rails. You’re about to embark on an exciting journey. It’ll be a fun

journey with some interesting stops along the way, because you will

be in the driver’s seat. You’ll learn the basics of Facebook application

development by building a complete Facebook application throughout

this book.

The application we’ll build is called Karate Poke. It’s a simple game

where you battle your friends and other users. As you progress through

the game, you’ll earn karate belts and learn new moves. Although Kara-

te Poke may not be identical to the Facebook applications you’ll want

to build, it serves as a good introduction. It’s a small application, so

we’ll be able to build the whole thing as we go. It also uses almost the

entire Facebook API. We’ll see how to build invitations and notifications.

We’ll use most of the UI elements that Facebook provides. We’ll even be

able to use some advanced performance-tuning techniques to make it

handle the demands of millions of users.

In this chapter, we’ll start out by taking a tour of Karate Poke. After

we’ve seen the basics of Karate Poke, we’ll create an application using

the Facebook Developer tool. Next, you’ll set up your computer to run

a prebuilt test application. We’ll finish up by creating a few test users.

By the time we’ve finished this chapter, you’ll have gotten your feet wet

with Facebook development and will be ready to start coding. We have

a lot to do, so let’s get started.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

ADDING THE KARATE POKE APPLICATION 21

Figure 1.1: Facebook asks you to authorize an application before you

use it.

1.1 Adding the Karate Poke Application

Open your browser, and go to the URL1 for Karate Poke. You’re see-

ing the application authorization page shown in Figure 1.1. You must

authorize an application before it can get access to any of your infor-

mation. This is the first of several privacy features that are part of the

Facebook Platform.

When you authorize an application, you are giving it access to some

of your personal data. You allow that application to access your profile

information and your list of friends and even to send updates about

the activities you’ve performed. Along with these permissions, you can

elect to give an application the ability to do more on your behalf such

as add a box to your profile or send you email.

These permissions aren’t set in stone. You can change them and even

deauthorize an application at any time. As an application developer,

you’ll need to be aware of this. It’s important to make sure your appli-

cation degrades nicely when a user limits its capabilities.

1.2 The Parts of a Facebook Application

Now click Allow to authorize the application. Once you’ve done that,

you will be taken to the canvas page of Karate Poke. That seems like

a good place to start our tour of the three main parts of a Facebook

application: the canvas, the profile area, and messages.

1. http://apps.facebook.com/karate_poke

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://apps.facebook.com/karate_poke
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=21

THE PARTS OF A FACEBOOK APPLICATION 22

Figure 1.2: The canvas is where users interact with your

application.

The Facebook Canvas

The canvas page is the main place where your users interact with your

application. You’ll notice that it looks like any other Facebook page,

including the navigation area along the top. Facebook actually inserts

your application right into the middle of the page, just like a Rails lay-

out. You can see what this looks like in Figure 1.2.

We’ll cover the Facebook canvas in detail in Chapter 5, Getting Into the

Facebook Canvas, on page 85. You don’t need to know much about the

canvas yet, though. For the purpose of this demo, just go ahead and try

attacking one of your friends. You can select any move from the pull-

down menu. Once you’ve picked a move, start typing a friend’s name

into the text field. Isn’t that typeahead cool? That’s just one line of code!

Select any of your friends, and then click the Attack! button. Karate

Poke will let them know you’ve attacked them. You should be taken to

your battle history page where you’ll see the result of your attack. On

this page, you should now see an Add to Profile button. Click that, and

your battle record will be added to your profile.

The Profile Page

Click your name in the top navigation. Once your profile loads, click the

Boxes navigation link. At the bottom of the page you should see a box

from Karate Poke. Every Facebook application you install gets access

to a little box in your profile.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=22

THE PARTS OF A FACEBOOK APPLICATION 23

Figure 1.3: Applications can add data to a user’s profile.

You can see an example of this in Figure 1.3. The profile area is a place

to show off information about its owner. For instance, my Karate Poke

profile box shows my battle history. My Growing Gift profile box shows

gifts that my friends have sent me. If a user wants, they can feature

your application more prominently on the front page of their profile.

They can even give your application its own tab. We’ll see how this

works in Chapter 6, Making It More Social, on page 105.

Facebook doesn’t limit the amount of information an application can

write to a user’s profile, but it does limit the content. Facebook allows

advertising in the canvas but not in the profile.

Now that we’ve seen the canvas and profile, let’s move on to the last

major part of a Facebook application.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=23

THE PARTS OF A FACEBOOK APPLICATION 24

Figure 1.4: Facebook makes you approve a request before it is sent.

Messages

Along with giving you access to the canvas and profile, the Facebook

Platform also gives you several different types of messages. Your appli-

cation can send requests, notifications, and news feed items. This may

seem like a lot of different message types, but they all fill very differ-

ent needs. If you’re a Facebook veteran, you’ve probably used all these

message types without even noticing.

A request is exactly what its name implies—a request to perform an

action. When somebody asks to be your friend, that’s a request. A

request is just a message with buttons for performing actions. Your

application can send requests on behalf of a user but only to their

friends. Users must approve requests before they are sent. You can see

the approval process in Figure 1.4.

Notifications are similar to requests but lack the call to action. Your

application can send notifications on behalf of the user without requir-

ing their interaction. Unlike a request that can be sent only to a user’s

friends, notifications can be sent to any user of your application. Face-

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=24

THE PARTS OF A FACEBOOK APPLICATION 25

Figure 1.5: The Facebook feed shows relevant information from your

friends.

book limits the number of notifications that an application can send for

a user in a given day. Users can choose to block notifications from cer-

tain applications and can even mark a notification as spam. Be careful

sending notifications. If enough users mark your notifications as spam,

you’ll lose the ability to send notifications for thirty days.

News feed items are the last form of communication available to the

application developer. News feed items are what populate your wall

page. They tell your friends a little bit about what you’ve been doing.

Your friends’ news feed items are shown on your home page. Your appli-

cation can send quite a large number of news feed items each day, but

they aren’t guaranteed to be visible. Facebook tries to decide what is

interesting for each user and shows only a subset of the available items,

as you can see in Figure 1.5.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=25

GETTING INSIDE THE APP 26

1) A user requests a page from Facebook. 2) Facebook sends the request

to your server. 3) You send a response to Facebook. 4) Facebook pro-

cesses your response and puts your page into its layout and sends it

back to the user.

Figure 1.6: The path of a Facebook HTTP request

1.3 Getting Inside the App

Let’s dig in a little deeper to understand how your application actually

becomes part of Facebook. I’m going to start with the canvas since it will

probably be the largest portion of your application. Building the canvas

portion of your Facebook application is similar to any other website.

Your web server will receive requests and send back pages. Of course,

it’s a little different since your page ends up inside a Facebook page.

When a user requests a page from Facebook, Facebook passes that

request on to your application. Your application responds with your

content. Facebook then puts your page into the middle of theirs and

sends it back to the browser. You can see a picture of this in Figure 1.6.

This all happens seamlessly from your users’ perspective. In fact, it’s

pretty seamless from your standpoint as well. For the most part, you

can forget about Facebook standing between you and the user. Sure,

it’s not exactly like regular development, but it’s pretty close.

This may seem like a complex architecture, but Facebook has a good

reason for the complexity. By acting as a middleman, Facebook can

process the page you send back to the user. This allows Facebook to

insert your page into its layout and also to provide you with some really

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=26

SETTING UP AND RUNNING THE APP 27

powerful tools. We’ll look at this in detail in Chapter 5, Getting Into the

Facebook Canvas, on page 85.

Things are different for the profile. I have ten applications installed on

my profile page. If each application took even a second to respond, it

would take ten seconds to load my profile! To prevent long profile load

times, Facebook caches profile information. You can update it at any

time by just sending Facebook the new content to display. This can feel

a little strange at first, but you’ll be happy to avoid the millions of page

views you’ll get if your application develops a large following.

1.4 Setting Up and Running the App

Now that we’ve looked at the parts of a Facebook application, let’s actu-

ally create one. Before we write any code, however, we’re going to need

to do some configuration. We’ll start by using the Facebook Developer

tool to set up our new application. Once we’ve done that, we will run a

test application to make sure everything is in working order.

Creating a Facebook Application

First, you need to install the Facebook Developer application. If you

don’t already have a Facebook account, create one now. Next, go to

the main Developer application URL,2 and install the Developer appli-

cation. The Developer application lets you configure and manage your

Facebook Platform applications. Once you have it installed, its icon

should appear in the Applications menu in the top navigation bar of

every Facebook page.

Let’s take a brief look at the Developer application. To open it, click

Developer in the application list. You will be taken to its canvas page

where you should see something that looks like Figure 1.7, on the fol-

lowing page. From here, you can create new applications, edit existing

applications, and view basic statistics. The lower section of the page

includes a summary of recent developer forum posts and a news feed

from Facebook.

To create an application, click the Set Up New Application button in

the upper right. Facebook will send you to a screen where you can

enter the application name. The application name you choose here is

displayed in the application directory and is used in messages sent by

2. http://www.facebook.com/developers

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.facebook.com/developers
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=27

SETTING UP AND RUNNING THE APP 28

Figure 1.7: We’ll use the Developer application to create and configure

Facebook applications.

Figure 1.8: You’ve now created your first Facebook application.

your application. You can change it at any time, so just create a fun

name. For applications I’m working on, I typically use my name as the

application name.

Once you’ve agreed to the terms of service, click the Submit button to

create your application.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=28

SETTING UP AND RUNNING THE APP 29

Configuring Our Network

You’ve just created your first Facebook application! You should now see

an entry for your application like the one in Figure 1.8, on the previous

page. This summary page lists basic information about each application

you’ve created. You can return to this page at any time by clicking the

See My Apps link in the upper right of the main Developer page.

Before we can configure our application, we’ll need to configure our

network. During normal Rails development, you run script/server on your

machine. Your browser requests pages locally without your requests

ever leaving your computer. You can do all your development without a

network connection. In Facebook development, you request pages from

Facebook, which then sends requests to your computer. This means

that while you are developing your application, Facebook will need to

talk to your computer. If you develop on a laptop like I do, this means

you need to make your local web server available to the world at large.

If you’re working where your computer is directly connected to the

Internet, such as with a DSL or cable modem connection, you can just

open your firewall to allow connections on port 3000. (You are using

firewall software, aren’t you?) If you are behind a router, you will need

to configure port forwarding to send requests to your machine. Check

your router manual to find out how to do this. If you control your own

network, set that up now, and skip ahead to Section 1.4, Configuring

Our New Facebook Application, on the following page. If you don’t con-

trol your own network, things get a little trickier.

If you have access to a machine directly connected to the Internet, you

can use ssh to send requests to your local machine.3 For example, I have

a machine named mingus.example.com that is on the Internet. I can do

Facebook development from a coffee shop by running this:

$ ssh mingus.example.com -R :3001:127.0.0.1:3000 sleep 99999

This tells ssh to take port 3001 on mingus.example.com and forward it

to port 3000 on my local machine. I set my callback URL to be http://

mingus.example.com:3001. It’s important to include the first colon in the

-R argument. That tells ssh to listen on all interfaces. If you leave that

off, Facebook will not be able to connect to mingus. You also need Gate-

3. If you don’t have access to a properly configured server, you can use Tunnlr

(http://tunnlr.com) instead.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://mingus.example.com:3001
http://mingus.example.com:3001
http://tunnlr.com
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=29

SETTING UP AND RUNNING THE APP 30

wayPorts set to clientspecified in the sshd_config file on the server to which

you are connecting.

That’s a lot to remember. Instead of typing that cryptic command every

time you want to start a tunnel, you can use the rake tasks built into

Facebooker, the Ruby Facebook Platform development library. You’ll

need to set the parameters in the tunnel section of your facebook.yml

file. For the previous example, I would use this:

development:

...tunnel:

public_host_username: mmangino

public_host: mingus.example.com

public_port: 3001

local_port: 3000

With that in place, you can simply run rake facebooker:tunnel:start to set

up your tunnel.

If you work for a company that blocks ssh tunneling, you may be able

to use a DMZ proxy setup. To do this, you run a proxy server, such

as Squid or Apache, on a machine that is directly connected to the

Internet. You can have that machine send requests to your computer.

You may need to talk to your IT department to make this work.

If these options don’t work at your location, you could always try going

to a local coffee shop and developing from there!

Configuring Our New Facebook Application

We’re going to start by configuring Facebook to talk to a prebuilt appli-

cation. Click the edit settings page of your newly created application.

The edit settings page contains a huge number of options. Luckily, we

need to configure only four options. You’ve already set your application

name, so we can ignore that. You’ll also need to set a “callback URL.”

This is the URL Facebook uses to request pages from your application.

Now that we have our network configured, we can set up our callback

URL. You’ll need to know your IP address to tell Facebook how to talk

to you. There are many services4 that will provide this information.

From your application settings page, enter http://«your_ip»:3000/ into the

Callback URL field where «your_ip» is your IP address. It is critically

important that you include the trailing slash in your callback URL.

4. One example is http://whatsmyip.org.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=30

SETTING UP AND RUNNING THE APP 31

Figure 1.9: We need to configure our application to allow

installation.

If you do not, Facebook will have problems sending requests to your

application.

Once that is done, you need to pick a path for the canvas page URL.

All applications on Facebook are available at http://apps.facebook.com/

«canvas_path». The «canvas_path» that you pick must be unique. What

you choose will be visible to all your users but doesn’t have any impor-

tance beyond aesthetic value.

We’ll need to allow our application to be added by Facebook users. To

do that, click Optional Fields to show some additional options. Click Yes

next to “Can your application be added on Facebook?” and select Users

next to “Who can add your application to their Facebook account?”

Finally, enter your Facebook canvas page URL into the Post-Add URL

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=31

SETTING UP AND RUNNING THE APP 32

field. You can see what this looks like in Figure 1.9, on the previous

page. Save, and you will be returned to your application listing.

Configuring the Rails Application

Now you just need a Rails application! Download the code for this

book,5 and then go to the network_test directory. You need to edit con-

fig/facebooker.yml to tell it about your Facebook application. The API key

and secret key act as a username and password for your application.

We’ll look at them in more detail in Section 2.1, The Details of Facebook

Signatures, on page 37. Using your IP address and the canvas path you

set previously along with the API key and secret key, make the devel-

opment section of your facebooker.yml file look like this:

development:

api_key: «api_key»

secret_key: «secret_key»

canvas_page_name: «canvas_path»

callback_url: http://«your_ip»:3000

As an example, here is my facebooker.yml file:

development:

api_key: e34ec276c93b8b443fd15691c57908c5

secret_key: secret

canvas_page_name: mangino

callback_url: http://web1.tunnlr.com:10103

Once that is done, you can run script/server to start your web server.

With your web server running, let’s fire up a web browser and point it to

your server.6 You should see a “Hello from Rails” page. If you don’t, you

should double-check your network setup. If it works, try going to your

application on Facebook.7 If you see a “Hello from Facebook” message,

you’re all set!

Dealing with Errors

Of course, things don’t always work the first time. You’ll see a couple

of error messages a lot when working with Facebook. If you see “The

URL http://«ip»/«canvas_path» did not respond,” that means Facebook

couldn’t talk to your web server. Usually, this happens because you

5. The code is available at http://www.pragprog.com/titles/mmfacer/source_code.
6. http://«your_ip»:3000/network_test

7. http://apps.facebook.com/«canvas_path»

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.pragprog.com/titles/mmfacer/source_code
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=32

SETTING UP AND RUNNING THE APP 33

forgot to run script/server or because your network isn’t properly con-

figured. If you did start the server, make sure you can reach your web

server from outside your network.

If your application raises an exception, the error message will be shown

inside the Facebook canvas in development mode. If you see something

like Facebooker::Session::IncorrectSignature, it means you configured your

facebooker.yml file incorrectly. The API key and secret key are like a

username and password that you use to authenticate yourself to Face-

book. They not only allow Facebook to know that it is talking to you,

but they also allow you to verify that the request you are processing

came from Facebook.

This is tricky stuff, so don’t feel bad if it takes you a little while to get

everything working. I’ve set up a Facebook page8 to help you get up

and running. It has an up-to-date list of errata as well as discussion

forums. If you get stuck, feel free to ask for help. That’s why I created

the page.

Creating Test Accounts

Congratulations! You’re now running a Facebook application. In the

next chapter, you’ll start building your own application. Before you do

that, let’s take care of a couple of housekeeping issues. Since Facebook

applications are meant to be social, you will need more than one user

account to test some features. You can create several test accounts to

use before your applications are ready to be released.

Test accounts are very similar to regular accounts but come with a

few benefits. First, a Facebook test account can’t be friends with a reg-

ular user account. That means there is no danger you will acciden-

tally send a message to one of your friends while testing your applica-

tion. Additionally, Facebook won’t remove your test account for being a

fake account like it will for regular user accounts. Finally, using a test

account can help keep your test application from leaking to the gen-

eral public. Before Facebook created test accounts, one of my employ-

ees accidentally had his test application installed by more than 1,000

users. It was really starting to slow down his laptop!

Let’s create a test user. Test accounts start as regular users, so you’ll

need another Facebook account. To create one, you’ll need another

8. http://www.facebook.com/pages/fpdwr/12146405638

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.facebook.com/pages/fpdwr/12146405638
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=33

SUMMARY 34

email address. If you don’t have an unlimited supply of email addresses,

you can sign up with a free provider like Yahoo or Gmail. Once you have

an email address, create a new Facebook user. Log in to your new Face-

book account, and go to the test account creation URL.9 Your account

will now be a test account. You will probably want to create at least

three test accounts so that you can test actions between friends and

actions between nonfriends.

You can create boring names for your test users, like Joe Smith I and

Joe Smith II, or you can have a little more fun and create some alter

egos. I like to come up with creative names and profile pictures for my

test users.

Along with using test accounts, you can also restrict your application to

be visible only to developers. If you check the Developer Mode checkbox,

your application will be installable only by developers. This effectively

limits the spread of your application to just a small number of people.

Unfortunately, if you select this option, your test accounts will not be

able to install your app.

1.5 Summary

Look at all you accomplished in this chapter! You installed the Face-

book Developer application (and maybe created a Facebook account in

the process). You configured your network and actually ran an appli-

cation locally. You created some test user accounts so that you don’t

accidentally send strange Facebook messages to your boss. That’s all

well and good, but let’s get on with the coding!

9. http://www.facebook.com/developers/become_test_account.php

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.facebook.com/developers/become_test_account.php
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=34

Chapter 2

Starting Your First Application
So far, we’ve used Facebook’s Developer tool to create keys for an appli-

cation. We’ve also configured Facebook to talk to our computer and to

run a prebuilt application. After all that setup, let’s get started writing

Karate Poke.

In this chapter, we’re going to add two features found in many social

networking applications. We’ll start by building an invitation system to

allow our users to tell their friends about Karate Poke. From there, we’ll

add some content to our users’ profiles.

Before we do that, though, let me explain what the “Poke” in Karate

Poke means. Poke is a very simple Facebook application that allows you

to let another user know you’re thinking about them. When you poke

a user, they just receive a message telling them that they were poked

by you. Because of the simplicity of the application, developers quickly

created a number of variations on the poke concept. Poke applications

like Super Poke and X Me are some of the most popular applications on

Facebook.

2.1 Creating a Facebook Rails Application

In the previous chapter, we configured an application with the Devel-

oper tool. Now we’re going to write some code for Karate Poke.

Configuring Rails

First, we’re going to need a Rails application. Let’s create an application

called karate_poke:

$ rails karate_poke

...

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CREATING A FACEBOOK RAILS APPLICATION 36

Now that we have a Rails application, let’s turn it into a Facebook appli-

cation. We’ll do that by installing the Facebooker plug-in. Facebooker is

the Ruby library that knows how to talk to Facebook; we discussed it in

the preface. It provides access to the Facebook API, some view helpers,

and the glue that makes our application part of Facebook. The develop-

ment of Facebooker is hosted by GitHub.1 Git is a distributed version

control system that was designed to allow a large number of users to

contribute to a project. Starting with Rails 2.1, plug-ins can be directly

installed from Git repositories as long as you have Git installed.2

Run script/plugin install git://github.com/mmangino/facebooker.git to install

Facebooker. If you don’t have Git installed, you can download a com-

pressed archive of the plug-in and unpack it into your vendor/plugins

directory.3

If you are using a pre-2.1 version of Rails, you will also need to install

the json gem by running gem install json. If you are following along on

Windows, you should use the json-pure gem instead.

Next, we’ll need to do a little configuration to our Facebook application.

This next step should look familiar to you. Installing Facebooker will

create config/facebooker.yml. Open this file, and fill in the development

section. You can use the API key and secret key that came from the

application you created in Section 1.4, Configuring the Rails Application,

on page 32, or you can follow the same steps and create a new applica-

tion. I’m lazy, so I’m going to use my existing Facebook application.

Since you’ve had to do this step twice already, you’ve probably guessed

that these lines of code are important to a Facebook application. Let’s

look at what they actually do.

The first two lines are our application’s username and password. They

authenticate our application to Facebook. Just as importantly, they

let our application verify that requests are coming from Facebook. It

sounds odd that we need to verify that requests come from Facebook.

I’ll explain why in Section 2.1, The Details of Facebook Signatures, on

the following page.

1. The main repository page is available at http://github.com/mmangino/facebooker/tree/master.

You can find the API documentation at http://facebooker.rubyforge.org.
2. Git is available for all major platforms at http://git.or.cz/#download.
3. The plug-in can be downloaded from http://github.com/mmangino/facebooker/tarball/master

in .tar.gz format or from http://github.com/mmangino/facebooker/zipball/master in .zip format.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://github.com/mmangino/facebooker/tree/master
http://facebooker.rubyforge.org
http://git.or.cz/#download
http://github.com/mmangino/facebooker/tarball/master
http://github.com/mmangino/facebooker/zipball/master
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=36

CREATING A FACEBOOK RAILS APPLICATION 37

The next line tells Facebooker what to use for our application’s canvas

path. We talked about the canvas path in Section 1.4, Configuring Our

New Facebook Application, on page 30. Facebooker will automatically

include our canvas path in all our application’s links.

The last line is used to tell Facebooker where to find our server. Even

though all requests for our canvas pages go through Facebook, our

images will be requested directly from our server. By setting the call-

back_url parameter, Rails knows to use the hostname of our server

instead of apps.facebook.com.

The Details of Facebook Signatures

One thing we won’t do in this book is build a login controller. We can

depend on Facebook to handle authentication for us. In fact, Facebook

sends us the ID of the current user and their whole list of friends on

every request. That makes our life quite a bit easier. It also can cause

some security problems.

In typical web development, your application would never include a

logged-in user’s ID as part of the URL. After all, a malicious user could

change the user ID in the URL to access your application as a different

user. Facebook development is a little different.

In Facebook development, we never talk to our users directly. All re-

quests come from Facebook. To make sure this is the case, we can

verify the signature that is sent by Facebook on every request. A digital

signature is a way to use cryptography to verify that something actually

came from the person who it appears to be from.4 Facebook sends a

number of parameters that start with fb_sig. All these parameters are

used in the signature validation.

When Facebook sends our applications a request, it builds a string

that includes all the fb_sig parameters in alphabetical order. It then

adds our secret key to the end of that string and calculates the MD5

sum.5 Facebook then adds this signature to the request in the fb_sig

parameter. When Facebooker receives a request, it goes through the

same steps to recalculate the signature. If the value that Facebooker

calculates matches the one in our request, it proves that the request

came from somebody who knows our secret key. We also know that the

4. For more information, see http://en.wikipedia.org/wiki/Digital_signature.
5. MD5 is a cryptographic one-way hash function. You can learn more at

http://en.wikipedia.org/wiki/MD5.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/MD5
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=37

CREATING A FACEBOOK RAILS APPLICATION 38

request wasn’t changed after it was sent; if the request was changed,

the signatures wouldn’t match. If they don’t match, then we know that

the key the sender used to calculate the signature doesn’t match our

key. When that happens, Facebooker will raise an exception. You will

probably see this exception from time to time. It doesn’t normally come

from a forged request. It normally shows up when you have the wrong

key in your facebooker.yml file.

Setting Up the Controllers

Now that we have Rails configured, we need to do a little setup in the

application controller. Facebook limits the information we can learn

about users who haven’t authorized our application. To simplify devel-

opment, let’s start out by requiring that all of our users give us access

to their information. We’ll see (in Section 6.2, Making Our Application

More Visible, on page 117) how we can make our application visible

without requiring a user to allow access.

To require a user to allow access, we will need to call a method provided

by Facebooker to our application controller:

Download chapter2/karate_poke/app/controllers/application.rb

class ApplicationController < ActionController::Base

helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details

Uncomment the :secret if you're not using the cookie session store

protect_from_forgery :secret => 'a7cabcdf1499df9ded55d8a3797d9387'

ensure_authenticated_to_facebook

end

By default, Rails uses browser cookies to store session information.

This used to cause problems because early versions of the Facebook

Platform didn’t support cookies. Facebook recently fixed this issue, and

now Rails sessions work out of the box for users who have allowed

access. Facebook doesn’t provide cookie support or any other kind of

tracking for users who haven’t allowed access to our application.

We have just one more change to make before we’re ready to go. Start-

ing with version 2.0, Rails included a feature to stop cross-site forgery

attacks.6 Unfortunately, this feature doesn’t play well with Facebook.

We’ll need to disable it by editing environment.rb and setting allow_forgery_

protection to false, as shown here:

6. You can read about this at http://ryandaigle.com/articles/2007/9/24/what-s-new-in-edge-rails-better-cross-site-request-forging-pre

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter2/karate_poke/app/controllers/application.rb
http://ryandaigle.com/articles/2007/9/24/what-s-new-in-edge-rails-better-cross-site-request-forging-prevention
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=38

SENDING AN INVITATION 39

Download chapter2/karate_poke/config/environment.rb

Rails::Initializer.run do |config|

config.action_controller.allow_forgery_protection = false

Our setup is now done, and we’re ready to start coding.

2.2 Sending an Invitation

Now that we’ve configured our application, it’s time to actually write

code. We’re going to start by building an invitation system. Invitations

are one of the top tools our application can use to grow virally, dis-

cussed in the sidebar on page 46. Let’s start our implementation by

creating the Invitations controller.

Creating the Invitations Controller

We can create our controller using the Rails generator:

$ script/generate controller invitations

We’re going to use the new RESTful7 features of Rails to build Karate

Poke. REST stands for Representational State Transfer. Starting with

version 1.2, Rails provides support for creating applications using REST

principles. These conventions tell us that we should use the new action

to show a form. Before we do that, let’s set up our routes. To do that,

we’ll edit the default config/routes.rb file to make it look like this:

ActionController::Routing::Routes.draw do |map|

Tell Rails to make invitations into a resource

map.resources :invitations

Use our new method as the default page

map.root :controller=>"invitations", :action=>"new"

Install the default route as the lowest priority.

map.connect ':controller/:action/:id.:format'

map.connect ':controller/:action/:id'

end

With that little bit of setup out of the way, we can move on to the user

interface.

7. If you haven’t used the new RESTful Rails features, Geoffrey Grossenbach provides a

great overview at http://peepcode.com/products/restful-rails.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter2/karate_poke/config/environment.rb
http://peepcode.com/products/restful-rails
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=39

SENDING AN INVITATION 40

Creating the Invitation Form Using FBML

We’ll start building our user interface by creating a simple view:

Download chapter2/karate_poke/app/views/invitations/new.erb

<fb:fbml>

<fb:request-form

action="<%=new_invitation_path%>"

method="POST"

invite="true"

type="Karate Poke"

content="I added a cool application." >

<fb:multi-friend-selector

showborder="false"

actiontext="Invite your friends to use Karate Poke." />

</fb:request-form>

</fb:fbml>

That looks a little like HTML, but I bet you’ve never seen those tags

before. What you’re seeing is the Facebook Markup Language (FBML).

FBML is one of the most powerful features of the Facebook platform. It

acts as an extension to HTML that gives you some prebuilt user inter-

face components. FBML is translated into normal HTML when Face-

book processes your page. We’ll see a little bit of FBML here and will

cover it in great detail in Chapter 5, Getting Into the Facebook Canvas,

on page 85.

Before we get into the details of how the view works, let’s see what it

does. Start up script/server, and then open a browser to your invitation

page.8 Make sure you’re logged in as one of your test users. After click-

ing Allow on the authorization page, you should see something that

looks like Figure 2.1, on the next page. If you don’t, make sure you’ve

copied the code exactly. You should also make sure the test user you’re

using has at least one friend.

That’s pretty impressive for just a few simple lines of code! Since there

are only three different FBML tags in our view, let’s look at each one.

The first tag, <fb:fbml>, is similar to the <html> tag. It marks the start

of an FBML document. Your canvas pages will still work without the

<fb:fbml> tag, but it is required for profile pages. It’s best to get into

the habit of always wrapping your pages in an <fb:fbml> tag.

The next tag, <fb:request-form>, starts a special type of Facebook form.

This special form allows your application to create Facebook requests.

8. http://apps.facebook.com/canvas_path/invitations/new

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter2/karate_poke/app/views/invitations/new.erb
http://apps.facebook.com/canvas_path/invitations/new
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=40

SENDING AN INVITATION 41

Figure 2.1: Our Facebook invitation page

It takes most of the normal form parameters such as action and method

along with three additional parameters: type, invite, and content. The

type parameter specifies what text shows up on the submit button.

It’s used to tell users what type of request they are sending. The invite

parameter simply changes the title of the message. If invite is set to true,

the title reads “You have a Karate Poke invitation.” When set to false, it

reads “You have a Karate Poke request.” Finally, the content parameter

gives the body of the message that is sent to the selected users.

The final tag, <fb:multi-friend-selector>, is responsible for rendering

the actual friend selector. Facebook provides several different friend

selectors. They all achieve the same goal but have different interfaces.

This selector allows you to click images for your friends and includes

multiple tabs. We’ll look at another friend selector in Section 5.1, Build-

ing Our First Form, on page 86.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=41

SENDING AN INVITATION 42

Working with Multiple Users

Since Facebook is a social platform, you should plan to spend a
lot of time using two accounts. We’ll spend a lot of time sending
requests and notifications between two users. You’ll get really
frustrated if you have to log out of one account and log in to
another every time you want to view the invitation you just sent.

To make life a little easier, I normally use two different browsers,
either Firefox and Safari or Firefox and Internet Explorer depend-
ing upon my current development platform. This will allow you
to stay logged in to both accounts at once. As a bonus, you
can test your CSS in multiple browsers at the same time too!

If it feels like I’m going really fast, don’t worry. We have only a few more

FBML tags to examine. After that, we won’t learn any new FBML until

we get to Chapter 5, Getting Into the Facebook Canvas, on page 85. If

you want to learn more before then, you can find a wealth of informa-

tion about FBML on the Facebook wiki.9

So, let’s try the invitation functionality. (The Skip button doesn’t work

yet, but it will later when we revisit invitations in Section 6.4, Spreading

by Invitation, on page 128.) Use the friend selector to send a request to

one of your test accounts. We set the action of the form to new_invitation_

path, so we’ll end up right back on this page after sending an invitation.

Try that now. It’s pretty hard to tell that your request was sent. Let’s

make a note to fix that later.

Now that we’ve sent a request, let’s see what it looks like for the recip-

ient. Log in as the user you sent the request to, and take a look at

the upper-right corner of your home page.10 You should see a message

telling you that you have a new request. When you click that message,

you will be taken to a page where you can see the request. Our request

is a little boring. It certainly doesn’t invite you to interact with our appli-

cation. It would be much nicer if the request asked you to take some

action.

We have a basic invitation page working, but it’s confusing for the

sender and boring for the recipient. We’ll make things less confusing

for the sender next.

9. http://wiki.developers.facebook.com/index.php/FBML

10. By home page, I mean http://www.facebook.com/home.php.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/FBML
http://www.facebook.com/home.php
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=42

GIVING THE SENDER SOME FEEDBACK 43

2.3 Giving the Sender Some Feedback

Let’s change our invitation form to tell the sender to whom they sent

an invitation.

Earlier, I mentioned that <fb:request-form> takes the normal form

parameters. One of those parameters, action, controls where the user

is directed when the form is submitted. Let’s change our controller to

have a create method and send the user there.

Let’s change new.erb to post the form to the create action:

<fb:fbml>

<fb:request-form

action="<%=invitations_path%>"

method="POST"

invite="true"

type="Karate Poke"

content="Attack your friends. Install Karate Poke now." >

<fb:multi-friend-selector

showborder="false"

actiontext="Invite your friends to use Karate Poke." />

</fb:request-form>

</fb:fbml>

Now we’re ready to implement the create action. As part of the invitation

process, Facebook will send our application the list of recipients for our

invitation. We get this list in the ids parameter. Let’s take this list of IDs

and display it to the screen:

Download chapter2/karate_poke/app/controllers/invitations_controller.rb

def create

@sent_to_ids = params[:ids]

end

Now that we have a list of users, we need a view to display them.

Rails is going to try to render create.erb, so let’s create that file in

app/views/invitations:

<fb:fbml>

<% for user in @sent_to_ids %>

<%= user %>

<% end %>

<%= link_to "Send another invitation",new_invitation_path %>

</fb:fbml>

Give it a try! After you send an invitation, you should see a list of inte-

gers on your screen. Those are the Facebook IDs of our invitation’s

recipients. Facebook uniquely identifies each user with an integer ID.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter2/karate_poke/app/controllers/invitations_controller.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=43

MAKING OUR INVITATION INTERACTIVE 44

Showing the IDs is a little bit better than just showing the form again,

but not much. Instead of showing the user IDs, let’s show the users’

names and profile pictures.

We could ask Facebook to give us this information (we’ll learn how in

Section 3.7, Using the Facebook API , on page 69), but instead, we’ll

make Facebook do the work for us. We can use two special FBML tags

here: <fb:name> and <fb:profile-pic>. Both take a uid parameter that

tells Facebook which user’s information to show:

Download chapter2/karate_poke/app/views/invitations/create.erb

<fb:fbml>

<% for id in @sent_to_ids%>

<fb:profile-pic uid="<%=id%>" />

<fb:name uid="<%=id%>" />

<% end %>

</fb:fbml>

OK, try it. You should see the image of the friend to whom you sent the

request. In general, we want to make Facebook do as much work as

possible. It’s not just because we’re lazy but also because it will make

our pages load faster. We’ll use FBML instead of the API whenever we

get the chance. With that finished, let’s move on to making our requests

more interactive.

2.4 Making Our Invitation Interactive

We have made our invitation-sending system more interesting for the

sender, but the recipient still can’t do anything with it. Let’s add a

button to the request. We’ll use yet another FBML tag, <fb:req-choice>,

to add a Send Invitation button to our message.

<fb:req-choice> is a simple tag that works a lot like a link. You provide

a URL and a label, and Facebook will render a button in the request.

Let’s add a button to our request that takes the user to our invitation

form. We’ll also include the ID of the sender in our request so that we

can track who invites the most users.

First, we’re going to need to get the Facebook ID of the sender. Let’s

create a new action in invitations_controller.rb to get this data. We can get

the user ID from Facebook using the facebook_session object. We’ll talk

more about what this does in Section 2.5, Updating the Profile, on the

following page.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter2/karate_poke/app/views/invitations/create.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=44

UPDATING THE PROFILE 45

def new

@from_user_id = facebook_session.user.to_s

end

With that done, let’s return to new.erb. I mentioned that <fb:req-choice>

adds a button to our invitation’s message. That means we need to add

the tag to the content attribute of the <fb:request-form> tag.

Since we want to send the recipient to the new action, we can use our

new_invitation_url as the value for the url attribute. Ignore the :canvas=>

true parameter for now. We’ll talk about that in more detail in Sec-

tion 6.5, Giving the Profile a Makeover, on page 131. Also, make sure to

use new_invitation_url and not new_invitation_path. You’ll see why in a bit.

content="Attack your friends. Install Karate Poke now. \

<fb:req-choice

url="<%=new_invitation_url(:from=>@from_user_id,:canvas=>true)%>"

label="Attack!" />"

That’s almost right. Since we’re adding a tag inside another tag, we’re

going to have to do some escaping. We can use the Rails h method to

escape our HTML:

content="Attack your friends. Install Karate Poke now. \

<%=h "<fb:req-choice

url=\"#{new_invitation_url(:from=>@from_user_id,:canvas=>true)}\"

label=\"Attack!\" />"%>"

Give it a try. You should see a button at the bottom of your request. I

know the view code looks a little ugly. We’ll clean that up before the end

of the chapter.

2.5 Updating the Profile

Now that we have invitations working, let’s make it more obvious who

has installed our application by putting some information in our users’

profiles. Let’s add a message telling the world who invited our user to

install the application. Remember that a user’s profile is different from

a canvas page. We’re going to have to ask Facebook to store some profile

information for us.

Facebooker provides a very nice interface for working with the Facebook

API. Through this interface we have access to objects that represent

users, events, networks, and many other Facebook objects.

Access to this API starts in the controller with the facebook_session

method, which always gives you the session object for the current

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=45

UPDATING THE PROFILE 46

Growing Virally

You’ve probably heard the term viral growth. Viral growth is the
spread of something from one person to another. It’s named
after the way viruses like the flu spread. One person gives it to a
few of their friends, who give it to a few of their friends. Before
you know it, a large part of a community is infected.

Facebook applications tend to spread this way. Facebook pro-
vides tools such as invitations, notifications, and news feed
items that can help your application spread without need-
ing a huge advertising budget. Although these tools can help
your application spread, nothing is as important as creating an
application that your users want to use.

Since viral growth depends on your users encouraging new
users to join, we can measure the viral coefficient of your appli-
cation by looking at the average number of new installations
generated by each new user. For instance, if each new user
convinces three of their friends to join, you have a viral coef-
ficient of 3.0. If you have 100 users and they convince 130 of
their friends to join, you have a viral coefficient of 1.3. If your
application starts with 100 users and a viral coefficient of 1.3, it
will have almost 8,000 users in twelve weeks. By week 24, your
application will have more than 180,000 users.

If instead your application generated only one install for each
new user, your application would have only 1,200 users after
twelve weeks and 2,400 users after twenty-four weeks. Things
are even worse if your application has a viral coefficient less
than one. A small difference in your application’s viral coeffi-
cient makes an enormous difference in how your application
spreads.

There’s no magic bullet for making your application viral. You
can monitor your viral coefficient as you go and see how your
changes affect it. Keep the changes that increase your coeffi-
cient, and eliminate those that don’t. Your goal is to keep it to
more than one.

Even if you manage to create an application with a high viral
coefficient, don’t expect it to stay high forever. At some point
your application’s growth will start to fall off. That happens when
you saturate your market. Don’t feel bad. If that didn’t happen,
we’d all have the flu all the time.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=46

UPDATING THE PROFILE 47

viewer. For instance, to get a list of photo albums for the current user,

we could use facebook_session.user.albums. We can even view the current

contents of a user’s profile area using facebook_session.user.profile_fbml.

Some values, like profile_fbml, can be changed as well:

@user = facebook_session.user

@user.profile_fbml = "<fb:fbml>Profile Content</fb:fbml>"

Now that we know how to add content to a user’s profile, let’s add

some content of our own. When a user adds our application, let’s add a

link to their profile that their friends can use to install Karate Poke. In

Section 2.3, Giving the Sender Some Feedback, on page 43, we added

a button to the request that took the receiver to the new invitation

page and set the from parameter on the link. Let’s add a check for that

parameter in our new action and set some profile content for new users.

It can take several seconds to write to a user’s profile, so we don’t want

to write to a user’s profile each time they load the page. Every time we

use the Facebook API we’re sending an HTTP request to the Facebook

servers.11 Even just setting the profile content is enough to cause a

noticeable slowdown. To minimize the slowdown caused by updating a

user’s profile, let’s add content only if the user comes from an invitation:

def new

if params[:from]

@user = facebook_session.user

@user.profile_fbml =

"<fb:fbml>

<a href='"+

new_invitation_url(:from=>@user.to_s,:canvas=>true)+

"'>Attack your friends, install Karate Poke"+

"
I was sent here by "+

"<fb:name uid='#{params[:from]}' /></fb:fbml>"

end

@from_user_id = facebook_session.user.to_s

end

Even though our application will set profile information for our users,

it won’t necessarily be displayed. Facebook requires that a user grant

an application permission to add information to their profile before it

shows up. We’ll need to add a special tag to our view to ask for that

permission.

11. The Facebook session object looks like a regular Ruby object but

behaves differently. This is what Joel Spolsky calls a leaky abstraction. See

http://www.joelonsoftware.com/articles/LeakyAbstractions.html.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=47

UPDATING THE PROFILE 48

We’ll need to add the <fb:add-section-button> tag to our new.erb file.

This tag renders a button when our application has set profile content

for a user and that user hasn’t already given permission to display

content in their profile. Add the following code to the beginning of our

new.erb file:

<fb:add-section-button section="profile" />

...

Try that. After you send an invitation to one of your test accounts, log

in as the test account, and look at your requests. You should see the

request you just sent. Once you find that request, click the Attack! but-

ton. You will be taken to the invitation page we built. After clicking the

Add to Profile button, you should also have a new box in your profile!

I’m glad that this works, but I’m uncomfortable having view code in

our controller. Let’s clean that up a little. Let’s move our profile dis-

play to a partial and use render_to_string to get the content. We’re using

render_to_string instead of render here for a reason. Render sends a page

back to the browser. We don’t want to send the profile content to the

browser; we want to turn it into a string we can send to Facebook. In

the end, our view should look like this:

Download chapter2/karate_poke/app/views/invitations/_profile.erb

<fb:fbml>

I was sent here by <fb:name uid='<%= from %>' />

</fb:fbml>

And our new action should look like this:

def new

if params[:from]

@user = facebook_session.user

@user.profile_fbml =

render_to_string(:partial=>"profile",

:locals=>{:from=>params[:from]})

end

@from_user_id = facebook_session.user.to_s

end

That still feels a little ugly. We can easily make it more readable.

def new

if should_update_profile?

update_profile

end

@from_user_id = facebook_session.user.to_s

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter2/karate_poke/app/views/invitations/_profile.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=48

REFACTORING TO USE HELPERS 49

def should_update_profile?

params[:from]

end

def update_profile

@user = facebook_session.user

@user.profile_fbml =

render_to_string(:partial=>"profile",

:locals=>{:from=>params[:from]})

end

The controller doesn’t feel like quite the right place to be updating

our users’ profiles, but that’s good enough for now. We’ll see a bet-

ter way to update profiles in Section 6.5, Giving the Profile a Makeover,

on page 131. Let’s move on to some more important cleanup.

2.6 Refactoring to Use Helpers

We’ve built all the functionality we talked about for this chapter, but

we’re not quite done yet. We shouldn’t finish the chapter without doing

a little cleanup. After all, building FBML by hand doesn’t feel very

Railsy.

It would be nice if there were helpers we could use to make our code

easier to read. Thankfully, Facebooker provides us with FBML helpers.

We’ll use a few of them to clean up our views.

Let’s start by cleaning up our invitation form. Including our message

as an attribute and having to escape the FBML in it was really ugly.

Facebooker provides us with the fb_multi_friend_request helper to replace

the entire <fb:request-form> that we used previously. This helper uses

a block to receive the message:

<fb:fbml>

<fb:add-section-button section="profile" />

<% fb_multi_friend_request("Karate Poke",

"Invite your friends to use Karate Poke.",

invitations_path) do %>

Attack your friends. Install Karate Poke now.

<%= fb_req_choice("Attack!",

new_invitation_url(:from=>@from_user_id, :canvas=>true))%>

<% end %>

</fb:fbml>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=49

REFACTORING TO USE HELPERS 50

That feels much better! Compare our new version to this:

<fb:fbml>

<fb:add-section-button section="profile" />

<fb:request-form

action="<%=new_invitation_path%>"

method="POST"

invite="true"

type="Karate Poke"

content="I added a cool application." >

<fb:multi-friend-selector

showborder="false"

actiontext="Invite your friends to use Karate Poke." />

</fb:request-form>

</fb:fbml>

That feels much more like Rails code. The fb_multi_friend_request helper

handles both the <fb:request-form> and <fb:multi-friend-selector>

tags for us. Inside the block, we can specify request choices using the

fb_req_choice helper.

We’re going to use the Facebooker helpers throughout the rest of this

book. We’ll look at the generated FBML the first time we use a helper.

If you ever want to see the FBML that a helper generates, you can

see it by viewing the source of the page that Facebook sends to your

browser. Facebook includes the FBML as a comment to developers of

applications. Let’s take a look at that now. Go to your invitation page

as the user who created the application, and view the source in your

browser:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en" id="facebook">

<!--Rendering the page using the following FBML retrieved from

http://mingus.example.com:3000/invitation You are seeing this

because you are a developer of the application and this information

may be useful to you in debugging. The FBML will not be shown to other

users visiting this page. (dashes were replaced with underscores):

<fb:fbml>

<fb:request_form

action="/karate_poke/invitation"

method="POST"

invite="true"

type="Karate Poke"

content="Attack your friends. Install Karate Poke now." >

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=50

SUMMARY 51

<fb:multi_friend_selector

showborder="false"

actiontext="Invite your friends to use Karate Poke." />

</fb:request_form>

</fb:fbml>

-->

Unfortunately, as the comment says, Facebook writes the FBML into

pages only when you are the developer of the application. Since test

accounts can’t be listed as developers, that means we can’t view the

FBML using our test accounts. Even with that restriction, the ability to

view generated FBML can make it much easier to debug FBML issues.

Now that we’ve cleaned up the invitation, let’s clean up our create view

and our profile view. We built <fb:name> and <fb:profile-pic> tags by

hand in both of those. We can use the fb_name and fb_profile_pic helper

methods instead:

<fb:fbml>

<% for id in @sent_to_ids%>

<%= fb_profile_pic id %> <%= fb_name id %>

<% end %>

</fb:fbml>

OK, just one more cleanup to go. Since we’re typing <fb:fbml> in every

view, let’s move that to our app/views/layouts/application.erb file:

<fb:fbml>

<%= yield %>

</fb:fbml>

I feel much better after doing that cleanup. I hope you do too.

2.7 Summary

Wow, this has been a productive chapter. We created a new Rails appli-

cation and turned it into a Facebook application. We built an invitation

interface and updated our users’ profiles. Along the way, we even got

an introduction to FBML. That was a lot to learn, but don’t worry—we’ll

slow down a little when we build the Karate Poke object model.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=51

Chapter 3

Building the Karate Poke
Object Model

We’ve started building Karate Poke, but we can’t do very much with it

yet. In fact, all we’ve done is send an invitation. In this chapter, we’ll

build the object model of Karate Poke. We’ll start by creating a User

model. With that in place, we will create a Move model and use it in an

Attack model. With the basics done, we’ll add back-end support for some

more advanced social features. We’ll wrap up with a look at common

causes of performance problems caused by the model layer.

Even though we’re building an object model for Karate Poke, you’ll see

a lot of concepts that can be used in other applications. We’ll look at

how to create a model to represent Facebook users. We’ll see how to

access Facebook sessions from inside our models. Finally, we’ll look at

some performance topics that are particularly important to Facebook

applications.

3.1 Building the User Model

It seems like every Rails application has a User model in it. Karate Poke

is no exception. Our User model will be different from the ones we’ve

built before. For instance, we won’t need to worry about authentication,

since Facebook already handles that for us. We also won’t need to write

code to handle user sign-up. Once again, Facebook has it covered. We

won’t even need to store much information about the user, since we

have access to the Facebooker::User class, which we’ll see in more detail

in Section 3.7, Using the Facebook API , on page 69.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

BUILDING THE USER MODEL 53

Our User model will primarily act as a bridge between the Facebooker::

User class and our other models. We’ll start by building a simple User

model with just a few fields. Next, we’ll build methods for creating users.

With that in place, we can integrate our model with our controllers.

Creating the User Model

Since our User model doesn’t need to store much data, it should be

really easy to build. Let’s start by creating the model:

$ script/generate model User

Now we just need to edit the generated migration. We’ll need only two

fields and the timestamps:

Download chapter3/karate_poke/db/migrate/002_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.integer :facebook_id, :limit=>20, :null=>false

t.string :session_key

t.timestamps

end

end

def self.down

drop_table :users

end

end

The facebook_id field should look familiar. We saw it in Section 2.3,

Giving the Sender Some Feedback, on page 43. You can ignore the ses-

sion_key field for now. We won’t need to worry about it until Section 3.2,

Accessing Facebook from Models, on page 57.

Notice that there is no name field. There’s a good reason we didn’t

include one. Facebook’s terms of service limit what information we can

store in our application. We’ll talk about this in Section 3.1, What Infor-

mation Can We Store?, on page 56.

Before we can use our User model, we’ll need to run rake db:migrate. Our

application will also need to create User instances. Let’s do that next.

Putting Our User to Work

Now that we have a User model, let’s use it in our application. We’ll

need at least two points of integration. First, we’ll need to create a User

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/db/migrate/002_create_users.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=53

BUILDING THE USER MODEL 54

Facebook and 64-Bit IDs

Our user migration included something you don’t often see. By
specifying a limit of 20 on our facebook_id column, we asked
Rails to create a 64-bit integer. Facebook recently announced
a move to 64-bit user IDs. I guess it expects to have more than
4 billion users soon.

That’s good news if you’re building an application that will be
used by every human on the planet, but it can cause a little
pain for MySQL users. Although most databases support 64-bit
integers, MySQL migrations didn’t until Rails 2.1. If you’re on Rails
2.1, you should be ready to go. If you’re on an earlier version of
Rails, you’ll need to install the MySQL bigint plug-in.∗

∗. Available at http://svn.northpub.com/plugins/mysql_bigint

instance whenever a user accesses our application for the first time.

Second, we’ll need a way to access the User model for the current viewer.

We talked about how Facebook uses an ID parameter to uniquely iden-

tify each user in Section 2.3, Giving the Sender Some Feedback, on

page 43. Let’s add a method that will create a User instance given a

Facebook ID.1

class User < ActiveRecord::Base

def self.for(facebook_id)

User.create_by_facebook_id(facebook_id)

end

end

Now we need to figure out where to use this method. Our first goal is to

make sure we have User instances for each of our users. We can do that

by creating a before filter in application.rb:

before_filter :create_user

def create_user

User.for(facebook_session.user.to_i)

end

1. You won’t be able to find the create_by_facebook_id method in any of the Rails or

Facebooker documentation. It is a dynamic method that is created by ActiveRecord on

first use. See http://api.rubyonrails.com/classes/ActiveRecord/Base.html for more information.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://svn.northpub.com/plugins/mysql_bigint
http://api.rubyonrails.com/classes/ActiveRecord/Base.html
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=54

BUILDING THE USER MODEL 55

Our filter simply calls our for method and passes in the viewer’s Face-

book ID. We used the facebook_session briefly in the previous chapter.

We’ll look at it in more detail in Section 3.2, Accessing Facebook from

Models, on page 57.

Oops, I see a problem. We’re going to end up creating a lot of User

objects. Let’s change our method to create a User object only if one

doesn’t already exist:

def self.for(facebook_id)

User.find_or_create_by_facebook_id(facebook_id)

end

That should work better. Now, we’ll have a User object for each person

who uses our application. That takes care of our first point of integra-

tion. We also wanted a way to access the User instance for the current

viewer. Let’s follow the convention of Rick Olson’s Restful Authentica-

tion plug-in2 and use a method called current_user to represent the cur-

rently logged in user. We can create an attribute for the current user

and set it in our filter:

attr_accessor :current_user

before_filter :create_user

def create_user

self.current_user = User.for(facebook_session.user.to_i)

end

That works, but our filter is incorrectly named now. Let’s rename it to

be a little clearer:

attr_accessor :current_user

before_filter :set_current_user

def set_current_user

self.current_user = User.for(facebook_session.user.to_i)

end

There’s just one more thing we need to do. We wanted to make the

current_user available to our views as well. We could add a current_user

method in ApplicationHelper, but there’s an even easier way to do this.

Rails provides the helper_attr method for making controller methods

available to views. Let’s use it here:

Download chapter3/karate_poke/app/controllers/application.rb

helper_attr :current_user

2. Described at http://weblog.techno-weenie.net/2006/8/1/restful-authentication-plugin

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/controllers/application.rb
http://weblog.techno-weenie.net/2006/8/1/restful-authentication-plugin
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=55

BUILDING THE USER MODEL 56

That takes care of everything we need for user management. It feels

good not to have to worry about email address validation and all the

hassles of user creation. Let’s forge ahead with our object model.

What Information Can We Store?

Before you store information about your Facebook users, make sure

you take a look at the Facebook terms of service.3 Facebook allows

you to store only the IDs of events, networks, and users. Although that

sounds extremely limiting, it isn’t that bad. In fact, Facebook has two

good reasons for this policy.

First, by requiring your application to request information on each page

view, it can provide a very fine-grained privacy implementation. Each

request you send to Facebook, either as an FBML tag like <fb:name>

or via an API request, is executed in the context of the current viewer.

For example, if only friends can see my name, <fb:name> will return

“Mike Mangino” for my friends and “” for people who aren’t my friend.

The same thing happens if I call the name method on a Facebooker::User

instance. Facebook would have a hard time enforcing this restriction if

each application stored the names of its users.

Second, along with enforcing privacy controls, Facebook’s policy also

improves data consistency. You can think of it like a normalized data-

base schema. Facebook is ensuring that a user’s friend list is stored in

only one place. If this weren’t the case, each application would need to

be updated every time one of their users changed any of their informa-

tion. This would quickly become unwieldy.

In practice, this policy doesn’t hurt as much as it sounds like it could.

You’ll find that there is very little information you want to store that

can’t be written with an FBML tag. Additionally, Facebook does relax its

data storage prohibition slightly in the interest of performance. You are

allowed to store information for caching purposes for up to twenty-four

hours. We’ll talk more about caching for performance in Section 9.2,

Caching Our Views, on page 173, but I’ve never had to take advantage

of this provision.

3. http://www.facebook.com/developers/tos.php

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.facebook.com/developers/tos.php
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=56

ACCESSING FACEBOOK FROM MODELS 57

3.2 Accessing Facebook from Models

We’ve seen the facebook_session method several times now. The Face-

booker::Session object represents a user’s session with Facebook. Face-

book uses sessions to verify that our application is performing actions

on behalf of an active user. When we want to send a notification on

behalf of our user, we will provide Facebook with that user’s session

information. Facebook will verify that the session does in fact belong to

the requesting user and will also verify that the user has been active

on our application within the past hour. Facebook uses the session to

prevent applications from taking action on behalf of a user who isn’t

actively using them.

The facebook_session is created by Facebooker from our application’s

API key, our secret key, and the session key of the current user. The

session key is a value Facebook sends our application on each request.

Facebooker will automatically create a session object for us on each

web request. If we want to use the session outside a request, we’ll have

a little problem. We’ll see some of these situations in Section 9.4, Move

API Calls Out of Line, on page 184.

We created a session_key column in our users table earlier. We’re going to

put it to use now. Let’s update our for method to store the session key:

def self.for(facebook_id,facebook_session=nil)

returning find_or_create_by_facebook_id(facebook_id) do |user|

unless facebook_session.nil?

user.update_attribute(:session_key,

facebook_session.session_key)

end

end

end

You’ll notice that the facebook_session parameter is optional. You’ll see

why in Section 5.1, Implementing the Attack, on page 86. We also used

the Rails returning method. returning takes a single parameter that it will

both yield and return. It is often used when you want to create a new

object and call some methods on it and then return the newly created

object. In our case, we call update_attribute to set the session.

It seems like we’re updating the session key a lot. Session keys will

change only when a user stops using our application for an hour or

more. Since session keys don’t change often, let’s change our code to

update the session key only when it has changed.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=57

ACCESSING FACEBOOK FROM MODELS 58

We can add a store_session method to encapsulate this logic:

Download chapter3/karate_poke/app/models/user.rb

def store_session(session_key)

if self.session_key != session_key

update_attribute(:session_key,session_key)

end

end

Now we can change our for method to use our new store_session method:

Download chapter3/karate_poke/app/models/user.rb

def self.for(facebook_id,facebook_session=nil)

returning find_or_create_by_facebook_id(facebook_id) do |user|

unless facebook_session.nil?

user.store_session(facebook_session.session_key)

end

end

end

That takes care of part of the problem. We now have access to the

session key from inside our models. What we really wanted was the

Facebooker::Session object. Since we have all the necessary fields, we

can create just one:

Line 1 # Re-create a Facbooker::Session
- # object outside a request
- def facebook_session
- @facebook_session ||=
5 returning Facebooker::Session.create do |session|
- # Facebook sessions are good for only one hour after storing
- session.secure_with!(session_key,facebook_id,1.hour.from_now)
- end

- end

There’s a lot going on in such a small method. Let’s break it down line

by line. In line 4, we’re using the Ruby conditional assignment operator.

The conditional assignment operator is often used for caching. If the

variable on the left side of the statement is nil, it runs the right side

of the expression and sets the variable. If the variable is already set,

it does nothing. The first time we call facebook_session, it will create a

session and assign it to @facebook_session. The next time it will use the

existing value.

In line 5, we use the returning method that we talked about earlier. Next,

we call secure_with! on line 7. secure_with! is used to associate a session

key with a Facebooker::Session object.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=58

CREATING THE MOVE MODEL 59

Figure 3.1: Moves include both a name and an image.

I told you that was a complicated method. Now that we’ve written it,

we can access the Facebook sessions of our users. That means we can

make Facebook API calls from inside our models. Before we do that,

we’ll need to visit our application in a web browser to set our session

key. After doing that, let’s move on to the rest of our model.

3.3 Creating the Move Model

Now we’re starting to make some progress. With our User model in place,

let’s create a model to represent the different attacks our users can

perform. Each Move instance will represent a karate move, such as

“karate chop” or “crane kick.” Let’s also include an image to make our

application a little more fun. You can see how our moves will be used

in Figure 3.1.

Since this is such a simple model, we can create it from the command

line and not even have to modify the generated migration:

$ script/generate model Move name:string image_name:string

You should run rake db:migrate to create the table after running the pre-

vious command. I’ve already created some images for us to use. You

can copy them from chapter3/karate_poke/public/images into the pub-

lic/images directory of your application.

Now that we have a Move model, let’s allow a user to attack another

user. The User model seems like a good place to put this method. It

could look something like this:

def attack(other_user,move)

what goes here?

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=59

ATTACK! 60

You know, I think we’re still missing something. We need a model to

keep track of attacks. Let’s build that before we implement the attack

method.

3.4 Attack!

It’s time to get to the real meat of Karate Poke. Now that we have users

and moves, we have everything we need to attack. Even though we’re

building a very specific feature for Karate Poke, the pattern we follow

covers a broad range of problems. For instance, our attack code will be

almost identical to the code used for sending a gift to a friend or even

a message model. As you follow along, think about how you might be

able to change the code to solve a different problem.

Attack Basics

Before we can create our Attack model, we need to figure out what we’re

building. We’re not in a Jackie Chan movie, so let’s assume that an

attack happens between two users. We’ll call them the attacker and the

defender. Let’s also assume that the attacker can use only one move

per attack. We could get more complicated, but sometimes simpler is

better. Let’s create our model from the command line again:

$ script/generate model Attack \

attacking_user_id:integer \

defending_user_id:integer \

move_id:integer

Take a look at the migration that was generated for us:

Download chapter3/karate_poke/db/migrate/004_create_attacks.rb

class CreateAttacks < ActiveRecord::Migration

def self.up

create_table :attacks do |t|

t.integer :attacking_user_id

t.integer :defending_user_id

t.integer :move_id

t.timestamps

end

end

def self.down

drop_table :attacks

end

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/db/migrate/004_create_attacks.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=60

ATTACK! 61

Along with the fields we specified, Rails added the timestamp fields.

That’s a good thing since we’ll want to use created_at to show the order

of attacks.

After running that migration, we can set up the associations for our

Attack model. We’ll need an association for the attacking user as well as

one for the defending user. Remember to include both the class_name

and foreign_key parameters. We’ll also need an association between the

attack and the move:

Download chapter3/karate_poke/app/models/attack.rb

belongs_to :attacking_user,

:class_name=>"User",

:foreign_key=>:attacking_user_id

belongs_to :defending_user,

:class_name=>"User",

:foreign_key=>:defending_user_id

belongs_to :move

That takes care of the Attack associations. Let’s do the same thing with

our User model. We’ll need to create associations for both attacks and

defenses:

Download chapter3/karate_poke/app/models/user.rb

has_many :attacks, :foreign_key=>:attacking_user_id

has_many :defenses, :class_name=>"Attack",

:foreign_key=>:defending_user_id

Great! Now we can fill in the details of our attack method:

def attack(other_user,move)

attacks.create!(:defending_user=>other_user,:move=>move)

end

That was pretty easy. You can now attack your friends. In fact, we

have gone a long time without using our application. Let’s fire up script/

console and play around with it a little:

>> mike = User.for(1)

=> <User id: 5, facebook_id: 1 ...

>> jen = User.for(2)

=> <User id: 6, facebook_id: 2 ...

>> move = Move.create(:name=>"karate chop")

=> <Move id: 1, name: "karate chop" ...

>> mike.attack(jen,move)

=> <Attack id: 14, attacking_user_id: 5, ...

That’s all it takes to attack! I was able to create two users using the

for method. After creating the users, I created a Move object. Finally, I

attacked! Try it yourself.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/attack.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=61

ATTACK! 62

Adding Battle History

Now that we can attack our friends, we’ll want to show our battle his-

tory. Our battle history will be a list of all our attacks and defenses.

Although we could build that by combining the attacks and defenses

relationships, let’s instead add a battles method. (This will make life

easier for us a little later when we introduce pagination in Section 5.5,

Adding Pagination, on page 101.)

Download chapter3/karate_poke/app/models/user.rb

def battles

Attack.find(:all,

:conditions=>

["attacking_user_id=? or defending_user_id=?",

self.id,self.id],

:include=>[:attacking_user,:defending_user,:move],

:order=>"attacks.created_at desc")

end

We’re really cutting up now, but I can’t help feeling like something is

missing.

Adding Misses

It’s a little boring if every attack results in a hit. Let’s change our Attack

model to add the occasional miss.

If some of our attacks are going to miss, we’ll need to store that fact

somewhere. Let’s add a boolean hit column to our Attack model. I’ll wait

while you create that migration.

Now that we have a hit column, let’s figure out how we’re going to get

it populated. Let’s keep it simple and just randomly decide whether an

attack results in a hit. The easiest implementation is to use a before_

create filter. Let’s set one up:

Download chapter3/karate_poke/app/models/attack.rb

before_create :determine_hit

def determine_hit

returning true do

make it a hit 50% of the time

self.hit = (rand(2) == 0)

end

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/attack.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=62

CREATING THE BELT MODEL 63

Let’s try our attacks in script/console again. Some of your attacks should

now be misses. But before you spend too much time practicing your

attacks, let’s move on.

3.5 Creating the Belt Model

Many of the most popular Facebook applications include features to

reward power users. Typically, these rewards take the form of an un-

lockable item. We’ll use karate belts for this. The more a user uses our

application, the more moves they will be able to access.

Creating the Belt Model

In Karate Poke, each user will have a belt. They start with a white belt

and progress until they become a black belt. Each time they earn a new

belt, they will gain access to new moves.

We could code this in a number of ways. Let’s try a really simple imple-

mentation. Let’s give each move a difficulty value. For instance, a karate

chop is easy, so it could be difficulty level 1. A crane kick is tough (have

you seen The Karate Kid?), so it’s probably a level 4 or 5. Each belt will

then have a difficulty level associated with it. People with white belts,

which have a level of 1, can perform only those moves with a difficulty

level of 1. A black belt, which has a level of 9, can perform any move

with a difficulty level of 9 or less.

With that decided, let’s figure out what other attributes our Belt model

will need. We will definitely need a name for the belt. We might as well

include a next_belt_id attribute to make it easy to see the progression of

belts. Let’s throw in a minimum_hits column as well. We’ll talk about that

one more later. That should be all we need to create our model:

$ script/generate model Belt name:string \

level:integer next_belt_id:integer minimum_hits:integer

There are a couple of bits of housekeeping to take care of before you run

rake db:migrate. We need to modify the users table to include a belt_id col-

umn. We’ll also need to add a difficulty_level column to the Move model:

Download chapter3/karate_poke/db/migrate/006_create_belts.rb

class CreateBelts < ActiveRecord::Migration

def self.up

create_table :belts do |t|

t.string :name

t.integer :level

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/db/migrate/006_create_belts.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=63

CREATING THE BELT MODEL 64

t.integer :next_belt_id

t.integer :minimum_hits

t.timestamps

add_column "users", "belt_id", :integer

add_column "moves", "difficulty_level", :integer

end

end

def self.down

drop_table :belts

remove_column "users", "belt_id"

remove_column "moves", "difficulty_level"

end

end

After running rake db:migrate, we can set up our associations. We’ve

heard several times that each user will have a belt, so the first associa-

tion is easy:

Download chapter3/karate_poke/app/models/user.rb

belongs_to :belt

We’ve also talked about using next_belt_id to show the belt progression.

Let’s add that here:

Download chapter3/karate_poke/app/models/belt.rb

belongs_to :next_belt, :class_name=>"Belt", :foreign_key=>:next_belt_id

With the model set up, we will need to create some data. Luckily for

you, I have already created it. You can copy the fixture files from chap-

ter3/test/fixtures/ to your test/fixtures directory. You can run rake db:fixtures:

load to populate your development database with some basic belts and

moves.

Integrating Our Belts

We have a Belt model, some moves, and some belts. It’s time to integrate

belts into the rest of the system. I mentioned earlier that each user

starts out with a white belt. This seems like a good time to make that

happen.

We can make our users start with a white belt in a few ways. We could

use a default value in the database for this, but it seems ugly to put

application logic there. Instead, let’s use a before_create filter. Before we

can set the belt, we’ll need to know which belt is the initial belt.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/belt.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=64

CREATING THE BELT MODEL 65

Let’s add an initial_belt method to the belt class:

Download chapter3/karate_poke/app/models/belt.rb

def self.initial_belt

find_by_level(1)

end

Now we can set the belt in a before filter on our User model:

Download chapter3/karate_poke/app/models/user.rb

before_create :set_initial_belt

def set_initial_belt

self.belt = Belt.initial_belt

end

Now that we have belts and levels and moves (oh my!), let’s see what

else needs to change. Since a user can no longer perform all the moves,

we need a way to determine what moves are available to them. Let’s

create a method on the User model to do just this. Since we went with a

really simple implementation of belts, this should be easy:

Download chapter3/karate_poke/app/models/user.rb

def available_moves

Move.find(:all,

:conditions=>["difficulty_level <= ?",belt.level],

:order=>"name asc")

end

Great! There’s just one thing we talked about but haven’t implemented.

We need a way for our users to earn new belts. This is where the min-

imum_hits column we added earlier comes into play. We will upgrade a

user to a new belt once their successful attack count reaches the next

belt’s minimum_hits value.

Since we’re going to base our upgrades on the total number of hits a

user has, we should add a method to make it easy to find that bit of

information:

def total_hits

attacks.count(:conditions=>{:hit=>true})

end

Now we can add a method to our Belt model to determine whether a

user should be upgraded:

Download chapter3/karate_poke/app/models/belt.rb

def should_be_upgraded?(user)

!next_belt.nil? and user.total_hits >= next_belt.minimum_hits

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/belt.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/belt.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=65

ENCOURAGING INVITATIONS 66

There are two conditions necessary to upgrade a user. First, there must

be a higher belt. If next_belt is nil, we know that the user has the highest

belt. If there is a higher belt, we check the minimum_hits parameter to

see whether the user qualifies for it.

Since we upgrade only after a successful attack, let’s put that code into

the attack method:

def attack(other_user,move)

returning attacks.create!(:defending_user=>other_user,:move=>move) do

if belt.should_be_upgraded?(self)

update_attribute(:belt,belt.next_belt)

end

end

end

There’s one last step before we can call our Belt model done. We need to

update all the existing users in our database to make sure they have a

belt. We can do that from script/console:

User.find(:all).each do |user|

user.update_attribute(:belt,Belt.initial_belt)

end

Wow, we had to make changes all over the place to implement our belt

system. We have one more feature to add before we spend some time

cleaning up.

3.6 Encouraging Invitations

Along with rewarding power users, successful Facebook applications

often reward users who help their application spread. Let’s add a way to

track which users send the most invitations. We’ll create a leaderboard

to show this off in Chapter 8, Integrating Your App with Other Websites,

on page 158.

In Section 2.4, Making Our Invitation Interactive, on page 44, we added

an entry to a user’s profile that told who referred them to our applica-

tion. We’re going to adapt that a little to develop a dojo (literally “place of

the way,” which is a formal gathering place for training in martial arts)

system. We’ll associate each invited user with the sensei (a Japanese

title used to refer to authority figures that is often used in martial arts

to refer to a teacher) who invited them. As a user invites more people,

they will increase the number of disciples in their dojo.

This will be really easy to implement in our models. In fact, we can do it

with just a single column and a couple of methods. Let’s start by adding

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=66

GETTING DATA OUT OF FACEBOOK 67

a sensei_id column to our User model. Go ahead and create a migration

for this.

Now that we have a sensei ID, let’s add some relationships. We can add

the sensei relationship as well as the disciple relationship:

Download chapter3/karate_poke/app/models/user.rb

belongs_to :sensei, :class_name=>"User", :foreign_key=>:sensei_id

has_many :disciples, :class_name=>"User", :foreign_key=>:sensei_id

It feels a little strange to have two relationships in the same model using

the same column. Even so, it does exactly what we need.

Since we want to encourage our users to spread our application, let’s

add a way to determine which of a user’s friends have already added

the application:

Download chapter3/karate_poke/app/models/user.rb

def friends_with_senseis(friends_facebook_ids)

User.find(:all,

:conditions=>["facebook_id in (?) and sensei_id is not null",

friends_facebook_ids])

end

That’s all we need to do on the model side. We’ll talk more about dojos

when we discuss invitations in Section 6.4, Spreading by Invitation, on

page 128. Next we’ll take a look at how we can get data out of Facebook.

3.7 Getting Data Out of Facebook

Now that we have a basic data model for our application, let’s take a

look at the Facebook data model. Facebook provides a REST API that we

can use to obtain data about our users. We talked a little about REST

in Section 2.2, Creating the Invitations Controller, on page 39. We’ll start

by looking at what happens each time we make a request. Next, we’ll

walk through some of the API methods that are available to us.

How the REST API Works

To really understand how the REST API works, we’ll step through an

example. In our example, we will use script/console to retrieve our name

from Facebook. Start script/console, and find your User instance. Once

you have your User object, run the following code:

>> user.facebook_session.user.name

=> "Mike Mangino"

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=67

GETTING DATA OUT OF FACEBOOK 68

That doesn’t look like anything special because Facebooker encapsu-

lates the Facebook API behind a very Ruby-like façade. Behind the

scenes, Facebooker does a lot of work to retrieve our name. First, Face-

booker sends a POST to the Facebook API service. It includes a number

of parameters in the request such as the api_key of our application,

the session_key of the user making the request, and the uid of the user

whose name we want to retrieve. Additionally, Facebooker adds the

fb_sig parameter as proof that our application is making the request. We

talked about signatures earlier in Section 2.1, The Details of Facebook

Signatures, on page 37. By requiring all API calls to be signed, Facebook

can verify that requests are coming from an approved application.

In response to our request, Facebook will return an XML document

similar to the one shown here:

<?xml version="1.0" encoding="UTF-8"?>

<users_getInfo_response xmlns="http://api.facebook.com/1.0/" ...>

<user>

<uid>12451752</uid>

<status>

<message/>

<time>0</time>

</status>

<political/>

<pic_small>http://profile.ak.facebook.com/profile...</pic_small>

<name>Mike Mangino</name>

<quotes/>

<is_app_user>1</is_app_user>

<tv/>

<profile_update_time>0</profile_update_time>

<meeting_sex list="true"/>

<hs_info>

<hs1_name>Westerville - North High School</hs1_name>

<hs2_name/>

<grad_year>1996</grad_year>

<hs1_id>19941</hs1_id>

<hs2_id>0</hs2_id>

</hs_info>

<timezone>-6</timezone>

<relationship_status>Married</relationship_status>

...

When Facebooker receives the response, it turns the XML into Ruby

objects. Each time Facebooker needs to load more information, it sends

an HTTP request to Facebook. Each request takes some time, typically

between a quarter and a half of a second. We’ll want to keep this timing

in mind as we use the REST API.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=68

GETTING DATA OUT OF FACEBOOK 69

Explore the Available Data

One of the biggest benefits of Facebook development is the
amount of data to which you have access. Make sure you
explore this data. For example, Growing Gifts displays a list of
your friends’ upcoming birthdays so that you can send them a
birthday flower. This type of integration would be next to impos-
sible without Facebook.

You’re not limited to just birthdays. In Karate Poke, we could
look at the education history of your friends and suggest you
attack your friends who went to rival schools. For other applica-
tions, maybe they could use the list of groups a user is a member
of or information about upcoming events they will be attend-
ing. As you build your application, think about what you can
do with the data that Facebook provides!

Using the Facebook API

We’ve looked at several uses of the Facebook API already. Since Face-

booker makes the Facebook API look just like regular Ruby objects, we

aren’t going to spend time looking at every object.4 Instead, we’ll look

at a typical use of the API.

For our example, we’ll use the REST API to add a method to our User

model that will display a user’s hometown. Our hometown method will

need to access the hometown_location attribute on the Facebooker::User

object. For that, we’ll need to create an instance of Facebooker::User to

represent the user in question. To create a user, we can simply call

the new method and pass in the Facebook ID of the user we want.

After creating the user instance, we retrieve the hometown_location. If

the location is blank, we provide default text.

def hometown

fb_user = Facebooker::User.new(facebook_id)

location = fb_user.hometown_location

text_location = "#{location.city} #{location.state}"

text_location.blank? ? "an undisclosed location" : text_location

end

Let’s give that a try in script/console. Before we do, we need to under-

stand how Facebook fetches data. Each instance of Facebooker::User can

4. You can find the Facebook REST API documentation online at

http://wiki.developers.facebook.com/index.php/API.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/API
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=69

REFACTORING AND PERFORMANCE 70

hold a reference to a session object. When we access a user through the

session, by calling User.find(1).facebook_session.user, for example, Face-

booker will link that session and the user object. Any time the Face-

booker::User needs to get data from Facebook, it will use the associ-

ated session. Facebook uses the session to determine the context of a

request. For example, if my session ID is used to request the hometown

location of somebody who isn’t my friend, Facebook may not return any

information.

If we create a Facebooker::Session object using the new method, like we

did earlier, Facebooker doesn’t have a session to use for fetching data.

By default, it tries to use one stored in Facebooker::Session.current. When

Facebooker receives a request through the Web, it will automatically set

Facebooker::Session.current to the session belonging to the user making

the request. During testing, we set the current session to the session

for our user. Let’s see an example of using our new method:

>> u=User.for(12451752)

=> #<User id: 5>

>> Facebooker::Session.current=u.facebook_session

=> #<Facebooker::Session:0x22ab0a0>

>> u.hometown

=> "Westerville Ohio"

With that in place, we have a way to get the hometown of a user. Along

the way, we’ve seen how the Facebook REST API works. Next, we’ll do

a little refactoring.

3.8 Refactoring and Performance

We made good progress, but we can improve on a couple of things. We

did a good job of keeping our code looking good, but we didn’t really

think about performance. Many of the biggest performance problems

in Facebook applications are caused by poorly coded models. We’ll look

at some simple changes we can make to avoid these common problems.

Although performance is important to all applications, it is especially

important to Facebook applications for a couple of reasons. Facebook

enforces a very short timeout window. If your application does not re-

spond to Facebook within eight seconds, your user will see an error

like the one shown in Figure 3.2, on the following page. If that isn’t

bad enough, you also should be prepared to handle large amounts of

traffic quickly. I’ve worked on several applications that reached more

than 100,000 users in two days. Needless to say, I wish I had paid a

little more attention to performance up front.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=70

REFACTORING AND PERFORMANCE 71

Figure 3.2: You’ll see this error if your application doesn’t respond

within eight seconds.

Adding Indexes

Let’s start by adding a few indexes. As with any Rails application, we

want to add indexes on our foreign keys. Let’s create a migration to add

them to our attacks and users tables. We’ll need to create two indexes on

attacks since we access it both by the attacking_user_id and the defend-

ing_user_id. We can include the created_at column in the indexes to help

with sort performance.

Download chapter3/karate_poke/db/migrate/008_add_indexes.rb

class AddIndexes < ActiveRecord::Migration

def self.up

add_index :attacks, [:attacking_user_id, :created_at]

add_index :attacks, [:defending_user_id, :created_at]

add_index :users, :facebook_id

end

def self.down

remove_index :attacks, [:attacking_user_id, :created_at]

remove_index :attacks, [:defending_user_id, :created_at]

remove_index :users, :facebook_id

end

end

We don’t need to add indexes to the moves and belts tables. It’s unlikely

that we would see any performance benefit from indexing them. We

need to add indexes only to large tables or tables that grow over time.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/db/migrate/008_add_indexes.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=71

REFACTORING AND PERFORMANCE 72

Removing Queries

Although it’s good to make our queries faster, it’s even better to just

eliminate them altogether. Let’s look at a couple of changes we can

make to remove a few queries from our application.

When we implemented our Belt model, we used a total_hits method that

counted the number of times a user has hit another user. Instead of

running a SQL query every time, let’s just save that count in a col-

umn on the users table. Start by adding a total_hits column to the User

model. After you create and run that migration, we can modify our

attack method to increment the count after each hit. We’ll also need to

remove our existing total_hits method.

Download chapter3/karate_poke/app/models/user.rb

def attack(other_user,move)

returning attacks.create!(:defending_user=>other_user,

:move=>move) do |a|

if a.hit?

increment :total_hits

if belt.should_be_upgraded?(self)

self.belt=belt.next_belt

end

end

save!

end

end

That takes care of one extra query. Let’s look at some of the remaining

queries that get run. We know we are going to display a list of battles for

each user on our main page. Let’s take a look at our log/development.log

to see what Rails does when we call our battles method:

Attack Load (0.000557) SELECT * FROM attacks WHERE (...

Attack Columns (0.002195) SHOW FIELDS FROM attacks

User Load (0.001515) SELECT * FROM users WHERE (users.'id' = 4)

User Load (0.000297) SELECT * FROM users WHERE (users.'id' = 3)

Move Columns (0.003177) SHOW FIELDS FROM moves

Move Load (0.000560) SELECT * FROM moves WHERE (moves.'id' = 2)

User Load (0.000450) SELECT * FROM users WHERE (users.'id' = 4)

User Load (0.000263) SELECT * FROM users WHERE (users.'id' = 3)

Move Load (0.000262) SELECT * FROM moves WHERE (moves.'id' = 2)

User Load (0.000253) SELECT * FROM users WHERE (users.'id' = 4)

User Load (0.000249) SELECT * FROM users WHERE (users.'id' = 3)

Wow, that’s a lot of queries. When our battles method loads the list of

attacks, it isn’t fetching the associated User and Belt objects at the same

time. We can use the :include option on our call to the find method to

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=72

REFACTORING AND PERFORMANCE 73

Isn’t Premature Optimization Bad?

Premature optimization is definitely a bad thing. Donald
Knuth said this in Structured Programming with go to State-
ments [Knu74]: “We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all
evil.”

In this case, however, we’re not talking about micro-
optimization. We’re really eliminating major bottlenecks. You
could put this type of cleanup off until the end of writing the
application, but I prefer to do it right away. After all, Facebook
applications can get a lot of traffic quickly. It’s best to at least
pick the low-hanging fruit.

Additionally, this isn’t an exhaustive list of performance
changes. I’ll talk about more Facebook-specific performance
enhancements in Chapter 9, Scaling and Performance, on
page 170.

combine all this into one query. Let’s make sure our battles method

includes the attacking_user, the defending_user, and the move:

Download chapter3/karate_poke/app/models/user.rb

def battles

Attack.find(:all,

:conditions=>

["attacking_user_id=? or defending_user_id=?",

self.id,self.id],

:include=>[:attacking_user,:defending_user,:move],

:order=>"attacks.created_at desc")

end

Finally, when we load a user in our for method, we should use :include to

load their belt and the next belt. Go ahead and make that change now.

That’s enough performance tuning for now. That takes care of the major

bottlenecks in our application. We were able to quickly add indexes to

tables that will be repeatedly accessed. We also were able to eliminate

a large number of database queries by strategic usage of the :include

option.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/models/user.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=73

SUMMARY 74

3.9 Summary

We now have an object model that will let us build the rest of Karate

Poke. We built a User model and used it to save a Facebook session.

We then built all the infrastructure necessary for one user to attack

another. Finally, we added belts and dojos to encourage interactivity.

That takes care of the majority of our object model. We’ll add a little bit

more as we go, but it’s nothing substantial. We’ve made good progress,

but there’s something we’ve been neglecting. With all the code we’ve

written, we still don’t have a single test. We’ll take care of that next.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=74

Chapter 4

Testing Our Facebook Application
Now that we have a better understanding of how to develop Facebook

applications, let’s turn our attention to testing. Writing tests for our

Facebook application will feel quite familiar. Instead of spending time

on what you’ve seen before, we’ll focus our efforts on what makes test-

ing a Facebook application different from other Rails applications. If

you don’t have much experience writing tests with Rails, check out the

excellent Agile Web Development with Rails [TH05].

We’ll start our look at testing by focusing on controller tests. We will

look at the Facebook-specific helpers we can use to make writing tests

easier. From there, we’ll turn our attention to model and publisher

tests. We will see how to use mocks and stubs to isolate our code from

Facebook.

4.1 Controller Tests

If you’ve tried to write Rails functional tests for your Facebook code,

you’ve probably noticed that your tests don’t work. Even a simple test

like the one shown here fails. Instead of rendering the new.fbml.erb tem-

plate, we are redirected to the application authorization page.

def test_new

get :new

assert_response :success

assert_template 'new'

end

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CONTROLLER TESTS 76

We talked about Facebook signatures earlier in Section 2.1, The Details

of Facebook Signatures, on page 37. In our previous test, we didn’t send

the right Facebook signature parameters. That makes Facebooker redi-

rect to the application authorization page. Although this is the behavior

we want for our application, it makes testing more difficult.

To make testing easier, we’ll want to isolate ourselves from Facebook.

We’ll look at two different ways to do this. We’ll start by using the face-

book_post method to automatically create the correct signature for our

application. We’ll also look at using FlexMock, a mock object framework

from Jim Weirich, to isolate ourselves from the Facebook API. Along the

way, we’ll create tests for our most important actions.

Before we can start testing, we have a little setup to do. First, we’ll need

to make sure our facebooker.yml is configured for the test environment.

Since our application won’t talk to Facebook in test mode, we don’t

need to create a new Facebook application for testing. We can just use

our existing development configuration information.

Along with configuring our Facebook setup, we’re also going to need to

create some basic data for testing purposes. I’ve already created basic

fixture data you can use. Just copy the files from chapter4/karate_poke/

test/fixtures file into your fixtures directory.

Testing with the Facebooker Helpers

For our first functional test, we’re going to start simple. Let’s make

sure we can view our invitation form. We’ll check to make sure the new

template is rendered. A first version of our test might look like this:

def test_new_invitation

get :new

assert_response :success

assert_template 'new'

end

It’s a good first version, but we’re missing a few things. As mentioned

earlier, we need to pass in the Facebook signature parameters. We

could add them all by hand, but that would be really tedious. Face-

booker provides a helper to make this easier. If we include the Face-

booker::Rails::TestHelpers module in our tests, we’ll get some additional

helper methods. One of these methods, facebook_get, will fill in the

fb_sig parameters for us.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=76

CONTROLLER TESTS 77

When testing actions that are expected to be called inside the Facebook

canvas, you should always use the facebook_* version of the request

method. So, get becomes facebook_get, and post becomes facebook_post:

include Facebooker::Rails::TestHelpers

def test_new_invitation

facebook_get :new

assert_response :success

assert_template 'new'

end

Our test passes, but it isn’t clear exactly what is happening. We know

that facebook_get generates a signature for our request, but what para-

meters are included? By default, all the Facebooker helpers simulate a

page request for the user with Facebook ID 1234 viewing a canvas page.

We can override those defaults by sending in our own parameters. For

instance, to make sure our new action requires a user to be logged in,

we could write a test that passes in nil for the user. Let’s write a test

that makes sure that happens:

def test_get_new_requires_user

facebook_get :new, :fb_sig_user=>nil

assert_response :redirect

end

Running that, we get the error “Expected response to be a <fb:redirect>,

but was <200>” That’s caused by the way Facebook handles redirects.

Instead of sending a special HTTP status code, Facebook redirects use

the <fb:redirect> tag.

We haven’t talked about <fb:redirect> yet because Facebooker handles

it for us. We will need to think about it during our tests. Instead of

testing for a redirect with the normal assert_response :redirect code, we

instead want to use assert_facebook_redirect_to. We will make sure our

user is redirected to the authorization path for our application that

can be obtained by calling login_url on a Facebooker::Session object. That

makes our finished version of the test look like this:

def test_get_new_requires_user

facebook_get :new, :fb_sig_user=>nil

assert_facebook_redirect_to Facebooker::Session.create.login_url

end

We can do more than just test get requests inside Facebook. Facebooker

also provides facebook_post, facebook_put, and facebook_delete methods

for use inside our tests.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=77

CONTROLLER TESTS 78

Let’s use the facebook_post method to make sure our invitation’s create

method works:

def test_valid_create

facebook_post :create, :ids=>["1234"]

assert_response :success

assert_template 'create'

end

Excellent. That test passes and feels much more like a typical Rails

controller test. There’s just one more thing we need to test. Let’s make

sure a user’s profile is updated when they click the link in our invite.

That’s going to cause a problem. We don’t want to actually update a

user’s profile, but we want to make sure an attempt is made. We’ll need

a new technique to test that.

Using Mocks and Stubs

We’ve successfully modified our tests to generate the correct Facebook

signature to let us test our controllers without Facebook. We got stuck

trying to verify that a profile update was happening. We need to verify

that our profile is being updated, but we don’t want our tests to actu-

ally talk to Facebook. Not only will that make them run slowly; it also

makes them less reliable. We could do something ugly, such as wrap

the code that talks to Facebook inside an if RAILS_ENV!="test" statement.

That doesn’t give us much confidence that our code does what we want.

Instead, we can use mocks and stubs.

If you haven’t heard of mocks and stubs, you aren’t alone. Mock objects

are a relative newcomer onto the testing scene. In fact, the first paper

that described them wasn’t even written until the year 2000.1 Mocks

and stubs are objects that can be used to replace functionality after the

fact. For instance, in our new action test, we could use a stub object to

replace the Facebook user. Our user stub accepts the same calls as the

real user but eliminates the side effects. This will allow us to test the

hometown method without needing to talk to Facebook.2

Several Ruby libraries make it easy to use mock and stub objects in

our code. We’re going to use FlexMock from Jim Weirich in our exam-

ples. Before we go any further, you’ll need to install the FlexMock gem

1. Mocks were first described in http://www.mockobjects.com/files/endotesting.pdf.
2. You can read more about testing with mocks and stubs at

http://www.ibm.com/developerworks/web/library/wa-mockrails/index.html. That article uses

a different mock library than we will, but the concept is the same.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.mockobjects.com/files/endotesting.pdf
http://www.ibm.com/developerworks/web/library/wa-mockrails/index.html
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=78

CONTROLLER TESTS 79

by running gem install flexmock. After installing the gem, we’ll need to

include FlexMock into our tests by adding a require to our code, as

shown here:

require File.dirname(__FILE__) + '/../test_helper'

require 'flexmock/test_unit'

class InvitationsControllerTest < ActionController::TestCase

...

The idea of mocks and stubs is probably still a little vague. Let’s make it

concrete by looking at an example. Let’s write a test for our new action

where we specify the from parameter:

def test_new_with_from_updates_profile

facebook_get :new, :from=>1

assert_response :success

end

When that code runs, it makes a call to Facebook to update a profile,

just the thing we want to avoid. We need some way to stop this from

happening. We’ll use FlexMock to replace the call to profile_fbml= with a

method that just returns true. To do this, we just add a single line to

the beginning of the test:

def test_new_with_from_updates_profile

flexmock(@controller,:update_profile=>true)

facebook_get :new, :from=>1

assert_response :success

end

The call to flexmock creates a stub. A stub is used to replace the side

effects from calling a method. In this particular example, calling @con-

troller.update_profile will no longer update a user’s profile. Instead, it will

just return true. Stubs replace functionality only inside the test in which

they are used. Running that gets our tests to pass, but we want to do

more than just remove calls to the Facebook API. We also want to verify

that the calls are made correctly. To do that, we will use mocks.

Mock objects replace a method’s implementation, but they also verify

that the call was made. This verification is the main difference between

a mock object and a stub.3 To change our stubs into mocks, we just

need to add an expectation. An expectation tells the mock object what

methods should be called and can optionally give constraints about the

parameters sent to each method. In FlexMock, we use the should_receive

3. Martin Fowler wrote a great article about the differences between mocks and stubs.

You can find it at http://www.martinfowler.com/articles/mocksArentStubs.html.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.martinfowler.com/articles/mocksArentStubs.html
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=79

CONTROLLER TESTS 80

method to add constraints. For instance, we could make sure that our

update_profile method is called with the following code:

def test_new_with_from_updates_profile

flexmock(@controller).should_receive(:update_profile)

facebook_get :new, :from=>1

assert_response :success

end

If our code doesn’t call update_profile, FlexMock will raise an exception,

as you can see here:

test_new_with_from_updates_profile(InvitationsControllerTest)

[flexmock-0.8.0/lib/flexmock/validators.rb:40:in `validate'

flexmock-0.8.0/lib/flexmock/expectation.rb:123:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/expectation.rb:122:in `each'

flexmock-0.8.0/lib/flexmock/expectation.rb:122:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/expectation_director.rb:61:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/expectation_director.rb:60:in `each'

flexmock-0.8.0/lib/flexmock/expectation_director.rb:60:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/core.rb:76:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/core.rb:75:in `each'

flexmock-0.8.0/lib/flexmock/core.rb:75:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/core.rb:191:in `flexmock_wrap'

flexmock-0.8.0/lib/flexmock/core.rb:74:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/mock_container.rb:40:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/mock_container.rb:39:in `each'

flexmock-0.8.0/lib/flexmock/mock_container.rb:39:in `flexmock_verify'

flexmock-0.8.0/lib/flexmock/mock_container.rb:31:in `flexmock_teardown'

flexmock-0.8.0/lib/flexmock/test_unit.rb:26:in `teardown_without_fixtures'

activerecord-2.0.2/lib/active_record/fixtures.rb:987:in `full_teardown'

activesupport-2.0.2/lib/active_support/testing/default.rb:7:in `run']:

in mock 'flexmock(InvitationsController)': method 'update_profile(*args)' ...

<1> expected but was

<0>.

That verifies that the update_profile method in our controller was called,

but it doesn’t do anything to verify the content that was sent. Let’s

change our test to verify that the profile_fbml= method was called. To do

this, we’ll need to somehow get access to the Facebooker::User object that

is created by the controller. We can do this by using the new_instances

method of FlexMock. The new_instances method allows us to mock or

stub calls on all instances of a class, something that is very convenient

for objects that are created during the request:

def test_new_with_from_updates_profile

flexmock(Facebooker::User).new_instances.

should_receive('profile_fbml=').once

facebook_get :new, :from=>1

assert_response :success

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=80

TESTING MODELS 81

That lets us verify that profile_fbml= is called but doesn’t help us check

the value passed. To do that, we’ll use a matcher. Matchers in mock

object terms are constraints that are verified on calls to mock objects.

We’ve already used one matcher when we called once in our previous

test. To verify the parameters passed to a method, we can add the with

matcher. When we call with, we give it the parameters that we expect

our method to receive. In this case, that is the profile content:

def test_new_with_from_updates_profile

profile_expectation =

"<fb:fbml>\n I was sent here by <fb:name uid='1' />\n</fb:fbml>"

flexmock(Facebooker::User).new_instances.

should_receive('profile_fbml=').\

once.with(profile_expectation)

facebook_get :new, :from=>1

assert_response :success

end

Give that a try. If our code either doesn’t call profile_fbml=, calls it more

than once, or calls it with the wrong content, FlexMock will raise an

exception, and our test will fail.

Now we’ve verified that our controller code works. We’ve even checked to

make sure our interaction with Facebook happens as we would expect.

Next, we’ll turn our attention to testing our models.

4.2 Testing Models

Our controller tests looked quite different from a typical Rails test.

Luckily, our model tests should feel much more familiar. For the most

part, our model tests will work just like they normally would. There will

be a few areas where we’ll need to use mocks and stubs to isolate our

tests from Facebook.

When we look at our models, there are only a small number of areas

that will need to be isolated. We saw an example of stubbing a call to

Facebook earlier. Let’s use that same idea to test our attack creation

and hometown method.

We will start our model tests the same way we would for any Rails appli-

cation—by making sure we have the right validations in place on our

Attack object. We can complete this with four quick tests. First, we’ll

create a test to make sure an attack is valid when all required fields are

present. Next, we’ll test each validation by omitting a required field and

making sure the object is not valid.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=81

TESTING MODELS 82

fixtures :users, :moves

def setup

@attack = Attack.new(:attacking_user=>users(:jen),

:defending_user=>users(:mike),

:move=>moves(:chop))

end

def test_valid

assert @attack.valid?

end

def test_attack_requires_attacking_user

@attack.attacking_user=nil

assert !@attack.valid?

end

def test_attack_requires_defending_user

@attack.defending_user=nil

assert !@attack.valid?

end

def test_attack_requires_move

@attack.move=nil

assert !@attack.valid?

end

When we run these, we get some errors. It looks like we didn’t add

validations earlier. Let’s add those now:

class Attack < ActiveRecord::Base

validates_presence_of :attacking_user_id, :defending_user_id, :move

...

With that done, let’s create some tests for our hometown method. We’re

going to need to use a stub to bypass the call to Facebook. This will

require us to include FlexMock in that test. Instead of adding an include

line to every test file, we can add our include in test/test_helper.rb. We can

also add our Facebooker test helper include there, as shown here:

ENV["RAILS_ENV"] = "test"

require File.expand_path(File.dirname(__FILE__) +

"/../config/environment")

require 'test_help'

require 'flexmock/test_unit'

class Test::Unit::TestCase

include Facebooker::Rails::TestHelpers

...

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=82

TESTING MODELS 83

Now that we’ve done that, let’s get on with our testing. Testing our

hometown method will be a little different from what we’ve done before.

Not only do we need to remove the call to Facebook, but we also need

FlexMock to give us a specific return value. We can do this with the

and_return method. To use and_return, we’ll first need to create the object

we want returned. Then, we’ll stub the hometown_location method on

the user and tell FlexMock to return our newly created value. It sounds

more complicated than it is:

def test_hometown_when_exists

location=Facebooker::Location.new(:city=>"Westerville",

:state=>"Ohio")

fm=flexmock(Facebooker::User)

fm.new_instances.should_receive(:hometown_location).

and_return(location)

mike=users(:mike)

assert_equal "Westerville Ohio",mike.hometown

end

Now that we have complete control over the data returned by the Face-

book API call, we can easily test other situations. For example, we could

make a small change to test what happens when no hometown is pro-

vided by simply changing the return value:

def test_hometown_when_blank

location=Facebooker::Location.new(:city=>"", :state=>"")

fm=flexmock(Facebooker::User)

fm.new_instances.should_receive(:hometown_location).

and_return(location)

mike=users(:mike)

assert_equal "an undisclosed location",mike.hometown

end

You’ll need to be careful when testing with mocks. If the actual API call

returns something different from what your mock does, you may be

building a false sense of security. For example, in our previous example,

Facebook returns a location with a blank city and state to signify an

unknown location. If we instead made our mock return a nil location,

we could make our tests pass even though our application would be

broken when used with Facebook.

Using the techniques we’ve seen so far, you should be able to write the

rest of your model tests, testing things like belt upgrades and available

moves.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=83

SUMMARY 84

4.3 Summary

We’ve now looked at how to test all the parts of our Facebook applica-

tion. We’ve seen how to test Facebook controller requests using both

Facebooker helpers and mocks. We’ve looked at testing our models as

well. Obviously we just scratched the surface in terms of actually writ-

ing tests, but we did cover all the concepts. Even though we won’t talk

about it in future chapters, all the code samples included with the book

will include tests. You can look at these tests along with the code to see

more examples of testing a Facebook application.

Now that we have confidence our application is functioning as we intend

it to, let’s turn our attention to building the interface for Karate Poke.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=84

Chapter 5

Getting Into the Facebook Canvas
We’ve built a data model for our application and seen how we can write

tests for it. Now it’s time to start building the web interface for Karate

Poke. We’ll start by looking at forms in Facebook. From there, we’ll see

some tools for adding navigation. We’ll finish by adding pagination and

giving Karate Poke some style. Along the way we’ll use many of the

FBML primitives. This isn’t meant to be an exhaustive FBML reference.

You can find that on the developer wiki.1

5.1 Getting Interactive with Forms

We’re going to start our tour of the Facebook canvas with a topic that

is central to most web applications: the web form. I know it isn’t the

sexiest topic, but it’s one of our only tools for getting information from

our users.

Let’s make a form for initiating attacks. Before we can do that, let’s cre-

ate an attacks controller. We’ll be spending most of our time working on

the new(), create(), and index() methods. You can create the controller

and the methods all at once by running this:

$ script/generate controller attacks new create index

With our controller created, we can turn it into a RESTful resource

using map.resources:

Download chapter5/karate_poke/config/routes.rb

map.resources :attacks

Now we’re ready to create our form.

1. http://wiki.developers.facebook.com/index.php/FBML

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter5/karate_poke/config/routes.rb
http://wiki.developers.facebook.com/index.php/FBML

GETTING INTERACTIVE WITH FORMS 86

Building Our First Form

We created our User#attack method in Section 3.4, Attack!, on page 60.

To call it, we’ll need attacking and defending users as well as a Move

object. Let’s look at how we can get that information.

We can get the attacking user from the current_user() helper that we built

previously. That means our form needs to provide only the defending

user and the move. We could create something simple like this:

<% form_for Attack.new do |f| %>

Move: <%= f.collection_select :move_id,

current_user.available_moves, :id, :name %>

User to attack: <%= f.text_field :defending_user_id %>

<%= submit_tag 'Attack!' %>

<% end %>

You can put that in app/views/attacks/new.fbml.erb. Notice that the file-

name ends in .fbml.erb. Rails looks for different files depending on the

content type requested. For HTML, it will look for .html.erb. For Java-

Script, it will look for .js.erb. Because Facebook views are written in

FBML, Rails is looking for an .fbml.erb file. Earlier, we used just .erb. If

Rails can’t find a file for the requested content type, it will look for a

plain .erb file.

Although that works, it is hard to use. We saw a much nicer way of

selecting Facebook users in Section 2.2, Creating the Invitation Form

Using FBML, on page 40. Unfortunately, Facebook allows the graphical

friend picker to be used only in request forms. Facebook does provide

a text-based friend picker that we can use in any form:

<% form_for Attack.new do |f| %>

Move: <%= f.collection_select :move_id,

current_user.available_moves, :id, :name %>

User to attack: <fb:multi-friend-input />

<%= submit_tag 'Attack!' %>

<% end %>

You can see our attack form in Figure 5.1, on the next page. Make sure

you test the typeahead features of the <fb:multi-friend-input> tag. Like

the <fb:request-form> tag we saw in Section 2.3, Giving the Sender

Some Feedback, on page 43, the <fb:multi-friend-input> will cause

Facebook to send the user IDs of selected users in the ids parameter.

Implementing the Attack

With our attack form in place, we need to build a controller action that

calls the attack() method. We can use the User.for method we built to

turn each provided Facebook ID into a User object.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=86

GETTING INTERACTIVE WITH FORMS 87

Figure 5.1: Our first form

Let’s use that to add a create action to our attacks controller:

Line 1 def create
- attack = Attack.new(params[:attack])
- for id in params[:ids]
- current_user.attack(User.for(id),attack.move)
5 end

- redirect_to new_attack_path
- end

Let’s walk through that code. First, on line 2, we create a new Attack

object from our form parameters. This gives us the Move that was

selected from the form. On lines 3 through 5, we loop through the Face-

book ids parameters that Facebook sends us. We turn each one into a

User object using our for() method. On line 4, we call the attack() method

we built.

When I use our form, I can see that the attacks are created in the

database, but I don’t get any feedback. Let’s add a message to tell how

many hits and misses there were.

First, we’ll need to separate the hits from the misses. We can just create

an array for each. (You could also use Enumerable#partition for this.)

def create

attack = Attack.new(params[:attack])

hits = []

misses = []

for id in params[:ids]

attack = current_user.attack(User.for(id),attack.move)

if attack.hit?

hits << attack

else

misses << attack

end

end

redirect_to new_attack_path

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=87

GETTING INTERACTIVE WITH FORMS 88

Figure 5.2: Facebook success messages are displayed in yellow.

Now we can build our message. We use (hits.size==1 ? "hit" : "hits") instead

of the more idiomatic pluralize because our code is in the controller. The

Rails pluralize helper is available only in views.

...

flash[:notice] = "Your attack resulted in #{hits.size} " +

(hits.size==1 ? "hit" : "hits") +

" and #{misses.size} "+

(misses.size == 1 ? "miss" : "misses") + "."

redirect_to new_attack_path

With our message sorted out, we need a way to display it. Facebook has

a standard way of displaying messages, as you can see in Figure 5.2.

We can use the <fb:success> FBML tag to make our messages look like

this. Let’s add that to our view:

<% unless flash[:notice].blank? %>

<fb:success>

<fb:message>

<%= flash[:notice] %>

</fb:message>

</fb:success>

<% end %>

<% form_for :attack, @attack, :url=>create_attack_path do |f| %>

That’s a lot of work to display a message. Facebooker provides the face-

book_messages() helper to display the flash as a Facebook message:

<%= facebook_messages %>

<% form_for :attack, @attack, :url=>create_attack_path do |f| %>

...

Along with showing notice messages, the facebook_messages() helper

will also show error messages that are stored in flash[:error]. You can see

an example error message in Figure 5.3, on the following page. Let’s

add an error message if our user doesn’t select any users to attack:

def create

if params[:ids].blank?

flash[:error] = "You forgot to tell me who you wanted to attack!"

else

attack = @attack.new(params[:attack])

hits = []

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=88

GETTING INTERACTIVE WITH FORMS 89

Figure 5.3: Facebook error messages are displayed in red.

misses = []

...

end

redirect_to new_attack_path

end

...

We have our form in place, and it’s working well, but it doesn’t really

match the Facebook look and feel. Let’s fix that next.

Matching the Facebook Interface

Since we’re building an application that sits in the middle of Facebook,

we should really make it blend in. We’ve already used the <fb:message>

and <fb:multi-friend-input> tags to make our application look like

Facebook. Let’s use another FBML tag to make our form look more

like a Facebook form.

To do that, we’ll need to use the <fb:editor> FBML tag. The <fb:editor>

tag is a replacement for the HTML <form> tag. It takes many of the

same parameters as the <form> tag such as action and method. Inside,

you can add form fields using other Facebook-specific tags, such as

<fb:editor-text> for text fields.

Here’s what the code looks like using the <fb:editor> tag. You can see

the result in Figure 5.4, on the next page.

<fb:editor action="<%=attacks_path%>">

<fb:editor-custom label="Move:">

<%= select_tag "attack[:move_id]",

options_from_collection_for_select(

current_user.available_moves,:id,:name) %>

</fb:editor-custom>

<fb:editor-custom label="User to attack:">

<fb:multi-friend-input />

</fb:editor-custom>

<fb:editor-buttonset>

<fb:editor-button value="Attack!"/>

</fb:editor-buttonset>

</fb:editor>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=89

GETTING INTERACTIVE WITH FORMS 90

Figure 5.4: The <fb:editor> form matches the Facebook style.

It looks great in the browser, but that code feels awkward. Rails pro-

vides us with nice tools such as form builders to work with HTML forms.

I hate to lose those helpers just to match the Facebook interface. Face-

booker provides a helper to make it easy to create <fb:editor> forms.

Let’s change our attack form:

<% facebook_form_for :attack, Attack.new, :url=>attacks_path do |f| %>

<%= f.collection_select :move_id,

current_user.available_moves, :id,

:name, :label=>"Move" %>

<%= f.multi_friend_input :label=>"User to attack"%>

<%= f.buttons 'Attack!' %>

<% end %>

This version looks the same in the browser, but our code is much

cleaner. We replaced all the custom FBML with a call to facebook_form_()

for(). We replaced our <fb:multi-friend-input> tag with a call to the form

builder’s multi_friend_input method. By using the Facebook form builder,

we built a Facebook-specific form without losing the beauty of Rails.

You can use facebook_form_for just like you would use form_for. Along

with all the Rails form helpers, Facebooker adds some helpers specific

to Facebook. You can find the documentation for these helpers on the

Facebooker website.2

Now that we have a working attack form that looks like part of Face-

book, let’s move on.

2. http://facebooker.rubyforge.org

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://facebooker.rubyforge.org
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=90

BUILDING THE BATTLES PAGE 91

5.2 Building the Battles Page

With our attack form done, we need to build a landing page. Let’s create

a page that shows our users’ recent battle history.

Our battles page shows a list of attacks, so let’s use the index action on

our attacks controller. We want this to be our application’s main page,

so let’s make it the default route:

Download chapter5/karate_poke/config/routes.rb

map.battles '', :controller=>"attacks", :action=>"index"

We built most of the logic for our battles page when we built our User

model:

def index

@battles = current_user.battles

end

With our action in place, we can create a view. For each battle, we want

to show the image, the name of the attacker and defender, and whether

the attack was a hit or miss:

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= fb_name attack.attacking_user %>

<%= attack.hit? ? "hit" : "missed" %>

<%= fb_name attack.defending_user %>

with a <%= attack.move.name %>

</div>

<% end %>

You can see what that looks like in Figure 5.5, on the following page.

If you’ve attacked a few people, our battles page looks good. If you

haven’t, you will see only a blank page. That’s not very inviting. Let’s

instead direct new users to our attack page. We can include a flash

message to encourage them to attack somebody:

def index

@battles = current_user.battles

if @battles.blank?

flash[:notice]="You haven't battled anyone yet."+

" Why don't you attack your friends?"

redirect_to new_attack_path

end

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter5/karate_poke/config/routes.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=91

BUILDING THE BATTLES PAGE 92

Figure 5.5: Our battles page

That looks much better for new users. Now, let’s focus on users who

already have some attacks. You’ll see that each name has a link we

didn’t add. By default, the <fb:name> tag creates a link from each

user’s name to their profile page. We don’t want to link to a user’s

profile page; we want our links to go to that user’s battles page.

Facebook doesn’t give us a way to change the destination of the link. It

does, however, let us remove it entirely. We do this by adding the :linked

=> false option on our call to fb_name(). Once we’ve removed the profile

link, we can add one of our own:

<%= link_to(

fb_name(attack.attacking_user,:linked=>false),

battles_path(:user_id=>attack.attacking_user)) %>

<%= attack.hit? ? "hit" : "missed" %>

<%= link_to(

fb_name(attack.defending_user,:linked=>false),

battles_path(:user_id=>attack.defending_user)) %>

Now we have our links pointing to the battles page, but our index action

shows only the battles of the currently logged in user. We need to modify

our index() action to use the user_id parameter to display another user’s

battles:

def index

if params[:user_id]

@user = User.find(params[:user_id])

else

@user = current_user

end

@battles = @user.battles

...

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=92

ADDING NAVIGATION 93

Figure 5.6: It’s easy to create a tab bar with <fb:tabs>.

With our links squared away, let’s add a little more information to the

battles page. Right now, you can’t tell whose page you are looking at.

Let’s add the owner’s name and their profile picture:

<h2> <%= fb_name @user, :useyou=>false,

:linked=>false, :possessive=>true%>

Battle History </h2>

<%= fb_profile_pic @user %>

We used a lot of options on our call to fb_name(). You can see all the

available options on the developer wiki.3

We have an attack form and a battle page, but now we have a new

problem. We have two different pages and no navigation.

5.3 Adding Navigation

Many Facebook applications use a tab bar for navigation. Let’s stay

with the Facebook look and feel and use one as well. If you’re the kind

of person who has nightmares about the CSS required to build a tab

navigation bar, don’t despair. Facebook has done the work for us.

Adding a Tab Bar

Earlier, we used the <fb:editor> tags to make our form match the Face-

book look and feel. Here, we can use two new FBML tags, <fb:tabs> and

<fb:tab-item>, to add a tab bar to our application. You can see the end

result in Figure 5.6.

To create a tab bar, you just place one or more <fb:tab-item> tags

inside an <fb:tabs> tag. The tab item takes two parameters, one for

the text of the tab and the other for the link. Let’s use the raw FBML

and give it a try.

3. http://wiki.developers.facebook.com/index.php/Fb:name

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/Fb:name
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=93

ADDING NAVIGATION 94

Add this to the top of your new attack view:

<fb:tabs>

<fb:tab-item title="Your Battles" href="<%=battles_path%>" />

<fb:tab-item title="Attack!" href="<%=new_attack_path%>" />

</fb:tabs>

<% facebook_form_for Attack.new do |f| %>

...

I feel a little dirty when I write FBML by hand. Let’s use the Facebooker

helpers to clean that up:

<% fb_tabs do %>

<%= fb_tab_item "Your Battles", battles_path %>

<%= fb_tab_item "Attack!", new_attack_path %>

<% end %>

<% facebook_form_for Attack.new do |f| %>

...

That looks good, but you can’t tell which tab is active. Let’s add a

parameter to tell Facebook to highlight the active tab.

<% fb_tab do %>

<%= fb_tab_item "Your Battles", battles_path %>

<%= fb_tab_item "Attack!", new_attack_path, :selected => true %>

<% end %>

<% facebook_form_for Attack.new do |f| %>

...

Let’s add tabs to our battles page as well:

<% fb_tab do %>

<%= fb_tab_item "Your Battles", battles_path, :selected => true %>

<%= fb_tab_item "Attack!", new_attack_path %>

<% end %>

<% for attack in @battles %>

...

I’m noticing a lot of duplication in our pages. That isn’t very DRY. By

DRY, I mean Don’t Repeat Yourself, a phrase coined in the excellent The

Pragmatic Programmer: From Journeyman to Master [HT00]. This is the

idea that every concept should be expressed just once. To clean it up,

let’s move our tabs into the application layout. When we do that, we’ll

need a way to know which tab is active.

Right now, we have only two different tabs. We know the battles tab has

a @battles attribute, so let’s use it to distinguish between the two cases.

If the @battles attribute is not nil, we know we’re on the battles page. If

@battles is nil, we know we’re on the attack tab.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=94

ADDING NAVIGATION 95

Let’s create an app/views/layouts/application.fbml.erb file and add the fol-

lowing code to it. We created an application.erb layout earlier. We’re

using the more specific application.fbml.erb now so that our layout is

used only for requests from Facebook. This will come in handy in Chap-

ter 8, Integrating Your App with Other Websites, on page 158. We’re also

changing our <fb:fbml> tag to include the version attribute. This tells

Facebook that we want to use all the newest features of FBML.

<fb:fbml version="1.1">

<% fb_tabs do%>

<%= fb_tab_item "Your Battles", battles_path,

:selected=>!@battles.nil? %>

<%= fb_tab_item "Attack!", new_attack_path,

:selected=>@battles.nil? %>

<% end %>

<%= yield%>

</fb:fbml>

That eliminates the duplication nicely. Now we’ll have to make a change

in only one place to add a new tab.

Linking to the About Page

Facebook provides an about page for every application to which the

application directory links. You can use your about page to describe

your application to potential users. It also has an area for reviews and

a discussion board for your users. Let’s add a link to the help page on

the right side of our tab bar:

<% fb_tabs do%>

<%= fb_tab_item "Your Battles", battles_path,

:selected=>!@battles.nil? %>

<%= fb_tab_item "Attack!", new_attack_path,

:selected=>@battles.nil? %>

<%= fb_tab_item "Help & Feedback",fb_about_url,:align=>"right"%>

<% end %>

There are a couple of new things in this link. Facebooker provides the

fb_about_url() method to get a link to our application’s about page. We

also used the align option to the fb_tab_item() method to move our tab

to the right.

I wish creating a tab navigation bar was always this easy. In just five

lines of code we added a complete navigation system to our application.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=95

ADDING NAVIGATION 96

Figure 5.7: The Facebook dashboard displays the application’s name

and image.

Adding a Header

The tab navigation is an improvement, but it still doesn’t look right.

Our tab bar is too close to the top of the page. It’d be nice to add

a header to the page. Facebook provides the <fb:dashboard> tag to

display application header information. Let’s add a dashboard to our

layout.

We’ll skip right to the Facebooker helpers here. You can see more infor-

mation about the <fb:dashboard> tag on the developer wiki.4

<fb:fbml>

<%= fb_dashboard %>

<% fb_tabs do%>

...

That’s all it takes to add a dashboard. You can see the end result in

Figure 5.7.

The empty square is a placeholder for the logo of our application. You

can upload an icon for your application using the Facebook Developer

application. You can see that Facebook includes our application name

in the dashboard automatically.

Along with our application name and image, we can also add actions to

our dashboard. Let’s add a link to the invitation page we created earlier.

We’ll need to change our fb_dashboard() call to use a block and add a

call to the fb_action() method inside:

<% fb_dashboard do %>

<%=fb_action "Invite your friends",new_invitation_path%>

<%=fb_help "Help & Feedback", fb_about_url%>

<% end %>

4. http://wiki.developers.facebook.com/index.php/Fb:dashboard

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/Fb:dashboard
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=96

HIDING CONTENT FROM USERS 97

Figure 5.8: A dashboard with an action and a help link

Along with actions, dashboards can also contain a help link. By default,

help links are placed on the right side of the dashboard. You can see

what this looks like in Figure 5.8. The <fb:dashboard> acts as an alter-

native to the <fb:tab> area for navigation. I prefer the tabs for naviga-

tion, so let’s remove the help link and action from our dashboard.

We’ve made some really small changes to our application that add a

lot of style. We’ll continue to look at other ways of adding style to our

application throughout the rest of this book. Let’s move on to looking

at some more functional parts of the Facebook canvas.

5.4 Hiding Content from Users

As we develop Karate Poke, we’ll run into situations where we want

to show content to only certain users. Facebook provides a number

of powerful tools to make it easier to handle these cases. We’ll see an

example of how to use these tools here.

We’re going to make it easy to attack a user from their battles page.

The Facebook user selector allows you to enter only those people you

are friends with, so this will also give us a way to attack people who

aren’t our friends. We’ll add a form to the top of the page that allows

the viewer to attack the owner of a battles page. We don’t want this form

to show up when we view our own battles page. After all, we wouldn’t

want to attack ourselves.

We already have the create action working, so let’s build a form that will

reuse it. We can add a hidden field that includes the user’s Facebook

ID. If we name the field ids[], we won’t have to change our create action.

(By adding []; to the end of a form field name, you tell Rails that you

want the result to be an array.)

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=97

HIDING CONTENT FROM USERS 98

Become Part of Facebook

When you build a Facebook Platform application, you have
powerful tools at your disposal. Facebook has gone beyond just
providing an API for accessing its data. It also gives you access
to the same tools it uses in its applications. In fact, the integra-
tion is so deep that you can compete with Facebook’s own
applications!

Take FunWall, for example—the most popular externally devel-
oped Facebook application. On a typical day, more than 5
million people use FunWall. That’s amazing, since FunWall com-
petes directly with an application that comes already installed.
Created by Slide, FunWall has done more than just duplicate
all the features of part of Facebook. It has also added enough
new features to be installed by one out of every three Face-
book users. The creators of FunWall have taken full advantage
of the Facebook platform to provide an immersive user experi-
ence. Many of FunWall’s users don’t even know that the appli-
cation wasn’t built by Facebook.

Your code is just as much a part of Facebook as the applica-
tions developed by Facebook. You have access to the same
actions, interface, and messaging that Facebook uses. You can
send emails to your users and write to their profiles.

FBML is a powerful tool that allows you to match the Facebook
user interface. By keeping your application consistent with the
Facebook UI, you reduce the learning curve for your applica-
tion. When a new user sees your app, they will immediately
know how things work, much like a Macintosh user using a new
application. Maintaining a consistent UI is a powerful way to
reduce the cost of using your application.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=98

HIDING CONTENT FROM USERS 99

Figure 5.9: Looking at your own battles page

<h2> <%= fb_name @user, :useyou=>false,

:linked=>false, :possessive=>true%> Battle History </h2>

<%= fb_profile_pic @user %>

<hr />

<h3>Do you want to attack <%= fb_name @user%>?</h3>

<% facebook_form_for Attack.new do |f| %>

<%= f.collection_select :move_id,

current_user.available_moves, :id, :name, :label=>"Move" %>

<%= hidden_field_tag "ids[]", @user.facebook_id%>

<%= f.buttons "Attack!" %>

<% end %>

...

With that working, we just need to hide the form when a user views

their own battles page (Figure 5.9).

In a normal Rails application, we would probably fix this by adding an

unless statement around the form, something like this:

<% unless @user == current_user %>

...

<% end %>

That would work, but Facebook gives us another possibility. Let’s use

the FBML <fb:if-is-user> tag instead. Let’s look at how the two state-

ments work.

The <fb:if-is-user> tag acts like a normal if statement that is executed

when Facebook renders the page. That means your application will out-

put the same data no matter who the viewer is. Facebook will decide

whether to show the form when it processes the page. The unless state-

ment, on the other hand, sends different data to Facebook depending

upon who the viewer is.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=99

HIDING CONTENT FROM USERS 100

The result is the same for our viewer, but by using the <fb:if-is-user>

tag, we can allow our application to cache the page. We’ll talk more

about caching in Section 9.2, Caching Our Views, on page 173.

Here’s what the FBML version looks like:

<% fb_if_is_user @user do %>

<% fb_else do %>

<hr />

<h3>Do you want to attack <%= fb_name @user%>?</h3>

<% facebook_form_for Attack.new do |f| %>

<%= f.collection_select :move_id,

current_user.available_moves, :id, :name, :label=>"Move" %>

<%= hidden_field_tag "ids[]", @user.facebook_id%>

<%= f.buttons "Attack!" %>

<% end %>

<% end %>

<% end %>

Because FBML is an XML variant, there is no way to do the traditional

if, else, end sequence. You have to nest the else statement inside the if

block. This looks awkward at first, but you will quickly get used to it.

Along with <fb:if-is-user>, Facebook provides a number of other if tags.

For example, we can use the <fb:if-is-friends-with-viewer> tag to show

content only if a user is friends with the viewer. We could use the <fb:is-

in-network> tag to limit content to a specific network. We won’t use

these in Karate Poke, but it’s nice to know they exist.

Take a look at your battles page now. Sometimes when I view a user’s

battles page, it looks a little strange. It looks like the person’s name is

missing, as you can see in Figure 5.10, on the next page.

We’ve talked about the Facebook privacy implementation in the past.

Here’s the first time we’re seeing it come into play. In Figure 5.10, on

the following page, I’m logged in as myself while trying to view the bat-

tles page of a test user. Since test users aren’t visible to regular users,

the <fb:name> tag is displaying a blank name. This can also happen

between two regular users if one of them has very strict privacy set-

tings. That looks bad—let’s fix it before we continue.

We’ve specified several different options to the <fb:name> FBML tag.

We’ll use yet another option to tell Facebook what to display when a

username would normally be hidden.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=100

ADDING PAGINATION 101

Figure 5.10: Our battles page between nonfriends

Let’s use the phrase “a hidden ninja” in place of the empty string:

...

<h3>Do you want to attack

<%= fb_name @user, :ifcantsee=>"a hidden ninja"%>?</h3>

...

We’ll need to add that parameter to all the other places we use the

<fb:name> tag. Adding that option to all our calls to fb_name() isn’t

very DRY. We should create a helper to do this for us. Let’s add it to

app/helpers/application_helper.rb. While we’re at it, let’s also add a helper

to tell us whether an attack was a hit or a miss.

def name(user,options={})

fb_name(user,{:ifcantsee=>"a hidden ninja"}.merge(options))

end

def attack_result(attack)

attack.hit? ? "hit" : "missed"

end

That looks much better. With all the testing we’ve been doing, our bat-

tles page is getting really long. Our battles page would look a lot more

polished if it had multiple pages instead of just a long list of battles.

5.5 Adding Pagination

Pagination in a Facebook application isn’t any different than in other

Rails applications. Because of the large numbers of users you may

have, the performance of our pagination implementation is incredibly

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=101

ADDING PAGINATION 102

important. The old Rails pagination helpers performed poorly5 and were

removed in Rails 2.0.

In place of the old pagination helpers, let’s use the will_paginate plug-

in.6 To enable pagination in our models, we’re going to need to make

a small change. In our User#battles method, we need to replace our call

to find() with a call to paginate(). We’ll also need to add a parameter to

accept the page number.

Download chapter5/karate_poke/app/models/user.rb

def battles(page=1)

page ||= 1

Attack.paginate(

:conditions=>

["attacking_user_id=? or defending_user_id=?",

self.id,self.id],

:include=>[:attacking_user,:defending_user,:move],

:order=>"attacks.created_at desc",

:page => page,

:per_page => 5)

end

We’re using five attacks per page so that we get multiple pages more

quickly during development. We may want to change that to a larger

number before we launch.

OK, now that we have that setup done, give it a try in script/console.

Now you can page through your battles. We just need to update our

controllers and view. Let’s modify our controller to pass the page num-

ber parameter to our battles method:

def index

...

@battles = @user.battles(params[:page])

...

end

That’s all the setup we need to do with our controllers. With that done,

we can update our views. We’ll use the will_paginate helper method to

render paging links for our battles:

...

<%= will_paginate(@battles) %>

<% for attack in @battles %>

<div class="battle">

...

5. http://glu.ttono.us/articles/2006/08/30/guide-things-you-shouldnt-be-doing-in-rails

6. Install it by running script/plugin install svn://errtheblog.com/svn/plugins/will_paginate.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter5/karate_poke/app/models/user.rb
http://glu.ttono.us/articles/2006/08/30/guide-things-you-shouldnt-be-doing-in-rails
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=102

ADDING SOME STYLE 103

That’s all it takes to get our battle list paginating. I love how easy

will_paginate makes things. I’m not so sure I like the pagination links

on the left side of the screen, however. To get them looking better, we’ll

need to use CSS. We’ll look at that next.

5.6 Adding Some Style

Karate Poke is starting to come together. It’s still lacking in the style

department, though. Let’s use CSS to make it look a little better.

There was a time when Facebook did not allow linked style sheets.

Thankfully, that isn’t the case anymore. It did this to make it easier to

filter your CSS. Facebook filters your style sheets7 to make sure you

aren’t changing the look and feel of anything outside your canvas area.

Let’s start by moving our pagination links to the right side of the canvas

area. We want to add the following style rules to our application:

Download chapter5/karate_poke/public/stylesheets/application.css

.pagination {

float: right;

}

.battle {

padding: 3px;

font-size: large;

clear: both;

}

.battle img {

padding-right: 3px;

}

Now we just need to add a link to our layout:

<fb:fbml version="1.1">

<%= stylesheet_link_tag "application"%>

<%= fb_dashboard %>

...

When Facebook sees a linked CSS file, it will retrieve the page from

your server and cache it indefinitely. There is no method you can call

to update Facebook’s cache. Instead, you will need to rename the file.

Luckily, Rails handles this automatically. It appends each style sheet

path with a timestamp parameter that changes whenever the file is

changed, allowing Facebook to update its cache. You may need to re-

start your web server for the changes to be noticed.

7. Filtered CSS attributes are listed at http://wiki.developers.facebook.com/index.php/FBML#Invalid_CSS_attributes.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter5/karate_poke/public/stylesheets/application.css
http://wiki.developers.facebook.com/index.php/FBML#Invalid_CSS_attributes
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=103

SUMMARY 104

5.7 Summary

I know it has been a whirlwind tour, but you’ve now gotten a taste of

what the Facebook canvas has to offer. We’ve built Karate Poke from an

invitation screen and some models into a real application. Of course,

there’s still plenty more to explore. Next, let’s take a look at some Face-

book features we can use to make our application more interactive.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=104

Chapter 6

Making It More Social
Now that we have attacks working, it’s time to dig in to the Facebook

social features. We’ll start by notifying our users when they’ve been

attacked using both normal Facebook notifications and email notifi-

cations. We’ll look at how Facebook handles spam notifications and

how to avoid getting your notifications turned off. Next, we’ll use news

feed items to publicize our users’ actions. After that, we’ll use discus-

sion boards, comments, and walls to set up an area for discussion.

Finally, we’ll revisit some of our earliest code to make it better reflect

the changes we’ve made so far.

All these social features act like free advertising for your application.

They can help get your application in front of a wider audience.

6.1 Sending Notifications

We have our attack form working, but there’s a problem. Our users

won’t know that they’ve been attacked until they visit their battles page.

We need a way to tell people they’ve been attacked. We looked at using

invitations to send messages in Section 2.2, Creating the Invitation Form

Using FBML, on page 40, but that doesn’t quite work here. Remember

that invitations and requests require the user to approve the message

before it can be sent. That would make our attack form a little harder

to use. Additionally, the message is sent before our action gets called.

That means we can’t tell the message recipient if the attack was a hit

or a miss.

Instead of using invitations, let’s use Facebook notifications. Notifica-

tions appear at the top of a user’s home page, as you can see in Fig-

ure 6.1, on the following page. Notifications are text-only messages that

Prepared exclusively for Alison Tyler

Download at Boykma.Com

SENDING NOTIFICATIONS 106

Figure 6.1: New notifications appear on our home page.

Figure 6.2: You can view your new notifications from the notifications

tab of your inbox.

always start with the name of the sender. You can see a notification in

Figure 6.2. Like invitations, notifications contain a message body that

is specified in FBML.

Also like invitations, the number of notifications that your application

can send on behalf of a user in one day is limited. Your application is

dynamically assigned a maximum number of invitations based upon

how many users ignore, hide, or report your notifications as spam.1 If

you attempt to exceed this limit, an exception will be raised.

There are a few differences between notifications and invitations. Even

though both notifications and invitations use FBML for the body, the

notification body is limited to text-only HTML and FBML tags. That

means you can add a link to your notification, but not an image.

Sending a notification doesn’t require user interaction. Because of this,

Facebook allows you to see notifications that applications send on your

behalf, as shown in Figure 6.3, on the following page. Facebook allows

the sender to report a notification as spam or as inaccurate, as we will

see in Section 6.1, Spam Filtering, on page 111.

1. This system is described in http://developers.facebook.com/news.php?blog=1\&story=77.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developers.facebook.com/news.php?blog=1&story=77
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=106

SENDING NOTIFICATIONS 107

Figure 6.3: You can view notifications sent on your behalf.

Facebook Notifications

Now that we have a basic idea of what we can do with notifications,

let’s use them to notify the defender that they were just attacked. We’ll

use the send_notification() method on the Facebooker::Session object. >The

send_notification method takes just two parameters. The first is a list of

user IDs to send the notification to. The second is the content of the

notification.

Since we’re notifying only the defender of the attack, our call is very

simple. In the body, let’s just include a message like the one that shows

up on your battles page. Let’s also include a link to our attack page so

that the recipient can return the attack:

Download chapter6/karate_poke/app/models/attack.rb

def notify_defender

message = <<-MESSAGE

<fb:fbml>

#{(hit? ? "hit" : "missed") }

you with a #{move.name}.

Attack them back!

</fb:fbml>

MESSAGE

attacking_user.facebook_session.send_notification(

[defending_user],message)

end

Now we can send users a notification when they’ve been attacked, but

it doesn’t feel very Railsy. Rails provides a much cleaner interface for

sending emails in ActionMailer. Similarly, Facebooker provides the Pub-

lisher interface. Let’s clean up our notification by converting it to use a

Publisher.

First, we’ll need to create a Publisher class. You can do this by run-

ning script/generate publisher attack. This will create attack_publisher.rb in

app/models and a migration. Facebooker needs a table to track some

information about our messages, as we will see in Section 6.2, The

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/attack.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=107

SENDING NOTIFICATIONS 108

Use Messaging as a Call to Action

If your application uses messaging, and it almost certainly
should, make sure your messages encourage the recipient to
take an action. If your message just says something like “Jen
attacked you with a karate chop,” the recipient may just ignore
the message. By adding a link that allows you to easily attack
them back, you are encouraging the recipient to interact with
both your application and their connections.

Part of developing a successful Facebook application is to
keep your users engaged. After all, having a large number of
installed users isn’t very interesting if nobody actually uses your
application. You’ll see this concept in Karate Poke. Every time
we send a message, we ask the recipient to perform some
action.

Basics of Publishing Feeds, on page 113. Run rake db:migrate to create

that table now.

Inside our AttackPublisher, we can define a method to send our notifica-

tion. Because we can use the Publisher interface for sending more than

just notifications, we’ll need to tell Facebooker that we want to send a

notification.

We do this with the send_as method, as you can see here. We’ve included

our ApplicationHelper module to allow us to use our helper methods

here.

Download chapter6/karate_poke/app/models/attack_publisher.rb

helper :application

def attack_notification(attack)

send_as :notification

recipients attack.defending_user

from attack.attacking_user.facebook_session.user

fbml <<-MESSAGE

<fb:fbml>

#{attack_result(attack) }

#{name attack.defending_user} with a #{attack.move.name}.

#{link_to "Attack them back!", new_attack_url}

</fb:fbml>

MESSAGE

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/attack_publisher.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=108

SENDING NOTIFICATIONS 109

To create a notification, we need to specify a from user and one or

more recipients. Since our publisher relies on the Facebook session of

the sending user for sending our messages, our from user must be an

instance of Facebooker::User. Our recipients can be an array of our User

objects, a Facebooker::User, or even just a raw Facebook ID.

Using the Publisher interface gives us several advantages. Primarily, we

have access to our view helpers including URL generation. This makes

creating our notification body much easier. We also gain the ability

to test our notifications without sending them. Just like with Action-

Mailer, we can call AttackPublisher.create_attack_notification(attack) to cre-

ate a Notification object. If we want to both create the object and send it

to Facebook, we can use AttackPublisher.deliver_attack_notification(attack).

Now that we have our notification code cleaned up, let’s set up our

Attack model to automatically send a notification whenever an attack is

created:

Download chapter6/karate_poke/app/models/attack.rb

after_create :send_attack_notification

def send_attack_notification

AttackPublisher.deliver_attack_notification(self)

rescue Facebooker::Session::SessionExpired

We can't recover from this error, but

we don't want to show an error to our user

end

Let’s give it a try. Use one of your test users to attack another test user.

You should see the same notification in the defender’s inbox and the

attacker’s sent notification area.

Sometimes you’ll want to send a notification, but you don’t have a good

from user to use. For example, you could use a notification to update

all your users about a new feature. In these cases, you can leave the

from user blank in your publisher. If you don’t specify a from user, Face-

booker will send an announcement notification that appears to come

directly from your application.

Notification via Email

Our notifications are working great, but the recipient has to log in to

Facebook to know they have a message. This is fine for most notifi-

cations, but sometimes the notifications we send are more urgent. For

example, if we were building a meetup application, we would want to let

users know when an event was canceled. Facebook allows us to send

notifications via email to any user who specifically opts in.
Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/attack.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=109

SENDING NOTIFICATIONS 110

Figure 6.4: Facebook provides a simple framework for obtaining addi-

tional permissions.

Facebook provides a special FBML tag for requesting permission from

a user. The <fb:prompt-permission> tag generates a special link that

our users can click to give our application additional permissions. For

example, to ask for the ability to send email, we can use this:

<%= fb_prompt_permission :email, "Can we email you from time to time?"%>

Facebook will render a link if a user has not already granted permission

to our application. When clicked, the link opens a dialog box asking

the user for their permission to send email, as shown in Figure 6.4.

Once permission has been granted, the link will no longer be shown by

Facebook.

Now that we have a way for users to opt in, we’ll need a way to send

email. To do that, we’ll create a new action in our Publisher. Earlier, we

used send_as :notification to tell Facebooker that we wanted to send a

notification. Along with changing this to :email, we’ll also specify a title

for our message:

Download chapter6/karate_poke/app/models/attack_publisher.rb

def attack_notification_email(attack)

send_as :email

recipients attack.defending_user

from attack.attacking_user.facebook_session.user

title "You've been attacked!"

fbml <<-MESSAGE

<fb:fbml>

#{attack_result(attack) }

#{name attack.defending_user} with a #{attack.move.name}.

#{link_to "Attack them back!", new_attack_url}

</fb:fbml>

MESSAGE

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/attack_publisher.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=110

SENDING NOTIFICATIONS 111

Figure 6.5: You can report a message as spam from your inbox.

Before you will be able to test our email notifications, you will need to

add a permission prompt and then click the resulting link. Once you’ve

done that, you can give our notifications a try from script/console.

Find the attack you just created, and use the publisher to call attack_

notification_email. You should receive a notification email within a few

minutes.

This feels like overkill for our notifications. Let’s use the normal Face-

book notifications instead of email notifications.

Spam Filtering

Facebook allows notification recipients to mark messages as spam, as

you can see in Figure 6.5. To avoid being marked as spam, you should

make sure your notifications are meaningful.

Notifications should be sent to users only when an action occurs that

impacts them. We’re probably safe because we send notifications only to

people who are attacked. If we also sent notifications to other members

of the defender’s dojo, we might be marked as spammy.

You can see how spammy Facebook thinks your application is on the

developer page. You can see the “Spamminess” metric in Figure 6.6, on

the next page. If Facebook decides your application is spammy, you will

lose the ability to send notifications for thirty days. After the thirty days

is up, you can request that your application be unblocked and regain

the ability to send notifications. Each additional blocking requires you

to wait twice as long before you can request to be unblocked.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=111

SENDING NOTIFICATIONS 112

Figure 6.6: The Developer application shows your application’s spam-

miness.

Even though our application sends notifications only to those people

involved in the battle, we still might send too many notifications. We

may want to send only one notification per battle per day. Let’s look at

how we could implement that.

First, we could add a last_notified_on column to our User model. Then,

we could change our send_attack_notification() method to check this col-

umn.

def send_attack_notification

if defending_user.last_notified_on != Date.today

AttackPublisher.deliver_attack_notification(self)

defending_user.update_attribute(:last_notified_on,Date.today)

end

end

This is a simple way to reduce the number of notifications your appli-

cation sends to its users.

The recipient isn’t the only person who can report a notification as

spam. The sender can also report a notification. When you view a sent

notification, you can tell Facebook either that you didn’t take the action

mentioned in the notification or that you didn’t want a notification to

be sent.

Notifications are a great way of sharing information between two people.

Next, we’ll look at ways of spreading information among a group of

people.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=112

PUBLISHING TO NEWS FEEDS 113

Figure 6.7: One-line and short feed items are shown here.

6.2 Publishing to News Feeds

Notifications are a great way to tell a user about an action that affects

them. Feed items, on the other hand, are meant as a way of sharing

information about a user’s actions. You’ve probably seen Facebook feed

items already.

They are the little messages that show up on your home page and in

your mini-feed. They have a title, a body, and optionally images. Feed

items come in three sizes: one-line stories, short stories, and full-size

stories. One-line and short stories are shown in Figure 6.7. Our users

can increase the size of a story by clicking the edit button to the right

of the feed item, as shown in Figure 6.8, on the next page.

Along with having three different sizes of feed items, Facebook provides

two different methods for creating feed items. We’ll start by looking at

how we can create feed items from inside our application. Once we have

a firm grip on the basics of feed items, we’ll learn how to use a profile

publisher to allow our users to create their own.

The Basics of Publishing Feeds

The process of creating feed items has evolved more than any other part

of the Facebook Platform. Facebook released its third version of the feed

publishing API in July 2008. Publishing feed items is now a two-step

process. The first part involves creating and registering a template that

your feed items will follow. Once you have created and registered a

template, you can use this template to create feed items.

This sounds more complicated than it really is. Feed templates are

just a collection of simple strings that contain variables. If we wanted

to create a feed item that said “Jen hit Mike with a karate chop,”

then we might create a simple template that looks like {*actor*} {*result*}

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=113

PUBLISHING TO NEWS FEEDS 114

Figure 6.8: Facebook allows users to change the size of their feed items.

{*defender*} with a {*move*}. Once you have created and registered a tem-

plate (we’ll see how to do this in a moment), publishing a feed becomes

as simple as specifying what values to use for each variable.

Let’s look at what it takes to create a simple template. We’ll start by

adding a new method to our publisher. This method will be responsi-

ble for creating our template. Unlike our previous publisher methods,

it won’t be used for sending a message. Facebooker requires that meth-

ods used for generating templates be suffixed with _template. Since

we’re publishing a feed about an attack, let’s call our new method

attack_feed_template. Our method will do only one thing. It will create a

one-line template like the earlier one.

def attack_feed_template

one_line_story_template "{*actor*} {*result*} {*defender*}"+

" with a {*move*}."

end

Notice that our template starts with {*actor*}. Facebook requires that

all templates start with this variable, which represents the user who

performed the action. Now that we have a method that creates a tem-

plate, we’ll need to register our template with Facebook. We’ll do this by

calling AttackPublisher.register_attack_feed. Give this a try in script/console.

You should get an integer as a return value.

The integer returned by the call to register is the template_id. We’ll

need to send this identifier to Facebook when we want to publish an

instance of this template. Don’t worry about writing down the number;

Facebooker will deal with remembering this for you. Template IDs are

stored in the facebook_templates table that was created automatically

for us when we generated our first publisher.

Now that we have a registered template, let’s actually publish a feed

item. We’ll need to create another method to do this. Our new method

is responsible for providing values for all the variables in our templates.

Its name should match the name of our template method without the

_template suffix.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=114

PUBLISHING TO NEWS FEEDS 115

def attack_feed(attack)

send_as :user_action

from attack.attacking_user.facebook_session.user

data :result=>attack_result(attack),

:move=>attack.move.name,

:defender=>name(attack.defending_user)

end

As with notifications, we’ll need to tell Facebooker what kind of mes-

sage we want to send. In this case, we use send_as :user_action. Also like

in our notifications, we provide the Facebooker::User for whom we want

to send our message. Next, we use the data method to provide all our

template variables except for actor. Facebook knows to use the user

who is publishing as the actor in our template. We now have every-

thing we need to actually publish a feed. Try it out by calling AttackPub-

lisher.deliver_attack_feed(an_attack). Find an attack in script/console, and

try it. You should see a new item on the profile of the sending user.

Earlier, I mentioned that there are multiple sizes of stories. In the pre-

vious example, we created only a one-line template. Let’s add a short

story template as well:

def attack_feed_template

one_line_story_template "{*actor*} {*result*} {*defender*}"+

" with a {*move*}."

short_story_template "{*actor*} engaged in battle.",

"{*actor*} {*result*} {*defender*} with a {*move*}."

end

Now, our user will be able to decide whether they want only a one-

line story in their feed or whether they want a slightly larger story.

By default, all stories are published as one-line stories. A user has to

explicitly edit their feed to increase the size of a story. Let’s see what

our new item looks like. Reregister this template in script/console, and

then publish another feed item.

After publishing a new item, go to your profile. You should see your new

feed item. Click Edit, and you should see the option to change the size

of this feed item. If you don’t see this option, you may have forgotten

to reregister your template. We’ll have to reregister our template every

time we make a change to it.

Along with providing a title and a body, Facebook also allows us to

include images with our short story. If we add an images parameter

to the data we send to Facebook, it will include our images in short

stories. Let’s see what that looks like:

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=115

PUBLISHING TO NEWS FEEDS 116

def attack_feed(attack)

send_as :user_action

from attack.attacking_user.facebook_session.user

data :result=>attack_result(attack),

:move=>attack.move.name,

:defender=>name(attack.defending_user)

:images=>[image(attack.move.image_name,new_attack_url)]

end

The Facebooker image helper lets us just specify a filename and a URL

to which the image should be linked. It takes care of setting up the right

Facebook parameters. Try publishing another story. You won’t need to

reregister your template because it hasn’t changed. We’re just adding

more data.

We’ve looked at two of the three sizes of feed items. Full-size story tem-

plates are created just like short-story templates. The only difference is

that the full size story can be up to 700 pixels tall. That’s much more

room than we can possibly use for our simple application. We’ll just

stick to our two existing sizes.

Feed Item Aggregation

Feed items show up in two different places. Your actions show up on

the wall tab of your profile page. Your friends’ actions show up on your

home page. Although every feed item that is created on your behalf

shows up on your profile, not every one of your friends’ actions shows

up on your home page. Because of the overwhelming number of feed

items created, Facebook tries to group similar feed items to reduce the

number of redundant feed items.

Let’s take a look at an example. Let’s say you are friends with both

me and my wife on Facebook. If we attacked each other back and forth

several times, it would generate a large number of feed items. Instead of

showing you a play-by-play our attacks, Facebook would rather show

you a single story that said something like “Mike and Jen attacked their

friends with Karate Poke.”

Facebook’s most recent changes to the feed API are aimed at better

enabling exactly this kind of aggregation. Along with providing mul-

tiple sizes of templates, Facebook also allows you to provide multiple

one-line and short-story templates. Because Facebook can combine

items only when all the variables match, each new version should con-

tain progressively less information. Facebook can then use these more

generic templates for combining feed items. If Facebook can aggregate

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=116

PUBLISHING TO NEWS FEEDS 117

our story, it is much more likely to show up in our friends’ news feeds.

That means more exposure for our application.

Let’s now add versions of our story templates that can more easily be

aggregated:

def attack_feed_template

attack_back=link_to("Join the Battle!",new_attack_url)

one_line_story_template "{*actor*} {*result*} {*defender*}

with a {*move*}. #{attack_back}"

one_line_story_template "{*actor*} are doing battle

using Karate Poke. #{attack_back}"

short_story_template "{*actor*} engaged in battle.",

"{*actor*} {*result*} {*defender*} with a {*move*}. #{attack_back}"

short_story_template "{*actor*} are doing battle using Karate Poke.",

attack_back

end

Now we can reregister our templates and send a few feed items. If you’re

lucky, you may see an aggregated feed from your application show up

in your news feed. Unfortunately, there is no way to guarantee that a

published feed will be aggregated. This can make testing difficult. Face-

book does provide a tool for testing feed aggregation.2 Did you notice

that our wording in our more generic feed examples assumed that the

actor parameter would include multiple people? The only time Face-

book will use a story other than the first one is when multiple actors

are involved.

Making Our Application More Visible

We just talked about how aggregated stories are more likely to be shown

in your friends’ news feeds. Another way to increase the likelihood that

your story will be shown is to have the links in your story point to

pages viewable by a user without authentication. When we configured

our Rails application, we used the ensure_authenticated_to_facebook fil-

ter to require all users to log in to our application. Let’s remove that

restriction from our battles page to make it publicly viewable. To do

that, we need to disable the ensure_authenticated_to_facebook filter:

skip_before_filter :ensure_authenticated_to_facebook,

:only=>:index

2. Available at http://developers.facebook.com/tools.php?feed. Unfortunately, this tool

hasn’t been updated to reflect the new API as of July 2008.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developers.facebook.com/tools.php?feed
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=117

PUBLISHING TO NEWS FEEDS 118

Since Facebook does not send us session information for users who

haven’t added our application, we’ll also need to modify our set_current_

user method:

def set_current_user

set_facebook_session

if the session isn't secured, we don't have a good user id

if facebook_session and facebook_session.secured?

self.current_user =

User.for(facebook_session.user.to_i,facebook_session)

end

end

That’s almost enough to make the battles page visible to a user who

hasn’t added our application. When a non-logged-in user visits our

application, current_user will return nil. When this happens, our attack

form will call available_moves on the nil current_user. This will raise an

exception. We can fix that by showing the attack form only if current_user

is not nil. If it is, let’s show the user a page that encourages them to log

in to Karate Poke.

To accomplish this, we’ll need to modify both the controller and the

view. Let’s start with the controller. The current user will be unknown

in two cases. The first is when the user clicks a message and the user_id

parameter is given to us. Our code works in this case. The second is

when a new user visits our application for the first time. When this

happens, we want the user to have to authorize our application. We

can just redirect the user to the authorization page and return to stop

execution, as shown here:

def index

if params[:user_id]

@user = User.find(params[:user_id])

else

@user = current_user

end

If we don't have a user, require add

if @user.blank?

ensure_authenticated_to_facebook

return

end

...

Along with changing the controller, we will also need to fix our view.

Our view will need to change to remove the attack form for non-logged-

in users. We can replace it with a simple message. To do this, we can

check to see whether the current user is blank. We can’t use an FBML

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=118

PUBLISHING TO NEWS FEEDS 119

if tag here. The FBML if tag would still try to render the form, which

would raise an exception when we tried to get the available moves for a

nil user.

<% if current_user.blank? %>

<h3><%=link_to "Add Karate Poke",new_attack_path%>

to attack <%=name @user%></h3>

<% else %>

<h3>Do you want to attack <%= name @user%>?</h3>

<% facebook_form_for Attack.new do |f| %>

<%= f.collection_select :move_id, current_user.available_moves,

:id, :name, :label=>"Move" %>

<%= hidden_field_tag "ids[]", @user.facebook_id%>

<%= f.buttons "Attack!" %>

<% end %>

<% end %>

Now our battles page is visible to all Facebook users. Our feeds are also

more likely to be shown. There’s still more we can do.

The Facebook Profile Publisher

So far, we’ve looked only at messages generated programmatically from

within our application. With the Facebook Platform update released in

July 2008, Facebook introduced the Facebook Profile Publisher as a

way to allow users to create their own feed items. The Facebook Pro-

file Publisher, shown in Figure 6.9, on the following page, places your

application on the profiles of your users and their friends. Even though

they are similarly named, the Facebooker Publisher and the Facebook

Profile Publisher are very different. The Facebooker Publisher is used

for sending messages to Facebook. The Profile Publisher is an interface

that allows users to create feed entries from a profile page.

The Profile Publisher isn’t meant to be a general-purpose application

area. It has a very specific focus—adding content to the profiles of our

users. The interaction pattern is simple. When a user selects your appli-

cation from the pull-down on the right of Figure 6.9, on the next page,

Facebook fetches a single form from our server and places it in the pro-

file area. The user fills out the form, and Facebook submits it to our

application. At that point, we can return a newly created feed item, or

we can return an error. That’s the extent of the interaction.

For Karate Poke, this simple interaction is enough for us to build our

attack form. First, we’ll need a controller. We could add this to an exist-

ing controller, but the interaction is different enough that it makes

sense to create a new one. Let’s generate a new controller by running

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=119

PUBLISHING TO NEWS FEEDS 120

Figure 6.9: The Profile Publisher makes it easy to add content to your

friends’ feeds.

script/generate controller profile_publisher. We won’t need to add a route for

our controller, because the Rails default routes will take care of it.

Now that we have a controller, let’s implement just enough to make our

Profile Publisher show up when we visit our friends’ profiles. Facebook

has a somewhat complicated API for creating a publisher form.3 Thank-

fully, Facebooker has hidden most of that from us. To have Facebook

display a form, we’ll just need to call the render_publisher_interface con-

troller method. It takes a string containing the content to display as

its only required parameter. We can get our form as a string using ren-

der_to_string. We’ll also need to know which user is being attacked. Face-

book will send us the Facebook ID of that user in the fb_sig_profile_user

parameter. That gives us a very simple method:

def index

@defender = User.for(params[:fb_sig_profile_user])

render_publisher_interface(render_to_string(:partial=>"form"))

end

With our basic controller in place, we need a form. Our attack form

3. You can view the details at http://wiki.developers.facebook.com/index.php/New_Design_Publisher.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/New_Design_Publisher
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=120

PUBLISHING TO NEWS FEEDS 121

Figure 6.10: The Profile Publisher is configured in the Developer appli-

cation.

is basically what we need. Unfortunately, we can’t use the same code

as we did on our attack form. The Profile Publisher doesn’t want us to

include <form> tags in our code.

Download chapter6/karate_poke/app/views/profile_publisher/_form.erb

How do you want to attack <%=name(@defender)%>?

<%= collection_select :attack,:move_id,

current_user.available_moves, :id, :name%>

The coding part of our basic form is done. Now we just need to do a little

configuration. In the Developer application is a section for publishing

content to friends. We’ll want to add the URL of our index action in the

Callback URL portion of the form. The string you put in the Publishing

Action field will be displayed in the user’s profile. You can see what this

looks like in Figure 6.10.

The Profile Publisher has two different configuration areas. The first,

Publish Content to Friend, controls what is seen when you view the

profile of your friends or when they view your profile. In our case, we

want to show our attack form. The second area, Publish Content to

Self, determines what shows when you view your own profile. In our

case, we will leave this area blank to keep our users from attacking

themselves.

With our configuration done, hit Save, and go to the profile of one of

your friends. You should now have the option of attacking them from

their profile. You can give it a try, but it won’t do anything yet. Before it

will work, we’ll need to code the form submission process.

When a user clicks the Post button on our Profile Publisher, Facebook

will send another request to the URL we specified in our configuration.

Our form parameters will be included, but not where you might expect.

Our form contained only the move_id of the attack. Normally, we would

be able to create an attack using Attack.new(params[:attack]). Inside the

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/profile_publisher/_form.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=121

PUBLISHING TO NEWS FEEDS 122

Profile Publisher, however, Facebook adds another level to our parame-

ters. Instead, we’ll need to use Attack.new(params[:app_params][:attack]).

Now that we know where to find our form parameters, we can go about

creating our attack. Once we’ve created our attack, we’ll need to give

Facebook a feed item to be displayed in the user’s feed. Earlier, we

created an attack_feed method in our AttackPublisher.

We can use the Facebooker render_publisher_response method to send this

feed item back to Facebook. That means our code to process the form

submission looks like this:

@defender = User.for(params[:fb_sig_profile_user])

attack = Attack.new(params[:app_params][:attack])

@attack = current_user.attack(@defender,attack.move)

render_publisher_response(AttackPublisher.create_attack_feed(@attack))

Since Facebook sends our form parameters to the same URL it sends

the form request to, we’ll need a way of determining what Facebook is

looking for. Facebooker provides the wants_interface? method to tell us

whether Facebook wants the Profile Publisher interface or whether it

wants us to process the form. We can combine our code for displaying

a form and our code for processing a form to get our almost final index

action:

def index

@defender = User.for(params[:fb_sig_profile_user])

if wants_interface?

render_publisher_interface(render_to_string(:partial=>"form"))

else

attack = Attack.new(params[:app_params][:attack])

@attack = current_user.attack(@defender,attack.move)

render_publisher_response(

AttackPublisher.create_attack_feed(@attack))

end

end

If we get an error during form processing, Facebook gives us a way

to provide a helpful message to the user. For example, if we had a

more complex form that required validation, we would want to let the

user know about a validation failure. We would do this using the ren-

der_publisher_error method. This method takes two parameters, a title

line and a body line. Thankfully, our form is simple enough that we

don’t have to worry about error handling.

We’re almost done with our Profile Publisher implementation. We’ve

covered rendering the form and handling data from our users. There is

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=122

PUBLISHING TO NEWS FEEDS 123

just one more case to handle. When a nonuser of our application views

the profile of one of our application’s users, the nonapplication user

will be able to use our Profile Publisher. When this happens, Facebook

will provide our application with their Facebook ID but won’t provide

a session key. Currently, our set_current_user method won’t set the cur-

rent_user if no session is provided. Since this is the only case where we

want a user without a session, we can add code directly to our index

action to handle these users:

Download chapter6/karate_poke/app/controllers/profile_publisher_controller.rb

class ProfilePublisherController < ApplicationController

skip_before_filter :ensure_authenticated_to_facebook

def index

if current_user.nil? and facebook_params[:user]

self.current_user = User.for(facebook_params[:user])

end

@defender = User.for(params[:fb_sig_profile_user])

if wants_interface?

render_publisher_interface(render_to_string(:partial=>"form"))

else

attack = Attack.new(params[:app_params][:attack])

@attack = current_user.attack(@defender,attack.move)

render_publisher_response(

AttackPublisher.create_attack_feed(@attack))

end

end

end

That takes care of setting up the user for our action. There is one

more problem where the lack of session will cause us problems. When

an attack is created, we send a notification from the attacker to the

defender. Since our attacker won’t have a session in this case, we’ll

need to handle that error. An easy fix is just to rescue the exception

that is raised, as shown here:

Download chapter6/karate_poke/app/models/attack.rb

after_create :send_attack_notification

def send_attack_notification

AttackPublisher.deliver_attack_notification(self)

rescue Facebooker::Session::SessionExpired

We can't recover from this error, but

we don't want to show an error to our user

end

With that done, users and nonusers alike can use our Profile Publisher

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/profile_publisher_controller.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/attack.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=123

COMMENTS AND DISCUSSION BOARDS 124

to attack their friends. In less than fifty lines of code we’ve created a

simple way to encourage our users to interact with our application.

Next, we’ll look at another way to encourage interaction by building a

comment area.

6.3 Comments and Discussion Boards

We’ve looked at a lot of social features, but none of them has involved

multiple people interacting. Since physical sports often involve verbal

sparring, let’s give our users a place for that. We’ll look at a few different

implementations of this concept. We’ll focus our attention on our users’

battles pages, although the same concept could be used anywhere you

want people to be able to interact.

Adding a Comment Area

We’re going to start building our comment area with the view. This will

allow us to figure out what models we’ll need to build. Facebook pro-

vides two tags for building walls. They are <fb:wall> and <fb:wallpost>.

As you might expect, Facebooker provides the fb_wall() and fb_wallpost()

helpers.

Wall posts require only the ID of the poster and the body of the com-

ment to display. Even though we haven’t implemented the model or the

controller, let’s sketch out a view for our comment wall:

<% fb_wall do %>

<% for comment in @comments %>

<%= fb_wallpost comment.poster, comment.body %>

<% end %>

<% end %>

For this to work, we’ll need to build the Comment model. Our view sug-

gests to me that each comment will need to have at least the ID of the

poster and the body of the comment. We’ll also need to associate our

comment with whatever wall we want it to display on. Instead of creat-

ing a Wall model, let’s just associate the comments with the user who is

being commented on. Since we’re going to be looking up our comments

based upon the user_id and ordering them based upon when they are

created, let’s create an index on those fields:

Download chapter6/karate_poke/db/migrate/010_create_comments.rb

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/db/migrate/010_create_comments.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=124

COMMENTS AND DISCUSSION BOARDS 125

t.integer :user_id

t.integer :poster_id

t.text :body

t.timestamps

end

add_index :comments, [:user_id,:created_at]

end

def self.down

drop_table :comments

remove_index :comments, [:user_id,:created_at]

end

end

Now we just need to add a couple of associations to our User and Com-

ment models:

Download chapter6/karate_poke/app/models/user.rb

has_many :comments

has_many :made_comments, :class_name=>"Comment", :foreign_key=>:poster_id

Download chapter6/karate_poke/app/models/comment.rb

class Comment < ActiveRecord::Base

belongs_to :user

belongs_to :poster, :class_name=>"User"

end

Let’s also add a comment_on() method to the User model to encapsulate

the logic of creating a comment:

Download chapter6/karate_poke/app/models/user.rb

def comment_on(user,body)

made_comments.create!(:user=>user,:body=>body)

end

Let’s create a comments controller with a create action. The create

action will create the comment and then redirect the user to the bat-

tles page to which the comment was added. We’ll also want to add the

comments resource:

Download chapter6/karate_poke/app/controllers/comments_controller.rb

class CommentsController < ApplicationController

def create

comment_receiver = User.find(params[:comment_receiver])

current_user.comment_on(comment_receiver,params[:body])

redirect_to battles_path(:user_id=>comment_receiver.id)

end

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/comment.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/user.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/comments_controller.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=125

COMMENTS AND DISCUSSION BOARDS 126

Download chapter6/karate_poke/config/routes.rb

map.resources :comments

Now that we have our controller, we need to create a form that includes

two parameters, comment_receiver and body. We want to display this

on our battles page, so let us add it to the bottom of app/views/attacks/

index.fbml.erb. Our form should be subtle, so we’re going to use a normal

HTML form instead of a Facebook-specific form:

<% form_for Comment.new do %>

Talk some trash:

<%= text_area_tag :body %>

<%= hidden_field_tag :comment_receiver,@user.id %>

<%= submit_tag 'Post' %>

<% end %>

Finally, we need to add the remainder of our view to index.fbml.erb. That

uses a list of comments in @comments, so we should create that variable

in the index action:

Download chapter6/karate_poke/app/controllers/attacks_controller.rb

if @battles.blank?

flash[:notice]="You haven't battled anyone yet."+

" Why don't you attack your friends?"

redirect_to new_attack_path

else

@comments = @user.comments

end

You should be able to post comments now. There is one more thing we

need to do before we call this feature done. Because we’re displaying

content directly from our users, we need to sanitize the content. As it

stands now, a user could add either HTML or FBML to our pages. Fixing

this hole is simple; we can use the rails h() helper to strip the tags from

our comments:

<%= fb_wallpost comment.poster, h(comment.body) %>

That’s it. In less than fifty lines of code, we’ve added a nice comment

system to our application.

Using the Built-in Comments

Of course, fifty lines of code isn’t as nice as a single line of code. Thanks

to the <fb:comments> FBML tag, we can eliminate all our code. The

<fb:comments> tag adds a comment wall to any page.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/config/routes.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/attacks_controller.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=126

COMMENTS AND DISCUSSION BOARDS 127

The <fb:comments> tag takes quite a few parameters.4 There are four

required parameters: xid, canpost, candelete, and numposts. The first

parameter, xid, is a unique name given to this wall. You could place

the same wall on multiple pages by specifying the same value for xid to

each <fb:comments> tag. Since we want a different comment wall on

each user’s page, we’ll use the string User_ followed by the user’s id as

the xid of our wall.

The next two parameters, canpost and candelete, tell whether the cur-

rent user can post on the wall and delete posts, respectively. We want to

allow everybody to post, but only the owner of the battles page should

be able to delete posts.

The final parameter tells how many posts to show for this wall. Let’s

show the ten most recent posts. Facebook will render a “view all” link if

there are more than the requested number of posts.

We’ll also specify one optional parameter, showform, to tell Facebook

to include the new comment form inside the wall. If we don’t specify

showform, users will have to go to another page to post a comment.

<%= fb_comments "User_#{@user.id}",true,

current_user==@user,10, :showform=>true %>

There is one gotcha with the <fb:comments> tag. During the comment-

posting process, Facebook will fetch your page several times to retrieve

configuration information from the <fb:comments> tag. Because they

make these requests as POSTs, you may run into problems if you’re

using RESTful resources. As a workaround, we need to create a route

to any page with comments on it that will accept a post. For example,

we could create the following route:

map.comments 'battles/:user_id/comments',

:controller => 'attacks', :action => 'index'

and then add the callbackurl parameter on our comments. Adding the

callbackurl parameter will make sure that Facebook can fetch our battles

page whether they use a GET or a POST request:

<%= fb_comments "User_#{@user.id}",true,

current_user==@user,10, :showform=>true,

:callbackurl => comments_url(:user_id=>@user.id) %>

Take a look at that. It looks a little better than the wall we built,

and it took only one line of code. Of course, there are several draw-

backs. When comments are posted to our wall, they are not sent to

4. You can see them all at http://wiki.developers.facebook.com/index.php/Fb:comments.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/Fb:comments
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=127

SPREADING BY INVITATION 128

Figure 6.11: The <fb:board> tag provides a one-line discussion forum.

our application. We also can’t access them using the Facebook API.

Facebook doesn’t give us any method of accessing the comments that

are posted on our pages. This means that we are locked in to using

the <fb:comments> tag. It also means we can’t make our comments

searchable. Since we’ve already implemented our comment functional-

ity, let’s use that in place of the <fb:comments> tag.

Discussion Board

Facebook provides more than just a single, unthreaded comment wall.

It also provides the <fb:board> tag for including an entire message

board on a page. It has a few more options than <fb:comments>, but

it works similarly. Implementing comments on our own was easy, but

a full discussion board would be much more work. Let’s give it a try on

our battles page:

<%= fb_board "User_#{@user.id}" %>

You can see what this looks like in Figure 6.11.

6.4 Spreading by Invitation

We started our application by building invitation functionality. We built

something that works, but it doesn’t fit in well with our application.

Let’s revisit the invitation process to add some polish.

We started with a very basic invitation page:

<fb:add-section-button section="profile" />

<% fb_multi_friend_request("Karate Poke",

"Invite your friends to use Karate Poke.",

invitations_path) do %>

Attack your friends. Install Karate Poke now.

<%= fb_req_choice("Attack!",

new_invitation_path(:from=>facebook_session.user.to_s))%>

<% end %>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=128

SPREADING BY INVITATION 129

Now that we have a more complete application, how about making a

few changes? Let’s send new users to the new attack page instead of

the new invitation page. While we’re at it, we can change the wording of

our invitation form to better match our application:

<% fb_multi_friend_request("Karate Poke",

"Invite your friends to join your Karate Poke Dojo.",

invitations_path) do %>

Come join my Karate Poke Dojo and fight your friends.

<%= fb_req_choice("Join the battle!",

new_attack_path(:from=>@user.to_s,:canvas=>true))%>

<% end %>

That’s a step in the right direction, but there’s still more we can do. We

currently allow our users to send invitations to people who are already

users of the application. Let’s show only those friends who don’t have a

sensei. We built the potential disciples method earlier. Let’s use that to

exclude users who already belong to a dojo.

Facebook lets us specify a list of IDs to exclude from our friend picker.

We’ll create a @not_potential_disciples instance variable to specify which

users to exclude:

friend_ids = params[:fb_sig_friends].split(/,/)

@not_potential_disciples =

friend_ids - current_user.potential_disciples(friend_ids)

We have a problem. Facebooker doesn’t provide a way to pass options

to the multifriend input. We’ll need to change the way we build our

invitation view to fix this.

To get more control over the request, we can replace our fb_multi_friend_

request with an fb_request_form. The fb_request_form uses its block param-

eter to hold the content of the form.

To specify the content for our invitation, we’ll need to use a content_for

block:5

Download chapter6/karate_poke/app/views/invitations/new.erb

<% content_for("invite_message") do %>

Come join my Karate Poke Dojo and fight your friends.

<%= fb_req_choice("Join the battle!",

new_attack_path(:from=>current_user,:canvas=>true))%>

<% end %>

<% fb_request_form("Karate Poke","invite_message",

invitations_path) do %>

5. The content_for method is one of the most underutilized helpers in Rails. It allows a

portion of a view to be stored under a string key and retrieved later. It is documented at

http://api.rubyonrails.com/classes/ActionView/Helpers/CaptureHelper.html#M001748.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/invitations/new.erb
http://api.rubyonrails.com/classes/ActionView/Helpers/CaptureHelper.html#M001748
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=129

SPREADING BY INVITATION 130

<%= fb_multi_friend_selector(

"Invite your friends to join your Karate Poke Dojo.",

:exclude_ids=>@not_potential_disciples.join(","))%>

<%= fb_request_form_submit %>

<% end %>

There’s just one more thing to do. When a user clicks the Skip button

in our invitation, they currently receive an error. This happens because

Facebook sends a GET request to the URL we specify in our invitation

form. The result is a request to our nonexistent index action. Since

Facebook doesn’t give us a way to change where the Skip button links

to, we will need create an index action that simply redirects the user to

their battles page:

Download chapter6/karate_poke/app/controllers/invitations_controller.rb

def index

redirect_to battles_path

end

That takes care of the invitation. Now we just need to correctly set the

sensei of our users when they join:

Download chapter6/karate_poke/app/controllers/attacks_controller.rb

def new

if params[:from]

current_user.update_attribute(:sensei,User.find(params[:from]))

end

end

Finally, let’s add our <fb:add-section-button> tag to our layout to make

sure our users will see it. While we’re at it, we can replace the raw FBML

with a Facebooker helper. You can see that change here:

Download chapter6/karate_poke/app/views/layouts/application.fbml.erb

<fb:fbml version="1.1">

<%= stylesheet_link_tag "application"%>

<%= fb_dashboard %>

<% fb_tabs do %>

<%= fb_tab_item "Your Battles", battles_path, :selected=>!@battles.nil? %>

<%= fb_tab_item "Attack!", new_attack_path, :selected=>@battles.nil? %>

<%= fb_tab_item "Help & Feedback",fb_about_url,:align=>"right"%>

<% end %>

<%= fb_add_profile_section %>

<%= yield%>

</fb:fbml>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/invitations_controller.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/attacks_controller.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/layouts/application.fbml.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=130

GIVING THE PROFILE A MAKEOVER 131

That makes our invitations feel more like part of Karate Poke. We’re

building dojos and encouraging our users to spread our application.

6.5 Giving the Profile a Makeover

When we last looked at the profile, we had just started working on

Karate Poke. Since then, we’ve built quite a lot of functionality. What

we put into our users’ profiles is looking a little dated. Let’s replace

it with something that better reflects our application, like the user’s

recent battle history.

Updating Profiles with a Publisher

We will start by revisiting how we update our users’ profiles. Earlier,

we looked at setting the profile FBML directly using the profile_fbml=

method. This worked for our purposes, but it required us to build our

FBML by hand. Instead, we’ll turn to the Facebooker Publisher for help.

Let’s start by looking at the easiest possible profile update we can do

with the publisher. Add the following example to your AttackPublisher,

and run it by calling AttackPublisher.deliver_profile_update:

def profile_update(user)

send_as :profile

recipients user

profile "This is a test"

end

You can run that, and it works, but it’s certainly not what we want

our final profile to look like. Our final profile view should probably look

something like the attack list on our battles page. In fact, let’s start by

creating a new partial and reusing that code. Since our partial is for

our AttackPublisher, I’ll put it in app/views/attack_publisher/_profile.erb:

<fb:fbml>

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

name(attack.attacking_user,:linked=>false),

battles_path(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

<%= link_to(

name(attack.defending_user,:linked=>false),

battles_path(:user_id=>attack.defending_user)) %>

with a <%= attack.move.name %>

</div>

<% end %>

</fb:fbml>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=131

GIVING THE PROFILE A MAKEOVER 132

To make that work, we’ll just have to do two things. First, we’ll need

to retrieve a list of battles for our user. After that, we’ll need to tell the

publisher to render our new profile partial. Both of these will take just

a few lines of code:

def profile_update(user)

send_as :profile

recipients user.facebook_session.user

@battles=user.battles

profile render(:partial=>"profile",:assigns=>{:battles=>@battles})

end

Isn’t that easy? The main thing to be aware of is that you need to explic-

itly pass variables into your template using :assigns => {}. The variables

that you pass in will be defined as instance (or @) variables in your

template. With that done, we’ll just need to call the deliver_profile_update

method after we create an attack. We can do that with an after_create

callback like the one shown here:

after_create :update_profiles

def update_profiles

AttackPublisher.deliver_profile_update(attacking_user)

AttackPublisher.deliver_profile_update(defending_user)

end

Give it a try, and look at the results. There are a couple of important

things to notice. First, images in your users’ profiles aren’t being loaded

from your server. Facebook caches all profile images to ensure that

profile pages load quickly. When you set profile FBML, Facebook will

find all the images in your FBML and cache them. Facebook will refresh

their image cache only if the name of an image changes. Rails’ image_tag

helper includes a last-modified time as part of the URL, so we shouldn’t

have to worry about this.

Along with the cached images, you’ll also notice that our links are bro-

ken. So far, our entire application has lived inside the Facebook can-

vas. We’ve been able to use relative links because our entire application

has lived at apps.facebook.com. Profiles, on the other hand, use the

www.facebook.com hostname. We’ll have to make sure all our links on

our users’ profiles point to the right place.

Currently, we use the battles_path helper to generate our links. That

method will generate only the path portion of our link. To include the

correct hostname, we’ll need to change our view to use the battles_url

helper instead. (This one little change is responsible for at least 50

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=132

GIVING THE PROFILE A MAKEOVER 133

percent of the time I spend debugging profile problems. I’ve started

adding a note to my monitor reminding me to make all my links use

the _url helpers.) Once we convert our helpers, the Facebooker publisher

will make sure they point to the canvas page. You can see the changed

code here:

<fb:fbml>

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

name(attack.attacking_user,:linked=>false),

battles_url(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

<%= link_to(

name(attack.defending_user,:linked=>false),

battles_url(:user_id=>attack.defending_user)) %>

with a <%= attack.move.name %>

</div>

<% end %>

</fb:fbml>

That should fix our broken links. Create another attack, and double-

check your updated profile.

The Skinny and Fat on Profiles

Our profile content shows up in the wide part of our users’ profiles by

default. You can change this setting in the Developer application. In the

wide area, our content can be up to 380 pixels wide. In the narrow view,

our content can be only 180 pixels wide. Since our users can move their

profile box from one side of their profile to the other, we should make

sure our content looks good on both sides.

Since the two sections of the profile have such drastically different

widths, Facebook gives us the <fb:wide> and <fb:narrow> FBML tags

to specify markup specific to each area. Our existing profile box looks

fine on the wide side, so we can wrap our existing code in an <fb:wide>

tag. We can add an <fb:narrow> tag immediately afterward that shows

just our users’ first names and eliminates some of the descriptive text:

<fb:fbml>

<fb:wide>

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

name(attack.attacking_user,:linked=>"false"),

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=133

GIVING THE PROFILE A MAKEOVER 134

battles_url(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

<%= link_to(

name(attack.defending_user,:linked=>"false"),

battles_url(:user_id=>attack.defending_user)) %>

with a <%= attack.move.name %>

</div>

<% end %>

</fb:wide>

<fb:narrow>

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

name(attack.attacking_user,:linked=>"false",

:firstnameonly=>true),

battles_url(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

<%= link_to(

name(attack.defending_user,:linked=>"false",

:firstnameonly=>true),

battles_url(:user_id=>attack.defending_user)) %>

</div>

<% end %>

</fb:narrow>

</fb:fbml>

Our narrow view looks better, but there’s one more part of the profile

that we haven’t dealt with. Our users can choose to move our profile

box from the boxes tab to their main profile area using the edit menu

shown in Figure 6.12, on the following page.

The main profile box is the same width as the narrow box but is lim-

ited in height to only 250 pixels. Thankfully, our narrow profile view

is already relatively short. If we just limit our main view to the first

four attacks, we should have plenty of space. We can move our narrow

profile code to a partial and use that for both the narrow box and the

main profile area. Once we have our partial created, we can update our

profile_update method as well.

OK, let’s start with the partial extraction. We can create a new partial

called _profile_narrow.erb:

Download chapter6/karate_poke/app/views/attack_publisher/_profile_narrow.erb

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/attack_publisher/_profile_narrow.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=134

GIVING THE PROFILE A MAKEOVER 135

Figure 6.12: You can easily move a profile box around.

name(attack.attacking_user,:linked=>"false",

:firstnameonly=>true),

battles_url(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

<%= link_to(

name(attack.defending_user,:linked=>"false",

:firstnameonly=>true),

battles_url(:user_id=>attack.defending_user)) %>

</div>

<% end %>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=135

GIVING THE PROFILE A MAKEOVER 136

Then we can modify our _profile.erb template to use our new narrow

template:

Download chapter6/karate_poke/app/views/attack_publisher/_profile.erb

<fb:fbml>

<fb:wide>

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

name(attack.attacking_user,:linked=>"false"),

battles_url(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

<%= link_to(

name(attack.defending_user,:linked=>"false"),

battles_url(:user_id=>attack.defending_user)) %>

with a <%= attack.move.name %>

</div>

<% end %>

</fb:wide>

<fb:narrow>

<%= render :partial=>"profile_narrow"%>

</fb:narrow>

</fb:fbml>

With that done, we can add a call to profile_main to set the FBML for our

main profile box:

Download chapter6/karate_poke/app/models/attack_publisher.rb

def profile_update(user)

send_as :profile

recipients user

@battles=user.battles

profile render(:partial=>"profile",

:assigns=>{:battles=>@battles})

profile_main render(:partial=>"profile_narrow",

:assigns=>{:battles=>@battles[0..3]})

end

Now our users can choose to put our profile box wherever they think it

looks best.

Profile Visibility

Earlier, we looked at using different fb:if tags to control visibility. Some-

times we may want to do this in the profile area. For instance, we may

want to include a link that the profile owner can use to change the

look and feel of their profile. Unfortunately, the fb:if tags can’t be used

in the profile area. Instead, Facebook provides several fb:visible-to tags

that fulfill a similar purpose.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/attack_publisher/_profile.erb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/models/attack_publisher.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=136

GIVING THE PROFILE A MAKEOVER 137

Figure 6.13: Users can add a profile tab for your application.

There are two big differences between the fb:if tags and the fb:visible-to

tags. The fb:if tags control the existence of content. If the if condition

isn’t true, then no output is sent to the browser. The fb:visible tags con-

trol only the visibility of the content. When the conditional is false, the

enclosed content is still written to the page; it is just hidden with CSS.

If you view the source of the page, you can easily see content that is

hidden to you. This means you shouldn’t use the fb:visible tags to hide

private information.

Additionally, all content on the profile is visible to the profile owner.

That way, the profile owner will always know what their profile looks

like. If you display different content to application users and nonappli-

cation users, the profile owner will see both.

Profile Tabs

Along with displaying a small application box on their profiles, your

users can choose to add an application tab to their profile. Application

tabs show up at the top of the profile, as shown in Figure 6.13. An

application tab is a cross between a normal canvas page and a profile

box. When your application tab is clicked, a page you specify is loaded

via Ajax and placed in the body of the profile, as shown in Figure 6.14,

on the following page.

Pages displayed in a profile tab follow a special set of rules. First, tab

pages aren’t allowed to redirect. When a relative link is clicked on a page

viewed in a tab, the linked page is requested via Ajax and loaded in the

same frame as the first page.6 When a link is clicked with an absolute

URL (a link with a hostname), the viewer is taken to the requested page.

When Facebook requests a page for a profile tab, two special parame-

ters are sent. Facebook sends the fb_sig_profile_user parameter to tell our

application which user the tab is being viewed for. Facebook also sends

6. There are many other rules specified at http://wiki.developers.facebook.com/index.php/New_Design_Tabbed_Profile.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/New_Design_Tabbed_Profile
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=137

GIVING THE PROFILE A MAKEOVER 138

Figure 6.14: Application tabs place your application on the

profile.

the fb_sig_in_profile_tab parameter as a signal that a page view is for a

tab. Like a normal canvas page, Facebook provides the ID of the user

viewing the page if they have your application installed. If they don’t,

no user parameter is sent. Unlike a normal canvas page, the session

identifier you are sent is a read-only session. You can use the provided

session to retrieve information about the viewer, but you can’t send

notifications or perform other actions on their behalf.

For our users to be able to add a Karate Poke tab to their profile, we’ll

need to do a little configuration. Inside the Facebook Developer tool,

we’ll need to provide a URL used for profile tabs. Open the Developer

application, and find the Profile Tab URL area. Let’s use the path /tab

for our tab page. Enter that as shown in Figure 6.15, on the next page.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=138

GIVING THE PROFILE A MAKEOVER 139

Figure 6.15: Profile tabs are configured via the Developer

application.

Once we’ve configured Facebook, we need to actually write some code.

Let’s start by creating a tab controller action. Since our tab view will be

similar to our battles page, let’s put it in the AttacksController. We saw

earlier that the tab owner’s ID will be passed in as the fb_sig_profile_user.

Let’s use that to load a list of battles for the user. Since we won’t get the

ID of the viewer, we’ll also need to skip our filter that requires a user to

be logged in:

Download chapter6/karate_poke/app/controllers/attacks_controller.rb

skip_before_filter :ensure_authenticated_to_facebook,

:only => [:index,:tab]

def tab

@user = User.for(params[:fb_sig_profile_user])

@battles = @user.battles

render :action=>"tab",:layout=>"tab"

end

Now we just need to create a view for our tab page. Here is a simple

view that should do the trick:

Download chapter6/karate_poke/app/views/attacks/tab.fbml.erb

<% if @battles.blank? %>

<h1>Nobody has attacked <%=name @user%> yet.</h1>

<p>

Be the first.

<%=link_to "Attack #{name @user} now!", new_attack_url%>

</p>

<% else %>

<%= will_paginate(@battles)%>

<% for attack in @battles %>

<div class="battle">

<%= image_tag attack.move.image_name %>

<%= link_to(

name(attack.attacking_user,:linked=>false),

battles_url(:user_id=>attack.attacking_user)) %>

<%= attack_result(attack) %>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/attacks_controller.rb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/attacks/tab.fbml.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=139

GIVING THE PROFILE A MAKEOVER 140

<%= link_to(

name(attack.defending_user,:linked=>false),

battles_url(:user_id=>attack.defending_user)) %>

with a <%= attack.move.name %>

</div>

<% end %>

<% end %>

Because our tab will be viewed inside the profile UI, we will want to

change our layout a little. Our application’s main navigation bar just

adds clutter. Let’s create a new layout in app/views/layouts/tab.fbml.erb

to clean this up:

Download chapter6/karate_poke/app/views/layouts/tab.fbml.erb

<fb:fbml version="1.1">

<%= stylesheet_link_tag "application"%>

<%= yield%>

</fb:fbml>

There’s just one more step to get this working. We need to set up a route

for our tab view so that it appears at /tab:

Download chapter6/karate_poke/config/routes.rb

map.tab '/tab',:controller=>"attacks",:action=>"tab"

That should be it. Now you can go to your profile, click the plus sign to

the right of your tab list (shown in Figure 6.13, on page 137), and add a

tab for your application. If your application doesn’t show up in the list,

double-check your setup in the Developer application. You should now

have a tab for your application. Click your application’s tab to see your

battle summary.

You should be able to click any of the links in the main battle list and

be taken to the battles page of that user. You are taken outside the

profile because the links in our tab view are absolute links created with

the battles_url method.

If we had used battles_path instead, the page would have loaded in the

profile. If you click any of the pagination links, you should see the new

page loaded in the profile view.7

I mentioned earlier that a special read-only session is sent to us when

an authenticated user visits a profile tab. We currently store our users’

sessions in the database. If a user visits our application in a tab, their

7. You would if it weren’t for a Facebook bug. See

http://bugs.developers.facebook.com/show_bug.cgi?id=2646.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/views/layouts/tab.fbml.erb
http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/config/routes.rb
http://bugs.developers.facebook.com/show_bug.cgi?id=2646
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=140

TESTING FACEBOOKER PUBLISHERS 141

session will be overwritten by a read-only version. These read-only ses-

sions will cause us problems in Section 9.4, Move API Calls Out of Line,

on page 184. Let’s change our set_current_user method to not save ses-

sions from tabs:

Download chapter6/karate_poke/app/controllers/application.rb

def set_current_user

set_facebook_session

if the session isn't secured, we don't have a good user id

if facebook_session and

facebook_session.secured? and

!request_is_facebook_tab?

self.current_user =

User.for(facebook_session.user.to_i,facebook_session)

end

end

With that done, we now have a complete implementation of profile tabs.

This also wraps up our reworking of our users’ profiles. We’ve added

better content to our profile box and even allowed our users to add a

profile tab to proudly show off their Karate Poke expertise. Next, we’ll

look at how we can test our code that uses the Facebook Publisher.

6.6 Testing Facebooker Publishers

Now that we’ve seen how to use the Facebook Publisher, let’s look at

how we can test our code. Ideally, we want to be able to run our pub-

lisher and look at the results without actually sending messages. After

all, we can’t run our tests very often if we get to send only twenty mes-

sages a day.

Back in Section 6.1, Facebook Notifications, on page 107, we saw a

publisher method for creating a notification without sending it. We can

use this feature in all of our tests. Let’s start by creating a new file for

our publisher tests. Since we’re going to be testing the attack publisher,

let’s call this file test/unit/attack_publisher_test.rb.

Our file should include the normal Rails testing boilerplate:

require File.dirname(__FILE__) + '/../test_helper'

class AttackPublisherTest < ActiveSupport::TestCase

fixtures :users, :belts, :attacks

end

Now that we have that, we can write our first publisher test. Let’s start

simple and test our attack notification code.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter6/karate_poke/app/controllers/application.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=141

SUMMARY 142

First, we’ll need to ask our publisher to create a new notification:

def test_attack_notification

story = AttackPublisher.create_attack_notification(attacks(:one))

#assertions go here

end

Once we have our story, we need a way of making sure it matches our

expectations. Since a notification has only one field, we can easily test

that:

def test_attack_notification

story = AttackPublisher.create_attack_notification(attacks(:one))

assert_equal "<fb:fbml> ...",notification.fbml

end

Unfortunately, the returned notification object doesn’t include the re-

cipient list of the notification. To make sure our notification is sent to

the right people, we’ll have to use a mock:

def test_attack_notification

a=attacks(:one)

recipient=a.defender

fm=flexmock(AttackPublisher)

fm.new_instances.should_receive(:recipients).

with(recipient.facebook_session.user)

story = AttackPublisher.create_attack_notification(attacks(:one))

assert_equal "<fb:fbml> ...",notification.fbml

end

That’s all it takes to test a simple publisher. It’s important to remem-

ber that these tests verify only that the published messages look like

we expect them to look. They don’t verify that the messages will work

correctly when sent to Facebook. For instance, if you try to send a noti-

fication to a user who isn’t friends with the sender, our tests will happily

allow it while Facebook will raise an exception. Once you are satisfied

that your publisher works the way you expect, you should verify the

results through Facebook.

6.7 Summary

We’ve looked at quite a few features in this chapter. We started by send-

ing out notifications when our users engage in battle. Next, we used

the feeds to publicize our users’ actions. After that, we implemented

the profile publisher interface. We finished up by creating a place for

talking trash and polishing our invitation system and profile area. Next,

we’ll look at how we can use JavaScript inside the Facebook canvas.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=142

Chapter 7

Scripting with FBJS
Earlier, we looked at how to make our application more interactive by

using the Facebook social features. Now, we’re going to look at how we

can use JavaScript to make our application more dynamic. If you’ve

written JavaScript before, then Facebook JavaScript (FBJS) will look

familiar to you. There are some important differences between normal

JavaScript and FBJS. We’ll look at these differences as we implement

some new features in Karate Poke. We’ll start by making our comment

form a little more usable. We’ll also look at creating Facebook dialog

box messages. Finally, we’ll use Ajax to allow users to post comments

without a page refresh.

7.1 FBJS Overview

JavaScript is a relatively new feature for Facebook. At the time of the

platform launch, there was no good way to make your application dy-

namic. Several months later, Facebook released FBJS.1 You will very

quickly notice some differences between normal JavaScript and FBJS.

To begin with, Facebook renames all the methods and variables you

create to effectively sandbox your code. By prepending all of your vari-

ables and methods with an application-specific prefix, Facebook makes

it impossible for you to interact with another application’s JavaScript.

For example, if you create a method named foo, Facebook will rename

your method to something like a581937383_foo. Additionally, Facebook

changes the way your application interacts with DOM elements by

1. You can see basic documentation on FBJS at http://wiki.developers.facebook.com/index.php/FBJS.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/FBJS

FBJS OVERVIEW 144

removing direct access to certain attributes. This applies only to DOM

objects, such as objects that represent <div> tags or <p> tags. Face-

book does not change the way you interact with other built-in types,

such as String and Array objects.

When developing FBJS, the open source Firefox plug-in Firebug2 is

an invaluable asset. If you haven’t installed this plug-in for the Fire-

fox browser, you definitely should. Firebug makes it easy to view your

JavaScript as modified by Facebook. It also allows you to interactively

modify DOM elements and debug your JavaScript.

A Simple Example

In Section 6.3, Comments and Discussion Boards, on page 124, we

added a comment form to our battles page. Let’s hide the comment

form by default and make it appear when our user clicks a link.

If we were building this in a normal Rails application, our solution

might look something like this:

<%= link_to_function "Talk some trash","$('comment_form').show();" %>:

<div id="comment_form" style="display:none">

<% form_for Comment.new do %>

<%= text_area_tag :body %>

<%= hidden_field_tag :comment_receiver,@user.id %>

<%= submit_tag 'Post' %>

<% end %>

</div>

Both the $() and show() methods come from the Prototype3 JavaScript

library. Because of the implementation of JavaScript on Facebook, we

can’t use Prototype. Instead, we’ll need to write raw JavaScript.

We can start by replacing the call to $() with document.getElementById().

Once we’ve done that, we need to find a way to make the comment_form

element show up. Outside Facebook, we would write something like

this:

document.getElementById('comment_form').style.display="block";

Facebook, however, removes our ability to access attributes of DOM

elements directly. Instead, we’ll need to use the setter functions it pro-

2. Available at https://addons.mozilla.org/en-US/firefox/addon/1843

3. You can find documentation on Prototype at http://www.prototypejs.org/.

You can also check out the excellent screencast available at

http://peepcode.com/products/javascript-with-prototypejs.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

https://addons.mozilla.org/en-US/firefox/addon/1843
http://www.prototypejs.org/
http://peepcode.com/products/javascript-with-prototypejs
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=144

FBJS OVERVIEW 145

vides, setStyle(), in this case. That makes our finished code look like

this:

<%= link_to_function "Talk some trash",

"document.getElementById('comment_form')"+

".setStyle('display','block');"%>

:

<div id="comment_form" style="display:none">

<% form_for Comment.new do %>

<%= text_area_tag :body %>

<%= hidden_field_tag :comment_receiver,@user.id %>

<%= submit_tag 'Post' %>

<% end %>

</div>

That’s a lot of additional code to write. Although this one line isn’t too

bad, you’ll quickly be annoyed by all the JavaScript cluttering your

views if you’re forced to write it all by hand. Even though Prototype

doesn’t work with Facebook, Facebooker provides a JavaScript helper

library that implements some of the most used Prototype methods. In

fact, if we include the facebooker.js file in our layout, we can use the

same JavaScript that we would use in a normal Rails application. Let’s

do that here:

<fb:fbml version="1.1">

<%= render :partial=>"layouts/css"%>

<%= javascript_include_tag "facebooker"%>

Once we’ve done that, our comment form becomes the following:

<%= link_to_function "Talk some trash",

"$('comment_form').show();" %>

:

<div id="comment_form" style="display:none">

<% form_for Comment.new do %>

<%= text_area_tag :body %>

<%= hidden_field_tag :comment_receiver,@user.id %>

<%= submit_tag 'Post' %>

<% end %>

</div>

After including facebooker.js, our code is back to what it would look like

outside Facebook.

I mentioned earlier that Facebook filters our JavaScript. Let’s take a

look at what actually gets written to the page.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=145

FBJS OVERVIEW 146

Our simple link_to_function turns into this:

<a href="#"

onclick="(new Image()).src = '/ajax/ct.php?app_id=5812356537\

&action_type=3&post_form_id=58892f4f71a44dc934baba03ca91\

a128&position=3&' + Math.random();\

fbjs_sandbox.instances.a5812356537.bootstrap();

return fbjs_dom.eventHandler.call(

[fbjs_dom.get_instance(this,5812356537),function(a5812356537_event)

{a5812356537_$('comment_form').show();; return false;},

5812356537],new fbjs_event(event));return true">Talk some trash:

That’s quite a change from what we wrote. I don’t even know exactly

what most of it does. Out of that mess, our code is a relatively small

portion:

a5812356537_$('comment_form').show();

During translation, Facebook replaces our call to $() with a call to

a5812356537_$(). We’ll see this prefix quite a bit. Facebook prepends all

variable names and method names in our code with an a followed by

our application ID. The good news is that this happens transparently

to us. The bad news is that it makes our code harder to debug.

Living Without innerHTML

When we built our comment form, we used a string to store the com-

ment body. Most databases have a relatively small limit to the amount

of text that can be stored in a string. Let’s add some JavaScript to

count the number of characters entered into the form and warn our

users when their comment is too long.

There are two main things we need to build this feature. The first is an

event listener that gets called whenever text is typed into our comment

box. We can add this like we would for any Rails application. We can

modify our form to pass in listeners for both change and keyup events.

We want to listen to both types of events to capture several cases. Some

browsers call the change callback only when a field loses focus. Oth-

ers don’t call keyup when text is pasted. By using both callbacks, we

make sure our count is accurate. Let’s add a call to a function called

update_count. We’ll implement update_count shortly:

<%= text_area_tag :body,"",

:onchange=>"update_count(this.getValue(),'remaining');",

:onkeyup=>"update_count(this.getValue(),'remaining');"

%>

<p id="remaining"> </p>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=146

FBJS OVERVIEW 147

Not Seeing Your JavaScript Changes?

As you’re testing this, you may think your code isn’t being
updated. Facebook caches your JavaScript files by name.
By default, Rails includes the time a file was last modified
in its name. Unfortunately, it checks for updated timestamps
only when the mongrel server is restarted. In development
mode, you may need to restart your script/server each time you
change your JavaScript files. For that reason, you may want to
develop your JavaScript inside a script tag and move it to the
application.js file only once it is complete.

If you see an error like “Failed to fetch required static file,” that
is Facebook telling you that you are trying to include too many
JavaScript files. By default, Facebook allows you to reference
only four external files. If you have more than that, you will need
to combine them.

There’s one important thing to note in this snippet. Instead of getting

the value of a form element with element.value, Facebook requires you

to call element.getValue(). If you’re ever pulling your hair out trying to

figure out why a value is undefined, this is one of the first places to

look.

Now we need to implement our update_count method. We could define

it inside a <script> tag in our page, but instead, let’s add it to the

application.js file.

There are just a few things our method needs to do. First, it needs

to count the number of characters in our text field. Next, it needs to

update a text area with a message.

function update_count(str,message_id) {

len=str.length;

if (len < 200) {

// display the count with an okay message

} else {

// display the count with an error message

}

}

Things get tricky at this point.

Along with removing the attributes of DOM elements, Facebook also

removes the ability to set an element’s innerHTML. To replace innerHTML,

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=147

FBJS OVERVIEW 148

Figure 7.1: setTextValue allows you to change a tag’s content.

Facebook provides three different methods: setInnerFBML, setInnerXHTML,

and setTextValue. We’ll talk about setInnerFBML in a bit. For now, let’s look

at the other two.

Let’s start by making our message a simple text string:

function update_count(str,message_id) {

len=str.length;

if (len < 200) {

$(message_id).setTextValue(200-len+" remaining");

} else {

$(message_id).setTextValue("Comment too long."+

" Only 200 characters allowed.");

}

}

If you run that code, you’ll see an updated message underneath the

form, like the one in Figure 7.1. Using only text is somewhat limiting. If

we use the setInnerXHTML method, Facebook will allow us to replace the

tag’s content with sanitized XHTML. The string we pass to setInnerXHTML

is sanitized according to the regular FBML rules. This means some tags

are removed.

function update_count(str,message_id) {

len=str.length;

if (len < 200) {

$(message_id).setInnerXHTML(""+

(200-len)+" remaining");

} else {

$(message_id).setInnerXHTML(""+

"Comment too long. Only 200 characters allowed.");

}

}

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=148

FBJS OVERVIEW 149

Figure 7.2: setInnerXHTML allows adding sanitized XHTML content to an

element.

You can see the results of the previous code in Figure 7.2. When you

use the setInnerXHTML method, it’s important to make sure you are using

valid XHTML. If you try to use invalid XHTML, you will get a run-

time error. You will also receive an error if you try to pass plain text

to setInnerXHTML.

FBJS in the Profile

So far, we’ve looked at using FBJS only in the canvas area. Face-

book doesn’t stop you from using JavaScript in your users’ profiles,

but this has some additional restrictions. To help keep the profile dis-

play clean and simple, Facebook restricts your JavaScript to being acti-

vated only after an element in the profile is clicked. This means you

can’t have JavaScript that runs on each profile display. Most uses of

JavaScript already require a click, so this shouldn’t cause any prob-

lems. It does mean you can’t use an onload event to bypass Facebook’s

profile caching.

Displaying Dialog Boxes

Another frequent use of JavaScript in Facebook is displaying dialog

box messages. Facebook provides two different types of dialog boxes.

The first is a simple pop-up layer that is displayed in the center of the

screen, as shown in Figure 7.3, on the following page. The other is a

contextual dialog box that appears to come from a specific element on

the page, as shown in Figure 7.4, on page 151.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=149

AJAX IN FBJS 150

Figure 7.3: Pop-up dialog boxes appear in the middle of the page.

Both styles of dialog box are created similarly by the Dialog class:

// use Dialog.DIALOG_POP for a popup

var d = new Dialog(Dialog.DIALOG_CONTEXTUAL);

// Setting the context is only

// necessary for contextual dialogs

d.setContext($('comment'));

d.onconfirm = function() {

$('comment').setTextValue("");

};

// Show a message with only one button

d.showMessage(title,message,button_name);

// Or, show a message with two buttons

d.showChoice(title,message,confirm_name,cancel_name)

Once you’ve created the dialog box object, you can cause it to be dis-

played by calling either showMessage to show a message with one button

or showChoice to show a message with two buttons. When a user clicks

one of the buttons, the onconfirm or oncancel callback is executed.

Facebook dialog boxes are a really elegant way of showing error mes-

sages or requesting confirmation.

7.2 Ajax in FBJS

Let’s turn our attention to one of the most popular uses of JavaScript:

Ajax. Ajax originally stood for Asynchronous JavaScript and XML, a

method for using JavaScript to update just a portion of a web page.

We will look at how Ajax inside Facebook has evolved from its hum-

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=150

AJAX IN FBJS 151

Figure 7.4: Contextual dialog boxes anchor to a specific

element.

ble beginnings. We’ll also look at the tricks necessary to get Rails and

Facebook to work well together. To do this, let’s make our comment

form work asynchronously.

Mock Ajax

When the Facebook Platform launched, there was no way for your appli-

cation to use JavaScript. Facebook provided several ways of implement-

ing basic functionality, such as showing and hiding <div> tags,4 but no

way of fetching content from your server. As a temporary workaround,

Facebook introduced “Mock Ajax.” Mock Ajax uses attributes on ele-

ments to specify very basic Ajax functionality. Although Mock Ajax is

no longer strictly necessary, its simple API can make it a nice tool for

prototyping. I use Mock Ajax when possible because it often yields more

readable code.

To convert our comment form to use Mock Ajax, we’ll need to add three

new attributes—clickrewriteurl, clickrewriteform, and clickrewriteid—to our

submit button. When the element that has these attributes is clicked,

Facebook will send the parameters found in the specified form to click-

rewriteurl. The resulting FBML is then loaded into the element with the

ID specified by clickrewriteid. When using Ajax via Facebook, we always

want to use URLs that point directly to our server. This means using

comments_url(:canvas=>false).

4. You can add the clicktohide and clicktoshow attributes on an element to hide

or show the specified IDs when that element is clicked. The documentation is

at http://wiki.developers.facebook.com/index.php/Clicktohide. We don’t look at those here

because the same thing can be done more generally using JavaScript.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/Clicktohide
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=151

AJAX IN FBJS 152

Make Your Application Intuitive and Interactive

Have you noticed how intuitive and interactive Facebook is?
For example, when you click a user’s photo in the search results
screen, a window pops up that shows basic information about
that user. Facebook gives you access to relevant information
without making you navigate from screen to screen. Facebook
has worked hard to make its site easy to use. Your application
can benefit from this work.

By using tools such as Facebook dialog boxes and FBJS, you
can make your application act and feel like Facebook. Instead
of making your user navigate to a new page, consider showing
more detailed information in a dialog box. Instead of requiring
a page refresh to add a comment, make your comments sec-
tion use Ajax. Not only will your application be easier to use, but
it will feel more like Facebook as well.

First, we’ll need to add these parameters to our submit tag:

<%= submit_tag 'Post',

:clickrewriteurl=>comments_url(:canvas=>false),

:clickrewriteid=>"all_comments",

:clickrewriteform=>"new_comment" %>

Next, we will want to add the all_comments <div> to our layout. The

all_comments <div> will wrap all our comments. When a new comment

is posted, we will rerender the whole collection. At the same time, we

can move the existing comment display into a partial. This will prevent

duplicating the comment display code.

<div id="all_comments">

<%= render :partial=>"comments/comments" %>

</div>

With that done, we just need to make our controller handle Ajax re-

quests. To Rails, Facebook Ajax requests look just like any other Ajax

request. That means we can code this like we’re used to doing:

def create

comment_receiver = User.find(params[:comment_receiver])

current_user.comment_on(comment_receiver,params[:body])

if request.xhr?

pass true to the association to force a reload

@comments=comment_receiver.comments(true)

render :partial=>"comments"

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=152

AJAX IN FBJS 153

else

redirect_to battles_path(:user_id=>comment_receiver.id)

end

end

In the previous code, request.xhr? returns true if the request comes in

via Ajax. Now, when a user clicks the submit button, the user’s web

browser will send an Ajax request to Facebook’s servers. Facebook will

then send the request to our server. Our server will send back just the

comments area, and Facebook will update the page.

Using the Rails Ajax Helpers

Mock Ajax was a nice interim solution, but it isn’t nearly as powerful as

real Ajax. For one thing, there is no error handling. If your server fails

to respond, the user won’t know what happened. Additionally, you are

limited to updating one element with FBML content. If you need error

handling or want to use content other than FBML, Mock Ajax just isn’t

an option.

When Facebook added FBJS to the development platform, it included

support for true Ajax requests through the Ajax object. Unfortunately,

the implementation is somewhat limited. The Facebook Ajax implemen-

tation allows you to make calls to remote servers and return documents

in FBML, JavaScript Object Notation (JSON), or a raw format. Notably

absent is the ability to execute returned JavaScript. This means we

can’t run Rails .rjs templates. Even with these limitations, there is still

quite a bit we can do.

Let’s convert our comment form to use real Ajax. We’ll start by removing

the Mock Ajax attributes from the submit button. Next, we will replace

our call to form_for with a call to remote_form_for. Since Ajax requests

must go directly to our server, we’ll need to change our call a little.

We’ll need to explicitly specify the URL to use in the form to include the

:canvas=>false parameter:

<% remote_form_for Comment.new,

:url=>comments_url(:canvas=>false),

:update=>"all_comments" do |f|%>

<%= text_area_tag :body, "",

:onchange=>"update_count(this.getValue(),'remaining');",

:onkeyup=>"update_count(this.getValue(),'remaining');"

%>

<p id="remaining"> </p>

<%= hidden_field_tag :comment_receiver,@user.id %>

<%= submit_tag 'Post'%>

<% end %>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=153

AJAX IN FBJS 154

That code should look familiar to you. It’s the same code we would

use for a normal Rails application. Facebooker takes care of hiding the

Facebook-specific details from you.

We’re now using real Ajax to do the same thing we did previously with

Mock Ajax. Facebooker made the normal Rails helpers work for us, but

only in a very simple case. To do much more using Ajax, we’re going to

have to look at the guts of the Facebook Ajax library.

Ajax Under the Covers

Let’s take a look at how Ajax is implemented by Facebook. Facebook

provides an Ajax5 object as an interface to the browser’s XmlHTTPRequest

object. It provides a simple abstraction to your application, as you can

see in the following code:

var ajax=new Ajax();

ajax.responseType=Ajax.JSON;

ajax.ondone = function(data) {

// do something with the data

}

ajax.post('http://www.example.com/comments',

{"body": "This is a comment","receiver_id": 4});

To make an Ajax request, we perform four steps:

1. Create an Ajax instance.

2. Choose a response type.

3. Provide a callback.

4. Call ajax.post.

We can create a new Ajax object using var ajax=new Ajax();. Next, we

decide what type of data we will request. We can choose to receive the

response as FBML, JSON, or raw content. If we choose FBML, Facebook

will process the data into a format that can be passed to setInnerFBML. If

we choose raw content, we could receive either plain text or XHTML to

pass to the setTextValue or setInnerXHTML methods, respectively.

Once we’ve picked the type of data, we must give Facebook a method to

call when the request is complete. We do this by setting the ajax.ondone

method with a function reference. Usually, this method will do some-

thing with the data such as update the page. We can optionally pro-

vide a method to call when an error occurs by setting the ajax.onerror

attribute. Finally, we call the ajax.post method to tell Facebook to start

the request. There shouldn’t be many times when you need to revert to

5. The documentation is at http://wiki.developers.facebook.com/index.php/FBJS#Ajax.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/FBJS#Ajax
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=154

AJAX IN FBJS 155

writing Ajax calls by hand, but understanding how they work can help

you debug problems as they come up.

Using JSON with Ajax

So far, we’ve been limited to updating only one element at a time using

Ajax. Let’s look at how we can use JSON to update both the list of

comments and also a message element with a single request. We’ll start

by changing our call to remote_form_for to make a request for JSON.

To do this, we need to replace the update parameter with a success

callback. Our success parameter is a JavaScript snippet that receives

the JSON-formatted data in a variable named request:

<p id="form_message"> </p>

<div id="comment_form" style="display:none">

<% remote_form_for Comment.new,

:url=>comments_url(:canvas=>false),

:success=>"update_multiple(request)" do |f|%>

<%= text_area_tag :body, "",

:onchange=>"update_count(this.getValue(),'remaining');",

:onkeyup=>"update_count(this.getValue(),'remaining');"

%>

With that done, we have two steps left to complete. We’ll need to imple-

ment the update_multiple method and change our controller. Let’s start

with the controller method. We know that our update_multiple method

will need to set the content of two DOM elements. We’ve used the set-

TextValue and setInnerXHTML methods in the past, but neither of those will

work here. Our comment list includes several FBML tags that need to be

expanded. We need some way of asking Facebook to convert a response

from FBML to something we can pass to setInnerFBML. By convention,

Facebook will treat any content in a variable whose name starts with

fbml as an FBML document to be interpreted. Let’s send back a JSON

object with a couple of different fields. We’ll include a list of IDs to be

updated along with the content for each ID:

def create

comment_receiver = User.find(params[:comment_receiver])

current_user.comment_on(comment_receiver,params[:body])

if request.xhr?

@comments=comment_receiver.comments(true)

render :json=>{:ids_to_update=>[:all_comments,:form_message],

:fbml_all_comments=>render_to_string(:partial=>"comments"),

:fbml_form_message=>"Your comment has been added."}

else

redirect_to battles_path(:user_id=>comment_receiver.id)

end

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=155

AJAX IN FBJS 156

Now we need to build the update_multiple method, which needs to loop

through the list of IDs to be updated and then set the FBML for each

element:

function update_multiple(json) {

for(var i=0; i<json["ids_to_update"].length; i++) {

id=json["ids_to_update"][i];

$(id).setInnerFBML(json["fbml_"+id]);

}

}

That’s all there is to it. You could do quite a bit more using JSON. JSON

is a great way of sending complex data to a JavaScript method on your

page. For example, you could build a chat application that sends new

messages as a JavaScript array.

Using fb:js-string

We’ve now looked at two different ways to use the setInnerFBML method.

Not only can you pass it the results of an Ajax call of Ajax.FBML type or a

string processed as FBML from a JSON request. You can also pass it an

<fb:js-string>. <fb:js-string> is an FBML tag that creates a JavaScript

variable. When Facebook processes the page, it turns the content of the

tag into a JavaScript variable that can be passed to setInnerFBML.

These strings are used when you want to store some FBML that may be

used later. For instance, if you show a number of thumbnails of images

and want to show a larger image when the thumbnail is clicked, you

could store the FBML for displaying the larger image in a <js-string>.

Then, you can swap the content of the main display without having to

go back to the server.

<fb:js-string var="photo_<%=photo.id%>_large">

<%=image_tag photo.public_filename(:large)%>

<%=photo.caption%>

</fb:js-string>

<%= image_tag photo.public_filename(:thumbnail),

:onclick=>"$('photos').setInnerFBML(photo_#{photo.id}_large);" %>

It is important to note that this tag creates an actual JavaScript vari-

able. That means when you want to reference the result, you don’t sur-

round the name in quotes. For a photo with an ID of 7, this creates a

variable named photo_7_large.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=156

SUMMARY 157

7.3 Summary

We’ve walked through a brief tour of FBJS. As you can see, it isn’t

as powerful as regular JavaScript, but it still can help you make your

application more dynamic. FBJS is a relatively new feature, so expect

it to continue to evolve over time.

Next, we’ll look at how we can integrate our application with existing

websites.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=157

Chapter 8

Integrating Your App
with Other Websites

So far, we’ve looked at making Karate Poke work only inside Facebook.

Sometimes we’ll want our application to be available outside Facebook.

For instance, you may want to create a marketing page that people can

view without having Facebook accounts. You also might want to take

an existing application and make it available via Facebook. Finally, you

may want to take advantage of features that aren’t available through

the canvas, such as image uploads or advanced JavaScript. We’re in

the homestretch now. This is the last new functionality we will add to

Karate Poke!

We’ll use Karate Poke to look at how to implement all this functionality.

We’ll start by creating KaratePoke.com, a site to promote our application.

Next, we’ll create a leaderboard that can be viewed both through Face-

book and outside Facebook. We’ll look at some of the special issues

involved in sharing information. Next, we’ll look at how to integrate

Facebook with an existing application. We’ll close by looking at how we

can use the Facebook JavaScript library to get Facebook functionality

outside the Facebook canvas.

8.1 Making Content Accessible

Let’s start with the simplest case. Let’s create a marketing site for

Karate Poke. Our marketing page will explain what Karate Poke is and

encourage users to join Facebook to play. We want this page to be avail-

able at http://www.karatepoke.com. Since this page is marketing for our

application, we don’t want it to appear inside the Facebook canvas.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.karatepoke.com

MAKING CONTENT ACCESSIBLE 159

Let’s get started by creating a marketing controller. After we create the

controller, we’ll need some view files. You’re welcome to create your own

marketing page for Karate Poke. Alternatively, you can copy the ver-

sions I created from chapter8/karate_poke/app/views/marketing into your

own views directory. With our views in place, we need to map the root

URL to our marketing controller. That’s done with the following entry

in routes.rb:

map.connect '', :controller=>"marketing"

That’s a problem. We’re already using the default route for our battles

page. We need a way to tell Rails to use one action for Facebook requests

and another action for non-Facebook requests. Rails provides the :con-

ditions option on routes to allow you to specify conditions that must be

met for a route to be used. By default, you can make routes condi-

tional only upon HTTP methods. Facebooker extends this functionality

to include conditions about whether a request is from the Facebook

canvas:1

map.battles '',:controller=>"attacks",

:conditions=>{:canvas=>true}

map.marketing_home '',:controller=>"marketing",

:conditions=>{:canvas=>false}

When a request comes in, Rails will look at whether the request is

coming from Facebook or directly from a web browser. It does this by

looking for the fb_sig_in_canvas and fb_sig_ajax parameters. If one of those

exists, then the request is a Facebook request. Rails starts at the top

of the routes.rb file and looks for a matching route. Since Rails matches

from the top down, you should always make sure your most specific

route is first. Let’s consider the following route:

map.battles '',:controller=>"attacks"

map.marketing_home '',:controller=>"marketing",

:conditions=>{:canvas=>false}

The first route will match all requests for the default route, so no

requests will ever be sent to our marketing controller. If instead we were

to reverse the order, non-Facebook requests would go to our marketing

page, and Facebook requests would be sent to the battles page:

Download chapter8/karate_poke/config/routes.rb

map.battles '',:controller=>"attacks",

:conditions=>{:canvas=>true}

map.marketing_home '',:controller=>"marketing"

1. You can read about how this works in an article by Jamis Buck at

http://weblog.jamisbuck.org/2006/10/26/monkey-patching-rails-extending-routes-2.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter8/karate_poke/config/routes.rb
http://weblog.jamisbuck.org/2006/10/26/monkey-patching-rails-extending-routes-2
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=159

ACTIONS THAT WORK BOTH WAYS 160

With those routes, we almost have a functioning marketing page. Due

to our ensure_authenticated... filter, our application will redirect view-

ers to the Facebook application install page. To make our marketing

page visible outside Facebook, we will need to skip that filter using

skip_before_filter :ensure_authenticated_to_facebook. If only a small section

of your application is used inside Facebook, you probably want to move

the call to ensure_authenticated_to_facebook from the ApplicationController

to the controllers that handle Facebook requests.

Using conditional routing works nicely when we want two pages with

the same URL to have different functionality. Next, we’ll look at using

the same logic with different displays.

8.2 Actions That Work Both Ways

Sometimes we want to do more than have different actions for the same

URL. Sometimes we want to have the same logic and just have differ-

ent displays. We’re going to add a little more content to our Karate

Poke marketing site. We will build a leaderboard, a list of the top users

ordered by the number of successful battles they’ve engaged in. We’ll

look at how we can use one controller action with different displays for

Facebook and non-Facebook requests.

By now, you could probably build the Facebook version in your sleep.

We can create a LeadersController and add a route to routes.rb:

map.resources :leaders

With our routing in place, we just need an action and a view:

Download chapter8/karate_poke/app/controllers/leaders_controller.rb

def index

@leaders = User.paginate(:order=>"total_hits desc",

:page=>(params[:page]||1))

end

Download chapter8/karate_poke/app/views/leaders/index.fbml.erb

<%= will_paginate @leaders%>

<% for leader in @leaders %>

<%=name leader%>: <%=leader.total_hits%>

<% end %>

That’s nothing new to us. Now we just need to figure out how to make

that available to non-Facebook users. You’ve probably noticed that we

have been creating .fbml.erb templates for all our views. Rails will try to

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter8/karate_poke/app/controllers/leaders_controller.rb
http://media.pragprog.com/titles/mmfacer/code/chapter8/karate_poke/app/views/leaders/index.fbml.erb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=160

HANDLING FACEBOOK-SPECIFIC DATA 161

send back the right content type for each request. That means support-

ing both Facebook and non-Facebook requests in a single action can be

as simple as creating another template with a different file extension.

If we build an .html.erb template, Rails will use that for non-Facebook

requests. Here is a version of our leaderboard that we can use outside

Facebook:

<%= will_paginate @leaders%>

<% for leader in @leaders %>

Unknown: <%=leader.total_hits%>

<% end %>

To view the HTML version of our leaders page, go to /leaders using your

callback URL as the host. When you do, you’ll be redirected to the

Facebook application install page. We forgot to tell Facebooker that our

users don’t need to be logged in to view this page. If we add skip_before_

filter :ensure_authenticated_to_facebook to the beginning of our controller,

we should be able to view our page. This is something we’ll need to do

on every page that is visible outside Facebook.

As you can see, this looks similar to the Facebook version of the page.

Since web browsers don’t understand FBML, we had to remove our

code that rendered an <fb:name> tag. In fact, we don’t have any way of

displaying our users’ names. Facebook won’t let us store their names

in our database, and we can’t make an API request to retrieve them,

since non-Facebook requests don’t have a Facebook session.

This is a tricky problem. It’s nice that Facebook gives us access to a

wealth of information about our users, but it locks us in to Facebook.

Different applications will solve this problem in different ways. If your

application already exists outside Facebook, you may be able to use

your existing data. In our case, we really need a name to show for each

user. We’ll look at fixing that next.

8.3 Handling Facebook-Specific Data

I wish there was some magic bullet I could give you to make handling

Facebook-specific data easy. Unfortunately, I can’t. The cost of getting

access to the wealth of Facebook data is that it can be used only inside

the context of Facebook. In our case, we don’t need much information

from our users outside the canvas; all we need is a name for each user.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=161

HANDLING FACEBOOK-SPECIFIC DATA 162

Figure 8.1: Asking for data to be shown outside Facebook

Although Facebook limits what API data we can store, it doesn’t limit

what information we can get from our users. If we want to display a

name outside Facebook, we can simply ask for it. We can even have a

little fun with this. We can ask our users to give us a nickname that

they want displayed. We can use this nickname both outside Facebook

and as a replacement for “a hidden ninja.”

We’ll start by adding a nickname field to our users table. After we’ve

created and run that migration, we’ll need to build a form. Since we’ll

need to gather this data from all our existing users, we should put our

form front and center. Let’s add it to our battles page. Once a user has

set their nickname, we can hide the form and use the Ajax we learned

in the previous chapter to show it on demand. You can see what we’re

going to build in Figure 8.1.

Let’s start by creating a simple controller method. Since we are going

to be updating a user object, let’s create a users controller. Make sure

you set it up as a resource in routes.rb. We will use the update action to

perform the update.

Download chapter8/karate_poke/app/controllers/users_controller.rb

class UsersController < ApplicationController

def update

saved = current_user.update_attribute(:nickname,params[:nickname])

the update was a success, show the closed_form

render :partial=>"nickname", :locals=>{:closed=>saved}

end

end

Next, we’ll need a view. Our view will serve two purposes. We’ll want it to

show the nickname form when a user hasn’t set their nickname. We’ll

also use it to display their nickname once they have one. By passing

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter8/karate_poke/app/controllers/users_controller.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=162

HANDLING FACEBOOK-SPECIFIC DATA 163

in a local variable to our view, we can control whether to show the

nickname form, as you can see here:

Download chapter8/karate_poke/app/views/users/_nickname.erb

<div id="nickname_open"

<% if closed %> style="display:none" <% end %> >

<% remote_form_for :user,current_user,

:url=>user_url(:id=>current_user,:canvas=>false),

:html=>{:method=>:put},

:update=>"nickname" do |f| %>

Select a nickname to show outside of Facebook

<%= text_field_tag :nickname,current_user.nickname%>

<%= submit_tag "save"%>

<% end %>

</div>

<div id="nickname_closed"

<% unless closed %> style="display:none" <% end %>>

Your nickname is <%=current_user.nickname%>

<%=link_to_function "(change it)",

"$('nickname_open').show();$('nickname_closed').hide()"%>

</div>

Now we just need to add that to our battles view:

<% fb_if_is_user @user do %>

<div id="nickname">

<%= render :partial=>"users/nickname",

:locals => { :closed => !current_user.nickname.blank? }%>

</div>

<% fb_else do %>

...

Next, we can make our name helper use the nickname field. We also

need to create a helper for displaying names outside Facebook:

Download chapter8/karate_poke/app/helpers/application_helper.rb

def name(user,options={})

fb_name(user,

{:ifcantsee=>(user.nickname||"a hidden ninja")}.merge(options))

end

def external_name(user)

user.nickname || "a hidden ninja"

end

There’s just one final step in this process. We need to change our

leaderboard to use the external_name helper when we are outside Face-

book:

<%= will_paginate @leaders%>

<% for leader in @leaders %>

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://media.pragprog.com/titles/mmfacer/code/chapter8/karate_poke/app/views/users/_nickname.erb
http://media.pragprog.com/titles/mmfacer/code/chapter8/karate_poke/app/helpers/application_helper.rb
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=163

SHARING SESSIONS 164

<%= external_name leader %>: <%=leader.total_hits%>

<% end %>

That was quite a bit of work for just one piece of data. This works when

we need information about a user, but it would be nearly impossible to

do the same thing with an event. After all, events can change outside

our application, and there would be no way to keep our information up-

to-date. As you can see, the cost of access to Facebook’s data is being

locked in to using it through its site.

8.4 Sharing Sessions

We’ve seen how to make our application available to both Facebook and

non-Facebook requests. At times we may need to move between Face-

book requests and non-Facebook requests. For instance, since Face-

book doesn’t allow multipart form posts, we’ll need to bypass Facebook

for image uploads. We also may want to bypass Facebook to use more

advanced JavaScript functionality, such as drag and drop.

In most cases, we can solve this problem using the <fb:iframe> tag.

An iframe, or inline frame, is an HTML component that embeds content

from a URL into an element within another page. The content included

in the iframe is loaded by the browser from the remote server and

can include any content that an HTML page can contain. By including

an iframe in your canvas page, you can embed regular HTML content

including Flash, JavaScript, or even Java.

The <fb:iframe> FBML tag creates an iframe inside our canvas. It takes

a single parameter, url, which is the URL on our server that will provide

the content for the frame. Make sure you specify a URL with :canvas =>

false so that the request goes directly to your server. Facebook modifies

the URL you provide to <fb:iframe> to include all the normal Facebook

parameters, including fb_sig_session_key. This means the requested page

will have access to the facebook_session of the viewer. In fact, because

of the way Facebooker implements sessions, once a session has been

established with an <fb:iframe>, all direct requests from that user’s

browser will maintain that session.

We will have to make one change to make session sharing work. When

we originally configured our application, we used the Rails cookie ses-

sion store. Because our application’s canvas and iframe pages have dif-

ferent URLs, our users’ browsers won’t allow us to use the same cookie

for both. To work around this, we can use a different type of session.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=164

ACCESSING FACEBOOK OUTSIDE THE CANVAS 165

We’ll use the ActiveRecord store to keep our session information in the

database.

First, we’ll need to run script/generate session_migration to create the ses-

sions table. You should also run rake db:migrate to execute the migration.

Next, we’ll need to uncomment a line in environment.rb:

config.action_controller.session_store = :active_record_store

With that done, our session can be shared between the Facebook can-

vas and an iframe. We don’t need to use an iframe to share session

information, though. We can also join the session by including session

information in a link directly to our server. For example, If we wanted

to link from our FBML leaderboard to our HTML leaderboard without

sharing sessions, we could use this:

<%= link_to "HTML view",leaders_url(:canvas=>false)%>

If we wanted to do the same thing while maintaining the user’s session,

we would use this:

<%= link_to "HTML view",

leaders_url(facebook_session_parameters.merge(:canvas=>false))%>

By adding this parameter, we’re telling Facebooker which existing ses-

sion to use. Once the link between the Facebook session and the direct

session has been established, the link will continue to exist even with-

out sending facebook_session_parameters.

If we had an existing application with a login system, we could use an

iframe to link a user’s Facebook account to their existing information.

By having our user log in to our application within an <fb:iframe>, we

would have access to both their Facebook session and their existing

account information. Once we have their Facebook ID saved, we could

share information between a Facebook version of our application and a

non-Facebook version.

8.5 Accessing Facebook Outside the Canvas

We’ve looked at several ways of integrating Facebook and non-Facebook

applications. Everything we’ve looked at so far has focused on the server

side. If our application already exists entirely outside Facebook and we

want only basic integration, we have another option to consider.

Facebook has recently released a client-side JavaScript library that pro-

vides access to the Facebook API from any website. We could use the

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=165

ACCESSING FACEBOOK OUTSIDE THE CANVAS 166

Sharing Information with Facebook

We’ve spent a lot of time looking at all the information that
Facebook can offer us. Don’t limit yourself to just this informa-
tion. If you have an existing application, make use of your exist-
ing data. For instance, the Ultimatums application allows users
to share data between their Facebook application and its exist-
ing website.

Similarly, the Twitter application allows users to update their
Facebook status by sending a message to Twitter. Communica-
tion doesn’t need to be a one-way street. Don’t just integrate
your application with Facebook; use the platform to integrate
Facebook with your existing application.

JavaScript API to give us access to our users’ social graphs or even to

send notifications from the browser.

The Facebook JavaScript API requires some configuration before it can

be used. For security purposes, web browsers limit JavaScript to mak-

ing requests only to the originating server.

Since the Facebook API needs to communicate with Facebook, we’ll

need to help it work around the browser security model. To do this,

we’ll create a file called xd_receiver.html in our public directory. The file

should have the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Cross-Domain Receiver Page</title>

</head>

<body>

<script \

src="http://static.ak.facebook.com/js/api_lib/v0.3/XdCommReceiver.debug.js" \

type="text/javascript"></script>

</body>

</html>

Now that we have that page in place, we can create a page that uses

the Facebook API library. Let’s use our marketing page to experiment

with the library. We’ll start by including it into our page.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=166

ACCESSING FACEBOOK OUTSIDE THE CANVAS 167

Figure 8.2: Facebook JS API showing a user

That takes only one line of code:

<script

src="http://static.ak.facebook.com/js/api_lib/v0.3/FeatureLoader.js" \

type="text/javascript"></script>

To use the library, we’ll need to create an instance of the FB.ApiClient.

Its constructor takes two parameters, our application’s API key and the

server path to our xd_receiver.html file. Before we can make API calls,

we’ll need to make sure our user is authenticated to Facebook. To do

this, we’ll call the requireLogin method. If this is the first time we’re using

the API for a user, they will be redirected to a Facebook login screen

where they are prompted to enter their login information. Once they

have authenticated with Facebook, they will be sent back to our site

where execution will continue.

Since the JavaScript API requires our user to be authenticated with

Facebook, the requireLogin method requires that a callback function be

provided. This callback will be called once authentication is complete.

You’ll see extensive use of callback functions inside the API client. In

general, we want all our code that depends upon the Facebook API to be

called from this callback. The following example opens an alert dialog

box containing the Facebook ID of the logged-in user; give it a try:

// Create an ApiClient object, passing app's API key and

// a site relative URL to xd_receiver.htm

var api = new FB.ApiClient('<%=Facebooker.api_key%>',

'/xd_receiver.html',

null);

api.requireLogin(function(exception) {

alert("Current user id is " + api.get_session().uid);

});

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=167

ACCESSING FACEBOOK OUTSIDE THE CANVAS 168

I’ve had good luck getting that code to work in Firefox, but not in

Safari for the Mac. The problem seems to occur only when working

using script/server. I haven’t seen the same issues once the application

is deployed. You’ll want to keep this in mind while you are doing your

development.

We’ve seen how to get the Facebook ID of the current user. Now let’s

take a look at how to get the user’s name. We’ll use the users.getInfo API

call.2 Our code will need to make a call to this API function and pass in

three parameters: the Facebook ID of the person whose name we want,

the fields we want to retrieve, and a callback to be called when the

request completes. The following is an example. If you run that code,

the result should look like Figure 8.2, on the previous page.

api.requireLogin(function(exception) {

// Get the name of the current user

api.users_getInfo(api.get_session().uid,

["first_name"],

function(result, exception) {

Debug.dump(result, 'Get first name of user ');

});

});

In the previous code, we display the result of our API call using the

Debug.dump method. This method writes data to the browser’s Java-

Script console. If you would rather see the result on your web page,

you can include a text area with the ID _traceTextBox like in the following

code:

<textarea style="width: 600px; height: 300px;" id="_traceTextBox">

</textarea>

This code is very different from our Ruby code that does the same thing,

user.first_name. Along with having to deal with callback functions, we also

have to deal with an awkward naming convention. You’ll find that these

method names very closely match the ones used in the official Facebook

PHP client.

We’re not limited to such basic data retrieval. We can make much more

complicated calls. For instance, we could get the names of all a user’s

friends by nesting an API call inside our callback.

2. You can find documentation at http://wiki.developers.facebook.com/index.php/Users.getInfo.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/Users.getInfo
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=168

SUMMARY 169

This is shown here:

// require user to login

api.requireLogin(function(exception) {

// Get the names of friends

api.friends_get(null, function(result, exception) {

api.users_getInfo(result,["first_name"],

function(result, exception) {

Debug.dump(result, 'Get first name of friends ');

});

});

});

That returns an array containing the name of each friend of the user.

We can even send notifications using this API.3 For the most part, every-

thing you can do with the server-side API can be done via JavaScript.

8.6 Summary

We have now looked at the major issues involved in integrating your

existing website with Facebook. We have seen how to configure your

Rails application to send requests for the same URL to different actions

depending upon whether the request comes from Facebook, and we

have seen how to write an action to handle both Facebook and non-

Facebook requests. We looked at using iframes for integration as well

as how to share sessions. We ended with a brief tour of the Facebook

JavaScript API.

Congratulations! Together we built a complete Facebook application.

We’ve covered quite a bit of ground, but we’re not done yet. Next, we’re

going to turn our attention to performance. It’s time to see how to make

our application handle the heavy load we hope to receive.

3. You can download the documentation for the JavaScript API from

http://wiki.developers.facebook.com/images/6/64/Facebook_JavaScript_API_Documentation.zip.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/images/6/64/Facebook_JavaScript_API_Documentation.zip
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=169

Chapter 9

Scaling and Performance
Over the past eight chapters, we’ve built a complete Facebook applica-

tion. We’ve seen how to make our application enticing to users. If all

goes well, it will attract a large number of people. Making our applica-

tion handle millions of users can be a real challenge. Even if you don’t

have millions of users, you still need to think about your application’s

performance. For example, you still have Facebook’s eight-second time-

out to worry about. You may also be able to host your application on

less hardware, saving you money.

For the most part, tuning a Facebook application is like tuning any

other Rails application. We’ll look at some of the most important perfor-

mance issues here. We’ll start by looking at ways to eliminate database

queries. From there, we will see three different styles of view caching.

We’ll finish up by looking at some ways to reduce the performance

penalty from Facebook API calls.

9.1 Getting Faster with Memcached

In Section 3.8, Refactoring and Performance, on page 70, we looked at

several methods of speeding up our application. In particular, we added

indexes to make our queries faster and used include to reduce the num-

ber of queries that were run. Although those two changes can reduce

the number of database queries our application needs, they can’t elim-

inate the queries altogether. In fact, we know that we will be running at

least one query on every page view, because our set_current_user method

needs to look up the current viewer. Since our User object likely doesn’t

change between requests, that seems like a waste of resources. We can

eliminate repeated database queries for the same data by using mem-

cached.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

GETTING FASTER WITH MEMCACHED 171

Memcached is an in-memory caching system created by the developers

of LiveJournal.com.1 You can think of memcached as a giant hash in

the sky. It allows you to get and set values from a cache that is shared

between all your web servers. Memcached stores all its data in mem-

ory, which makes it blazingly fast. It also means that if the server it is

running on crashes, all the stored data will be lost. Consequently, we

can’t use memcached in place of a database. We can, however, use it to

cache data retrieved from a database.

Memcached can give a big performance improvement, but it doesn’t

come inexpensively. Memcached will require at least some dedicated

hardware. Because memcached stores data in memory, it requires a

server with at least several gigabytes of RAM. If you are using a shared

hosting environment or a virtual private server, memcached is not

for you.

You have to install memcached on your development machine to be able

to use it during development. It’s available for most platforms, including

Windows.2 Once you’ve installed memcached, you’ll need to install the

Ruby client by running gem install memcache-client. Along with installing

the client, we’ll also want to install the cache_fu plug-in, available at

svn://errtheblog.com/svn/plugins/cache_fu. After installing the plug-in, we

can make our User model cacheable by calling acts_as_cached. We use

the :find_by option to tell acts_as_cached that we want to use the face-

book_id for finding our objects.

class User < ActiveRecord::Base

acts_as_cached :find_by=>:facebook_id

...

Once we’ve made our User cacheable, we’ll get access to some new meth-

ods. We’ll use one of these, get_cache, to rework our for method. The

get_cache method takes a single parameter, the cache key to use to look

for cached objects. It also takes a block. If the object can’t be found in

the cache, cache_fu will execute the block and store the returned object

in the cache.

def self.for(facebook_id,facebook_session=nil)

u=get_cache(facebook_id) do

find_by_facebook_id(facebook_id)||

create_by_facebook_id(facebook_id)

end

1. More information is available at http://www.danga.com/memcached/.
2. The Windows version is available at http://jehiah.cz/projects/memcached-win32/.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.danga.com/memcached/
http://jehiah.cz/projects/memcached-win32/
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=171

GETTING FASTER WITH MEMCACHED 172

returning(u) do |user|

unless facebook_session.nil?

user.store_session(facebook_session.session_key)

end

end

end

With that code, our for method will look for a user in memcached. If one

can’t be found, it will then look for that user in the database. If it still

can’t be found, the user object will be created. Our code will still hit

the database the first time a user is loaded. After that, the User object

will be pulled from memcached as long as it remains in the cache.

Because memcached stores everything in memory, it will eventually

need to remove old objects when it runs out of room for new objects.

Now that we have users being stored in the cache, we’ll need a way

to remove them when they change. We’ll do this with an after_save call-

back. Our callback will call expire_cache to remove an object from mem-

cached, as shown in the following code. We want to make sure our filter

method returns true. If it were to return false, ActiveRecord would stop

running any other callbacks that may be defined.

after_save :expire_fb_cache

def expire_fb_cache

returning true do

expire_cache(facebook_id)

end

end

Unlike ActiveRecord, memcached can store more than just a single

record at a time. In Karate Poke, we’ll often need to know a user’s belt

and their available moves. If we were to load those in our for method,

they would be cached along with the user object. This would eliminate

two more database queries.

def self.for(facebook_id,facebook_session=nil)

u=get_cache(facebook_id) do

find_by_facebook_id(facebook_id,

:include=>[:user,:available_moves])||

create_by_facebook_id(facebook_id)

end

returning(u) do |user|

unless facebook_session.nil?

user.store_session(facebook_session.session_key)

end

end

end

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=172

CACHING OUR VIEWS 173

Using memcached can be a great way to eliminate database queries, but

it isn’t a magic bullet. It takes time for memcached to store objects in

the cache. Unless your application repeatedly pulls the same data from

the cache without modifying it, you may even experience a slowdown.

For example, if you store a last-accessed date on each user and update

it on every request, you won’t get any benefit from caching.

9.2 Caching Our Views

Caching our models can reduce database queries, but there is more we

can do. We’ll look at several methods of view caching that can eliminate

dynamic requests altogether. Rails provides three different levels of view

caching, each with its own pros and cons. Although page caching gives

you the biggest performance benefit, it is also the most difficult to man-

age. Fragment caching is easy to use, but it does relatively little to boost

performance in the average case. Of the three, action caching typically

gives the largest bang for your buck. If we combine view caching with

memcached, we get the best of both worlds. We will eliminate code when

we can, and when we can’t, we will make it faster with memcached.

Thanks to the power of the Facebook platform, we can use FBML to

customize the look of a cached page as it is displayed to the user.

Page Caching

Page caching is the sledgehammer of Rails caching; it is incredibly pow-

erful and imprecise. With page caching enabled, Rails will write the

results of each request into the public directory. If your web server is

correctly configured,3 future requests for this page will be served from

disk, completely bypassing Rails.

Page caching is by far the fastest style of caching. Page cached pages

are served directly from the web server, bypassing Rails completely. A

typical web server can comfortably serve 1,000 static files per second.

As a side effect, there is no way to ensure that the viewer has per-

mission to access the requested page. Additionally, because the same

content will be sent to every user, a normal Rails application has no

way of customizing the view. For instance, with a page-cached page,

you can’t include a customized greeting in the header. This limits the

number of places where page caching can be used.

3. You can see an example configuration in the fantastic Rails caching tutorial at

http://www.railsenvy.com/2007/2/28/rails-caching-tutorial#apache.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.railsenvy.com/2007/2/28/rails-caching-tutorial#apache
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=173

CACHING OUR VIEWS 174

Thanks to the power of FBML, we can page cache many more pages

than a typical Rails application. In fact, we can page cache just about

every page where each user sees the same basic content. In my previous

example, we could easily include a welcome message for each user by

using the <fb:name> tag. If you specify loggedinuser for the uid of an

<fb:name> tag, Facebook will display the name of the current viewer.

In most Rails applications, you can’t use page caching if you need to

verify that a user has access to a requested page. That isn’t the case

for our Facebook application. We can verify that a user has installed

our application by wrapping an <fb:redirect> tag in the else condition

of the <fb:if-user-has-added-app> tag. This allows us to verify that all

viewers are logged in while still serving the page straight from disk.

Configuring page caching is incredibly easy. To cache the index action

of our marketing controller, we include the following code:

caches_page :index

When the index action is run, the content will be stored in the file pub-

lic/marketing/index.html. When we want to remove that page from the

cache, we just call expire_page :index.

Although page caching is very simple, you need to keep several issues

in mind. Page caching works based upon the URL of a request. When a

cache file is written, all query parameters are discarded. Two requests

for the same URL with different query parameters will use the same

cached file.

Additionally, because cached pages are stored on disk, page caching

can be tricky in a multiserver environment. When a page is expired

from the cache, the cache file will need to be removed from every server.

This means you’ll need a shared filesystem for the public directory.

Page caching quickly becomes difficult to manage as your application

spreads to multiple servers.

In Karate Poke, several pages could easily be page-cached. Our mar-

keting pages, for example, are basically static pages. Our leaderboard

page is another good candidate for page caching, because it requires

a database query and can be updated only a couple of times per day.

Other pages, like our new attack form, aren’t a good match for page

caching because each user sees a different set of available moves.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=174

CACHING OUR VIEWS 175

Action Caching

Action caching is similar to page caching. At the end of an action,

Rails writes a full copy of the content to a file in the public directory.

Unlike page caching, Rails still processes action-cached requests. When

a request for an action-cached page comes in, Rails will run all filters

associated with the action. If none of the filters render or redirect, Rails

then serves the previously stored page content.

Because action-cached requests still go through Rails, they are not

nearly as fast as page-cached pages. Still, there are several benefits

over page caching. First, Rails filters can be run to make sure the

viewer has permissions to access the requested page. Second, because

we are checking for cached content inside Ruby code, we can store our

cached pages somewhere other than on disk. In a clustered environ-

ment, action-cached pages are often stored in memcached.4

Configuring action caching is very similar to page caching. To cache the

same index action, we would use this:

caches_action :index

Similarly, cached actions are expired by calling expire_action :index.

To store cached actions in memcached, you can set the fragment_cache_

store in your production.rb file. Even though the parameter is fragment_

cache_store, your setting will be used for both fragment and action

caching.

ActionController::Base.fragment_cache_store =

:mem_cache_store, "memcached_server:11211"

As you can see, using action caching is similar to page caching. It works

in similar situations while giving you the flexibility to run code in filters.

It also scales more easily in a multiserver environment. In Karate Poke

we would consider action caching the same pages we considered page

caching.

Fragment Caching

We have looked at two methods for caching that bypassed our action’s

code altogether. The third style of view caching, fragment caching,

works differently. Instead of bypassing the action, fragment caching

4. Instructions on storing the session in memcached are available at

http://wiki.rubyonrails.org/rails/pages/HowtoChangeSessionStore. You’ll also want to look at

http://www.elevatedrails.com/articles/2008/07/25/memcached-sessions-and-facebook/.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.rubyonrails.org/rails/pages/HowtoChangeSessionStore
http://www.elevatedrails.com/articles/2008/07/25/memcached-sessions-and-facebook/
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=175

CACHING OUR VIEWS 176

Be Prepared to Scale

The rapid growth of many popular Facebook applications is
both a curse and a blessing. Because of viral growth and the
power of the social network, an application will occasionally
become popular almost overnight. For example, the Friends for
Sale application grew from 1 million page views a day to 10 mil-
lion page views a day in about two months. (That’s 200 requests
per second!)

Although not every application catches on, those that do
catch on tend to grow quickly. You don’t need to spend a lot
of time making your application scale to millions of users, but
it helps to understand the basic techniques that can help you
scale. While you’re building your application, think about how
it will perform. If there are easy changes you can make to allow
it to scale better, make them!

is used to bypass a portion of the view code. Fragment caching is nor-

mally used to bypass expensive view calculations.

To cache a fragment of a view, we wrap our code in a cache block. The

following code will cache the creation of our leaderboard:

<% cache :leaders do %>

render :partial=>"leaderboard"

<% end %>

If there is content already stored under the name leaders, the code in

the block will not be executed, and the cached content will be used

instead. If no content is found, the block will be executed, and the

resulting fragment will be stored in the cache. You remove a fragment

from the cache with a call to expire_fragment.

Fragment caching is easy to use but also provides the smallest benefit.

Because fragment caching happens in the view, your application will

still spend time loading data in the controller.

In Karate Poke, we might consider using fragment caching on our user’s

battle page. We want to render the new attack form separately for each

user, since they have access to different moves. The battle list is dis-

played the same way for everyone and could be easily fragment cached.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=176

CACHING WITH REFS 177

9.3 Caching with refs

We’ve seen how to cache our objects using memcached and also how to

cache our views using the built-in Rails caching. In addition to these,

Facebook gives us the <fb:ref> tag for caching. Facebook refs provide

a method for setting content for a key and then displaying that content

in an FBML page. In many ways, Facebook refs are like a version of the

Rails fragment cache that stores data on Facebook’s servers.

There are two typical uses for refs. The first is view caching. We can use

refs in a manner similar to the way we used fragment caching earlier.

We can store expensive views in a ref to avoid rendering them for each

request. We can also use refs to allow us to update multiple pages at

once.

The Mechanics of refs

Facebook provides two different types of refs, URL refs and handle refs.

Both provide the same functionality and differ only in how they get their

content.

URL-based refs use an HTTP URL as their access key and store data

by fetching it from your server. This sounds promising, but they have

several issues. To create a URL-based ref, your application calls face-

book_session.server_cache.refresh_ref_url and passes in a URL. Facebook

will then make an HTTP request to the supplied URL and will store the

response. To display the content of the ref, you use the <fb:ref> FBML

tag, supplying the same URL.

Although it isn’t documented, it appears that URL refs are limited to

containing just 4KB of data. Attempting to store more data than this

will result in your content being silently discarded. Additionally, it ap-

pears that URL-based ref updates time out very quickly. Instead of the

normal eight seconds, URL ref updates appear to time out in less than

a second. If the update fails, you receive no notification, and no con-

tent will be stored. Finally, URL refs are difficult to test in development

mode. When you run script/server, Rails starts only a single process.

If you try to update a URL ref during an HTTP request, you will end

up with a deadlock. Your application will contact Facebook, which will

make a request to your server. Because your server is already executing

a request, the request from Facebook will hang.

Because of these issues, I don’t recommend using URL refs. Instead,

use handle refs. Handle refs are set with the facebook_session.server_

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=177

CACHING WITH REFS 178

cache.set_ref_handle method. This method takes two parameters, a han-

dle and the content to store. Because you specify the content to be

stored at the time of the call, you can set handle refs on a development

server. There is still a limit to the amount of data that can be stored in

a handle ref, but it appears to be much larger than for URL refs. Unfor-

tunately, neither of these limits is documented by Facebook. They have

been observed empirically, however.

Once you’ve stored content for a ref, you can use the <fb:ref> tag to

include that content in an FBML page. Refs can be displayed both in

the profile area and in the canvas area. There is no limitation to the

content that can be stored in a ref; they can even contain other refs.

Typical Uses for refs

Although we can cache view data in refs, certain limitations make it

more difficult than using fragment caching. Rails fragment caching can

detect whether cached content already exists and replace that content

on request. Because Facebook refs are write-only, there is no way to

see whether content for a given ref exists. That means we’ll need a way

to ensure that our cached content is sent to Facebook at appropriate

times. Unlike Rails caching, the only way to clear an old cached value

is to provide a new one.

Along with using refs to avoid the cost of rendering a view, you can also

use refs to update multiple pages at once. For instance, if you were

building a news application that showed a list of stories on your main

page, you would probably want to cache that page. If you used Rails

action caching, you would need to clear the cache each time a story

changed. That’s not too bad. If you also wanted to show the number of

comments on each story, you would need to clear the cache each time

a comment was left on any front-page story. Suddenly, you’ve lost the

benefit of caching.

Instead, you could store the number of comments in a ref. Our view

could look something like this:

<% for story in @stories %>

<%= display_title(story) %>

<%= display_summary(story) %>

<fb:ref handle="comment_count_<%=story.id%>" />

<% end %>

Now, when a new comment is made for the story with an ID of 10, you

simply change the value stored in the ref called comment_count_10. You

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=178

API PERFORMANCE 179

can action cache your main page and still have up-to-date comment

counts in real time. You can use refs in a similar manner for displaying

the scores of anything that is voted on, movie ratings, or any time a

dynamic attribute is mixed with mostly static content.

This style of caching becomes an even greater win when the data in

question is displayed on your users’ profiles. If you display a user’s

favorite movies on their profile and include the average rating of that

movie, you could conceivably need to update a very large number of

profiles each time that movie receives a new score. If instead you were

to store the movie’s average rating in a ref, you could update every

profile at once.

Facebook refs don’t provide any magic bullet to make your application

perform better, but they are a powerful tool to have in your toolkit. They

are a nice complement to the Rails built-in caching helpers.

9.4 API Performance

Now that we’ve used memcached and view caching to speed up our

application, there is only one major slowdown we need to eliminate.

When our code makes an API call, our server is sitting idle waiting for a

response from Facebook. If we eliminate this dead time, our server will

be able to handle more requests with the same amount of resources.

We’ll start by looking at the Facebook Query Language (FBQL) as a way

to improve data retrieval performance. Next, we’ll look at an alternative

solution, the Facebook batch API. Finally, we’ll see how we can move

slow parts of our code out of the critical path.

Using FQL to Retrieve Information

We’ve seen how easy it is to use the Facebook API to retrieve data about

our users. We have also seen how slow it can be to retrieve more than

just a small amount of data. To reduce the need for repeated API calls,

Facebook created FQL. FQL is similar to SQL, the Structured Query

Language. In fact, the syntax is almost identical. FQL allows us to

reduce the number of API calls run by requesting data for multiple

users at once.

Let’s look at an example FQL query. To get my hometown location,

you can use an FQL query like select hometown_location from user where

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=179

API PERFORMANCE 180

uid=12451752. We’ll start by running this query in the API test con-

sole.5 Select the fql.query method from the Method drop-down list. You

can enter your query in the query box and click Call Method to see

the result. Like SQL, FQL uses the concept of tables of information.

Earlier, we wanted information about a user, so we queried the user

table.6 Although the syntax looks similar, there are a few differences.

For example, FQL doesn’t allow joins between tables. Additionally, the

results of an FQL query vary depending upon the user who runs it.

If you aren’t my friend on Facebook, you might not be able to see my

hometown.

Now that we know a little about FQL, let’s look at how we could use

it in our application. We built the concept of a dojo into Karate Poke

in Section 3.6, Encouraging Invitations, on page 66 and Section 6.4,

Spreading by Invitation, on page 128. We also built a hometown method

on our User model. If we were to build a page to display all the members

of a dojo and their hometown, that page would need to make an API

call for each member of the dojo. That will perform poorly as dojos get

larger. We can rework our hometown method using FQL to reduce the

number of API calls we’ll need to make. We’ll start by building an FQL

query that will return the hometown for each user. Just like with SQL,

we can use the in predicate to retrieve information for a list of users:

@disciples = current_user.disciples

disciple_ids = @disciples.map(&:facebook_id).join(",")

users=current_user.facebook_session.fql_query(

"select uid,hometown_location from user "+

"where uid in (#{disciple_ids})")

We start by getting a list of the Facebook IDs for which we want data.

Then we build an FQL query and run it by calling the fql_query method

on a Facebook session. In return, we get a list of Facebooker::User ob-

jects. These objects will have data for all the fields we requested in our

FQL query. If we try to access a field without data, Facebooker will

make an API request to retrieve that data for us.

Now that we have our list of users, we’ll need a way to use this infor-

mation in our hometown method. Previously, our method created a

new Facebooker::User object and then retrieved the location from that.

5. Available at http://developer.facebook.com/tools.php

6. You can find a list of all the tables in the developer documentation at

http://developer.facebook.com/documentation.php?doc=fql.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://developer.facebook.com/tools.php
http://developer.facebook.com/documentation.php?doc=fql
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=180

API PERFORMANCE 181

Let’s change our hometown method to allow it to use a supplied Face-

booker::User instance:

def hometown(fb_user)

fb_user ||= Facebooker::User.new(facebook_id)

location = fb_user.hometown_location

text_location =

"#{location.city} #{location.state}" unless location.blank?

text_location.blank? ? "an undisclosed location" : text_location

end

With that in place, we can just pass the correct Facebooker::User object

retrieved from our FQL query to the hometown method. Retrieving the

hometown of 40 friends took 28 seconds with the old code. By switching

to FQL, that time has decreased to less than two seconds. FQL makes

our code run faster, but it also adds complexity. Because of the added

complexity, I typically write all my code using the Facebook REST API

and convert to FQL only when I really need the performance.

Writing More Complex FQL Queries

I mentioned in the previous section that FQL doesn’t support joins.

To work around this limitation, FQL queries do support subqueries to

retrieve information spanning multiple tables. For instance, we could

find all the groups for a user’s friends using the following FQL:

fql = <<-FQL

select gid,name

from group

where gid in

(select gid

from group_member

where uid in

(select uid2

FROM friend

WHERE uid1 = 12451752)

)

FQL

groups = current_user.facebook_session.fql_query(fql)

Along with writing complex subqueries, FQL also allows you to use

functions inside the query. For example, you could retrieve five random

friends of a user with the following query:

SELECT first_name,last_name,hometown_location

FROM user

WHERE uid IN (SELECT uid2 FROM friend WHERE uid1 = 12451752

ORDER BY rand() LIMIT 5)

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=181

API PERFORMANCE 182

FQL provides a really powerful language for retrieving data from Face-

book. It provides a speed benefit at the expense of more complex code.

It isn’t something I use often, but it’s a nice tool to have in your belt.

Batching API Calls

Facebook provides a batch request API to perform multiple API calls

with only one HTTP request. To use the batch API, you provide Face-

book with a JSON-encoded array of request URLs.7 Facebook will then

run all your requests and return the results for each call.

Instead of going through all this, Facebooker provides a much nicer

interface to the batch API. Facebooker allows us to batch calls simply

by wrapping them in a call to the Facebooker::Session#batch method. For

instance, to update a group of users’ profiles in a single API call, we

could use the following code:

facebook_session.batch do

@users.each do |user|

update_profile_of(user)

end

end

At the end of the block, a single API request will be sent to update all

the profiles. This can significantly decrease the amount of time spent

making API calls by reducing the number of HTTP round-trips.

The batch API can do more than just send data; it can also retrieve

data. For example, we previously used FQL to retrieve the hometown

locations for a list of users. Instead, we could have used the following

code:

facebook_session.batch do

@users.each do |user|

fb_user = Facebooker::User.new(user.facebook_id)

@hometown_locations << fb_user.hometown_location

end

end

This may seem a little strange. After all, we are adding the user’s home-

town location to the @hometown_locations array inside the block, but we

know that only one API call is made at the end of the block.

7. Documentation on the batch API is available at

http://wiki.developers.facebook.com/index.php/Batch.run.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://wiki.developers.facebook.com/index.php/Batch.run
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=182

API PERFORMANCE 183

Facebooker uses some powerful Ruby magic to return a proxy object. A

proxy object is an object that pretends to be another object. In this case,

the proxy takes the place of the hometown location. When accessed

after the end of the block, our proxy objects look just like any other

hometown location.

Let’s try an example. Here, we use the batch API to retrieve a list of

albums for a user. You can see that outside the batch block, albums is

an array object:

>> ses.batch do

?> @albums = ses.user.albums

>> end

=> nil

>> @albums.size

=> 3

Since the proxy object doesn’t have a value until the end of the block,

attempting to access it before then will raise an error, as shown here:

>> ses.batch do

?> @albums = ses.user.albums

>> @albums.size

>> end

Facebooker::BatchRequest::UnexecutedRequest: You must execute ...

The batch API has some limitations, however. Currently, Facebook lim-

its a batch request to twenty method calls. The Ruby each_slice method

can be used to segment data into appropriately sized chunks. For in-

stance, if we want to retrieve the albums for an unknown number of

users using the batch API, we could use code like this:

@users.each_slice(20) do |slice|

ses.batch do

slice.each do |user|

@albums << user.albums

end

end

end

Although this will reduce the number of API calls we make, it still isn’t

optimal. For retrieving large amounts of data, FQL is still faster than

batched requests.

Additionally, all requests in a batch will share the same session key.

This isn’t a problem for updating profiles or sending notifications, but

it is for publishing feeds. Since each feed item must be published by

the acting user, you will be unable to improve performance by batching

feeds.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=183

API PERFORMANCE 184

The Importance of Latency with Rails

Request latency is very important to a Rails application.
Because each web server process takes a relatively large
amount of memory, we are limited to running just ten or fifteen
processes on each machine. If our page request takes three
seconds to run, that means we will need to run thirty server pro-
cesses just to handle ten requests per second. It’s not unusual
for our Facebook applications to have spikes of more than
100 requests per second. To handle that with a three-second
response time, we would need 300 processes. That’s a lot of
hardware!

If we can get our average page load time down to a more
reasonable 0.2 seconds, we could handle the same load with
only twenty processes. Since some API requests such as pro-
file updates tend to take at least 0.5 seconds to execute, we’ll
need to find a way to get them out of our request flow.

Move API Calls Out of Line

Even batching API calls doesn’t solve all our problems. Although updat-

ing twenty profiles in a batch is faster than making twenty requests, it

will still take several seconds. While the updates are executing, our user

is waiting for a web page to load. If we could move the profile updates

out of the request flow, we could get responses back to our users more

quickly.

There is no shortage of methods for asynchronous task execution in

the Rails world right now.8 During the first few months of 2008, I tried

just about every system in existence and settled on Starling.9 Star-

ling is a persistent message queue written in Ruby. It was created

by Twitter to help make its service more resilient. I’ve used it to pro-

cess almost 100 asynchronous Facebook requests per second since the

beginning of 2008. It is easy to set up and run. In fact, Advanced Rails

Recipes [Cla08] has a recipe explaining how to use Starling for exactly

this purpose.

8. You can see a discussion of some alternatives at

http://nubyonrails.com/articles/about-this-blog-beanstalk-messaging-queue.
9. Starling is available at http://rubyforge.org/projects/starling/ or by running gem install star-

ling.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://nubyonrails.com/articles/about-this-blog-beanstalk-messaging-queue
http://rubyforge.org/projects/starling/
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=184

SUMMARY 185

Any of these methods will meet our goals. Making API calls asynchro-

nous significantly increases the complexity of our application. Not only

will we have more processes to monitor, but we’ll also have more points

of failure. We’ll need to consider what happens when we are receiving

new messages faster than we can process them. Even so, for an applica-

tion supporting millions of users, it can make handling the load much

easier.

9.5 Summary

We’ve looked at a number of ways to help our application scale. By

reducing the number of database queries that run for each action, and

even bypassing actions when possible, we increased the load our appli-

cation can handle. By batching API calls or moving them out of the

request flow entirely, we decreased the amount of time spent process-

ing each request.

This chapter just scratched the surface of scaling a Rails application.

Entire books could be written about this one topic. One of the most

important things to focus on when improving the performance of your

application is measuring your results. If you aren’t measuring perfor-

mance, you’ll never know whether your changes are helping or hurting.

You also don’t need to do all this optimization before launch. Just be

standing by in case your application catches on.

Throughout this book, we’ve covered a lot of ground. We’ve seen all the

basic parts of a Facebook application. We now have a solid User model

in our toolkit that can be reused for other applications. We learned

how to use messaging and how to put interesting data into our users’

profiles. We even looked at scripting with FBJS and learned how to test

our applications.

So, what comes next? Become a fan of this book’s Facebook page.10

You’ll get updates about new Facebooker functionality. You can also ask

questions of other readers. We want to hear about your great Facebook

applications. Share them with the group, and show everyone the cool

stuff you’ve done.

10. You can find it at http://www.facebook.com/pages/Facebook-Platform-Development-with-Rails/12146405638.

Report erratum

this copy is (P1.0 printing, September 2008)
Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://www.facebook.com/pages/Facebook-Platform-Development-with-Rails/12146405638
http://books.pragprog.com/titles/mmfacer/errata/add?pdf_page=185

Bibliography

[Cla08] Mike Clark. Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2008.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Knu74] Donald E. Knuth. Structured programming with go to state-

ments. ACM Comput. Surv., 6(4):261–301, 1974.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development with Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2005.

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Index
A
About page, 95

Action caching, 175

action parameter, 41–43

ActionMailer, 107–108

Actions, 160–161

ActiveRecord, 54n, 172

acts_as_cached method, 171

after_create method, 132

Ajax (Asynchronous JavaScript and

XML), 151–156

ajax.ondone method, 155

ajax.onerror attribute, 155

ajax.post method, 155

and_return method, 83

API key, 32–33

api_key parameter, 68

Application authorization, 21

ApplicationController, 38, 160

ApplicationHelper module, 108

Applications, see Karate Poke

application; Rails applications

Arrays, 97

assert_facebook_redirect_to method, 77

Asynchronous communications, 185

Attack model, 60–63, 81–83

Attacks controller, 85, 91–93

Authentication

Facebook support, 36, 52

Restful Authentication plug-in, 55

B
battle history

adding, 62

building battles page, 91–93

viewing attack results, 22

before_create callback, 54, 62, 65

Belt model, 63–66

body parameter, 126

Browser cookies, 38

Buck, Jamis, 159n

C
cache_fu plug-in, 171

Caching

action, 175

conditional assignment operator

and, 58

fb:ref tag, 177–179

fragment, 176

memcached support, 170–173

pages, 100, 173–174

views, 173–176

Callback URL, 31–37

candelete parameter, 127

canpost parameter, 127

Canvas page, see Facebook canvas

change event, 146

class_name parameter, 61

clickrewriteform attribute, 151

clickrewriteid attribute, 151

clickrewriteurl attribute, 151

clicktohide attribute, 151n

clicktoshow attribute, 151n

Comment forms

adding, 124–128

hiding by default, 144–146

Comment model, 124–128

comment_on method, 125

comment_receiver parameter, 126

comments_url method, 151

Conditional assignment operator, 58

Configuring networks, 29

Content accessibility, 158–160

content parameter, 41

content_for method, 129n

Controller tests, 75–81

Cookies, 38

Prepared exclusively for Alison Tyler

Download at Boykma.Com

CREATE ACTION 188 FB:IF-IS-USER TAG

create action, 43, 87, 97

create_by_facebook_id method, 54n

Cross-site forgery attacks, 38

CSS, adding style with, 103

current_user method, 55, 86

D
deliver_profile_update method, 132

Developer application, 27

Dialog box messages, 149–150

Dialog class, 149–150

Digital signatures, 37, 76

Discussion boards, 128

div tag, 151

DMZ proxy setup, 30

document.getElementById method, 144

DOM, 143

DRY acronym, 94

Dynamic methods, 54n

E
each_slice method, 183

element.getValue method, 147

element.value method, 147

Emails

notification via, 109–111

sending, 107–108

ensure_authenticated_to_facebook

filter, 117, 160, 161

.erb files, 86

Error handling, 33, 122

expire_cache method, 172

expire_fragment method, 176

F
Facebook API

accessing outside canvas, 166–169

batching calls, 182

Facebooker support, 36, 45

functionality, 69

HTTP requests, 47

performance considerations,

179–185

POST request, 68

Facebook canvas

adding navigation, 93–97

adding pagination, 102–103

adding style, 103

building, 26–27

building battles page, 91–93

creating forms, 85–90

error handling, 33

hiding content from users, 97–101

Karate Poke application, 22

selecting path, 31, 37

Facebook Developer application, 27

Facebook helpers, see Helper methods

Facebook JavaScript, see FBJS

Facebook Markup Language, see FBML

Facebook Platform

accessing outside canvas, 166–169

application authorization, 21

canvas page, 22, 26–27

cookie support, 38

developer site, 18

handling specific data, 161–164

messages, 24–25

profile page, 23, 26–27

REST API, 67–70

sharing information, 166

Spamminess metric, 111–112

terms of service, 53, 56

Facebook Profile Publisher, 113,

119–124, 141

Facebook Query Language (FQL),

179–185

facebook_delete method, 78

facebook_get method, 77, 78

facebook_id parameter, 53

facebook_messages method, 88

facebook_post method, 76, 78

facebook_session method, 47, 55, 57

facebook_templates table, 114

Facebooker

background, 14–17

Facebook API support, 36, 45

HTTP requests, 68

installing, 36

Publisher interface, 107–108

Rails class, 76–78

requiring user login, 38

website, 19

see also Session class; User class

fb:board tag, 128

fb:comments tag, 127–128

fb:dashboard tag, 96, 97

fb:editor tag, 89

fb:editor-text tag, 89

fb:fbml tag, 40, 51, 95

fb:if-is-friends-with-viewer tag, 100

fb:if-is-user tag, 99, 100

Prepared exclusively for Alison Tyler

Download at Boykma.Com

FB:IF-USER-HAS-ADDED-APP TAG 189 GROSSENBACH

fb:if-user-has-added-app tag, 174

fb:iframe tag, 164

fb:is-in-network tag, 100

fb:js-string tag, 156

fb:multi-friend-input tag, 86

fb:multi-friend-selector tag, 41, 50

fb:name tag

default links, 92

helper method support, 51

information storage and, 56

page caching, 174

privacy considerations, 101

uid parameter, 44

web browsers and, 161

fb:narrow tag, 133

fb:profile-pic tag, 44, 51

fb:prompt-permission tag, 110

fb:redirect tag, 77, 174

fb:ref tag, 177–179

fb:req-choice tag, 44–45

fb:request-form tag

content attribute, 45

helper method support, 50

sending feedback, 43, 86

starting special forms, 40

fb:success tag, 88

fb:tab tag, 97

fb:tab-item tag, 93

fb:tabs tag, 93

fb:visible-to tags, 137

fb:wall tag, 124

fb:wallpost tag, 124

fb:wide tag, 133

fb_about_url method, 95

fb_action method, 96

fb_dashboard method, 96

fb_multi_friend_request method, 49,

129

fb_name method, 51, 92

fb_profile_pic method, 51

fb_req_choice method, 50

fb_request_form method, 129

fb_sig parameter, 37, 68

fb_sig_ajax parameter, 159

fb_sig_in_canvas parameter, 159

fb_sig_in_profile_tab parameter, 138

fb_sig_profile_user parameter, 120,

138, 139

fb_sig_session_key parameter, 165

fb_tab_item method, 95

fb_wall method, 124

fb_wallpost method, 124

FBJS (Facebook JavaScript)

Ajax and, 151–156

overview, 143–152

FBML (Facebook Markup Language)

Facebook views, 86

giving feedback, 43–44

invitation forms, 40–42, 49–51

limitations, 153

making invitations interactive, 44–45

notification support, 105

updating profiles, 45–49

see also Helper methods; Entries

beginning with fb:

Feedback, invitation form, 43–44

Feeds, see News feeds

Filters

before_create, 54, 62, 65

ensure_authenticated_to_facebook,

117, 160, 161

spam, 106, 111–112

style sheets, 103

Firebug plug-in (Firefox), 144

Firefox browser, 144, 167

FlexMock framework, 76, 79–83

foreign_key parameter, 61

Forgery attacks, cross-site, 38

Form fields

adding, 89

adding brackets, 97

form tag, 89

form_for method, 90

Fowler, Chad, 16

Fowler, Martin, 79n

FQL (Facebook Query Language),

179–185

fql_query method, 180

Fragment caching, 176

Friend selectors, 41

FunWall application, 98

G
GatewayPorts, 30

gem install flexmock, 79

gem install json, 36

gem install json-pure, 36

gem install memcache-client, 171

get_cache method, 171

GitHub, 36

Grossenbach, Geoffrey, 39n

Prepared exclusively for Alison Tyler

Download at Boykma.Com

GROWING GIFTS APPLICATION 190 MESSAGES

Growing Gifts application, 14–16, 23,

69

H
h method, 126

Handle refs, 177

Headers, adding, 96

Helper methods

accessing controller methods, 55

invitation forms, 50

testing support, 76–78

see also Entries beginning with fb_

helper_attr method, 55

Hiding content from users, 97–101

hometown method, 78, 83, 181

hometown_location method, 83

html tag, 40

HTTP requests, 47, 68

I
ids parameter, 43, 86

iframe, 164

images parameter, 115

index action, 92, 126, 174

Index performance, 71

Inline frames, 164

innerHTML attribute, 146–149

Invitations

cleaning up forms, 49–51

creating forms, 40–42

encouraging, 66

feedback to sender, 43–44

interactive, 44–45

notifications and, 106

rewarding users, 66

sending invitations, 39

spreading applications, 128–131

testing with helpers, 76–78

viral growth, 46

Invitations controller, 39

invite parameter, 41

J
JavaScript

accessing Facebook, 166–169

Ajax and, 151–156

dialog box messages, 149–150

FBJS and, 143

profile support, 149

Prototype library, 144

JSON (JavaScript Object Notation),

153, 155, 182

K
Karate Poke application

accessing from models, 57–59

adding navigation, 93–97

adding pagination, 102–103

adding style, 103

application authorization, 21

Attack model, 60–63

Belt model, 63–66

building battles page, 91–93

building web forms, 85–90

caching data, 172, 174

canvas page, 22, 26–27

configuring Rails, 35–37

functionality, 17, 20

hiding content from users, 97–101

marketing, 158–161

messages, 24–25

Move model, 59

profile page, 23

rewarding power users, 63–66

source code, 17

spreading by invitations, 128–131

User model, 52–56

keyup event, 146

Knuth, Donald, 73

L
Latency, 184

LeadersController, 160–161

Leaky Abstraction, 47n

LiveJournal.com, 171

login_url method, 77

M
marketing controller, 159

Matchers, 81

MD5 hash function, 37

memcached system, 170–173

Messages

asynchronous execution, 185

as call to action, 108

dialog box, 149–150

displaying, 88

Facebooker requirements, 107–108

sending, 115

types supported, 24–25

Prepared exclusively for Alison Tyler

Download at Boykma.Com

METHOD PARAMETER 191 RENDER_PUBLISHER_INTERFACE METHOD

method parameter, 41

Mock Ajax, 151–153

Mock objects, 78–81, 83

Move model, 59

MySQL, 54

N
name method, 56

Navigation

adding headers, 96

adding tab bars, 93–95

linking to about page, 95

Network configuration, 29

new action, 45

new_instances method, 80

News feeds

aggregating, 116

defined, 25

increasing application visibility,

117–119

publishing to, 113–116

viral growth, 46

Notifications

defined, 25, 106

via email, 109–111

invitations and, 106

spam filtering, 106, 111–112

testing, 111

viral growth, 46

numposts parameter, 127

O
Olson, Rick, 55

oncancel method, 150

onconfirm method, 150

Optimization, premature, 73

P
Page caching, 100, 173–174

Pagination, adding, 102–103

Performance

adding indexes, 71

API, 179–185

caching considerations, 173–176

Facebook applications, 70

memcached support, 170–173

premature optimization, 73

removing queries, 72–73

Permissions

application authorization, 21

requesting from users, 110

Poke application, 35

see also Karate Poke application

POST request, 68, 127

Profile pages

adding content, 119–124

adding tabs, 136–141

caching information, 26–27, 32

controlling visibility, 136

FBJS support, 149

feed item aggregation, 116

Karate Poke application, 23

makeovers, 131–141

updating, 45–49

Profile Publisher (Facebook), 113,

119–124, 141

profile_fbml= method, 80, 131

profile_update method, 134

Prototype library (JavaScript), 144

Proxy objects, 183

Proxy servers, 30

Publisher interface (Facebooker),

107–108

Q
Queries

FQL, 179–185

performance considerations, 72–73

R
Rails applications

action caching, 175

Ajax support, 152–154

array support, 97

browser cookies, 38

conditional assignment operator, 58

configuring, 32–33, 35–37

cross-site forgery attacks, 38

.erb files, 86

Facebooker support, 16

latency and, 184

matching requests, 159

page caching, 173–174

REST support, 39

returning method, 57

sending emails, 107–108

Rails class (Facebooker), 76–78

remote_form_for method, 153, 155

render_publisher_error method, 122

render_publisher_interface method,

120

Prepared exclusively for Alison Tyler

Download at Boykma.Com

RENDER_PUBLISHER_RESPONSE METHOD 192 VIRAL GROWTH

render_publisher_response method,

122

render_to_string method, 48, 120

Requests

defined, 24

latency in, 184

requireLogin method, 167

REST (Representational State Transfer)

Facebook support, 67–70

fb:comments tag, 127

overview, 39

performance considerations, 181

Restful Authentication plug-in, 55

returning method (Rails), 57

RFacebook, 16

Ruby on Rails, see Rails applications

S
Safari browser, 167

Scaling applications, 176

Schacht, Keith, 14

Scripting, see JavaScript

Secret Key, 32–33

send_as method, 108, 115

Send_notification method, 107

Session class (Facebooker)

batching API calls, 182

functionality, 57–59

install_url method, 77

send_notification method, 107

setting current session, 70

Session keys, 58

session_key parameter, 53, 68

Sessions, sharing, 164–165

set_current_user method, 118, 123,

141

setInnerFBML method, 148, 154

setInnerXHTML method, 148, 154

setStyle method, 145

setTextValue method, 148, 154

should_receive method, 80

show method, 144

showChoice method, 150

showform parameter, 127

showMessage method, 150

Signatures, 37, 76

Social graph, 10

Spam filtering, 106, 111–112

Spamminess metric, 111–112

Spolsky, Joel, 47n

ssh command, 29

Starling message queue, 184

Stubs, 79, 82

Super Poke application, 35

T
Tab bars, adding, 93–95

template_id, 114

Templates, creating, 113–116, 161

Test accounts

creating, 33–34

privacy considerations, 100

sending invitations, 48

Testing

controller tests, 75–81

creating test accounts, 33–34

with mock objects, 78, 83

models, 81–83

notifications, 111

Profile Publisher, 141

sending invitations, 48

with stubs, 78, 82

Twitter application, 166, 184

type parameter, 41

U
uid parameter, 44

update action, 162

update_attribute method, 57

update_multiple method, 155, 156

update_profile method, 80

url attribute, 45

URL refs, 177

User class (Facebooker)

building User model, 52–56

caching and, 171

for method, 87

name method, 56

notification support, 109

retrieving data, 69

User model, 52–56

User profiles, see Profile pages

User_id parameter, 118

V
version attribute, 95

View caching, 173–176

Viral coefficient, 46

Viral growth, 46, 176

Prepared exclusively for Alison Tyler

Download at Boykma.Com

WALL POSTS 193 XMLHTTPREQUEST OBJECT

W
Wall posts, 124

Walls, building, 124

wants_interface method, 122

Web forms, creating, 85–90

Websites

accessing Facebook outside canvas,

166–169

actions and views, 160–161

handling Facebook-specific data,

161–164

making content accessible, 158–160

sharing sessions, 164–165

Weirich, Jim, 76, 79

will_paginate method, 102

with matcher, 81

X
X Me poke application, 35

xid parameter, 127

XmlHTTPRequest object, 154

Prepared exclusively for Alison Tyler

Download at Boykma.Com

Agile Development
Learn what it takes to be pragmatic and agile.

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/ahptl
http://pragprog.com/titles/pad

More on Agile Projects
More practical advice on tuning and managing projects.

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragprog.com/titles/dlret

Manage It!
Manage It! is an award-winning, risk-based guide

to making good decisions about how to plan and

guide your projects. Author Johanna Rothman

shows you how to beg, borrow, and steal from the

best methodologies to fit your particular project.

You’ll find what works best for you.

• Learn all about different project lifecycles • See

how to organize a project • Compare sample

project dashboards • See how to staff a project

• Know when you’re done—and what that means.

Your Guide to Modern, Pragmatic Project

Management

Johanna Rothman

(360 pages) ISBN: 0-9787392-4-8. $34.95

http://pragprog.com/titles/jrpm

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/dlret
http://pragprog.com/titles/jrpm

Definitive Ruby and Rails
Help yourself to the definitive reference books for Ruby and Rails.

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Third

Edition, which goes beyond the award winning

previous editions with new material covering the

latest advances in Rails 2.0.

Agile Web Development with Rails: Third Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(784 pages) ISBN: 978-1-9343561-6-6. $43.95

http://pragprog.com/titles/rails3

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/rails3

Ruby and Rails Recipes
Turn your Ruby and Rails development up to eleven.

Advanced Rails Recipes
A collection of practical recipes for spicing up your

web application without a lot of prep and cleanup.

You’ll learn how the pros have solved the tough

problems using the most up-to-date Rails

techniques (including Rails 2.0 features).

Advanced Rails Recipes

Mike Clark

(464 pages) ISBN: 978-0-9787392-2-5. $38.95

http://pragprog.com/titles/fr_arr

Enterprise Recipes with Ruby and Rails
The 50+ recipes in this book not only show you

how to integrate lurking legacy material using Ruby

and Ruby on Rails, but also how to create new and

highly functional applications in an enterprise

environment.

• Work with XML, CSV, fixed length records, and

JSON • Use sockets, SOA, REST and SOAP

• Learn about payment gateways, e-commerce,

privacy and security • Automate tedious

enterprise maintenance tasks

Enterprise Recipes with Ruby and Rails

Maik Schmidt

(425 pages) ISBN: 978-1-9343562-3-4. $38.95

http://pragprog.com/titles/msenr

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/fr_arr
http://pragprog.com/titles/msenr

The Real World Web
See how to successfully deploy your Rails project and design your site to be accessible to

the widest audience.

Deploying Rails Applications
Until now, the information you needed to deploy a

Ruby on Rails application in a production

environment has been fragmented and

contradictory. This book changes all of that by

providing a consistent, level-headed book

containing advice you can trust. You’ll get the

inside angle from those that have built, deployed,

and maintained some of the largest Rails apps in

production, anywhere.

Deploying Rails Applications:

A Step-by-Step Guide

Ezra Zygmuntowicz, Bruce Tate, and Clinton Begin

(284 pages) ISBN: 978-0-9787392-0-1. $34.95

http://pragprog.com/titles/fr_deploy

Design Accessible Web Sites
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

Jeremy Sydik

(304 pages) ISBN: 978-1-9343560-2-9. $34.95

http://pragprog.com/titles/jsaccess

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/fr_deploy
http://pragprog.com/titles/jsaccess

GUI Testing, Ubuntu Tips, and more. . .
Who says you can’t test modern GUIs? We’ll show you how.

If you’re developing or deploying on Ubuntu, you need this tips and tricks to be more effec-

tive and more productive.

For more of our latest titles, please visit www.pragprog.com.

Scripted GUI Testing with Ruby
If you need to automatically test a user interface,

this book is for you. Whether it’s Windows, a Java

platform (including Mac, Linux, and others) or a

web app, you’ll see how to test it reliably and

repeatably.

This book is for people who want to get their hands

dirty on examples from the real world—and who

know that testing can be a joy when the tools don’t

get in the way. It starts with the mechanics of

simulating button pushes and keystrokes, and

builds up to writing clear code, organizing tests,

and beyond.

Scripted GUI Testing with Ruby

Ian Dees

(192 pages) ISBN: 978-1-9343561-8-0. $34.95

http://pragprog.com/titles/idgtr

Ubuntu Kung Fu
Award-winning Linux author Keir Thomas gets

down and dirty with Ubuntu to provide over 300

concise tips that enhance productivity, avoid

annoyances, and simply get the most from Ubuntu.

You’ll find many unique tips here that can’t be

found anywhere else.

You’ll also get a crash course in Ubuntu’s flavor of

system administration. Whether you’re new to

Linux or an old hand, you’ll find tips to make your

day easier.

This is the Linux book for the rest of us.

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks

Keir Thomas

(400 pages) ISBN: 978-1-9343562-2-7. $34.95

http://pragprog.com/titles/ktuk

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/idgtr
http://pragprog.com/titles/ktuk

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Developing Facebook Platform Applications with Rails’ Home Page

http://pragprog.com/titles/mmfacer

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mmfacer.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Prepared exclusively for Alison Tyler

Download at Boykma.Com

http://pragprog.com/titles/mmfacer
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mmfacer
www.pragprog.com/catalog

	Contents
	Foreword
	Acknowledgments
	Preface
	Understanding a Successful Facebook Application
	Developing with Rails
	About This Book

	Getting Started with the Facebook Platform
	Adding the Karate Poke Application
	The Parts of a Facebook Application
	Getting Inside the App
	Setting Up and Running the App
	Summary

	Starting Your First Application
	Creating a Facebook Rails Application
	Sending an Invitation
	Giving the Sender Some Feedback
	Making Our Invitation Interactive
	Updating the Profile
	Refactoring to Use Helpers
	Summary

	Building the Karate Poke Object Model
	Building the User Model
	Accessing Facebook from Models
	Creating the Move Model
	Attack!
	Creating the Belt Model
	Encouraging Invitations
	Getting Data Out of Facebook
	Refactoring and Performance
	Summary

	Testing Our Facebook Application
	Controller Tests
	Testing Models
	Summary

	Getting Into the Facebook Canvas
	Getting Interactive with Forms
	Building the Battles Page
	Adding Navigation
	Hiding Content from Users
	Adding Pagination
	Adding Some Style
	Summary

	Making It More Social
	Sending Notifications
	Publishing to News Feeds
	Comments and Discussion Boards
	Spreading by Invitation
	Giving the Profile a Makeover
	Testing Facebooker Publishers
	Summary

	Scripting with FBJS
	FBJS Overview
	Ajax in FBJS
	Summary

	Integrating Your App with Other Websites
	Making Content Accessible
	Actions That Work Both Ways
	Handling Facebook-Specific Data
	Sharing Sessions
	Accessing Facebook Outside the Canvas
	Summary

	Scaling and Performance
	Getting Faster with Memcached
	Caching Our Views
	Caching with refs
	API Performance
	Summary

	 Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

