
Prepared exclusively for James Carlson

What Readers Are Saying About

Beginning Mac Programming

Helping a complete novice get off the ground building real Mac (and

iPhone) apps is daunting—I would have thought impossible—but Tim

makes some of the toughest concepts of Cocoa accessible and

enjoyable. I get tons of email from people looking to get into Cocoa

programming who don’t know where to start, and there really hasn’t

been a good resource to point them to until this book.

Loren Brichter

Owner, atebits LLC

Perfect for anyone who is new to Objective-C. It is laid out well, and

the examples let you jump right in to developing an application. This

will be a well-thumbed reference for me for quite some time.

David Flagg

Internet Technology Specialist, National Science Foundation

Isted’s book gently places you on the path, giving you the guided tour

not just of Mac programming but of programming itself. Simple,

evocative examples take care of reinforcing the theory he deftly slips

into the conversation. If you want to get into Mac programming

quickly, at your own pace, this is your book.

Uli Kusterer

Software Engineer, The Void Software

A gentle, practical, and comprehensive introduction to Mac

development, which is genuinely suitable for people who have never

programmed before. It will not only have you building applications but

also understanding how they work.

Dave Verwer

Director, Shiny Development Ltd.

Prepared exclusively for James Carlson

If you are new to programming and want to write the next killer app,

this is a great place to start. Tim takes you from the very basics of

programming to some fairly advanced stuff, all the while never

forgetting that you are new to this. The book is filled with great

explanations of not only how to do stuff but also why you should do

them. I highly recommend this book to people who are new to

programming. Especially if you want to build an iPhone application

but have never programmed before, this book will take you through a

great introduction to programming in general and leave you ready to

tackle the iPhone SDK.

Bill Dudney

Owner, Gale Factory Software LLC

This book is recommended for anyone starting out with no prior

experience with programming or Cocoa development. By introducing

fundamental programming principles side by side with a fantastic

introduction to the Cocoa frameworks and their tools, Tim gives

aspiring developers a foundation on which they can realize their goal

of creating software for any modern Apple platform.

Cathy Shive

Senior Developer, Sofa B.V.

Tim Isted clearly remembers what it was like when he first learned

Objective-C, and it shows. He understands when things will be

confusing and when you will be excited you got it all to work.

Lyndia Zarra

Owner, LIZography

A book like this is all too rare to find when it comes to beginning

programming literature. It focuses on results right from the get-go and

has you building applications from the very start, a great way to

monitor your progress. All the while it manages to teach you

fundamental programming techniques in a clear, concise manner,

while not sounding patronizing. An absolute must for anyone

considering taking up programming on the Mac platform.

Danny Greg

Cocoa Developer, Realmac Software

Prepared exclusively for James Carlson

This book is great; it thankfully eschews the “traditional” dry format of

teaching programming and takes you on a journey that will leave you

itching to get on and write your own programs.

Robert McGovern

I’ve always been a fan of learning programming by boldly diving in.

This book is a prime example of that idea: you create your first

program in the second chapter, and create your first objects and code

in the third. The traditional fundamentals of programming are there in

the middle of the book, and an introduction to Mac application design

fills out the end. But I challenge you to be bold. Play with everything,

make your own marks, and this book will serve you well on the path

to becoming a great Mac programmer.

Matt Gallagher

Sole Proprietor, ProjectsWithLove

An extremely gentle introduction to the fundamentals of developing for

the Mac. While some beginner books presume knowledge of arcane

tidbits, this author has plotted a careful course that starts with a few

essentials and then builds upon them bit by bit.

Daniel Jalkut

Founder, Red Sweater Software

Before Isted’s book, learning how to program and learning how to

program Cocoa were sadly two distinct undertakings. The best

introductory programming books didn’t target Cocoa, and the Cocoa

books presumed knowledge of programming. Tackling two separate

books wasn’t an impossible task for a new programmer, but it was a

speed bump along an already steep grade. In this book, Isted offers a

seamless, gentle slope towards reaching Mac programming heights.

I’m happy I can now recommend Isted’s book to those who ask me

how they can start programming Apple’s lovely machines. I’m happy I

can now recommend Isted’s book to those who ask me how they can

start programming Apple’s lovely machines.

Jonathan “Wolf” Rentzsch

President, Red Shed Software Company

Prepared exclusively for James Carlson

Beginning Mac Programming
Develop with Objective-C and Cocoa

Tim Isted

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for James Carlson

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Tim Isted.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-51-4

ISBN-13: 978-1-934356-51-7

Printed on acid-free paper.

P1.0 printing, March 2010

Version: 2010-3-3

Prepared exclusively for James Carlson

http://www.pragprog.com

Contents
1 Introduction 10

1.1 The Intended Audience 11

1.2 What’s Involved? . 11

1.3 What’s Needed? . 12

1.4 Acknowledgments . 13

1.5 Let’s Go . 14

2 Your First Application 15

2.1 Introducing Xcode . 15

2.2 The Main Event . 18

2.3 The Cocoa Framework 22

2.4 Application Resources 23

2.5 Chapter Summary . 29

3 All About Objects 30

3.1 The Application Construction Process 30

3.2 An Introduction to Objects 31

3.3 Object Inheritance . 38

3.4 Writing Code for Our Own Objects 40

3.5 Chapter Summary . 55

4 Object Messaging 56

4.1 Defining a New Method 56

4.2 The Target-Action Mechanism 59

4.3 Sending Messages from Our Code 64

4.4 Chapter Summary . 73

5 Variables and Memory 74

5.1 How Memory Works . 74

5.2 Using Variables . 79

5.3 The Scope of a Variable 88

5.4 Memory Addressing . 90

5.5 Pointers Again . 94

5.6 Chapter Summary . 96

Prepared exclusively for James Carlson

CONTENTS 8

6 Passing Information Around 97

6.1 Returning Values . 97

6.2 Methods and Arguments 105

6.3 Class Methods . 111

6.4 Passing Values by Reference 115

6.5 Chapter Summary . 117

7 Objects and Memory Management 119

7.1 Memory Considerations 119

7.2 Allocating Memory for Objects 121

7.3 Creating Objects in Code 124

7.4 The Object Life Cycle . 129

7.5 Denying Responsibility 133

7.6 Initializing with Arguments 137

7.7 Utility Class Methods . 140

7.8 Chapter Summary . 144

8 Collecting Information 145

8.1 Introducing Arrays . 145

8.2 Using Arrays in an Application 148

8.3 Object Mutability . 154

8.4 A New Application . 160

8.5 Chapter Summary . 181

9 Branching Out 183

9.1 Introducing if and else 183

9.2 All About the Truth . 199

9.3 Stylistic Conventions . 202

9.4 Switching Around . 205

9.5 Writing Init Methods . 208

9.6 Adding Conditional Statements to the Shopping List

Application . 210

9.7 Chapter Summary . 217

10 Looping and Enumerating 218

10.1 Introducing Array Enumeration 218

10.2 Counting . 221

10.3 Traditional for Loops . 224

10.4 Enumerating an Array with a Traditional for Loop . . . 228

10.5 Other Types of Loop . 231

10.6 A Simple Change to Our Shopping List Application . . 234

10.7 Chapter Summary . 236

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=8
v@v
Cross-Out

CONTENTS 9

11 Objects, Encapsulation, and MVC 238

11.1 The Main Types of Object 238

11.2 Designing Model Objects 241

11.3 Reworking the Shopping List Application 251

11.4 Creating a Shopping List Item Object 262

11.5 Reworking the Shopping List Application... Again . . . 269

11.6 Introducing Objective-C 2.0 Properties 271

11.7 Chapter Summary . 277

12 All About Views 278

12.1 Simple Geometry in Two Dimensions 278

12.2 Working with Windows and Views 282

12.3 The View Hierarchy . 290

12.4 Custom Views . 295

12.5 Back to the Shopping List Application 306

12.6 Views and Cells . 310

12.7 Chapter Summary . 318

13 Mac OS X and Cocoa Mechanisms 320

13.1 Delegation . 321

13.2 Notifications . 337

13.3 Working with Events . 347

13.4 Responders and the Responder Chain 359

13.5 Archiving with NSCoding 367

13.6 Chapter Summary . 374

14 Where to Go from Here 376

14.1 Important Technologies 377

14.2 Finding Information . 382

14.3 Book Summary . 386

A Developing for the iPhone OS 387

B Installing Xcode 403

C Bibliography 408

Index 409

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=9

Chapter 1

Introduction
The iPad, the iPhone, the iPod, the iMac...

The world according to Apple is vast and ever-expanding. The Mac and

iPhone OS platforms seem to breed passionate users, united in their

love for software and hardware that looks beautiful, behaves exactly

how they expect, and works without the pains of hardware incompati-

bilities, driver installations, and convoluted interfaces.

Behind this alluring exterior lies a fascinating world. All computer plat-

forms have communities of software developers, each equally devoted

to what they do. What seems to set the Mac platform apart, though,

is that so much of the available Mac and iPhone software has been

written either by individual developers, working as independents, or for

relatively small companies that maintain that “indie” feel. The sense of

community is great, newcomers are welcomed and respected, and the

indie-developer experience offers many rewards.

What also sets the Mac apart from another, reasonably well-known

computer platform, is that the tools to write software come bundled

free of charge with every Mac. They’re even available as free downloads

from Apple’s website if you happen not to be able to find the original

system discs or want the absolutely latest version.

Perhaps the only reasonable excuse not to sit down and write software

right away is that the learning curve feels steep. The advice is often to

“Go away and learn C, and come back when you’re done!” The aim of

this book is to offer a different path.

We’ll be jumping headfirst into creating applications on the Mac that

look and behave like the other Mac applications you’re used to. We’ll

certainly be learning general programming principles, but we will be

Prepared exclusively for James Carlson

THE INTENDED AUDIENCE 11

putting them into practice in real-world situations, right from the start.

Over the course of the book, you’ll learn enough that you can fend for

yourself, with enough knowledge of how the Mac programming world

works that you know where to go to fill gaps in your knowledge with

information from the right sources.

1.1 The Intended Audience

This book is designed for those of us who don’t have a degree in com-

puter science. It’s intended to be read by people who’ve spent time

working with the Mac, perhaps as power users of their applications,

or at least people with the confidence that they know enough to explain

the difference between, say, a menu and a window. Most importantly,

the book is intended for people who have little or no previous program-

ming knowledge.

If you already revel in the intricacies of hash tables or take pleasure in

analyzing complex algorithms, this book probably isn’t for you. Simi-

larly, if you prefer to learn theory first or you work best studying com-

puter stuff away from your computer, it’s probably wise to look at some

of the other books out there.

Throughout the course of this book, we’ll be going over basic program-

ming skills, picking them up as they relate to the language we’re learn-

ing and to the coding we’ll be doing. By the time you reach the end, not

only will you have learned enough to start building your own Mac appli-

cations, but you’ll be confident enough to take on the more advanced

literature that’s available.

1.2 What’s Involved?

So, what will we cover in this book? Well, we’ll be learning a pro-

gramming language. On the Mac, this means learning something called

Objective-C. Don’t worry, it’s not too scary, and we won’t be trying to

learn all of it, all at once. Learning a computer programming language

is much easier than learning to speak a foreign language; computers

understand only a relatively limited vocabulary and grammar.

For some of the programming principles we’ll be learning, we’ll intro-

duce concepts using a kind of “pseudolanguage,” which is really just

standard English made more formulaic. As will quickly become clear,

this pseudolanguage isn’t too far from what Objective-C actually looks

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=11

WHAT’S NEEDED? 12

like. Once we’ve learned to recognize the basic structure of a code

project and learned the grammar, or syntax used inside the project

files, it’s not too difficult to work out what’s going on in the code.

At the same time that we’re learning Objective-C, we’ll be learning about

a framework provided by Apple, called Cocoa, and, obviously, we’ll be

spending a lot of time using the developer tools Xcode and Interface

Builder to make Mac software.

The great thing about learning Objective-C for the Mac desktop is that it

is also the language used to write software for the iPhone OS, that is, for

applications that run on Apple’s iPhone and iPod touch devices; toward

the end of this book, we’ll even take a quick foray into writing iPhone

software. The software-building processes we’ll learn throughout the

book apply just as much on the iPhone as they do the Mac desktop, so

we’ll be learning skills that open up multiple new worlds of creativity!

1.3 What’s Needed?

If you’re reading this book, it’s probably fairly likely that you either

own or have access to a Mac. It doesn’t matter whether it’s an old

PowerPC-based model or the latest top-of-the-line, Intel-based Mac Pro.

As long as it runs OS X, you can use it with this book to learn Mac

programming.

You won’t need to buy any special software. As we’ve already said,

Apple’s developer tools are available either on the system discs that

came with your computer (or on OS X upgrade discs) or for download

from Apple’s Developer Connection website. You’ll need to register with

Apple as a Developer Connection member to download the software,

but registration is free.

The developer tools must be installed—they probably won’t be available

to run on your hard drive unless you’ve specifically installed them. In-

stallation is very easy; for help, take a look at Appendix B, on page 403.

The only additional considerations are if you want to take iPhone coding

further. As a start, the tools used to write for the iPhone OS require

an Intel-based Mac. If you want to test and run your software on a

real iPhone or iPod touch (rather than in a simulator on your desktop

Mac), you’ll need to sign up as a registered iPhone Developer; this isn’t

particularly expensive but, at the time of writing, bears an annual fee

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=12

ACKNOWLEDGMENTS 13

of $99 for individuals. Rest assured that you won’t need to do this to

get the most out of this book, though.

The screenshots in this book are taken from version 3.2 of the developer

tools—the version that comes with Mac OS X 10.6, Snow Leopard. If

you’re running Mac OS X 10.5, Leopard, you may find that some parts

of Xcode look slightly different, but it shouldn’t be too difficult to work

out how your version relates to what you see in this book.

1.4 Acknowledgments

Although it’s my name that’s listed on the front, this book would not

exist were it not for the work of a very large number of people.

Thankfully, the ever-awesome publisher, Pragmatic Bookshelf, also in-

cludes the name of the editor on the cover, which is truly fitting for

what Colleen Toporek has put into this project. If I simply used the

standard author phrase about “tireless support,” it would be one of the

biggest understatements of all time. This has been a partnership from

beginning to end, and this is as much her book as it is mine.

I have also been lucky enough to have an incredible team of technical

reviewers, reading through manuscripts at various stages. The early

input from Lyndia Zarra, Bill Dudney, and Rob McGovern requires spe-

cial mention, as it helped shape much of the book’s path and style; they

even provided a second set of comments once the first draft was almost

complete, for which I doubtless owe an as yet undisclosed number of

drinks.

My drawing skills are somewhat lacking, so I’m indebted to David Per-

kins for his willingness to turn my horrendous scribbles into recog-

nizable shapes. I am also extremely grateful to Dave Verwer, Chris

Adamson, Dave Klein, and David Flagg for their support and technical

comments on the book as a whole as it got closer to completion, and to

Uli Kusterer, Danny Greg, Matt Gallagher, Loren Brichter, Cathy Shive,

and Daniel Jalkut for looking over and commenting on the near-final

manuscript.

Finally, I’d like to thank all those who submitted errata and forum ques-

tions on the book as it went through the Pragmatic Beta process. The

Mac and iPhone developer community has to be one of the friendliest,

most helpful and supportive groups in existence. We look forward to

welcoming you, the reader, into it!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=13

LET’S GO 14

1.5 Let’s Go

Writing software for the Mac, and indeed programming in general, can

be incredibly rewarding. It doesn’t necessarily have to be done at 3 a.m.

fueled on coffee or cola, but sometimes it’s easy to get carried away

knowing that some awesome feature is so close to working.

We’ll probably manage to avoid some of the blood, sweat, and tears

normally associated with learning programming, but even those who

have suffered for their art will tell you that it’s worth it to use a great

piece of software every day and be able to say “I made that!” And, of

course, it’s even greater to watch other people using and loving (and

maybe paying for...) your software too.

So, let’s get started!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=14

Chapter 2

Your First Application
Welcome to the world of Mac programming!

Many programming books begin by giving you long histories of pro-

gramming languages, introducing a lot of very abstract ideas before

you actually get to do anything. Even when you’re eventually allowed to

do something at your computer, it’s writing code for little command-line

tools that output text to a “no user interface” console screen. This book

is different.

We’re going to begin our journey together by creating a simple but fully

functional application that exhibits all the wonderful characteristics of

a typical Mac application. Our application will launch like any normal

Mac app, display its own window, show its own menu bar, respond to all

sorts of user input, and, astonishingly, even allow the user to print to

a connected printer. All of this will be achieved without actually writing

any code.

In subsequent chapters of this book, we’ll use this simple application

to demonstrate how to write code. Our aim is therefore not only to learn

a new programming “language” but to learn how software is built from

a Mac perspective, using this language inside a real Mac application,

which we’ll create using Apple’s developer tools.

2.1 Introducing Xcode

If you’ve done any coding at all on other platforms or maybe dabbled a

little with writing or designing web pages, you’ll have had a choice of a

variety of development environments or coding tools. On the Mac, you’ll

generally be using Xcode, software provided free of charge by Apple.

Prepared exclusively for James Carlson

INTRODUCING XCODE 16

This software comes on the Mac OS X installation CDs as an additional

install, or alternatively you can download the most recent version from

Apple’s Developer Connection website. If you’ve not yet installed Xcode,

please do so now by following the instructions given in Appendix B, on

page 403.

Although its name suggests it is used solely to write code, Xcode is

what’s known in the programming world as an Integrated Development

Environment (IDE). We’ll be using it to organize our code files, launch

the interface-editing tools, create an application out of our code, run

that application, fix any bugs, and do a whole lot more.

The Xcode Environment

Let’s start Xcode right now and create our first programming project.

On its first launch, you should be greeted by a Welcome to Xcode win-

dow. Close this window for now, and choose the File > New Project...

menu item. A template window will appear, as shown in Figure 2.1, on

the following page.

An application is built in Xcode from a large number of different files.

Rather than having to add all these to a completely blank project, Xcode

offers a variety of template projects that you use as starting points for

your own work.

On the left side of this template window, you’ll notice many different

types of Mac OS X projects. You may also see some template types

for iPhone OS projects (shown in Figure 2.1, on the next page); if you

haven’t installed Xcode with the iPhone SDK, your template window

won’t show these iPhone OS project types.

We’ll talk about some of the different types of projects later in the book,

but for now we’ll be creating a Mac OS X application. Make sure the

Application type is highlighted (just under the Mac OS X heading), and

you’ll see several types of project templates listed in the upper-right

half of the window.

A standard Mac application can be one of two fundamental project

types—Cocoa Application and Cocoa Document-based Application. The

difference between these two is perhaps best explained with examples.

Apple’s Pages and Microsoft’s Word are examples of document-based

applications. iTunes and DVD Player, by contrast, are nondocument

applications because they don’t work by asking the user to “open a

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=16

INTRODUCING XCODE 17

Figure 2.1: The Xcode template window

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=17

THE MAIN EVENT 18

file.” The difference isn’t always this clear-cut, but that’s the basic

distinction.

To keep things nice and uncomplicated, we’ll create a basic Cocoa appli-

cation, so make sure the Cocoa Application template is highlighted

in the project window, leave the “Create document-based application”

checkbox in the lower portion of the window deselected, and click the

Choose... button.

At this point, you’ll see a standard Save panel asking for a name and

location on disk for the project. Note that Xcode will automatically cre-

ate a new folder with the same name as your application to hold all the

project files, so you don’t need to do this yourself.

Call the project “TextApp,” and click the Save button.

The Project Window

You should see a window appear on screen that looks something like

Figure 2.2, on the following page. Try not to feel overwhelmed at seeing

so many items in the Groups & Files list on the left of the window. For

most of our time in Xcode, we’ll only be worrying about what’s under

the first group in the list, the TextApp group.

Some of the folders in this group will be empty, but click the triangle

next to Other Sources to expand it and view the contents. Two files

will appear, one of which is called main.m. Click this file once, and its

contents will appear in the lower-main portion of the project window,

rather like an email message does in Apple’s Mail application. If you

double-click the main.m file in the left Groups & Files list, it will open in

a new window.

You’ll notice that there are several buttons and drop-down boxes along

the top of the project window. I’ll talk about these as we use them.

2.2 The Main Event

Most introductory programming books that talk about variants of the

C language spend most of their time writing code that sits inside this

main file. When you’re writing standard Mac applications, however, it’s

actually very rare that you’d want to modify this file. I originally said

that we weren’t going to write any code in this chapter, so we’ll stick to

that, but it’s worth just taking a quick look now.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=18

THE MAIN EVENT 19

Figure 2.2: The project window for TextApp

We’ll be going into some serious depth on the layout and language syn-

tax of code later in this book, but let’s get a very brief overview of what

you’re seeing in this particular file. When you double-click the main.m

file, you will be looking at a window containing the code listing:

Download YourFirstApp/TextApp/main.m

//

// main.m

// TextApp

//

// Created by Tim Isted on 08/09/2009.

// Copyright 2009 __MyCompanyName__. All rights reserved.

//

#import <Cocoa/Cocoa.h>

int main(int argc, char *argv[])

{

return NSApplicationMain(argc, (const char **) argv);

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://media.pragprog.com/titles/tibmac/code/YourFirstApp/TextApp/main.m
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=19

THE MAIN EVENT 20

Assuming you haven’t modified Xcode’s default settings, the code in

this file should appear in a number of different colors. These colors are

designed to help you when coding, because they allow you to identify

portions of code “at a glance.”

Notice that the first few lines are green on your screen. You’ll also notice

that each of those lines starts with two forward slash characters, like

this:

// TextApp

These lines are comments and are completely ignored when the code is

run. In this instance, they are used to give information about the file,

such as its name, the name of the project, the author, and copyright

information. These particular details were provided automatically for

us when we used the Cocoa Application project template earlier.

As we’ll see throughout this book, comments can be used in all sorts of

ways. One of the major uses is to document your code. You might, for

example, need to perform a complex geometric calculation to work out

how to draw a regular star shape inside a set of drawing coordinates.

This code might make perfect sense to you while you’re writing it, but

six months later it might be absolutely impossible to see what’s going on

without a few comments spread throughout the code to explain what’s

happening.

Another great feature of comments is to comment out particular lines

of code. Let’s say that your code to draw a star isn’t working quite

how you’d like. You might decide just to draw a simple rectangle in the

place of the star to make sure your coordinate calculations are correct.

Rather than deleting all the lines of star-drawing code, you could just

comment them out so that it’s possible to reintroduce them later, one

line at a time.

After the green commented sections, there’s a brown and red line start-

ing with #import. Don’t worry too much about this line just now; instead

focus on the last four lines of the file:

int main(int argc, char *argv[])

{

return NSApplicationMain(argc, (const char **) argv);

}

Believe it or not, these four lines contain your full-blown Mac OS X

application from launch until it quits. To simplify the process some-

what, when a user double-clicks your application in the Finder, the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=20

THE MAIN EVENT 21

Keyboard Shortcuts

Most of the menu commands given in the book have their key-
board shortcuts shown, using the symbols commonly found on
Mac keyboards. You’ll also see references to C-clicking.

Some Mac keyboards don’t show these symbols; if yours
doesn’t, you may find this table helpful:

C Control or Ctrl

B Shift

E Option, Opt or Alt

D Command or Cmd

J Delete or Del

F Return

I Enter

operating system looks inside the application code to find this main

portion, and then it runs the code between the curly braces.

As I said before, you don’t need to modify the main.m file very often.

With that in mind, let’s see what happens when we run the application.

Close the main.m file so that you can see the main TextApp project

window. Click the Build & Run icon on the toolbar at the top of this

window, and sit back while Xcode builds your project from the various

files in the template and then runs the resulting application.

Assuming all has gone to plan, your application will launch. A blank

window should open that you can move around and resize. Notice that

the menu bar has changed, displaying “TextApp” as the application

name at the top left of your screen. Take a moment to look through the

items under each menu. You’ll find a standard File menu, with several

items like the New and Open commands grayed out. The Edit menu

contains the standard pasteboard actions such as Copy and Paste. The

Window menu contains commands that affect the blank window visible

on screen. You can minimize it to the Dock or zoom it to fill your screen.

One of the most important principles of building software for the Mac

platform is that applications should follow a standard set of interface

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=21

THE COCOA FRAMEWORK 22

guidelines set by Apple. One of these guidelines is that certain menu

items appear in all applications and in specific groupings. For example,

you should always find Cut, Copy, and Paste commands under the

Edit menu, always listed in that order. If your application follows these

guidelines, it will be much easier for people to use because it behaves

in the way they expect.

Quit the TextApp application in any way you choose. You’ll find you

can pick the Quit TextApp command from the TextApp menu or press

its usual keyboard equivalent—the D- Q shortcut. You could also right-

click with the mouse (or C-click) on the Text App icon that has appeared

in the Dock at the bottom of your screen and choose Quit. These are

all perfectly acceptable ways to exit the application, and you’ll find all

of them already work for you “out of the box.”

2.3 The Cocoa Framework

Remember how we looked inside the main.m file in the previous sec-

tion and saw one line of code that apparently ran the application from

launch until it quit? It seems rather bizarre that this single line could

accomplish all the functionality we experienced.

One way to write applications on a computer would be to write code

that literally draws every pixel on screen to represent the user interface.

Writing TextApp in this way, you’d need to draw a bar across the top for

the menus, then display text for each menu, before drawing the window

outline and its contents. That’s ignoring any need to display what’s in

the background of the user’s screen from their desktop or other appli-

cations and forgetting that we need to write code to make those pixels

change when the user wants to interact with our application.

Remember how we talked about applications conforming to a standard

set of interface guidelines? A window has a defined look and feel, for

example, and menus all behave in a certain way; there would be a large

amount of duplicated functionality between applications if every pro-

grammer had to write similar code to achieve the same basic behavior.

Imagine what would happen if the guidelines changed slightly—every

application would have to be modified to represent the new standard.

The solution to these issues is to use a framework. A framework pro-

vides a large amount of prewritten code that we can use to avoid having

to “reinvent the wheel.” When writing Mac software, we use the Cocoa

framework, provided for us by Apple.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=22

APPLICATION RESOURCES 23

You might recall that when we created our TextApp project, we chose

the Cocoa Application template. By creating an application using Co-

coa, we’re relieved from worrying about the basic functionality exhibited

by most Mac applications, and left to worry about writing code only for

the features that are unique to our own application.

Open main.m again to take a look at that important line between the

curly braces:

return NSApplicationMain(argc, (const char **) argv);

For now, ignore the fact that this looks rather terrifying in terms of

syntax. All this line is actually doing is creating a Cocoa application

and giving it control.

2.4 Application Resources

It’s all very well just to say that we’re giving control over to some Cocoa

application, but we still haven’t discovered where the menu bar and

windows come from.

If you double-clicked the main.m file earlier to open it in a separate

window, close that window now so that you return to the Xcode project

window for TextApp. In the left side of the window, the Other Sources

group should still be expanded. Under this, you’ll see another group

called Resources. Click the triangle to the left of this to expand it, and

you’ll see three more files. Click the TextApp-Info.plist1 file once, and it

will appear in the lower-right portion of the project window, looking

like Figure 2.3, on the next page.

There’s a lot of information in this file, but the line we need to focus

on just now is the one called Main nib file base name. You’ll see that the

Value column for this line contains MainMenu.

The MainMenu.xib File

When you create an application using the Cocoa framework, the frame-

work looks inside the ApplicationName-Info.plist file for this value and

uses the file with that name to create the basic interface for the appli-

cation. Look back in the Resources group on the left of the project

1. If you are using an earlier version of Xcode, this file might be called Info.plist rather

than TextApp-Info.plist.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=23

APPLICATION RESOURCES 24

Figure 2.3: The TextApp-Info.plist file

window, and you’ll see that the third resource listed is called Main-

Menu.xib. Double-click this file to open it.

Xcode launches another Apple developer tools application, called Inter-

face Builder, to edit this file. When it opens, you’ll find a number of

windows on your screen; the main window looks like Figure 2.4, on the

following page.

This main MainMenu.xib window contains a variety of objects. The two

to take notice of right now are Main Menu and Window (TextApp).

Double-click the Main Menu icon to open the menu editor (it may

already be open on screen). This menu editor (shown in Figure 2.5,

on page 26) contains the menu bar that is displayed when the TextApp

application is run. If you click a menu title, that menu will drop down

and be displayed so that you can make any changes to the menu items.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=24

APPLICATION RESOURCES 25

Figure 2.4: MainMenu.xib open in Interface Builder

Click the TextApp menu once to display it, and then double-click the

first menu item, About TextApp. You’ll find that the menu item title

becomes editable, and you can change it to anything you want. Change

the name to “About My Wonderful TextApp Application.”2

Save the MainMenu.xib file in Interface Builder, and switch back to X-

code. Click the Build & Run toolbar item once to launch your appli-

cation. Now when TextApp runs, you’ll find that the About menu item

appears with its new name, just as we set in Interface Builder. Choose

the Quit TextApp command to exit the application.

2. Under some earlier versions of Xcode, the project template doesn’t name some of the

menu items correctly. The About menu item might be About NewApplication, and the

Quit command might be Quit NewApplication. If so, you can rename them as described.

The application menu itself may also be New Application, but when the application is

run, this will change, as if by magic, to TextApp.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=25

APPLICATION RESOURCES 26

Figure 2.5: The menu editor in Interface Builder

Adding to Our Basic Interface

It isn’t only basic user interface items like windows and menus that

Cocoa provides for us. There are a whole host of other controls that we

can use to add functionality to our application.

Over the next few chapters of this book, we’re going to be needing a

place to display some textual information. To demonstrate how much

functionality can be provided by the “built-in” controls, we’ll use a con-

trol right now to allow the user to type text into the window. We’ll be

using some of the other available controls later in the book.

So, return to Interface Builder,3 and make sure the MainMenu.xib file is

still open. From the Tools menu, open the Library palette. This palette,

shown in Figure 2.6, on the following page, contains the controls that

we can either use as is in our projects or extend with extra functionality

if needed.

3. There’s a very useful Mac OS X shortcut to switch quickly between applications; hold

down the D-key and press A, and a box will appear allowing you to pick between all

open applications. When you release the D key, the selected application will be brought

to the front.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=26

APPLICATION RESOURCES 27

Figure 2.6: Interface Builder’s Library palette

At the bottom of the Library palette is a search box; type “text view”

in this box. You’ll see that only one item is left inside the palette, and,

helpfully, this is the one we are going to use.

We need to add our new text view to TextApp’s window. To make sure

this window is visible, double-click the icon in the main MainMenu.xib

window that’s labeled Window (TextApp), and it will open as a blank

window on screen.

Drag a Text View object from the Library palette, and drop it in the

blank window. As you hover the new object over the window, you’ll

notice various blue guides appear to help you position it. Line up the

top-left corner with the blue lines a short distance inside the top left

of the window. Using the little manipulation points around the object,

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=27

APPLICATION RESOURCES 28

Figure 2.7: The text view inside the window

enlarge it so that its bottom-right corner lines up with the blue lines

that appear a short distance from that corner of the window. You should

end up with something resembling Figure 2.7.

Let’s test our new text view straightaway. Save the Interface Builder

file, switch back into Xcode, and click the Build & Run icon. When the

application launches, you’ll see that the main window now has a text

view inside it, eagerly awaiting your input. Notice how you can type

anything you like into the text view, select characters with the mouse,

drag and drop items, copy and paste to and from other applications,

and even change the style of the text using the Fonts palette available

in TextApp’s Format menu. How amazing is that? We still haven’t had

to write any code.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=28

CHAPTER SUMMARY 29

2.5 Chapter Summary

We’ve taken a quick peek into the fantastic world of building Mac OS X

applications using Apple’s Cocoa framework. Despite not actually writ-

ing a single line of code, we’ve made a reasonably functional application

with some impressive text-editing functionality just by working with the

resources inside a Cocoa application.

This is all well and good, but to produce applications that are useful and

functional in the real world (notice we have no undo capabilities or any

file-saving functionality in TextApp), we’re going to need to learn how to

write some code. We’ll be making changes to TextApp throughout the

next few chapters, using it to display various bits of useful output, and

modifying it to test various features of Mac software development as

you learn them.

The next chapter introduces a few basic programming principles, and

we’ll actually get to start coding. Feel free to experiment with the various

objects, palettes, and features provided by Interface Builder, but make

sure that you have a clean copy of TextApp to work with for the next

chapter.

Downloading the Code

You can download the Xcode projects and code used in this book from

the Pragmatic website page for this book:

Pragmatic Bookshelf.http://www.pragprog.com/titles/tibmac

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://www.pragprog.com/titles/tibmac
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=29

Chapter 3

All About Objects
In the previous chapter, we walked through the process of building a

very simple application. We didn’t actually write any code, and although

the application was impressive given its ease of construction, it still

lacks quite a bit of functionality. From now on, we’ll be learning basic

programming principles and starting to write code that lets us add the

functionality unique to the software we create.

3.1 The Application Construction Process

To build TextApp, we did most of our work in Interface Builder, modi-

fying a menu item and adding a text view to the window. When you’re

writing your own software, it is often a good idea to begin in the same

way—creating the basic interface first. This doesn’t mean that you have

to decide exactly where every button will go or make it look exactly as

it will when finished; it means thinking about, for example, how many

windows your application will need or the kind of thing each window

will display, along with the types of user interface items you will use.

For TextApp, we needed only a single window, with a single text-editing

control inside it. If we were instead writing an application to track finan-

cial information or expenses, we might choose to use multiple windows,

each displaying different kinds of financial information or allowing the

user to import transactions from their bank accounts.

Once the basic layout of the application is agreed, we can add the func-

tionality unique to our application, such as the code that controls what

the user interface items display, how they respond to user input, and

how they change the underlying data. In Mac applications, this code is

written inside objects.

Prepared exclusively for James Carlson

AN INTRODUCTION TO OBJECTS 31

3.2 An Introduction to Objects

You have probably heard the phrase object-oriented programming (or

OOP). When writing software for the Mac or the iPhone using Objective-

C and Cocoa, you will be working almost entirely with objects. If “work-

ing with objects” sounds overly abstract, don’t worry—we’ve already

done quite a lot with objects when building TextApp in the previous

chapter, and that wasn’t too bad, was it?

You may remember that in the main Interface Builder window (shown

in Figure 2.4, on page 25), there were several icons with names like

Main Menu and Window. We also dragged a Text View from a library

of similar interface items for use in the window. Each of these items

(Window, Text View, and so on) is an object.

We’re about to learn all about objects and how they interact, but before

we do, let’s take a moment to think about how things could be done in

a non-object-oriented way.

Non-Object-Oriented Programming

As we went through the application resources in the previous chapter,

we briefly examined two ways to draw an application’s user interface.

One way would be for every application to draw every pixel necessary

on screen to represent each portion of the user interface—menu bar,

menus, windows, and so on. When the application was launched, we

might end up with a sequence like this:

1. Draw a white rectangle at the top of the screen for a menu bar.

2. Draw the Apple icon for the left Apple menu.

3. Move along a few pixels, and draw the application menu.

4. Move along a few more pixels, and draw the File menu.

5. Move along a few more pixels, and draw the Edit menu.

6. Draw a big box on screen to represent the window outline.

7. Draw a small, solid gray box across the top of the window for the

title bar.

8. Draw three differently-colored circles for Close, Minimize, and

Zoom.

9. Draw the window’s title in the center of the bar.

10. Fill out the rest of the window with its content.

11. Wait for the user to do something.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=31

AN INTRODUCTION TO OBJECTS 32

We can break this list down into three sections. The first section covers

drawing the menu bar and menus, the second deals with the window

and its content, and the final section addresses waiting for the user to

do something:

1. Menu bar and menus

a) Draw a white rectangle at the top of the screen for a menu

bar.

b) Draw the Apple icon for the left Apple menu.

c) Move along a few pixels, and draw the application menu.

d) Move along a few more pixels, and draw the File menu.

e) Move along a few more pixels, and draw the Edit menu.

2. Window and content

a) Draw a big box on screen to represent the window outline.

b) Draw a small, solid gray box across the top of the window for

the title bar.

c) Draw three different-colored circles for Close, Minimize, and

Maximize.

d) Draw the window’s title in the center of the bar.

e) Fill out the rest of the window with its content.

3. Events

a) Wait for the user to do something.

Apart from anything else, this list is much easier to read. If we ever

were to write an application in this way, it would make sense to split

our code into these sections.

Now let’s consider what happens if we want to open a second window

on screen. All the code for the “Window and content” section would

have to be written out again but changed slightly so the new window

displays different content from the first. Repetition in software design is

always something best avoided, not least because if you need to change

the way windows are displayed, you would have to modify the code in

multiple places.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=32

AN INTRODUCTION TO OBJECTS 33

There’s actually quite a bit of repetition already in our three-part list.

Drawing each menu, for example, requires almost identical steps:

“Move along a few pixels, and draw the «menu name» menu.”

We might write out a piece of code that gets called multiple times to

display a given menu name in a given position. Something like this:

• Draw the «menu name» menu at «position».

We can do something similar to create our windows—write a piece of

code to display a window with a given title in a given position:

• Draw a window entitled «title» at «position».

This condensing process seems reasonable, but there is another way.

The Object-Oriented Approach

Object-oriented programming makes the assumption that the mecha-

nisms behind computer software can be defined in terms of objects.

Rather than the code for an application having hundreds of lines to

draw a menu bar, for example, we can instead simply create a “menu

bar object” and tell that object to “draw itself.”

That’s a fairly complicated system introduced in a two-sentence para-

graph, so let’s delve in a little more deeply. Building a Mac application

from an object-oriented perspective involves defining a whole network

of objects. Each object in that network has internal functionality (for

instance, drawing code) that can be triggered by another object.

Returning to the earlier window example, let’s consider defining a Win-

dow object. We could code into this object the functionality to draw the

background of the window along with its title bar—functionality that

would jump into action whenever the object was told to display itself on

screen. To display two windows on screen, we end up with something

that follows this outline:

1. Create the first Window object entitled «title» at «position».

2. Tell this Window object to display itself.

3. Create a second Window object entitled «title» at «position».

4. Tell this Window object to display itself.

To create a Window object, we need somehow to decide what makes up

such an object. Ideally, we would create a kind of blueprint so that we

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=33

AN INTRODUCTION TO OBJECTS 34

could create multiple objects with identical structures if needed—as in

when we want to create two or more windows.

A Real-World Analogy

There’s quite a bit of new terminology, so let’s look at an analogy from

the “real world” for a moment:

A property developer wants to build a series of houses along a street.

These houses will be absolutely identical in size, shape, and internal

layout but will have different-colored front doors. An architect is hired

to draw up a blueprint plan for a single house that the builders can use

to construct multiple, identical houses along the street. The property

developer then decides to build three of these houses, referring to them

for the moment as Houses A, B, and C.

When it comes time to build the houses, the developer instructs the

builders to do the following:

1. Build House A with a red door.

2. Build House B with a blue door.

3. Build House C with a yellow door.

The city officials visit the houses to make sure all is in order, before

assigning a street address to each one. The developer records this infor-

mation for each house:

1. The address of House A is 12 Wisteria Lane.

2. The address of House B is 13 Wisteria Lane.

3. The address of House C is 14 Wisteria Lane.

Finally, the developer requests the builders to affix numbers to each

front door representing the house number:

1. Fix the house number of House A to its front door.

2. Fix the house number of House B to its front door.

3. Fix the house number of House C to its front door.

Let’s think about this simplified house-building exercise from an object

perspective. The general house blueprint describes the floor plans and

measurements, and so on. Each house built from the blueprint has

two assignable values: the door color and the house address. In pro-

gramming terms, the blueprint has a large amount of fixed functionality

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=34

AN INTRODUCTION TO OBJECTS 35

and data, such as describing the house foundations, walls, and roof,

along with the two changeable attributes. We might define such a house

blueprint like this:

• Name: House

• Assignable attributes: doorColor, address

• Functionality: foundations, walls, roofing

In object-oriented programming, this blueprint is called a class descrip-

tion. All houses that are built from this class description are then

referred to as instances of the House class. This is important termi-

nology, and you need to make certain you understand the distinction

between a “class” and any “instances” of that class. So, in our real-

world example, we have our House class (the architectural blueprint for

any houses belonging to that class) and the instances—houses A, B,

and C.

The process of building a house would therefore be something like this:

1. Tell builders to create a new House instance with doorColor set to

“red.”

2. When building is finished, send out the city official to the house

for approval and request an address.

3. Set the address of the house instance as given by the city official.

4. Tell builders to go back to the house and add the house number

to the front door.

I mentioned earlier that object-oriented software is built from a network

of objects; let’s expand our example a little with some extra classes:

a PropertyDeveloper class, a Builder class, and a CityOfficial class. These

objects need to be able to communicate with each other; for example,

the developer needs to know when a house is finished so the city official

can be sent there.

Let’s look at the class description for the PropertyDeveloper class as an

example:

• Class name: PropertyDeveloper

• Assignable attributes: name

• Responds to messages: houseHasBeenBuilt, houseHasBeenApprovedWith-

AnAddress, numbersHaveBeenFixedToDoor

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=35

AN INTRODUCTION TO OBJECTS 36

Here’s the Builder class description:

• Class name: Builder

• Assignable attributes: name

• Responds to messages: buildHouse, fixNumberToDoor

And finally, here’s the CityOfficial class description:

• Class name: CityOfficial

• Assignable attributes: name

• Responds to messages: approveHouseAndAssignAddress

If we make up a bit of pseudo-code, we can see that all it takes to

start the process is for the developer to create a house object and tell a

builder to construct it:

buildANewHouse

{

create a new house instance

set the door color to "red"

find builder with name "Acme House Construction Inc"

tell builder to 'buildHouse'

}

At this point, the builder gets to work and starts putting up the house.

When the house is finished, the builder calls the developer object, send-

ing the message houseHasBeenBuilt. When it receives this message, the

developer does the following:

houseHasBeenBuilt

{

find friendly city official

tell city official to 'approveHouseAndAssignAddress'

}

The city official approves the house, assigns an address, then calls

the developer object back with the message houseHasBeenApprovedWith-

AnAddress, at which point the developer does this:

houseHasBeenApprovedWithAnAddress

{

set address of house as given by official

tell builder to 'fixNumberToDoor'

}

The builders add the numbers to the door and let the developer know,

confirming that numbersHaveBeenFixedToDoor, at which point the devel-

oper knows the house is finished and ready to sell.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=36

AN INTRODUCTION TO OBJECTS 37

numbersHaveBeenFixedToDoor

{

tell the world that the house is ready to buy

}

One of the many advantages to this approach is that we can factor out

all the different parts of the process. In the real world, the property

developer doesn’t need to know the internal processes necessary for a

city official to approve a house and give it an address. And, in this pseu-

docode, the PropertyDeveloper object has no knowledge of what happens

when the CityOfficial is told to approveHouseAndAssignAddress. All either

object knows is what messages can be sent between them.

If we were to try to write these objects in real code, we could easily let

someone else write code for the CityOfficial class; we don’t care what’s

happening behind the scenes, as long as a CityOfficial object responds

to the message approveHouseAndAssignAddress with a valid address.

Back to the Programming World

Now let’s translate our knowledge of classes and instances back to the

world of Mac programming, returning to the window example intro-

duced earlier in this chapter. The class description for a Window object

looks something like this:

• Class name: Window

• Assignable attributes: title, backgroundColor, positionOnScreen

• Responds to messages: drawOnScreen

To create and display a window on screen, then, we could use the fol-

lowing pseudocode in our application:

displayAWindow

{

create a new window object

set its window title to "My Beautiful Window"

set its background color to "sea green"

set its shape to be a rectangle

500 pixels wide

300 pixels high

centered on screen

tell the window to 'drawOnScreen'

}

Because it’s working with a window object, the application doesn’t need

to know anything about how a window actually draws itself on the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=37

OBJECT INHERITANCE 38

screen. All the application cares about is that it can create a win-

dow object, set various attributes to describe the window, and send the

object a drawOnScreen message. Similarly, the window needs to know

nothing about why it has a particular title or background color. It sim-

ply needs to know how to draw itself when it’s instructed to do so.

Remember that back in our TextApp application, we worked with a Win-

dow object that already existed in the Interface Builder file. We could

have created that window by writing code instead, replacing the win-

dow instance we were given. Creating an object instance in Interface

Builder is very much like creating an object in code, but instead of set-

ting attributes on the object by coding them, we can use the Interface

Builder Inspector palettes to edit them “visually.”

3.3 Object Inheritance

We’re very close to actually making our own objects, but there’s one

quite important point we need to cover—objects can inherit character-

istics from other objects.

Let’s return to our housing system for a moment. The property devel-

oper decides that it also wants to build offices, shops, and apartment

blocks. Obviously, these are all different types of Buildings, and all share

a number of similarities with our current House object. Each building

has a front door and address, for example, but obviously they also differ

in many ways, too.

If we defined new classes for a Shop and an ApartmentBlock in the same

way that we defined our House class, there would be a large amount

of duplicated general building information appearing in each class. To

avoid this duplication, we can define a class description for a generic

Building object and let the House class and other building types inherit

those base characteristics.

So, let’s define a class description for a Building. It’s actually just the old

House class description with a new name:

• Class name: Building

• Assignable attributes: doorColor, address

• Responds to messages: accessFoundationSpecifications, accessWall-

Specifications, accessRoofSpecifications

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=38

OBJECT INHERITANCE 39

We can now redefine our House class as simply being a subclass of the

Building class; put another way, the House class inherits from the Building

class:

• Class name: House

• Inherits from: Building

The House class doesn’t need to add any attributes of its own in our

simplified house-building world, so we can just leave the class descrip-

tion at that. Because the attributes are inherited, any house instance

also has a door color and address.

When one class inherits from another class, it not only inherits all the

attributes in the parent class but also inherits all the messaging func-

tionality. Any instances of our House class, therefore, will respond to the

accessFoundationSpecifications messages along with all the other func-

tionality defined by the Building class.

Given what we’ve done so far, you shouldn’t be surprised to discover

that we can define the ApartmentBlock class like this:

• Class name: ApartmentBlock

• Inherits from: Building

• Assignable attributes: numberOfApartments

• Responds to messages: accessIndividualApartmentSpecifications

Here we’ve added an attribute for the number of apartments within the

apartment block and said that this new object will respond to a new

message requesting the specifications of an individual apartment.

A problem arises, however, since the general specifications for an apart-

ment building are going to be different from those of a house. We need

some way to make the specification access methods return different

information for each class.

Overriding Inherited Behavior

When one class inherits functionality from another class (known as the

superclass), the new class has the option to provide code to respond

to the same messages as the superclass. This is known as overrid-

ing the inherited behavior. As a result, it is possible to provide code

in the House class that supplies house-specific information about the

walls, for example. Similarly, the ApartmentBlock class needs to provide

apartment-specific information about walls.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=39

WRITING CODE FOR OUR OWN OBJECTS 40

When a class overrides behavior, it replaces the superclass’s behavior

entirely. At the moment, the House and ApartmentBlock classes have to

provide complete responses to the requests for specifications. But, a

wall is a wall—there are definitely going to be a few bits of information

common across all the different types of buildings. At the very least,

each needs to provide the requested information in some kind of uni-

form way. If we consider pseudocode for the House and ApartmentBlock

responses to the accessFoundationSpecifications messages, we might get

something like this:

Code for House class:

accessFoundationSpecifications

{

generic

specification layout and design

code here

generic

foundation

code here

house-specific code here

}

Code for ApartmentBlock class:

accessFoundationSpecifications

{

generic

specification layout and design

code here

generic

foundation

code here

apartment-block-specific code here

}

Rather than having this duplicated generic code appear in each Build-

ing subclass, it would be much better to keep the generic code in the

superclass so that it’s defined only once but can still be used by each

subclass. Thankfully, we can do this quite simply, as we’ll soon see.

3.4 Writing Code for Our Own Objects

Now that we have a basic understanding of objects, let’s start writing

our own. We’re going to write a very simple object whose only job in life

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=40

WRITING CODE FOR OUR OWN OBJECTS 41

is to let us know when it is created. Along the way, we’ll be learning

about the Objective-C programming language and its syntax.

I promised in the previous chapter that we wouldn’t spend too much

time talking about programming history, so we won’t. It is just worth

knowing that when we’re writing code, we need to write in a very for-

mulaic language that the computer can understand. This language pro-

vides rules for writing instructions, performing calculations, and so on.

We can choose from a number of different languages, but the most

common for writing code on the Mac platform is called Objective-C. It

is based on one of the most famous and popular programming lan-

guages of all, called C, with some additional object and messaging fea-

tures added by Apple (which is why it has the Objective part). We’ll be

learning the Objective-C language throughout the rest of this book.

Objects and Objective-C

Let’s jump straight in and write a class description for our new object

now. If you don’t have Xcode running, launch it, and open the TextApp

project from the previous chapter.

When the project window opens, look at the Groups & Files structure

on the left. If you need to, click the triangle to the left of each item to

expand it so that you can see the Classes group. This is where we’ll add

our new class description.

Right-click (or C-click) the Classes group, and choose Add > New File....

The New File window should appear, looking like Figure 3.1, on the next

page.

Again, we’ll be using Xcode’s templates to save us from having to write

basic contents in each file. On the left of this window, click Cocoa Class,

and find the template called Objective-C class. Make sure this template

is selected, and click the Next button. You’ll be greeted by a window

looking like Figure 3.2, on page 43.

Change the filename to NotifyingClass.m, and make sure the “Also create

‘NotifyingClass.h’ ” checkbox is selected. When you click Finish, you

should find that Xcode has created two files, listed under the Classes

group in your project window. The first of these, NotifyingClass.h, should

be showing in the source code panel of the project window, as shown

in Figure 3.3, on page 44.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=41
v@v
Text Box
http://www.wowebook.com

WRITING CODE FOR OUR OWN OBJECTS 42

Figure 3.1: The New File window in Xcode

Objective-C File Types for a Class

It is perfectly possible to define a class using just a single file,1 but it

generally makes more sense to split the class into two separate files.

Remember the class descriptions we used earlier in the chapter? These

are used to determine the attributes belonging to a class and to specify

which messages the class can respond to. This class description gen-

erally goes inside a file with an .h extension, known as a header file.

The other file, with an .m extension, contains the lines of code, or meth-

ods, that are called when messages are sent to a class. Don’t worry if

this isn’t immediately clear—it will become easier to understand as we

begin to create our class.

We’re going to be writing a very simple class that just notifies us when

it is created and destroyed. It doesn’t need to maintain any attributes

1. Or even to define multiple classes within one single file.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=42

WRITING CODE FOR OUR OWN OBJECTS 43

Figure 3.2: The New File pane in Xcode asking for a filename

at all, so if we follow the format from before, our class description might

look something like the following:

• Class name: NotifyingClass

• Assignable Attributes: none

• Responds to messages: createObject

Our notifying class is a very simple class that doesn’t do very much,

so it might seem like we don’t need to inherit any behavior from any

“superclass.” In fact, this isn’t the case.

You’ll remember in the previous chapter that we talked about using a

framework to provide common functionality without having to duplicate

code, and that on the Mac we use the Cocoa framework, provided by

Apple. The menus and window displayed in our TextApp application

all come from classes in the Cocoa framework, and in order for this

framework to function, it expects to find certain behavior common to

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=43

WRITING CODE FOR OUR OWN OBJECTS 44

Figure 3.3: NotifiyingClass.h visible in the project window

all objects it encounters; this behavior is provided for us by a base

object class that is called NSObject.

As we explore the classes provided by the framework, we’ll see that

the majority of the classes have the characters NS at the start of their

names. To avoid conflicts of class names (object is a pretty common

word, for example), it’s common practice to prefix names with char-

acters that are likely to make them unique. We’ll discuss this more

later, but for now, don’t worry that our own NotifyingClass doesn’t have a

prefix.2

Creating a new class that inherits from another is called subclass-

ing. By subclassing NSObject, we inherit a number of “memory man-

agement” features. We will be talking in great depth about memory

2. If you’re wondering why Apple has chosen the letters NS for its framework classes,

they actually stand for “NeXT Step,” a computer platform that preceded Mac OS X and

from which quite a lot of functionality was ported.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=44

WRITING CODE FOR OUR OWN OBJECTS 45

The NSApplication Object

You might remember that when we took a quick peek inside
the main.m file in the previous chapter, there was a single line of
code inside those curly braces:

{
return NSApplicationMain(argc, (const char**) argv);

}

Notice the NS in there, on the front of the word NSApplication-

Main? This code actually creates an instance of an application
object that is defined for us by the Cocoa framework. As you
might have guessed, the name of the class for this application
object is NSApplication. When this application object is created,
a whole heap of functionality leaps into action, as defined by
the Cocoa NSApplication class. This was why we ended up with
so much functionality apparently taking place in a single line of
code.

management later in the book; for now, let’s look at a few basic mes-

sages that can be sent to an NSObject instance related to its creation

and destruction.

Object Initialization Messages

When an instance of a class is created in Objective-C, it is immediately

sent a message to initialize itself. This message is helpfully called init

and is generally used to set initial values (or default values for any

instances of the class). In the earlier house examples, we might set

a default door color and address for the house in case the property

developer forgets to set them later.

Setting Up Our Class Description

We now need to revise our NotifyingClass class description in light of what

we’ve learned about NSObject. The class needs to inherit from NSObject

and will be responding to one message—init:

• Class name: NotifyingClass

• Inherits from: NSObject

• Assignable attributes: none

• Responds to messages: init

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=45

WRITING CODE FOR OUR OWN OBJECTS 46

Make sure that you are looking at the NotifyingClass.h file. It should look

like this:

Download AllAboutObjects/TextApp/NotifyingClass.h

//

// NotifyingClass.h

// TextApp

//

// Created by Tim Isted on 08/09/2009.

// Copyright 2009 __MyCompanyName__. All rights reserved.

//

#import <Cocoa/Cocoa.h>

@interface NotifyingClass : NSObject {

}

@end

As I mentioned in the previous chapter, the green lines with the // char-

acters at the start are comments and are ignored. Again, these lines

simply state the name of the file, its containing project, and informa-

tion about the file’s creator. Some people prefer to remove these lines

altogether—you may find them helpful for now to be sure you’re editing

the right file at any particular time.

Under the comment lines, there’s a line beginning with #import, and

then we get a section starting with the keyword @interface and end-

ing, pretty unsurprisingly, with the keyword @end. These two keywords

should be pink.

This portion of the file is where our class description goes. In the Objec-

tive-C language, we refer to a class having a public interface, describing

the messages that can be sent to that class. The @interface line looks

like this:

@interface NotifyingClass : NSObject {

This line states that this is the interface for a class called NotifyingClass.

Putting a colon after the name of the class specifies that this class

should inherit from another class, specified in this case as NSObject.

Because it’s such a common requirement, the Xcode file templates for

an Objective-C class are set up to inherit from the Cocoa framework’s

base class.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://media.pragprog.com/titles/tibmac/code/AllAboutObjects/TextApp/NotifyingClass.h
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=46

WRITING CODE FOR OUR OWN OBJECTS 47

Curly braces are used in Objective-C to indicate blocks of code. In

this particular @interface section, they are used to specify attributes

that belong to a class. In our house example, we would put informa-

tion between these curly braces to indicate that the House class has

attributes for a door color and address. Since our NotifyingClass doesn’t

have any of its own attributes, we can leave this part blank.

The last thing left to include from our class description is the list of mes-

sages the class can receive. These go between the closing curly brace

and the final @end keyword.

Looking back at our class description, we see that we will be writing

code to respond to the init message. From this, we might assume that

we need to list this now. In fact, we originally decided to write code

for this message because it is called automatically when an instance

of NSObject is created. The interface file for the NSObject class already

lists this message, so we don’t really need to do it again here.

If you’re feeling adventurous, choose the File > Open Quickly... menu

item in Xcode, and type “NSObject.h” to find its interface file. You’ll

then be able to open this file by clicking the Open button. Don’t be too

intimidated by its contents—if you scroll down until you find the green

Base class comment, you’ll see the @interface declaration for the NSObject

class, as shown in Figure 3.4, on the following page.

We’ll be returning to this file in a little while, but for now, click the

NotifyingClass.h file in the Groups & Files list to go back to the interface

file for our own rather simpler class.

The Syntax to Define an Interface

Class descriptions written in the Objective-C language always follow

this pattern, or syntax:

@interface «nameOfClass» : «nameOfClassToInheritFrom» {

«attribute information»

}

«list of messages responded to»

@end

Because we’re only going to be writing code to respond to the init mes-

sage and the init message is already listed in the interface of NSObject,

we don’t need to make any changes to our NotifyingClass.h file at all.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=47

WRITING CODE FOR OUR OWN OBJECTS 48

Figure 3.4: The NSObject.h interface file

Creating an Instance of Our NotifyingClass

Before we go and put in our notifying behavior, let’s test our object

quickly by creating an instance of it.

Given our knowledge so far, the easiest way for us to create the instance

is by using Interface Builder. In the same way that the Window, Menu,

and Text View objects were created by our work in MainMenu.xib, we can

instantiate a new NotifyingClass object “visually.”

Open MainMenu.xib in Interface Builder again by double-clicking the file

in the Resources group in the Groups & Files list.

Locate Interface Builder’s Library palette, and find the Object icon. It

looks like a blue cube, as shown in Figure 3.5, on the next page.

Drag this icon to the main MainMenu.xib window (that’s the one with the

Main Menu, Application, and other objects in it), and drop it after the

other objects. At the moment, having this “Object” in our file will gen-

erate an instance of the standard NSObject base class when the appli-

cation is run. We want to modify it so that our own NotifyingClass class

gets instantiated instead.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=48

WRITING CODE FOR OUR OWN OBJECTS 49

Figure 3.5: The Object icon in the Library palette

Choose Tools > Identity Inspector, and you’ll see that the first option

in this palette is Class. It currently shows NSObject in the adjoining

text field. Change this field to say “NotifyingClass.” You should find

that as you start typing, Interface Builder guesses the rest of the class

name. There is complex integration between Apple’s developer applica-

tions such that when you create and define an object in Xcode, Interface

Builder automatically knows about it.

At this point, we’ve created an instance of our object in MainMenu.xib—

this instance will be created when the application is run, so let’s try to

run the application now.

Save the MainMenu.xib file in Interface Builder, return to Xcode, and

click the Build & Run button.

Unless you accidentally typed something in the NotifyingClass.h file, you

should find that TextApp launches exactly as it did before—absolutely

nothing appears to have changed. For now, you’ll just have to have faith

that there really is an instance of our NotifyingClass existing between

application launch and application exit.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=49

WRITING CODE FOR OUR OWN OBJECTS 50

Figure 3.6: The Identity inspector for our NotifyingClass

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=50

WRITING CODE FOR OUR OWN OBJECTS 51

Adding Our Notifying Behavior

Now we’re finally going to get our teeth into some code. We’ll be writing

a method—methods are the blocks of code that get executed when a

particular message is received.

Open the NotifyingClass.m file in a new Xcode window by double-clicking

it in the Groups & Files list. You should see a file with the usual descrip-

tive comments at the top, followed by this code:

#import "NotifyingClass.h"

@implementation NotifyingClass

@end

This .m file contains the implementation for the object. The method

we’re going to write will go inside the @implementation section of this

file, before the final @end.

The method we need to write should tell us when the object is first

initialized. It is the method called in response to the init message, cur-

rently defined by the NSObject base class implementation. So that our

code is called instead, we need to make sure the name and relevant

information on this message is exactly the same as that from the inter-

face for NSObject. So, select File > Open Quickly... from Xcode’s menu

bar, and again type in “NSObject”—you should see the NSObject header

file (NSObject.h) that we looked at before. Open this file once more, and

scroll down the contents until you find the relevant lines inside the

NSObject Base Object interface that define the messages. One of these

lines should be the following:

- (id)init;

Copy this line to the clipboard, and go back to the NotifyingClass.m file.

Paste the line in between the @implementation and @end keywords.

Don’t worry for now about the “- (id)” bit before init—we’ll be talking

more about what this means in the next chapter. Do, however, notice

that there is a semicolon (;) at the end of this line.

The Objective-C programming language has punctuation just like natu-

ral languages do. A semicolon is used to indicate the end of a particular

programming statement, like a period or “full stop” does in English. In

the @interface section, this line was used to show that NSObject imple-

ments an init method. That was as much information as was needed in

an @interface, so a semicolon is included to “end the statement.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=51

WRITING CODE FOR OUR OWN OBJECTS 52

Whitespace in Objective-C

Some programming languages use “new lines” to denote ends
of statements. For the most part, Objective-C doesn’t care
whether you put one statement all on one line or split it over
multiple lines. It uses the “punctuation” such as semicolons and
braces to indicate where statements begin and end.

We could put the opening curly brace on the end of the - (id)init

line like this:

- (id)init {
}

or on a new line like this:

- (id)init
{
}

and it wouldn’t make any difference. You’ll see both ways of
defining methods used throughout the programming commu-
nity. You may, for example, have noticed that the opening curly
brace used in the template-generated NotifyingClass.h interface
is on the same line as the @interface keyword.

In our implementation, however, we need to specify the lines of code for

the init method. We’ll be providing more information here than just the

name of the method, so the convention is to remove the semicolon at

the end of the line.3

As I said earlier, curly braces are used to denote blocks of code. In our

implementation file, we need to use them to indicate the code to be run

for this particular method. So, on the line immediately underneath our

newly pasted - (id)init line, put in an opening and a closing curly brace

like this:

- (id)init

{

}

Code blocks using curly braces are the exception to the rule of needing

semicolons. In general, where you have something defining a block of

3. It’s also perfectly acceptable to leave the semicolon in method implementations—some

people like to do this because it makes it easier simply to copy and paste the method

signatures from the interface file to the implementation file.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=52

WRITING CODE FOR OUR OWN OBJECTS 53

code in curly braces like this init method, the closing curly brace is

enough to confirm the end of the “statement,” so a semicolon isn’t used.

Introducing NSLog

Since the purpose of our new object is to let us know when it is created,

we need to decide on a suitable way for it to notify us. An incredibly

useful and very simple way is to log a message to the console. This may

sound a little scary, but it’s actually quite straightforward. In Xcode,

open the Debugger Console by choosing the Run > Console menu item.

You will probably see a series of message looking like this:

Loading program into debugger...

Program loaded.

run

[Switching to process 3618]

Running...

Debugger stopped.

Program exited with status value:0.

These messages show when TextApp was loaded and run and when it

stopped and exited (that is, quit).

To write a message to this log, we can use NSLog(). This isn’t actually

an object, despite having the NS initials, but instead is what’s called a

function. We’ll talk more about these later in the book, but we’ll use this

particular function right now. Change your NotifyingClass.m implemen-

tation by adding the following line:

@implementation NotifyingClass

- (id)init

{

NSLog(@"Hello World! I'm a new NotifyingClass instance!");

}

@end

This line will log a friendly message to the console—don’t forget to

include the final semicolon to indicate that this is the end of the logging

statement.

One Final Thing

For this to work, we need to add one final line of code at the end of

this method; we’ll find out exactly what this line does in a couple of

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=53

WRITING CODE FOR OUR OWN OBJECTS 54

chapters’ time. After the NSLog call, add the following line of code (again,

don’t forget the ending semicolon):

- (id)init

{

NSLog(@"Hello World! I'm a new NotifyingClass instance!");

return self;

}

Make sure that the Debugger Console window is still visible, and click

Build & Run.

When the application is run, you should find that our notifying message

appears in the log:

Running...

2009-09-08 17:48:25.003 TextApp[3642:a0f] Hello World!

I'm a new NotifyingClass instance!

At the moment, we’re completely overriding the init method provided by

the NSObject base class in order to make this demonstration as simple

as possible. In reality, you will need to write a lot more into this method

if you override it—for a start, you’ll need to be sure to call the original,

overridden init behavior so that the inherited NSObject base is initialized

properly. We’ll revisit this method in our chapter on memory manage-

ment. For now, don’t worry about it, other than noticing that this is the

only time you’ll have an init method that looks as short and simple as

the one in NotifyingClass.m!

Creating Another Instance

Just to make absolutely certain that we’re happy about classes and

instances, let’s add a second instance of our NotifyingClass to the appli-

cation. You might like to think about what you expect to see happen

when the application is launched...

Quit the TextApp application if it is still running. Go back into Interface

Builder, and drag out another base Object (that blue cube icon) from

the Library palette. Again, go to the Identity inspector, and change its

class to “NotifyingClass,” just like we did for the other instance created.

Save the file, and return to Xcode. Make sure the Debugger Console is

still visible, and click the Build & Run button to launch the application.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=54

CHAPTER SUMMARY 55

Hopefully, you predicted that you would see a second “Hello” message

in the Console log—sure enough, you now should be looking at some-

thing like the following:

Running...

2009-09-08 17:49:05.963 TextApp[3661:a0f] Hello World!

I'm a new NotifyingClass instance!

2009-09-08 17:49:05.965 TextApp[3661:a0f] Hello World!

I'm a new NotifyingClass instance!

We’ve now instantiated two separate NotifyingClass instances, both of

which log their message to the console when they are created at appli-

cation launch.

3.5 Chapter Summary

Over the course of this chapter, we’ve looked at an overview of object-

oriented programming. Once the basic principles were laid out, we cre-

ated our own object class description, set up an instance of this class

using Interface Builder, and implemented some very basic functional-

ity for the object by writing code that is called in response to the init

message.

In the next chapter, we’ll be looking at how objects interact by sending

messages to each other.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=55

Chapter 4

Object Messaging
Now that you have an understanding of objects, it’s time to look a lit-

tle further into how messages can be sent between them. Our TextApp

application is built using a number of objects, including the Notifying-

Class object we created in the previous chapter, but they aren’t doing

very much once the application has loaded. To introduce new function-

ality to the application, we need a way to send messages between our

objects.

Currently, our NotifyingClass object responds to the init message sent

automatically when the object is created. In this chapter, we’re going to

change TextApp by adding a button to the interface. When this button

is clicked, it will send a message to our NotifyingClass to do something. In

the previous chapter, we used NSLog() to log a message to the debugging

console in Xcode. This time, we’ll have our NotifyingClass communicate

with the text view inside TextApp to display the message.

4.1 Defining a New Method

You already know that we use the NotifyingClass.h header file to define

an @interface for our NotifyingClass object. Our current class description

is very basic and shows only that our class inherits from NSObject.

We’re going to define a new method called displaySomeText that will be

called when a button is clicked in the application’s interface. Remem-

ber how we didn’t put anything in our class description to inform the

world that our object would respond to the init message because that

method was already defined in the NSObject class description? By con-

trast, displaySomeText is a new method, not provided by NSObject, so we

will need to list it in our class description.

Prepared exclusively for James Carlson

DEFINING A NEW METHOD 57

Open the NotifyingClass.h file in Xcode. If you glance back to Section 3.4,

The Syntax to Define an Interface, on page 47, you’ll see that the «list of

messages responded to» goes after the closing curly brace and before the

@end keyword. This is where we need to define the new method.

To make sure we get the correct signature for a basic message, let’s

take another look at some of Apple’s own Cocoa method signatures.

Once again, use Xcode’s Open Quickly... command (B-D- D) to open

the NSObject.h header file, and scroll down to find the @interface for

NSObject; some of the signatures you’ll find look like this:

+ (void)load;

+ (void)initialize;

- (id)init;

+ (id)new;

+ (id)allocWithZone:(NSZone *)zone;

+ (id)alloc;

- (void)dealloc;

You should recognize that we copied a line from here when we imple-

mented a method to respond to the init message in the previous chapter.

Notice how each message signature listed conforms to a similar format:

- (id) init;

+ (id) allocWithZone: (NSZone *)zone;

«+ or -» («word») «messageName» «some optional bits»;

The «+ or -» at the start of the signature describes whether the message

can be called on an instance of the class or on the class itself. We’ll be

seeing more about what are known as class methods later, but for now

we just want to define the behavior of our instance when it receives the

displaySomeText message. This requires us to use a minus (-) sign, just

like we saw before on init.

The «word» in brackets before the message name specifies whether the

method will return some information when it’s called. For our theo-

retical House class from the previous chapter, for example, a house

instance would be expected to respond to the accessFoundationSpecifica-

tions message by sending back the requested information. Our Notifying-

Class doesn’t need to respond with any information when it’s called—it

just needs to do something in response to the message.

Glancing at the code extract from NSObject.h earlier, notice how each of

those signatures listed uses either void or id. We’ll be talking about

id later in the book, but, given the everyday definition of “void,” it

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=57

DEFINING A NEW METHOD 58

shouldn’t come as much of a surprise that void is used to specify that

a method returns nothing.

So, our method signature might look like the following:

- (void)displaySomeText;

This specifies that an instance of NotifyingClass does something in re-

sponse to the displaySomeText message and that it doesn’t provide any

information in return. Make your NotifyingClass.h file look like this:

#import <Cocoa/Cocoa.h>

@interface NotifyingClass : NSObject {

}

- (void)displaySomeText;

@end

Implementing Our New Method

Next, we’re going to write some code to be executed in response to the

displaySomeText message. Open NotifyingClass.m, and remove all the code

for the existing init method, leaving behind the @implementation and @end

keywords.

To make sure we get our method correct, let’s copy its signature from

our header file. As a quick shortcut in Xcode, you can switch between

header and implementation files for a class by using the little Go to

Counterpart icon (shown in Figure 4.1, on the next page) or by using

the keyboard shortcut E-D-↑.

Copy the method signature to the pasteboard:

- (void)displaySomeText;

Switch back to the implementation file, and paste the copied method

between @implementation and @end. Remember that when we’re imple-

menting a method, we usually remove the semicolon? Do that now,

and add opening and closing curly braces so that you end up with the

method looking like this:

@implementation NotifyingClass

- (void)displaySomeText

{

}

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=58

THE TARGET -ACTION MECHANISM 59

Figure 4.1: The Go to Counterpart quick-switch icon in Xcode

For now, we’ll just output a message to Xcode’s debugger console to let

us know when this method is called, so add the following line of code:

- (void)displaySomeText

{

NSLog(@"displaySomeText just got called!");

}

If you Build & Run at this point, you’ll find that TextApp launches fine,

but no friendly messages appear in the debugger console. We removed

the code responding to the init message earlier, and at the moment our

new displaySomeText method never gets called. All we’ve done so far is

define the code that would be called if the displaySomeText message was

received, but it never is.

4.2 The Target-Action Mechanism

Our aim is to send the displaySomeText message to our NotifyingClass

object when the user clicks a button in our TextApp application. The

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=59

THE TARGET -ACTION MECHANISM 60

Cocoa framework provides us with a nifty little technique to help with

this, called target-action.

Certain objects offered by the Cocoa framework allow you to provide

them with a target object and specify an action—a message to be sent

to that object. One of the objects supporting such a mechanism is an

NSButton. This class is used to create a number of different types of Mac

OS X buttons; its default style is the one we’ll be using shortly when

we add a button to TextApp’s user interface. Once we’ve created an

NSButton instance in Interface Builder, we can tell the button about our

NotifyingClass instance and specify that the relevant action is to call its

displaySomeText method when the user clicks the button.

At this point we need to make a couple of small changes to our existing

method definition for displaySomeText so we can use it with Interface

Builder and target-action. For Cocoa desktop applications on the Mac,

a method to be called in a target-action situation needs to conform to

a specific signature format. The method needs to be able to accept a

single argument on it.

We’ll discuss arguments in Chapter 6, Passing Information Around, on

page 97, but if you take a quick look back now to earlier in this chapter

at the format for a message signature, you’ll see that there are “optional

bits” that can be put on the end of the signature style we’ve seen so far,

as in one example from NSObject.h:

+ (id)allocWithZone:(NSZone *)zone;

If a message name has a colon on the end of it (that’s : rather than

the end-of-line semicolon ;), it means that it accepts one or more argu-

ments. An argument is used to pass some information along with a

message. Back in our housing example, when the property developer

object sends a message to the builder object to buildHouse:, it needs to

specify which house to build. This would be offered as an argument,

like this:

- (void)buildHouse:(House *)houseToBeBuilt;

After the colon comes something in parentheses with an asterisk—

(House *)—that specifies what kind of information is being provided,

followed by a name to be assigned to the provided information. Don’t

worry if this isn’t immediately clear in your head; we’ll be covering vari-

ous things in the next chapter that will help you to understand it. We’ll

continue using it in this chapter, though, so at this point, just follow

along with the syntax.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=60

THE TARGET -ACTION MECHANISM 61

+ (id) allocWithZone:(NSZone *) zone;

- (void) buildHouse: (House *) houseToBeBuilt;

± («type expected in return»)methodName:(«type of info provided»)«name for info»;

The buildHouse: method (notice we’re putting the colon on the end of it

to indicate it accepts an argument) expects to receive a House object

when it’s called, identifying the particular house to be built. Similarly,

the allocWithZone: method expects an NSZone object to identify the zone

to be used.

Returning to target-action, I stated a little earlier that a method needs

to accept a single argument to work for target-action. This argument

happens to be used to identify the object that sent the message in the

first place. When we connect a button in TextApp to target our Notify-

ingClass instance, the button would send the message and specify that

it was the sender. The signature therefore needs to look something like

this:

- (void)displaySomeText:(id)sender;

The id keyword here is used to specify that some kind of object will be

provided as the sender. Again, we’ll be talking more about id later.

There’s just one last thing we need to change slightly on this method

declaration, since we’re going to be using Interface Builder to connect

the target and action on a new NSButton object.

Communication Between Xcode and Interface Builder

Remember how we created an object instance in Interface Builder (that

blue cube thing) in the previous chapter and set its class to Notifying-

Class in the inspector? When we did that, Interface Builder managed to

guess the rest of the class name after we’d typed only a few characters.

This is because Interface Builder and Xcode “talk to each other” behind

the scenes. Some things happen automatically (like IB having knowl-

edge of classes for which you’ve provided class descriptions in an Xcode

project), whereas other things happen when you use specific keywords

in your code files.

This is one case where we need to use such a keyword. To specify that

our method is an action that can be connected to a control object (like

an NSButton) in Interface Builder, we need to change the void keyword

into IBAction:

- (IBAction)displaySomeText:(id)sender;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=61

THE TARGET -ACTION MECHANISM 62

As far as the code compiler is concerned, IBAction is synonymous with

void. This keyword simply alerts Interface Builder that there’s an action

available in a class description.

It’s time to modify our code for this purpose. First, we need to change

the interface for our NotifyingClass object, so open NotifyingClass.h in X-

code. Change it so that the method follows our new action signature:

@interface NotifyingClass : NSObject {

}

- (IBAction)displaySomeText:(id)sender;

@end

Next, we need to change our implementation method signature in Noti-

fyingClass.m, so switch to this file, and make it look like this:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

NSLog(@"displaySomeText just got called!");

}

@end

Notice that we don’t need to do anything with the sender attribute—we

can quite safely ignore it altogether. And, since IBAction is just a keyword

meaning void as far as the compiler is concerned, we don’t have to worry

about giving any information back at the end of the method.

Make sure you save all your modifications before proceeding. If you

hold down the E key on your keyboard and go to Xcode’s File menu,

you’ll see that a few of the items have changed, and there is now a

Save All... command (with keyboard shortcut E-D- S .) If there are any

unsaved changes in any of the project’s files, use this command to save

them all at once.

Connecting the Action in Interface Builder

Now that we’ve defined our NotifyingClass class instances to respond to

an action message for displaySomeText, we’ll use Interface Builder to con-

nect things visually.

Let’s start by adding a button to our existing TextApp window. Open

MainMenu.xib, and make sure TextApp’s Window object with the text

view is visible.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=62

THE TARGET -ACTION MECHANISM 63

Figure 4.2: The new push button in our Text App main window

You will need to make that text view a little smaller by dragging up

the bottom handle so there’s room for a button underneath it. Next,

find a standard Push Button object in the Library palette, and drag one

out onto the window. You should end up with something resembling

Figure 4.2.

Next, remove one of the existing NotifyingClass instances from the Main-

Menu.xib file by selecting it and pressing the J key.

We’re now ready to connect our button to the remaining NotifyingClass

instance, and Interface Builder provides a great interface for doing

this. Bring the MainMenu.xib document window to the front in Interface

Builder, but keep the window with the button in it visible on screen.

Right-click (or C-click) the Notifying Class blue cube. You’ll find that a

black mini-window pops up (known as a heads-up display, or HUD), as

shown in Figure 4.3, on the following page.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=63

SENDING MESSAGES FROM OUR CODE 64

Figure 4.3: The connections HUD for our NotifyingClass instance

If everything has gone to plan, you should find that this HUD win-

dow shows one option under the heading “Received Actions”—our dis-

playSomeText: action message. To the right of this line is a little circle;

click and drag from the circle, and you’ll find a line extends out and fol-

lows your movements on screen. Drag down to our new Button object,

and you’ll find IB highlights and identifies the button. Release your

mouse, and you should find that the HUD display now shows a con-

nection to our Push Button, as in Figure 4.4, on the next page.

If you now bring the application’s window to the front, click the push

button to select it, and then right-click (or C-click) on it, you’ll find

that another HUD window will appear, showing a connection to our

NotifyingClass object’s action under the “Sent Actions” heading, as in

Figure 4.5, on page 66.

It really is as simple as that! Interface Builder has now set up our but-

ton with a reference to the notifying object and has set up the requested

action for us, all with just a simple click-and-drag motion.

Save your file in Interface Builder, and switch back to Xcode to Build

& Run. TextApp will launch, and when you click the button in the

window, you’ll see a message appear each time in the Xcode console

window. Woo-hoo!

4.3 Sending Messages from Our Code

The target-action mechanism we explored in the previous section is

awesome for connecting up buttons and receiving messages in certain

situations, but we need to send messages to objects from our code too.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=64

SENDING MESSAGES FROM OUR CODE 65

Figure 4.4: Connecting our button to the action

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=65

SENDING MESSAGES FROM OUR CODE 66

Figure 4.5: The actions sent by our push button

Our next step for TextApp is to stop using the debugger console to

display information and instead be able to send a message to the text

view to change its text to something we specify.

A Quick Note About Pointers

For the rest of this chapter, we will be using pointers. Pointers can be

nontrivial to understand, and a large portion of the next chapter is

devoted to them. For now, just think of the pointers we’re using here as

being like a “link” to an object instance in memory.

To be able to send a message to the text view, we need to have some

kind of handle on that specific text view instance so we can “talk” to it;

this is a bit like needing a cell phone number to send a text message to

a friend.

A pointer looks like this:

NSTextView *aTextViewInstance;

Notice the asterisk (*) involved here.1 This particular syntax declares a

pointer to a text view object (naturally bearing the class name NSText-

1. You probably noticed these earlier in this chapter when we were looking at attributes

on methods.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=66

SENDING MESSAGES FROM OUR CODE 67

View) that is called aTextViewInstance. Once this pointer is “connected”

to a text view, we can use the pointer to send messages to the text view.

In the same way that you need to activate a cell phone before it will

accept calls or messages, you need to link up a pointer to the object it

“points to.” In this chapter, we’ll be linking our pointer using Interface

Builder.

A Pointer to Our Text View

Our NotifyingClass object needs to be able to talk to the NSTextView in

TextApp’s user interface. That means that we need our object to have

access to a pointer to the text view. With this in mind, open Notifying-

Class.h in Xcode.

The text view pointer will be an attribute for the NotifyingClass class

description, so it needs to go between the curly braces like this:

@interface NotifyingClass : NSObject {

NSTextView *textView;

}

- (IBAction)displaySomeText:(id)sender;

@end

But, because we are going to use Interface Builder to link it up to

the actual object, we need to use another IB communication keyword.

Putting IBOutlet in front of the pointer declaration tells Interface Builder

that we need access to that pointer so we can hook it up to something.

This kind of “hook-up-able” pointer is known as an outlet, which is why

it’s called IBOutlet.

Modify your NotifyingClass.h file so that the @interface looks like this:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

}

- (IBAction)displaySomeText:(id)sender;

@end

Because we’re declaring this pointer inside the NotifyingClass class de-

scription, it becomes one of those “assignable attributes” we saw before

in class descriptions, and we would be able to use it from within any

method implemented by the class. We have only one method at the

moment (displaySomeText:), but it’s worth mentioning all the same.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=67

SENDING MESSAGES FROM OUR CODE 68

Connecting Outlets in Interface Builder

Save your work in Xcode, and then switch to Interface Builder to edit

the MainMenu.xib file. Once again, right-click (or C-click) the Notifying-

Class object, and you’ll see a new addition in the HUD window that

appears. There is now an Outlets group in the HUD, and it contains

one item—our textView outlet that we just created in Xcode.

Make sure that you can see the main window for TextApp in Interface

Builder with its text view. Guess how we link up the outlet? Yep, drag

from the little circle in the HUD over to the text view—it should high-

light, as shown in Figure 4.6, on the next page.

That’s all there is to it!2 Our pointer/outlet is now linked up to the text

view ready for us to start sending messages. Save your work in Interface

Builder, and then switch back to Xcode.

Sending a Message to an Object

To get the text view to display some text, we need to know exactly what

message to send it. There are several ways to find out which messages

an object will accept; this time, let’s use the documentation system built

into Xcode. Choose the Help > Developer Documentation menu item

(E-D- ?), and the Developer Documentation window will appear. In the

Search textbox, enter “NSTextView.” You should find that “NSTextView

Class Reference” appears in the main portion of the window, as in Fig-

ure 4.7, on page 70.

This may look like a scary document, but it’s actually not all that bad. It

lists the messages that an NSTextView object will respond to; since we’re

looking to insert some text in the text view, scroll down until you find a

list of messages under the “Inserting Text” heading. The first message

listed is the helpfully named insertText: method. If you click this link,

you’ll jump down to read the documentation for it.

The insertText: method takes one attribute—a string object. In program-

ming, a string refers to a string of characters such as “this is a medium-

2. Under earlier versions of the Developer Tools, an NSTextView object created in Interface

Builder starts out life filled with Lorum Ipsum placeholder text. If you have this text show-

ing in your text view, you’ll probably want to remove it before continuing. Accomplishing

this can be a little fiddly, but, essentially, click three times over the existing placeholder

text until all the text (and only the text) is selected. Once you’ve selected it, you can edit

it like you would any text in any application.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=68

SENDING MESSAGES FROM OUR CODE 69

Figure 4.6: Connecting our outlet to the Text View

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=69

SENDING MESSAGES FROM OUR CODE 70

Figure 4.7: The Xcode documentation window

length string” or “hello!” You’ll generally see strings defined in program-

ming code between single or double quotation marks.

Now that we know what message to send to the text view, the last thing

we need to learn is the syntax used to do that in Objective-C. It’s actu-

ally quite simple and involves the use of square brackets ([and]). Close

the documentation window, and open NotifyingClass.m. Change your dis-

playSomeText: method to look like this:

- (IBAction)displaySomeText:(id)sender

{

[textView insertText:@"displaySomeText just got called!\n"];

}

We’ve replaced the use of NSLog with a message to the text view object

to insert the text. Notice that there are no parentheses—(and)—in use

here; we’re now using square brackets to indicate that we’re sending a

message. Notice also that we’ve added the characters \n (that’s a back-

slash, not the more frequently used forward slash) on the end of the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=70

SENDING MESSAGES FROM OUR CODE 71

[[
Figure 4.8: Sending messages to objects in Objective-C

string. This is a new line specifier, rather like the carriage return at the

end of a paragraph in a text document. It means that any subsequent

text should display on the next line down.

An analogy might be helpful at this point. For example, you could think

of the line of code as being like a rectangular postcard (Figure 4.8). The

first word on the card addresses the object to which the message will be

sent (textView); next comes the name of the message to send (insertText:),

followed by any parameters that are needed (@"displaySomeText just got

called!\n"):

[«receiving object» «message»«:optional parameters»];

Assuming you haven’t mistyped anything, TextApp will launch when

you click Build & Run. When you click the button, you should see the

message appear in the text view; every time you click, a new message

will appear!

Just to show that this isn’t some kind of fluke, let’s send a message

to another object that we can access. Remember when we redefined

our displaySomeText: method to have a sender variable for use with the

target-action mechanism? This sender is a pointer that will be linked

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=71

SENDING MESSAGES FROM OUR CODE 72

to the object that sent us the message—in TextApp, it will be the push

button.

If you wish, look up the class reference for NSButton like you did for

NSTextView. You’ll find it has a method called setTitle: that, unsurpris-

ingly, sets the title of the button to the string you specify.

Change your displaySomeText: method by adding a call to setTitle: on the

sender object. The syntax is the same as before and looks pretty similar

to our existing call to the text view:

- (IBAction)displaySomeText:(id)sender

{

[textView insertText:@"displaySomeText just got called!\n"];

[sender setTitle:@"Clicked"];

}

This time when you Build & Run, the text on the button will change

once it has been clicked. Obviously, it will appear to change only the

first time—subsequent times, we’re setting the text to the value it al-

ready has.

You can also disable the button from this method so it can be clicked

only once. Open the class reference for NSButton again in the documen-

tation viewer. At the top of the file, you’ll see a list of classes that it

“inherits from.” The first of these listed is the NSControl class. Click this

class, and you’ll jump into its class reference. Scroll down a little way

until you find the task heading “Enabling and Disabling the Control.”

There’s a helpful method listed called setEnabled:, which looks like it

will do what we want. If you click this, you’ll jump down to the docu-

mentation for the method; its signature looks like this:

- (void)setEnabled:(BOOL)flag

The keyword BOOL refers to a Boolean value—one that is either true

or false. Open the NotifyingClass.m file, and change the displaySomeText:

method to the following:

- (IBAction)displaySomeText:(id)sender

{

[textView insertText:@"displaySomeText just got called!\n"];

[sender setTitle:@"Clicked"];

[sender setEnabled:NO];

}

The keyword NO states that we don’t want the button to be enabled—

see how readable the Objective-C language can be? This time, when

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=72

CHAPTER SUMMARY 73

you Build & Run the application, you’ll find you can click the button

only once. When our displaySomeText: method is called, it disables the

button. This also confirms what we discussed in the previous chapter:

not only can we call methods that are specifically defined by an object

(like setTitle:), we can also call methods inherited from parent objects

(like setEnabled:).

4.4 Chapter Summary

You’ve learned quite a lot in this chapter. First, we defined our own

message for our class. We looked at the target-action mechanism and

redefined this new method to work as an action. Using keywords to help

Interface Builder identify our action method meant that we were able

to hook up this action, visually, to the push button we created in our

interface.

Next, we touched briefly on pointers before setting up an IB-connected

outlet from our notifying object to our text view object. Once the pointer

was connected, we covered how to send a message to insert some text

in TextApp’s text view on screen. We also made use of the sender param-

eter provided to us in our action, linking to the object that sent us the

message.

It’s now time to delve a little more deeply into pointers, attributes, and

parameters by looking at how information gets stored in memory.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=73

Chapter 5

Variables and Memory
You’ve traveled a long way into the world of Mac OS X programming.

Before you can go much further, though, you need to learn a little about

how computers work with memory to keep track of useful information.

In the first part of this chapter, we’ll look at how a computer actually

stores information in its memory, before moving on to talk about how

we can declare variables to hold basic values for us. We’ll modify our

current TextApp application to store some values temporarily in mem-

ory, perform a calculation or two, and then output the values to see

what was stored.

5.1 How Memory Works

Your computer contains a number of physical storage places for infor-

mation. Some are for persistent storage (such as hard disks, CD/DVD

drives, and so on), and some are for temporary use while the com-

puter is running (RAM). It’s the RAM that we are talking about for this

chapter—the memory available for use by your application at runtime.1

In the previous chapter, we used pointers—references to objects that

were held in memory. For the first part of this chapter, however, we’ll be

looking at storing very simple pieces of information such as integer and

decimal numbers. These are known as scalar types and are handled

very differently from the objects we’ve been used to up until now. We

1. Runtime refers to the time at which the finished application is launched by a user.

It differs from other “types of time” that a programmer might be interested in, such as

compile time, which is the time at which the Objective-C code that you’ve written gets

compiled into machine-understandable language and linked together into an application.

Prepared exclusively for James Carlson

HOW MEMORY WORKS 75

can’t send messages to these scalar types; they just exist as a value in

memory that you can access when needed.

Before we dive in and start looking at how we use and access memory

from Objective-C code, let’s take a brief look at how information gets

stored inside a computer’s physical memory. This is valuable back-

ground for our next steps, so hang in there! We’ll start with very basic

integer numbers.

Bits and Bytes

You might like to think of the RAM inside your computer as a giant

collection of switches. Each switch is either “on” or “off,” meaning that

it can be used to represent one of only two possible values. When you’re

programming, you’ll find these values are used in many different ways.

Numerically, they can be 0 and 1; they can also be used to represent

“true” and “false,” or even the words “yes” and “no.”

Clearly, a single switch, or bit, is not going to be much help storing

numbers greater than 1, quite aside from large objects, so computers

use groups of these bits to represent larger numbers in binary nota-

tion. Representing numbers in binary is actually very similar to the

way you currently think about numbers, using decimal notation, but

instead you only have the digits 0 and 1 to worry about. Let’s analyze

our standard decimal notation first.

Decimal Notation

Consider for a moment what we’re doing when we write down a num-

ber like 2,568. When counting “normally,” we’re used to working with

the numbers 0 through 9. Multiple digits are used to represent values

greater than 9, and each of these digits specifies a multiplier for a power

of ten. This all sounds incredibly complicated given that counting, say,

from 99 to 101 seems so natural to us, but for now let’s look at what

each individual digit represents in the number 2,568 by splitting its

digits into a table format like this:

10,000 1,000 100 10 1

0 2 5 6 8

Notice that each column in the table is a multiple of 10 (or power of

ten), where 10 is the number of possible digits that we can use from

0 to 9. Notice also that if you multiply the header of a column by the

header of the column on its right (for example, multiplying 100 by 10),

you end up with the column on its left (1,000). The maximum number

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=75

HOW MEMORY WORKS 76

we can represent with a certain number of columns would be when

each column contains the highest possible digit (9). If we were using

only three columns (100, 10, and 1), the maximum number we could

represent would be 999, which also happens to be 1 less than the next

highest column header (1,000).

We can rework the table to show how we “build up” a final number from

the digits in each column like this:

0 × 10,000 = 0

2 × 1,000 = 2,000

5 × 100 = 500

6 × 10 = 60

8 × 1 = 8

Total = 2,568

Binary Notation

Since in binary we can use only two possible digits (0 and 1), we are

going to be working with column headers that are multiples (or powers)

of 2. If we make a similar table to our first decimal table from ear-

lier in the chapter, keeping the same relationship between consecutive

column headers as before, we would end up with this:

16 8 4 2 1

0 1 1 1 0

It’s quite easy to work out what this number, written as 01110 in binary

notation, would be in decimal notation. We simply need to build the

number using the second table style shown earlier to give this:

0 × 16 = 0

1 × 8 = 8

1 × 4 = 4

1 × 2 = 2

0 × 1 = 0

Total = 14

So, the number 01110 in binary is the number 14 in decimal.

Groups of Bits

When we ask a computer to store a decimal number like 2,568, the

computer would need to convert that number to binary format first

before storing it, in this case giving the result 101000001000. Rep-

resenting this number therefore needs a chain of 12 individual bits.

Storing the number 29, however, would take only 5 bits (11101).

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=76

HOW MEMORY WORKS 77

Figure 5.1: A graphical representation of our numbers stored using

switches in memory

It might seem that the most efficient way to store numbers in memory

would be to use only as many bits as were needed, but this actually

poses a problem. Consider a large bank of these switches set up to

represent our chosen data. With the two values stored, we might end

up with something looking like Figure 5.1.

The problem with this approach is that in order to make sense of the

1s and 0s in memory, we need to know how many bits are taken by

each number. To retrieve our first number, we would need to ask for

“a number represented by the first 12 bits;” to get our second number,

we then need to ask for “a number represented by the next 4 bits.” Not

only is this system confusing, it also requires us to store the “number

of bits used” along with the number itself in order to be able to retrieve

our information. We’d then need another “number of bits used” for the

“number of bits used” number, and so on!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=77

HOW MEMORY WORKS 78

Bytes

An easier way is to decide that we’ll work using blocks of a specific num-

ber of bits. In the C programming language and therefore in Objective-

C, the basic bit-block size is 8. These 8-bit blocks are called bytes.

As an example, the number 29 requires 5 bits to be set and so could

be represented using a single byte. The unused bits in a byte are set to

zero, so 29 would be 00011101 in a byte.

The maximum number representable in a byte can be worked out in

two ways; either we can set all 8 bits to 1 to work it out:

128 64 32 16 8 4 2 1

1 1 1 1 1 1 1 1

1 × 128 = 128

1 × 64 = 64

1 × 32 = 32

1 × 16 = 16

1 × 8 = 8

1 × 4 = 4

1 × 2 = 2

0 × 1 = 1

Total = 255

or, the easier way, we can simply look at what the next column header

would be (256) and subtract 1 from it (to give 255.)

Since we know that storing our larger number 2,568 would need a

minimum of 12 bits, we are going to need to use two bytes to represent

it—00001010 00001000, or:

32,768 16,384 8,192 4,096 2,048 1,024 512 256

0 0 0 0 1 0 1 0

128 64 32 16 8 4 2 1

0 0 0 0 1 0 0 0

The largest number representable using two bytes would be the next

high column header (65,536) minus 1 (65,535).

Next Steps

So far, we’ve only looked at basic integer numbers that are greater

than zero, or positive numbers. Clearly this excludes two ranges of

numbers—those that are not integers (that is, are not whole numbers)

and those that are less than zero. We’ll look at number types such as

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=78

USING VARIABLES 79

these later in the chapter, but for now, let’s get back to coding and start

storing and using some integer values.

5.2 Using Variables

To work with simple scalar types in code, we use variables. Variables

are used to hold basic values in memory and, as the name implies,

can vary. Do you remember how we used pointers to keep track of our

objects back in the previous chapter? Our original Interface Builder

outlet declaration for a pointer to the text view looked like this:

NSTextView *textView;

Pointers, like textView here, are actually a very specific type of variable

and, as you have already seen, are denoted by the asterisk (*) symbol.

Variables for simple scalar types look very similar but do not have an

asterisk. The code to declare a simple integer variable looks like this:

int myFirstIntegerVariable;

Just like our NSTextView pointer example, the first word is used to spec-

ify the type of the variable, followed by a name to refer to the variable.

Unsurprisingly, the keyword int is used in the C language to specify a

variable that can hold an integer value.

Working with Variables in TextApp

Let’s declare a new variable right now. Open Xcode with your TextApp

project from the previous chapter, and find the NotifyingClass.m file with

its declaration for the displaySomeText: method. Add a variable into the

top of this method:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

[textView insertText:@"displaySomeText just got called!\n"];

}

If you want, you can Build & Run to see whether anything has changed.

You’ll find that nothing appears any different in the application since

we don’t do anything with the variable we just declared. We also never

give this variable any value. Xcode will generate a warning, as shown

in Figure 5.2, on the next page, that you have an “unused variable

‘ourVariable’ ”—Xcode gets concerned when you declare a variable to

hold some information but then never refer to it again.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=79

USING VARIABLES 80

Figure 5.2: A warning showing in Xcode

Let’s change this behavior right now by assigning a value to the vari-

able and outputting that value to our text view. This code is beginning

to get more complicated, so be sure to double-check that you haven’t

mistyped anything! Replace the code that inserts text in the text view

so it looks like this:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

ourVariable = 25;

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %i\n",

ourVariable]];

}

Common typos here could be missing semicolons, forgetting the @ sign,

or not having enough closing square brackets at the end of the line

(there should be two). You also do not need to have the line breaks in

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=80

USING VARIABLES 81

the middle of the insertText: message—we have them here only to fit the

code on the page. Remember from earlier in the book that the compiler

doesn’t care about whitespace in a statement? As long as the statement

has a semicolon at the end, you could split the code into as many lines

as you wanted.

If you want to condense the statement into a single line, you will need to

replace the line breaks with at least a single space. Each code “word” in

the statement needs to be separate; there must be a space between the

[NSString and the stringWithFormat:; otherwise, Xcode would try to compile

those two words as a single word, [NSStringstringWithFormat:, which isn’t

a valid expression and will generate an error that stops your code from

compiling. Because there is a comma after the %i\n" and before ourVari-

able, you don’t necessarily need the space—the comma punctuates the

two code pieces. Generally, you should choose to format your code in

the way that makes it most readable to you.

Just like before, the first line of code declares the variable—named our-

Variable—and specifies that it will hold an integer value. The second line

uses the assignment operator (which is just a fancy way to describe the

= sign) to assign a value to that variable.

The remaining lines use an NSString object—this is an object that holds

a string of characters. We’ll be working with NSString objects quite a

bit in a later chapter, but, for now, all you need to know is that by

using the code [NSString stringWithFormat:@"The value of the variable is: %i\n",

ourVariable], the %i part will be substituted with the value of our variable.

Notice that we haven’t had to worry about specifying any values in

binary. You never have to worry about conversion into binary for mem-

ory storage—you can supply a number in decimal notation, and the

conversion is handled for you.

Changing the Value of the Variable

Once we have a variable for use, we can change the value that it holds

as many times as we want. Modify your code so it looks like this:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

ourVariable = 25;

ourVariable = 35;

ourVariable = 49;

ourVariable = 58;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=81

USING VARIABLES 82

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %i\n",

ourVariable]];

}

No prizes here for guessing what will be output to our text view—since

the last value that we assign is 58, that’s what you should see in the

text view.

We can also use the assignment operator (the = sign again) to set a value

for one variable using the value from another variable:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

ourVariable = 25;

int anotherIntegerVariable;

anotherIntegerVariable = ourVariable + 10;

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %i\n",

anotherIntegerVariable]];

}

Here we declare a second variable called anotherIntegerVariable and set

its value to be that of our first variable, plus 10. When you Build &

Run, you should find that your output gives the value of the variable to

be 35.

If we wanted to, we could reuse our first ourVariable variable and simply

add 10 to it:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

ourVariable = 25;

ourVariable = ourVariable + 10;

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %i\n",

ourVariable]];

}

When you run the app this time, you should find that you still see

the same output—the value of the variable gets set to 35 before it is

displayed in the text view.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=82

USING VARIABLES 83

Using this fancy assignment operator therefore follows this pattern:

«set the value of the thing on this side» = «to what’s on this side»

Other Types of Variables

Now that we’ve seen how to use int variables to hold integer values, let’s

look at a few other types of variables to hold different types of numbers.

Signed and Unsigned Numbers

When I was talking earlier about storing numbers in memory, I limited

the discussion to numbers that were greater than zero, or positive num-

bers. It’s not immediately obvious from that discussion how a computer

could store a number that was less than zero, or negative.

The answer is actually pretty simple. Consider what you do when com-

municating with other human beings (!) to indicate whether a number

is negative or positive: to state the obvious, you generally take any num-

ber that has no + or - sign to be positive and use a - sign to indicate

that a number is negative:

Negative numbers -5,235 -78 -784,122,564

Positive numbers 4,876 694 224,387,471

Representing positive and negative numbers on a computer isn’t really

any different; we can simply use a single bit to represent the minus

sign, or “whether a number is negative or not.” This reduces the max-

imum number representable in, for example, a single byte, because it

means we would only have 7 bits remaining to specify the number; with

two bytes, we would have 15 bits to use; four bytes leaves 31 bits; and

so on.

In the programming world, numbers that are defined as negative or pos-

itive in this way are called signed numbers. Numbers that don’t make

use of a bit for signing are, you guessed it, called unsigned numbers.

Up until now we’ve used the int keyword to define our variables, and

as such, we have actually been defining variables that are signed. To

demonstrate this, change the number we store and output to be a neg-

ative number:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

ourVariable = -50;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=83

USING VARIABLES 84

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %i\n",

ourVariable]];

}

You’ll find that our negative number is happily accepted and displayed

correctly in the text view.

Sometimes, however, you might know in advance that a variable will

only ever contain positive values. On these occasions, you can spec-

ify a variable that doesn’t allow signed numbers using, somewhat pre-

dictably, the keyword unsigned.

Change the code again so that it looks like this:

- (IBAction)displaySomeText:(id)sender

{

unsigned int ourVariable;

ourVariable = 50;

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %u\n",

ourVariable]];

}

Notice that we’ve also changed the text view output string substitution

from the original %i to a %u to specify that we are providing an unsigned

variable.

If you run the application now, you’ll find that it outputs our value

quite correctly. Just to see what happens, try changing the value of the

unsigned variable to a negative number:

- (IBAction)displaySomeText:(id)sender

{

unsigned int ourVariable;

ourVariable = -50;

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %u\n",

ourVariable]];

}

This time when you run the application, you’ll find that the value of

the variable is reported incorrectly, saying that “The value of the vari-

able is: 4294967246.” This is because we have allocated memory for an

unsigned variable; given it an illegal, signed negative value; and then

tried to output the value as if it were unsigned. This is an incredibly

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=84

USING VARIABLES 85

common source of errors in programming—trying to access something

in memory thinking it’s one type of value when it’s actually another.2

Floating-Point Numbers

Another type of number we haven’t yet considered is non-integers, such

as 1.235 or -25.784637. These are numbers that have a decimal point.

There are certain types of numbers (like currencies) for which it might

make sense to provide a specific number of digits after the decimal

point. In some currencies, we might need to store values with exactly

two digits after the decimal point. But, even with a currency, there

are many reasons why you might actually need extra digits—tax cal-

culations, for example. Ideally, we would like to be able to specify the

number of digits that we need before and after a decimal point.

This type of number is referred to as a floating-point number because

the decimal point can “float left and right” along the digits. Exactly how

these numbers are stored using bits and bytes is outside the scope of

this chapter, but it is worth saying that a floating-point number uses

bits slightly differently since it records both the digits and the location

of the decimal point.

To declare a decimal value in our code, we can use the variable type

float:

- (IBAction)displaySomeText:(id)sender

{

float approxValueForPi;

approxValueForPi = 3.14159265;

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %f\n",

approxValueForPi]];

}

Provided you’ve copied the code correctly, remembering to change the

%u substitution string to %f to specify that we’re outputting the value of

2. If you’re wondering where the apparently arbitrarily high number 4,294,967,246

has come from, try converting it into binary; it’s the incredibly long value

11111111111111111111111111001110. Next, try converting the number 50 into binary;

it’s the more manageable 110010. When negative numbers are stored using signed num-

bers, we store what’s known as the two’s complement, formed by inverting all the digits

(changing 1s to 0s, and vice versa) and adding one. This turns 110010 into 001110. That

really long number has these six bits on the end but has all the other bits set to 1.

When you try to interpret all those 1s as an unsigned number, you end up with the value

4,294,967,246.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=85

USING VARIABLES 86

a float variable, you should find that you can store and output decimal

numbers to your heart’s content!

Storing Other Information

You’ve now seen how numbers can be stored in memory using bits and

bytes, but it’s not obvious how you might represent text characters like

A or ! in binary. The answer is to assign each text character a number

and just store that instead.

You may have seen the acronyms ASCII or UTF-8 written with refer-

ence to websites or email encoding. These refer to standards that define

which letter corresponds to which number. If you know that a partic-

ular series of bits in memory refers to a character and what type of

encoding has been used, you can work out what character we need. If

you’re given the decimal number 65 (01000001 in binary), for example,

you might find that this is the letter A in a particular encoding.

Just as you don’t have to worry about supplying numbers in binary

notation, the great news for characters is that you don’t need to worry

about converting them into numbers or back again—the conversion

happens automatically. As a result, you can think of characters as

characters and trust that everything will work!

We can declare a variable for a single character like this:

- (IBAction)displaySomeText:(id)sender

{

char ourVariable;

ourVariable = 'a';

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %c\n",

ourVariable]];

}

Here we assign the letter a to our character variable (declared using the

char keyword) and specify the letter inside single quotes (’) to denote a

single character. Be sure to change the substitution string to %c to

display a character!

When you’re developing Objective-C applications for the Mac, you’ll find

that you don’t need to use char variables very often. Most of the time,

you’ll be working with strings of characters, held by NSString objects.

We’ll look at these in the next chapter.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=86

USING VARIABLES 87

Code Readability

Sometimes it makes sense to actually opt for a longer section
of code in order to make it readable—readability of code is
important because it allows you to return to a project six months
later and see quite clearly what is going on. Objective-C is a
very readable and self-documenting language on the whole,
but there are various things you can do to make it even clearer,
as we’ll see throughout this book.

Combining Declaration and Assignment

Over the course of the book, we’ve seen several examples of how the

Objective-C language doesn’t care about whitespace. We’ve recently

seen how a single command can be split across several lines, and it

doesn’t matter to the compiler. Related to this is the fact that there

are frequently several different ways you can achieve the same aim by

using either fewer or more lines of code.

Up until now, we have been declaring a variable in one line of code

and then using a second line of code to do the value assignment for

that variable. We can also combine these actions into one single line of

code. In this code fragment, we declare and assign two variables—either

approach works equally well:

{

int firstIntegerVariable;

firstIntegerVariable = 56;

int anotherIntegerVariable = 56;

}

Since a variable has an unpredictable value before you assign some-

thing to it, it’s good practice to combine these statements by using the

second approach to avoid any strange behavior. If you declare a vari-

able but don’t explicitly assign it a value, the variable will start out life

containing the value that currently exists in memory. Feel free to test

this out by checking the value of ourVariable but not assigning it a value

before outputting it:

- (IBAction)displaySomeText:(id)sender

{

int ourVariable;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=87

THE SCOPE OF A VARIABLE 88

[textView insertText:[NSString

stringWithFormat:@"The value of the variable is: %i\n",

ourVariable]];

}

When I run this code, the outputted value of the variable is 1. Yours

might be 0, or any arbitrary number. Setting an initial value of a vari-

able when you declare it, like this:

int ourVariable = 50;

stops you having any weird problems from old 1s and 0s hanging

around in memory. We’ll be using this approach for most of the rest

of the book.

5.3 The Scope of a Variable

Now that you know how to declare and assign a variable, it’s worth

discovering how long that variable will hang around for you to use.

This is known as the scope of a variable. The basic rule for variable

scope is that a variable is valid only within the code block in which it is

declared.

Consider this implementation for two methods inside an object:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

int firstVariable = 34;

}

- (IBAction)doSomethingElse:(id)sender

{

int secondVariable = 54;

}

@end

Both of these methods declare a single integer variable for their use, but

because those variables are defined in different code blocks (that’s the

“curly-brace” sections), neither method can access the other’s variable.

The variable actually ceases to exist when its closing section’s curly

brace is reached, so for the displaySomeText: method here, the variable

firstVariable doesn’t really have much of a life before it is cleared from

memory.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=88

THE SCOPE OF A VARIABLE 89

Figure 5.3: An error in Xcode for a variable that’s out of scope

- (IBAction)displaySomeText:(id)sender

{

int firstVariable = 34; // variable is created and assigned a value

} // variable ceases to exist

If you were to add that second method (doSomethingElse:) into your Noti-

fyingClass implementation, then try to access the first variable from it:

- (IBAction)doSomethingElse:(id)sender

{

int secondVariable = 54;

firstVariable = 28;

}

you’d find that Xcode prevents your project from compiling and gener-

ates an error, as shown in Figure 5.3. Because the variable firstVariable

is declared in a different code block, the compiler has no idea what

you’re talking about when it tries to compile the second method, so it

reports that the variable is “undeclared.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=89

MEMORY ADDRESSING 90

This means that you can reuse variable names in other methods with-

out any problem:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

int anInt = 34;

}

- (IBAction)doSomethingElse:(id)sender

{

int anInt = 54; // this has nothing to do with any other 'anInt'!

}

@end

but you cannot “redefine” a variable with the same name as a variable

name already used by the same method:

- (IBAction)displaySomeText:(id)sender

{

int anInt = 34;

int anInt = 54; // you can't do this!

}

This code would generate a “redefinition of ’anInt”’ error and refuse to

compile.

You may remember that in the previous chapter we made use of an

IBOutlet to a pointer to the NSTextView object in order to send messages

to it. We placed this outlet in the class interface, rather than placing

it inside one of the methods. Variables placed inside the interface of

an object are accessible by all the methods of that object (and any

subsequent classes that inherit from it).

You’ll be seeing a lot more about the scope and life of a variable as you

proceed through the book.

5.4 Memory Addressing

Let’s turn our attention back to how variables are held in memory

again. Take a look at our memory diagram in Figure 5.1, on page 77.

Since we now know that we should be using 8-bit bytes to store infor-

mation, we should really rework this diagram to look like Figure 5.4,

on the following page.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=90
v@v
Text Box
http://www.wowebook.com

MEMORY ADDRESSING 91

Figure 5.4: Our numbers stored in memory using bytes

Think of this large field of 8-bit bytes as being like a parking lot. Each

byte is one parking space and can hold a maximum of only one piece

of information at a time. Larger items can be “parked” across spaces,

by using multiple bytes. We can then work out an address scheme for

each parking space; that way our number 29 might be stored in “space

1” and the number 2,568 in “spaces 2–3.”

On a computer, bytes are addressed in the same way, but the number-

ing that is used by the machine is actually given in hexadecimal rather

than decimal. Try not to throw your hands up in horror at this point,

but we’re now uncovering yet another numbering system. Hexadecimal

works in the same way as decimal and binary, but rather than having

10 or 2 digits, it uses 16 (which are the numbers 0–9 and the letters

A–F.)

Thankfully, in the same way that you won’t have to worry about binary

when you’re writing code, you won’t really have to worry too much about

hexadecimal, either. When you do see it being used, you’ll find it is

normally given a prefix of 0x in order to differentiate it from decimal.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=91

MEMORY ADDRESSING 92

Checking the Address

To give us a little bit of insight into what’s going on inside the “mind”

of the computer, let’s try finding out the addresses of our variables in

memory. Displaying the address of a variable isn’t something you’ll find

yourself doing very often, but it’s useful right now to help visualize the

situation.

The C language provides us with an easy way to access the address of

a variable—we simply specify the name of the variable, preceded by an

ampersand, like this: &myVariable.

To try this, let’s change the displaySomeText: method to declare an int

variable and a float variable and to output their addresses to the text

view:

- (IBAction)displaySomeText:(id)sender

{

int anInt = 15;

float aFloat = -35.2444;

[textView insertText:[NSString

stringWithFormat:@"address of anInt is: %p\n", &anInt]];

[textView insertText:[NSString

stringWithFormat:@"address of aFloat is: %p\n", &aFloat]];

}

Notice that the substitution string uses %p here—we’ll see why this is

in a short while!

When you run this code, you’ll see an output that looks something like

this:

The address of anInt is: 0xbfffed4c

The address of aFloat is: 0xbfffed48

Your addresses will almost certainly be different, but as promised, you’ll

be looking at two hexadecimal values with the prefix 0x—these are

the addresses of the physical bytes in memory where our variables are

being stored.

How Many Bytes Is That?

In Section 5.1, Bytes, on page 78, you saw that values are stored in

memory using one or more bytes. Given a base address like 0xbfffed4c,

how are you to know how many bytes to make up our value? Well, each

variable type uses a specific number of bytes. You don’t need to worry

about this: the compiler will know what it’s doing for you. The only time

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=92

MEMORY ADDRESSING 93

it becomes a problem is when you need to make sure you don’t try to

store a number larger than the maximum allowed in a specific variable

type. One difficulty is that the sizes can vary depending on the type

of machine you are running—there is a difference in the size of some

types between, for example, older Macs that use PowerPC processors

and newer Macs that use Intel processors.

If you want, you can also check the size of a variable at runtime by

using another function, sizeof():

- (IBAction)displaySomeText:(id)sender

{

int anInt = 15;

[textView insertText:[NSString

stringWithFormat:@"size of anInt is: %i bytes\n",

sizeof(anInt)]];

}

Running this on my machine tells me that the “size of anInt is: 4 bytes.”

Using Memory Addresses for Access

As I said earlier, it’s not often you’ll need to display the address of a

variable. There are, however, many cases when knowing the address of

a variable is incredibly useful. One of these is when you need to provide

access to a variable that isn’t currently “in scope.” Consider again those

two methods for NotifyingClass that you saw earlier:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

int firstVariable = 34;

}

- (IBAction)doSomethingElse:(id)sender

{

int secondVariable = 54;

}

@end

As we’ve already discussed, our doSomethingElse: method cannot access

the firstVariable from the displaySomeText: method because that variable is

not in scope. We could, however, offer up access to the doSomethingElse:

method by somehow passing it the address of our variable in memory.

The method could check to see what value was currently held in that

location and change it if it wanted. We’ll see how to do this in the next

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=93

POINTERS AGAIN 94

chapter, in Section 6.4, Passing Values by Reference, on page 115, along

with a few other ways to pass values between methods.

5.5 Pointers Again

I introduced pointers in the previous chapter and used them to keep

track of objects so we could send messages. Once again, a pointer dec-

laration for our text view object looked like this:

NSTextView *textView;

Follow the Pointing Star

You can tell a pointer by the asterisk (*) in front of the variable name.

Since the asterisk looks a little like a star, think of the phrase “Follow

the pointing star,” because that’s exactly what a pointer does—it points

to something else (hence the name).

I mentioned earlier that a pointer is a specific type of variable, one that

is used to hold a memory address. So, we could declare a pointer to an

integer variable like this:

int *aPointerToAnInteger;

This doesn’t declare an integer variable to hold an integer value; it

declares a pointer variable to hold the address of an integer value.

Where might you get such an address? Well, we saw exactly where

in the Section 5.4, Checking the Address, on page 92—by using the &

symbol. We could create an integer and a pointer to that integer like

this:

int anInt = 50;

int *aPointerToAnInt = &anInt;

If you glance back at the code we used in that section to output the

address of an object, you’ll see that we used a substitution string of %p

to display the addresses of our variables. Now you can see why. The p

in %p stands for “pointer.”

So, let’s display the address of a variable again, this time using a pointer

variable. Change the displaySomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

int anInt = 15;

int *pointerToAnInt = &anInt;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=94

POINTERS AGAIN 95

[textView insertText:[NSString

stringWithFormat:@"address of anInt is: %p\n", &anInt]];

[textView insertText:[NSString

stringWithFormat:@"value of pointerToAnInt is: %p\n",

pointerToAnInt]];

}

Note that there is no & used when we use the pointerToAnInt pointer in

our outputting string. We simply use the value of the pointer variable—

which is the address.

Again, you should still see the address being output to the text view,

looking something like this:

address of anInt is: 0xbfffed48

value of pointerToAnInt is: 0xbfffed48

Object Pointers

There’s another pointer in use in this method. Remember how I stated

in the previous chapter that we used pointers to send messages to

objects—messages that appear in square brackets? Well, we’re send-

ing the insertText: message to our text view object via a pointer called

textView. So, let’s take a look at the actual value held by that pointer:

- (IBAction)displaySomeText:(id)sender

{

int anInt = 15;

int *pointerToAnInt = &anInt;

[textView insertText:[NSString

stringWithFormat:@"address of anInt is: %p\n", pointerToAnInt]];

[textView insertText:[NSString

stringWithFormat:@"address of textView is: %p\n", textView]];

}

The output displayed should look like this:

address of anInt is: 0xbfffed48

address of textView is: 0x125910

Now we’re seeing the address of the text view object referenced by our

textView pointer.

This might make you wonder, given that you can do this:

int anInt;

int *pointerToAnInt = &anInt;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=95

CHAPTER SUMMARY 96

whether you can also do something like this:

NSTextView aTextView; // This won't work!

NSTextView *pointerToATextView = &aTextView;

to create a new text view object, but, sadly, you can’t. There’s a big

difference between objects and simple scalar types, and we’ll see how

to create objects like these in Chapter 7, Objects and Memory Manage-

ment, on page 119.

What’s the Point?

OK, enough with the pointer jokes already. Seriously, you’ll be using

pointers extensively when you write code on the Mac, for many reasons,

some of which will become clear in later chapters. You could think of

pointers as being a lazy and memory-efficient solution to avoid having

to store information multiple times or having to keep writing it out.

Rather than saying “Here is some object and these are all its values,

etc.,” you can simply say, “There’s an object at address XXX—go take a

look for yourself.”

5.6 Chapter Summary

This has been a long chapter, containing quite a lot of theory. If you’ve

followed along, you’re beginning to understand that you can declare

variables that contain basic, scalar values such as numbers and that

you can use pointers to reference the addresses in memory of other

variables or of objects.

In the next chapter, we’ll revisit object methods by looking at how we

can pass information around using arguments and pass back informa-

tion using return values.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=96

Chapter 6

Passing Information Around
In the previous chapter, you saw how computers store information in

memory and how you make use of variables to hold and access that

information. You also saw how the scope of a variable prevents one

method from accessing a variable declared in another method. In this

chapter, you’ll see how methods can pass information to each other,

first by returning information after the method has run and second by

providing arguments passed in when a method is called.

6.1 Returning Values

Let’s go straight into Xcode and start coding. Open your TextApp pro-

ject, and find the displaySomeText: method inside the NotifyingClass.m file.

Change it to look like this:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

float someValue = 10.0;

[textView insertText:[NSString

stringWithFormat:@"The value is: %f\n", someValue]];

}

@end

You should be able to tell that this code simply declares a float variable

called someValue, assigns it a value, and displays that value in our text

view. If you wish, Build & Run the project to check that this is what is

happening.

Prepared exclusively for James Carlson

RETURNING VALUES 98

We’re going to create a new method inside NotifyingClass that will gen-

erate a value and then pass it back to our displaySomeText: method for

display.

A Method with a Return Type

Take a quick look back at Section 4.1, Defining a New Method, on

page 56. In that section, we looked at a number of method signatures

that follow this pattern:

«+ or -» («word») «messageName» «some optional parts»;

Later in that section, I mentioned that the «word» portion was used to

indicate the type of information being returned by the method. With

this in mind, let’s create a new method, called generateValue, that is

going to pass back our decimal value for output. Since the method is

returning a floating-point number, we need to use the keyword float to

specify this.

First, open the header file for NotifyingClass, and modify the interface by

adding the following method signature:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue;

@end

Next, copy the method signature to the clipboard, and switch back to

the implementation file. Paste the method signature inside the Notifying-

Class implementation (before the final @end), remove the semicolon, and

add curly braces to make the method:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

float someValue = 10.0;

[textView insertText:[NSString

stringWithFormat:@"The value is: %f\n", someValue]];

}

- (float)generateValue

{

}

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=98

RETURNING VALUES 99

Xcode Warnings and Errors

At this point, we’ve seen a couple of errors and warnings
in Xcode. Errors prevent your project from building. Warnings,
however, allow the project to Build & Run, and you might be
tempted to ignore them. When you’re writing code, it’s best
practice never to ignore warnings. They are usually indications
of something that might cause your code to crash in the future
or suggestions of unpredictable behavior.

By supplying a method signature to return a float but never
actually returning a value, a crash could easily result if, for
example, this code was called from somewhere that expected
to receive a value in return.

If you build the project now without changing anything else, you should

find the application runs exactly as before, but you’ll receive a warning

from Xcode saying that “control reaches end of non-void function.” This

is because the signature for generateValue indicates that the method will

return a float value, but no value is actually being returned.

Returning a Value

To eliminate this warning and do what we originally intended (return a

value at the end of the method), we need to make use of another cod-

ing keyword called—drumroll please—return. Change the generateValue

method to look like this:

- (float)generateValue

{

return 5.0;

}

We can now go back and change the displaySomeText: method to set the

value of its someValue variable to the value returned by the generate-

Value method.

Talking to Ourselves

Earlier in the book, we saw how to send messages to other objects using

the square bracket notation:

[«receiving object» «message»«:optional parameters»];

We’ve been using this ever since to send messages to the text view.

What we didn’t discuss at the time was how an object might send a

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=99

RETURNING VALUES 100

message to itself. The answer is, as usual, not terribly surprising. We

can use the keyword self. Every object that you use in Objective-C can

use this keyword to refer to itself—it’s essentially just a placeholder for

a pointer containing the address of the object.

With that in mind, change your displaySomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

float someValue = 10.0;

someValue = [self generateValue];

[textView insertText:[NSString

stringWithFormat:@"The value is: %f\n", someValue]];

}

Here we leave the original declaration of the someValue variable and

assign it the value 10.0. We then assign it the value returned by the

generateValue method using our trusty assignment operator, before out-

putting the result as before. If you Build & Run the project again, you’ll

find that the value output to the text view is now the value returned by

the generateValue method (5.0).

Returning Variables

You might be wondering why we bothered to create a method just to

return a value. For our example so far, the purpose was just to illustrate

how a method can return a value. In reality, such a method might

generate a value based on something the user had inputted or from

some basic data source like a file on disk or a response from an Internet

server.

To add some interest to our generateValue method, let’s change it to

calculate the circumference of a circle given a radius. For now, we’ll

hard-code the radius into a variable in the code. Later, we’ll spice this

up a little.

If you remember any of your math classes from school, the formula

2πr is probably etched permanently onto your brain. So, change your

generateValue method to look like this:

- (float)generateValue

{

float radius = 5.0;

float circumference = 2 * pi * radius;

return circumference;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=100

RETURNING VALUES 101

We declare a new float variable to hold our radius and assign it a value.

We then declare a second float variable to hold the circumference and

set its value by multiplying our radius variable by 2 * pi. pi in this instance

is a constant defined in low-level math library files that you don’t need

to worry about. It exists exactly for uses like this.

To return the final circumference value, we use the code return circumfer-

ence;—this simply returns the value held by the variable rather than

doing anything fancy to return the actual variable itself by address,

and so on. As always, once the end of the method is reached, the cir-

cumference variable will cease to exist, so this is exactly the behavior

we require.

When you Build & Run the application, the output should indicate a

generated value of 31.415926.

To make the output a bit clearer, you might like to change the dis-

playSomeText: method to specify that it is outputting a circumference.

And, to make the code tidier, let’s rename the variable used in this

method to circumference, also getting rid of our initial, unused assign-

ment. Change your method to look like this:

- (IBAction)displaySomeText:(id)sender

{

float circumference = [self generateValue];

[textView insertText:[NSString

stringWithFormat:@"The circumference is: %f\n", circumference]];

}

Build & Run the application again to make sure you haven’t broken

anything!

Adding Spice

I said earlier that we’d spice up this example; let’s do that now by allow-

ing the user to specify a value for the radius.

Use the Xcode Project Browser to find the MainMenu.xib file, and open it

with Interface Builder. We’ll make use of a text field to get a value typed

in by the user. Start by opening the editor for the application’s Window.

At the moment, it just contains our big text view and button.

Shrink the text view a bit by clicking it once and dragging down the top

handle. Move the button up into the space left at the top of the window.

Double-click the button to enable you to change its title, and set it to

“Calculate Circumference”—your window should look something like

Figure 6.1, on the following page.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=101

RETURNING VALUES 102

Figure 6.1: Interface with the text view and renamed button moved

Next, we’ll add a text field to the window. Find the Text Field object in

the Library palette, and drag an instance onto the window. Be sure to

use the right object—you want the Text Field object, not the Text Field

Cell object.

We’ll also add a label to our window indicating that this new text field

should contain a value for a radius. Once again, locate a Label object

in the Library palette, and drag one onto the window. Double-click its

text, and set the label to “Radius:”—rearranging your items to look like

Figure 6.2, on the next page.

Linking the Interface

Think back to the basic procedure for accessing an interface object from

code. We need to add an IBOutlet to our NotifyingClass and then connect

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=102

RETURNING VALUES 103

Figure 6.2: Interface with added text field and label

this in Interface Builder. We only need to provide access to the new text

field—the label doesn’t need to be modified from code.

Switch to Xcode, open the NotifyingClass.h interface file, and add an

IBOutlet pointer to an NSTextField object:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue;

@end

Save that file, and switch to Interface Builder. In the main window for

the MainMenu.xib file, right-click (or C-click) the NotifyingClass object, and

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=103

RETURNING VALUES 104

Figure 6.3: Linking the new text field to the textField variable

you should see the newly added NSTextField object. Link this to the new

text field you created earlier, as in Figure 6.3.

Switch back into Xcode, and find the generateValue method inside the

NotifyingClass.m implementation. We need a way to set the value of our

circumference variable to the value held inside the text field. It turns

out that this is incredibly simple. In yet another demonstration of the

power of the Cocoa framework, we can ask the text field for its value as

a float by sending it the floatValue message. It will respond with a float

value, just like our own generateValue method does, set to the value

held inside the text field.

With this in mind, change the generateValue method to the following:

- (float)generateValue

{

float radius = [textField floatValue];

float circumference = 2 * pi * radius;

return circumference;

}

It really is as easy as that—Build & Run the application, enter a number

in the Radius text field, and click the Calculate Circumference button.

You should see the expected value appear inside the text view.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=104

METHODS AND ARGUMENTS 105

Even More Spice

Just to demonstrate how easy it is to add some expected functionality

to this basic application, let’s make our app a little more Mac-like. It

would be great if the radius-calculation code was called whenever the

user pressed the F or I key.

In ye olden days, this would have involved hugely complicated code

to intersect keystroke events sent from the keyboard, checking to see

what they were, and responding accordingly. Happily, we can instead

accomplish this in our own application without having to write any code

at all.

Open Interface Builder once again, and select the text field in the inter-

face. Take a look at the Connections palette (D- 5), and you’ll find a

“selector” connection in the Sent Actions section. Drag a connection

from the circle next to this selector over to the NotifyingClass object,

and release the mouse button. A pop-up window will appear contain-

ing the possible action messages for NotifyingClass—in this case, our

displaySomeText: action. Click this action in the pop-up, and the selector

will be linked to the action.

This selector is a link to the action that will be called on a particular

target when something happens. The button in our interface has its

selector set to the displaySomeText: method, called when the button is

clicked. There are a couple of options on a text field to specify when the

action is called; we’ll use the one that sends the action when the F or

I key is pressed.

So, switch to the Attributes palette for the text field (D- 1), and change

the Action drop-down box value to “Sent on Enter only.”

Now when you Build & Run the application from Xcode, you’ll find that

the circumference calculation is carried out whenever the user presses

F or I.

Hooray for the Cocoa framework!

6.2 Methods and Arguments

Now that we’ve seen how to return information at the end of a method,

let’s look at how to pass in information when a method is called.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=105

METHODS AND ARGUMENTS 106

So far, we’ve mostly been working with methods that don’t accept any

such information. In the previous section, we wrote the generateValue

method that was called with the code [self generateValue].

Back in Section 4.2, The Target-Action Mechanism, on page 59, we did

see that some methods take arguments, specified after a colon (:)—and

we have been working within just such a method ever since. The code

for the displaySomeText: method looks like this:

- (IBAction)displaySomeText:(id)sender

{

«code for method»

}

It was written to work using the target-action mechanism and thus ac-

cepts a single argument. We’ll return to this method a little later, but

for now let’s add a new method to our NotifyingClass interface.

Defining a New Method with an Argument

At the moment, our generateValue method handles the simple task of

generating the circumference itself. For the sake of this demonstra-

tion, let’s factor out the circumference-generation code into a separate

method. This new method should return a circumference calculated

from the radius it is given. The method therefore needs to accept a

single argument (the radius) for which it can return the correct value.

Naming Conventions

It’s worth taking a minute to talk about naming conventions. Hope-

fully you’ve noticed that, up until now, we’ve been naming variables

and methods in a very specific way. If a method name or variable is

made up of multiple words, those words are run together, but with the

first letter of each subsequent word made into a capital letter—e.g.,

“displaySomeText.” This is known as camel case and is a convention

you should follow when you write your own code. For method names

and variable names, you should not capitalize the first word (so “Dis-

playSomeText” would be incorrect), but you should capitalize the first

word in names of classes (e.g., “NotifyingClass”).

For methods that take arguments, there are some further conventions

you might like to follow. For a start, it’s usually a good idea to identify

the arguments you expect in the name of the method, like this:

- (void)buildHouse:(House *)houseToBeBuilt

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=106

METHODS AND ARGUMENTS 107

Having said that, one obvious exception is the naming of target-action

methods, like our displaySomeText:(id)sender method. The way that we

have named it is potentially confusing; it looks like we should display

some text that is provided as an argument. We can just about get away

with this, however, because target-action methods are always expected

to accept a single argument (a pointer to the object that triggered the

action). For our new circumference-calculation method, however, we

should definitely try to use a convention-driven name.

Given that we return a value calculated from a given radius, let’s call

this method circumferenceFromRadius: such that the argument supplied

is identified as being that necessary radius.

Method Syntax

We did look very briefly at the syntax for defining the arguments on a

method, back in Section 4.2, The Target-Action Mechanism, on page 59.

To add an argument, you need to add the colon, specify the type of

information being provided, and provide a name for that information.

The signature for our current generateValue method looks like this:

- (float)generateValue;

Since our new method also needs to return a float variable, and bearing

in mind the syntax for defining arguments, the signature for our new

method needs to look like this:

- (float)circumferenceFromRadius:(float)radius;

The (float)radius part identifies a single argument that will be provided to

the method, specifying that it will hold a float value. The radius specifies

the name of a variable that will then be assigned that value. We can

access this radius variable from within the method as if we had defined

it ourselves. Given that our previous generateValue method looks like

this:

- (float)generateValue

{

float radius = [textField floatValue];

float circumference = 2 * pi * radius;

return circumference;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=107

METHODS AND ARGUMENTS 108

we can write our circumferenceFromRadius: method like this:

- (float)circumferenceFromRadius:(float)radius

{

float circumference = 2 * pi * radius;

return circumference;

}

Adding the New Method

So, let’s add this new method right away. Start by adding the method

signature into the interface for NotifyingClass:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue;

- (float)circumferenceFromRadius:(float)radius;

@end

And then add the method to the implementation file before the final

@end:

@implementation NotifyingClass

«other methods»

- (float)circumferenceFromRadius:(float)radius

{

float circumference = 2 * pi * radius;

return circumference;

}

@end

Next, we need to change our generateValue method so that it uses this

new method rather than doing the calculation itself.

Calling a Method with Arguments

Once again we need to make use of self to call the method, just as

we called [self generateValue] earlier. To supply the value for the radius

argument, we specify it after a colon, like so:

[self circumferenceFromRadius:5.0];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=108

METHODS AND ARGUMENTS 109

With this in mind, let’s change our existing generateValue method to use

the new circumferenceFromRadius: method. Since we’re using the radius

provided by the user of the application, change your code to this:

- (float)generateValue

{

float radius = [textField floatValue];

float circumference = [self circumferenceFromRadius:radius];

return circumference;

}

Check that the application still functions as expected by building and

running it.

Code Consolidation
If it bothers you that we have turned what was originally a couple of

lines of code into a whole string of extra methods and code lines, then

there are a few things to keep in mind.

First, putting the circumference generation code into a separate method

aids in making the code “self-documenting.” Although the calculation to

generate a circumference is quite simple, consider what might happen

if this were some incredibly complex quantum physics calculation.

By writing the calculation code into a method called circumferenceFrom-

Radius, we don’t need to add a code comment to explain what we’re

doing. Similarly, since the new method is properly named, we don’t

need to add a comment inside it, either—a method called circumference-

FromRadius is obviously going to take a radius and generate a circumfer-

ence. If a method was named energyOfObjectWithMass:, it’s pretty clear

what that method would do, and you might even have some idea of how

it would be written.1

Second, we could consolidate the lines of code in each method and

avoid having to use any additional variables. The generateValue code

currently looks like this:

- (float)generateValue

{

float radius = [textField floatValue];

float circumference = [self circumferenceFromRadius:radius];

return circumference;

}

1. Hint: it uses a pretty famous equation relating E, m, and c....

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=109

METHODS AND ARGUMENTS 110

However, there isn’t really any particular reason to define a specific

radius variable to hold the value in the textField. We could instead nest

the square-bracket method calls and replace the use of the radius vari-

able with [textField floatValue], like this:

- (float)generateValue

{

float circumference = [self circumferenceFromRadius:[textField floatValue]];

return circumference;

}

This code still does exactly the same thing but gets rid of the extra radius

variable declaration. We could consolidate even further and remove the

use of the circumference variable, too; the return keyword indicates that

we are returning a value that we specify as the next word. We can

therefore replace the circumference variable with the code that generates

its value, like this:

- (float)generateValue

{

return [self circumferenceFromRadius:[textField floatValue]];

}

It’s entirely up to you how much you consolidate your code. You might

find it easier, particularly while you’re still learning, to use lots of vari-

ables to show what’s going on in the code.

Similarly, it wouldn’t detract too much from the readability of the cir-

cumferenceFromRadius: method to rewrite it like this:

- (float)circumferenceFromRadius:(float)radius

{

return 2 * pi * radius;

}

You might like to put that calculation inside normal brackets to confirm

in your mind that we’re returning the result of a calculation:

- (float)circumferenceFromRadius:(float)radius

{

return (2 * pi * radius);

}

Any of the methods in this section are perfectly acceptable when coding;

it’s all a matter of personal preference and what looks best to you.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=110

CLASS METHODS 111

6.3 Class Methods

You have just seen how to refactor the code for circumference genera-

tion into a separate method. It seems a little strange, however, to have

that method as part of the NotifyingClass object. Mathematical calcula-

tions don’t seem to have much to do with notifying the user.

Furthermore, this circumference calculation is the kind of thing we

might want to reuse in the future. We might have another part of our

application (or even a different application altogether) that needs to

calculate a circumference given a radius, and it would be strange to

have to link to or generate a NotifyingClass object just to perform this

calculation.

The alternative is to factor the circumferenceFromRadius: method into a

separate utility class, and we’ll do that now. We can also avoid having

to get hold of an instance of that new class by writing our code into

what is known as a class method.

Rather than calling the method on an instance of the object like this:

[someInstanceOfNotifyingClass circumferenceFromRadius:5.0];

e.g.,

[self circumferenceFromRadius:5.0];

we can just call the method on the name of the class itself, like this:

[ClassName circumferenceFromRadius:5.0];

e.g.,

[MathUtilities circumferenceFromRadius:5.0];

If we write a class called MathUtilities, we don’t need to create an instance

of that class to use its class methods.

Writing a New Class

Let’s try this out now by creating a new class in the current project.

Right-click (or C-click) the Classes group in the Xcode project browser

for TextApp, choose Add > New File..., and pick Objective-C class. Name

this new class “MathUtilities,” and tell Xcode to generate the necessary

.h file for you.

Once the files are created, we can add a new method signature into the

interface for the MathUtilities class. Back in Section 4.1, Defining a New

Method, on page 56, we saw a selection of method signatures from the

NSObject interface. Some of these had a + sign at the front, and some

had a - sign. It is this + or - that specifies whether a method is a class

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=111

CLASS METHODS 112

method or an instance method. So far we’ve been working with methods

with a - at the front, like this:

- (float)generateValue

{

«generation code»

}

which are methods that can be called on an instance of the class. To

write our math utility method, however, we’re going to need to use the

+ class method specifier.

We’re now working with two separate classes, each with an interface

and an implementation file. Take care to make sure that you put the

right code in the right file! Change the interface for the MathUtilities class

(MathUtilities.h) by adding the following:

@interface MathUtilities : NSObject {

}

+ (float)circumferenceFromRadius:(float)radius;

@end

Next, write the method implementation (MathUtilities.m) like this:

@implementation MathUtilities

+ (float)circumferenceFromRadius:(float)radius

{

float circumference = 2 * pi * radius;

return circumference;

}

@end

Finally, we need to change our NotifyingClass code to call this new class

method. We should probably remove the old circumferenceFromRadius:

code from this class to avoid any confusion, so first remove the method

signature in the interface file (NotifyingClass.h) so it looks like this:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue;

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=112

CLASS METHODS 113

To call our new circumferenceFromRadius: class method, we need to

change the call inside the NotifyingClass’s generateValue method from [self

circumferenceFromRadius:radius] to [MathUtilities circumferenceFromRadius:

radius].

It should now be pretty clear why it’s so important to follow the nam-

ing convention of capitalized class names and noncapitalized variable

names. It’s possible, for example, to realize instantly that [MathUtilities

circumferenceFromRadius:radius] is a call to a class method because of the

capitalization of MathUtilities.

Change your implementation for NotifyingClass (NotifyingClass.m) so that

it looks something like this:

@implementation NotifyingClass

- (IBAction)displaySomeText:(id)sender

{

float circumference = [self generateValue];

[textView insertText:[NSString

stringWithFormat:@"The circumference is: %f\n", circumference]];

}

- (float)generateValue

{

float radius = [textField floatValue];

float circumference = [MathUtilities circumferenceFromRadius:radius];

return circumference;

}

@end

With these changes made, let’s try to build the project and run the

application to make sure everything still works. Sadly, you’ll be greeted

by an error in Xcode, as shown in Figure 6.4, on the following page stat-

ing “error: ‘MathUtilities’ undeclared”—this is a slightly strange error,

but it indicates that Xcode has no idea what a MathUtilities object is

within this NotifyingClass file.

To solve this problem, we need to tell Xcode what the interface to a

MathUtilities object looks like. How do we do this? Well, we need to tell it

to look inside the MathUtilities.h interface file. Back near the beginning of

the book, you might remember that you saw a statement looking like

this:

#import <Cocoa/Cocoa.h>

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=113

CLASS METHODS 114

Figure 6.4: The error in Xcode about our use of the MathUtilities class

This appeared in the main.m file for the project. Subsequently, you

might have noticed #import statements like this one at the top of each

file we’ve worked with. The NotifyingClass.m file, for example, includes

the statement #import "NotifyingClass.h" at the top to tell the compiler to

include the interface description for the NotifyingClass class.

So, to tell the compiler about the MathUtilities class, we just need to add

in an #import statement for the MathUtilities.h interface file like this:

#import "NotifyingClass.h"

#import "MathUtilities.h"

@implementation NotifyingClass

«implementation continues»

Now, when you build the project, the error disappears, and everything

behaves as expected.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=114

PASSING VALUES BY REFERENCE 115

If we wanted, we could reuse the MathUtilities class in any future project

just by including its interface and implementation files and using the

relevant #import statement.

Class Method Limitations

Class methods are great when you have useful utility code, but since

they aren’t attached to any particular instance of a class, they obvi-

ously have no access to any of the instance variables on a class. If

we’d defined a class method for NotifyingClass, for example, that method

wouldn’t have been able to access the textView or textField outlets, since

those outlets have to be set for each particular instance. If you tried to

access them, Xcode would complain and refuse to compile your code.

We’ll see a number of examples of class methods in later chapters of this

book when we use several Apple-provided utility methods for classes in

the Cocoa Framework.

6.4 Passing Values by Reference

You might remember from Section 5.4, Using Memory Addresses for

Access, on page 93 that we mentioned it was possible to allow methods

to access variables that aren’t currently “in scope” by letting them know

the address of the variable.

One of the main uses of this is to allow you to return more than one

value when a method finishes. Our current generateValue method just

returns the calculated circumference. It might be nice to be able to pass

back the value that was used to generate the circumference in the first

place, but a return statement only can be used to return a single value

or object.

The solution in this case is to declare a variable in our displaySomeText:

method that will eventually hold the radius supplied by the user. We’ll

pass the address of this variable when we call the generateValue method

so that the generateValue method can change the value of the variable

held at that address.

Let’s start by changing the method signature for generateValue. It needs

to accept the address of a scalar variable (i.e., a pointer) as its only

argument. Since we’re dealing with a float variable, that’s the type of

pointer we need to use.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=115

PASSING VALUES BY REFERENCE 116

Change the interface for NotifyingClass so that the signature for the gen-

erateValue: method looks like this:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue:(float *)originalValue;

@end

Next, change the method implementation to match the method signa-

ture we just wrote:

- (float)generateValue:(float *)originalValue

{

«existing code»

}

Now we need to pass in the address of a variable whenever we call this

method. Let’s modify the displaySomeText: method by declaring a new

variable called radius, assigning it a default value of 0.0 and passing its

address to the generateValue: method:

- (IBAction)displaySomeText:(id)sender

{

float radius = 0.0;

float circumference = [self generateValue:&radius];

[textView insertText:[NSString

stringWithFormat:@"With a radius of %f, the circumference is: %f\n",

radius, circumference]];

}

Notice that we’ve also changed the output string so that it displays the

value of this radius.

If you want, check that everything works by building and running the

application. When you enter a radius in the box and click the button,

you should see output like this:

With a radius of 0.000000, the circumference is: 31.415926

Since we never actually change the value of the radius variable, it stays

at our default value of 0.0.

To change the value of a variable when we have a pointer to that vari-

able, we need to dereference the pointer—this all sounds pretty com-

plicated, but it’s really quite simple. We use the asterisk symbol again

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=116

CHAPTER SUMMARY 117

(remember to “follow the pointing star?”) and set its value just like any

other variable. So, change the generateValue: method to this:

- (float)generateValue:(float *)originalValue

{

float radius = [textField floatValue];

*originalValue = radius;

float circumference = [MathUtilities circumferenceFromRadius:radius];

return circumference;

}

By prepending an asterisk to the front of a pointer, we can access the

variable to which it points. Build & Run the project, and you’ll find that

the output is as expected:

With a radius of 5.000000, the circumference is: 31.415926

Possible Pitfalls

One very important thing to note: dereferencing a pointer can be a dan-

gerous business. Consider the following code fragment:

{

int *aPointerToAnInt;

*aPointerToAnInt = 30;

}

This snippet declares a pointer to an int variable and then dereferences

that pointer and assigns a value. Where is that value going? Well, as you

saw in Section 5.2, Combining Declaration and Assignment, on page 87,

when you create a variable but don’t assign a value, it has an unpre-

dictable value at runtime. The same goes for pointers—if aPointerToAnInt

points randomly to some memory currently in use by an object in your

application, or another variable, and you change what’s held in that

memory, your application will either crash or, at the very least, behave

very strangely.

6.5 Chapter Summary

We’ve written quite a lot of code in this chapter. We’ve looked at how

methods can pass information back once they’ve been called and how a

method can accept argument values. We modified our TextApp applica-

tion to accept a value from the user and perform a calculation on that

value. We even added some extra Mac-like behavior without having to

write any extra code.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=117

CHAPTER SUMMARY 118

We also discussed naming conventions for methods and classes and

saw how to use class methods for code that doesn’t need to apply to a

specific instance of a class.

In the next chapter, we’ll be talking about how to create new object

instances in memory using code rather than instantiating them in Inter-

face Builder. With the power to create comes the need to manage the

memory that those objects use, so look forward to learning about both

the creation of new objects in memory and how to decide when an object

has reached the end of its life and is ready to be destroyed.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=118

Chapter 7

Objects and Memory Management
You’ve been working with objects all the way through the book so far.

Right at the beginning, you saw how the objects that represent Tex-

tApp’s menu bar and window are instantiated based on the contents of

the MainMenu.xib resource file. You’ve since created class descriptions

for your own custom objects and generated instances of those objects

in that same file using Interface Builder.

It’s now time to see how you can create objects programmatically, or by

writing code.

7.1 Memory Considerations

Back in Chapter 5, Variables and Memory, on page 74, we saw how

information is stored and accessed in a computer’s memory. We con-

centrated our discussion on simple scalar types, such as basic integer

and decimal numbers, seeing how we write code to allocate a named

variable and then assign a value to that variable. We either used two

lines of code, like this:

int someWonderfulNumber;

someWonderfulNumber = 42;

or amalgamated them like this:

int someWonderfulNumber = 42;

Near the end of that chapter, we considered whether we could create

objects using code like this:

NSTextView aTextView;

Prepared exclusively for James Carlson

MEMORY CONSIDERATIONS 120

but stated that we couldn’t. To see why not, let’s find out what’s in-

volved in creating an object, by analyzing what an object is actually

made of.

The Structure of an Object

An object is an instance of a class. As described by its class descrip-

tion, an object has functionality (the methods) that typically work with

some sort of information held in memory (the instance variables). In

our NotifyingClass example from the previous chapters, we make use of

IBOutlet-tagged instance variables (declared in the @interface) to main-

tain links to the user interface items we need to communicate with.

Just like declaring a pointer to a scalar value in this way:

- (void)randomMethod

{

int *aPointerToAnInt;

}

requires some memory to hold the address to which that pointer points,

declaring an object pointer in an object interface like this:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

}

is also going to require memory.

Remember also how objects can inherit from other objects? We’ve been

working so far with subclasses of NSObject, and whenever one class

inherits from another class, it inherits both the functionality and all the

instance variables from the parent class.

Earlier in the book, we looked at the interface header file for NSObject.

Its @interface looks like this:

@interface NSObject <NSObject> {

Class isa;

}

It’s worth mentioning briefly at this point that you can think of the isa

variable as being used to keep track of the type of class the object is—

as in, “This particular object isa NSObject object, but this other object

isa NotifyingClass object.”

If we define the NotifyingClass class like this:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=120

ALLOCATING MEMORY FOR OBJECTS 121

then any NotifyingClass instance is going to need enough memory to hold

the three variables isa, *textView, and *textField. If we were then to declare

another class like this:

@interface BetterNotifyingClass : NotifyingClass {

int someReallyCoolNumber;

NSString *someAmazingString;

}

the instances of BetterNotifyingClass would need enough memory to hold

all the variables from NotifyingClass, plus the extra someReallyCoolNumber

and *someAmazingString.

When we want to create an object programmatically, therefore, we need

to make sure enough memory is allocated to hold all the instance vari-

ables, inherited or declared.

7.2 Allocating Memory for Objects

Thankfully, this seemingly incomprehensible task is handled extremely

easily in Objective-C. To allocate the necessary memory for an object,

NSObject provides us with a class method called alloc. You never need

to override this method; it “just works” and always allocates enough

memory for any particular object:

NSObject *someNewObject = [NSObject alloc];

What’s actually happening in this line of code is that the alloc method

(notice it’s definitely a class method because we’re calling it on the

NSObject class) is assigning an area in memory big enough to contain

an NSObject instance and then returning the address of that memory to

the someNewObject pointer.

We could allocate memory for one of our own NotifyingClass objects in

just the same way:

NotifyingClass *myFavoriteNotifier = [NotifyingClass alloc];

As well as allocating memory for the object, alloc also has the effect of

setting all the instance variables to zero or (for pointers) nil, but it does

no further object “setup” work. Before the object can be used, it needs

to be initialized properly.

Object Initialization

You might remember in Section 3.4, Object Initialization Messages, on

page 45, where I said that “When an instance of a class is created in

Objective-C, it is immediately sent a message to initialize itself.” You

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=121

ALLOCATING MEMORY FOR OBJECTS 122

then learned that this message is the init message and made use of it to

log a message to the console:

- (id)init

{

NSLog(@"Hello World! I'm a new NotifyingClass instance!");

return self;

}

You may also remember that when we wrote this code, we did so with

the disclaimer that it wasn’t a complete initialization method—in a few

moments, we’ll discover one of the reasons why this is the case.

Calling the init Method

So that an object is always properly initialized ready for use before

doing anything else, the init method needs to be called on an object

immediately after allocation.

It would be reasonable to assume, therefore, that you should do this:

{

NotifyingClass *myFavoriteNotifier = [NotifyingClass alloc];

[myFavoriteNotifier init];

«do something with the myFavoriteNotifier object»

}

This code allocates memory for the object and then sends the object a

message to initialize itself.

In fact, initializing objects in this way is not a good idea, and we’ll get

to see why a little later in the book. Instead, just like we use one line of

code to declare and initialize scalar types, like this:

int luckyForSome = 13;

we can (and should) amalgamate our object allocation and initialization

code, like this:

NotifyingClass *myFavoriteNotifier = [[NotifyingClass alloc] init];

Here we make use of nested square brackets, such that the “inside”

command allocates an object and the “outside” command initializes

that object. What is eventually returned to our myFavoriteNotifier pointer

is a properly initialized NotifyingClass instance, ready for use.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=122

ALLOCATING MEMORY FOR OBJECTS 123

Returning self

Back in Section 3.4, One Final Thing, on page 53, we added an extra

line to our very first init method, stating return self;. I said that I’d later

explain why this was; hopefully, you now have some idea.

Because we are nesting our alloc and init calls into one line, like so:

ClassName *pointerToObject = [[ClassName alloc] init];

we need the init method to return the address of the initialized object

back for assignment to the pointer.

Initializing with Inheritance

When the init message is sent to an object, it is important that the whole

object is initialized properly. If we were to make a glorified number-

storing object, like this:

@interface WonderfulNumber : NSObject {

float storedNumber;

}

and write its init method like this:

- (id)init

{

storedNumber = 42;

return self;

}

all would seem to be perfectly reasonable. If you created one of these

objects, like this:

WonderfulNumber *someWonderfulNumber = [[WonderfulNumber alloc] init];

the storedNumber variable would be set to 42.

The difficulty comes if you remember what we’ve said about inherit-

ing instance variables and behavior. When an object initializes its own

instance variables, it needs to make sure that its inherited instance

variables have been initialized properly too.

We need a way to allow the NSObject part of our object to initialize itself,

before we continue initializing the rest of the object.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=123

CREATING OBJECTS IN CODE 124

We do this by “passing up” the init message to super, like this:

- (id)init

{

[super init];

storedNumber = 42;

return self;

}

This time, when the init message is sent to our WonderfulNumber object,

it first calls the original, overridden init method from its parent class

(NSObject) to initialize the inherited parts and then carries on initializing

itself as expected.

It happens to be the case that the init method for NSObject doesn’t do

any initialization—the isa instance variable is actually set up in alloc.

It’s possible that the design of NSObject might change in the future,

though, so it’s good practice to keep all your init methods in the same

format—you should always call [super init] when you inherit from any

class.

If another class were to inherit from our WonderfulNumber class, for

example, it would need to implement its init method in the same way,

and we would end up with a cascade of inits—the new init method calls

the WonderfulNumber’s init method, which in turn calls the NSObject init

method, kind of like the woman who swallowed a bird to catch the spi-

der to catch the fly—with the object effectively getting initialized “from

the top down.”

7.3 Creating Objects in Code

Now that we’ve talked through some theory about objects and alloca-

tions, let’s start putting that theory into practice by defining a new

object and creating instances of it in TextApp.

We’ll design a class description for our WonderfulNumber class; this class

will be used to store a float number. We’ll be able to set and access that

float number by sending messages to the WonderfulNumber object; later

we’ll even add the capability to be able to extract the number as a text

string.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=124

CREATING OBJECTS IN CODE 125

Adding a New Class

As usual, open the TextApp project in Xcode, and then right-click (or

C-click) the Classes group, choosing Add > New File... to add a new

Objective-C class called WonderfulNumber.

When the WonderfulNumber.h file appears, change the interface to look

like this:

@interface WonderfulNumber : NSObject {

float storedNumber;

}

- (void)setStoredNumber:(float)newNumber;

- (float)storedNumber;

@end

This interface specifies that we will initially be responding to two mes-

sages: a message to set the value of the number being stored and a

message asking for the value to be returned.

Next, we’ll write the implementation for the class, so copy the two

method signatures from the interface, switch to the WonderfulNumber.m

implementation file, and paste them in, making them into methods with

their curly braces. Since the actual code inside the methods is very sim-

ple, let’s write it straightaway:

@implementation WonderfulNumber

- (void)setStoredNumber:(float)newNumber

{

storedNumber = newNumber;

}

- (float)storedNumber

{

return storedNumber;

}

@end

The setStoredNumber: method simply sets the storedNumber instance vari-

able to the value provided in the newNumber variable; the storedNumber

method just returns the stored number. Pretty straightforward!

Before we create any instances of our new class, let’s add an init method

to set an arbitrary initial value for the storedNumber instance variable.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=125

CREATING OBJECTS IN CODE 126

@implementation WonderfulNumber

- (id)init

{

[super init];

storedNumber = 42;

return self;

}

- (void)setStoredNumber:(float)newNumber

«code continues»

Allocating an Instance of Our New Object

Now that we’ve made a class description for our WonderfulNumber, let’s

create an instance of it in our NotifyingClass’s displaySomeText: method.

Remember that this is the method called when the user clicks the but-

ton in the interface? We’ll reuse this code for now to generate a Wonder-

fulNumber instance and then output the value of its stored number to

the text view.

Open the NotifyingClass.m file, and change the displaySomeText: method to

this:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

float wonderfulValue = [myWonderfulNumber storedNumber];

[textView insertText:[NSString

stringWithFormat:@"My Wonderful Value = %f\n", wonderfulValue]];

}

Here we allocate and initialize a new WonderfulNumber object, then we

allocate a float variable to hold its stored value, before displaying that

value in the text field.

There’s one extra thing we need to do before we can build the applica-

tion; in order for the NotifyingClass object to be able to use a Wonderful-

Number object, we need to #import the interface file for the WonderfulNum-

ber class at the top of the NotifyingClass.m file:

#import "NotifyingClass.h"

#import "MathUtilities.h"

#import "WonderfulNumber.h"

@implementation NotifyingClass

«code continues»

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=126

CREATING OBJECTS IN CODE 127

If you Build & Run, you should find that the text field displays the

following output when you click the Calculate Circumference button:

My Wonderful Value = 42.000000

This might seem like a whole lot of work to output a simple number,

but it is a useful exercise!

Remember that we can set the value held by a WonderfulNumber object

too? Let’s try that now by adding a line of code:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

[myWonderfulNumber setStoredNumber:pi];

float wonderfulValue = [myWonderfulNumber storedNumber];

[textView insertText:[NSString

stringWithFormat:@"My Wonderful Value = %f\n", wonderfulValue]];

}

It’s not too hard to predict what gets output this time:

My Wonderful Value = 3.141593

It might be irritating you that the button you click in TextApp is still

called Calculate Circumference. Let’s change this now. Open MainMenu.

xib in Interface Builder, and change the text on the button to “Display

Value.” While we’re here, let’s change the label next to the text field too

so that it simply says “Input Value:”—this way we can use the text field

later to accept input from the user.

A Hidden Problem

So, we’ve successfully allocated, initialized, and made use of an object,

entirely by writing code. That really wasn’t too bad, was it?

Unfortunately, there is a problem with our current code. To find out

what it is, let’s take a quick look at the documentation for NSObject in

the Xcode Documentation Browser.

If you browse through the methods on NSObject related to “Creating,

Copying, and Deallocating Objects,” you’ll find that NSObject has a deal-

loc method. The documentation states that “You never send a dealloc

message directly. Instead, an object’s dealloc method is invoked indi-

rectly through the “release” NSObject protocol method.”

This won’t make much sense right now, but the basic idea is that an

object is sent the dealloc message when it is about to be removed from

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=127

CREATING OBJECTS IN CODE 128

memory. We’ll get to understand all that release protocol stuff in just a

few sections.

Let’s implement the dealloc method on our new object so we can do

some checking. We’ll log a message to the console (rather than the text

view) to show when it’s being called. We’ll also add a message log in the

init method so that we see when the object is first initialized. Make these

changes to our WonderfulNumber implementation:

@implementation WonderfulNumber

- (id)init

{

[super init];

storedNumber = 42;

NSLog(@"A WonderfulNumber object was initialized!");

return self;

}

- (void)dealloc

{

NSLog(@"A WonderfulNumber object was deallocated!");

[super dealloc];

}

- (void)setStoredNumber:(float)newNumber

«code continues»

We’re back to our old friend, NSLog()—before you Build & Run, make

sure that the Debugger Console is open in Xcode (B-D- R).

When you run the application and click the button a few times, you

should see something like this in the console:

2009-05-26 18:41:56.981 TextApp[2471:10b] Object was initialized!

2009-05-26 18:41:57.948 TextApp[2471:10b] Object was initialized!

2009-05-26 18:41:58.437 TextApp[2471:10b] Object was initialized!

2009-05-26 18:41:58.861 TextApp[2471:10b] Object was initialized!

2009-05-26 18:41:59.076 TextApp[2471:10b] Object was initialized!

OK, so now the “hidden” problem is becoming more apparent. We’ve

stated that the dealloc method is called on an object just before it is

removed from memory, but since we’re never seeing the output in the

console, the dealloc method is clearly never being called, from which we

can infer that the object isn’t being deallocated.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=128

THE OBJECT LIFE CYCLE 129

Given what you know about the scope of a variable, this seems bizarre.

Here’s the code again that creates the WonderfulNumber object:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

[myWonderfulNumber setStoredNumber:pi];

float wonderfulValue = [myWonderfulNumber storedNumber];

[textView insertText:[NSString

stringWithFormat:@"My Wonderful Value = %f\n", wonderfulValue]];

}

The myWonderfulNumber object instance is created in the first line of the

method. Surely it ceases to exist when the method’s closing brace is

reached?

In fact, what ceases to exist when the method ends is the pointer to

the object, as in the actual myWonderfulNumber pointer. The object that

it points to is still in existence, left in some kind of limbo with no refer-

ence to it at all, like having a cell phone without a phone number. This

explains why we never see the message from the dealloc method—the

object is never deallocated.

This is what’s known as a memory leak and is something you will likely

spend much of your programming life trying to eradicate. Although it’s

maybe not so much of an issue to waste a few bytes worth of mem-

ory on a WonderfulNumber object given that today’s computers typically

have several gigabytes of physical RAM, this obviously could become a

major issue if you start leaking thousands of particularly large objects.

It becomes really serious on the iPhone, where your application has

very limited available memory.

So, we need some way to specify that an object is no longer needed

in order that it can be deallocated. It’s important, though, to reiterate

Apple’s advice that you should never call dealloc directly.

7.4 The Object Life Cycle

To come up with a strategy for “getting rid” of objects from memory, we

need to make sure that we know when they are no longer needed.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=129

THE OBJECT LIFE CYCLE 130

Reclaiming Your Memory

If you’re concerned at this point that you’ve somehow lost a
few bytes of your computer’s RAM, never to be seen again,
you needn’t worry.

When an application terminates (that is, the user chooses to
quit the app or the operating system decides to terminate it for
them), all the memory used by the application is released.

This is why we didn’t need to worry previously about getting rid
of those NotifyingClass instances we added to our application
back in Chapter 3, All About Objects, on page 30.

In our example of using a WonderfulNumber object earlier, it might make

sense to do something like this:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

«work with myWonderfulNumber»

[myWonderfulNumber removeYourselfFromMemory];

}

However, there is no removeYourselfFromMemory method—and for good

reason.

Maintaining an Interest

A lot of the time, you will be working with objects that are needed for

longer than just the duration of one method. Frequently, you’ll create

an object, do something with it, pass it as an argument on messages to

other objects, and although you might be finished with it in one place,

another piece of code might still want to have access.

Let’s consider a hypothetical (and rather convoluted) application that

displays a number on screen. When a menu item is chosen in the appli-

cation, a WonderfulNumber object is created, and its number is displayed

in a window. The user can open lots of new windows if they want, and

each time, the new window will show the number held by the Wonder-

fulNumber object. Only when all the windows are closed is the Wonderful-

Number object no longer needed.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=130

THE OBJECT LIFE CYCLE 131

In this particular case, we can’t call some kind of removeYourselfFrom-

Memory method at the end of the code that creates the WonderfulNumber

object, because it will still be needed. The problem is that we don’t know

how long it will be needed or by how many other objects.

We need some way of keeping track of how much “interest” there is in

an object—in other words, how many other objects are interested in

keeping a specific object in memory for them to talk to.

Introducing Reference Counting

The solution offered by the Cocoa framework is through a technique

called reference counting. This technique allows objects to declare that

they have an interest in some specific object and also to confirm when

they no longer have that interest.

To get the terminology correct here, if an objectA wants to declare inter-

est in some objectB, objectA is said to “retain” objectB. When objectA

decides it no longer has any interest in objectB, objectA is said to “re-

lease” objectB.

Reference counting works by maintaining a retain count on every object.

When an object is retained, the retain count is incremented by one.

When an object is released, the retain count is decremented by one. If

the retain count on an object reaches zero, it automatically gets deallo-

cated from memory.

From our earlier number-displaying window example, each time a new

window is opened to display the WonderfulNumber object, that window

retains the WonderfulNumber object. Whenever a window is closed, that

window releases the object. When all the windows are closed, the retain

count will be zero, so the object will be deallocated.

The Retain Count After Allocation

So, how does all this retain/release business fit in with our memory

leak on our WonderfulNumber object? Well, since we’re making use of the

object, we might think that we should retain it after we’ve created it, and

then at the end of the method we should release it.

Before we go ahead and modify our displaySomeText: method, let’s take

a quick minute to check our theories on allocation and deallocation.

We’ve just said that when an object’s retain count is zero, it gets deallo-

cated from memory, but given that we know our WonderfulNumber object

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=131

THE OBJECT LIFE CYCLE 132

wasn’t being deallocated, its retain count must have been greater than

zero to start with.

The reason for this is that when an object is allocated, it begins life with

a retain count of 1. So, when we wrote the line

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

not only did we allocate memory for the object, but we also effectively

declared our interest in using the object, so we didn’t explicitly need to

retain it.

Another way of looking at this is that because we created an object

using alloc, we “agreed” to take responsibility for it. We agreed that we

would release it when we were finished using it.

With this in mind, let’s take up our burden of responsibility as object

creators and release the object at the end of the method:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

[myWonderfulNumber setStoredNumber:pi];

float wonderfulValue = [myWonderfulNumber storedNumber];

[textView insertText:[NSString

stringWithFormat:@"My Wonderful Value = %f\n", wonderfulValue]];

[myWonderfulNumber release];

}

Now that we’re sending the release message to the object, let’s check

what happens when we Build & Run. You’ll see something like this in

the debugger log:

2009-05-27 19:01:47.466 TextApp[1848:10b] Object was initialized!

2009-05-27 19:01:47.467 TextApp[1848:10b] Object is being deallocated!

2009-05-27 19:01:50.849 TextApp[1848:10b] Object was initialized!

2009-05-27 19:01:50.850 TextApp[1848:10b] Object is being deallocated!

Each time you click the button, a WonderfulNumber object is allocated

and initialized, used (to output the value to the text view), then released,

et voilà! It is deallocated.

Hooray! Now we are being good memory citizens, creating objects and

releasing them from memory when no longer needed.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=132

DENYING RESPONSIBILITY 133

7.5 Denying Responsibility

Given the title of this section, you can probably guess that there are

times when this whole “responsibility for an object” thing isn’t so

clear-cut.

To find one such occasion, let’s implement some functionality I men-

tioned earlier. We’ll add a method to our WonderfulNumber class that

returns the stored number as an NSString object. You’ll recall that string

refers to a string of printable characters—such as hooray for responsibil-

ity!—so by “converting” a number into a string, we mean that we are

providing its representation as physical characters rather than numer-

ical value. We could represent the number 42, for example, as a two-

character string, made up of the printable characters 4 and 2.

Let’s start by adding a new method to the WonderfulNumber class @inter-

face (in WonderfulNumber.h):

@interface WonderfulNumber : NSObject {

float storedNumber;

}

- (void)setStoredNumber:(float)newNumber;

- (float)storedNumber;

- (NSString *)storedNumberAsString;

@end

In the implementation for this new method, we’re going to need to allo-

cate a new string object based on the value of a float variable. Let’s

examine the documentation for NSString to see what might be available

to us.

Initializing Strings

Looking at the class reference for NSString in the Xcode documentation

viewer, we find there are various routes we might take. The relevant

section is titled “Creating and Initializing Strings.”

Notice that after the basic init method, there are a number of initializa-

tion methods that take arguments, such as initWithFormat:. These meth-

ods work just like a standard init method but take the supplied argu-

ment to set up the string in some way as it is initialized. We’ll see how

to make our own initWithSomething: methods in the next section.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=133

DENYING RESPONSIBILITY 134

We’re going to make use here of the initWithFormat: initializer. If you click

the link to read the documentation for the method, you’ll see that it

“Returns an NSString object initialized by using a given format string as

a template into which the remaining argument values are substituted.”

If you look down a little way, you’ll find a link to the “String Format

Specifiers” information, which lists the kinds of things you can substi-

tute into a string. What this really means is that if you were to write

code like this:

{

float firstVariable = 55.0;

int secondVariable = 11;

NSString *newString = [[NSString alloc]

initWithFormat:@"Value of firstVariable is %f, secondVariable is %i",

firstVariable,

secondVariable];

}

the newString that you’d end up with would have those values substi-

tuted into it, so it would be as follows:

Value of firstVariable is 55.000000, secondVariable is 11

You might recognize that we’re already using a format string like this

in our displaySomeText: method to output the values of our variables to

the text view in the user interface.

Since we just want to return a string representing the value of the

variable, we can use a simple format string of @"%f" and provide our

float variable as an argument.

So, let’s implement our new storedNumberAsString method (in Wonderful-

Number.m), like this:

- (NSString *)storedNumberAsString

{

NSString *stringToReturn = [[NSString alloc]

initWithFormat:@"%f", storedNumber];

return stringToReturn;

}

This method allocates and initializes a new string and returns that

string at the end of the method. With any luck, you might have alarm

bells ringing in your head at this point. We’re allocating a new object,

but we’re not releasing it—we are not fulfilling our responsibility for the

object that we’ve created.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=134

DENYING RESPONSIBILITY 135

If we were to release the object before the end of the method, like this:

- (NSString *)storedNumberAsString

{

NSString *stringToReturn = [[NSString alloc]

initWithFormat:@"%f", storedNumber];

[stringToReturn release]; // Uh-oh!

return stringToReturn;

}

the object would be deallocated after the call to release, so by the time

we return it, it wouldn’t exist anymore. We’d be returning an invalid

object.

Note that we also don’t want to have to release the string in any other

method that ever has to use this storedNumberAsString—unless we’ve

called alloc] init] or retain on an object, we don’t want to have to release

it. Using code like this:

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

[myWonderfulNumber setStoredNumber:pi];

NSString *numberString = [myWonderfulNumber storedNumberAsString];

«do something with numberString»

[numberString release]; // Uh-oh!

}

is not a good idea—apart from anything else, we’d have to leave some

kind of instruction for anybody ever using our WonderfulNumber object

that they must always release any string that they accessed via stored-

NumberAsString.

We need a way of passing an object on to someone else, but doing so in

a way that explicitly “washes our hands” of any responsibility for it.

Introducing autorelease

Cocoa offers this ability through something called autoreleasing.

By calling autorelease on an object rather than release, we can delay the

object release until the next run through the event loop. This sounds

scarier than it is; what it really means is that the object will persist

during the currently executing code (which applies across methods),

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=135

DENYING RESPONSIBILITY 136

but once the code finishes executing and your application goes back to

waiting for the user to do something, the object will be released. If the

retain count at that point is zero, it will be deallocated.

So, let’s change the storedNumberAsString method to this:

- (NSString *)storedNumberAsString

{

NSString *stringToReturn = [[NSString alloc]

initWithFormat:@"%f", storedNumber];

return [stringToReturn autorelease];

}

Because we’re returning the string as autoreleased, it will be released

once the current code finishes executing.

This means that we can now safely make use of the string generation

method in our NotifyingClass’s displaySomeText: method, so rewrite it like

this (in NotifyingClass.m):

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

[myWonderfulNumber setStoredNumber:pi];

NSString *numberString = [myWonderfulNumber storedNumberAsString];

[textView insertText:numberString];

[myWonderfulNumber release];

}

Here, after creating our WonderfulNumber object, just like before, we cre-

ate a pointer to a string object, numberString, assign it the storedNumber

string from that myWonderfulNumber object, and insert it into the text

view.

The only release call we need to make is to the myWonderfulNumber

object, because that’s the only object we’ve allocated in the method.

Once the displaySomeText: method finishes, the numberString pointer will

go out of scope, and since this is the “end of the line” as far as this par-

ticular event-response is concerned, the string object that was returned

by storedNumberAsString will be released and subsequently deallocated.

Cool, huh?

If this section isn’t absolutely 100% clear in your mind right now, try

not to worry too much. Understanding “manual” memory management

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=136

INITIALIZING WITH ARGUMENTS 137

is one of the most difficult things you’ll have to deal with in Cocoa.

It’s definitely one of those things, though, that once you get it, it really

doesn’t seem so hard.

It’s also worth mentioning something called garbage collection, which

is a feature you can enable in your code that will automatically hunt

around in your application for any objects that aren’t needed anymore,

getting rid of them for you so you don’t have to worry about all this

manual memory management stuff.

We’ll mention this again later in Section 14.1, Garbage Collection, on

page 379, but it’s definitely worth persevering with retain and release

right now so that you have an enhanced understanding of what’s going

on behind the scenes. And, at the time of writing, garbage collection is

available only on the Mac desktop, not on the iPhone. If you want to

write software for the iPhone, you’re going to need a very good under-

standing of manual memory management.

7.6 Initializing with Arguments

Let’s take a step back for a moment, to look at our object initialization

code. We’ve been making use of an initWithFormat: method on NSString

that enabled us to create a string object using a substitution.

We’re currently creating a WonderfulNumber object with one line of code

and then using a second line of code to set the value of its stored num-

ber. It would be great if we could provide an initialization method for

any newly allocated WonderfulNumber objects to begin life with a speci-

fied value.

In other words, just like we declare and assign a numerical value with

code like this:

{

float luckyForSome = 13;

}

let’s merge these two lines of code:

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc] init];

[myWonderfulNumber setStoredNumber:pi];

}

into one.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=137

INITIALIZING WITH ARGUMENTS 138

Rewriting the init Method

All we have to do is to provide an init method that accepts an argument

and proceed just like we did before. With this in mind, let’s change the

existing init method in WonderfulNumber.m into this one:

- (id)initWithNumber:(float)newNumber

{

[super init];

storedNumber = newNumber;

NSLog(@"Object was initialized!");

return self;

}

You’ll recall from Section 3.4, Setting Up Our Class Description, on

page 45 that because init is listed in the interface for NSObject, we didn’t

need to list it in our inherited class descriptions. Now that we have a

new initialization method called something other than init, we need to

list it in the interface for WonderfulNumber so that objects can use it.

Add the new method signature into WonderfulNumber.h:

@interface WonderfulNumber : NSObject {

float storedNumber;

}

- (id)initWithNumber:(float)newNumber;

- (void)setStoredNumber:(float)newNumber;

- (float)storedNumber;

- (NSString *)storedNumberAsString;

@end

Next, let’s modify NotifyingClass’s displaySomeText: method (in Notifying-

Class.m) to use it:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber = [[WonderfulNumber alloc]

initWithNumber:pi];

NSString *numberString = [myWonderfulNumber storedNumberAsString];

[textView insertText:numberString];

[myWonderfulNumber release];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=138

INITIALIZING WITH ARGUMENTS 139

Note that we’ve removed the line that explicitly sets the number value

because, obviously, we’re now doing it when we allocate the object

instance.

If you Build & Run to check everything works, you should find that the

application still functions as expected.

A Small Problem

This is all very well, but what happens if someone comes along and tries

to allocate an instance of our new WonderfulNumber object by using a

basic init? We can’t stop them from using init because init is the standard

initialization method. And, since it exists as an inherited method from

NSObject, the following code will appear to work just fine:

{

WonderfulNumber *dodgyNumber = [[WonderfulNumber alloc] init];

}

The problem is that our object is never properly initialized; none of the

initialization code that we had written for it (which, admittedly, is only

a single line to set the initial value for the storedNumber variable) is ever

being called. In a large object with lots of important instance variables,

this could be a big problem.

The Designated Initializer

This is where the idea of the “designated initializer” comes in. You

decide what your optimum initialization method would be like (for ex-

ample, [[SportsCar alloc] initWithColor:@"red"]) and then provide a basic init

method that calls that optimum method, supplying some “default”

value.

We need, therefore, to add a basic init method back into our Wonderful-

Number implementation that calls our initWithNumber: initialization

method, supplying the original arbitrary number. So, add this addi-

tional method into WonderfulNumber.m:

@implementation WonderfulNumber

- (id)init

{

return [self initWithNumber:42];

}

- (id)initWithNumber:(float)newNumber

«code continues»

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=139

UTILITY CLASS METHODS 140

Now, if someone uses init to initialize a WonderfulNumber class rather

than our preferred initWithNumber: method, everything will still be OK.

7.7 Utility Class Methods

When you looked at the documentation for NSString, you might have

noticed that there were some additional class methods listed after the

initWithSomething: initialization methods, looking like this:

+ stringWithFormat:

+ localizedStringWithFormat:

+ stringWithCharacters:length:

+ stringWithString:

These are utility class methods that can be called on the NSString class

itself and provide you with a ready-made and initialized object. The

advantage of using these methods is that they autorelease the object

they return, so you don’t need to worry about taking any responsibility.

This means that you can generate an NSString instance without using

alloc, and therefore you don’t have to call release. Because they return

a ready-built object, they are often referred to as factory methods.

To get a better understanding of how these methods work, we’ll write

our own class factory method for WonderfulNumber in a moment. First,

though, let’s change our existing storedNumberAsString method to use

one of the NSString factory methods:

- (NSString *)storedNumberAsString

{

NSString *stringToReturn = [NSString stringWithFormat:@"%f", storedNumber];

return stringToReturn;

}

Because the NSString class method returns an already-autoreleased

string object, we don’t need to autorelease when we pass it back. We’ve

cunningly avoided having to worry about responsibility.

Writing Our Own Class Factory Method

Now that we’ve used one of these methods from NSString, let’s write our

own for the WonderfulNumber object. By convention, these sorts of class

methods always take the following form:

«objectType»With«optional arguments:»

just like the stringWithFormat: method we’ve already used.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=140

UTILITY CLASS METHODS 141

Following this convention on our own object, we’ll call the class method

wonderfulNumberWithFloat:. This makes it clear that we will return an

autoreleased WonderfulNumber object, initialized using a provided float

argument.

First add the new method to the interface:

@interface WonderfulNumber : NSObject {

float storedNumber;

}

- (id)initWithNumber:(float)newNumber;

+ (id)wonderfulNumberWithFloat:(float)newNumber;

- (void)setStoredNumber:(float)newNumber;

- (float)storedNumber;

- (NSString *)storedNumberAsString;

@end

Then implement it like this:

+ (id)wonderfulNumberWithFloat:(float)newNumber

{

WonderfulNumber *numberToReturn = [[WonderfulNumber alloc]

initWithNumber:newNumber];

return [numberToReturn autorelease];

}

Remember to use a + on the front because it is a class method.

This code creates a new WonderfulNumber object, just like we are cur-

rently doing in the displaySomeText: method, and then returns the auto-

released object.

Planning for the Next Generation

Although this code will work just fine right now, it’s wise to think about

the future. It’s entirely possible that someone might come along and

want to subclass our WonderfulNumber class, maybe calling it EvenMore-

WonderfulNumber.

Because the new class will inherit the methods from the parent class,

it would be possible to call [EvenMoreWonderfulNumber wonderfulNumber-

WithFloat:55.4];. Under the existing code, this would allocate and return

a new WonderfulNumber object rather than the expected EvenMoreWon-

derfulNumber object.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=141

UTILITY CLASS METHODS 142

To ensure that the correct object is always returned for any particular

class, we need a way to refer to the class itself. Back in Section 6.1,

Talking to Ourselves, on page 99, we saw how the self keyword is used

to refer to the object instance on which a method has been called. The

Objective-C language allows us to use self in a class method too, but in

this case to refer to the class itself.

With that in mind, change the wonderfulNumberWithFloat: method to this:

+ (id)wonderfulNumberWithFloat:(float)newNumber

{

id numberToReturn = [[self alloc] initWithNumber:newNumber];

return [numberToReturn autorelease];

}

Note that we’ve also changed the type of the numberToReturn pointer to

id, our friendly generic object pointer,1 since we don’t know exactly what

type of object we’re going to get back from the [[self alloc] initWithNumber:

newNumber] method call. This also explains why these class factory

methods always have a return type of id, rather than hard-coding the

type of the class.

Using the new code, if wonderfulNumberWithFloat: were called on a Even-

MoreWonderfulNumber subclass, the method would still return the cor-

rect object.

Using the Method

We can now change NotifyingClass’s displaySomeText: method to use our

new WonderfulNumber class factory method:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber =

[WonderfulNumber wonderfulNumberWithFloat:pi];

NSString *numberString = [myWonderfulNumber storedNumberAsString];

[textView insertText:numberString];

}

Notice how this method has suddenly become much shorter! We no

longer need to call release on the WonderfulNumber object, because it has

1. Check that your code is id numberToReturn rather than id *numberToReturn—because id

means “a pointer to an object,” you don’t want the asterisk on the front of the variable

name. If you leave the asterisk on, you’re actually declaring a pointer to a pointer to an

object!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=142

UTILITY CLASS METHODS 143

already been autoreleased for us. If you want to make it even shorter,

you can remove the need to use a numberString variable to hold the string

to display:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber =

[WonderfulNumber wonderfulNumberWithFloat:pi];

[textView insertText:[myWonderfulNumber storedNumberAsString]];

}

When to Use alloc and When to Use Factory Methods

Knowing when to use a class factory method and when to create an

object using alloc isn’t always very clear. Right now, it might seem really

appealing to use class methods all the time.

Sometimes, though, you’ll need an object to persist in memory for a

while; just leaving an object alive for the current run through the event

loop isn’t going to work out. As an example, if you define an object that

has as one of its instance variables a pointer to another object, and

it needs that object to exist right from initialization until deallocation,

you would typically create the second object using alloc] init] in the first

object’s init method and then release it in the dealloc method.

Additional Cool String Stuff

The NSString class has some pretty amazing functionality, some of which

we’ll take advantage of right now to output a proper message to the text

view.

One of the methods provided is called stringByAppendingString:. The

method name is fairly self-explanatory; you call it on an existing string

object and provide a string to append, and it returns a new string

instance accordingly. Again, because there’s no alloc call involved, the

returned string object doesn’t have to be released.

Let’s use it in our displaySomeText: method to write out a more informa-

tive string:

- (IBAction)displaySomeText:(id)sender

{

WonderfulNumber *myWonderfulNumber =

[WonderfulNumber wonderfulNumberWithFloat:pi];

NSString *stringToOutput = @"The value is: ";

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=143

CHAPTER SUMMARY 144

stringToOutput = [stringToOutput

stringByAppendingString:[myWonderfulNumber storedNumberAsString]];

[textView insertText:stringToOutput];

}

We’re doing various things here. First, we create a new NSString object

using the special notation @" ". We’ve seen this style of string creation

before, but it’s worth explaining now that this is a special shorthand

way of creating an NSString object from a basic string of characters.

Next, we take the stringToOutput pointer and reassign it to the result of

calling the stringByAppendingString: method on the original stringToOutput

object. This is equivalent to using code like this:

{

NSString *stringToOutput = @"The value is: ";

NSString *changedString = [stringToOutput

stringByAppendingString:[myWonderfulNumber storedNumberAsString]];

stringToOutput = changedString;

}

As an exercise, you might like to try adding a reassignment to append

the special newline character to the string (tip: you need to append

@"\n"). This will mean that successive button presses will result in each

output appearing on a new line.

7.8 Chapter Summary

Wow, this has been a long and intense chapter. It’s going to need a

lot more experience, caffeine, or both to fully understand much of the

content. Try not to worry if some of the concepts seem a little hazy right

now; they should soon become second-nature once you’ve spent some

time writing code. The main thing to take away from this chapter is that

if you allocate an object using alloc, you need to take responsibility for

releasing it when you’re done.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=144

Chapter 8

Collecting Information
In previous chapters you spent time working with simple scalar vari-

ables holding basic numbers, along with strings of characters held as

NSString objects. In the real world, it’s common to need to work with col-

lections of data, such as a shopping list of items, rather than just the

odd single string of text here and there.

When writing software, there are various ways to work with collected

information. You could just define a new class that has variables to hold

a specified number of “pieces of information”—such as a simple Patient

object, for example, that provides string variables for the patient’s first

and last names and a date variable for their date of birth. Or, you could

define a shopping list object that had variables for up to ten items.

For a lot of the time, however, it’s common not to know exactly how

many items will need to be maintained as a group; normal shopping

lists could potentially contain tens or hundreds of items, and a patient

might have a seemingly unending list of medical problems.

8.1 Introducing Arrays

In programming terms, a simple collection of objects is held as an array

of information. An array can hold as many items as you’d like, and once

you’ve established an array with content, you can subsequently walk

through its items, or iterate over it.

In the Cocoa world, you will work with arrays using instances of a class

called (can you guess?) NSArray. Think of an NSArray instance like a mul-

tistory building. Each level of the building has space for exactly one

object (well, actually a pointer to that object).

Prepared exclusively for James Carlson

INTRODUCING ARRAYS 146

Arrays in Code

Let’s jump straight in and look at some code. When we want to create

an NSArray instance, we have several options. Open the Xcode documen-

tation browser, and find the documentation for the NSArray class. You’ll

see that either you can allocate and initialize an array using one of these

methods:

- initWithArray:

- initWithArray:copyItems:

- initWithContentsOfFile:

- initWithContentsOfURL:

- initWithObjects:

- initWithObjects:count:

or you can use one of the class factory methods:

+ array

+ arrayWithArray:

+ arrayWithContentsOfFile:

+ arrayWithContentsOfURL:

+ arrayWithObject:

+ arrayWithObjects:

+ arrayWithObjects:count:

Notice the similarity between the names of the methods in these two

lists—we looked at naming conventions in the previous chapter, and

as you might imagine, the class method + arrayWithArray: simply returns

an autoreleased array, allocated and initialized using the - initWithArray:

method.

As an example, let’s look at the code to generate a simple array of items

to be used as a shopping list. We’ll hold the names of the items as

strings, in NSString objects, and build an array to keep track of those

strings. We’ll use one of the arrayWith... class factory methods for now to

avoid having to worry too much about memory issues.

Looking at the list of options, the likeliest candidate seems to be the

method arrayWithObjects:. If you click through to view the documentation

for this method, you’ll find, as expected, that it creates and returns an

array containing the objects in the argument list.

This uncovers some behavior you haven’t seen before—the ability to

pass in more than one piece of information to a method.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=146

INTRODUCING ARRAYS 147

Passing Multiple Values to a Method

We can pass multiple values into a method in two ways. First, if we

know exactly how many values there will be, we can specify them as

expected variables in the name of the method, like this:

+ (void)personWithFirstName:(NSString *)firstName lastName:(NSString *)lastName;

As you might be able to guess, this would be a class factory method on

a Person class that builds a Person object with the specified firstName and

lastName. You could call it like this:

{

Person *somebody = [Person personWithFirstName:@"Jane" lastName:@"Doe"];

}

Previously, we’ve often been referring to methods by their names, as

in stringByAppendingString: or generateValue. When a method takes mul-

tiple arguments, you get the name of the method by stripping out the

variable bits and pieces. The name of our earlier Person factory method

would therefore be personWithFirstName:lastName:.

Specifying multiple variables in a method name is all very well, but

it doesn’t seem to apply to the method responsible for constructing

our shopping list array. The name of the method we want to use is

just arrayWithObjects:—it’s not arrayWithObject1:object2:object3:, and so

on. This obviously makes sense in theory because an array can hold an

arbitrary number of objects.

Because of the way the Objective-C language works, it’s possible for

a method to use some underlying C functionality to accept a varying

number of arguments. It requires a little more knowledge of the under-

pinnings of Objective-C before you can see how to do this in your own

methods, but the basic idea is that a method can accept a list of multi-

ple values, provided the last “value” supplied is nil.

With that in mind, you can now see what is meant in the documentation

by the method definition for arrayWithObjects: being as follows:

+ (id)arrayWithObjects:(id)firstObj, ...

with the accompanying explanation specifying that firstObj, ... is “a

comma-separated list of objects ending with nil.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=147

USING ARRAYS IN AN APPLICATION 148

Creating an Array

The code to create an array, therefore, is actually pretty simple. For our

shopping list example, we just need to create the objects we want to put

in the array and then create the array using those objects, like this:

{

NSString *firstObject = @"Milk";

NSString *secondObject = @"Eggs";

NSString *thirdObject = @"Butter";

NSArray *shoppingListArray =

[NSArray arrayWithObjects:firstObject, secondObject, thirdObject, nil];

}

We end up with a newly created shoppingListArray object, containing the

three shopping items. We can do various things with this array, such as

sorting its items into alphabetical order, checking to see whether some

specified object is being held, or iterating over every item stored.

8.2 Using Arrays in an Application

Let’s add some array-handling code to our TextApp application. A little

later into this chapter, we’ll start a completely new project for a simple

shopping list application, but for now there are still a few things we

need to cover, and we’ll learn these by working with TextApp.

First, we’ll make some small changes to the existing interface for Tex-

tApp so that it makes more sense for our work in this and subsequent

chapters. With the TextApp project open in Xcode, start by opening

MainMenu.xib in Interface Builder. In the previous chapter, we changed

the title of the button to “Display Value,” so for this chapter let’s change

it to “Generate Text.” The TextApp window should end up looking like

Figure 8.1, on the following page.

Next we’ll modify the code that gets called in response to the Gener-

ate Text button being clicked—that’s the displaySomeText: method in our

NotifyingClass. To begin with, let’s create our shopping list array and

output the array’s description to the text view.

Change the displaySomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

NSString *firstObject = @"Milk";

NSString *secondObject = @"Eggs";

NSString *thirdObject = @"Butter";

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=148

USING ARRAYS IN AN APPLICATION 149

Figure 8.1: Making TextApp’s interface even more generic

NSArray *shoppingListArray = [NSArray

arrayWithObjects:firstObject, secondObject,

thirdObject, nil];

NSString *stringToOutput = [NSString

stringWithFormat:@"shoppingListArray = %@", shoppingListArray];

[textView insertText:stringToOutput];

}

When you run the app and click the button, the text view should display

the objects in the array like this:

shoppingListArray = (

Milk,

Eggs,

Butter

)

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=149

USING ARRAYS IN AN APPLICATION 150

Once again, we’re making use of stringWithFormat:, along with the string

format specifier %@, to “output” the array. When we supply Objective-C

objects for substitution into strings using %@, the output will be the

result of calling the description1 method on that object.

The NSArray implementation of the description method helpfully iterates

over the objects in the array, calling NSString’s description method on

each object in turn; for our array of strings, we see the values of those

strings in the output. We’ll see how to do this ourselves when we cover

loops and array iteration in Chapter 10, Looping and Enumerating, on

page 218.

Working with Some Additional NSArray Functionality

To make this example a little more interesting, let’s work with one of

NSArray’s built-in methods to output the strings as a comma-separated

list of items.

NSArray provides us with the componentsJoinedByString: method, which

will once again iterate through each object in the array, calling its

description method, but this time it builds a new string from the results,

inserting a specified separator string between each item.

Change the method once again:

- (IBAction)displaySomeText:(id)sender

{

NSString *firstObject = @"Milk";

NSString *secondObject = @"Eggs";

NSString *thirdObject = @"Butter";

NSArray *shoppingListArray = [NSArray

arrayWithObjects:firstObject, secondObject,

thirdObject, nil];

NSString *stringToOutput = @"The shopping list is: ";

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray

componentsJoinedByString:@", "]];

[textView insertText:stringToOutput];

}

This time, the text view will show the array contents like this:

The shopping list is: Milk, Eggs, Butter

1. If available, it will actually be the localized output, using descriptionWithLocale:.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=150

USING ARRAYS IN AN APPLICATION 151

The Index of an Item

When you create an array of objects, like our earlier shoppingListArray

example, the objects will be stored in the order they are provided—

notice how the items on the shopping list are output in the order in

which they were stored.

Because an array is an ordered list of objects, it’s possible to ask for

the object at a specific index in that order. The index is a number rep-

resenting the position that the object occupies in the array.

Let’s demonstrate this by asking the array for the first item in the list.

NSArray provides us with an objectAtIndex: method that should do the

trick; it accepts an integer index and returns the object stored at that

index. Let’s test it by adding the following lines of code:

- (IBAction)displaySomeText:(id)sender

{

«beginning of method»

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray

componentsJoinedByString:@", "]];

[textView insertText:stringToOutput];

stringToOutput = @"\n\nThe first item in the list is: ";

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray objectAtIndex:1]];

[textView insertText:stringToOutput];

}

The new output string starts out by inserting two new lines, and we

then append the result of the objectAtIndex: method, passing in an index

of 1. When you run the application and click the button, you’ll see the

following:

The shopping list is: Milk, Eggs, Butter

The first item in the list is: Eggs

Huh? That’s not right. The first item in the list is Milk, not Eggs. What’s

going wrong? Well, it turns out that the index on arrays is zero-based.

This means that the first item in the array has an index of 0, not 1.

Change the relevant line of code:

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray objectAtIndex:0]];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=151

USING ARRAYS IN AN APPLICATION 152

This time you should see the correct output:

The shopping list is: Milk, Eggs, Butter

The first item in the list is: Milk

Here’s where it helps to think of an array as a multistory building. Hav-

ing grown up living in the United Kingdom, I still have the odd confusion

when I use an elevator over in the United States. In the United King-

dom, the ground level of a multistory building is known as the ground

floor. The floor above that is the first floor, the one above that is the

second floor, and so on. In the United States, on the other hand, what

I know as the ground floor is referred to as the first floor. It takes me

a while to work out which elevator button to press to get back to the

lobby of a hotel. The United Kingdom uses a zero-based indexing for

its floors, with the U.K. ground floor being the 0 floor, while the United

States uses a one-based index, calling the ground floor “level 1.”

So, always imagine that you’re in the United Kingdom when working

with arrays—the first item does not have an index of 1; it starts at 0.

We can double-check this by asking for the index of an object in an

array using the indexOfObject: method. Add the following lines of code:

- (IBAction)displaySomeText:(id)sender

{

«beginning of method»

stringToOutput = @"\n\nThe first item in the list is: ";

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray objectAtIndex:0]];

[textView insertText:stringToOutput];

int indexOfObject = [shoppingListArray indexOfObject:secondObject];

stringToOutput = [NSString

stringWithFormat:@"\n\nIndex of the second object is: %i", indexOfObject];

[textView insertText:stringToOutput];

}

This time, you should see the following, confirming the situation:

The shopping list is: Milk, Eggs, Butter

The first item in the list is: Milk

Index of the second object is: 1

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=152

USING ARRAYS IN AN APPLICATION 153

Counting the Items in an Array

It’s also possible to ask an array how many items it is holding by send-

ing it the count message. Let’s try this next.

Add the following lines of code:

- (IBAction)displaySomeText:(id)sender

{

«beginning of method»

stringToOutput = [NSString

stringWithFormat:@"\n\nIndex of the second object is: %i", indexOfObject];

[textView insertText:stringToOutput];

int numberOfItems = [shoppingListArray count];

stringToOutput = [NSString

stringWithFormat:@"\n\nThere are %i items in the shopping list",

numberOfItems];

[textView insertText:stringToOutput];

}

This should generate the expected output:

The shopping list is: Milk, Eggs, Butter

The first item in the list is: Milk

Index of the second object is: 1

There are 3 items in the shopping list

Note that the number returned by the count message is not the index of

the last item in the array—in a U.K. building with twenty-five stories,

the top story is the twenty-fourth. The index is zero-based, but the

count is the number you would use in the real world to say, for example,

“There are twelve months in a year.”

So far, we’ve worked with what’s known as a static array—its items are

set when we create the array, and we haven’t tried to add or remove

any items. It turns out that NSArray is designed only to work as a static

array, and we couldn’t make any changes if we tried.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=153
v@v
Text Box
http://www.wowebook.com

OBJECT MUTABILITY 154

8.3 Object Mutability

We’ve actually been working with two types of unchanging object so

far—NSString and now NSArray. Both have their contents set when they

are created, like this:

NSString *fixedString = @"This is a non-changing string";

NSArray *fixedArray = [NSArray arrayWithObjects:fixedString, nil];

To create new strings from old strings, we’ve been using an NSString

method called stringByAppendingString: in code like this:

NSString *fixedString = @"This is a non-changing string";

fixedString = [fixedString

stringByAppendingString:@" even if we add something to it..."];

Rather than append the new string to the existing string, this method

returns a whole new string, with its contents made up from the old

string plus the new string stuck on the end.

NSArray provides some similar methods for deriving new arrays—such

as arrayByAddingObject:. We could, for example, do something like this:

NSString *firstItem = @"Milk";

NSString *secondItem = @"Eggs";

NSArray *shoppingListArray = [NSArray arrayWithObjects:firstItem, secondItem, nil];

NSString *thirdItem = @"Butter";

shoppingListArray = [shoppingListArray arrayByAddingObject:thirdItem];

Just like we reassigned the fixedString variable to a new, fixed string,

here we are reassigning the shoppingListArray variable to a completely

new array, containing the items from the previous array plus the addi-

tional object tagged on the end.

This is all well and good for our simple shopping list example with only

a few items, but if our array were to end up with several thousand

objects, this would be extremely inefficient. It would be much nicer if

we had some way of adding an object to the existing array object.

Mutable Arrays and Strings

This is where the term mutable comes in. If an object is mutable, its

contents are dynamic and can change.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=154

OBJECT MUTABILITY 155

Cocoa provides us with several mutable classes, based on its standard

fixed-content classes. There is, for example, an NSMutableString class

and, luckily for us, an NSMutableArray class.

By using NSMutableArray instead of NSArray, we gain the use of various

methods to add extra objects on the end, like addObject:, or insertOb-

ject:atIndex: to insert an object into the middle of an array at a specified

index. There are also corresponding methods to remove objects from

the array when necessary.

To create an NSMutableArray, we have several options. Because the NS-

MutableArray class inherits from NSArray, we can use our old friend array-

WithObjects: to set up a new mutable array with the specified objects. We

could also create a new, empty array using the array class method from

NSArray, to which we could add each object individually, like this:

NSMutableArray *changingArray = [NSMutableArray array];

// changingArray is currently an empty array

// calling [changingArray count] at this point would return 0

NSString *firstObject = @"The first string";

[changingArray addObject:firstObject];

NSString *secondObject = @"The second string";

[changingArray addObject:secondObject];

Array Efficiency

If we know in advance how many items we’re eventually going to be

storing in the array, we can use either the initWithCapacity: initializer or

the corresponding arrayWithCapacity: class factory method. These do all

sorts of nifty things behind the scenes to set us up with an empty array

that’s ready to store the specified capacity most efficiently. You can still

add additional items if you want, but the items that occupy the original

capacity will be stored most efficiently:

NSMutableArray *smallArray = [NSMutableArray arrayWithCapacity:2];

// smallArray is currently an empty array

// calling [smallArray count] would still return 0

[smallArray addObject:firstObject];

[smallArray addObject:secondObject];

// smallArray now has two items, stored efficiently

NSString *thirdObject = @"The third string";

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=155

OBJECT MUTABILITY 156

[smallArray addObject:thirdObject];

// the third object might not be stored so efficiently

What do I mean by efficiently? Well, because an array is a list of pointers

to objects, it would ideally be one big block of memory in which each

pointer gets stored one after another in that big block.

Sometimes there isn’t enough memory to allocate a block big enough

to store all the pointers in one place, or we add extra items beyond the

original capacity. In these cases, the array object has to keep track of

multiple blocks of memory storage containing its object pointer

contents.

Changeable Contents

It’s worth pointing out that an array simply stores a series of pointers

to other objects; it does not store copies of the objects themselves. Hav-

ing said this, let’s take a look at some potentially confusing situations.

Consider this code:

NSString *firstObject = @"Milk";

NSString *secondObject = @"Eggs";

NSArray *fixedArray = [NSArray arrayWithObjects:firstObject, secondObject, nil];

secondObject = @"Bread";

NSLog(@"Contents of Array = %@", fixedArray);

What do you think would be output to the console if you ran this code?

Since the array stores pointers to the objects, it might appear at first

glance as if the output would be this:

Contents of Array = (

Milk,

Bread

)

Actually, the output is this:

Contents of Array = (

Milk,

Eggs

)

What’s going on? Why isn’t the second object changing? There are two

issues at play here—first, if you add an object to an array, the array

maintains what’s known as a strong reference to the object. This means

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=156

OBJECT MUTABILITY 157

that the array retains the object that is added so that, as long as the

array exists, the objects inside that array will be retained as necessary.

The second problem is that we reassign the secondObject variable with

a new string. We tell the array to store the first secondObject string

value, and when we reassign the variable, it will end up at a different

address in memory that, as far as the array is concerned, is a different

variable altogether, so nothing changes.

If we change our example to use mutable string objects instead, let’s

see what happens this time:

NSMutableString *firstObject = [NSMutableString stringWithString:@"Milk"];

NSMutableString *secondObject = [NSMutableString stringWithString:@"Eggs"];

NSArray *fixedArray = [NSArray arrayWithObjects:firstObject, secondObject, nil];

[secondObject setString:@"Bread"];

NSLog(@"Contents of Array = %@", fixedArray);

When this code is executed, the log shows what we hoped for:

Contents of Array = (

Milk,

Bread

)

You’ll see from this that working with mutable strings requires quite

a bit more code. Also notice that although it’s not possible to add or

remove objects in a standard NSArray instance, the objects that it con-

tains can change as much as they like, provided their memory address

stays the same!

Advanced String Stuff

It might be worth pointing out a few things that we’ve been taking for

granted up until now. In the original C language, a string is defined like

this:

"this is a C string"

The notation we’ve been using all the way through the book so far—

@"string"—is an Objective-C shorthand where the @ character takes the

string that follows it and passes back an NSString object set to the value

of what’s between the quotation marks.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=157

OBJECT MUTABILITY 158

It’s perfectly possible to create an Objective-C string using code like

this:

NSString *string = [NSString stringWithCString:"this is a C string"

encoding:«some encoding»];

so you might like to think of the @"string" notation as being roughly

equivalent to typing out all of the previous code. The encoding part of

that line shown earlier is used to determine how the characters should

be interpreted, as described briefly in Section 5.2, Storing Other Infor-

mation, on page 86.

Thankfully, the NSString class is so amazing that you probably won’t

need to worry about any of the behind-the-scenes C stuff. It’s just worth

mentioning that every time you use the @"string" Objective-C notation,

you are effectively using a class factory method to generate an autore-

leased string (and not an NSMutableString) with a set value that cannot

change. This is why you couldn’t, for example, do this:

NSMutableString *aMutableString = @"Try and change me...";

[aMutableString setString:@"I'm trying to change you"]; // this won't work

Although the aMutableString pointer looks like it should point to an

NSMutableString object, it actually points to an immutable, plain NSString

instance, because that’s what the earlier code assigned to it.

Adding Items to Our Array in TextApp

Now that you know how to add items to our arrays, let’s write some

extra functionality for TextApp to allow us to add an item to our shop-

ping list. We’ll take a string typed into the text field and add it to the

end of the shopping list before we display the array contents in the text

view.

Let’s start by thinning down our existing code, changing back to an

NSArray, and adding a line to create a new array with the string value in

the text field:

- (IBAction)displaySomeText:(id)sender

{

NSString *firstObject = @"Milk";

NSString *secondObject = @"Eggs";

NSString *thirdObject = @"Butter";

NSArray *shoppingListArray = [NSArray

arrayWithObjects:firstObject, secondObject,

thirdObject, nil];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=158

OBJECT MUTABILITY 159

Figure 8.2: Adding an item to the shopping list

NSString *typedValue = [textField stringValue];

shoppingListArray = [shoppingListArray arrayByAddingObject:typedValue];

NSString *stringToOutput = @"The shopping list is: ";

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray

componentsJoinedByString:@", "]];

[textView insertText:stringToOutput];

}

When you test the application this time, you should see something like

Figure 8.2.

Why not test your Cocoa prowess now and see whether you can get the

application to accomplish the same thing using an NSMutableArray?

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=159

A NEW APPLICATION 160

Figure 8.3: The new shopping list application that we’ll create

8.4 A New Application

Our work in TextApp is all very well for learning about arrays, but it

doesn’t really behave like a real-world application since we created a

new array each time the Generate Text button was clicked. In a stan-

dard Mac OS X application, we’d expect the values that were added by

the user to persist. Let’s move on and build a more Mac-like applica-

tion that does that right now. We’ll put our newfound knowledge to the

test and write a simple shopping list application. It’s going to look like

Figure 8.3.

We’ll be covering several new ideas throughout this section, including

how to work with a document-based application. By the time we’ve fin-

ished, we’ll ideally have reinforced lots of other Cocoa and Objective-C

techniques as well.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=160

A NEW APPLICATION 161

Creating the Project

Close anything that’s currently open in Xcode, and select File > New

Project.... We’re going to be writing an application that can deal with

multiple shopping lists, so it makes sense to create a document-based

application.

Make sure that you have a Mac OS X Cocoa Application selected in the

New Project window, and select the “Create document-based applica-

tion” box. Click the Choose... button, and call the new project “Shop-

ping List.”

When working with a document-based application, there are several dif-

ferences from what we’ve seen before. First, if you expand the Resources

group in the project browser, you’ll find that there are now two differ-

ent XIB files—MainMenu.xib that we’ve seen before and a new MyDocu-

ment.xib file.

If you also expand the Classes group, you’ll find that there are the

relevant files defining a class called MyDocument.

Before doing anything else, click the Build & Run button to see what

functionality we get from this template project. You should be greeted

by a window looking like Figure 8.4, on the next page.

If you select File > New, you’ll find that another window opens, identical

to the first one you saw. These windows are the visual representations

of the MyDocument class. Whenever you choose the New command, the

template application will create a new object instance of the MyDocu-

ment class.

You’ll find that there are various options to Save and Open files, but

these don’t do anything at the moment. Quit the application, and return

to Xcode.

The MyDocument Class

Let’s take a look inside the MyDocument.h file to see how the new docu-

ment class is set up. The existing interface is extremely simple:

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSDocument

{

}

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=161

A NEW APPLICATION 162

Figure 8.4: An unchanged document-based template application

It just defines a class called MyDocument that inherits from the NSDoc-

ument class.

Unsurprisingly, NSDocument is the basic Cocoa class for a document

object, and it provides all sorts of useful functionality relevant to doc-

uments. As usual, you can override various methods to add your own

features, and several methods actually need to be overridden to provide

the behavior of your application that a template project can’t generalize,

such as saving and opening files.

Switch to the MyDocument.m file, and you’ll be greeted with various

prewritten methods that override the basic NSDocument behavior.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=162

A NEW APPLICATION 163

The first of these is a trusty init method, and it looks like this:

- (id)init

{

self = [super init];

if (self) {

// Add your subclass-specific initialization here.

// If an error occurs here, send a [self release] message and return nil.

}

return self;

}

Notice that it starts and ends in the same way as our previous init meth-

ods that we’ve written but adds a code block in the middle starting with

if. This is the first time we’ve seen a conditional statement; we’ll be look-

ing at these properly in the next chapter. For now, all you need to know

is that the code between the inner curly braces is executed only if a

condition is met. In our init method, it will be executed if the object is

created successfully, which should be most of the time!

The next method is relatively short and straightforward:

- (NSString *)windowNibName

{

// Override returning the nib file name of the document

return @"MyDocument";

}

This is the document equivalent of what you saw, way back in Sec-

tion 2.4, The MainMenu.xib File, on page 23. It returns the name of an

Interface Builder file containing the interface for the document, which

is why you saw the extra file back under the Resources group in the

project browser.

We’re seeing the easiest way to work with an NSDocument object here—

where there is only one window per open document. It’s perfectly possi-

ble to work with documents that use multiple windows, maybe to show

different views into the same data, but that involves a slightly different

approach from the one we’re using, which is unfortunately outside the

scope of this chapter.

The third method listed is windowControllerDidLoadNib:—it allows us to

tap in and do any necessary additional interface setup after the inter-

face has been loaded from the resource file. We won’t be needing it here,

and we’ll also ignore for now the other methods that have something to

do with reading and writing data to disk.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=163

A NEW APPLICATION 164

What’s the Difference Between Nib and Xib?

You might have noticed that the Interface Builder files we’re
using have an .xib extension, although we’ve seen a couple of
places where the file is referred to as a nib file.

Nib stands for “NeXT Interface Builder” and was the original
binary file format for the files. When Apple released Xcode ver-
sion 3.0, and with it Interface Builder 3.0, it moved to an XML-
format. To differentiate between the two interface file types, the
XML-format uses the .xib extension.

You’ll often see Interface Builder files referred to as nib files, even
when they have the .xib extension. When you’re dealing with
these files from a code perspective, though, you’ll likely always
see the word nib to maintain backward compatibility.

The NSDocument class is an example of a controller class. This means

that it acts as a mediator between the view (that’s the user inter-

face created in Interface Builder) and the underlying data (that’s an

NSMutableArray in this instance). We’ll talk more about the separation of

model, view, and controller classes a little later in the book, in Chap-

ter 11, Objects, Encapsulation, and MVC, on page 238.

Creating the Interface

Now that you know how the interface for a document is created from the

MyDocument.xib file, let’s open it in Interface Builder and start creating

our shopping list interface.

When you open the file, you’ll find that the template project has stuck

a label on the Window, saying “Your document contents here”—the first

thing to do is to select this label and delete it.

Introducing Table Views

We want to display our shopping list in a tabular format, and it just

so happens that Cocoa provides us with the perfect class to do this:

NSTableView.

A table view is an object used to display data in columns and rows; it’s a

little bit like a spreadsheet at first glance, although it doesn’t behave in

quite the same way. You’ll find examples of table views throughout the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=164

A NEW APPLICATION 165

Figure 8.5: A basic table view

software on your Mac. When you look at your list of emails in Apple’s

Mail application, for example, you’re looking at a table view.

Let’s drag one onto the interface now to take a look at some of its fea-

tures. Type “table” into the Object Library palette search box, and you

should find the Table View object ready to drag out. Drag one onto the

document window, and resize it so it looks like Figure 8.5.

You’ll see that at the top of the table view is a header bar. You typically

use this bar to label the columns that appear below it—just like the

From, Subject, and Date Received column headers in Mail.

Underneath the column headers are two cells. These define how infor-

mation gets displayed in each row of each column. By default, the cells

in the table view are text cells, which display a string of text. Since we

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=165

A NEW APPLICATION 166

want to display the string values of each item in our shopping list array,

this will do just fine.

It’s important to understand why there is only one row of cells shown in

Interface Builder—it’s because the cell that you see there acts as a pro-

totype cell, from which all the rows of data will eventually be displayed

when the application is run. We’ll see how to supply our shopping list

information to the cells in the table view a little later.

Although it’s not immediately apparent, the table view that’s been gen-

erated is actually enclosed in a scroll view—the scroll bars will show up

only if there is too much data to fit inside the box.

To make it easier to see the structure of what we have so far, take a look

at the Interface Builder window for our file, titled “MyDocument.xib –

English.” Use the toolbar inside this window to change the “View Mode”

to “List View” (that’s the middle of the three options, with several hori-

zontal lines).

With this window set to List View, you’ll find that there is a disclosure

triangle next to the Window item; if you click it to expand and then

click each subsequent disclosure triangle that appears, you will see

something that looks like Figure 8.6, on the next page.

If you have enough space on your screen, try to rearrange the Interface

Builder windows so that you can see both this MyDocument.xib window

and the actual Window window displaying the table view. Try double-

clicking one of the table columns in the list view, and you’ll find that

Interface Builder highlights the column in the display.

Since we need only one of the columns, you can select one of the exist-

ing Table Column items in the list view and press J; both the col-

umn and its internal Text Field Cell should disappear from the two

windows. You could also achieve the same thing by selecting the Table

View and decreasing the number of columns on the Attributes tab of the

inspector.

To make the table view display its rows over an alternating background,

select the Table View in the list, and select the Alternating Rows box in

its attribute inspector.

Next, select the remaining Table Column in the list view, and change

the Title of the column in the inspector to be “Shopping List Items” to

give our users a clue about what they should be putting in the column.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=166

A NEW APPLICATION 167

Figure 8.6: Interface Builder’s list view

Adding the Rest of the Interface

With our table view in place, it’s time to add the remaining items to the

interface. We need a Label object, titled “Add item to list:”; a Text Field

object; and a Push Button titled “Add”—set these items up so that they

look like Figure 8.7, on the following page.

Linking the Interface to the Controller

If you cast your mind back to when you created TextApp, you made a

new class called NotifyingClass that took care of handling a button press

in the window, and talked to the various interface items through their

relevant IBOutlets.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=167

A NEW APPLICATION 168

Figure 8.7: The Shopping List application interface

Because the NotifyingClass acted as an intermediary between the inter-

face items and contained the functionality to display data (various bits

of text) in the text view, that class is a controller class. You could gen-

erate a completely new class in the Shopping List application to handle

the interactions between the interface items, but you might remember

that you already have a controller object available—the MyDocument

object.

Introducing File’s Owner

When we created our first instance of NotifyingClass, back in Section 3.4,

Creating an Instance of Our NotifyingClass, on page 48, we added one

into the Interface Builder file so that an instance would be created when

the interface was loaded.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=168

A NEW APPLICATION 169

If we did the same thing with our MyDocument class, we’d actually end

up with two MyDocument objects for every open document window; the

application template will already have created a MyDocument instance

for us, before reading and instantiating the interface objects from the

MyDocument.xib file.

This time, we need to use the File’s Owner object in our interface file.

When an interface file is opened to set up the contents of an interface,

the File’s Owner object is set to the object that owns the interface con-

tents. In this particular case, it will be the MyDocument object, because

it’s the job of the inherited NSDocument class to open the interface file

when a new document is created.

Adding Outlets and an Action

You’ll remember from before that in order for a controller object (pre-

viously the NotifyingClass instance, now our MyDocument instance) to be

able to work with the user interface, we need to add IBOutlets for each

item and add an IBAction to be triggered when a button is clicked.

Open the MyDocument.h file, and add outlets for the table view and the

text field, along with an action for the Add button:

@interface MyDocument : NSDocument

{

IBOutlet NSTableView *shoppingListTableView;

IBOutlet NSTextField *newItemNameTextField;

}

- (IBAction)addNewItemToShoppingList:(id)sender;

@end

Switch to Interface Builder, and right-click (or C-click) the File’s Owner

object in MyDocument.xib. When we used the project template to create

this application’s project files, Xcode already set up this file correctly so

that File’s Owner was set to our MyDocument class. You should, there-

fore, now see the two outlets and the action listed—connect these to the

relevant interface items, as in Figure 8.8, on the following page.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=169

A NEW APPLICATION 170

Figure 8.8: Connecting the Shopping List interface items

Once this is done, we need to implement the new action method in

MyDocument.m. Copy the method declaration from MyDocument.h, and

paste it into the top of the MyDocument.m implementation, changing it

into a method, like so:

@implementation MyDocument

- (IBAction)addNewItemToShoppingList:(id)sender

{

}

- (id)init

{

«code continues»

It would be wise to build the application now, just to check that you

haven’t made any typographical errors. Choose the Build command

from the Build menu in Xcode, and if all is in order, you should see

the word “Succeeded” in the bottom-right of the Xcode project window.

Setting Up the Array

Now that we have our basic interface created, it’s time to think about

how we’re going to keep track of the items in our shopping list.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=170

A NEW APPLICATION 171

Clearly, we’re going to use an array, just like before, but we need that

array to hang around, or persist, as long as the document (and therefore

its window) is open. In the earlier parts of this chapter, we were working

with code that established an array for use in the scope of a single

method, using a class factory method; the array was deallocated at the

end of the method. For our Shopping List application, however, we need

it to stay in memory for the lifetime for the MyDocument object. We’re

also going to need to have access to the array from several methods in

the MyDocument implementation.

If you cast your mind back to Section 7.7, When to Use alloc and When

to Use Factory Methods, on page 143, I hinted briefly about storing a

pointer to one object as an instance variable of an another object. I

suggested that we could use the init method of the containing object to

create and initialize the contained object and to release it from memory

in the containing object’s dealloc method. This is exactly what we want

to do here.

So, open the MyDocument.h interface file, and add an instance variable

for a pointer to an NSMutableArray, like this:

@interface MyDocument : NSDocument

{

IBOutlet NSTableView *shoppingListTableView;

IBOutlet NSTextField *newItemNameTextField;

NSMutableArray *shoppingListArray;

}

- (IBAction)addNewItemToShoppingList:(id)sender;

@end

We can now access this object pointer from any of MyDocument’s meth-

ods. First, let’s create the array itself in init. Switch to the MyDocument.m

implementation file, and change the method to this:

- (id)init

{

self = [super init];

if (self) {

shoppingListArray = [[NSMutableArray alloc]

initWithObjects:@"Milk", @"Eggs",

@"Butter", nil];

}

return self;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=171

A NEW APPLICATION 172

We’re doing several things differently here, and are now creating the

array using an alloc] init...] call rather than using a class factory method.

At this point, you should be shaking with concern that we are taking

responsibility for an object but haven’t yet put in a call to release it

anywhere. We’ll correct that in just a moment.

The code sets up the array with three string objects to start with, so that

we’ll have something to see when we get our table view displaying data

in the next section. We’re doing it slightly differently this time, though,

putting the @"string" objects directly into the method without creating

variables to hold them. Remember from Section 8.3, Advanced String

Stuff , on page 157 how using the @"string" notation was equivalent to

using something like [NSString stringWith...]? We’re just passing the object

provided by the @"string" straight into the initWithObjects:... call without

using a named variable.

Notice also that we’ve put this code inside the conditional if statement’s

curly brace section. This code will be executed only if the MyDocument

object is created successfully.

To put us out of our object responsibility misery, we need to release the

array object. When should we do that? Since we need the array to last

as long as the MyDocument object, we use its dealloc method. This will

be called when the MyDocument object is deallocated from memory.

By default, the project template files for the MyDocument class do not

include a dealloc method; we’ll need to add one ourselves. The dealloc

method needs to work like a “backward” init method. First it should

release any instance variables that were retained or alloc] init]ed earlier,

and then it needs to pass the dealloc message up the inheritance chain,

using [super dealloc], to continue the deallocation of the whole object.

Add the following method just under the existing init method in the

implementation:

- (void)dealloc

{

[shoppingListArray release];

[super dealloc];

}

At this point, we’ve added a reference to the model for our data—a

simple mutable array. Once again, choose the Build command (D- B) just

to make sure everything is OK. If you run the application itself, it won’t

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=172

A NEW APPLICATION 173

look like much is happening because we still haven’t done anything

about populating the table view with the shopping list items.

Working with Table Views

When we created the interface for the Shopping List application, we

gave it a table view with one column. In Interface Builder, this column

appeared with a single Text Cell as its only row. It’s now time to see

how we get the table view to display our data.

There are several ways to work with table views; the one we’ll use for

this application is fairly straightforward and very similar to the way you

work with a table view on the iPhone. You provide the table view with

an object to act as a data source, and the table view will then ask that

object for the information it needs to populate its rows and columns.

What object should we use to act as the data source in this application?

Well, think where the data for our document is currently being held—

yes, in a mutable array held by the MyDocument object. So, first things

first—let’s tell the table view to use the document object as its data

source.

Go back to the MyDocument.xib file in Interface Builder, and use the

object list view to find the table view object. Right-click (or C-click) this

object to reveal its connections; you should see the dataSource outlet

near the top. Link this to the File’s Owner object, as in Figure 8.9, on the

next page.

Implementing the Required Methods

Now that our data source is connected, we need to know which mes-

sages we should respond to in order to supply the data back to the

table view. When working with classes that respond to certain mes-

sages specific to other classes, you’re said to be implementing a proto-

col—something defining the way that classes interact with each other.

We’ll look more at protocols a little later in the book—there are various

coding conventions and bits and pieces that we won’t worry about right

now. All you need to know is that the name of the protocol you need to

work with for this situation is NSTableViewDataSource. You might already

be able to spot a naming convention going on here!

If you search in the Xcode reference library for NSTableViewDataSource,

you’ll find the protocol reference. This lists “the methods that an in-

stance of NSTableView uses to provide and access the contents of its

data source object.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=173

A NEW APPLICATION 174

Figure 8.9: Connecting the Table View data source

The first two methods listed are as follows:

- numberOfRowsInTableView:

- tableView:objectValueForTableColumn:row:

When a table view wants to display its data, it initially needs to know

how many rows there will be. If it has a data source set up, it will

send the data source object the message numberOfRowsInTableView:, to

which the object should respond with an integer number specifying the

number of rows.

Let’s implement this method first. How do we know how may rows there

will be? Well, we can simply ask the shopping list array how many items

it has by sending the array the count message. Given that this message

will return an integer value, we can just pass this value straight back

in response to the data source protocol method.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=174

A NEW APPLICATION 175

Copy the method signature from the documentation, and add this

method into the MyDocument implementation:

- (NSInteger)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [shoppingListArray count];

}

Notice that when this method is called, it has a single argument that

specifies which table view sent the message. If we had one object acting

as a data source to multiple table views, we could check to see which

table view had sent the message and respond accordingly. Since we’re

working with only one table view, we can just ignore that argument.

To provide the details to be displayed in each row of the table view, we

need to implement this method:

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

Once again, the first argument we see is the table view that sent us the

message, and as before, we can just ignore that information. The next

argument tells us which table column we’re supplying with information.

Since we have only one column, we can just ignore this as well. The only

argument we are interested in is the rowIndex argument.

The tableView:objectValueForTableColumn:row: method will be called once

for each row in the table view; that is, it will be called as many times

as we specified in the numberOfRowsInTableView: method. The rowIndex

argument specifies the index of the row for which we need to provide

an object; the good news is that this is a zero-based index, just like our

array.

Remember in Section 8.2, The Index of an Item, on page 151 how we

asked the array for its first item, using [shoppingListArray objectAtIndex:0]?

We can do exactly the same thing here to ask the array for the object

specified by the rowIndex argument and just pass the object we get back

as the object to be displayed.

Once again, copy the method signature from the documentation, and

implement it like this:

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

return [shoppingListArray objectAtIndex:rowIndex];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=175

A NEW APPLICATION 176

If you Build & Run the application at this point, you should find that a

table view appears in each document window, correctly populated with

those initial contents of our shopping list array.

Adding New Items

The next functionality to sort out is the ability to add new items to the

list when the user clicks the Add button. Before we write the method,

let’s take a moment to plan what needs to happen:

1. We start by getting the string value from the text field and add it

into the array.

2. Next, we should clear the text field so that it’s ready to accept

another item from the user.

3. Finally, to make sure that the new item shows up in the table

view, we need to tell the table view to reload its contents. This will

cause the table view to talk to its data source and repopulate its

rows with the additional item.

Implement addNewItemToShoppingList: with the following code:

- (IBAction)addNewItemToShoppingList:(id)sender

{

NSString *newItem = [newItemNameTextField stringValue];

[shoppingListArray addObject:newItem];

[newItemNameTextField setStringValue:@""];

[shoppingListTableView reloadData];

}

This is all fairly self-explanatory. We get the new item string from the

text field, add it to the array, set the string in the text field to a blank

string (@""), and then send the table view the reloadData message.

If you Build & Run the application once again, you should be able to

add items to the shopping list as you want.

Editing the Items

It would be nice if we provided the ability to edit items already in the

shopping list. We could go about implementing this functionality in var-

ious ways; if the user double-clicked a row in the table view, we might

pop up a new window asking for a new string value. As it happens,

there is an even easier way.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=176

A NEW APPLICATION 177

If you try double-clicking an item in the table view right now, you’ll find

that there is a built-in editing capability. A text field will appear in the

cell at that point, allowing you to change the value that’s currently in

the cell. If you click out of the text field or press the F key, you’ll find

that the text in the cell unfortunately jumps straight back to what it

was before.

Take a look once again at the documentation for the NSTableViewData-

Source protocol. You’ll see that there is another data source method,

tableView:setObjectValue:forTableColumn:row:, that looks like it will help

us here. It’s a message to tell us that we should replace the object we

currently have to represent the data in a particular column and row

with the new object provided.

As before, we can ignore the arguments specifying the table view and

table column that this applies to—we’re only interested in the new

object value and the index of the row. If you now look at the documenta-

tion for NSMutableArray, you’ll find that it offers us a method, replaceOb-

jectAtIndex:withObject:. We can use this to swap out the existing string

at the specified index with the one that has been typed by the user.

Copy the method signature for the protocol method, and implement it

like this:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

[shoppingListArray replaceObjectAtIndex:rowIndex withObject:anObject];

}

This time when you test the application, you should be able to edit the

items in each row of the table view, and they’ll stay at the values you

set. That was pretty easy, wasn’t it?

Adding Spice

We started out by creating a document-based application. At the mo-

ment, users can create as many new documents as they like, but they

can’t save or open files. Anything that is typed into the shopping list

is lost once a document window is closed or the application exits. In

another demonstration of the awesome power of the Cocoa framework,

let’s add the ability to save and open shopping list files.

The NSDocument class provides us with various ways to work with files.

At the time of writing this book, the standard template files contain

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=177

A NEW APPLICATION 178

two file-related methods, dataOfType:error: and readFromData:ofType:error:.

These methods get called when the user tries to save or open a docu-

ment and are designed to let the programmer simply provide a data

object to be saved or receive a data object to be read into a document

being opened. We’re going to approach this from a slightly different per-

spective for our Shopping List application, so delete both these methods

from the template file.

Saving a Shopping List

Let’s start by adding the ability to save shopping list files. Consider first

of all what needs to be saved. All the data relevant to the shopping list

document is contained within the mutable array; wouldn’t it be great if

we could just get the array to save itself to a file?

Take a look at the documentation for NSArray. You’ll find that under

the methods dealing with descriptions for the array object, there are two

methods listed:

- writeToFile:atomically:

- writeToURL:atomically:

It sounds like one of these might do the trick. But what’s the difference

between a file and a URL? Don’t URLs have something to do with the

Internet, like http://www.apple.com? Yes, a URL on the Internet does

take that form, but we can also work with URLs on the desktop to

simplify working with filenames and locations.

In order to see whether we want to use writeToFile:atomically: or write-

ToURL:atomically:, let’s take a look at the documentation for NSDocument

to see what options we have for file saving. Under the “Reading From

and Writing to URLs” section, there are various methods that look

hopeful. The simplest one looks like it will be writeToURL:ofType:error:.

Check the documentation for this method to find out what the various

attributes do.

The type attribute for this method is used if the application is able to

save multiple file types, such as saving a text file in plain text, in rich

text, or as a PDF. Since we’re working with only one file type, we can

ignore this. The error attribute is for us to supply an object describ-

ing some sort of error that occurred while writing the file to disk. We’ll

ignore this as well, for simplicity; in a real-world application, your sav-

ing mechanism would probably be more complicated than we are about

to implement, and you would definitely want to investigate how to deal

properly with errors.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=178

A NEW APPLICATION 179

The remaining attribute for this method provides us with a URL, speci-

fying the location on disk to which we want the document to be written.

When the user asks to save the shopping list, the built-in functionality

in NSDocument will pop up a standard Mac OS X Save dialog box; if

the user successfully navigates to a location and chooses a name, our

writeToURL:ofType:error: method will be called. We can then just pass the

URL along to the writeToURL:atomically: method on NSArray.

Before we implement this, notice that the writeToURL:ofType:error: method

on NSDocument is expected to return a BOOL value indicating whether

the write was successful. A BOOL can have a value of either YES or

NO. We don’t need to worry too much about this, however, because

the writeToFile:atomically: method from NSArray will pass us a BOOL value

to indicate its success, and we can just return this straight back in our

saving method.

You might want to check the documentation for NSArray to see what the

atomically means in writeToFile:atomically:. It has to do with whether the

document is saved straight to a location on disk or whether it is saved

to a temporary file first and then that temporary file gets moved to the

correct location. This can be used to avoid data loss if the application

crashes during a save—if the save has been to a temporary location, it

won’t have had any effect on an existing original document. We’ll make

use of this atomic behavior.

Copy the method signature for writeToURL:ofType:error:, and implement it

like this:

- (BOOL)writeToURL:(NSURL *)absoluteURL

ofType:(NSString *)typeName

error:(NSError **)outError

{

return [shoppingListArray writeToURL:absoluteURL atomically:YES];

}

It doesn’t get much simpler than that! Try saving a shopping list by

selecting File > Save, and you should find a file is created where you

specify. Now all we need to do is figure out how to open it again.

Opening a Saved Shopping List

In the documentation for NSDocument, you will find that there is a

method called readFromURL:ofType:error:. This is clearly the corresponding

document-opening method to our writeToURL:ofType:error: we just used, so

it would probably make sense to use this method, if possible.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=179

A NEW APPLICATION 180

What needs to happen when we read from a file? Well, the contents

of the shopping list array need to be set to the saved contents in the

file. How do we do that? Take a look at the documentation again for

NSArray, and you’ll find that it’s possible to initialize an array using the

method initWithContentsOfURL:. Let’s use this to initialize a new shopping

list array for our document.

One problem arises, however, in that we already have an array allocated

and initialized—if we reassign the shoppingListArray instance variable with

another array, we’ll have leaked the array that was already created by

the init method. So, we should first release the old shoppingListArray before

assigning the instance variable to the newly opened file.

The readFromURL:ofType:error: method is also expected to return a BOOL

value to confirm whether the document was opened safely. We really

ought to do some kind of check to make sure that we got back a proper

array from the initWithContentsOfURL: initializer, but for now let’s just

return a value of YES to indicate success. Copy the method signature

for readFromURL:ofType:error:, and implement it like this:

- (BOOL)readFromURL:(NSURL *)absoluteURL

ofType:(NSString *)typeName

error:(NSError **)outError

{

[shoppingListArray release];

shoppingListArray = [[NSMutableArray alloc]

initWithContentsOfURL:absoluteURL];

[shoppingListTableView reloadData];

return YES;

}

If you now run the application and open the file by selecting File >

Open, or drag the file onto the application’s icon on the Dock, the saved

shopping list will appear, as if by magic. Pretty cool, huh?

You’ll also find that if you make changes to a saved document and select

File > Revert to Saved, you’ll be asked whether you really want to lose

your changes. If you click the Revert button, the application will load

the preexisting data from the saved file.

A Few Caveats

It’s important to point out a few issues with the Shopping List appli-

cation. First, we do very limited error checking, as discussed along the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=180

CHAPTER SUMMARY 181

way. We also don’t support the standard functionality of marking the

document as dirty whenever a change is made.

At the top left of most windows, you’ll typically see the three “traffic-

light” buttons to close, minimize, and maximize the window. When

there are unsaved changes to a document, the document is said to

be “dirty,” and the red close button displays a big dot inside.

To implement this behavior, we would need to let the document object

know that it was dirty whenever an item was added using the Add

button or changes were made by the user double-clicking a shopping

list item. This would also have the effect of asking the user whether

they want to save their changes when they closed a document window;

at the moment, you can easily lose any changes you make by closing

the window without saving first.

NSDocument responds to the updateChangeCount: message—you would

need to insert a call to this method, passing it a constant value of

NSChangeDone, in both the addNewItemToShoppingList: and tableView:set-

ObjectValue:forTableColumn:row: to solve this problem.

We’ve also not added any functionality to remove items from the list

completely. You might like to try implementing this yourself; you’d need

a Remove button in the interface, connected to an action that asked

the table view for the row that is currently selected. You’d then need to

remove the object at that row index from the array, before telling the

table view to reload its data.

8.5 Chapter Summary

You’ve accomplished quite a bit in this chapter, and you should be

gaining confidence in working with objects, the Objective-C language,

and the Cocoa framework.

By creating a completely new application, you’re moving toward putting

your knowledge into development of applications that have more ad-

vanced functionality and behavior, and work more as you expect Mac

OS X applications to work.

You’re now reasonably familiar with the concept of an array as an object

to hold a collection of other objects. There are other collection objects

available to us in the Cocoa framework, including NSSet, which behaves

in a similar way to NSArray but just collects objects together without

maintaining any order. You can’t ask for an object at a specific index in

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=181

CHAPTER SUMMARY 182

a set, and objects will likely be returned to you in a different order than

they were stored. There is also an NSDictionary object, which allows you

to use a key string rather than an index to keep track of its collected

objects. We’ll be looking at dictionaries in Section 11.2, Dictionaries of

Information, on page 243.

In the next chapter, we’ll take a look at those conditional statements

we hurried over earlier in this chapter, seeing how to execute different

blocks of code depending on the outcome of a decision or the value of a

variable.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=182

Chapter 9

Branching Out
Life is full of decisions. You’re always having to choose between two or

more options, making educated guesses about which might be better

and then worrying endlessly, “What if I’d chosen option B?”

In the programming world, decisions are simplified. You generally get

to decide exactly what will happen, based on absolute criteria, such as

“The user clicked this button” or “This computer doesn’t have Internet

access.” And you get to decide the plan of action taken by your software

for each of the possible criteria matches.

In this chapter, we look at how to write code that takes different paths

depending on the values of logical statements.

9.1 Introducing if and else

Consider the following pseudocode:

deleteSomethingImportant:

{

display a dialog box asking if the user is sure they want to delete

if they click the Delete button

then delete the important information

otherwise if they the Cancel button

then don't do anything

}

This pseudocode represents behavior that might be placed in an appli-

cation as a fail-safe mechanism to make sure users are absolutely sure

they want to delete some vital piece of information. In Apple’s Address

Book application, for example, a dialog box is displayed if you try to

delete a contact, as shown in Figure 9.1, on the following page.

Prepared exclusively for James Carlson

INTRODUCING IF AND ELSE 184

Figure 9.1: Making sure the user wants to delete a contact from their

address book

In the C language, the simplest branch construction uses if and else. It

takes this form:

if(«logical expression evaluates to true»)

{

// execute this code

}

else

{

// execute this code

}

We’ll look at how to write logical expressions in just a minute; right

now, it’s important to understand the construction shown earlier. The

code in the first block (that is, between the first set of curly braces) will

be run if the expression evaluates to true; if the expression evaluates

to false, the code in the second block will be run instead.

The else part of the branch is optional, so we could also write this:

if(«logical expression evaluates to true»)

{

// execute this code

}

As you might expect, the code between the curly braces will be executed

only if the expression is true; otherwise, the entire code segment will

effectively be ignored.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=184

INTRODUCING IF AND ELSE 185

Logical Expressions

If all this talk about “logic” sounds a bit intimidating, don’t be put off.

A logical expression is just something that ends up with a value that’s

either true or false.

Often, an expression will be some kind of construction that checks a

variable to see whether it has a particular value. If it does, the expres-

sion will evaluate as true; if it doesn’t, the construction will evaluate

as false.

Let’s look at this type of expression first. Assume we’ve got an integer

variable called someVariable and we need to check whether it has a value

of “1” or not:

if(someVariable == 1)

{

// Hooray! someVariable has a value of 1

}

The logical expression in the previous code is the bit between the paren-

theses: someVariable == 1.

Notice how there are two “equals” signs in this expression. These two

symbols form the part of the expression known as the logical operator.

They define how the part on the left should be checked against the part

on the right; in this case, you’re looking at the equality operator, used

in a logical expression to signify “is equal to.” So, you might read the

previous code as “if someVariable is equal to 1...”

This brings up a very common source of confusion. The equality oper-

ator is similar to the assignment operator. Take a look at this code:

int someVariable = 5;

if(someVariable = 10)

{

// Oooo! someVariable has a value of 10

«do something about it»

}

At first glance, you might assume that whatever code was written in

response to someVariable having a value of 10 would not be called. Let’s

find out!

We’re going to start with a little experimentation using TextApp to learn

more about conditional branches, and then later in this chapter we’ll

make some changes to our new Shopping List application.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=185

INTRODUCING IF AND ELSE 186

Open your TextApp project in Xcode and find the NotifyingClass.m file,

then change your displaySomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

int someValue = 5;

if(someValue = 10)

{

stringToOutput = @"The value was 10!";

}

[textView insertText:stringToOutput];

}

By this point, you should be reasonably confident about what is hap-

pening at the beginning and end of this method; we set up a variable

pointing to a string object with the phrase “Everything seems normal”

and display the string at the end of the method in the text view. We also

create an integer variable, called someValue, with an initial value of 5.

The conditional if statement then changes the value of the stringToOutput

variable, if a condition is met. In this case, the condition is what looks

like a test to see whether the value of our someValue variable is 10,

which it isn’t.

Build & Run the application, and click the Generate Text button. Guess

what appears:

The value was 10!

Huh? We’re seeing one of the first potential pitfalls of working with very

basic logical expressions. We’ve used the wrong operator by mistake.

The assignment operator (=) is very different from the equality operator

(==). Change your code to use the correct logical operator:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

int someValue = 5;

if(someValue == 10)

{

stringToOutput = @"The value was 10!";

}

[textView insertText:stringToOutput];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=186

INTRODUCING IF AND ELSE 187

Phew! You should now see the expected output:

Everything seems normal.

So, to check whether one value is equal to another value, you need to

use the equality operator with two equals signs.

Let’s make this a little bit more interesting; we’ll check whether a num-

ber entered by the user in the text field has a certain value:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([textField intValue] == 42)

{

stringToOutput = @"You entered the magic number!";

}

[textView insertText:stringToOutput];

}

Build & Run the application again, and enter any number or phrase

you like in the text field; assuming you didn’t enter “42,” you’ll see

our assurance that everything is normal. Type “42” into the text field

and click the button again, and you’ll see the message about the magic

number, as shown in Figure 9.2, on the next page.

Let’s try something else:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([textField stringValue] == @"Danger")

{

stringToOutput = @"Warning! Danger ahead!";

}

[textView insertText:stringToOutput];

}

Build & Run the app again, and this time enter the word “Danger” in

the text field. When you click the button, you would expect to see the

warning message, but you don’t—for some reason, the logical expres-

sion [textField stringValue] == @"Danger" is evaluating to false.

Comparing Objects in Expressions

The reason for this is that the equality operator checks the equality of

the values on either side of it. The left side of the expression, [textField

stringValue], returns a pointer to a string object; the right side of the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=187

INTRODUCING IF AND ELSE 188

Figure 9.2: Entering the magic number

expression, @"Danger", also returns a pointer to a string object, as dis-

cussed in Section 8.3, Advanced String Stuff , on page 157. Remember

what a pointer is? It’s a variable that holds as its value an address in

memory. So, the operator checks to see whether the address held on

the left side is the same as the address held on the right side.

In this case, they won’t be the same, because you’re dealing with two

separate string objects: one is the string you typed in the box, and

the other is the string object created by typing @"Danger". In other

words, when you use the equality operator with objects, you’re asking

to check whether the objects are actually the same object in memory,

not whether the objects both contain some identical internal value.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=188

INTRODUCING IF AND ELSE 189

In the earlier example that checked the intValue of the text field, the call

to [textField intValue] returned an int value—the equality operator was

then used to check whether this value was equal to another value, the

number 42.

Remember from earlier how the sender variable passed to any IBAc-

tion method points to the object that sent the message? Let’s use this

to make sure that the user clicked the Generate Text button in the

interface.

First you’ll need an outlet for the button in the @interface for the Notify-

ingClass. So, switch to the NotifyingClass.h file, and add an NSButton outlet:

@interface NotifyingClass : NSObject {

IBOutlet NSTextView *textView;

IBOutlet NSTextField *textField;

IBOutlet NSButton *generateTextButton;

}

- (IBAction)displaySomeText:(id)sender;

- (float)generateValue:(float *)originalValue;

@end

Open the MainMenu.xib file in Interface Builder, and connect this outlet

to the button, as shown in Figure 9.3, on the next page, and then save

the file.

Now that the outlet is set up, we can use it to check whether the sender

object is equal to the generateTextButton button outlet. Change your dis-

playSomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if(sender == generateTextButton)

{

stringToOutput = @"You clicked the button!";

}

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=189

INTRODUCING IF AND ELSE 190

Figure 9.3: Connecting the button outlet in Interface Builder

Notice that we’ve added an else statement in this example. If the user

does click the button to call this method, we’ll output a suitable mes-

sage; in all other cases, we’ll output a message about illegal access.

Build & Run the application to try this; click the button, and you will

see the relevant button message. Remember in Section 6.1, Even More

Spice, on page 105 how we set up the text field to call the displaySome-

Text: method as its action, sent when the user presses the F key? Well,

try typing something in the text field of the app now and pressing F;

you’ll be warned about illegal access, because the sender in the dis-

playSomeText: method will be the text field, not the button.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=190

INTRODUCING IF AND ELSE 191

Remembering the Scope of a Variable

We’ve talked quite a bit in the past about the scope of a variable; the

general rule is that a variable is in scope inside the code block in which

it is declared. This means that you wouldn’t be able to do something

like this:

- (IBAction)displaySomeText:(id)sender

{

if(sender == generateTextButton)

{

NSString *stringToOutput = @"You clicked the right button!";

}

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

Notice how the code declares the string variable in the if block, changes

it in the else block, and outputs it at the end of the method? This won’t

work at all.

For a start, the stringToOutput variable used in the else block isn’t even

in scope; you can declare as many variables as you like within an if or

else block, but they won’t be valid outside of that block. You might be

tempted to try to do something like this:

- (IBAction)displaySomeText:(id)sender

{

if(sender == generateTextButton)

{

NSString *stringToOutput = @"You clicked the right button!";

}

else

{

NSString *stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

but it still won’t work. Even though you’ve defined what looks like

the same variable in each conditional block, the variable isn’t valid

or accessible outside those blocks, so the insertText:stringToOutput call

doesn’t know what you’re talking about. As far as code is concerned,

the fact that the variables in the two code blocks have the same name

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=191

INTRODUCING IF AND ELSE 192

is totally irrelevant; they’re two separate variables, in scope only within

the code block in which they are declared.

The correct way to work with a variable that needs to be accessed inside

and outside the if/else blocks is the one we used earlier:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if(sender == generateTextButton)

{

stringToOutput = @"You clicked the right button!";

}

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

Declare the variable before the if/else, and it will be accessible both

within the conditional blocks and after the relevant block of code has

been executed.

Notice that we also changed the declaration of the stringToOutput variable

so that it has an initial value of nil. We could have just declared it as

NSString *stringToOutput;, but remember from Section 5.2, Combining Dec-

laration and Assignment, on page 87 that if you don’t assign an initial

value to a variable, it starts life with an unpredictable value. This hap-

pens not to matter for the code we’re working with right now, because

we assign a value in both the if and the else block. Consider what might

happen with this code, however:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput; // No Initial Value

if(sender == generateTextButton)

{

stringToOutput = @"You clicked the button!";

}

[textView insertText:stringToOutput]; // Danger!!!

}

If the displaySomeText: method is called with a sender other than the gen-

erateTextButton, the text view will end up being passed an uninitialized

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=192

INTRODUCING IF AND ELSE 193

Figure 9.4: Stopping TextApp from Xcode

stringToOutput, which will almost certainly crash the application. This is

a bug that might not show up while you’re coding unless you specifi-

cally test what happens if you have a sender other than what you expect.

The moral of the story is always to initialize your variables when you

declare them, as a pointer either to an object or to nil.

If you test this, you’ll need to kill your application manually if it crashes

by using the big, red Stop Tasks button in the Xcode project window,

shown in Figure 9.4.

The "EXC_BAD_ACCESS" error at the bottom of the Xcode project window

means that your code has tried to access something it shouldn’t. If you

shared a buggy TextApp with someone who isn’t running it through

Xcode, the operating system would kill the application automatically

when it crashed, probably leaving the user rather annoyed and

unimpressed.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=193

INTRODUCING IF AND ELSE 194

Further Conditions

So far, we’ve seen how to use if to check a single logical expression,

executing one of only two possible paths. What happens if we need to

check for more than one expression?

As an example, we might want to write the displaySomeText: method such

that we’re happy to accept either the button or the text field as the

sender, but not any other object. We need the ability to test for more

than one logical possibility.

There are several ways to perform this check; the first we’ll look at is to

add an if statement alongside the else, like this:

if(«first logical expression»)

{

// do something if the first expression is met

}

else if («second logical expression»)

{

// do something if the second expression is met

}

else

{

// do something in all other cases

}

With this in mind, let’s change the displaySomeText: method in TextApp

to the following:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if(sender == generateTextButton)

{

stringToOutput = @"Access Granted!";

}

else if(sender == textField)

{

stringToOutput = @"Access Granted!";

}

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=194

INTRODUCING IF AND ELSE 195

When you Build & Run the application this time, you’ll get the “Access

Granted!” message either by clicking the button or by pressing F from

the text field.

Combining Logical Operators

In the previous example, we’re effectively doing the same thing in two

different if code blocks—setting the stringToOutput to @"Access Granted!".

In a real-world application, we would probably be doing a great deal

more than just setting the value of a string, so it would be much better

not to have to write out the same thing twice.

It would be nice if we could somehow combine the two conditional

checks into a single logical expression for a single code block; in other

words, something like this:

if(firstExpression is true OR secondExpression is true)

{

do this

}

In the C language, we can accomplish this by building up our logi-

cal expressions using multiple operators. So far, we’ve seen only one

example of a logical operator, used for testing equality. Many more are

available, including operators to test whether two given logical expres-

sions are both true and an operator to test whether one or both are

true.

Let’s use the OR operator:

«first expression» || «second expression»

This operator is specified using two vertical bars; if you haven’t typed

a vertical bar before, it might take a while to find it on your keyboard.

For many keyboard layouts, it’s located on the right side of the keyboard

near F or on the backward slash \ key.

Let’s change our displaySomeText method once again to combine the

checks for the sender into one combined expression:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if(sender == generateTextButton || sender == textField)

{

stringToOutput = @"Access Granted!";

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=195

INTRODUCING IF AND ELSE 196

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

If you were to read the expression aloud, you might read it as “If sender

is equal to generateTextButton or sender is equal to textField, then...”

It’s also possible to use parentheses to make it clearer which compo-

nents make up each individual part of the whole logical expression, like

this:

if((sender == generateTextButton) || (sender == textField))

but if having lots of parentheses only seems to confuse the issue, don’t

worry about them!

More Logical Operators

Let’s look at a few more logical operators. One that’s very similar to the

|| operator is &&. As you might be able to guess, it’s the AND operator,

used to test whether two logical expressions both evaluate as true, like

this:

if(«first expression» && «second expression»)

{

// do something only if both expressions are true

}

We can use the && operator to test whether the user entered a certain

number and used the F key to call the displaySomeText: method:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if(sender == textField && [textField intValue] == 42)

{

stringToOutput = @"Access Granted!";

}

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=196

INTRODUCING IF AND ELSE 197

If you test this code, you’ll find that you only get the “Access Granted”

message if you type the number 42 and press F. If you type anything

else or press the button, you’ll get the “Illegal Access” message.

Let’s complicate things even further by saying that we want access to

be given if the text field contains the number 42, AND the user either

presses F OR presses the button. We now need to use parentheses, this

time to indicate the scope of each expression:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if([textField intValue] == 42

&& (sender == textField || sender == generateTextButton))

{

stringToOutput = @"Access Granted!";

}

else

{

stringToOutput = @"Illegal Access!";

}

[textView insertText:stringToOutput];

}

If we didn’t use the extra parentheses, instead writing the if statement

like this:

if([textField intValue] == 42

&& sender == textField || sender == generateTextButton)

it’s not clear what we mean. If you change your code and test it, you

will find that the access granted message is displayed either by press-

ing the button with any value in the text field or by entering “42” and

pressing F.

In mathematics, the various mathematical operations like addition and

multiplication have different importance. In modern mathematics, writ-

ing “2 + 4 * 5” would be interpreted as “2 + 20” rather than “8 *

5” because multiplication should be carried out before addition. The

same is true of logical expressions. The AND operator will be interpreted

before the OR operator, meaning that the confusing expression earlier

is actually equivalent to this:

if(([textField intValue] == 42 && sender == textField)

|| sender == generateTextButton)

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=197

INTRODUCING IF AND ELSE 198

Rather than try to remember the order in which operators will be evalu-

ated, it’s easier just to use parentheses in the first place. It also makes

your code more readable, which is generally a good thing! An expres-

sion within parentheses will be evaluated before parts of an expression

outside parentheses.

If your head feels like it’s about to explode from overexposure to logi-

cal expressions and parentheses, you’ll be grateful to know that we’re

moving back to simpler expressions now in order to introduce a couple

more operators.

That’s So Not True

Sometimes you’re going to need to know when something is not the

case, and luckily, there’s an operator for that too. In fact, there are

several ways to express NOT. One of these is to say that something is

not equal to something else; the operator looks like this:

«left hand value» != «right hand value»

Let’s say that we wanted to do something in our displaySomeText: method

only if the sender was NOT the button:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if(sender != generateTextButton)

{

stringToOutput = @"You didn't press the button!";

}

else

{

stringToOutput = @"Access Granted!";

}

[textView insertText:stringToOutput];

}

When you Build & Run the application this time, you’ll be informed if

you don’t use the button to call the method (that is, you press the F

key from the text field).

I said that there were several ways to express NOT; generally they involve

the exclamation point (!), but before I go into any more detail, you need

to know a little more about truth and falsehood when programming.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=198

ALL ABOUT THE TRUTH 199

9.2 All About the Truth

In a couple of places earlier in the book, you’ve encountered what’s

known as a Boolean value, which can have a value of either YES or NO.

A Boolean value of YES is synonymous with true, and a value of NO is

synonymous with false.

When working in Objective-C, you use a BOOL variable to hold either

YES or NO:

BOOL enabled = [sender enabled];

You might use code like this in the displaySomeText: method to check

whether whatever object sent you the message is currently enabled.

The BOOL variable would then have a value of YES or NO to indicate the

state of the sender.

Because a BOOL variable is effectively either true or false, you can use

it in conditional statements, like this:

BOOL enabled = [sender enabled];

if(enabled)

{

// It was enabled!

}

There’s no apparent operator being used here: all that happens is the

value of the variable is checked to see whether it’s true or false. If it’s

true, the code will be executed; otherwise, it won’t.

Using if(enabled) in the previous context is the same as saying if(

enabled == YES).

If you want to check whether a BOOL value is NO, you could obviously

use the code if(enabled == NO), or even if(enabled != YES), but there is

another way:

BOOL enabled = [sender enabled];

if(!enabled)

{

// It wasn't enabled

}

Placing ! on the front of a variable or expression has the effect of negat-

ing that variable. If the variable was false, ! will make it evaluate as

true, and vice versa.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=199

ALL ABOUT THE TRUTH 200

So, the following logical expressions are all equivalent:

(enabled == YES)

(enabled != NO)

(!enabled == NO)

!(enabled == NO)

Notice the difference between the third and fourth expressions shown

in the previous code. Putting the ! on the front of a variable negates

the evaluation of that variable; putting the ! on the front of a bracketed

logical expression negates the result of the whole expression inside the

brackets.

Every Value Is a Winner

There’s another useful feature in the C language, in that any value

other than zero will evaluate as true.

This includes pointers to objects. If you declare a pointer to an object,

like this:

NSObject *someObject = [[NSObject alloc] init];

you can “evaluate” someObject, like this:

if(someObject)

{

// the someObject pointer is pointing to an address in memory

}

You can check to see whether an object pointer is nil in several ways:

if(someObject == nil)

{

// the someObject pointer hasn't yet been set to an address

}

if(!someObject)

{

// the someObject pointer hasn't yet been set to an address

}

These two conditional statements are equivalent; nil, like zero, will eval-

uate as false, so !nil will evaluate as true. You’ll see more examples of

this later in the book when we look at methods dedicated to accessing

instance variables in an object, called accessor methods.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=200

ALL ABOUT THE TRUTH 201

Comparing Objects

Earlier in this chapter we tried to compare two strings using this code:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([textField stringValue] == @"Danger")

{

stringToOutput = @"Warning! Danger ahead!";

}

[textView insertText:stringToOutput];

}

Because the == operator compares the values on either side of it, this

code checks to see whether the address of an object on the left is the

same as the address of the object on the right; in other words, it checks

whether the two objects on either side are actually the same object.

Clearly, there are going to be occasions when we do want to check

whether two distinct string objects contain the same string of charac-

ters. So, how do we do that?

Objects can provide methods to check whether their contents are equal

to some other object’s contents, usually taking the form isEqualTo...:.

NSString, for example, provides us with a method called isEqualToString:.

This method will return a BOOL value indicating whether two string

objects are equivalent.

Change your displaySomeText: method to look like this:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

NSString *textFieldString = [textField stringValue];

if([textFieldString isEqualToString:@"Danger"])

{

stringToOutput = @"Warning! Danger ahead!";

}

[textView insertText:stringToOutput];

}

In this code, we first get a pointer to the string object held in the text

field and then ask that object whether it is equal to the string @"Dan-

ger". If you Build & Run the application, you’ll find that it behaves as

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=201

STYLISTIC CONVENTIONS 202

expected—the output will now indicate a warning if you type “Danger”

into the text field.

9.3 Stylistic Conventions

It’s worth taking a moment now to point out a few stylistic conventions

and optional shorthands.

You may recall from seeing code like [[NSObject alloc] init] that we can

combine calls to object methods using nested square brackets. The

inner bracket methods are called before the outer methods, so in the

case of object allocations, alloc is called on NSObject, and init is called

on whatever object is returned by the alloc call.

With this in mind, we can rewrite our displaySomeText: method, avoiding

using the textFieldString variable, like this:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([[textField stringValue] isEqualToString:@"Danger"])

{

stringToOutput = @"Warning! Danger ahead!";

}

[textView insertText:stringToOutput];

}

There are also some points worth noting about if statements. First, the

general rule about placement of curly braces applies, so you might pre-

fer to put the opening curly brace on the same line as the if statement

itself:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([[textField stringValue] isEqualToString:@"Danger"]) {

stringToOutput = @"Warning! Danger ahead!";

}

[textView insertText:stringToOutput];

}

Second, if you have only a single statement inside a conditional block,

you don’t need the curly braces at all.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=202

STYLISTIC CONVENTIONS 203

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([[textField stringValue] isEqualToString:@"Danger"])

stringToOutput = @"Warning! Danger ahead!";

[textView insertText:stringToOutput];

}

Whatever code statement appears immediately after the if statement will

be executed only if the evaluation is true.

The same applies to any other conditional blocks:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = nil;

if([[textField stringValue] isEqualToString:@"Danger"])

stringToOutput = @"Warning! Danger ahead!";

else

stringToOutput = @"Everything seems normal.";

[textView insertText:stringToOutput];

}

Generally, you’ll see the relevant statement on the line after its con-

dition, as shown earlier, indented using spaces or tabs. If you have a

particularly short statement, however, you can even place it all one the

same line, like this:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if([[textField stringValue] isEqualToString:@"Stop"]) return;

[textView insertText:stringToOutput];

}

In this particular example, we use the return keyword to end the method

immediately at that point, returning to whatever was happening when

the method was called. If you try this code in your application, you’ll

see the “Everything seems normal” message whenever the method is

called, unless you type the word “Stop” in the text field. If the string

evaluates as equal to “Stop,” the method will end, and nothing will be

output at all.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=203

STYLISTIC CONVENTIONS 204

Fastest First

When writing code that uses multiple if conditional statements or a

compound expression made up of multiple logical tests, always put

either the fastest or most eliminatory test first.

If we are testing whether two statements both evaluate as true using

an && operator, the statement will fail instantly if the first statement

evaluates as false and won’t bother testing the second statement at all.

As an example, if we were to write an application that kept track of par-

ents and school children and wanted to write some sort of expression

to check whether a particular person in the records was a man with

three or more children, we might use something like this:

if([person hasMoreThan3Children] && [person isMale])

{

// Found someone!

}

From a performance perspective, if we ran this test on every single per-

son in the database, we would waste a lot of time by running the has-

MoreThan3Children test before the isMale test. A check to count how many

children someone has is going to require looking up all the records for

a person’s children and counting how many there are. The check to see

whether someone is male is a simple test of what is probably a BOOL

value. The isMale evaluation will execute far more quickly than the has-

MoreThan3Children test, so it would be much better to perform them in

this order:

if([person isMale] && [person hasMoreThan3Children])

{

// Found someone!

}

By writing the tests this way around, we’ll probably cut the time taken

to run the query by half since it’s likely that around 50 percent of the

people in the database won’t pass the isMale test. For anybody who is

female, the [person hasMoreThan3Children] test will never be run.

The same principle applies to the || operator too; consider a logical state-

ment that requires at least one of two evaluations to be true, such as:

- (IBAction)displaySomeText:(id)sender

{

NSString *stringToOutput = @"Everything seems normal.";

if(sender == generateTextButton

|| [[textField stringValue] isEqualToString:@"Danger"])

{

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=204

SWITCHING AROUND 205

stringToOutput = @"There may be trouble ahead!";

}

[textView insertText:stringToOutput];

}

The first test to see whether the sender is the generateTextButton is a

simple test to check whether one value is equal to another value (the

address in memory of the objects). The second test, checking the equal-

ity of two character strings, is more complicated and will take more

computer processor cycles to complete. By putting the faster test first,

the slower test will be evaluated only if the faster test fails, thereby

maximizing performance where possible.

9.4 Switching Around

Earlier in this chapter, we saw how it was possible to do multiple checks

for conditional statements, using code like this:

if(sender == generateTextButton)

{

// first case

}

else if(sender == textField)

{

// second case

}

else

{

// all other cases

}

If there were other possible sender values to check, we’d need multiple

else if (...) statements that all perform the same test but try different

values. The C language offers an alternative to using else if: the switch

statement. It looks like this:

switch(«variableToTest»)

{

case «firstPossibleValue»:

// first case

break;

case «secondPossibleValue»:

// second case

break;

default:

// all other cases

break;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=205

SWITCHING AROUND 206

This construction executes a particular code case, chosen based on

a given value of a variable. As an example, let’s say we’ve asked the

user for an integer value representing the current day of the week,

zero-based, of course, between 0 and 6, and we want to translate this

number into a string representing the name of the day. Change the

displaySomeText: method to the following, filling in the rest of the day

numbers in the same style:

- (IBAction)displaySomeText:(id)sender

{

int dayNumber = [textField intValue];

NSString *stringToOutput = nil;

switch (dayNumber)

{

case 0:

stringToOutput = @"Sunday";

break;

case 1:

stringToOutput = @"Monday";

break;

case 2:

stringToOutput = @"Tuesday";

break;

case 3:

stringToOutput = @"Wednesday";

break;

«Other Day Checks Go Here»

default:

stringToOutput = @"Unknown Day";

break;

}

[textView insertText:stringToOutput];

}

When you Build & Run the application and enter a number between 0

and 6, you’ll see the relevant name of that day output in the text view.

Otherwise, you’ll get the “Unknown Day” message.

Falling Down

When we use switch-case constructions like this, the break at the end of

each case is extremely important. Try removing the break from the first

case 0: section, and run the application again. If you type a zero into

the text field, you’ll see the apparently incorrect output of “Monday.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=206

SWITCHING AROUND 207

This is a curious but extremely useful feature—if we miss the break

statement, the code continues through the next case, until it reaches

a break. So, in the previous case, the stringToOutput variable is set to

@"Sunday" by the case 0: code, but then falls through and gets set to

@"Monday" by the case 1: code.

Although it can often be a cause of unintended bugs, this behavior is

useful when we want to have a number of cases all execute the same

code, like this:

- (IBAction)displaySomeText:(id)sender

{

int dayNumber = [textField intValue];

NSString *stringToOutput = nil;

switch (dayNumber)

{

case 0:

case 1:

case 2:

case 3:

stringToOutput = @"You entered a valid day number";

break;

default:

stringToOutput = @"Unknown Day";

break;

}

[textView insertText:stringToOutput];

}

In this code, if the dayNumber variable has a value between 0 and 3, the

output indicates a valid day number; otherwise, it outputs “Unknown

Day.” We can even do super-exciting things like this:

switch (dayNumber)

{

case 0:

NSLog(@"You chose the secret number!");

case 1:

case 2:

case 3:

stringToOutput = @"That is a valid day number";

break;

default:

stringToOutput = @"Unknown Day";

break;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=207

WRITING INIT METHODS 208

With this code, the same output appears in the text view for any value

between 0 and 3. For the special case value of 0, the secret message

will also be output to the console log but only for that special case.

Just the Values

The switch-case construction can only be used to test the value of an

integer. Sadly, we can’t use it to test for multiple sender objects, and we

can’t use it to test for different string contents of an NSString object.

9.5 Writing Init Methods

Now that we’ve seen a variety of ways to write conditional code, or code

that gets executed depending on certain conditions being met, it’s time

to revisit our understanding of init methods for objects.

In the previous chapter, in Section 8.4, The MyDocument Class, on

page 161, we looked briefly at the init method generated for us by the

Xcode Document-based Application template. We added code to this

method to set up our initial array in the Shopping List application,

ending up with the following method:

- (id)init

{

self = [super init];

if (self) {

shoppingListArray = [[NSMutableArray alloc]

initWithObjects:@"Milk", @"Eggs",

@"Butter", nil];

}

return self;

}

It should be clear by now what’s happening in this method: first self is

set to the value returned by [super init]; then we check to see whether

self is a valid object. If it is a valid object, we set up the shoppingListArray

object by creating a new mutable array.

If self has failed to be allocated and initialized properly, it will be nil,

and whatever is located between the curly braces won’t be executed.

Instead, the method will just return the value of self (that is, nil) straight

back from the method.

Why bother to perform this check? Well, if the object has failed to ini-

tialize properly, there won’t be any instance variables to set. If we still

choose to allocate and initialize a mutable array at this point, we would

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=208

WRITING INIT METHODS 209

leak that array, since there would be no valid reference to it after it was

created.

You will see init methods written in a variety of ways. The other inter-

esting case that you will encounter is this one:

- (id)init

{

if (self = [super init]) {

shoppingListArray = [[NSMutableArray alloc]

initWithObjects:@"Milk", @"Eggs",

@"Butter", nil];

}

return self;

}

Assuming you’ve been following along, alarm bells should be ringing

when you see the conditional expression if(self = [super init]). Surely we

shouldn’t be using an assignment operator in a logical expression?

In fact, using an assignment operator in this case is useful. Think about

what is actually happening.

The logical expression is self = [super init]. If this evaluates to true, the

conditional block will be executed. What is true? Well, any value other

than nil. If the [super init] portion returns nil, then self will be set to nil, and

the whole expression will evaluate as false.

If [super init] returns a non-nil value (the address of the object that has

been initialized), then self will be set to that non-nil value, and the whole

expression will evaluate as true.

There has been a lot of heated discussion about how best to write an

init method. If you are particularly interested in learning all the grisly

details, do a search on the Internet for an article by Mike Ash called

“The How and Why of Cocoa Initializers.” If you just want to make sure

that you’re doing the Right Thing, then follow the advice given by Apple,

and use the format we’ve just seen:

- (id)init

{

if (self = [super init]) {

«object setup goes here»

}

return self;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=209

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 210

Following Apple’s recommendations is usually the best way to proceed,

since it ensures that whatever you’re doing will continue to work with

whatever top-secret things Apple has planned for the future.

9.6 Adding Conditional Statements to the Shopping List

Application

To see conditional statements working in a real-world example, let’s

add some extra capabilities to our Shopping List application. At the

end of the previous chapter, I mentioned that it would be nice to be

able to remove objects from a shopping list. You might have had a go

at implementing a mechanism for this; either way, let’s now take a look

at one way to do it, asking the user to confirm the deletion before we

actually remove the item.

If the TextApp project is still open in Xcode, close it. Also, quit Interface

Builder to close any open interface files.

Adding a Remove Button

Open the Shopping List Xcode project from the previous chapter, and

double-click the MyDocument.xib file to open it in Interface Builder. We’ll

start by adding a new button to the interface.

In Interface Builder’s Library palette, find the NSButton object called

Square Button. Drag one of these out onto the document Window inter-

face, and make it about half the default size. If you hold down the B

key while dragging on the object handles, you’ll find that the size is

constrained to a perfect square.

With the button still selected, find the Image attribute in its Attributes

inspector. Use the drop-down box for this attribute to select the NSRe-

moveTemplate image. You should end up with something looking like

Figure 9.5, on the following page.

We now need to write the method to set as the action for our new button.

Adding the Remove Item Method

Switch back into Xcode, and open the MyDocument.h header file.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=210

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 211

Figure 9.5: The new Remove button in the Shopping List interface

Add a new IBAction method signature for a method called removeItem-

FromShoppingList:, like this:

@interface MyDocument : NSDocument

{

IBOutlet NSTableView *shoppingListTableView;

IBOutlet NSTextField *newItemNameTextField;

NSMutableArray *shoppingListArray;

}

- (IBAction)addNewItemToShoppingList:(id)sender;

- (IBAction)removeItemFromShoppingList:(id)sender;

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=211

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 212

Copy the method signature to the clipboard, and change to the MyDoc-

ument.m implementation file.

Paste the new method between the addNewItemToShoppingList: action

method and the init method, and add curly braces:

- (IBAction)removeItemFromShoppingList:(id)sender

{

}

Before we work out how to delete an item from the shopping list array,

let’s first use this method to display an alert to the user, asking him

whether he is sure he wants to delete the item.

Displaying an Alert

There are several ways to display alerts and dialog boxes in Cocoa. One

of the simplest is to use an object called—yes!—NSAlert.

To use an NSAlert, we create an alert instance, add some button names

to the alert object (along with a message and some informative text),

set the alert style, and then run the alert. Add the following code to the

removeItemFromShoppingList: method:

- (IBAction)removeItemFromShoppingList:(id)sender

{

NSAlert *alert = [[NSAlert alloc] init];

[alert addButtonWithTitle:@"Delete"];

[alert addButtonWithTitle:@"Cancel"];

[alert setMessageText:@"Delete the shopping list item?"];

[alert setInformativeText:@"Deleted items cannot be restored."];

[alert setAlertStyle:NSWarningAlertStyle];

[alert runModal];

[alert release];

}

Before we do anything else, be sure to connect the new Remove button

in Interface Builder to target this action method. By now you should feel

pretty confident in doing this: right-click the File’s Owner object in the

Interface Builder project window (this will be the MyDocument object),

and find the removeItemFromShoppingList: method; drag from the little

circle next to it, and release when you reach the button.1

1. If you’ve already done this, instinctively, after adding the method in the previous

section, give yourself a pat on the back!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=212

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 213

Figure 9.6: The “Delete the shopping list item?” alert

Once the button is connected, Build & Run the application from Xcode,

and test the new Delete button. You should find that an alert is dis-

played on-screen, as shown in Figure 9.6.

The Delete button is blue, indicating that it is the default button (the

first button that you supply to an alert is taken to be the default but-

ton). If you press the F key on your keyboard, this default button will

be selected; pressing Esc will select the cancel button. At the moment,

neither button will have any effect other than to dismiss the alert from

the screen.

Finding the Item to Delete

Before we work out how to remove the item, let’s first check that the

user has actually selected an item in the shopping list. We can get the

index of the selected row in the shoppingListTableView by asking it for its

selectedRow.

If the selectedRow index is -1, no row is selected. In this case, we don’t

want to display the alert; we just want to return immediately from the

removeItemFromShoppingList: method without doing anything.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=213

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 214

With this in mind, add the following lines:

- (IBAction)removeItemFromShoppingList:(id)sender

{

int selectedItemIndex = [shoppingListTableView selectedRow];

if(selectedItemIndex == -1) return;

NSAlert *alert = [[NSAlert alloc] init];

[alert addButtonWithTitle:@"Delete"];

«method continues»

Notice that we’re using a conditional statement consolidated into one

line; if no item is selected, we return—without creating or displaying

the alert. Build & Run the application again, and you will find the alert

is displayed only if an item is selected in the shopping list.

Finding Which Alert Button Was Pressed

Assuming users have selected an item in the shopping list and pressed

the Remove button, we need to find out whether they then clicked the

Delete or the Cancel button in the alert.

We do this by checking the value returned by the runModal method;

this will be an integer value indicating the number of the button that

was pressed. Apple helpfully defines some constants for us to use here;

the relevant values are NSAlertFirstButtonReturn or NSAlertSecondButtonRe-

turn. Since we only care about doing something if the Delete button is

pressed, we just need to check for the NSAlertFirstButtonReturn. Add the

following code to our removeItemFromShoppingList: method:

- (IBAction)removeItemFromShoppingList:(id)sender

{

int selectedItemIndex = [shoppingListTableView selectedRow];

if(selectedItemIndex == -1) return;

NSAlert *alert = [[NSAlert alloc] init];

[alert addButtonWithTitle:@"Delete"];

[alert addButtonWithTitle:@"Cancel"];

[alert setMessageText:@"Delete the shopping list item?"];

[alert setInformativeText:@"Deleted items cannot be restored."];

[alert setAlertStyle:NSWarningAlertStyle];

int returnValue = [alert runModal];

if(returnValue == NSAlertFirstButtonReturn)

{

// we need to delete the item

}

[alert release];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=214

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 215

Deleting the Relevant Shopping List Item

At this point, we’re ready to write the code that removes the selected

item from the array. Once the item has been removed from the array,

we’ll need to reload the table view so that the deleted item disappears.

We can use the removeObjectAtIndex: method on our shoppingListArray,

and because both the table view and the array use zero-based indexing

for their objects and rows, we can just pass the selectedItemIndex value

straight to the removeObjectAtIndex: method. Replace the item deletion

comment with this:

«beginning of method»

int returnValue = [alert runModal];

if(returnValue == NSAlertFirstButtonReturn)

{

[shoppingListArray removeObjectAtIndex:selectedItemIndex];

[shoppingListTableView reloadData];

}

«end of method»

Build & Run the application to make sure you can delete items from

the list. Items should be removed only if you choose the Delete button;

if they also get deleted when you click Cancel, make sure that you have

used the == equality operator and not the = assignment operator in the

conditional expression!

It’s worth mentioning that we could also use a switch-case construction

here, since the value of the returnValue variable is an integer:

«beginning of method»

int returnValue = [alert runModal];

switch(returnValue)

{

case NSAlertFirstButtonReturn:

[shoppingListArray removeObjectAtIndex:selectedItemIndex];

[shoppingListTableView reloadData];

break;

case NSAlertSecondButtonReturn:

// do something in response to the Cancel button being pressed

break;

default:

// this won't happen unless you add a third button to the alert

break;

}

«end of method»

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=215

ADDING CONDITIONAL STATEMENTS TO THE SHOPPING LIST APPLICATION 216

Additional Conditionals

Let’s make one last addition to the Shopping List application for this

chapter. We’ll assume that you’ve been so excited by your achievements

in creating such an amazing application, you decide to show it to your

friends. One of these friends isn’t as confident using a Mac as you are

and is terribly disconcerted to find that when he types a value into the

New Item text field, the value disappears from that text field when he

clicks the Add button. He would much prefer it if the value remained

after clicking the button, ready to be deleted before typing something

else. The rest of your friends all zip along adding new items by typing

into the Add box but are dismayed to find that they can’t add items just

by pressing the F key. They don’t want to have to fiddle around with a

mouse to press a button.

There are two issues here; let’s deal with the easy one first. Switch to

Interface Builder, and set the action for the New Item text field to be the

addNewItemToShoppingList: method. You’ll need to right-click (or C-click)

the text field and connect the selector outlet to the File’s Owner object’s

addNewItemToShoppingList: action method. Use the Identity inspector for

the text field to set its Action as “Sent on Enter Only.”

This solves the problem of adding new items by pressing the F key.

Your Mac-experienced friends are delighted. The fact that the New Item

text field is emptied each time means they can type an item, add it by

pressing F, and start typing a new one straightaway.

How might you go about appeasing your slower and less experienced

friend? Well, you can check to see which object sent the addNewItem-

ToShoppingList: message and respond accordingly. You only want to

empty the text field if the sender was the newItemNameTextField. So,

change the addNewItemToShoppingList: method to this:

- (IBAction)addNewItemToShoppingList:(id)sender

{

[shoppingListArray addObject:[newItemTextField stringValue]];

if(sender == newItemNameTextField)

[newItemNameTextField setStringValue:@""];

[shoppingListTableView reloadData];

}

With one simple if statement, the text field will be emptied only if the

user pressed the F key. Now all your friends are happy, which means

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=216

CHAPTER SUMMARY 217

you are satisfied that you’ve achieved a thorough understanding of con-

ditional statements.

9.7 Chapter Summary

You have covered quite a lot in this chapter. Conditional statements

appear throughout code in real-world applications; understanding how

to work with if and else is extremely important when you start writing

your own code.

I hope you’ve recovered from looking at so many logical expressions and

operators, such as ==, &&, and ||. You’ll see these, and the ! operator

appearing throughout the rest of the book.

We’ll be adding more functionality to the Shopping List application in

the next chapter when we learn all about the joys of looping and iter-

ation, see how to get the same code to run multiple times, and access

each value in an array in turn to check its contents.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=217
v@v
Text Box
http://www.wowebook.com

Chapter 10

Looping and Enumerating
In the previous chapter, you saw how to execute different blocks of

code depending on certain conditions being met. Sometimes, though,

you need to be able to execute the same block of code, multiple times.

Say you wanted to display the names of the months of the year: you

could write code that output each month name in turn using twelve

separate segments of code, each effectively doing the same thing, just

with a different value. Then think what happens if you decide to change

the way we display each month; you’d have to go through and change

twelve different sections. The margin for error, let alone the level of

annoyance, would be high!

It would make much more sense if you could write only a single code

segment and get that segment to run multiple times. You’d need a way

of providing each code segment with the value necessary to display each

month, and you’d need to know how many values there were to display

in order to run the code the right number of times.

10.1 Introducing Array Enumeration

Back in Chapter 8, Collecting Information, on page 145, we looked at

storing collections of objects using arrays. We wrote code for TextApp

to generate a simple array containing three shopping list items, with

an additional item typed by the user into the text field. We then output

a string built from the items in the array, using the NSArray method

componentsJoinedByString:.

Prepared exclusively for James Carlson

INTRODUCING ARRAY ENUMERATION 219

That code looked like this:

- (IBAction)displaySomeText:(id)sender

{

NSString *firstObject = @"Milk";

NSString *secondObject = @"Eggs";

NSString *thirdObject = @"Butter";

NSArray *shoppingListArray = [NSArray

arrayWithObjects:firstObject, secondObject,

thirdObject, nil];

NSString *typedValue = [textField stringValue];

shoppingListArray = [shoppingListArray arrayByAddingObject:typedValue];

NSString *stringToOutput = @"The shopping list is: ";

stringToOutput = [stringToOutput

stringByAppendingString:[shoppingListArray componentsJoinedByString:@", "]];

[textView insertText:stringToOutput];

}

As an alternative to using the componentsJoinedByString: method on NSAr-

ray, we could instead walk through each item in the array, or enumer-

ate over the items, outputting them individually. In Objective-C, as of

version 2.01 of the language, we have access to something called fast

enumeration, which gives us easy access to exactly what we need.

Let’s use TextApp, as usual, to learn how to use fast enumeration. We’ll

change the displaySomeText: method to set up an array containing the

names of the months of the year so that we have a reasonable num-

ber of items to enumerate. We’ll continue to use the componentsJoined-

ByString: method for now, just so we can make sure we set up the array

correctly.

Open the TextApp project in Xcode, and find the usual NotifyingClass.m

file. Change the displaySomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

NSArray *monthsArray = [NSArray arrayWithObjects:@"January", @"February",

@"March", @"April", @"May", @"June",

@"July", @"August", @"September",

@"October", @"November", @"December", nil];

1. Objective-C 2.0 is the language available to us from any release of Mac OS X Leopard

onward.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=219

INTRODUCING ARRAY ENUMERATION 220

NSString *stringToOutput = [monthsArray componentsJoinedByString:@", "];

[textView insertText:stringToOutput];

}

This simple code creates a new array containing twelve string objects,

one for each month of the year, and then outputs a new string built

from the array’s objects, joining each component with a comma and

space. Make sure that you remember what you learned in Section 8.1,

Passing Multiple Values to a Method, on page 147, and include nil on

the end of the list of items in the array, or your code will crash! And,

since you’re using the @"string" string object shorthand, also check that

you’ve got the @ on the beginning of each string, or, again, your code

will crash.

Build & Run the application to check that the simple list of months is

output when you click the button.

Fast Enumeration Syntax

We’re now ready to change our code to walk through and output each

item in the array separately, instead of using the componentsJoined-

ByString: method. In pseudocode, what we want to achieve is this:

run this code block for each string object in the months array:

{

output the string object to the text view

}

The Objective-C syntax is this:

for(«ObjectType» *«variableName» in «collection»)

{

}

In other words, you supply an object type and variable name for the

items in the collection. The code block will then be executed for every

item in the collection, with the variable set to the relevant item for each

loop through that code block.

It’s probably easier to understand this by seeing it used in code; so,

change the displaySomeText: method to the following:

- (IBAction)displaySomeText:(id)sender

{

NSArray *monthsArray = [NSArray arrayWithObjects:@"January", @"February",

@"March", @"April", @"May", @"June",

@"July", @"August", @"September",

@"October", @"November", @"December", nil];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=220

COUNTING 221

for(NSString *eachMonth in monthsArray)

{

[textView insertText:eachMonth];

}

}

Build & Run the application to see what happens. When you click the

button, the output will be the following:

JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember

That single [textView insertText:eachMonth]; line is executed for every

month in the array. On each pass through the loop, the eachMonth vari-

able is set to the relevant month, and we output it. After all twelve iter-

ations, we’ve output all twelve of the strings in the array. Since the pro-

cess happens extremely quickly, it looks like we output all the strings

as one very long word.

It would be much nicer to output the months in a slightly more readable

way, so change the method to this:

- (IBAction)displaySomeText:(id)sender

{

NSArray *monthsArray = [NSArray arrayWithObjects:@"January", @"February",

@"March", @"April", @"May", @"June",

@"July", @"August", @"September",

@"October", @"November", @"December", nil];

for(NSString *eachMonth in monthsArray)

{

[textView insertText:[NSString

stringWithFormat:@"%@ is a nice month\n", eachMonth]];

}

}

This time you should see the output shown in Figure 10.1, on the fol-

lowing page.

10.2 Counting

Sometimes you need to keep track of how many times you’ve been

through the loop. Let’s say we want to generate output that says some-

thing like “Month 1 is January, Month 2 is February,” and so on.

We need to maintain a counter variable that is changed in each pass

through the loop.

The usual variable scope rules also apply to loops; if a variable is

declared within the inner loop code block, it’s in scope only within that

code block, and it’s valid only during each iteration through the loop.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=221

COUNTING 222

Figure 10.1: Outputting each month of the year

To maintain a counter variable, we need to declare it outside the loop,

with an initial value before the loop starts, and then increment the

value after each pass through the loop. Change your code to look like

this:

- (IBAction)displaySomeText:(id)sender

{

NSArray *monthsArray = [NSArray arrayWithObjects:@"January", @"February",

@"March", @"April", @"May", @"June",

@"July", @"August", @"September",

@"October", @"November", @"December", nil];

int counter = 1;

for(NSString *eachMonth in monthsArray)

{

[textView insertText:[NSString

stringWithFormat:@"Month %i is %@\n", counter, eachMonth]];

counter = counter + 1;

}

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=222

COUNTING 223

This code sets up a new counter variable with an initial value of 1.

Each time through the loop, we output a string using this number

(the loop pass will output “Month 1 is January”), and then in the last

line of the code block, we add 1 to the value of counter. The second

time through the loop will start with this incremented counter, i.e.,

outputting “Month 2 is February” and so on.

When you Build & Run, you’ll see the following when you click the

button:

Month 1 is January

Month 2 is February

Month 3 is March

Month 4 is April

Month 5 is May

Month 6 is June

Month 7 is July

Month 8 is August

Month 9 is September

Month 10 is October

Month 11 is November

Month 12 is December

Shorthand Counting

It’s so common to need to increment a value by 1 that the C language

has a simple shorthand, using another operator: ++.

Putting ++ after a variable is a shorthand way of saying “increment by

1,” so these two lines of code both have the same effect:

variable = variable + 1;

// is the same as

variable++;

Change the displaySomeText: method so that it uses this shorthand:

for(NSString *eachMonth in monthsArray)

{

[textView insertText:[NSString

stringWithFormat:@"Month %i is %@\n", counter, eachMonth]];

counter++;

}

Build & Run the application to check that the output is still the same.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=223

TRADITIONAL FOR LOOPS 224

Decrementing a Value

If we have access to an operator ++, it makes sense that there might

be an operator -- too. Let’s test that theory by changing the increment

code counter++ to counter--:

for(NSString *eachMonth in monthsArray)

{

[textView insertText:[NSString

stringWithFormat:@"Month %i is %@\n", counter, eachMonth]];

counter--;

}

Take a guess at what you expect to see in the output, and then Build

& Run to make sure.

When you click the button, you’ll see the following:

Month 1 is January

Month 0 is February

Month -1 is March

Month -2 is April

Month -3 is May

«... etc ...»

The – operator is used to decrement a value, meaning that these two

code lines both achieve the same result:

variable = variable - 1;

// is the same as

variable--;

10.3 Traditional for Loops

Earlier in the chapter, I said that fast enumeration was only introduced

with Objective-C 2.0. This begs the question, what was available before

Objective-C 2.0?

In the standard C language, there are several looping techniques, all

of which are also available in Objective-C. Probably the most common

of these is the standard for loop, which forms the basis for the fast

enumeration syntax. It looks like this:

for(«pre-loop statement»; «condition»; «statement for after each loop pass»)

{

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=224

TRADITIONAL FOR LOOPS 225

This syntax is a little more complicated than that of fast enumeration

and might take a while to get your head around. There are effectively

three mini-statements within the main for statement:

• The pre-loop statement is a statement that is executed before the

loop starts looping. It’s usually an initial assignment to a counter

variable.

• The condition is a condition that will be checked each time through

a loop. As long as the condition is met, the loop will continue. If

the condition is not met, the loop will stop.

• The statement for after each loop pass will be executed after the code

within the loop, each time through the loop. It’s usually an incre-

ment operation on a counter variable.

Let’s look at a few examples. We’ll start by writing a for loop that will

run exactly five times.

To do this, we’re going to need a counter variable that is incremented

on each pass through the loop, and we’re going to need a condition to

check whether that counter has reached a value of 5.

Even More Conditionals

In the previous chapter, you were introduced to several conditional

operators, used to test for equality and inequality between two vari-

ables. There are also comparative conditional operators, used to check

how one variable compares to another.

To decide how many times the loop should run, you need to be able to

write a condition that checks whether one value is less than another.

There’s one potential comparator available to us that looks like this:

«firstValue» < «secondValue»

This expression will be true only if firstValue is less than secondValue. It’s

even helpful that the operator looks like its meaning. The value next to

the small, pointy part represents the “lesser” side, while the value next

to the wide open part represents the “greater” side.

Predictably, there’s also a greater than comparison operator, which

looks like this:

«firstValue» > «secondValue»

For this operator, the expression is true only if “the value on the left is

greater than the value on the right.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=225

TRADITIONAL FOR LOOPS 226

Working with for Loops

Now that you know about comparison conditions, we can start to write

our simple loop to execute a statement five times.

Change the displaySomeText: method to this:

- (IBAction)displaySomeText:(id)sender

{

// monthsArray is unused at the moment...

NSArray *monthsArray = [NSArray arrayWithObjects:@"January", @"February",

@"March", @"April", @"May", @"June",

@"July", @"August", @"September",

@"October", @"November", @"December", nil];

int counter;

for(counter = 1; counter < 5; counter++)

{

[textView insertText:@"This should appear 5 times\n"];

}

}

Here we get to see a real example of the three parts in the for statement.

We start by setting the initial value of our counter variable to 1. This will

happen before the loop starts running.

Each time through the loop, the counter < 5 condition will be checked to

see whether the counter variable still has a value less than 5. Assuming

it does, the code block will be run, after which the counter variable will

be incremented, as specified by that third counter++ part.

Build & Run the application to check the output. You’ll see a warning

in Xcode that the monthsArray variable is unused (Xcode is worried that

we’ve declared an array but never use it again), but ignore this because

we’ll reintroduce code to use the array a little later. Once TextApp is

running, click the button, and you’ll see this:

This should appear 5 times

This should appear 5 times

This should appear 5 times

This should appear 5 times

Your eyes are not deceiving you: the statement appears only four times,

not five. What’s going on?

Remember how I said earlier that the < operator is used to check that

one value is less than another? Well, let’s analyze exactly what’s going

on during our for loop:

1. Start by setting counter to 1.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=226

TRADITIONAL FOR LOOPS 227

2. Check whether counter (value of 1) is less than 5; it is, so output

the string, and then increment counter.

3. Check whether counter (value of 2) is less than 5; it is, so output

the string, and then increment counter.

4. Check whether counter (value of 3) is less than 5; it is, so output

the string, and then increment counter.

5. Check whether counter (value of 4) is less than 5; it is, so output

the string, and then increment counter.

6. Check whethercounter (value of 5) is less than 5; it’s not, so stop

the loop.

The less than operator means exactly what it says. 5 isn’t less than 5,

it’s equal to 5, so the condition is false, and the loop stops.

Several options are available to us to correct our code:

• We could use a zero-based counter, using the initial statement to

set counter = 0. The text would be output five times, for counter

values 0, 1, 2, 3, 4.

• We could change the condition to check that the counter variable

had a value less than 6, rather than 5. The text would be output

five times, for counter values 1, 2, 3, 4, 5.

• We could use a different operator to check less than or equal to.

Yet More Operators

As well as less than (<) and greater than (>), there are two further oper-

ators available to us:

«firstValue» <= «secondValue»

and

«firstValue» >= «secondvalue»

These operators are used to check “less than or equal to” and “greater

than or equal to.”

We can now fix our five-times loop by using <= in our condition:

int counter;

for(counter = 1; counter <= 5; counter++)

{

[textView insertText:@"This should appear 5 times\n"];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=227

ENUMERATING AN ARRAY WITH A TRADITIONAL FOR LOOP 228

Build & Run the application once again, and you’ll find that the state-

ment is now output five times, as we originally intended.

10.4 Enumerating an Array with a Traditional for Loop

Now that you’ve seen how to use a traditional for loop to run a specific

block of code multiple times, you have another alternative available to

enumerate the contents of an array.

Fast enumeration, as described in Section 10.1, Introducing Array Enu-

meration, on page 218, was only introduced in Objective-C 2.0. Before

that, it was possible to enumerate arrays either by using a traditional

for loop or by using one of the other C looping techniques. Let’s look at

for loops first.

Counters and Array Indices

In the previous section, we saw how to get our for loop to execute exactly

five times. If we want to enumerate an array, we’ll need the code to run

as many times as there are elements in the array.

Back in Section 8.2, Counting the Items in an Array, on page 153, we

saw how to count the number of items in an array using its count

method. With this in mind, our condition to check whether the loop

should continue is going to involve one of the comparator operators to

check a counter variable against the number of items.

Remember that an array uses a zero-based index? And, remember

how we can access a specific element in an array using objectAtIndex:?

Putting all this together means that we can use a counter variable, ini-

tially set to 0, to access each element during the for loop. And, because

the array index is zero-based but the count method will return the

actual number of items, we need to use the less than operator rather

than less than or equal to—the last item in an array of 12 items will

have an index of 11.

So, change the displaySomeText: method to enumerate our old monthsAr-

ray using a traditional for loop:

- (IBAction)displaySomeText:(id)sender

{

NSArray *monthsArray = [NSArray arrayWithObjects:@"January", @"February",

@"March", @"April", @"May", @"June",

@"July", @"August", @"September",

@"October", @"November", @"December", nil];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=228

ENUMERATING AN ARRAY WITH A TRADITIONAL FOR LOOP 229

int currentIndex;

for(currentIndex = 0; currentIndex < [monthsArray count]; currentIndex++)

{

NSString *eachMonth = [monthsArray objectAtIndex:currentIndex];

[textView insertText:[NSString

stringWithFormat:@"%@ is a nice month\n", eachMonth]];

}

}

Notice that we’ve renamed our counter variable to currentIndex. This is

purely for aesthetic reasons; it’s just to make the code a little more

self-documenting, which is always a good thing.

Build & Run the application; when you click the button, you’ll see the

same output as you saw when we used fast enumeration:

January is a nice month

February is a nice month

March is a nice month

«... etc ...»

Optional Parts

It may interest you to know that the mini-statements inside the for

statement are all optional. It’s perfectly acceptable to write this:

for(; ;)

{

// do something forever

}

Note that the semicolons are still required, but this time no initial

assignment is made, no condition is checked, and no per-loop incre-

mentation is being performed. Whatever is contained within the code

block will execute forever.

This means you can use a for loop to execute a block of code multiple

times, but you can handle all the conditional checking, counter incre-

mentation, and so on, yourself, like this:

int currentIndex = 0;

for(; ;)

{

if(!(currentIndex < [monthsArray count]))

break;

NSString *eachMonth = [monthsArray objectAtIndex:currentIndex];

[textView insertText:[NSString

stringWithFormat:@"%@ is a nice month\n", eachMonth]];

currentIndex++;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=229

ENUMERATING AN ARRAY WITH A TRADITIONAL FOR LOOP 230

Break and Continue

We’ve seen the break keyword used to stop a loop altogether.
Sometimes, you’ll want to skip the rest of a code block during
one loop pass but have the loop continue with the next loop
pass. The keyword for this is, helpfully, continue.

If we wanted to display every month from our monthsArray

except the one with an index of 3, for example, we could use
this code:

int currentIndex;
for(currentIndex = 0; currentIndex < [monthsArray count];

currentIndex++)
{

if(currentIndex == 3)
continue;

NSString *eachMonth =
[monthsArray objectAtIndex:currentIndex];

[textView insertText:[NSString
stringWithFormat:@"%@ is a nice month\n", eachMonth]];

}

If the currentIndex variable has a value of 3, the loop skips the
output code and continues with the next run through. It would
have the effect of outputting all the months except April (the
month with a zero-based index of 3).

In this code, we set the initial value of the currentIndex variable before

the loop starts. At the beginning of each run through the loop, we check

to see whether the currentIndex variable is not less than the number of

items in the monthsArray. If it is “not less”—in other words, greater than

or equal to—we use the break keyword to stop the loop.

Back in Section 9.4, Switching Around, on page 205, we saw break used

in switch statements to dictate where the code for each case should end.

In a for loop, the break keyword is used to break the loop, causing it to

stop execution.

At the end of the loop code block, assuming we haven’t “breaked,” we

increment the currentIndex, ready for the next pass.

We’ve effectively written out “in full” what happens when using a tra-

ditional for loop. Note that it might make the code easier to read if we

changed the condition check to currentIndex == [monthsArray count] rather

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=230

OTHER TYPES OF LOOP 231

than negating the result of a less than comparison. Once the currentIn-

dex reaches the value of [monthsArray count], we can stop the loop.

Initial Assignment and Single-Line Loops

If the counter variable used during a for loop isn’t needed for anything

outside the loop, it’s also acceptable to make the actual variable assign-

ment in the head of the for loop itself, like this:

for(int counter = 0; counter < 5; counter++)

{

}

And, just like we saw with if statements in the previous chapter, when

there is only one line of code in the for loop block, we don’t need to use

the curly braces:

for(int counter = 0; counter < 1; counter++)

NSLog(@"Hello!");

Test your loop knowledge and understanding of conditionals by working

out how many times that Hello! message will be output to the console

log.

10.5 Other Types of Loop

Rather than having a portion of code run a certain number of times,

we often need to have a loop continue for as long as some condition

is true. Given that the parts of a for statement are optional, we could

accomplish this using a for loop:

for(; shouldContinue == YES;)

{

// do something until shouldContinue is NO

}

but the C language has another loop construction that’s more suitable

in this case, the while statement. It looks like this:

while(«condition»)

{

}

The code between the braces will keep looping as long as the condition

is met.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=231

OTHER TYPES OF LOOP 232

The while equivalent of the earlier example would be this:

while(shouldContinue == YES)

{

// do something until shouldContinue is NO

}

A similar loop that you might encounter is the do...while loop, which

looks like this:

do

{

// whatever needs to be done

}

while «condition»;

This loop operates just like the while loop, but the code within the braces

will always be executed at least once because the condition is checked

at the end of each loop, rather than at the beginning.

Consider these two examples:

BOOL shouldContinue = NO;

while(shouldContinue == YES)

{

NSLog(@"This will never be shown");

}

do

{

NSLog(@"This will be shown once");

}

while(shouldContinue == YES);

The code block for the while statement in this example will never be

shown because the condition is checked before the code is executed.

The code block for the do...while statement, however, will be executed

once because the condition is checked only after the code is executed.

Other Ways to Enumerate

The while loop can also be used for yet another way to enumerate an

array. Apple provides us with a Cocoa class called NSEnumerator. To use

it, you ask the array for an objectEnumerator and then keep asking that

enumerator for its nextObject. The enumerator will continue to return

you the objects in the array until it runs out of objects; at that point, it

will return nil.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=232

OTHER TYPES OF LOOP 233

To display the months from the monthsArray using an NSEnumerator, we

could use this code:

NSEnumerator *enumerator = [monthsArray objectEnumerator];

NSString *eachMonth = nil;

while(eachMonth = [enumerator nextObject])

{

[textView insertText:[NSString

stringWithFormat:@"%@ is a nice month\n", eachMonth]];

}

In another rare example of when we use the assignment operator (=) in a

condition, this code will keep setting the eachMonth variable to the next

object retrieved from the enumerator. As long as an object is returned,

the eachMonth = [enumerator nextObject] assignment will evaluate as true.

When there are no more objects and the nextObject method returns nil,

the assignment will evaluate as false, and the loop will stop altogether.

It’s usually easier now just to use fast enumeration, but there is also

a helpful method provided by NSArray, called reverseObjectEnumerator,

which will provide an object to enumerate over the array, supplying the

objects in reverse order.

Running this code:

NSEnumerator *enumerator = [monthsArray reverseObjectEnumerator];

NSString *eachMonth = nil;

while(eachMonth = [enumerator nextObject])

{

[textView insertText:[NSString

stringWithFormat:@"%@ is a nice month\n", eachMonth]];

}

will output the months in reverse order:

December is a nice month

November is a nice month

October is a nice month

September is a nice month

«... etc ...»

If you need to enumerate in reverse but prefer the syntax offered by

fast enumeration, you can combine the two and provide an enumerator

object instead of an array in the fast enumeration syntax, like this:

for(NSString *eachMonth in [monthsArray reverseObjectEnumerator])

{

[textView insertText:[NSString

stringWithFormat:@"%@ is a nice month\n", eachMonth]];

}

This code will again output the months in reverse order.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=233

A SIMPLE CHANGE TO OUR SHOPPING LIST APPLICATION 234

10.6 A Simple Change to Our Shopping List Application

Let’s put our looping knowledge into practice by making a very simple

change to our Shopping List application from the last couple of chap-

ters. When the user types the name of an item and tries to add it to

the shopping list, we’ll enumerate through all the existing items in the

array to check whether there is an item with the same name already in

the list. If there is, we’ll ask the user whether they really want to add a

duplicate item.

Close the TextApp project if it is still open in Xcode, and open the Shop-

ping List project. Open the MyDocument.m file from the project, and find

the addNewItemToShoppingList: method. At the moment, it looks like this:

- (IBAction)addNewItemToShoppingList:(id)sender

{

NSString *newItem = [newItemNameTextField stringValue];

[shoppingListArray addObject:newItem];

[shoppingListTableView reloadData];

if(sender == newItemNameTextField)

[newItemNameTextField setStringValue:@""];

}

We’ll use fast enumeration to walk through the existing shopping list

items in the array. If an existing item in the array matches an item

typed into the shopping list, we’ll just stop the method altogether for

now, without duplicating that item in the array. We’ll write code to show

the dialog box and ask the user after we have this part working.

Change your method to use the following code:

- (IBAction)addNewItemToShoppingList:(id)sender

{

NSString *itemToAdd = [newItemNameTextField stringValue];

for(NSString *eachItem in shoppingListArray)

{

if([eachItem isEqualToString:itemToAdd]) return;

}

[shoppingListArray addObject:itemToAdd];

if(sender == newItemNameTextField)

[newItemNameTextField setStringValue:@""];

[shoppingListTableView reloadData];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=234

A SIMPLE CHANGE TO OUR SHOPPING LIST APPLICATION 235

We start by storing a pointer variable for the string held in the newItem-

NameTextField. We then enumerate over all the existing items in the shop-

pingListArray; if the item typed into the text field matches an item in the

array, we use the return keyword to end the method at that point.2

Build & Run the application to check that this works; you should be

prevented from adding any duplicate items into the shopping list. Note

that since the method returns straightaway, the newItemNameTextField

is not emptied, regardless of whether you press F or push the button.

You might think this is useful if a user wants to add a qualifier to what

they just typed—like changing “biscuits” into “chocolate biscuits,”—or

you might decide that you should empty the text field before returning,

ready for an entirely new item to be typed.

Now that our basic duplicate item check is working, we can add the

code to display an alert to ask the user whether they want to add a

duplicate item, rather than just returning instantly. We saw how to use

NSAlert in the previous chapter, so let’s use the same technique here

and change the method to this:

- (IBAction)addNewItemToShoppingList:(id)sender

{

NSString *itemToAdd = [newItemNameTextField stringValue];

for(NSString *eachItem in shoppingListArray)

{

if([eachItem isEqualToString:itemToAdd])

{

NSAlert *alert = [[NSAlert alloc] init];

[alert addButtonWithTitle:@"Duplicate"];

[alert addButtonWithTitle:@"Cancel"];

[alert setMessageText:@"This item already exists in

your shopping list."];

[alert setInformativeText:@"Do you really want to

add a duplicate item?"];

[alert setAlertStyle:NSWarningAlertStyle];

int returnValue = [alert runModal];

[alert release];

if(returnValue != NSAlertFirstButtonReturn)

return;

else

break;

}

}

2. Notice the difference between return, break, and continue when working with for loops.

The return keyword will stop the entire method at that point, the break keyword will stop

just the loop from looping, and continue will stop only the current pass through the loop.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=235

CHAPTER SUMMARY 236

[shoppingListArray addObject:itemToAdd];

if(sender == newItemNameTextField)

[newItemNameTextField setStringValue:@""];

[shoppingListTableView reloadData];

}

Build & Run the application once again to test the new behavior. If you

type a duplicate item into the text field, you’ll be asked whether you

really want to duplicate that item. The conditional test in the previous

code checks to see whether the button clicked is not the Duplicate but-

ton. If it’s not—for instance, if the user clicks the Cancel button—the

method returns instantly, just like before. Otherwise, if the user chooses

to duplicate the item, we specifically break the loop at that point.

We could leave out the else break;, but this would mean that the array

enumeration and duplicate item checking would continue, even though

the user had already confirmed that he really wants to duplicate an

item. Apart from wasting processor cycles for no reason, this would

also mean that if the user had previously duplicated the item, any sub-

sequent loops through the existing shopping list items will find that

second duplicate and display the dialog box once again.

10.7 Chapter Summary

You’ve covered a lot of theory in these past few chapters. Now that you

have a solid understanding of logical and comparison operators, you

can write code that branches out or repeats itself as often as you like.

Enumerating through arrays is extremely common when developing

Mac software, and we’ve covered several different ways to enumerate

in this chapter, from fast enumeration in for loops to reverse enumer-

ation using a while loop. We’ve also seen how to break completely out

of looped code when needed or continue into the next pass through the

loop if we want to miss out the rest of a repeated code block during a

particular iteration.

Collections of objects appear throughout an application. A user inter-

face consists of collections of controls, for example, the menu bar at

the top of the screen displays a collection of menus, each one holding

a collection of menu items. If you’re writing a data-driven application,

you’ll probably be working with several collections of data objects. All

of this makes it essential to have a good understanding of arrays and

looping when writing software with Objective-C and Cocoa.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=236

CHAPTER SUMMARY 237

In the next chapter, we’ll be looking again at good object-oriented design

in applications, seeing the three different categories of classes in a

Cocoa application: model classes describing objects that contain data,

view objects that display information on screen, and controllers that

liaise between model objects and views.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=237

Chapter 11

Objects, Encapsulation, and MVC
In the past few chapters, we focused on learning the syntax of Objec-

tive-C, working with conditional statements and loops. We’re going to

change tack slightly in the first part of this chapter, taking a step back

and looking at the design principles behind Mac OS X applications built

using Cocoa.

By designing your own classes to follow the same object-oriented prin-

ciples and general design standards used by the Cocoa framework, your

software will be easier to maintain and fit better into the general scheme

for object-oriented Mac OS X applications.

We’re also going to spend some time looking at different ways of holding

the information in our Shopping List application. We’ll be revising its

data structure and learning all about another type of collection object,

an NSDictionary. Finally, we’ll see how best to encapsulate the shopping

list items within a dedicated object.

There is quite a lot of theory to get through in this chapter, but we do

get to write a whole new application, albeit a small one, and make some

interesting changes to the Shopping List application. The information

we’ll be covering on object encapsulation is essential when writing code

that plays well both with Cocoa and with code written by other people.

11.1 The Main Types of Object

We’ve worked with a large number of different Cocoa classes so far; if

we look at some of the ones we’ve used, such as NSString or NSTableView,

it’s clear that each class has a definite role for the objects it describes.

Prepared exclusively for James Carlson

THE MAIN TYPES OF OBJECT 239

An NSString object is designed to hold a string of characters, offering

various methods that let us access and query those characters, or even

combine one string object with another. The NSTableView class describes

an object used to display tabular information; we’re using it in our

Shopping List application to display the contents of our NSMutableArray

collection of shopping list items.

It is extremely important to keep a clear idea of the role of an object

when we write our own classes, not least because it keeps the size

and complexity of the class description to a minimum. It’s much better

to write lots of smaller, well-thought-out objects, each working as effi-

ciently as possible, than just to use one giant object that encompasses

all the potential behavior we might need.

Along with clearly defined roles, the classes that we work with should

generally fit into one of three types of class:

• Objects designed to hold data are known as model objects.

In our Shopping List application, we’re currently using an NSString

object to hold the name of each item in the list and holding those

items in a collection using an NSMutableArray.

• Objects used to display information on screen are known as view

objects.

We use an NSTableView class to display our Shopping List. In Text-

App, we’ve been using an NSTextView to display the output from our

code; we also used an NSTextField to accept input from the user.

• Objects that handle the interaction between an application’s model

objects and its views are known as controller objects.

In TextApp, we have a NotifyingClass object to respond when the

user clicks a button (NSButton is a view object), changing informa-

tion (held in an NSString model object) and asking the NSTextView

object to change its displayed text.

The Shopping List application offers us a great example of the interac-

tion between these three types of class. Consider what happens when

the user wants to add a new item to the list:

1. When the user clicks the Add button (view), the button sends an

action message to its target, the MyDocument object (controller).

2. The MyDocument class asks the item name NSTextField (view) object

for its stringValue and holds this in an NSString (model).

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=239

THE MAIN TYPES OF OBJECT 240

3. It then adds the string into the NSMutableArray (model) and tells

the main NSTableView object (view) to reload.

4. When it receives the message to reload its data, the NSTableView

asks MyDocument for the number of objects it will be displaying;

the MyDocument asks the NSMutableArray how many objects are

currently being held and passes the number to the NSTableView.

5. The NSTableView then asks the MyDocument object for the value

to be held in each row of each column; the MyDocument asks the

NSMutableArray for the object held at the index of the requested

table row and passes back the value to the NSTableView.

This separation between model and view is extremely useful. The fact

that the NSTableView object will be displaying a shopping list is com-

pletely irrelevant to the table view; all it cares about is the fact that it

will be displaying tabular information, held in columns and rows, and

that some other object will provide it with the information (in our case,

an NSString) for each cell to be displayed in the table. The table view

never talks directly to the model, and the model never talks directly to

the table view.

It would be possible to define a complete ShoppingList class that looked

after its own shopping list items, displaying those items on screen

straight out of its internal storage; this would obviously end up being a

large and complex object from a code perspective, and if we did create

an object like that, we wouldn’t have much opportunity to reuse it. If

we needed to have a multicolumn display of shops and locations, we’d

have to define a whole new class, with some functionality common to

the ShoppingList but with a different way of storing the information for

multiple columns.

In the previous chapter, I introduced code to our Shopping List appli-

cation to check whether an item to be added already existed in the

shopping list. In this chapter, we’ll change the Shopping List applica-

tion so that it also has an option to enter a quantity for an item, such

as “5 apples” or “25 candy bars.”

To implement this change, we’re going to need an extra column in our

table view to display the new quantity value. Before we start writing

code or changing the interface, though, we must decide how best to

change our underlying data model in order to store the new quantity

information.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=240

DESIGNING MODEL OBJECTS 241

11.2 Designing Model Objects

At the moment, our shopping list model is extremely simple: we have

a single NSMutableArray to hold a collection of NSString objects. Our user

interface is extremely simple, too—we have a single-column table view

designed to display one string in each row.

Let’s familiarize ourselves with the code that supplies the information

to the table view. Open the Shopping List project in Xcode, and find the

MyDocument.m file.

Considering how the information is displayed in the table view, these

are the two methods directly relevant:

- (NSInteger)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [shoppingListArray count];

}

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

return [shoppingListArray objectAtIndex:rowIndex];

}

The first method returns the number of items currently held in our

shopping list. The second method returns the value to be displayed for

the requested row.

When we originally wrote the second method, we decided just to ignore

the aTableColumn value because we had only one column in the table

view. Clearly, this is going to have to change if we add a new Quantity

column. We’re going to want to do something like this:

{

if(aTableColumn == «itemNameColumn»)

{

return «name of item at rowIndex»;

}

else if(aTableColumn == «quantityColumn»)

{

return «quantity for item at rowIndex»;

}

else // Unknown Column!

{

return nil;

}

}

We need to check which column is requested and respond accordingly.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=241

DESIGNING MODEL OBJECTS 242

One of the easiest ways to implement this would be to add a second

array, a shoppingListQuantitiesArray. It would need to have the same num-

ber of rows as the main shoppingListArray (we should probably rename

this to shoppingListItemNamesArray to avoid confusion) and store a collec-

tion of objects containing the quantity number for each item.

If we used this implementation, the earlier method would look like this:

{

if(aTableColumn == «itemNameColumn»)

{

return [shoppingListItemNamesArray objectAtIndex:rowIndex];

}

else if(aTableColumn == «quantityColumn»)

{

return [shoppingListQuantitiesArray objectAtIndex:rowIndex];

}

else // Unknown Column!

{

return nil;

}

}

There’s nothing particularly bad about this implementation, but it will

make our lives more difficult when we need to write the information

to a file if the users want to save their shopping lists. We’d need to

archive two separate arrays, and we could no longer use the convenient

writeToURL: and initWithContentsOfURL: methods provided by NSArray.

Another possible implementation is to use an array of arrays.

Using our multistory building analogy for an array, this means that

rather than just having one string per story, we would instead have

another array in each story. These new arrays would contain the infor-

mation to be displayed in each row, so we might set the first object for

the item name and set the second object as the quantity.

In code terms, our tableView:objectValueForTableColumn:row: method

would now need to look like this:

{

NSArray *itemInfoArray = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == «itemNameColumn»)

{

return [itemInfoArray objectAtIndex:0];

}

else if(aTableColumn == «quantityColumn»)

{

return [itemInfoArray objectAtIndex:1];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=242

DESIGNING MODEL OBJECTS 243

else // Unknown Column!

{

return nil;

}

}

We start by extracting the array of shopping list item information held

at the relevant index in the main shoppingListArray. Depending on the col-

umn that we’re asked for, we then return either the first or the second

object in this itemInfoArray.

Again, there’s nothing really wrong with this implementation, and it

definitely allows for expansion in the future if, say, we decide we want

to store an extra piece of information for each shopping list item, such

as the store that sells it.

One criticism, however, is that the code isn’t very readable. Keeping

track of which object is at which index at which point is pretty con-

fusing, even when we’re storing only two pieces of information for each

shopping list item.

We can make the code easier to follow if we can somehow refer by

name to the information we need, such as itemName and quantity, rather

than index:0 and index:1. As it happens, there’s a Cocoa object designed

exactly for this purpose.

Dictionaries of Information

Earlier, in Section 8.5, Chapter Summary, on page 181, I mentioned

in passing that there was another type of collection object in Cocoa,

an NSDictionary. This collection object behaves rather like an array, but

instead of holding objects at numeric indices, it keeps track of objects

through string keys.

To understand how dictionaries work, we’re going to create a new appli-

cation called “LookItUp.” It’s a document-based application—like Shop-

ping List—that lets the user store and retrieve information using a dic-

tionary. It looks like Figure 11.1, on the next page.

Close any open projects in Xcode before continuing (if you hold down

the E key and click the File menu, you’ll find there’s a Close All item—

E-D- W).

Create a new Cocoa Application project, making sure the “Create

document-based application” checkbox is selected. Call it “LookItUp.”

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=243

DESIGNING MODEL OBJECTS 244

Figure 11.1: The LookItUp application in action

We’ll jump straight in and set up the interface first. When the LookItUp

project window opens in Xcode, expand the Resources group in the

Groups & Files list, and double-click the MyDocument.xib file to open it

in Interface Builder.

Remove the existing “Your document contents here” placeholder in the

document’s Window interface, and add new controls to the window so

that it looks like Figure 11.2, on the following page.

We’ve used most of these controls before. In the upper half of the win-

dow, the text field next to the “Value” Label is a Multiline Textfield

object; the item used to display the Value in the lower half of the window

is a Multiline Label object. The line across the middle of the window is a

Horizontal Line object; it’s actually an instance of an NSBox object, used

to draw...yes!...a box. It’s just been collapsed to a single pixel in height

so that it displays a flat line.

Next, we need to add outlets for all these user interface items into a

controller object, along with actions for the two buttons. As with the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=244

DESIGNING MODEL OBJECTS 245

Figure 11.2: The LookItUp document interface in Interface Builder

Shopping List application, the MyDocument class is fine as the controller

for this application. If our document had multiple windows or we had a

particularly complicated interface in one window, it might make more

sense to create separate controllers for each window or one controller

for each area of functionality within the main window.

Switch to Xcode, and open the MyDocument.h file. Add outlets for each

of the text fields and the multiline label, along with the two action

methods:

@interface MyDocument : NSDocument

{

IBOutlet NSTextField *keyToStoreTextField;

IBOutlet NSTextField *valueToStoreTextField;

IBOutlet NSTextField *keyToRetrieveTextField;

IBOutlet NSTextField *retrievedValueLabel;

}

- (IBAction)storeValueInDictionary:(id)sender;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=245

DESIGNING MODEL OBJECTS 246

Control Types

If you’re wondering why the different types of text field and
label are all NSTextField outlets, it’s because all those objects
really are instances of the NSTextField class.

Many of the control classes in the Cocoa framework can
be configured in different ways; a label, for example, is an
NSTextField with its editable flag set to false (and a few other set-
tings related to its display). When you drag an item out of the
Interface Builder library, that item has all the flags pre-set so that
the control displays in the right way.

Because there’s so much functionality shared between a label
and an editable text field (essentially, the display of a string of
characters, with various optional features such as selection or
editing), it makes sense for them both to be represented by one
class, rather than multiple classes with overlapping behavior.

The NSButton class is another example of a class with various
faces in Interface Builder; there are a wide variety of different
looks for a push button, for instance, all specified by setting var-
ious NSButton properties. Even a checkbox is an instance of an
NSButton!

- (IBAction)retrieveValueFromDictionary:(id)sender;

@end

Before doing anything else, switch to the MyDocument.xib file in Interface

Builder to link up all these outlets and actions.

The LookItUp application stores information in an NSDictionary object,

so we’re going to need access to one of those, much like we use the

existing shoppingListArray mutable array in the Shopping List application.

Since we’re going to need the dictionary object to exist as long as the

document exists, we can add an instance variable into the @interface

for the MyDocument object. And, since we’re going to need to add items

into the dictionary object after it’s been created, we need to use the

changeable variety, an NSMutableDictionary.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=246

DESIGNING MODEL OBJECTS 247

Add a mainDictionary instance variable in MyDocument.h:

@interface MyDocument : NSDocument

{

NSMutableDictionary *mainDictionary;

IBOutlet NSTextField *keyToStoreTextField;

IBOutlet NSTextField *valueToStoreTextField;

«interface continues»

Remember how we maintain access to the dictionary throughout the

life of the MyDocument object? We allocate and initialize the dictionary

in the MyDocument’s init method, using alloc] init] so the dictionary is

retained until we release it in the MyDocument’s dealloc method.

Let’s implement these two methods next, in MyDocument.m. The tem-

plate file includes an init method, so we need to modify this to create

our dictionary and then add the dealloc method (don’t forget to call

[super dealloc] at the end):

@implementation MyDocument

- (id)init

{

self = [super init];

if (self) {

mainDictionary = [[NSMutableDictionary alloc] init];

}

return self;

}

- (void)dealloc

{

[mainDictionary release];

[super dealloc];

}

«implementation continues»

We’ll leave the rest of the methods in the template file for now and

instead focus on how we implement the two action methods to store

and retrieve information in the dictionary.

Storing Information in a Dictionary

Before we see the code to store values in the dictionary, let’s analyze

what we need the storeValueInDictionary: method to do:

1. Get the stringValue from the keyToStoreTextfield.

2. Get the stringValue from the valueToStoreTextfield.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=247

DESIGNING MODEL OBJECTS 248

3. Store the value in the dictionary using the specified key.

4. Clear the two text fields so they’re ready for more information.

Steps 1, 2, and 4 are easy to implement, so let’s start by writing a

method that implements them:

- (IBAction)storeValueInDictionary:(id)sender

{

NSString *keyToStore = [keyToStoreTextField stringValue];

NSString *valueToStore = [valueToStoreTextField stringValue];

// Store the value in the dictionary using the specified key

[keyToStoreTextField setStringValue:@""];

[valueToStoreTextField setStringValue:@""];

}

Take a look at the documentation for NSMutableDictionary, and you’ll find

that there are several methods listed under the heading “Adding Entries

to a Mutable Dictionary.” The one that we’ll use is the setValue:forKey:

method.

This looks pretty straightforward—as the method name implies, it

stores the value in the dictionary using the specified key. Let’s use it:

- (IBAction)storeValueInDictionary:(id)sender

{

NSString *keyToStore = [keyToStoreTextField stringValue];

NSString *valueToStore = [valueToStoreTextField stringValue];

[mainDictionary setValue:valueToStore forKey:keyToStore];

[keyToStoreTextField setStringValue:@""];

[valueToStoreTextField setStringValue:@""];

}

If you Build & Run the application, you’ll find that you can type a value

and a key into the top half of the document window; clicking the Store

button will clear the two text fields, and we’ll just have to assume that

the information is actually being stored in the dictionary.

We obviously can’t retrieve anything from the dictionary, since we have

not written the retrieveValueFromDictionary: method yet.

Retrieving Information from a Dictionary

Before we write the next method, let’s consider what it needs to do:

1. Get the stringValue from the keyToRetrieve text field.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=248

DESIGNING MODEL OBJECTS 249

2. Get the value from the mainDictionary that was stored using that

key.

3. Set the stringValue of the retrieveValueLabel to the retrieved value.

Once again, we’ll check the documentation for NSMutableDictionary to

see how to retrieve the value. Huh? There seem to be no methods listed

relating to value retrieval—only for setting or removing values.

Don’t panic: an NSMutableDictionary is just the mutable version of a plain

NSDictionary. If you look up at the top of the class documentation for

the NSMutableDictionary, you’ll see its class inheritance—it inherits from

NSDictionary, which in turn inherits from NSObject. Click NSDictionary to

view its class reference instead.

If you look under the section “Accessing Keys and Values,” you’ll find

the companion method to our earlier setValue:forKey: method, which is

called valueForKey:. This method returns the value stored in the dic-

tionary with the specified key, meaning we’re ready to implement our

retrieval method:

- (IBAction)retrieveValueFromDictionary:(id)sender

{

NSString *keyToRetrieve = [keyToRetrieveTextField stringValue];

NSString *retrievedValue = [mainDictionary valueForKey:keyToRetrieve];

[retrievedValueLabel setStringValue:retrievedValue];

}

Build & Run the application, and you’ll find that you can now retrieve a

value stored in the dictionary using a specified key. Note that because

we haven’t implemented any kind of Save or Open functionality yet, you

will have to add values for keys each time you run the application or

create new documents.

If you try to access a value for a key that hasn’t previously been stored

or don’t specify a key at all, you’ll find that the retrieved value field

doesn’t get updated. To see why not, take a look at the Console Log

window in Xcode (B-D- R).

You’ll see messages along these lines:

*** Assertion failure in -[NSTextFieldCell _objectValue:forString:errorDescription:]

/SourceCache/AppKit/AppKit-1038.11/AppKit.subproj/NSCell.m:1531

Invalid parameter not satisfying: aString != nil

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=249

DESIGNING MODEL OBJECTS 250

These messages indicate that there’s a problem trying to pass a nil string

pointer to an NSTextFieldCell. This cell is an object used by an NSTextField

object to handle the actual text display or editing. We’ll look at the rela-

tionship between cells and views in the next chapter, in Section 12.6,

Views and Cells, on page 310.

The only place in our retrieveValueFromDictionary: method where we’re

passing an object pointer to a text field, and therefore to its text field

cell, is the following line:

[retrievedValueLabel setStringValue:retrievedValue];

Since the value we pass, held in retrievedValue, is set when we ask the

dictionary for its valueForKey:, we can infer that there are some cases

when valueForKey: will return nil.

It just so happens that valueForKey: will return nil if it can’t find a value

for the specified key. If you check the documentation for valueForKey:,

this isn’t immediately easy to confirm, so we’ll just have to accept it for

now.

We can make use of this feature by adding a conditional statement to

check the retrievedValue pointer variable before we try to display it. If it’s

nil, we can instead display an error message. Change the retrieveValue-

FromDictionary: method to this:

- (IBAction)retrieveValueFromDictionary:(id)sender

{

NSString *keyToRetrieve = [keyToRetrieveTextField stringValue];

NSString *retrievedValue = [mainDictionary valueForKey:keyToRetrieve];

if(retrievedValue)

[retrievedValueLabel setStringValue:retrievedValue];

else

[retrievedValueLabel setStringValue:@"Sorry, key not found"];

}

Here we make use of the fact that a non-nil variable will evaluate as true

in a conditional statement, as described in Section 9.2, Every Value Is

a Winner, on page 200. If you Build & Run, you’ll find that you now see

an error message if you enter an undefined key.

Persisting Dictionary Contents to Disk

We haven’t written very much code in this section, but the two impor-

tant points to take away are that you can store something in a dictio-

nary, using a specified key in the method setValue:forKey:, and then fetch

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=250

REWORKING THE SHOPPING LIST APPLICATION 251

it later, using valueForKey:. As the name implies, an NSDictionary object

functions just like a real-world dictionary; it contains information (the

values), which it makes available by looking up keywords.

We’ve implemented as much of the LookItUp application as we need

for this illustration, but you might like to test your Cocoa prowess by

adding the methods to read and write files on disk.

If you look in the documentation for NSDictionary, you will find that

dictionary objects have the same initWithContentsOfURL: and writeToURL:

atomically: methods we’re using in the Shopping List application. You

might want to refer to Section 8.4, Adding Spice, on page 177 to remind

yourself of the NSDocument methods we implemented.

The sample code for this chapter, available via the book’s website,

includes example methods to save and open files.

11.3 Reworking the Shopping List Application

Now that you have a good understanding of dictionaries, values, and

keys, let’s redesign the underlying data structure for our Shopping List

application. Instead of the earlier strategy of using an array of arrays,

we’ll use an array of dictionaries.

For each row in the table view, we need a dictionary that will hold

the item name and the quantity required for that item. We’ll start by

looking at all the places in our application that need to be changed.

Close anything currently open in Xcode, and open the Shopping List

project again.

Before we look at code changes, we need to modify the interface to

display our new quantity information in the table view and enable the

users to specify a quantity when they add an item. Open the MyDocu-

ment.xib file in Interface Builder. If the other MyDocument.xib file (from

the LookItUp application) is still open, make sure you close it before

continuing to avoid any confusion!

We need to add a new column to the shopping list table view. The easiest

way to do this is to view the main MyDocument.xib window in list view

mode; keep expanding the objects under the main Window object until

you see the Table View, which is under the Bordered Scroll View object.

Click the Table View object in this list to select it, switch to its Attributes

inspector, and increase the number of columns to 2.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=251

REWORKING THE SHOPPING LIST APPLICATION 252

You’ll find that Interface Builder adds a new column, listed below the

existing Shopping List Items column. Click this new column, and use

its inspector to change the title to “Quantity.” Next, click and drag this

new column in the list view above the existing column; if you look at

the visual representation for the window and table view itself, you’ll find

your table view looks like Figure 11.3, on the following page.

This figure also shows an extra label and text field to allow the user to

specify quantity information when they add a new shopping list item;

add these to your interface as well.

Switch to Xcode, and open the MyDocument.h file to see whether we

need to change anything.

The existing shoppingListArray instance variable can stay as it is; we still

need only one main shopping list array—we’ll just be filling it with dic-

tionary objects, rather than strings.

We need to add an IBOutlet for the new quantity text field, and thinking

ahead to how we’ll provide values to the table view, we’re going to need

to differentiate between the two table columns. The easiest way to do

this is to add IBOutlets to refer to each NSTableColumn:

@interface MyDocument : NSDocument

{

IBOutlet NSTableView *shoppingListTableView;

IBOutlet NSTextField *newItemNameTextField;

IBOutlet NSTextField *newItemQuantityTextField;

IBOutlet NSTableColumn *quantityColumn;

IBOutlet NSTableColumn *itemNameColumn;

NSMutableArray *shoppingListArray;

«interface continues»

Switch to Interface Builder, and connect these outlets—Figure 11.4, on

page 254 shows how to connect the table columns.

That’s it for the MyDocument interface. Open the MyDocument.m file in

Xcode, and let’s see how much of that needs to be changed:

• The numberOfRowsInTableView: method is fine as it is; we still have

only one table view, and we still have a single array of shopping

list items. The count from the array is still the number of rows.

• The tableView:objectValueForTableColumn:row: is going to need to be

changed, as we saw earlier in the chapter, to respond correctly

depending on which table column is specified.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=252

REWORKING THE SHOPPING LIST APPLICATION 253

Figure 11.3: The revised Shopping List interface in Interface Builder

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=253

REWORKING THE SHOPPING LIST APPLICATION 254

Figure 11.4: Connecting the NSTableColumn outlets in Interface Builder

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=254

REWORKING THE SHOPPING LIST APPLICATION 255

• The tableView:setObjectValue:forTableColumn:row: is going to need to

be changed in the same way so that the users can edit the value

held in either table column.

• The addNewItemToShoppingList: method will need to be changed so

that it does the following:

1. Makes use of the amount specified in the Quantity text field

2. Stores the name and the quantity correctly using a dictionary

in the shopping list array

3. Checks for duplicates in the values already held in the array

of dictionaries (in the interest of simplicity, we’re going to skip

this step)

4. Empties the name text field and sets the quantity text field to

1 when the user adds an object

• The removeItemFromShoppingList: method can stay as it is because

we still need it to remove the item at the selected row index.

• The init method needs to be modified to create the default items

using dictionaries.

• The dealloc method can stay as is, as can the other methods in

the file.

Let’s start with the init method so we see how to add items into the

shopping list.

Adding the Initial Items

We need to decide on two strings to use as the keys for our two values;

let’s use @"itemNameKey" and @"itemQuantityKey".

The other important decision is how we are going to store the quantity

value. We could just store it as another NSString object, which would

mean that the user could type “4 pints,” rather than just being allowed

to type an integer. For the purposes of learning about dictionaries and

model objects, however, let’s store a number in the array.

There’s one vital piece of information to be aware of when we work with

arrays and dictionaries—both NSArray and NSDictionary are designed to

collect pointers to other objects. This means that we can’t just stick an

int value (or even a pointer to an int) in our item dictionary. To store the

quantity value, we need to use an object that holds a number.

Back in Section 7.3, Creating Objects in Code, on page 124, we wrote

just such a class, the WonderfulNumber class, which held a number

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=255

REWORKING THE SHOPPING LIST APPLICATION 256

internally as a float and offered various methods to retrieve that value

or output it as a string. It would be perfectly acceptable to use Wonder-

fulNumber objects in the Shopping List application, but there is another

class available to us.

The Cocoa framework offers us a great class for working with numbers,

with a particularly predictable name of NSNumber. Its behavior is similar

to our own WonderfulNumber class, but it offers a lot of extra functional-

ity. You can set the value of an NSNumber object using set...Value:, where

the ... is one of the C number types, like int or float.

Let’s write the init method for the Shopping List document object and

create those initial shopping list item dictionaries using an NSString for

the item name and an NSNumber for the quantity. We’ll still create the

same three items we had before (milk, eggs, and butter), but we’ll need

to create a mutable dictionary for each item, adding each dictionary

into the main shoppingListArray:

- (id)init

{

self = [super init];

if (self) {

// Create the main shopping list array

shoppingListArray = [[NSMutableArray alloc] init];

// Add the Milk

NSDictionary *milkItem = [NSMutableDictionary dictionary];

[milkItem setValue:@"Milk" forKey:@"itemNameKey"];

[milkItem setValue:[NSNumber numberWithInt:4] forKey:@"itemQuantityKey"];

[shoppingListArray addObject:milkItem];

// Add the Eggs

NSDictionary *eggsItem = [NSMutableDictionary dictionary];

[eggsItem setValue:@"Eggs" forKey:@"itemNameKey"];

[eggsItem setValue:[NSNumber numberWithInt:12] forKey:@"itemQuantityKey"];

[shoppingListArray addObject:eggsItem];

// Add the Butter

NSDictionary *butterItem = [NSMutableDictionary dictionary];

[butterItem setValue:@"Butter" forKey:@"itemNameKey"];

[butterItem setValue:[NSNumber numberWithInt:1] forKey:@"itemQuantityKey"];

[shoppingListArray addObject:butterItem];

}

return self;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=256

REWORKING THE SHOPPING LIST APPLICATION 257

This method is quite a bit longer than it was before, and the margin for

typo errors is high! Xcode’s automatic syntax highlighting and sugges-

tion features should help you along the way.

This code obviously populates each item dictionary in the same way: it

starts by creating an autoreleased mutable dictionary, using the dictio-

nary class factory method provided by NSMutableDictionary.

Why do we create autoreleased dictionaries? Surely we need them to be

retained so they last as long as the main shoppingListArray container and

indeed the MyDocument object? Actually, both NSArray and NSDictionary

(and their subclasses) will retain any objects that they collect. Every

time we add one of our item dictionaries into the main shoppingListArray,

that dictionary is retained by the array. The same applies to the objects

we add into the dictionary: the @"Milk" string is retained by the item

dictionary, as is the NSNumber quantity object.

When an array or dictionary is subsequently deallocated, it empties

itself of all its items first; when it does, all those items are sent a release

message, balancing the retain they were sent when they were added. In

our Shopping List application, the only model object that we specifically

retain is the main shoppingListArray (created through alloc] init]). When we

release the shoppingListArray in the MyDocument object’s dealloc method,

that release triggers a cascade of array and dictionary emptying and

object releasing, with the end result that we don’t leak any memory.

Pretty amazing, considering we’ve only had to take responsibility for the

alloc] init] and release of a single Cocoa object!

Displaying the Items

Now that we’ve set up our initial shopping list contents, it’s time to

modify the method that displays them in the table view. With our new

dictionaries for items, this is now quite easy, so let’s implement it:

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

NSDictionary *itemDictionary = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

return [itemDictionary valueForKey:@"itemQuantityKey"];

else if(aTableColumn == itemNameColumn)

return [itemDictionary valueForKey:@"itemNameKey"];

else // Unknown Column!

return nil;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=257

REWORKING THE SHOPPING LIST APPLICATION 258

Build & Run the Shopping List application to make sure that our initial

shopping list contents are displayed correctly. You should see the “4

Milk,” “12 Eggs,” and “1 Butter” items displayed across the two columns

of the table view. If you don’t, double-check your method that creates

the initial dictionaries!

If you try to add any new items or edit existing items, you’ll find that

you get lots of errors in the debugger console in Xcode. We still have a

few methods to change before our application is fully functional again.

Editing the Items

Next, let’s change the method that gets called if the user tries to edit

values in the table view itself. Again, we need to fetch the dictionary

for the row being edited and then set the proposed value for the key

relevant to the current column:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

NSDictionary *itemDictionary = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

[itemDictionary setValue:anObject forKey:@"itemQuantityKey"];

else if(aTableColumn == itemNameColumn)

[itemDictionary setValue:anObject forKey:@"itemNameKey"];

}

Build & Run once again to check whether you can edit the values in the

main table view: try changing the word “Eggs” to something like “Lamb

Chops” and its quantity to “4.” This should work just fine, and you’ll

also find that you can still save and reopen the shopping list files, just

like you did before.

Checking the Class of the Proposed Value

There’s something worth pointing out here. In the MyDocument object’s

init method, we store the quantity as an NSNumber object. The code we’ve

just written takes the object value provided when the method is called

and stores it directly in the dictionary. Because the user is editing text

in the table, with the editing behavior provided in the same way as in

an NSTextField, this object will be a string object.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=258

REWORKING THE SHOPPING LIST APPLICATION 259

Let’s test that theory:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

NSDictionary *itemDictionary = [shoppingListArray objectAtIndex:rowIndex];

NSLog(@"Class of anObject is: %@", [anObject class]);

if(aTableColumn == quantityColumn)

[itemDictionary setValue:anObject forKey:@"itemQuantityKey"];

else if(aTableColumn == itemNameColumn)

[itemDictionary setValue:anObject forKey:@"itemNameKey"];

}

Here, we’re using a call to NSLog to log a message to the debugger con-

sole. We ask anObject for its class, and include the result in the log

string using the %@ string substitution.

Build & Run the application, and try changing a quantity; you’ll see the

following in the debugger console window in Xcode:

Class of anObject is: NSCFString

The CF in this class stands for “Core Foundation” and represents the

fundamental object type used to store a CFString, which is itself the Core

Foundation type for a string of characters under Mac OS X. You’ll often

see CF in a class name when examining object types, such as NSCFArray

or NSCFDictionary, but you don’t need to worry about them. In general,

treat them as if they were the standard NSString, NSArray, or NSDictionary

you were expecting.

If we want to maintain the quantity as an NSNumber in our item dictio-

nary, we need to change the code to this:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

NSDictionary *itemDictionary = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn) {

NSNumber *newQuantity = [NSNumber numberWithInt:[anObject intValue]];

[itemDictionary setValue:newQuantity forKey:@"itemQuantityKey"];

} else if(aTableColumn == itemNameColumn)

[itemDictionary setValue:anObject forKey:@"itemNameKey"];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=259

REWORKING THE SHOPPING LIST APPLICATION 260

Note that we have added braces to the quantityColumn’s if statement

because there is more than one line of code to be executed for that

condition.

Adding New Items

There’s one final piece of functionality that we haven’t yet implemented:

the rather important method that adds new objects into the shopping

list. Given the way that we created the dictionaries for the initial three

items, this is quite straightforward. Implement it like this:

- (IBAction)addNewItemToShoppingList:(id)sender

{

NSString *newItemName = [newItemNameTextField stringValue];

int quantityInt = [newItemQuantityTextField intValue];

NSNumber *newItemQuantity = [NSNumber numberWithInt:quantityInt];

NSMutableDictionary *newItem = [NSMutableDictionary dictionary];

[newItem setValue:newItemName forKey:@"itemNameKey"];

[newItem setValue:newItemQuantity forKey:@"itemQuantityKey"];

[shoppingListArray addObject:newItem];

[shoppingListTableView reloadData];

}

We’ve stripped out all the old code from this method to make it simpler.

It now adds new items and their quantities immediately, without per-

forming any duplication checks. It also doesn’t empty either of the text

fields.

You might like to test your knowledge of conditional statements by

adding code that checks to see whether the users added the item by

pressing F either in the item name text field or in the quantity text

field. If they did, empty the item name text field, and set the quantity

text field to 1. You’ll need to connect the selector for the quantity text

field in Interface Builder so that it calls the addNewItemToShoppingList:

method, then use the Attributes inspector to set its Action property to

“Sent on Enter Only,” just like you did for the name text field in Sec-

tion 9.6, Additional Conditionals, on page 216.

The sample code for this chapter shows one possible implementation

and also includes a line of code that moves the cursor to the item name

text field so that it is ready to receive new text straightaway.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=260

REWORKING THE SHOPPING LIST APPLICATION 261

The Problem with Keys

While writing the code for the revised Shopping List application, you

may already have encountered a few problems related to the fact that

we’ve been typing the same @"keyName" strings each time we want to get

or set a value for a particular key. The word key means exactly what it

says—if you misspell the string in your code, the value you want to use

will effectively be locked away because you’re not using the correct key.

Consider a dictionary where an object is stored with the key @"door-

Color". If I work on this code from the United Kingdom, I make no guar-

antees about remembering to spell color in the same way as somebody

living in the United States. If I add some functionality to the code that

stores an object with the key @"doorColour", that object clearly won’t be

accessible anymore using the old key @"doorColor".

Xcode syntax highlighting and automatic suggestions as you type are

great for working with variables, class names, methods, and so on, but

there’s no help when you’re typing a string key name. If you’re writing

the name of a particularly long key, like @"someRidiculouslyLongName-

ForAKeyThatItMakesItEasierToReadTheCodeWeThink", it’s extremely likely you

will misspell part of the key name at some point in your code, leaving

you with a bug that’s quite difficult to track down.

There are a couple of solutions to this problem; one of them is to define

a global variable, marked as a constant, with the key name value that

you’re using. We’ll look at the exact syntax for this in Section 13.2,

Declaring Global Variables, on page 344; for now, it’s a variant of some-

thing like this:

NSString *myKeyName = @"myKeyName";

This variable is declared globally and can be made available to any code

within your project, which means that you can now use code like this:

{

[someDictionary setValue:someObject forKey:myKeyName];

}

It might not look like much of a difference, but because myKeyName is

now the name of a variable, Xcode will help autocomplete it when you

start typing. The compiler will also complain if you misspell the key

name when you try to build your project—it will only allow you to use

a variable name that has previously been defined.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=261

CREATING A SHOPPING LIST ITEM OBJECT 262

11.4 Creating a Shopping List Item Object

You’ve already covered a lot of ground in this chapter; you took a brief

high-level overview of the architecture of models, views, and controllers,

before revising the data structure of the Shopping List application using

NSDictionary objects.

You might have been wondering, while we were working with

dictionaries, whether we couldn’t just write a new class description for

a ShoppingListItem object. Naturally, we can, and we’re going to do this

right now.

Object Encapsulation

We’ve written several of our own custom objects so far; our Wonderful-

Number class turns out not to be so wonderful in comparison to Cocoa’s

NSNumber class, but it was a good example of how a value can be encap-

sulated, along with some useful behavior, inside an object.

Let’s start defining a new ShoppingListItem object right now. In your

Xcode project for the Shopping List application, right-click (or C-click)

the Classes group, and select Add > New File.... Create a new Cocoa

Objective-C class (inheriting from NSObject) called “ShoppingListItem.”

Xcode will generate the two files for the class—ShoppingListItem.h and .m.

A ShoppingListItem object needs to store an item name and a quantity—so

add two instance variables to the ShoppingListItem.h interface:

@interface ShoppingListItem : NSObject {

NSString *itemName;

int quantity;

}

@end

Note that only one of these instance variables is an object: the itemName

string. Since the quantity is a number, and because an object can quite

happily have a standard C scalar instance variable, we’ll use an int.

There are no interface outlets or actions for this object, because it’s

a model object—as mentioned earlier in this chapter, model objects

should never need to talk directly to any view objects, and vice versa.

Both these instance variables need to exist for the lifetime of the Shop-

pingListItem object, so the itemName object needs to be retained for the

life of the object. We’re going to need to allocate it in an init method and

release it in dealloc, as usual. The scalar value just needs to be given

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=262

CREATING A SHOPPING LIST ITEM OBJECT 263

an initial value to avoid any weird behavior resulting from the use of an

uninitialized variable.

When we wrote our original WonderfulNumber class, we wrote two init

methods. In Section 7.6, Initializing with Arguments, on page 137, you

learned how to write one init method to create an object with a specified

value for an instance variable, and you learned how you should also

implement our superclass’s designated initializer so that your object is

properly initialized, no matter how it is created. You even wrote a class

factory method to return a newly created, autoreleased WonderfulNumber

object.

We’ll do all of these things again, so add these two method signatures

to your ShoppingListItem interface:

@interface ShoppingListItem : NSObject {

NSString *itemName;

int quantity;

}

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity;

+ (id)shoppingListItemWithName:(NSString *)newName quantity:(int)newQuantity;

@end

Switch to the ShoppingListItem.m file, and implement these methods first:

@implementation ShoppingListItem

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity

{

if(self = [super init])

{

itemName = [newName retain];

quantity = newQuantity;

}

return self;

}

+ (id)shoppingListItemWithName:(NSString *)newName quantity:(int)newQuantity

{

return [[[ShoppingListItem alloc]

initWithName:newName quantity:newQuantity] autorelease];

}

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=263

CREATING A SHOPPING LIST ITEM OBJECT 264

We also need to implement a standard init method to call our designated

initializer, along with a dealloc method to release the object instance

variable:

- (id)init

{

return [self initWithName:@"Bread" quantity:1];

}

- (void)dealloc

{

[itemName release];

[super dealloc];

}

There are a few other methods we need to implement to allow other

objects to set the values of the instance variables.

Protection from the Outside World

Technically speaking, because of the way Objective-C adds object-

oriented features to the non-object-oriented C language, it is possible

for one object to access the internal variables of another object directly;

in practice, this is generally best avoided, as we’ll see a little later in the

chapter.

To provide access to its internal values, an object should supply acces-

sor methods for those values. In Section 7.3, Adding a New Class, on

page 125, we wrote a setStoredNumber: method to set the value stored

by the WonderfulNumber object. We also wrote a sister method, stored-

Number, that returned the number stored by the object. We’ll need to

do the same thing here. Start by adding four method signatures to the

ShoppingListItem interface:

@interface ShoppingListItem : NSObject {

NSString *itemName;

int quantity;

}

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity;

+ (id)shoppingListItemWithName:(NSString *)newName quantity:(int)newQuantity;

- (void)setItemName:(NSString *)newName;

- (NSString *)itemName;

- (void)setQuantity:(int)newQuantity;

- (int)quantity;

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=264

CREATING A SHOPPING LIST ITEM OBJECT 265

Notice the naming convention used here. The setter method names

are setCapitalizedInstanceVariableName:; the getter method names are the

same as the instance variable name. This convention exists for several

reasons, some of which will become clear in a moment.

We can implement the accessor methods for the quantity quite easily—

they just need to set or return the value held by the variable. Switch to

the ShoppingListItem.m file, and implement them like this:

- (void)setQuantity:(int)newQuantity

{

quantity = newQuantity;

}

- (int)quantity

{

return quantity;

}

The methods for the itemName variable need to do a little more than

this: the setItemName: method needs to release the existing string object

pointed to by the itemName instance variable. It should then point item-

Name to the provided newName and call retain on that new object to

ensure it stays in memory for use by the ShoppingListItem object until

specifically released.

- (void)setItemName:(NSString *)newName

{

[itemName release];

itemName = [newName retain];

}

If you examine lots of sample code, you’ll sometimes see setter methods

for objects written like this:

- (void)setItemName:(NSString *)newName

{

[itemName release];

itemName = [newName copy];

}

Calling copy on an object does exactly what it sounds like: it creates

a completely new object, with all its internal instance variables copied

across. It also returns that object to you with a retain count set in the

same way as an object you receive by calling alloc] init], so you should

treat it in the same way (i.e., it needs to be released somewhere).

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=265

CREATING A SHOPPING LIST ITEM OBJECT 266

When to Use Copy and Retain

Using copy or retain is a frequently debated topic. For an object
to be copyable, it needs to implement a copyWithZone: class
method that decides how an instance and its internal values
are copied. Most of the classes in the Cocoa framework can
be copied, including NSString and NSMutableString. In the case of
mutable classes, if you are specifically passing around a pointer
to an NSMutableString, it’s possible for an object to do this:

{
NSMutableString *someString = [someObject mutableStringPlease];
[someString appendString:@" changed you!!!"];

}

If the string object returned by the mutableStringPlease method
is the same object held in the instance variable, the receiv-
ing object can change that instance variable, which is a bad
thing: it breaks the whole encapsulation idea. If mutableString-

Please returned a copy of someObject’s instance variable string
object, any changes to that copy won’t have any effect on
someObject’s internal string.

You can’t borrow the original Declaration of Independence in
Washington, D.C.; you have to borrow (well, buy) a copy. If you
were allowed to borrow the original, you might change the text
or maybe discover a map on the back. Treat object encapsu-
lation in the same way; if it’s possible for a requested object to
be damaged, copy it (and autorelease it) before it is returned.

The accessor can again be quite simple; it just returns the value held

by the itemName instance variable:

- (NSString *)itemName

{

return itemName;

}

To avoid the problem outlined in the sidebar on the current page, you

may also see accessor methods written like this:

- (NSString *)itemName

{

return [[itemName copy] autorelease];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=266

CREATING A SHOPPING LIST ITEM OBJECT 267

This time, the internal object is first copied and then autoreleased to

avoid leaking memory, and the newly copied object is returned.

Why Use Accessor Methods?

You may be wondering why it’s such a bad idea for one object to modify

another object’s instance variables; after all, if we’re implementing set-

ter methods that allow a value to be changed, surely that defeats the

purpose?

These are good points, and it’s definitely worth addressing them now.

For a start, there may be instance variables you specifically do not

want any other objects to be able to access, such as a secure password

cached inside an object that connects to a secure Internet resource. For

these variables, you may decide either not to provide access at all or to

write a getter method that just returns a bogus value and warns the

user.

It’s also possible that one value in an object depends on another value.

You might decide to write functionality in our ShoppingListItem object

that checks to see whether a provided quantity for an item is greater

than 1; if so, it could ensure that the name of the object is plural or

that it’s singular for a quantity of 1. This might help avoid having a list

containing “1 eggs” or “2 lettuce.”

You might even want an object to perform validation checks before

changing its instance variables; you might want to prevent the user

from specifying any values less than 1 (that is, 0 or -1, and so on) for

the quantity of an item, for example.

In the future, you might decide to change the way an object holds

its information. Consider a case where a ContactInformation object has

accessor methods for a phone number; as far as other objects are con-

cerned, a ContactInformation object stores a phone number. There’s noth-

ing to say that you couldn’t rewrite the accessor methods to change the

way the phone number gets stored. You may decide it makes sense for

a ContactInformation object to store a phone number using one instance

variable for a country code, one for the exchange, one for the rest of the

phone number, and one for any extension.

To the outside world, the object is still storing a phone number—exactly

how doesn’t matter. There is a setPhoneNumber: and a phoneNumber

method that work correctly, so everything will be fine. If the outside

world had been allowed to access a single phoneNumber instance vari-

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=267

CREATING A SHOPPING LIST ITEM OBJECT 268

able directly, all that outside code would be broken if the phoneNumber

variable no longer existed or if it just contained a small portion of the

whole phone number.

So, always make sure you recognize the data abstraction and encap-

sulation offered by object-oriented design; don’t try to modify another

object’s internal values directly, unless you have exceptional, justifiable

reasons.

Accessor Methods for Internal Use

Now that we have accessor methods for our ShoppingListItem object, it’s

worth considering whether we should use them from within the Shop-

pingListItem class itself, with code like this:

- (void)someMethod

{

[self setItemName:@"Baked Beans"];

}

This is absolutely fine and a very good idea. If you have accessor meth-

ods that either validate values before setting them or need to make

changes to other values when one value is set, it’s obviously easiest if

an object uses its own accessor method rather than having to dupli-

cate any validation code, and so on, every time it accesses an instance

variable directly.

The only places where this doesn’t apply is in init and dealloc meth-

ods. The init method is meant to set up initial values in an object—at

the time an init method is called, the rest of the object may not yet be

completely set up. If an object’s setter methods have any additional

functionality beyond setting values (and some objects will, automati-

cally, without you writing any extra code, through a process known as

Key-Value Observing), using those setter methods from within init could

have all sorts of undesirable effects.

The dealloc method is called just before an object is removed from mem-

ory; it’s designed so an object can do all necessary destructive work

in terms of releasing any objects it retains, thereby avoiding memory

leaks. As with init, using a setter method in a dealloc method can cause

problems.

For our ShoppingListItem class, we need to leave our init and dealloc meth-

ods as they are.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=268

REWORKING THE SHOPPING LIST APPLICATION... AGAIN 269

11.5 Reworking the Shopping List Application... Again

Now that we have a new class of ShoppingListItem available, let’s modify

the Shopping List application to make use of it. All the code we need to

modify is in the MyDocument.m file, so open it up.

To be able to refer to ShoppingListItem objects from within our MyDocu-

ment object, we’ll need to start by #importing the header file at the top of

MyDocument.m:

#import "MyDocument.h"

#import "ShoppingListItem.h"

@implementation MyDocument

«code continues»

The methods we need to modify are the same as those back in Sec-

tion 11.3, Reworking the Shopping List Application, on page 251. Let’s

once again start with the init method:

- (id)init

{

self = [super init];

if (self) {

// Create the main shopping list array

shoppingListArray = [[NSMutableArray alloc] init];

// Add the Milk

ShoppingListItem *milkItem =

[ShoppingListItem shoppingListItemWithName:@"Milk" quantity:4];

[shoppingListArray addObject:milkItem];

// Add the Eggs

ShoppingListItem *eggsItem =

[ShoppingListItem shoppingListItemWithName:@"Eggs" quantity:12];

[shoppingListArray addObject:eggsItem];

// Add the Butter

ShoppingListItem *butterItem =

[ShoppingListItem shoppingListItemWithName:@"Butter" quantity:1];

[shoppingListArray addObject:butterItem];

}

return self;

}

That’s cut down quite a few lines of code! The code is able to make use

of our class factory method to create each autoreleased ShoppingListItem

before adding it to the array.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=269

REWORKING THE SHOPPING LIST APPLICATION... AGAIN 270

Next up is the method to display the items:

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

return [NSNumber numberWithInt:[currentItem quantity]];

else if(aTableColumn == itemNameColumn)

return [currentItem itemName];

else

return nil;

}

This time we get the ShoppingListItem at the relevant rowIndex. We then

make use of our accessor methods; for the itemNameColumn, we just

pass back the string returned by itemName method on our item.

Notice that the name of the method we’re implementing is objectValue-

For...; because we decided to implement our ShoppingListItem using an int

for the quantity value, we have to generate an NSNumber object from

that int before we can pass it back to the table view.

The method that allows the user to change values in the table view rows

now needs to look like this:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

[currentItem setQuantity:[anObject intValue]];

else if(aTableColumn == itemNameColumn)

[currentItem setItemName:anObject];

}

Notice how much more readable this code is? Again, because the

method passes us a proposed objectValue, we ask that proposed object

for its intValue to pass on as the new quantity.1

1. This code makes the assumption that whatever object we might receive will definitely

respond to the intValue message. This will certainly be the case for table views using the

standard cell objects, like the text cells we are using to display the items in the table view.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=270

INTRODUCING OBJECTIVE-C 2.0 PROPERTIES 271

Last, but not least, the method that adds in new objects to the list needs

to be updated as well:

- (IBAction)addNewItemToShoppingList:(id)sender

{

ShoppingListItem *newItem = [ShoppingListItem

shoppingListItemWithName:[newItemNameTextField stringValue]

quantity:[newItemQuantityTextField intValue]];

[shoppingListArray addObject:newItem];

[shoppingListTableView reloadData];

}

Again, this method is quite a bit simpler than it was before. We’re just

passing the results, returned by asking the text fields for their respec-

tive string and int values, straight into the class factory method used to

create our new shopping list item.

That’s it! Build & Run the application to make sure it still behaves as it

should.

You’ll find that you can add, edit, and remove items in the list as much

as you like. If you try to save the list, however, you’ll unfortunately end

up with an error. Oops. What did we break?

For an NSArray to be able to archive itself using the writeToURL:atomically:

method, every object in that array needs either to be another NSArray or

NSDictionary or to be an object that can save as an NSString.2

Now that we are storing our shopping list items using an NSObject sub-

class of our own, we’ll need to use an archiver object to archive the array

to disk. For now, you won’t be able to save and reopen your shopping

lists; don’t despair, though, we’ll see how to work with archivers and

unarchivers in Section 13.5, Archiving with NSCoding, on page 367.

11.6 Introducing Objective-C 2.0 Properties

Most objects need accessor methods. If you compare the methods we

wrote for the storedNumber variable in Section 7.3, Adding a New Class,

on page 125 with the quantity accessors we wrote in this chapter, (in

Section 11.4, Protection from the Outside World, on page 264), you’ll

notice that the methods follow the same pattern.

2. These are all the objects available for use in p-list files (property lists), the file format

used by the writeToURL:atomically: method

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=271

INTRODUCING OBJECTIVE-C 2.0 PROPERTIES 272

// For a scalar variable named: myVariable

// Accessor method:

- («variable type»)myVariable

{

return myVariable;

}

// Setter method:

- (void)setMyVariable:(«variable type»)newValue

{

myVariable = newValue;

}

If you have an object with a large number of instance variables and

need to offer up access to those variables to other objects, you’re going

to need to write lots of accessor methods. We’ll look at objects in a

moment, but if each variable is a scalar variable, like an int or a float,

you’re going to end up with endless methods, all following the same

pattern as the methods shown earlier. Surely there must be a “Don’t

Repeat Yourself” alternative?

In Section 10.1, Introducing Array Enumeration, on page 218, you

learned about the syntax of fast enumeration, a technique introduced

with Objective-C 2.0. There are a number of other important additions

in Objective-C 2.0, including Objective-C properties.

Declaring Properties

Objective-C properties allow us to declare that an object has a prop-

erty, with a specific type. Once we’ve declared that property, we can

use a keyword to specify that the methods relevant to that property be

synthesized automatically for us.

Let’s look at what this means for our existing ShoppingListItem object.

Open the ShoppingListItem.h file to check the existing accessor methods

for the integer quantity instance variable:

@interface ShoppingListItem : NSObject {

«other instance variables»

int quantity;

}

«other methods»

- (void)setQuantity:(int)newQuantity;

- (int)quantity;

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=272

INTRODUCING OBJECTIVE-C 2.0 PROPERTIES 273

The syntax to declare a property looks like this:

@property («keyword») «variable type» «variable name»;

The keyword portion of the declaration specifies how the proposed val-

ues passed in through setter methods should relate to the instance

variables. For our scalar int type quantity variable, we just assign the

newQuantity value directly to the instance variable, like this:

- (void)setQuantity:(int)newQuantity

{

quantity = newQuantity;

}

The property syntax keyword for this type of property is assign. So,

remove the existing setter and getter methods (setQuantity: and quan-

tity), and replace them with a property declaration:

@interface ShoppingListItem : NSObject {

NSString *itemName;

int quantity;

}

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity;

+ (id)shoppingListItemWithName:(NSString *)newName quantity:(int)newQuantity;

- (void)setItemName:(NSString *)newName;

- (NSString *)itemName;

@property (assign) int quantity;

@end

The new line of code indicates that there is a quantity property on a

ShoppingListItem object; this means that another object can access or

set the value of that property using standard accessor methods, even

though those accessor methods aren’t specifically listed in the interface

of the class description.

Synthesizing Properties

By declaring a property in the interface, we can also remove the imple-

mentation of the accessor methods from ShoppingListItem.m altogether,

replacing them with a simple directive requesting that the methods be

synthesized automatically for us, using this syntax:

@synthesize «property name»;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=273

INTRODUCING OBJECTIVE-C 2.0 PROPERTIES 274

Switch to the ShoppingListItem.m file, and remove the setQuantity: and

quantity method implementations. Replace them with this single line of

code:

@implementation ShoppingListItem

@synthesize quantity;

- (void)setItemName:(NSString *)newName

«implementation continues»

Note that the @synthesize keyword goes inside the @implementation for the

ShoppingListItem. Most of the sample code you’ll see puts any @synthesize

declarations just under the opening @implementation keyword.

By using @property and @synthesize, we’ve cut out two methods from our

ShoppingListItem class. This might not seem so amazing right now, but

when you’re working with objects that need to maintain a large number

of instance variables, not having to write out all those identical-looking

access methods is quite a bonus.

Before we continue, Build & Run the Shopping List application to make

sure that it still works and that you can still change the quantities of

items in the table view. You’ll find that it appears to behave exactly

as it did before; we’re still using the setQuantity and quantity methods

from within the MyDocument.m file, even though we haven’t specifically

written out those methods.

It’s also now becoming apparent why it’s so important that accessor

method names follow standard conventions; unless you specifically re-

quest otherwise, properties will be synthesized using the setVariable-

Name:, variableName naming conventions.

Declaring Properties for Object Types

So far, we’ve seen how to use properties to work with a scalar int variable

using the assign keyword. What about objects?

Our setter method for the itemName instance variable currently looks

like this:

- (void)setItemName:(NSString *)newName

{

[itemName release];

itemName = [newName retain];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=274

INTRODUCING OBJECTIVE-C 2.0 PROPERTIES 275

That looks pretty formulaic—release the existing object and retain and

assign the new value. Surely there must be a keyword for this type

of property? Of course! For an object property that should be retained

when it is set, specify the retain keyword.

Open the ShoppingListItem.h file again, and replace the existing accessor

methods for the itemName with a property declaration:

@interface ShoppingListItem : NSObject {

NSString *itemName;

int quantity;

}

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity;

+ (id)shoppingListItemWithName:(NSString *)newName quantity:(int)newQuantity;

@property (retain) NSString *itemName;

@property (assign) int quantity;

@end

Again, this declaration specifies that the itemName property may be

accessed or set using standard accessor methods. And, just like the

quantity property, we can synthesize the property and remove the set-

ItemName: and itemName methods from ShoppingListItem.m:

@implementation ShoppingListItem

@synthesize itemName;

@synthesize quantity;

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity

«implementation continues»

Well, that was pretty easy—surely as you progress through a book on

learning Mac programming, you should be adding code rather than

removing it? On the other hand, it really is a good thing to be able to

delete chunks of code. Those are lines of code that you won’t have to

worry about maintaining in the future.

Your ShoppingListItem.m file now has only four methods in it, and two of

those have only one line of code in them. That’s pretty manageable for

a simple shopping list item! It’s even perfectly acceptable to consolidate

multiple @synthesize statements onto one line, like this:

@implementation ShoppingListItem

@synthesize quantity, itemName;

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity

«implementation continues»

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=275

INTRODUCING OBJECTIVE-C 2.0 PROPERTIES 276

That’s another line’s worth of code gone! Hooray!

Build & Run the application once again to make sure that it still works;

just like before, the name of an item can still be set using the setItem-

Name: method, even though we haven’t specifically written it. From a

user’s perspective, nothing appears to have changed. Excellent!

Dot Syntax

There’s another side effect to using property notation that I need to

mention, and it involves something that is still considered slightly con-

troversial amongst the Mac developer community: dot syntax.

Dot syntax, or dot notation, enables us to access or set the properties

on an object using a very different notation from what we’ve seen before:

// Accessor Method:

id variable = [someObject someValue];

// Dot Syntax:

id variable = someObject.someValue;

This might not look particularly controversial, but it does bear a strik-

ing resemblance to the way we work with a non-object type that we

haven’t yet discussed in this book: the structure, offered by the C

language.

We’ll be looking at structures in the next chapter, in Section 12.1, Keep-

ing Track of Locations on Screen, on page 280, but for the moment,

let’s finish our property examination and try to forget they’ve even been

mentioned.

Along with accessing a property on an object using dot syntax, we can

also set a property on an object using dot syntax:

// Setter Method:

[someObject setSomeValue:newValue];

// Dot Syntax:

someObject.someValue = newValue;

Even though the word set doesn’t appear anywhere in the dot syntax

version, by using the assignment operator (=) with dot notation, the

receiving object’s property will still be set using a setter method. If the

property is declared as a retained property, the someValue instance vari-

able will still be set correctly and retained when you use this notation.

While you’re trying to get your head around instance variables and

accessor methods, you might like to stick with using the [someObject

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=276

CHAPTER SUMMARY 277

setSomeValue:newValue] version for now. If you do plan on writing soft-

ware for the iPhone, though, you’ll find that much of the available sam-

ple code and documentation for iPhone development uses dot notation

everywhere.

If you’re not convinced that using dot notation is a good idea, that’s

fine. Some people love it, and some people hate it. Personally, I quite

like being able to do this:

[myObject.someProperty doSomething];

Rather than this:

[[myObject someProperty] doSomething];

Either is acceptable, and both work just as well.

11.7 Chapter Summary

We covered an enormous amount of ground in this chapter. We started

by looking at the Model-View-Controller design pattern used when writ-

ing Mac OS X applications. We then went through several design itera-

tions of our Shopping List application and learned all about dictionaries

that hold collections of objects ready to be accessed using keys.

We also looked in some detail at how an object encapsulates informa-

tion and behavior, hiding its internal instance variables behind public

accessor methods. We finished by looking at Objective-C 2.0 property

syntax, which makes it possible to specify properties on objects such

that accessor methods can be generated for us without having to write

them out in full.

In the next chapter, we’re going to look in more detail at the View part

of Model-View-Controller, seeing how to write our own custom objects

to display information on screen.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=277

Chapter 12

All About Views
The previous chapter introduced you to the separation between models,

views, and controllers. You saw a number of different ways to structure

the model data for an application, and you reworked the Shopping List

application’s data structure.

We’ve been using controller objects all the way through the book, from

our NotifyingClass object in TextApp through the MyDocument object in

the Shopping List application. In this chapter, it’s time to learn about

the view objects in Model-View-Controller. You’ll see how Mac OS X

software displays information on screen using a view hierarchy, and

you’ll find out how to do some simple drawing tasks using custom

views.

Before we talk about views, though, we need to look at some very basic

geometry used to describe position and size on screen.

12.1 Simple Geometry in Two Dimensions

Most of the Mac software you interact with on a daily basis displays

its information in at least one window. Apple’s iTunes application, for

example, uses a single window to display various types of information

depending on whether you are searching through your music library,

playing an album, or browsing the iTunes Store.

For now, let’s ignore all the information displayed inside the window,

instead focusing on the window itself. In terms of its physical char-

acteristics, a window has a specific shape, a location on screen, and

a size.

Prepared exclusively for James Carlson

SIMPLE GEOMETRY IN TWO DIMENSIONS 279

Figure 12.1: Line drawing of graph

Nearly all the windows you’ll come across are rectangular in shape.1

Some windows have a fixed size; others are resizable. The iTunes win-

dow, for example, can be shrunk down to a minimum size or made as

large as you like to fill a big screen. If you exit and relaunch iTunes, the

window will even reappear with the size and position you last set.

To keep track of the size and position of a window on screen, we make

use of some simple geometry.

X and Y Coordinates

Back in school, you probably had to make up lots of graphs like the one

in Figure 12.1. Points on the graph are defined in terms of coordinates,

given relative to the x-axis (running horizontally from left to right) and

the y-axis (running vertically, bottom to top).

1. And even those that don’t appear to be rectangular are still defined by their enclosing

rectangle.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=279

SIMPLE GEOMETRY IN TWO DIMENSIONS 280

Think of a computer screen as being like a big piece of graph paper. The

origin (that’s the point where the x- and y-axes intersect at the bottom

left) corresponds to the bottom left of your screen.2

A window’s location on screen is defined by the location of the point at

its bottom-left corner, relative to the bottom-left corner of the screen.

It’s tempting to think of this coordinate system as being specified in pix-

els, or the tiny dots that make up the image on a computer screen, but

coordinates are in fact specified in units called points—see the sidebar

on the next page to find out why.

Keeping Track of Locations on Screen

To keep track of a location on screen, we obviously need some kind of

scalar or object variable type. The type provided by Apple is an NSPoint.

Although it might look like an object, with the NS prefix like NSObject

and NSTableView, an NSPoint is not an object. It’s one example of some-

thing we mentioned briefly in Section 11.6, Dot Syntax, on page 276: a

structure offered by the C language.

A structure is a special kind of variable type that stores more than one

piece of information. Conceptually, it’s just like an object with multi-

ple instance variables (like our ShoppingListItem object in the previous

chapter), but without any behavior defined in methods.3

A single NSPoint variable is used to hold two pieces of information, a

value for an x-coordinate and a value for a y-coordinate. It’s used like

this:

NSPoint myPoint;

myPoint.x = 250;

myPoint.y = 300;

Notice that there’s no asterisk on the front of the myPoint declaration;

NSPoint isn’t a type of object, and we’re not using a pointer. An NSPoint

variable is just like an int or a float, but it has subvariables known as

members, accessible using the previously shown dot syntax.

2. If you have multiple screens, things get a little more complicated. For the most part,

though, Mac OS X and Cocoa handle most of the problems for you, and you don’t need

to worry too much unless you’re writing a screen saver or a full-screen application.
3. If you go on to learn more about how Objective-C works behind the scenes, you’ll

find that this is a somewhat backward way of looking at things; in fact, an object is itself

made up of one of these structures of information, with some associated behavior.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=280

SIMPLE GEOMETRY IN TWO DIMENSIONS 281

When Is a Pixel Not a Pixel?

Your Mac screen can display several resolutions. The maximum
resolution of a 30-inch Apple Cinema display is 2560x1600, so
the screen is 2560 pixels wide by 1600 pixels high. At this max-
imum resolution, each point corresponds to one pixel, so you
could, for example, display a very large window with a maxi-
mum size of 2560 by 1600, filling the screen.

You might also choose to use your display at a different res-
olution, 1280x800. At this resolution, everything appears much
larger than it does at 2560x1600. The biggest window you can
display is now only 1280x800, but it still fills the screen. Each of
the 1280 horizontal points across the window now corresponds
to two pixels rather than one.

If a window has a position of {640,200}, the left side of the win-
dow will be 640 points away from the left edge of the screen. At
a resolution of 1280x800, the bottom-left corner will start exactly
halfway across the screen and a quarter of the way up. At a res-
olution of 2560x1600, the bottom-left corner starts only a quarter
of the way across the screen and an eighth of the way up.

By specifying coordinates in points, rather than pixels, we don’t
have to worry about screen resolutions. The Cocoa framework
and operating system handle all of this for us. A dot that’s 1
point by 1 point is essentially the smallest thing we can draw on
a screen at its current resolution. This might use 1 physical pixel;
it might use 4.

From a memory management point of view, treat an NSPoint just like

you would an int or a float. You can’t retain or release it, so it’s valid only

in the code block in which it is defined. As with all other variables, it’s

also a good idea to set the initial values at declaration time.

A location on screen is, as the name NSPoint implies, just a point; it has

no physical size. You can’t draw a point, but you can use it together

with a second type of variable that defines a size to define a rectangular

area on screen.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=281

WORKING WITH WINDOWS AND VIEWS 282

The variable type used to hold a size is another C structure, with the

predictable name of NSSize. Again, it has two members, allowing you to

specify both a width and a height, and is used like this:

NSSize mySize;

mySize.width = 500;

mySize.height = 350;

With this information in mind, we can define the outer frame of the

window in terms of a location and size. Its origin is {250, 300}, and its size

is {500,350}.

Given that it’s so common to need to combine a location and size to

define a rectangular area on screen, Apple also provides us with a

structure to define a rectangle. It’s called an NSRect and is used like

this:

NSPoint myPoint;

myPoint.x = 5;

myPoint.y = 5;

NSSize mySize;

mySize.width = 17;

mySize.height = 9;

NSRect myRect;

myRect.origin = myPoint;

myRect.size = mySize;

This code ends up with an NSRect variable called myRect defining the

rectangle shown in Figure 12.2, on the next page.

12.2 Working with Windows and Views

Now that you’ve seen how to work with locations, sizes, and rectangles

in code, we’re going to write a very simple application to put it all into

practice.

Open Xcode, and create another new project. Use the Mac OS X Cocoa

Application template (if you’re using Xcode 3.2, make sure the “Cre-

ate document-based application” checkbox isn’t selected), and call the

application “Windows and Views.”

When running, the application looks like Figure 12.3, on page 284; it

displays the location and the size of the window on screen when the

button is clicked. It may not look like the most exciting application

you’ve ever seen, but you will be adding extra functionality to it as

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=282

WORKING WITH WINDOWS AND VIEWS 283

Figure 12.2: A rectangle defined by an NSRect

you learn more about the relationships between windows, views, and

coordinate systems.

We’ll start with the interface first. Open the new project’s MainMenu.xib

in Interface Builder. Drag out an NSBox instance onto the window inter-

face, and use the Attributes inspector to set its title to “Main Window.”

Add the rest of the controls (an NSButton, two editable text fields, and two

labels) so that the interface resembles the application in Figure 12.3,

on the next page.

Next, we’ll write the code that makes this work, so we’re going to need

some kind of controller object. If you’re using Xcode 3.2 under Snow

Leopard, the template projects automatically include what’s known as

an application delegate4 class description, together with an instance

of that class already included inside the MainMenu.xib file. This object

would be perfect to handle our measuring requirements, but since some

4. So-called for reasons that will become clear in Chapter 13, Mac OS X and Cocoa

Mechanisms, on page 320

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=283

WORKING WITH WINDOWS AND VIEWS 284

Figure 12.3: The Windows and Views application

readers might still be running Leopard or only have access to Xcode 3.1,

we’ll create our own dedicated measuring object.

Switch to Xcode, and right-click (or C-click) the Classes group in the

Groups & Files list. Select Add > New File..., and choose the Mac OS

X Cocoa Objective-C class in the New File template picker. If you’re

running Xcode 3.2 under Snow Leopard, make sure that the “Subclass

of” drop-down menu shows NSObject.

We need to decide on a suitable name for this class; since it will be

measuring various things, we could call it “Measurer.” The problem is

that’s a pretty common word. Somebody else might write a class with

the same name that we want to use in the future. We wouldn’t be able

to use it because of the name clash.

Way back near the beginning of the book, in Section 3.4, Objective-

C File Types for a Class, on page 42, I mentioned that it’s common

to prefix the names of classes with letters (like NS) to avoid clashes.

Let’s start adopting this practice now and give our new class a prefixed

name. If this was a class that might be reusable in other applications,

we could choose a prefix related either to our own name or to a com-

pany name, like PP for Pragmatic Programmers. This measuring class

probably won’t get used outside of the current application, so instead

we’ll use the prefix WV, standing for Windows and Views. Name the new

class WVMeasurer.

Once Xcode has created the files, open the WVMeasurer.h file to add

the necessary interface outlets and actions, as usual. To measure the

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=284

WORKING WITH WINDOWS AND VIEWS 285

application’s main window, you’ll need an outlet for that too. Add all of

these into the @interface, like this:

@interface WVMeasurer : NSObject {

IBOutlet NSWindow *applicationWindow;

IBOutlet NSTextField *windowLocationTextField;

IBOutlet NSTextField *windowSizeTextField;

}

- (IBAction)showMeasurements:(id)sender;

@end

Open the WVMeasurer.m file next, ready to write the showMeasurements:

method.

This method needs to ask the window for its frame (which will be an

NSRect containing the window’s location on screen along with its size).

It then needs to extract the origin and size from the NSRect and display

these in the two text fields.

Extracting the values is relatively straightforward, so let’s deal with

these first:

@implementation WVMeasurer

- (IBAction)showMeasurements:(id)sender

{

NSRect windowFrame = [applicationWindow frame];

NSPoint windowLocation = windowFrame.origin;

NSSize windowSize = windowFrame.size;

}

@end

But how can we display an NSPoint or an NSSize in a string of characters?

It seems likely that we could build up an NSString using the stringWithFor-

mat: method, but unfortunately there isn’t a format specifier we can use

to display a structure. Instead, we have to output each member value

within the structure separately.

Both NSPoint and NSSize use the same variable type for their member

subvariables: an Apple-defined CGFloat. The CG here stands for “Core

Graphics.” As the rest of the word suggests, you can think of these as

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=285

WORKING WITH WINDOWS AND VIEWS 286

being just like basic float variables,5 meaning that we could use the

following to generate a string from an NSPoint:

NSString *valueString =

[NSString stringWithFormat:@"{%f,%f}", myPoint.x, myPoint.y];

There’s a slightly simpler way to do this, however, using an Apple-

defined function called NSStringFromPoint():

NSString *valueString = NSStringFromPoint(myPoint);

This function accomplishes the same thing as the format string version.

Helpfully, there’s also a corresponding function, NSStringFromSize(), that

generates an NSString from an NSSize, so let’s use both of these functions

to output the relevant information:

- (IBAction)showMeasurements:(id)sender

{

NSRect windowFrame = [applicationWindow frame];

NSPoint windowLocation = windowFrame.origin;

NSSize windowSize = windowFrame.size;

[windowLocationTextField setStringValue:NSStringFromPoint(windowLocation)];

[windowSizeTextField setStringValue:NSStringFromSize(windowSize)];

}

That’s as much code as we need right now; all that’s left is to create

an instance of our new WVMeasurer class and connect everything up in

Interface Builder.

Switch to Interface Builder, and drag out one of the generic blue cube

NSObjects; use the Identity inspector to change its class to WVMeasurer,

and then link up all the outlets and the action.

Save the MainMenu.xib file, return to Xcode, and Build & Run the appli-

cation.

Move the main application window near the bottom left of your screen,

and click the button; then move the window to the bottom right of

the screen, and click the button to see how the Location information

changes. The first value of the two location numbers increases as you

move the window to the right.

Try moving the window up the screen, and click the button; the second

location value increases as you move the window higher on your screen.

5. This isn’t strictly true in a 64-bit world, but don’t worry about it now!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=286

WORKING WITH WINDOWS AND VIEWS 287

Note that the Size information hasn’t changed yet because we’ve just

been changing the position of the window on screen. Try making the

window bigger by dragging down its bottom-right resize handle. Click

the button, and the new size will be displayed.

Note that the location has also changed following the resize. The bottom

of the window (which is the origin for the window) is now lower than it

was before, even though to the user it seems as if the window hasn’t

moved on screen.

This is a common source of confusion and is one of the side effects

of working in a bottom-to-top, x- and y-axes coordinate system when

we’re so used to thinking in terms of starting at the top and working

downward. If you ever need to adjust the height of a window using code,

you’ll probably want to adjust the origin too so that it appears as if the

top of the window doesn’t move.

View Relationships

We’re about to add a few more interface items to the Windows and Views

application, but before we do, let’s tidy up some annoying problems that

occur when the window is resized.

If you resize the window, it would be nice if the size and location infor-

mation moved to stay in the middle of the window. Right now, it’s also

possible to make the window too small to see any information at all; it

would be nice if we could specify a minimum size for the window.

If you wanted to accomplish all of this using your own code, you’d need

to do quite a bit of work. You’d need to watch out for the window resiz-

ing, find out the window’s height and width, then work out where each

item needs to be moved to, and so on. Thankfully, Interface Builder

offers us an incredibly easy way to do all this, and we don’t need to

write any code at all.

Let’s start by setting the minimum size for the window. Switch to Inter-

face Builder, and use the list view mode of the MainMenu.xib file to select

the Window object; open the Size inspector for the Window object (that’s

the yellow ruler icon), and you’ll see the palette shown in Figure 12.4,

on the following page.6

6. Your inspector might look slightly different if you are running Xcode 3.1.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=287

WORKING WITH WINDOWS AND VIEWS 288

Figure 12.4: The Size inspector for a Window object

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=288
v@v
Text Box
http://www.wowebook.com

WORKING WITH WINDOWS AND VIEWS 289

Figure 12.5: The Size inspector for a control

This inspector allows you to set both a minimum and a maximum size

for the window; click the Use Current button to set the minimum size

to be the size of the window as it is designed in the xib file.

Save the file, and switch to Xcode to Build & Run the application again.

You’ll find that you can’t make the window any smaller than the size

specified in the Size inspector.

The other problem to sort out is how the controls in the window move

around when the window is resized. Quit the Windows and Views appli-

cation, and return to Interface Builder. Click the Measure button in the

interface to select it, and open its Size inspector. The Size inspector for

a control is shown in Figure 12.5.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=289

THE VIEW HIERARCHY 290

Under the Autosizing heading in this inspector, you’ll see what looks

like a mini Mac OS X desktop, with an animating rectangle,7 showing

how the selected item will move or resize relative to its enclosure. The

default settings for controls are that they are tied to the top left: in the

animating view, the white enclosure is increasing in size, but the red

item stays stuck in its top-left corner.

Next to the animating view is a strange-looking square control, used to

change how the control resizes or moves. By default, the top and left

anchors are set. Click the left anchor to turn it off, and you’ll find that

the red box in the animating view now stays in the top middle of the

white box as it changes size.

Feel free to experiment with the other resizing features to see how they

affect the animation. The inner arrows are used to define how an object

will resize; the outer options anchor the object to an edge.

Turn off all the red arrows and anchors, except for the top anchor,

before you proceed.

Click the NSBox instance once in the interface to select it, and use the

Size inspector to set its autoresizing information to the same as the

button (i.e., leaving just the top anchor). Don’t make any changes to

the other controls yet.

Switch to Xcode, and Build & Run the application to see how we’re

getting on. You should now find that when you resize the window, the

button and the box stay in the middle of the window.

What’s also worth noting is that the controls inside the NSBox object

move with their box container. We didn’t change the autosizing settings

on those controls, yet they are moving as we require.

Let’s find out why!

12.3 The View Hierarchy

When displaying information on screen, we use what’s known as the

view hierarchy.

At the top of the hierarchy, from our Cocoa perspective, is the NSWindow

object. As we’ve already seen, this window object keeps track of its

location and size on screen. As well as a huge amount of functionality

7. It may animate only when you move the mouse pointer over it.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=290

THE VIEW HIERARCHY 291

Figure 12.6: The hierarchy of views in our Windows and Views applica-

tion

relating to how it draws itself, an NSWindow object also keeps track of its

content view, which is an NSView object that marks the next step down

the view hierarchy.

Switch to Interface Builder, and view the MainMenu.xib file in list view

mode. Click the triangle next to the Window object to expand it, and

you’ll find it contains a Content View item. Expand this as well, and

you’ll find the NSBox and NSButton instances. If you expand the Box item,

you’ll see the labels and text fields, as shown in Figure 12.6.

Notice that each of the NSTextField instances and the NSButton instance

also have triangles next to them; we will see why a little later in this

chapter.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=291

THE VIEW HIERARCHY 292

Views and Subviews

The list of views shown in Figure 12.6, on the previous page, repre-

sents the view hierarchy for our simple application. The basic view

class, NSView, provides all sorts of functionality related both to display-

ing information on screen and to keeping track of subviews in the view

hierarchy. In our application, the NSBox is a subview of the window’s

content view. The NSTextFields are in turn subviews of the NSBox.

When you created the interface earlier in this chapter, you might have

noticed that Interface Builder provided some visual feedback on adding

the text fields into the box. If you click and drag one view over another,

the receiving view will be highlighted to show that you are making the

inserted view a subview of the receiving view.

This may all sound overly complicated, but it offers some huge benefits.

For a start, if you move the NSBox instance in Interface Builder, you’ll

find that the NSTextField objects inside move with it. If you were to move

the NSBox instance programmatically, using code, the same thing would

happen.

This explains why we didn’t need to make any modifications to the

autosizing properties for the text field controls. When the box moves,

its subviews move too. Since the default autoresizing properties are

anchored to the top left of the enclosing view, the text fields stay an-

chored to the top left of the box.

There’s another important benefit of having this view hierarchy system,

relating to view coordinates. To investigate, let’s change our Windows

and Views application so that it also displays the size and location of

the main window’s content view.

Switch to Xcode, and open the WVMeasurer.h file. Add an outlet for the

content view, along with outlets for a couple extra text fields:

@interface WVMeasurer : NSObject {

IBOutlet NSWindow *applicationWindow;

IBOutlet NSView *mainView;

IBOutlet NSTextField *windowLocationTextField;

IBOutlet NSTextField *windowSizeTextField;

IBOutlet NSTextField *viewLocationTextField;

IBOutlet NSTextField *viewSizeTextField;

}

- (IBAction)showMeasurements:(id)sender;

@end

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=292

THE VIEW HIERARCHY 293

Figure 12.7: Adding extra controls to the Windows and Views applica-

tion

Switch to Interface Builder, and add another NSBox object (with its title

set to “View”), along with labels and text fields, so that your interface

matches Figure 12.7. Set the autosizing for the box so that it’s also

anchored at the top.

Connect up the text field outlets from the existing WVMeasurer object to

the new controls. Connect the mainView outlet to the window’s content

view by dragging from the connection HUD down to an empty portion

of the main Window interface (the whole window content area needs to

be highlighted before you release the mouse).

Switch to Xcode, open the WVMeasurer.m, and change the showMeasure-

ments: method to display the information about the content view:

- (IBAction)showMeasurements:(id)sender

{

«beginning of method»

[windowLocationTextField setStringValue:NSStringFromPoint(windowLocation)];

[windowSizeTextField setStringValue:NSStringFromSize(windowSize)];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=293

THE VIEW HIERARCHY 294

NSRect viewFrame = [mainView frame];

NSPoint viewLocation = viewFrame.origin;

NSSize viewSize = viewFrame.size;

[viewLocationTextField setStringValue:NSStringFromPoint(viewLocation)];

[viewSizeTextField setStringValue:NSStringFromSize(viewSize)];

}

Build & Run the application, and click the button. As before, the size

and location for the window change as the window is resized and

moved; the size of the content view also changes, but the location of

the content view remains set at {0,0}.

This is one of the greatest benefits of the view-subview hierarchy sys-

tem. Each view in the hierarchy has its own coordinate space, with its

origin at the bottom left.

A subview is positioned relative to its superview’s origin. In the case of

the content view, its origin is the bottom left of the window, that is,

{0,0}. Notice that its width is the same as that of the window, because

the content view is scaled to fill the entire window, but the height is less

than the height of the window. Why? Because the window also has to

display its title bar. The height of the content view is equal to the height

of the window less the height of the title bar.

To test a different example, use Interface Builder to set the autosizing

properties of the “View” NSBox so that it is anchored to the bottom left

of its enclosing view. You’ll need to turn off the top anchor, leaving just

the left and bottom anchors enabled.

Then change the mainView outlet of the WVMeasurer object to point to

that box rather than the window’s content view, and Build & Run the

application again. This time when you resize the window and click the

button, you’ll end up with something looking like Figure 12.8, on the

next page.

In this particular case, the location of the box stays fixed at 141 points

away from the left edge of the content view (i.e., the window’s left edge)

and 16 points away from the bottom edge. These coordinates are the

coordinates of the box relative to the content view’s origin, which is the

bottom left of the window.

If you try changing the mainView outlet to point to one of the text fields,

you’ll find that the text field location is given relative to the NSBox item’s

origin.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=294

CUSTOM VIEWS 295

Figure 12.8: Location of the Box object

12.4 Custom Views

To get a better understanding of working with coordinate systems, we’re

going to write our own very simple custom view. We’ll be subclassing

NSView and seeing how to write code to draw various shapes in the

interface for the Windows and Views application.

Let’s start by adding a new class for our view, in Xcode. As before, right-

click (or C-click) the Classes group, and choose Add > New File...; if you

are running Xcode 3.2, choose the Mac OS X Cocoa Objective-C class,

and use the “Subclass of” drop-down menu to select NSView. If you are

running Xcode 3.1, you’ll need to look through the available project file

templates to find the NSView Subclass.

Call the new class WVShapesView. We won’t need any instance variables

for this simple class, so ignore the WVShapesView.h file when Xcode has

created it, and open the WVShapesView.m file. The template file includes

two methods in the implementation:

@implementation WVShapesView

- (id)initWithFrame:(NSRect)frame {

self = [super initWithFrame:frame];

if (self) {

// Initialization code here.

}

return self;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=295

CUSTOM VIEWS 296

- (void)drawRect:(NSRect)dirtyRect {

// Drawing code here.

}

@end

The first method, initWithFrame:, is the designated initializer for an NS-

View object. If you were creating a view in code, you’d use this method to

initialize an instance with a specific frame, before you added it into the

view hierarchy. We’ll be creating our instance using Interface Builder,

so we won’t get to call this method directly. And, since we haven’t

got any instance variables in our WVShapesView, we don’t need to do

any of our own initialization in this method, so leave it as it is in the

template file.

The second method, drawRect:, is the method that will be called to tell

our view that it needs to draw its contents. This is the method where

we’ll be doing all our work in this example.

The dirtyRect parameter8 passed to drawRect: is used to specify which

rectangular portion of the view needs to be redrawn. If we were writing

a complicated 3D-drawing package, where it was expensive in terms of

processor cycles and memory to recalculate and redraw the entire view

all the time, we could use this parameter to decide which 3D objects

needed to be redrawn and just recalculate and redraw those.

Our view will be using extremely simple drawing code, so we will just

ignore the dirtyRect parameter and redraw the entire view whenever the

method is called.

The first step to draw our view is to fill it with white and give it a thin

black frame so that it feels like we have a blank canvas.

Remember how I said that each view maintains its own coordinate sys-

tem? Well, this applies to our custom view as well. The coordinates of

the bottom left of our blank canvas are {0, 0}. But how do we know how

big the canvas is?

Frames and Bounds

Earlier in this chapter, we asked various objects for their frame; this

returned us an NSRect structure with the relevant information. The dif-

ficulty here is that the frame method returns the NSRect values in the

8. Depending on the version of Xcode you’re running, this parameter may be called rect

rather than dirtyRect.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=296

CUSTOM VIEWS 297

When Does a View Need Only a Partial Redraw?

You might be wondering why we might only need to redraw a
small portion of a view, and there are several reasons:

• The view might be resized. If it grows, the part that was
already visible doesn’t necessarily need to be redrawn,
just the new view area.

• You might specifically request a small portion of a view
be redrawn. If you were writing a simple game applica-
tion using a custom view, you might have a complicated
fixed background with just a few moving objects. Rather
than redrawing the entire view every time an object
moves, you could instead choose just to redraw the area
affected by the moving object by calling the method set-

NeedsDisplayInRect:.

superview’s coordinates. The window’s frame was provided in coordi-

nates relative to the bottom left of the screen, the window’s content

view frame was provided in coordinates relative to the bottom left of the

window, the NSBox frame was provided relative to the content view, and

so on.

Luckily for us, an NSView object also has a bounds property, which will

again return an NSRect describing the frame of the view, but this time

it will be relative to the view’s own coordinate system.

That sorts out how we can get an NSRect describing the area to be filled,

but how do we do the actual filling? Well, we use what’s known as

Quartz drawing code.

Quartz and C Functions

Quartz is a collection of code that’s relatively old. Much of it is non-

object-oriented and uses standard C rather than Objective-C. We’ve

already seen some of its NSRect, NSPoint, and NSSize structures. We’ve

also used some of its C functions, like NSStringFromPoint().

Up until this point in the book, we’ve glossed over what a function actu-

ally is, so it’s worth taking a moment to explain. From our perspec-

tive, a function behaves just like an object’s method, but it is called

by itself, without using an object. A function doesn’t share the nicety

of Objective-C’s method names to indicate what each argument does;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=297

CUSTOM VIEWS 298

instead, the arguments are supplied, separated only by commas, inside

parentheses tagged on the end of the function name.

In code terms, Objective-C methods and functions are related like this:

// Objective C method

[someObject doSomething:something withAnObject:anObject];

// C function

getSomeObjectToDoSomethingWithAnObject(someObject, something, anObject);

We’ve previously made use of the NSLog() function to output information

to the Xcode console. The NSStringFromPoint() and NSStringFromSize() func-

tions are used to return strings describing the contents of the provided

point or size structure. When we’re drawing with Quartz, we need to

make use of a variety of other functions, which we’ll cover as we use

them.

Working with Colors

We know that we have to use bounds to get the view’s rectangle, and we

know that we have to deal with a few C functions to do our drawing;

can we write our code now? We’re nearly ready, but there’s just one

more thing we need to know. To do any drawing in a specific color, we

need to set that color before we draw anything.

Drawing with Quartz is a bit like working with an eager and very obe-

dient group of kindergarten children. You tell Quartz to use a color and

then say what to draw, and it will carry on drawing everything you tell

it in the same color until you give it another one.

Cocoa provides us with color objects, using the NSColor class. If you

want to be able to pick any color, you can do so either by specifying a

color using RGB values or by specifying a color using hues and satu-

rations, and so on. If you take a look at the documentation for NSColor,

however, you’ll find it has some useful utility class methods that return

certain named colors, like redColor or blueColor.

So, replace the // drawing code here comment in our view’s drawRect:

method with the following:

- (void)drawRect:(NSRect)dirtyRect {

NSLog(@"drawRect: was called!");

NSRect viewBounds = [self bounds];

NSColor *currentColor = [NSColor whiteColor];

[currentColor set];

NSRectFill(viewBounds);

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=298

CUSTOM VIEWS 299

How Objective-C Translates into C

As with C structures and Objective-C objects, the way we’ve
been looking at methods and functions is a little backward.
If you ever decide to investigate how Objective-C adds its
object-oriented additions to the C language, you’ll find that
the methods on an object end up being translated into plain C
functions.

Whenever you use an Objective-C method, like this:

[someObject doSomething:something];

the code is translated into a call to a C function called
objc_msgSend(). This function takes at least two arguments; the
first argument refers to the “object” that will receive the mes-
sage (which is really just a pointer to a plain C structure). The
second argument is a selector, used to keep track of the name
of the method called. The remaining arguments are the argu-
ments that were originally provided to the method.

So the Objective-C method call shown earlier is equivalent to
this:

objc_msgSend(someObject, @selector(doSomething:), something);

You can even rewrite method calls to use this syntax, if you feel
so inclined, and everything will still work.

Don’t worry if you can’t follow all this now. You don’t need to
understand it unless you really want to delve into the inner work-
ings of Objective-C.

We start with a call to NSLog() to let us know that the drawRect: method

has been called. We then create an NSRect containing the bounds of

the view. Next, we get hold of a color object, using the whiteColor class

method provided by NSColor, and we use the set method on that color to

specify that any drawing from now on should be done in white. Finally,

we use a Quartz C method, NSRectFill(), to fill the rectangle.

Instantiating the View

To see whether this works, we need to add an instance of the view into

MainMenu.xib, so open this file now in Interface Builder.

Rearrange the interface so that the existing NSBox objects and the Mea-

sure button are moved to the left of the existing window. Use the Size

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=299

CUSTOM VIEWS 300

Figure 12.9: Adding a custom view to the Windows and Views applica-

tion

inspector for the two boxes and the button to anchor them all to the

top left of the containing view.

Next, drag out a Custom View from the Interface Builder Library palette,

drop it into the space in the right of the window, and resize it to look

like Figure 12.9.

Use the Identity inspector for this custom view object to change its class

from NSView to WVShapesView. Then use the Size inspector to turn on

every single anchor and resizing arrow in the Autosizing section. In the

animating view, the red box should expand with its white container.

Save the file, and switch back to Xcode to Build & Run. You’ll find

that the custom view appears and is filled with white. If you resize the

window, you’ll find that the view expands. As you drag the resizing

handle on the window, the view will keep receiving drawRect: calls until

you release the mouse; this means that as you resize the window, the

view will be continually redrawn.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=300

CUSTOM VIEWS 301

Check the contents of Xcode’s debugger console to see when the draw-

Rect: method is triggered; this will be when the view is first displayed

(at application launch) or if you resize the window (and thus the view).

Notice how drawRect: gets called continuously while the window is

changing size. This is known as live resizing. If you have a view that’s

particularly expensive to redraw, you can check to see whether you are

currently inLiveResize and perhaps just draw a simple box outline, wait-

ing to do the complete redraw until the mouse is released and the view

has finished changing size.

That’s quite a lot of theory we have gone through just to display a

blank white canvas; we’re going to move forward much more quickly

from now on.

Framing the View

Earlier, I said that we wanted to frame the view with a thin black line;

let’s do this next. We already have a suitable NSRect that we can use

for the frame; we’ll need to set the current color to blackColor and use

another Quartz function NSFrameRect() to draw the line. Remove the

NSLog() call, and add the following code to the drawRect: method:

- (void)drawRect:(NSRect)dirtyRect {

NSRect viewBounds = [self bounds];

NSColor *currentColor = [NSColor whiteColor];

[currentColor set];

NSRectFill(viewBounds);

currentColor = [NSColor blackColor];

[currentColor set];

NSFrameRect(viewBounds);

}

Build & Run the application, and you’ll see that our blank canvas now

has a definite frame, as shown in Figure 12.10, on the next page.

Drawing a Square

Let’s add a square to our custom view next. Since we are drawing using

the local coordinates of our view, the bottom-left corner is the origin,

{0,0}. We’ll draw a square with bottom-left coordinates of {15,15} and give

it a fixed height and width:

- (void)drawRect:(NSRect)dirtyRect {

«beginning of method»

[currentColor set];

NSFrameRect(viewBounds);

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=301

CUSTOM VIEWS 302

Figure 12.10: The newly framed custom view

NSRect squareRect;

squareRect.origin.x = 15;

squareRect.origin.y = 15;

squareRect.size.width = 150;

squareRect.size.height = 150;

currentColor = [NSColor lightGrayColor];

[currentColor set];

NSRectFill(squareRect);

}

Notice how we’re using multiple dots to traverse the members of each

structure; the x is a member of an NSPoint structure called origin, which

is a member of the NSRect structure called squareRect.

Build & Run the application again, and you’ll see that the new, gray

square is drawn a little way up from the bottom left of the view and

has a fixed height and width. If you resize the window, and therefore

the view, the square stays fixed in size and remains in the same place

relative to the bottom of the view as it’s redrawn.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=302

CUSTOM VIEWS 303

The code we’re currently using to set up the NSRect for the square seems

to have a lot of lines of code for something that’s so straightforward.

Quartz also provides us with a convenience function to create an NSRect

given four CGFloat values, so replace the previous five lines of code that

create and set the squareRect with this:

- (void)drawRect:(NSRect)dirtyRect {

«beginning of method»

[currentColor set];

NSFrameRect(viewBounds);

NSRect squareRect = NSMakeRect(15, 15, 150, 150);

currentColor = [NSColor lightGrayColor];

[currentColor set];

NSRectFill(squareRect);

}

Build & Run to make sure the view still shows the same square.

What about changing the square into a rectangle with its size set rel-

ative to the bounds of the view? In other words, the rectangle should

grow or shrink as the view grows or shrinks.

For this, we need to set the squareRect values to be the values of the

viewBounds rect, with some adjustments.

We could use this code:

NSRect squareRect;

squareRect.origin.x = viewBounds.origin.x + 15.0;

squareRect.origin.y = viewBounds.origin.y + 15.0;

squareRect.size.width = viewBounds.size.width - 30.0;

squareRect.size.height = viewBounds.size.height - 30.0;

which would set the squareRect to be exactly 15 points less on each side

than the viewBounds rectangle.

Again, though, there is a handy convenience Quartz function to inset

one rectangle based on another, called NSInsetRect(). It returns an NSRect

made from the provided rectangle but shrunk by a specified amount

horizontally and vertically. Change the code to this:

- (void)drawRect:(NSRect)dirtyRect {

«beginning of method»

NSRect squareRect = NSInsetRect(viewBounds, 15, 15);

«end of method»

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=303

CUSTOM VIEWS 304

Build & Run again to test. The gray rectangle is now exactly 15 points

from each edge of the view; as you resize the window, and therefore the

view, the rectangle appears to resize with it.

Drawing an Oval

It’s about time we added a bit of color to our custom view, so let’s

draw an oval, filled with purple. There aren’t any Quartz functions with

names like NSOvalFill(), so we need to take a different approach. We still

start off with a rectangle to contain the oval, which we’ll generate using

the same NSInsetRect() method as before, but we’ll need to use a drawing

object, called an NSBezierPath.

An NSBezierPath instance keeps track of one or more path components,

ready for drawing on screen. If you’ve ever used a vector drawing appli-

cation like Adobe Illustrator, you’ll have worked with straight and

curved lines that behave in a similar way to an NSBezierPath. We’ll see

how to work with the components of a path a little later in the chap-

ter; for now, we’ll use a class factory method provided by NSBezierPath

that works out all the necessary path information for an oval contained

within a specified rectangle.

Add the following code to the drawRect: method:

- (void)drawRect:(NSRect)dirtyRect {

«beginning of method»

currentColor = [NSColor lightGrayColor];

[currentColor set];

NSRectFill(squareRect);

NSRect ovalRect = NSInsetRect(squareRect, 40.0, 40.0);

NSBezierPath *ovalPath = [NSBezierPath bezierPathWithOvalInRect:ovalRect];

currentColor = [NSColor purpleColor];

[currentColor set];

[ovalPath fill];

}

First, we generate a rectangle by insetting the squareRect. We then

request a Bezier path instance made by making an oval inside that

rectangle. Finally, we set a stunning purple color and then tell the path

to fill itself. The Bezier path object figures out what it has to do to draw

itself on screen, so we don’t have to worry about changing the color of

individual pixels, or anything like that.

Build & Run the application to make sure it works.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=304

CUSTOM VIEWS 305

Figure 12.11: The custom view with a square and oval

It might be nice to draw an outline around the oval rather than just

having a solid fill, so we’ll add what’s called a stroke. We’ll need to set a

color, as usual, but we’ll also need to set a line width for the stroke:

- (void)drawRect:(NSRect)dirtyRect {

«beginning of method»

[currentColor set];

[ovalPath fill];

currentColor = [NSColor darkGrayColor];

[currentColor set];

[ovalPath setLineWidth:5.0];

[ovalPath stroke];

}

When you Build & Run, you’ll find that the oval now has a dark gray

line around it, 5 pixels in width, as shown in Figure 12.11.

Feel free to experiment with other shapes and colors by looking up the

documentation for NSBezierPath and NSColor.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=305

BACK TO THE SHOPPING LIST APPLICATION 306

Figure 12.12: The revised Shopping List application

12.5 Back to the Shopping List Application

Now that we’ve seen how to work with simple drawing code, let’s add

a new feature to the Shopping List application. We’re going to make it

possible to mark an item in a shopping list as purchased; for any item

that has been purchased, we’ll display the name of the item as if it’s

been crossed off, as shown in Figure 12.12.

We need to take several steps here. First, we need to add a new prop-

erty to the ShoppingListItem model object to indicate whether an item has

been purchased. Next, we need to add another column to the inter-

face, containing a checkbox to indicate the purchase. Finally, and most

importantly for this chapter, we need to figure out how to draw the item

name with a line through it.

Let’s deal with the easy parts first.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=306

BACK TO THE SHOPPING LIST APPLICATION 307

Changing the Model

Close any windows currently open in Xcode and Interface Builder, and

then open the Shopping List application project.

Find the ShoppingListItem.h file, and add a new property to indicate

whether an item has been purchased. We’ll need a BOOL instance vari-

able, together with a property declaration for that variable.

Since a BOOL variable is a scalar, not an object, the property declaration

should use the keyword assign:

@interface ShoppingListItem : NSObject {

NSString *itemName;

int quantity;

BOOL purchased;

}

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity;

+ (id)shoppingListItemWithName:(NSString *)newName quantity:(int)newQuantity;

@property (retain) NSString *itemName;

@property (assign) int quantity;

@property (assign) BOOL purchased;

@end

Switch to the ShoppingListItem.m implementation, and add a declaration

to @synthesize the new property. Also use the init method to set the initial

state of the purchased instance variable to NO:

@implementation ShoppingListItem

@synthesize quantity, itemName, purchased;

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity

{

if(self = [super init])

{

itemName = [newName retain];

quantity = newQuantity;

purchased = NO;

}

return self;

}

«code continues»

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=307

BACK TO THE SHOPPING LIST APPLICATION 308

Changing the Interface

Next, let’s add the extra column into the shopping list table view.

Open MyDocument.xib in Interface Builder, and follow the instructions

given earlier in Section 11.3, Reworking the Shopping List Application,

on page 251 to add an extra column. Use the Attributes inspector to set

the title of the column to “Purchased.”

Unless you specify otherwise, the table column will use an NSTextFieldCell

to display its content. We want to use a checkbox rather than a text

field, so use the Library palette to find a Check Box Cell, which is an

instance of NSButtonCell. Drag one of these out of the library and onto

the new Purchased column; you’ll find that the “Text Cell” is replaced

by a box and the word “Check.”

While the check box cell is still selected, use its Attributes inspector to

set the Position value for the checkbox to the second option; that’s the

one with just a square but no line. You’ll find that the cell in the column

now shows only the checkbox without the word “Check.”

To supply the table view with the relevant information for the new col-

umn, we need to add some extra code to the MyDocument object. We’ll

need an outlet for the new column, so switch back to Xcode and add

one into MyDocument.h:

@interface MyDocument : NSDocument

{

«other outlets»

IBOutlet NSTableColumn *quantityColumn;

IBOutlet NSTableColumn *itemNameColumn;

IBOutlet NSTableColumn *purchasedColumn;

NSMutableArray *shoppingListArray;

}

«methods»

@end

Switch straight back to Interface Builder, and connect this outlet to the

new column.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=308

BACK TO THE SHOPPING LIST APPLICATION 309

We need to change the method that supplies the table view with values

and the one that lets us know if the user changes a value in a column.

Switch to Xcode, open the MyDocument.m file, and make the following

changes:

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

return [NSNumber numberWithInt:[currentItem quantity]];

else if(aTableColumn == itemNameColumn)

return [currentItem itemName];

else if(aTableColumn == purchasedColumn)

return [NSNumber numberWithBool:[currentItem purchased]];

else

return nil;

}

- (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(NSInteger)rowIndex

{

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn) {

[currentItem setQuantity:[anObject intValue]];

} else if(aTableColumn == itemNameColumn)

[currentItem setItemName:anObject];

else if(aTableColumn == purchasedColumn)

[currentItem setPurchased:[anObject boolValue]];

}

As before, the methods need to work with an object value, so we have

to use an NSNumber object to represent the BOOL, just like we used one

to represent the integer quantity.

Build & Run the application to check that you can mark an item as

purchased; you still won’t be able to save shopping lists, though, so

don’t spend too long adding any items.

That’s it for the simple modifications. Now all we need to do is figure

out how to change the way we display the item name.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=309

VIEWS AND CELLS 310

12.6 Views and Cells

In Section 11.2, Retrieving Information from a Dictionary, on page 248,

we saw a brief indication that there was something other than an NSText-

Field being used to display the text inside the field.

For various reasons, including the way the view hierarchy works and

the fact that there are lots of coordinate transformations happening,

views are reasonably expensive in terms of memory and processor

cycles. This doesn’t matter for an interface containing 20 or so views,

but there are cases when it could be extremely problematic.

As you may have realized from our earlier modification of the Purchased

table view column, table views use cells to display their contents. If

every cell of every row in a table view was instead drawn using a view,

it could very quickly become a problem if your table view had thousands

of rows and several columns. Table views avoid this by keeping track

of a prototype cell for each column; each column’s contents are then

drawn using the column’s prototype cell.

Because there is so much shared functionality related to text display

and editing between an NSTextField and a text cell in a table view, an

NSTextField also uses a text field cell to handle all the text-related details

rather than duplicating all the functionality itself. Most controls work

in similar ways, keeping track of one or more cell objects.

In Section 12.3, The View Hierarchy, on page 290, we clicked the tri-

angles next to various views to see their subviews, as shown in Fig-

ure 12.6, on page 291. The text fields and labels also had triangles, but

if you happened to click to expand these controls, you’d find that you’d

be shown their internal cell objects.

Given that we want to be able to show purchased items in our table

view with a line through their name, we need to decide how best to

proceed.

We could take several different paths:

• We could write a complete custom NSView subclass to display all

the shopping list items; this would replace the existing NSTableView

altogether, instead using custom code to draw the list, and each

item in the list.

• We could leave the table view as is but write a completely custom

NSCell subclass to draw just the shopping list item name, using

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=310

VIEWS AND CELLS 311

code to handle drawing the string of text and drawing the crossed-

out line if required. We’d also need to write code that handled

editing the name of the item in the table view.

• We could leave the table view as is and still write a custom cell

for our item name, but this time subclass NSTextFieldCell. We would

inherit all the existing textual display abilities, as well as edit-

ing. The only thing we’d need to change would be some additional

drawing of a line across the text, if it was required.

As you might be able to guess, the best option is to subclass NSTextField-

Cell. When you’re writing your own custom user interface items, it’s

always best to find the most specific object, with as much built-in func-

tionality as possible so you don’t have to reinvent the wheel.

Subclassing NSTableViewCell

As before, we need to decide on a suitable name for our new cell object.

Since this is functionality that might be useful to a future application,

let’s use a more generic prefix for the class name, PP (for Pragmatic

Programmers), and call it PPStrikeThroughCell.

Follow the usual class creation procedure to add a new class to the

Shopping List project, for now using the NSObject template (which

means that if you’re using Xcode 3.2, you’ll need to change the “Sub-

class of” drop-down menu back to NSObject) called PPStrikeThroughCell.

Change the PPStrikeThroughCell.h file so that the object inherits from

NSTextFieldCell:

@interface PPStrikeThroughCell : NSTextFieldCell {

}

@end

Next we need to work out which method to override to do our cus-

tom drawing. Open the Xcode documentation for NSTextFieldCell to see

what’s available. The only methods that have anything to do with draw-

ing seem to involve backgrounds, which isn’t what we want. Scroll to

the top of the documentation, and click the next item in the inheritance

chain, NSActionCell.

An NSActionCell is a type of cell that can handle targets and actions, just

like we’ve been using with buttons and text fields throughout our code

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=311

VIEWS AND CELLS 312

in this book. It’s actually the cells internal to these controls that have

offered us that ability, rather than the controls themselves.

Again, there doesn’t really appear to be anything useful to us in terms

of drawing, so move on to the next class in the hierarchy, NSCell. There’s

quite a lot of functionality in an NSCell object, so scroll down until

you find the heading “Drawing and Highlighting.” There are two meth-

ods here that look hopeful, drawWithFrame:inView: and drawInteriorWith-

Frame:inView:.

The drawWithFrame:inView: method is similar to the drawRect: method9

that we used for our custom NSView. It draws the outside of the cell, that

is, its “frame,” and then calls the drawInteriorWithFrame:inView: method to

draw the contents of the cell. Ah-ha! This drawInterior... method looks

like the one we want.

We need to implement this method in our custom subclass. We will

want to call the super implementation as well to draw the text; all we

are worried about is drawing a line through the cell.

Open PPStrikeThroughCell.m, and start by writing the method just to call

the overridden implementation:

@implementation PPStrikeThroughCell

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

{

[super drawInteriorWithFrame:cellFrame inView:controlView];

NSLog(@"Cell Frame is %@", NSStringFromRect(cellFrame));

}

@end

We’ve also put in a call to NSLog() to output a string from the cellFrame

using another utility function, NSStringFromRect(). We’ll see why this is

useful in a minute.

To make sure the Item Name column in the Shopping List application

interface uses our new cell, we need to make a simple change to MyDoc-

ument.xib. Switch to Interface Builder, and use the list view mode to find

the “Shopping List Items” table column. Click the triangle next to the

column in the list view, and you’ll see its internal Text Cell object. Click

9. Except that the drawRect: method provided by NSView takes a parameter indicating

the rectangle to be displayed; these NSCell methods take a parameter indicating the entire

rectangle for the cell.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=312

VIEWS AND CELLS 313

this cell, and use the Identity inspector to change the class to our new

PPStrikeThroughCell.

Save the file, switch back to Xcode, and open the Xcode debugger con-

sole (B-D- R). Build & Run the application. The shopping list should

appear as normal, and you’ll see something like this in the console:

Shopping List[3922:a0f] Cell Frame is {{129, 1}, {334, 17}}

Shopping List[3922:a0f] Cell Frame is {{129, 20}, {334, 17}}

Shopping List[3922:a0f] Cell Frame is {{129, 39}, {334, 17}}

The call to NSLog() shows us the cell frame for each of the three cells

in the table view. If you click any of the rows, you’ll find that more

information appears in the console. We’re only interested in the first

three lines at the moment—the lines that relate to the initial drawing of

our standard milk, eggs, and butter items.

The first pair of numbers from the cell frame represent its location; the

second pair represents its size. The cell frame is just that, a frame, so

the coordinates are relative to its enclosing view. A cell doesn’t maintain

its own local coordinate system, so any drawing that we do has to be

given in coordinates relative to the frame of the cell.

Since we know the coordinates of the cell’s frame, all we have to do is

work out a midpoint in its height and draw a horizontal line from its

left edge to its right edge.

Replace the NSLog() call with the following code:

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

{

[super drawInteriorWithFrame:cellFrame inView:controlView];

CGFloat middleY = cellFrame.origin.y + (cellFrame.size.height / 2);

NSPoint leftPoint = NSMakePoint(cellFrame.origin.x, middleY);

NSPoint rightPoint =

NSMakePoint(cellFrame.origin.x + cellFrame.size.width, middleY);

// draw the line here...

}

There’s some reasonably simple math involved here. First, we work out

the vertical middle of the cell by adding half the cell’s height to its origin,

storing the result in a CGFloat variable.

Next, we make two NSPoint objects to keep track of the start and end of

the line; the start of the line is on the left edge of the cell frame, at the

height held in our middleY variable. The end of the line is at the same

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=313

VIEWS AND CELLS 314

height but on the right edge of the cell frame, calculated by adding the

cell’s width to its horizontal origin.

How do we draw a line? Well, we can use the NSBezierPath class we used

earlier. Drawing lines with this class is a bit like working with those

same, super-obedient kindergarten children as before, but this time

they each have an Etch A Sketch set to a specific color.

You start by creating an empty Bezier path object, move to a point, then

draw a line from that point to another point, and so on. Implement the

rest of the method like this:

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

{

[super drawInteriorWithFrame:cellFrame inView:controlView];

CGFloat middleY = cellFrame.origin.y + (cellFrame.size.height / 2);

NSPoint leftPoint = NSMakePoint(cellFrame.origin.x, middleY);

NSPoint rightPoint =

NSMakePoint(cellFrame.origin.x + cellFrame.size.width, middleY);

NSBezierPath *straightLine = [NSBezierPath bezierPath];

[straightLine moveToPoint:leftPoint];

[straightLine lineToPoint:rightPoint];

[[NSColor redColor] set];

[straightLine stroke];

}

Build & Run the application, and you’ll find that each cell is drawn with

a red line from one side to the other, as shown in Figure 12.13, on the

following page.

We’re getting closer to what we need, but it would be nice if the crossing-

out line only went across the word rather than across the whole cell.

There are several ways to accomplish this; the one we will use is to

measure the size of the text being displayed and set the line length

accordingly.

Measuring the Text

There are some useful additions available to the NSString class on the

desktop, including a method called sizeWithAttributes:. This method takes

a dictionary argument, describing information like the font and size of

the text, and returns an NSSize structure indicating how big the string

would be if it were drawn with those attributes.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=314

VIEWS AND CELLS 315

Figure 12.13: The PPStrikeThroughCell with strikethrough lines

Since we are working with the cell used to display the item name, we

can access the string for that item name by asking ourselves (well, the

inherited NSCell) for our objectValue, which is the value that gets passed

to the table view for this particular cell, i.e., an NSString containing the

item name.

We can also find out the font used to display the text using NSCell’s font

method and put this in a dictionary using the key NSFontAttributeName,

ready to pass to the sizeWithAttributes: method.

Change the method to this:

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

{

[super drawInteriorWithFrame:cellFrame inView:controlView];

CGFloat middleY = cellFrame.origin.y + (cellFrame.size.height / 2);

NSString *displayedText = [self objectValue];

NSDictionary *attributes = [NSDictionary

dictionaryWithObject:[self font]

forKey:NSFontAttributeName];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=315

VIEWS AND CELLS 316

NSSize textSize = [displayedText sizeWithAttributes:attributes];

CGFloat lineLength = textSize.width;

NSPoint leftPoint = NSMakePoint(cellFrame.origin.x, middleY);

NSPoint rightPoint = NSMakePoint(cellFrame.origin.x + lineLength, middleY);

NSBezierPath *straightLine = [NSBezierPath bezierPath];

[straightLine moveToPoint:leftPoint];

[straightLine lineToPoint:rightPoint];

[[NSColor redColor] set];

[straightLine stroke];

}

Make sure you change the code that determines the position of the

rightPoint so that it uses this new lineLength variable.

Build & Run the application to see what happens. The line is now drawn

only across the displayed item name.

There are a couple of issues, though. First, the line doesn’t quite extend

all the way across an item name, because it doesn’t allow for the fact

that NSCell draws the string with a slight offset from the immediate left

edge of the cell. We can correct this easily enough by adding an extra 4

points to the length.

The second issue, which isn’t immediately apparent, is that if you have

more text than will fit inside the cell, the line will be too long, extending

into the area used by other cells, which is a Very Bad Thing. To test this,

try changing one of the item names into a really long string, and then

drag the column header for the item name column so that it becomes

the first column in the table view. Make the column smaller by dragging

the resize line in the header between it and the next column.

You’ll see something like Figure 12.14, on the next page.

We need to make sure that the line is either as long as the width of the

text, or the width of the cell, whichever is shorter.

Change the method to this:

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

{

«beginning of method»

NSDictionary *attributes = [NSDictionary

dictionaryWithObject:[self font]

forKey:NSFontAttributeName];

NSSize textSize = [displayedText sizeWithAttributes:attributes];

CGFloat lineLength = textSize.width + 4.0;

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=316

VIEWS AND CELLS 317

Figure 12.14: Drawing outside the proper cell area

if(lineLength > cellFrame.size.width)

lineLength = cellFrame.size.width;

NSPoint leftPoint = NSMakePoint(cellFrame.origin.x, middleY);

NSPoint rightPoint = NSMakePoint(cellFrame.origin.x + lineLength, middleY);

«end of method»

}

Here we’ve added an extra 4 points to the end of the line so that it

extends as much over the end of the text as it does at the beginning.

We then check to see whether the line length is greater than the width

of the cell and change the length if it is.

Build & Run again, and you’ll find that we’ve solved the two earlier

problems. Our cell is displaying perfectly.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=317

CHAPTER SUMMARY 318

Just One Small Problem

Yes, the cell is displaying perfectly, but there’s one ever-so-slightly-

important problem remaining. Every cell has a line through it, regard-

less of whether the item has been purchased.

That’s a bit of a pain—all this work, and it’s still not right? We need to

figure out how to set the line on the cell to be shown only if an item

is purchased. Should we in some way be trying to get two values out

to this cell rather than just the string value for display? Perhaps we

could package up an NSDictionary containing the item name string and

a number object to say whether the item is purchased.

That would certainly work, but it takes us back to having a cell that’s

useful in only one situation. It would be better if we continue passing

just a single string for display and instead find a way to set a flag on the

cell each time it’s displayed to say whether the line should be drawn.

This is actually pretty easy, but you need to learn about another Mac

OS X and Cocoa concept called delegation before we can proceed. You’ll

be glad to hear that this is the first topic covered by the next chapter.

12.7 Chapter Summary

You now know all about how views fit into Cocoa and Mac OS X soft-

ware. We’ve covered coordinate systems for displaying information on

screen, in windows, and in views and we even created our own custom

shape-drawing view to try some simple Quartz drawing.

You’ve seen how Interface Builder lets you set the autosizing properties

on views and controls, defining how they resize or move when their con-

taining view resizes or moves. You might like to test your understanding

of these features by setting the autosizing properties on the Shopping

List application interface items. The main table view needs every single

anchor and sizing flag turned on; the controls along the bottom of the

window need to be anchored to the bottom of the window. You might

like to anchor the -- button so that it stays at the bottom left of the

window and anchor all the other controls to the bottom right of the

window.

We’ve also looked at the relationship between views and cells and seen

how a view often uses at least one cell to handle common functional-

ity. We added an extra feature to the Shopping List application, creating

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=318

CHAPTER SUMMARY 319

our own custom cell and overriding the Cocoa class with the most func-

tionality common to what we needed, the NSTextFieldCell.

As promised, the next chapter looks at delegation, which, as the name

implies, allows one object to delegate decisions to another object. We’ll

also be looking at the Responder chain, seeing how Cocoa objects can

respond to user interaction, and covering various other important

mechanisms offered by Mac OS X and the Cocoa framework.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=319

Chapter 13

Mac OS X and Cocoa Mechanisms
The Cocoa framework makes heavy use of common object-oriented

design patterns. Over the previous two chapters, you learned about

Model-View-Controller (MVC), describing the separation between model

objects and the views that display information on screen. In this chap-

ter, we’ll look at some of the other patterns and mechanisms available

to us, as well as the underlying Objective-C techniques used to imple-

ment these patterns.

It’s impossible for an introductory book to cover every single design

pattern used on the Mac platform—we simply don’t have enough space.

Instead, the main focus of this chapter is on some of the most important

patterns used in Objective-C, Cocoa, and Mac OS X, including topics

such as delegation, notifications, and responders, which allow objects

to communicate with each other. We’ll also be looking at events, seeing

how applications respond to user input.

Although Objective-C objects can only inherit behavior from one super-

object, Cocoa objects can declare that they will implement established

methods, defined in protocols, ready to be used by other objects to carry

out different tasks, such as filling out a table view, as we saw in Sec-

tion 8.4, Working with Table Views, on page 173. Objective-C protocols

form the basis for many of the patterns we’ll be looking at, and we’ll fin-

ish the chapter seeing how they are used to enable us to archive objects

to disk and how to restore our Shopping List application’s ability to save

and open shopping list files.

We’ll start this chapter by looking at simple delegation, where one object

can ask another object to help make a decision or do something to

change the default behavior.

Prepared exclusively for James Carlson

DELEGATION 321

13.1 Delegation

By the end of the previous chapter, we’d made a great table view cell

that displayed its text contents with a line through the middle. The only

problem was that this cell was used for every row in the table view, and

the strikethrough line appeared whether we wanted it to or not.

In the Shopping List application, the strikethrough cell should display

a line only if the item in the table view has been marked as purchased.

In Section 12.6, Just One Small Problem, on page 318, I mentioned that

we might be able to change the object that was passed to this table

view column, instead passing a dictionary containing the item name

together with a flag to indicate whether the line should be displayed.

Unfortunately, that solution makes the strikethrough cell less useful in

the future. Anybody who wants to use the cell needs to know exactly

which string keys to use for the objects in the dictionary before they can

get the cell to display the information. It makes the cell more difficult

to reuse.

It would be better to find a way to intercept the table view’s behavior,

jumping in when it’s about to display a particular cell in a row and set-

ting a flag on the cell itself to indicate whether the line should be drawn.

This way, the cell continues to behave just like a standard NSTextFieldCell

but can be told to draw the strikethrough line when required. Wouldn’t

it be nice if there was some way to do that without having to write a

custom table view?

It just so happens that we can provide an NSTableView with a delegate

object. This object will be sent various messages whenever the table

view thinks it might need a second opinion. One of these messages will

be sent just before the table view uses a cell to display the value for a

particular column and row, which is exactly what we need.

To find out what method to implement, you need to learn how Objec-

tive-C uses protocols to define a list of messages such a delegate object

might implement.

Introducing Objective-C Protocols

When we wrote the table view data source methods, back in Section 8.4,

Implementing the Required Methods, on page 173, we looked in the doc-

umentation for NSTableViewDataSource. This showed a list of messages

used to provide information to a table view.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=321

DELEGATION 322

Let’s see how these are defined in Objective-C terms. Open Xcode, and

select File > Open Quickly... (B-D- D). Type in “NSTableView,” and click

the Open button to open NSTableView.h, the interface file for a Cocoa

NSTableView. There’s a lot of information in this file. If you scroll down

about 70 lines, you’ll find a standard @interface declaration for the NSTa-

bleView class itself, which looks like this:

@interface NSTableView : NSControl <NSUserInterfaceValidations, NSTextViewDelegate>

This is just like our normal @interface declarations but with some addi-

tional information between angle brackets. We’ll see what this informa-

tion means in a moment.

Keep scrolling through the list of methods for NSTableView,1 until you

find the lines of code that look like this:

@protocol NSTableViewDataSource <NSObject>

@optional

/* Required Methods

*/

- (NSInteger)numberOfRowsInTableView:(NSTableView *)tableView;

- (id)tableView:(NSTableView *)tableView

objectValueForTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row;

«code continues»

This is the definition for a protocol called NSTableViewDataSource. A pro-

tocol is used to list the methods that can be overridden by an object

wishing to conform to that protocol. The first two methods listed inside

this protocol are the methods we use to provide information to the table

view in the Shopping List application.

The general syntax to declare a protocol looks like this:

@protocol «protocol name»

«list of required methods»

@optional

«list of optional methods»

@end

1. Note that the method signatures have comments around them, between /* and */

tags. The interface files for Cocoa classes are often a useful place to look for further

documentation.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=322

DELEGATION 323

Any methods listed before the @optional keyword are required methods.

If a particular object states that it is going to conform to the protocol,

it must implement these methods. Methods listed after the @optional

keyword are, as you might have guessed, optional.

All the methods listed for the NSTableViewDataSource are listed after the

@optional keyword, so, technically, you don’t need to implement any of

them. The comment in this file that indicates the first two methods are

“Required Methods” is there just to say that for most data sources, you

will need to include these two methods.2 Try to ignore this comment,

though, while we’re learning about protocol syntax!

Conforming to a Protocol

If an object says it’s going to conform to a protocol, it must implement

any required methods and can implement as many optional methods as

it likes. These methods can then be called, if they exist. How do we say

that the object will conform to the protocol? That’s where those angle

brackets come in.

To say that an object conforms to a specific protocol, you put the name

of the protocol inside angle brackets and tag it on the end of the @inter-

face declaration, like this:

@interface MyObject : NSObject <MyProtocol>

This code defines a class, MyObject, which inherits from NSObject and

conforms to the MyProtocol protocol.

Now we see why the @class declaration for NSTableView has those extra

bits of information:

@interface NSTableView : NSControl <NSUserInterfaceValidations, NSTextViewDelegate>

NSTableView conforms to two protocols (separated by commas): NSUserIn-

terfaceValidations and NSTextViewDelegate.

As you might already have realized, the NSTextViewDelegate protocol

defines the methods for any object that wants to be the delegate to an

NSTextView. Take a guess at what the protocol name is for an NSTableView

delegate. . . . Yes, it’s NSTableViewDelegate.

2. There are cases where a table view can be provided with information without using

the basic data source methods, such as with bindings. You might still need to use the

data source to work with drag and drop, though, so the data-providing methods can’t

be marked as required by the protocol syntax, or the compiler will complain if you don’t

implement them.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=323

DELEGATION 324

Scroll back up the NSTableView.h file, and you’ll see the definition for this

protocol. The first few lines look like this:

@protocol NSTableViewDelegate <NSControlTextEditingDelegate>

@optional

/* Allows the delegate to provide further setup for 'cell' in ... */

- (void)tableView:(NSTableView *)tableView willDisplayCell:(id)cell

forTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row;

- (BOOL)tableView:(NSTableView *)tableView

shouldEditTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row;

- (BOOL)selectionShouldChangeInTableView:(NSTableView *)tableView;

Notice that the NSTableViewDelegate protocol looks like it’s set to con-

form to an NSControlTextEditingDelegate protocol. This just means that

any object conforming to NSTableViewDelegate may also provide methods

from the NSControlTextEditingDelegate protocol; it’s the protocol equiva-

lent of class inheritance.

All the methods in the NSTableViewDelegate protocol appear after the

@optional keyword, so it’s fine just to implement the ones we need.

Take a look at the first method listed:

- (void)tableView:(NSTableView *)tableView willDisplayCell:(id)cell

forTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row;

That looks just like the method we need for our Shopping List table

view. Open the Xcode Documentation window, and search for “NSTa-

bleViewDelegate” to make sure; as the name implies, the method will

be called just before the table view displays each cell visible in the table

view.

Conforming to the NSTableViewDelegate Protocol

Now that you know all about protocols, let’s implement the table view

delegate protocol in our Shopping List application’s MyDocument object.

Open the Shopping List project in Xcode, and find the MyDocument.h

file. We need to use the angle bracket syntax to indicate that we are

conforming to the NSTableViewDelegate protocol. We are already imple-

menting methods from the NSTableViewDataSource protocol, so let’s do

the right thing and indicate this as well.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=324

DELEGATION 325

Change the MyDocument.h interface declaration to this:

@interface MyDocument : NSDocument <NSTableViewDelegate, NSTableViewDataSource>

{

«outlets and instance variables»

}

«action methods»

@end

Because we set our MyDocument object as the data source for the table

view by linking the two objects together in Interface Builder, Xcode

didn’t know to issue a warning about not conforming to the proper pro-

tocol. If, instead, we’d set the data source programmatically, using the

NSTableView method setDataSource:, Xcode would have issued this warn-

ing: class ’MyDocument’ does not implement the ’NSTableViewDataSource’

protocol.3

We’ll use Interface Builder again to set the delegate, so open the MyDoc-

ument.xib file, and set the delegate for the table view to be the MyDocu-

ment object, just like you did the data source.

Switch back to Xcode, and let’s implement the delegate method that we

need. We’ll just log a message to the Xcode console for now to let us

know whenever it gets called. Open the MyDocument.m file, and add the

method:

- (void)tableView:(NSTableView *)tableView willDisplayCell:(id)cell

forTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row

{

NSLog(@"willDisplayCell just got called!");

}

Make sure the Xcode console is visible (B-D- R), and Build & Run the

project. You’ll find that the message gets logged quite a few times. This

delegate method will be called every time the table view is about to use

a cell to display some information. Since an initial shopping list doc-

ument contains three items over three rows, you’ll see nine messages

each time the entire table view is displayed. When I first run the appli-

cation, I see eighteen messages in the console.

One of the arguments provided to this method is the cell that’s about

to be displayed. We can send a message to this cell object to change its

3. You may not see these sorts of warnings under Xcode 3.1.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=325

DELEGATION 326

appearance, but before we can do this for our custom cell, we need to

add some functionality to the PPStrikeThroughCell object.

Setting Up the Custom Cell Object

Let’s add a property to the cell that allows us to specify whether a line

should be drawn. We need a simple BOOL instance variable, along with

an assign property declaration. We can then check the value of this flag

when drawing the cell’s contents and skip the line drawing if necessary.

Change the PPStrikeThroughCell.h interface to the following:

@interface PPStrikeThroughCell : NSTextFieldCell {

BOOL shouldDrawLine;

}

@property (assign) BOOL shouldDrawLine;

@end

You’ll need to synthesize the new property at the top of the implemen-

tation and then check the value of this property inside the drawInterior-

WithFrame: method. Make the following changes in PPStrikeThroughCell.m:

@implementation PPStrikeThroughCell

@synthesize shouldDrawLine;

- (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

{

[super drawInteriorWithFrame:cellFrame inView:controlView];

if(!self.shouldDrawLine) return;

CGFloat middleY = cellFrame.origin.y + (cellFrame.size.height / 2);

NSString *displayedText = [self objectValue];

«code continues»

Once we’ve called the inherited NSTextFieldCell behavior to draw the cell’s

string contents, we check to see whether we need to draw the line. If not,

we return immediately, avoiding any of the work involved in calculating

the coordinates, etc.

Using the Table View Delegate to Change the Cell

Now that we have behavior in the cell to specify whether the line gets

drawn, we can reimplement the table view delegate method to take

advantage of it.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=326

DELEGATION 327

• Since the delegate method will be called for every cell visible in the

table view, we start by checking to see whether the table column

argument matches the column containing the custom cell. If not,

we can return immediately.

• Next, we use the provided row argument to fetch the relevant shop-

ping list item from the main array. We can then set the flag on the

cell to specify whether the line should be drawn.

Open the MyDocument.m file, and change the delegate method to this:

- (void)tableView:(NSTableView *)tableView willDisplayCell:(id)cell

forTableColumn:(NSTableColumn *)tableColumn row:(NSInteger)row

{

if(tableColumn != itemNameColumn) return;

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:row];

if([currentItem purchased])

[cell setShouldDrawLine:YES];

else

[cell setShouldDrawLine:NO];

}

You’ll also need to #import the PPStrikeThroughCell.h file at the top of My-

Document.m to avoid a warning about the setShouldDrawLine: method

being “unknown.”

Build & Run the application, and you’ll find that at first launch, none of

the items has red lines through them. So far, so good! Click a checkbox

on an item to mark it as purchased; the line doesn’t appear. Huh?

Before panicking, let’s try marking another item as purchased. The sec-

ond item doesn’t get a line, but the first one does. Try deselecting any

objects by clicking an empty row. Ah! The line now appears for the

second item.

What’s happening is that our custom cell isn’t being used to redraw

the item name with or without its line when the purchased checkbox is

selected. It’s only when you force the cell to redraw, either by clicking

another cell to remove the highlight from the first cell or by deselecting

all the cells, that the line appears. What we need to do is to get the table

view to reload the item name cell when a purchased checkbox is turned

on or off.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=327

DELEGATION 328

Reloading the Table View

We can accomplish this task in several ways. The easiest way is just to

reload the entire table view when a value in the purchased checkbox

column is changed.

The method that gets called whenever the purchased checkbox is se-

lected is the tableView:setObjectValue:forTableColumn:row: data source

method. Change this method to the following:

- (void)tableView:(NSTableView *)aTableView setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn row:(NSInteger)rowIndex

{

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

[currentItem setQuantity:[anObject intValue]];

else if(aTableColumn == itemNameColumn)

[currentItem setItemName:anObject];

else if(aTableColumn == purchasedColumn) {

[currentItem setPurchased:[anObject boolValue]];

[shoppingListTableView reloadData];

}

}

Build & Run the application to see whether this has solved the problem.

You’ll find that it has, and the line is drawn at the right time.

However, it’s pretty expensive to redraw the entire table view just to

redisplay a single cell. For a small shopping list of items, it won’t matter

much, but if users have particularly long shopping lists, they might

start to see some sluggish performance.

The solution is to figure out the row and column for the cell that needs

to be redrawn and tell the table view just to reload that cell. This isn’t

quite as easy as it sounds, but it’s still a good idea from a performance

perspective, so let’s persevere.

Take a look at the documentation for NSTableView. Under the “Load-

ing Data” heading, you will find both the reloadData method that we’ve

been using up until now and another method, reloadDataForRowIndexes:

columnIndexes:.

This second method takes two arguments, both of which are NSIndexSet

objects. As the name implies, an NSIndexSet object collects a set of

indices. To use this method to reload a specific cell, we need to cre-

ate an index set for the row index and another index set for the column

index.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=328

DELEGATION 329

The data source method from which we’ll be creating these index sets

provides us with the index of the current row, but it just passes in a

pointer to a table column object, rather than the index of that column.

The column being passed will also be the Purchased column; we need

the index of the Item Name column.

The index of a column indicates which column it is in a table view from

left to right. If you’ve followed the interface screenshots in the book up

to this point, you may remember that the Item Name column is the

third column from the left, meaning it has a zero-based index of 2. Can

we just use this as the index?

Sadly, no. Unless we specify otherwise, the columns in a table view

can be reordered by the user, as we saw at the end of Section 12.6,

Subclassing NSTableViewCell, on page 311. Nifty behavior, but it com-

plicates matters a bit!

We could disable the column-moving behavior by setting the table

view’s Reordering flag for its columns, but it seems a shame. There must

be another way.

Look back at the documentation for NSTableView; it provides access to

an array of its columns via the tableColumns method. The order in the

array will match the order of the columns in the table view at run-

time; we can ask this array for the index of the relevant table column

object (the item name column), and . . . hooray! We now have everything

we need.

Reimplement the data source method like this:

- (void)tableView:(NSTableView *)aTableView setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn row:(NSInteger)rowIndex

{

ShoppingListItem *currentItem = [shoppingListArray objectAtIndex:rowIndex];

if(aTableColumn == quantityColumn)

[currentItem setQuantity:[anObject intValue]];

else if(aTableColumn == itemNameColumn)

[currentItem setItemName:anObject];

else if(aTableColumn == purchasedColumn) {

[currentItem setPurchased:[anObject boolValue]];

NSIndexSet *rowIndexSet = [NSIndexSet indexSetWithIndex:rowIndex];

NSArray *columnsArray = [shoppingListTableView tableColumns];

NSInteger columnIndex = [columnsArray indexOfObject:itemNameColumn];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=329

DELEGATION 330

NSIndexSet *columnIndexSet = [NSIndexSet indexSetWithIndex:columnIndex];

[shoppingListTableView reloadDataForRowIndexes:rowIndexSet

columnIndexes:columnIndexSet];

}

}

Note that we use an NSInteger to hold the columnIndex in order to match

the NSInteger argument type for the rowIndex. An NSInteger is another

Apple-defined scalar variable type, like the CGFloat we saw in the pre-

vious chapter. You can think of it as being a bit like a basic int variable,

but as with a CGFloat, the C variable type used to hold its value is

something else.4

Build & Run the application to check that the purchased lines still

appear correctly, but only when an item is marked as purchased.

Other Important Types of Delegate

So far, we’ve only looked at NSTableViewDelegate. Lots of objects in the

Cocoa framework make use of delegates, and it’s worth taking a mo-

ment to point out some of the most important ones.

The Application Delegate

Back in Section 12.2, Working with Windows and Views, on page 282, I

mentioned that Xcode 3.2 automatically includes what’s called an appli-

cation delegate object in non-document-based applications. If you’re

running Snow Leopard and Xcode 3.2, open the Windows and Views

project from the previous chapter, and take a look at the autogenerated

Windows_and_ViewsAppDelegate.h and .m files.

The interface for the object looks like this:

@interface Windows_and_ViewsAppDelegate : NSObject <NSApplicationDelegate> {

NSWindow *window;

}

@property (assign) IBOutlet NSWindow *window;

@end

4. And, again, it varies depending on whether you are running under 32-bit or 64-bit.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=330

DELEGATION 331

Properties for IBOutlets

Notice how the code for the Windows_and_ViewsAppDelegate

also defines an IBOutlet for the application’s main window and
declares this as a property.

If you declare properties for your own outlets, you should put
the IBOutlet keyword in the property declaration, rather than the
instance variable declaration, because it’s technically possible
to specify a different property name from the instance variable
name.

Using a different name for instance variables is a great way to
avoid confusion when you have code featuring instance vari-
ables, locally declared variables, and property declarations.
Keeping track of which variable is an instance variable and
which is locally declared is easier if you choose to name your
instance variables with an underscore (_) at the front, such as
_window. This means you then have a window property and a
_window instance variable.

The main reason for using properties for IBOutlets is that the prop-
erties are the public connections from the object to the outside
world, i.e., the interface items in the nib. Connecting interface
items directly to instance variables, rather than through proper-
ties, breaks the whole encapsulation of the object.

It specifies that this object conforms to the NSApplicationDelegate proto-

col. The implementation for the application delegate looks like this:

@implementation Windows_and_ViewsAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {

// Insert code here to initialize your application

}

@end

As the name implies, the applicationDidFinishLaunching: method will be

called once the application has launched successfully. Other useful

application delegate methods include applicationShouldTerminateAfterLast-

WindowClosed: (if you return YES for this, the application will automat-

ically quit once the user closes the last open window) and applica-

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=331

DELEGATION 332

Initializing Objects

It’s important to mention that an object’s init method should
be used only for very basic initialization of an object’s instance
variables.

If you need to do additional setup work when an object is cre-
ated, there are a number of options.

An application delegate can use methods like applicationWillFin-

ishLaunching: if it needs to perform any initial setup at applica-
tion launch, such as opening reference files, establishing net-
work connections, or displaying multiple application windows.

If you’re working with interface items that are loaded from a
nib file, you won’t be able to do any interface modifications
in init because the rest of the objects in the nib may not have
loaded completely at the time init is called. Instead, you should
do setup work either in a suitable delegate method or in an
awakeFromNib method. The awakeFromNib method is called on
every object once it has been instantiated from a nib file.

tionWillFinishLaunching:. This method is similar to the applicationDidFinish-

Launching: method but gets called just before the launch finishes. You

can use this to do any initial interface setup.

Window Delegates

NSWindow has a number of useful delegate methods, like windowShould-

Close:, which asks whether a particular window should be closed if the

user tries to close it.

Let’s make some modifications to the Windows and Views application

from the previous chapter to test some of these window delegate

methods.

Open the Windows and Views project in Xcode, and find the WVMea-

surer.h file. We’ll be setting our existing measurer instance to be the

delegate of the application’s main window, so let’s indicate that the

WVMeasurer class will adopt the NSWindowDelegate protocol.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=332

DELEGATION 333

Figure 13.1: Setting the window delegate

@interface WVMeasurer : NSObject <NSWindowDelegate> {

«instance variables»

}

- (IBAction)showMeasurements:(id)sender;

@end

Next, open the MainMenu.xib file in Interface Builder, and right-click (or

C-click) the Window object in the xib file. Drag to set the delegate of the

window to be the Measurer object, as shown in Figure 13.1.

In the previous chapter, you saw how Interface Builder makes it easy to

set minimum and maximum size constraints on a window. Sometimes,

though, you might need a little more control.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=333

DELEGATION 334

If you were writing a video-display application, for example, like Apple’s

DVD Player, you might want to be able to constrain the proportions

of the window to a specific aspect ratio, such as 4:3 or 16:9. Interface

Builder doesn’t offer a “width:height ratio” box, so you’d have to find

another way.

Save the MainMenu.xib file, and return to Xcode. Search the Developer

Documentation for “NSWindowDelegate” to see if there are any delegate

methods that might help in this situation. There are six methods under

the “Sizing Windows” heading:

- windowWillUseStandardFrame:defaultFrame:

- windowShouldZoom:toFrame:

- windowWillResize:toSize:

- windowDidResize:

- windowWillStartLiveResize:

- windowDidEndLiveResize:

Notice how there are naming conventions both in these six methods and

throughout the other methods in the documentation? A method called

just before something will happen takes the form windowWill..., and a

method called just after something has happened uses windowDid.... If

a decision is to be made about whether something should be allowed

to happen, the method will be called windowShould.... These conventions

exist throughout Apple’s delegate protocols; when you’re writing your

own, it’s a good idea to follow them.

Click the windowWillResize:toSize: method in the “Sizing Windows” section

to jump down to its documentation.

This method is called just before a window is resized to a new size and

includes a frameSize argument specifying that new size. What’s partic-

ularly helpful about this method is that it also needs an NSSize return

value, meaning that you can either return the proposed frameSize or

specify your own.

Let’s use this method to constrain the window’s size such that its width

must be twice its height, a simple ratio of 1:2.

Copy the method signature to the clipboard, and implement it in WV-

Measurer.m, like this:

- (NSSize)windowWillResize:(NSWindow *)sender toSize:(NSSize)frameSize

{

frameSize.width = (frameSize.height * 2);

return frameSize;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=334

DELEGATION 335

Build & Run to test the application, and you’ll find that when you try

to resize the window, it is constrained with the 1:2 ratio.

Note that there is still a minimum size for the window, but because of

the simple calculation used, this size is smaller than the minimum size

specified in Interface Builder. Any constraints that we set for minimum

or maximum size will be applied to a proposed size before the windowWill-

Resize:toSize: method is called, so if we change the proposed frameSize, it’s

easy to end up with a window smaller than the specified minimum size.

For our simple Windows and Views application, this doesn’t matter.

At the moment, the user has to click the Measure button in the inter-

face in order to display the calculated information. It would be nice

if this information was automatically updated when the window was

resized.

We could add a line to the windowWillResize:toSize: method that calls the

showMeasurements: action method, but this isn’t the correct place to do

it. As we’ve already said, this method is called just before the window

is resized; we want to display the measurements after the resize has

happened.

Looking back at the list of window delegate methods, there’s a window-

DidResize: method that looks like it might be helpful. Checking the docu-

mentation for this method, it’s exactly what we need. Copy the method

signature to the clipboard, paste it into WVMeasurer.m, and implement

it to call the showMeasurements: method. Since the showMeasurements:

method is an IBAction method, it expects an argument to indicate which

object triggered the action. Specify nil for now:

- (void)windowDidResize:(NSNotification *)notification

{

[self showMeasurements:nil];

}

Build & Run the application; whenever you resize the window, the loca-

tion and size information is automatically updated.

It seems like we’ve accomplished what we wanted; the only downside

is that we specified nil when calling the showMeasurements: method. As

you’ve seen earlier in the book, it’s often helpful to know exactly which

object triggered an IBAction, so let’s see whether we can find out the

relevant window object to specify as the sender of the action.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=335

DELEGATION 336

Often, delegate method signatures include an argument to specify the

relevant object. The first argument provided in windowWillResize:toSize:,

for example, is a pointer to the window object in question.

In the documentation for NSWindowDelegate, we can see two main types

of delegate method. The first type includes a specific argument for the

window, like this:

- (NSSize)windowWillResize:(NSWindow *)sender toSize:(NSSize)frameSize;

- (id)windowWillReturnFieldEditor:(NSWindow *)sender toObject:(id)client;

- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)window;

The other type of method includes only one argument, an NSNotification,

like this:

- (void)windowDidResize:(NSNotification *)notification;

- (void)windowWillMove:(NSNotification *)notification;

- (void)windowDidEndLiveResize:(NSNotification *)notification;

In the documentation for any of the methods with an NSNotification argu-

ment, we’ll find that it states, “you can retrieve the window object in

question by sending object to notification.”

That solves the immediate problem of specifying the object that trig-

gered the action when calling the showMeasurements: method. Change

the windowDidResize: method to this:

- (void)windowDidResize:(NSNotification *)notification

{

[self showMeasurements:[notification object]];

}

Before we test the application, let’s add a line of code to the showMea-

surements: method to inspect the sender:

- (IBAction)showMeasurements:(id)sender

{

NSLog(@"Sender was: %@", sender);

NSRect windowFrame = [applicationWindow frame];

«method continues»

}

Build & Run the application, click the Measure button, and then resize

the window. Looking in the console log, you can see a series of messages

like this:

Windows and Views[2102:a0f] Sender was: <NSButton: 0x10012e600>

Windows and Views[2102:a0f] Sender was: <NSWindow: 0x100413090>

Windows and Views[2102:a0f] Sender was: <NSWindow: 0x100413090>

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=336

NOTIFICATIONS 337

We now know how to extract the relevant object from an NSNotification,

but this raises the question as to what these notifications are all about.

13.2 Notifications

Over the course of this book, we’ve seen a number of different ways to

pass messages between objects. In straightforward code, one object can

send a message to itself, or another object, like this:

[self doSomething];

[someObject doSomethingElse];

We’ve also seen how the target-action mechanism enables one object to

be set as the target of another, with a specific action to be triggered. In

the Windows and Views application, the Measure button is set to target

a WVMeasurer instance, sending it the showMeasurements: message when

the button is pressed.

It’s fairly obvious that in order for one object to communicate with

another object, the first object needs to keep hold of a pointer to the

second object. You might have an IBOutlet in an interface in order to

communicate with a text view, as in our TextApp application, or set

one object as the delegate of another.

This is all very well for closely connected objects, but sometimes an

object might want to send a message that could be received by multiple

objects and not be concerned about who receives that message.

Consider an application in which multiple objects need to react when

something happens, such as a window resizing on screen. A window

has only a single delegate, so to send one message to multiple recip-

ients, it might seem like we’d have to do something terribly compli-

cated in the delegate method we implemented earlier, perhaps keeping

hold of an array of interested objects and passing on the message to

each one.

In fact, we have access to a great mechanism for exactly this type of

situation under Mac OS X using a system of notifications.

Distributing Information

Working with notifications is a bit like working with a mailing list. A

list administrator keeps track of the addresses of people who have

expressed interest in receiving certain information; whenever new infor-

mation is produced, it’s sent out to all the interested parties.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=337

NOTIFICATIONS 338

On Mac OS X, the list administrator is an instance of NSNotificationCen-

ter, an object that keeps track of other objects who have specifically reg-

istered to receive certain types of information. These receiving objects

are known as observers and, when they register, can specify exactly

what they want to know about.

If we were signing up to a charity’s mailing list in the real world, we

might be given the option to specify whether we wanted to receive infor-

mation about fundraising events, merchandise, financial statements, or

all of the above. In the world of NSNotificationCenter, an object can choose

not only to register for specific types of information but also specify that

it only wants to receive information originating from a specific sender

object.

The NSNotification Object

Before we delve any further into notification centers and observers, let’s

examine an actual NSNotification object to see what it contains.

Start by removing the NSLog() call from the showMeasurements: method,

and then add a new log statement to the windowDidResize: method:

- (void)windowDidResize:(NSNotification *)notification

{

NSLog(@"Notification: %@", notification);

[self showMeasurements:[notification object]];

}

Build & Run the application, and resize the window. You get a series of

statements in the Xcode console that looks like this:

Windows and Views[2430:a0f] Notification: NSConcreteNotification 0x10014cb80

{name = NSWindowDidResizeNotification; object = <NSWindow: 0x10021e4a0>}

Windows and Views[2430:a0f] Notification: NSConcreteNotification 0x100131630

{name = NSWindowDidResizeNotification; object = <NSWindow: 0x10021e4a0>}

Each notification object you’re sent appears to be an instance of NSCon-

creteNotification,5 with two important pieces of information:

• A name, used as a unique identifier for this particular type of noti-

fication.

• An object, used to refer to the object that sent the notification. As

we’ve already seen, in this case, it’s the window itself.

5. Ignore the Concrete part of the classname; this is just the internal object type used

when a notification is sent out. Treat it as if it were an NSNotification.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=338

NOTIFICATIONS 339

If you open the documentation for NSWindow and scroll right to the

bottom, you find a list of notifications sent out by NSWindow. Among

these is the NSWindowDidResizeNotification that you’ve just seen, along

with a number of others, all following the same naming convention:

«ClassName»«Will/Did»«Action»Notification

Notice that each of these notifications has a corresponding method in

the NSWindowDelegate protocol. These methods will be called automati-

cally on the delegate when notifications are sent out, but it’s also pos-

sible for an object other than the delegate to register to receive them.

To see what this means, start by opening MainMenu.xib in Interface

Builder and then disconnecting the window’s delegate outlet by right-

clicking (or C-clicking) the Window object and pressing the little x but-

ton next to the delegate outlet.

Save the file, and return to Xcode. Build & Run the application to check

that the windowDidResize: method is no longer being called: the inter-

face won’t update to show the new measurements when the window is

resized.

Registering to Receive a Notification

To register for a notification, we need to talk to the relevant notification

center. Although it’s possible to create our own notification center when

we start posting our own notifications, we’ll normally be dealing with

just one center, already in existence, that’s used by most Cocoa classes

to post their notifications. We access this system center using a handy

class method, defaultCenter, provided by NSNotificationCenter.

Once we’ve got hold of a notification center, we can register to receive

notifications in various ways. The most common is to use a method

with the following signature:

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector

name:(NSString *)notificationName object:(id)notificationSender

Although it looks a bit scary, this method isn’t all that complicated.

Let’s look at each of the method arguments in order:

• The first argument, notificationObserver, is used to specify the object

that needs to receive notifications.

• The second argument, notificationSelector, is used to refer to a

method that should be called on the receiving object in response

to the notification.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=339

NOTIFICATIONS 340

• The third argument, notificationName, specifies which type of noti-

fication we want to receive.

If we specify nil, we’ll receive all notifications sent out by the spec-

ified sender.

• The final argument, notificationSender, specifies the object that we

want to observe for notifications.

If we specify nil, we’ll receive all notifications with the specified

name.

We want to register our WVMeasurer object to receive any NSWindow-

DidResize notifications sent out by the application’s main window, and

we’ll need to specify the name of a method to be called.

This method must have a very specific signature:

- (void)«methodName»:(NSNotification *)notification;

Look familiar? We already have a method matching exactly this signa-

ture, which we wrote as our NSWindowDelegate method:

- (void)windowDidResize:(NSNotification *)notification;

We could call our method anything that we wanted, but this name

seems pretty suitable, so let’s keep it.

Now that we have everything we need to register for the notification,

we need to decide when to register. As described by the sidebar on

page 332, the best time to do this for our WVMeasurer instance is when it

is instantiated from the MainMenu.xib file. So, let’s write an awakeFromNib

method, like this:

- (void)awakeFromNib

{

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center addObserver:self

selector:@selector(windowDidResize:)

name:NSWindowDidResizeNotification

object:applicationWindow];

}

We start by getting a reference to the system notification center, and

then we add ourselves as an observer for an NSWindowDidResize notifica-

tion sent out by the applicationWindow (an outlet we set in the previous

chapter) and use an @selector() call to refer to the method that should

be called. Note that the method name is very important—as the method

has a single argument, its name has a trailing colon. If we don’t include

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=340

NOTIFICATIONS 341

this colon, we’re effectively referring to a different method altogether,

and our application will crash because the method doesn’t exist.

Build & Run the application, and then try resizing the window. As

before, we find that the interface is updated with the relevant sizing

information whenever the window resizes.

This might seem like a lot of work just to accomplish the same thing as

we had back when we were the window’s delegate, but bear in mind that

we could register as many objects as we like to respond to the resize

notification. We’re not limited by needing to be the window’s delegate,

and the window itself doesn’t need to have any knowledge whatsoever

about which objects will receive its notifications. All the message distri-

bution is handled by the notification center.

Just as a quick demonstration, let’s register our WVMeasurer object to

receive any notification sent out by any object in our application; let’s

add a new method (following the correct signature) just to log the noti-

fication to the console:

- (void)awakeFromNib

{

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center addObserver:self

selector:@selector(windowDidResize:)

name:NSWindowDidResizeNotification

object:applicationWindow];

[center addObserver:self

selector:@selector(receivedNotification:)

name:nil

object:nil];

}

- (void)receivedNotification:(NSNotification *)notification

{

NSLog(@"Notification: %@", notification);

}

As described earlier, if we specify nil for the name of the notification

but provide an object to observe, we’ll be sent all notifications sent out

by that object. Similarly, if we specify nil for the object but provide a

notification name, we’ll be sent notifications with that name sent out

by any object.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=341

NOTIFICATIONS 342

If we don’t specify a name or an object, we receive everything. Typically,

you won’t want to do this very often, but it’s useful just to take a quick

peek into what’s happening behind the scenes.

Build & Run the application, and take a look at the console log in Xcode;

there are an enormous number of messages flying around, which give

a sense of what’s possible as far as system notifications are concerned.

Remove this extra code (shown in bold in the earlier code) before

continuing.

Sending Notifications

Now that we’ve seen how to receive notifications, let’s look at how to

send them. We’ll change the target-action link between the button in the

Windows and Views application so that it posts a notification whenever

the Measure button is clicked.

We will then write a method to receive the notification and do the

measurement-showing functionality.

Start by moving the lines of code from the showMeasurements: method

into a new notification method, handleShowMeasurements::

- (void)handleShowMeasurements:(NSNotification *)notification

{

NSRect windowFrame = [applicationWindow frame];

NSPoint windowLocation = windowFrame.origin;

NSSize windowSize = windowFrame.size;

[windowLocationTextField setStringValue:NSStringFromPoint(windowLocation)];

[windowSizeTextField setStringValue:NSStringFromSize(windowSize)];

NSRect viewFrame = [mainView frame];

NSPoint viewLocation = viewFrame.origin;

NSSize viewSize = viewFrame.size;

[viewLocationTextField setStringValue:NSStringFromPoint(viewLocation)];

[viewSizeTextField setStringValue:NSStringFromSize(viewSize)];

}

- (IBAction)showMeasurements:(id)sender

{

}

We’ll use the showMeasurements: method (that’s the method specified as

the action to be called when the button is clicked) to post a notification.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=342

NOTIFICATIONS 343

In the documentation for NSNotificationCenter, three methods are listed

that relate to posting notifications:

- postNotification:

- postNotificationName:object:

- postNotificationName:object:userInfo:

The second method is the simplest for our purposes; it requires that we

provide a notification name and an object to specify as the sender.

We need to define a name for our new notification, so let’s use “WVMea-

surerShowMeasurementsNotification.”

Add the following code to the showMeasurements: method:

- (IBAction)showMeasurements:(id)sender

{

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center postNotificationName:@"WVMeasurerShowMeasurementsNotification"

object:self];

}

If you test the application at this point, nothing seems to happen when

you click the Measure button. We haven’t yet registered the WVMeasurer

to receive our new notification.

Before we add the necessary registration code, it’s worth pointing out

that when we registered for the NSWindowDidResizeNotification earlier, we

were able to type this notification name directly, rather than specifying

the name as a string, like @"NSWindowDidResizeNotification".

As I mentioned in Section 11.3, The Problem with Keys, on page 261, it’s

very easy to mistype a string such as @"NSWindowDidResizeNotification",

causing an error that won’t be picked up by the compiler. One way to

avoid this is to declare a global string variable; you can then use this

variable in place of the @"string" notation, and the compiler will complain

if it comes across a variable name it doesn’t recognize.

This is exactly what Apple provides us for the NSWindowDidResizeNotifica-

tion; they’ve defined a global variable to save us the possible problems

of mistyping @"NSWindowDidResizeNotification".

Let’s create our own global string variable for the new notification name.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=343

NOTIFICATIONS 344

Declaring Global Variables

As the name implies, a global variable is a variable accessible through-

out the code in a project. It isn’t held within an object instance; it exists

in its own right from launch until termination.

To declare a global variable, we need to write the declaration outside

any @implementation blocks in Objective-C class files. Typically, global

variables are declared at the top of a file, just under any #import

statements.

Scroll up to the top of the WVMeasurer.m file, and add the following:

#import "WVMeasurer.h"

NSString *WVMeasurerShowMeasurementsNotification =

@"WVMeasurerShowMeasurementsNotification";

@implementation WVMeasurer

«implementation continues»

This code declares the variable globally, but there’s still one slight prob-

lem: because it’s a global variable, its value could change in the future,

which could cause even more problems than just mistyping @"string".

Luckily, the C language provides us with a keyword to make sure that

the value of a variable can never be changed, const.

Change the global variable declaration to this:

NSString * const WVMeasurerShowMeasurementsNotification =

@"WVMeasurerShowMeasurementsNotification";

It’s essential we put the const keyword in the right place; it needs to

specify that the WVMeasurerShowMeasurementsNotification pointer can-

not be changed to point to any other string. Since the @"string" nota-

tion indicates an immutable (unchangeable) string, this guarantees

that WVMeasurerShowMeasurementsNotification will always have the cor-

rect string value. If we were to try to change the value of this variable,

the compiler would complain and refuse to build the project.

Change the showMeasurements: method so that it uses this new variable

name:

- (IBAction)showMeasurements:(id)sender

{

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center postNotificationName:WVMeasurerShowMeasurementsNotification

object:self];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=344

NOTIFICATIONS 345

Working with Global Variables Across Files

We’ve declared the global variable at the top of WVMeasurer.m

and can access it in any of the methods in that file.

If you need access to this global variable from another file,
you’ll need to add a line to that other file using the keyword
extern and exclude any variable assignment, like this:

extern NSString * const WVMeasurerShowMeasurementsNotification;

Typically, you’d include this line in a header file #imported by
any files needing to work with the global variable—in this case,
either the WVMeasurer.h file or a separate WVNotifications.h file
just containing possible notifications for use in the Windows and
Views project.

Finally, we’re ready to register to receive our own notifications. Add the

following code to awakeFromNib:

- (void)awakeFromNib

{

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];

[center addObserver:self

selector:@selector(windowDidResize:)

name:NSWindowDidResizeNotification

object:applicationWindow];

[center addObserver:self

selector:@selector(handleShowMeasurements:)

name:WVMeasurerShowMeasurementsNotification

object:nil];

}

Build & Run the application, and click the Measure button; the mea-

surements appear just like they did before.

Again, this may seem like we’ve done more work to use notifications

than we did to use standard target-action, particularly since our WV-

Measurer object is sending a notification to be received by itself! But it

would technically be possible for any object in our application to trigger

the measuring code, such as an object instance from another nib file,

with absolutely no way of referring directly to our existing WVMeasurer

instance.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=345

NOTIFICATIONS 346

Notification Considerations

In practice, notifications shouldn’t really be used for triggering actions

in this way; they are designed to be used, as the name implies, to notify

other objects either that something is about to happen or that it already

has happened, such as a window being minimized.

Apart from anything else, there’s no easy way for an object posting a

notification to know whether any other object has reacted to the notifi-

cation. As far as interface buttons go, you usually want to use Target-

Action.

A related downside to notifications is that they can’t be used to change

behavior. There’s no easy way to use a notification to change the way a

window resizes; if you need to modify behavior like this, you typically

need to use a delegate, as we did earlier in the chapter.

It’s also worth knowing that most system notifications are sent syn-

chronously. This means that when one object posts a notification, the

notification center passes the notification on to all the observers, indi-

vidually, before returning control to the originating object. So, if we

have 500 objects looking out for a particular notification, we would end

up with the following code order:

1. Object A posts a notification

2. Notification Center distributes the notification to:

3. Observer 1 receives the notification and does something

Observer 2 receives the notification and does something

...

Observer 500 receives the notification and does something

4. Once all observers have been notified,

5. Control returns to Object A

Generally, this isn’t a problem, but it’s important to keep in mind that

the following, fairly innocuous-looking code:

- (void)doSomethingQuickly

{

[[NSNotificationCenter defaultCenter] postNotificationName:DoingSomething

object:self];

NSLog(@"I did it really quickly!");

}

might trigger lots of other objects to do various things, making a two-

line method take more time to execute than you expect.

It is possible to avoid this problem by sending notifications using other

methods, asynchronously. Sadly, that’s outside the scope of this book.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=346

WORKING WITH EVENTS 347

Apple’s Notification Programming Topics for Cocoa documentation is a

good place to start to learn more. In general, though, synchronous noti-

fications will work just fine.

We’ve now covered a number of different ways for objects to commu-

nicate directly, but there’s one topic we haven’t really touched on yet:

events.

13.3 Working with Events

An event is simply something that happens—usually triggered by the

user, such as a keypress or mouse-click—that requires action in the

application code.

So far, we haven’t looked in much detail at how Cocoa applications

respond to external input. We’ve obviously been working with standard

Cocoa controls (like NSButton and NSTextField) that cope well enough if we

click them or type characters, but these don’t give us much of an idea

about what’s happening behind the scenes.

In this section, we’ll start by rewriting our WVShapesView class from the

Windows and Views application so that it responds to the user clicking

the mouse. We’ll see how the system decides which of our application’s

classes should receive an event and learn how to retrieve information

from an NSEvent object to enable our view to respond appropriately.

Before we add the event-handling code, let’s simplify the view.

Simplifying the Interface

Open the Windows and Views application project in Xcode, and find

the WVShapesView.m file. We’ll rewrite the view’s drawRect: method to

display two rectangles, one red (on the left) and one blue (on the right),

as shown in Figure 13.2, on the following page.

First, we need to remove all the existing shape drawing code, leaving

only the initial lines that fill and frame the canvas:

- (void)drawRect:(NSRect)dirtyRect {

NSRect viewBounds = [self bounds];

NSColor *currentColor = [NSColor whiteColor];

[currentColor set];

NSRectFill(viewBounds);

currentColor = [NSColor blackColor];

[currentColor set];

NSFrameRect(viewBounds);

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=347

WORKING WITH EVENTS 348

Figure 13.2: The revised WVShapesView, drawing red and blue rectan-

gles

To write the code to display the two rectangles, we could do all the

calculations ourselves, working out how to create two new rectangles

based on the view’s bounds, but Quartz provides us with a function

that will do most of the work for us. It looks like this:

NSDivideRect(NSRect inRect, NSRect *slice, NSRect *rem, CGFloat amount,

NSRectEdge edge)

The inRect parameter is the rectangle we want to divide. The slice and

rem parameters are pointers to NSRect variables, ready to receive the

coordinates of the divided rectangles, split by the specified amount rel-

ative to an edge.

Don’t worry if this isn’t immediately clear; it’s easier to understand in

action. Add the following code to the drawRect: method:

- (void)drawRect:(NSRect)dirtyRect {

«canvas framing code»

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

CGFloat halfWidth = (viewBounds.size.width / 2);

NSDivideRect(viewBounds, &redRect, &blueRect, halfWidth, NSMinXEdge);

redRect = NSInsetRect(redRect, 5, 5);

blueRect = NSInsetRect(blueRect, 5, 5);

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=348

WORKING WITH EVENTS 349

currentColor = [NSColor redColor];

[currentColor set];

NSRectFill(redRect);

currentColor = [NSColor blueColor];

[currentColor set];

NSRectFill(blueRect);

}

We start by defining two rectangles, redRect and blueRect, and assign

them both the initial value of NSZeroRect,6 just in case the subsequent

NSDivideRect function fails.

We then figure out half the width of the view’s bounds and use this

width to divide the bounding rectangle exactly in half—we use NSMinX-

Edge to refer to the left edge of the view. We could also use NSMaxXEdge

to refer to the right edge, and even NSMinYEdge or NSMaxYEdge if we

wanted to split the rectangle horizontally. Note that the NSDivideRect()

function takes references to our redRect and blueRect variables, so it

can change their values.

Once we have the two rectangles, we inset them both by 5 points so

that there is a white border around and between them, before filling

one with red and one with blue.

Build & Run the application to make sure that the view is drawn cor-

rectly, as shown in Figure 13.2, on the previous page.

Now all we need to do is figure out how to handle mouse clicks.

Working with Mouse Events

When the user clicks the mouse button in a Cocoa application, various

mechanisms jump into action at the system level. If the user clicks in

a window that isn’t part of the frontmost application, for example, that

application will be brought forward by Mac OS X; if that application

has multiple windows and the user clicks in a window other than the

frontmost window, the clicked window will be brought forward.

Once these mechanisms have completed, it’s up to the application to

determine what to do with the mouse click. Assuming the user clicks

in a window, Cocoa will figure out which view was clicked.

Working out which view was clicked is a fairly nontrivial task, so it’s

great that we don’t have to do this ourselves. In general, Cocoa finds

6. NSZeroRect is a rectangle with coordinates of {0,0} and size of {0,0},

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=349

WORKING WITH EVENTS 350

the deepest view in the view hierarchy that contains the click location.

In the Windows and Views application, if the user clicks over one of the

measurement text fields, that text field will be the view that receives the

click because it is the deepest view in the hierarchy, since it is inside

an NSBox, inside the window’s content view, inside the window itself.

There are a number of messages associated with mouse events, includ-

ing the following:

- mouseDown:

- mouseDragged:

- mouseUp:

These methods relate to the main mouse button; on a multibutton

mouse, this will be the left button. There are also related rightMouse-

Down: and otherMouseDown: (and so on) methods to deal with other

buttons.

When the user presses the mouse button, the mouseDown: message is

sent; if the mouse is moved while the button is held down, the mouse-

Dragged message will be sent; when the user finally releases the mouse

button, the mouseUp: message is sent.

Each of these methods provides a single argument, an NSEvent object,

which contains all the information necessary relative to the current

event. This information includes the mouse location and time at which

the event occurred, the window associated with the event, if applicable,

and whether any modifier keys were held down (such as D, C, or E).

Let’s implement a few mouse-handling methods in our WVShapesView

class and log a message to the console showing the location of the event.

In the documentation for NSEvent, we can see that it has a locationInWin-

dow method that returns the location of the mouse pointer at the time

a mouse-related event occurred. With this in mind, add the following

three methods to WVShapesView.m:

- (void)mouseDown:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

NSLog(@"Mouse down at %@", NSStringFromPoint(mouseLocation));

}

- (void)mouseUp:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

NSLog(@"Mouse up at %@", NSStringFromPoint(mouseLocation));

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=350

WORKING WITH EVENTS 351

- (void)mouseDragged:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

NSLog(@"Mouse dragged to %@", NSStringFromPoint(mouseLocation));

}

Make sure the Xcode console is visible (B-D- R), and then Build & Run

the application. Click once near the bottom-left corner of the shapes

view, releasing the mouse button immediately. The following messages

appear in the console:

Windows and Views[2328:a0f] Mouse down at {223, 24}

Windows and Views[2328:a0f] Mouse up at {223, 24}

Now click-hold near the top left corner, drag down to the bottom-right

corner, and release the mouse button:

Windows and Views[2328:a0f] Mouse down at {224, 244}

Windows and Views[2328:a0f] Mouse dragged to {225, 243}

Windows and Views[2328:a0f] Mouse dragged to {233, 237}

...

Windows and Views[2328:a0f] Mouse dragged to {504, 26}

Windows and Views[2328:a0f] Mouse dragged to {508, 23}

Windows and Views[2328:a0f] Mouse up at {508, 23}

This shows us that a standard mouse click-release consists of two sepa-

rate events, a mouseDown: and a mouseUp:. If the mouse moves while the

button is pressed, we also receive one or more mouseDragged: events.

The other thing to notice is that the coordinates of the event are given

in the coordinate system of the containing window, as the method name

locationInWindow implies. To work out which part of the view is hit, we’re

going to need the click locations to be given in the view’s coordinate

system, i.e., relative to its bottom-left corner at {0,0}.

Luckily for us, NSView provides a great helper method, convertPoint:from-

View:. If we know a point is in some other view’s coordinate system,

we can use this method to convert to the current view’s coordinates. If

we pass nil for fromView:, the point will be converted from the enclosing

window’s coordinate system.

Insert the following line of code in each of the previously shown three

methods:

- (void)mouse«Down, Up, Dragged»:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

mouseLocation = [self convertPoint:mouseLocation fromView:nil];

NSLog(«log statement»);

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=351

WORKING WITH EVENTS 352

When you Build & Run the application, you find that a mouse click

near the bottom left of the view is now shown in the view’s coordinates:

Windows and Views[2541:a0f] Mouse down at {3, 4}

Windows and Views[2541:a0f] Mouse up at {3, 4}

You’ve seen how to determine the location of a click, so you’re ready to

modify WVShapesView to react when the user clicks in one of the colored

rectangles.

Refactoring the Drawing Code

To determine which rectangle is clicked, we’ll need to have access to

an NSRect for each of the rectangles to test. We could repeat the code

we used in the drawRect: method, but as I’ve said throughout the book,

repeated code is bad. It would be better to refactor the code that cal-

culates the rectangles, placing it inside a separate method that we can

reuse.

Start by writing the implementation for a new method, calculateRe-

dRect:blueRect:, and place this before the drawRect: method:

- (void)calculateRedRect:(NSRect *)redRect blueRect:(NSRect *)blueRect {

}

- (void)drawRect:(NSRect)dirtyRect {

«code continues»

By placing this method before the drawRect: method in WVShapesView.m,

we don’t need to add a method signature to WVShapesView.h, provided

we only call the method from within methods that are written after it.

This method won’t be recognized by the compiler outside WVShapes-

View.m, but that’s OK, because it’s only for internal use.7

7. If you try to call this method from another method written before its implementation,

or from a method in a different file, it will still work, but you’ll receive an Xcode warning

when you try to compile the application. This method is not designed to be called on the

object publicly, so it’s good that it doesn’t appear in the interface, but there’s the side

effect that any private code that uses it must be written after it (this side effect can be

avoided with the use of Objective-C categories). The compiler warning is designed to show

you that you were trying to access either a method that doesn’t exist or a method that

you’re not supposed to use outside the object itself. Always aim to compile a project clean,

i.e., without any warnings—warnings generally indicate that you are doing something

that may cause a crash in the future or at the very least cause confusion when you come

back to the code in a month’s time!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=352

WORKING WITH EVENTS 353

Write the method like this:

- (void)calculateRedRect:(NSRect *)redRect blueRect:(NSRect *)blueRect {

NSRect viewBounds = [self bounds];

CGFloat halfWidth = (viewBounds.size.width / 2);

NSDivideRect(viewBounds, redRect, blueRect, halfWidth, NSMinXEdge);

*redRect = NSInsetRect(*redRect, 5, 5);

*blueRect = NSInsetRect(*blueRect, 5, 5);

}

This code is very similar to the code we used earlier, but notice that

because the method accepts two NSRect pointers, we need to dereference

those pointers when we use NSInsetRect().

Change the drawRect: method to use this new method:

- (void)drawRect:(NSRect)dirtyRect {

«canvas framing code»

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

[self calculateRedRect:&redRect blueRect:&blueRect];

currentColor = [NSColor redColor];

[currentColor set];

NSRectFill(redRect);

currentColor = [NSColor blueColor];

[currentColor set];

NSRectFill(blueRect);

}

Build & Run the application to make sure the view is still displayed

correctly.

Checking Which Rectangle Was Hit

Now that we have easy access to the relevant rectangles in our view,

let’s log a message to the console when the user clicks in either the red

area or the blue area.

The expected Mac behavior is to trigger an action when the user re-

leases the mouse button over a control; this allows users to click-

hold a button, for example, and then change their minds and drag the

mouse outside the button before releasing so that the click is effectively

ignored.

Start by removing the existing calls to NSLog() from the mouseDown:,

mouseUp:, and mouseDragged: methods so that for now, nothing hap-

pens if the user clicks the view.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=353

WORKING WITH EVENTS 354

To check whether the click occurred within one of the rectangles, we

can use another helpful function, NSPointInRect(), which returns a Boole-

an value to indicate whether a point is contained within a rectangle.8

Implement the mouseUp: method like this:

- (void)mouseUp:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

mouseLocation = [self convertPoint:mouseLocation fromView:nil];

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

[self calculateRedRect:&redRect blueRect:&blueRect];

if(NSPointInRect(mouseLocation, redRect))

NSLog(@"User clicked red rect");

else if(NSPointInRect(mouseLocation, blueRect))

NSLog(@"User clicked blue rect");

}

Note that our mouseUp: method implementation needs to be written

after the calculateRedRect:blueRect: method to avoid any compiler warn-

ings. This method creates NSRect variables for the red and blue rectan-

gles, as before, and then uses NSPointInRect() to determine whether the

mouse location is within either of the rectangles.

Build & Run the application, and check what happens when the mouse

is clicked.

If you click in one of the white portions of the view, i.e., outside the

two rectangles, nothing appears in the Xcode console log. You’ll see the

relevant message if you do click a rectangle, but if you click-hold a

rectangle and then decide to drag outside the view before releasing the

button, you won’t see anything in the log window.

That’s the basic functionality for our view, but we have a couple of

issues. The first is that there is no visual feedback to the user in

response to clicks. Most Cocoa controls highlight when they are clicked,

indicating that the user has hit a clickable object; if the mouse moves

outside the clickable area, the highlight disappears.

The second issue is more serious: if you click-hold the red rectangle

and then drag to the blue rectangle and release the button, you see a

message in the console to indicate that we clicked the blue rectangle,

8. If we were working with path objects, rather than rectangles, we could use NSBezier-

Path’s containsPoint: method to accomplish the same thing.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=354

WORKING WITH EVENTS 355

which is incorrect. We shouldn’t see anything in the console, because

we effectively clicked the red rectangle and then changed our minds,

such that the click should be ignored.

Let’s fix this problem first.

Handling Clicks When the Mouse Is Dragged

To determine whether the mouseUp: should be ignored, we need a way to

check whether the original mouseDown: event occurred within the same

rectangle.

An NSEvent object doesn’t provide us with any kind of originalMouseDown-

LocationInWindow, so we need to cache this value from within our mouse-

Down: method.

Open WVShapesView.h, and add an NSPoint instance variable to hold this

initial mouse point:

@interface WVShapesView : NSView {

NSPoint mouseDownPoint;

}

@end

Switch to WVShapesView.m, and set the value of the variable from within

mouseDown::

- (void)mouseDown:(NSEvent *)theEvent {

mouseDownPoint = [theEvent locationInWindow];

mouseDownPoint = [self convertPoint:mouseDownPoint fromView:nil];

}

All we need to do now is modify the mouseUp: method to check both this

location and the location when the button is released:

- (void)mouseUp:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

mouseLocation = [self convertPoint:mouseLocation fromView:nil];

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

[self calculateRedRect:&redRect blueRect:&blueRect];

if(NSPointInRect(mouseDownPoint, redRect) &&

NSPointInRect(mouseLocation, redRect))

NSLog(@"User clicked red rect");

else if(NSPointInRect(mouseDownPoint, blueRect) &&

NSPointInRect(mouseLocation, blueRect))

NSLog(@"User clicked blue rect");

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=355

WORKING WITH EVENTS 356

Build & Run to test that the correct message appears in the console

only if you click and release the mouse within the same rectangle.

Now let’s tackle the problem of highlighting a rectangle when the user

clicks it.

Providing Visual Feedback

Determining whether a highlight should be displayed is fairly straight-

forward:

• The highlight should be displayed when mouseDown: occurs.

• The highlight should disappear when mouseUp: occurs.

• If the user drags outside the clicked rectangle, the highlight should

disappear.

• If the user drags back into the rectangle they originally clicked,

the highlight should reappear.

Let’s handle the easy cases first and display a highlight on mouseDown:,

removing it on mouseUp:.

The only time a view should draw itself is in response to the drawRect:

message—we can’t just draw something to the screen in mouseDown:

and clear it in mouseUp:. We need a way for drawRect: to determine

whether it should draw the highlight.

To keep things simple, let’s use two Boolean instance variables to indi-

cate whether the red or blue rectangles should be highlighted. Open

WVShapesView.h, and add the following:

@interface WVShapesView : NSView {

NSPoint mouseDownPoint;

BOOL shouldHighlightRedRect;

BOOL shouldHighlightBlueRect;

}

@end

Switch to WVShapesView.m, and set the relevant flag in mouseDown:, set-

ting both flags to NO in mouseUp::

- (void)mouseDown:(NSEvent *)theEvent {

mouseDownPoint = [theEvent locationInWindow];

mouseDownPoint = [self convertPoint:mouseDownPoint fromView:nil];

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

[self calculateRedRect:&redRect blueRect:&blueRect];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=356

WORKING WITH EVENTS 357

if(NSPointInRect(mouseDownPoint, redRect))

shouldHighlightRedRect = YES;

else if(NSPointInRect(mouseDownPoint, blueRect))

shouldHighlightBlueRect = YES;

}

- (void)mouseUp:(NSEvent *)theEvent {

«beginning of method»

if(NSPointInRect(mouseDownPoint, redRect) &&

NSPointInRect(mouseLocation, redRect))

NSLog(@"User clicked red rect");

else if(NSPointInRect(mouseDownPoint, blueRect) &&

NSPointInRect(mouseLocation, blueRect))

NSLog(@"User clicked blue rect");

shouldHighlightRedRect = NO;

shouldHighlightBlueRect = NO;

}

Next, modify the drawing code to draw a rectangle in dark gray if it

should be highlighted:

- (void)drawRect:(NSRect)dirtyRect {

«canvas framing code»

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

[self calculateRedRect:&redRect blueRect:&blueRect];

if(shouldHighlightRedRect)

currentColor = [NSColor darkGrayColor];

else

currentColor = [NSColor redColor];

[currentColor set];

NSRectFill(redRect);

if(shouldHighlightBlueRect)

currentColor = [NSColor darkGrayColor];

else

currentColor = [NSColor blueColor];

[currentColor set];

NSRectFill(blueRect);

}

If you Build & Run at this point, you find that despite all our best

efforts, the highlights aren’t drawn. The problem here is that drawRect:

isn’t being called.

One suggestion might be to call drawRect: directly, but this is something

you should never do.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=357

WORKING WITH EVENTS 358

Back in the sidebar on page 297, I mentioned briefly that it’s possi-

ble to trigger a partial redraw of a view using the setNeedsDisplayInRect:

method. Since our view is extremely simple, it’s fine just to request that

the entire view is redrawn by using the setNeedsDisplay: method, passing

in YES.

Add a call to this method at the end of both the mouseDown: and mouse-

Up: methods:

- (void)mouseDown:(NSEvent *)theEvent {

«beginning of method»

if(NSPointInRect(mouseDownPoint, redRect))

shouldHighlightRedRect = YES;

else if(NSPointInRect(mouseDownPoint, blueRect))

shouldHighlightBlueRect = YES;

[self setNeedsDisplay:YES];

}

- (void)mouseUp:(NSEvent *)theEvent {

«beginning of method»

shouldHighlightRedRect = NO;

shouldHighlightBlueRect = NO;

[self setNeedsDisplay:YES];

}

This line of code indicates that the view needs to be redrawn but delays

the actual redraw until the current event loop has finished (that is, all

the code relating to the current event has been executed). This happens

so quickly that it appears to the users as if the rectangle highlights

immediately when they click it.

Build & Run to check this; the highlight displays when a rectangle is

clicked and disappears when the mouse button is released.

All that remains is to remove the highlight if the user drags outside the

rectangle and redisplay it if they reenter. Add the following code to the

mouseDragged: method:

- (void)mouseDragged:(NSEvent *)theEvent {

NSPoint mouseLocation = [theEvent locationInWindow];

mouseLocation = [self convertPoint:mouseLocation fromView:nil];

NSRect redRect = NSZeroRect;

NSRect blueRect = NSZeroRect;

[self calculateRedRect:&redRect blueRect:&blueRect];

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=358

RESPONDERS AND THE RESPONDER CHAIN 359

shouldHighlightRedRect = NO;

shouldHighlightBlueRect = NO;

if(NSPointInRect(mouseDownPoint, redRect) &&

NSPointInRect(mouseLocation, redRect))

shouldHighlightRedRect = YES;

else if(NSPointInRect(mouseDownPoint, blueRect) &&

NSPointInRect(mouseLocation, blueRect))

shouldHighlightBlueRect = YES;

[self setNeedsDisplay:YES];

}

This method is pretty simple, considering what it achieves. We start by

getting our usual red and blue rectangles and then set both the should-

Highlight... flags to NO. We check whether the original mouse-down point

and the current location are within either of the rectangles, setting the

relevant flag if so, before making a final call to redisplay the view.

Build & Run to make sure that it works. You can click-drag in and

out of a rectangle as much as you like, and the highlight provides the

correct visual feedback.

One thing that’s worth noticing about our Windows and Views appli-

cation is what happens when you click and type something into one of

the text fields in the window and then click the view.

With the application still running, click in one of the Location text fields.

The usual text cursor appears and flashes to indicate that the text field

is ready to accept keyboard entry. If you click the custom view, the cur-

sor continues to flash, and the text field continues to accept keystrokes.

If you click in a different text field, the flashing cursor now appears for

that field, and it will accept keystrokes, even if you click the custom

view.

Have we neglected to do something to our view in order to make it

“selectable?” Or is there something more important happening?

13.4 Responders and the Responder Chain

When the user clicks a view, that view receives the relevant mouse

event messages, as we’ve seen earlier. However, mouse clicks are obvi-

ously not the only kind of event that might occur. A keystroke event, for

example, might occur if the user types a keyboard shortcut, or it might

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=359

RESPONDERS AND THE RESPONDER CHAIN 360

just be a character that the user expects to appear on screen in a text

field or text view. Where should this typed character appear?

From a user’s point of view, it should be wherever the text cursor (or

caret) is flashing. From a programming point of view, however, life is

more complicated. How do we determine which view object is currently

ready to accept such keyboard entry?

The Cocoa framework helps us with what’s known as the first

responder.

Introducing First Responder

When an event occurs, the internal Mac OS X and Cocoa mechanisms

mentioned in Section 13.3, Working with Mouse Events, on page 349

deal with the event if it’s some kind of system event, such as the user

pressing the Eject button on a Mac keyboard. Otherwise, the event is

processed and then passed to an application’s first responder.

There can be only one first responder object at a time, and only a few

objects can accept first responder status. NSTextField is one such exam-

ple of an object that can become first responder.

When a text field is the current first responder, it will display the usual

flashing caret and receive any keystroke events that occur, along with

most other nonsystem events.

The text field will also be sent all other events, regardless of whether

they seem relevant. What happens to events that the text field can’t

handle?

The answer to this problem is provided by the responder chain.

The Responder Chain

Any object that responds to events must inherit from NSResponder. If

an event is sent to a responder such as a text field and that responder

doesn’t handle the event, the event will be passed to the next responder.

Each responder in an application fits into a responder chain, and con-

ceptually, this chain is just an inverse view hierarchy. It starts with

the first responder, such as a text field. The text field’s next responder

would be its enclosing view (NSView is a subclass of NSResponder), and

that view’s next responder would be its enclosing view, and so on, until

you reach the enclosing window.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=360

RESPONDERS AND THE RESPONDER CHAIN 361

This responder chain is maintained automatically, so you don’t have to

worry about it.

Becoming the First Responder

Given that NSView inherits from NSResponder and we’re already receiving

mouse events in our custom WVShapesView, why doesn’t first responder

status pass to the view when it is clicked?

When the user tries to make an object the first responder—for instance,

by clicking it—the object will be asked whether it acceptsFirstResponder.

The default implementation of this method returns NO, which is why

our view never becomes the first responder.

Let’s implement the acceptsFirstResponder method to see what happens

if we return YES. Open WVShapesView.m, and add the following method:

- (BOOL)acceptsFirstResponder {

return YES;

}

Build & Run the application, click one of the Location fields to make it

the first responder, and then click the custom view.

The text view loses its first responder status, and the caret stops flash-

ing. The shapes view is now the first responder, and any events from

now on will be sent to the view, until some other object becomes first

responder.

When you press any keys on the keyboard, the keystroke events are

passed up the chain, since WVShapesView doesn’t implement any of the

NSResponder methods relating to keys, such as keyDown: and keyUp:. In

this case, a simple keystroke doesn’t have any meaning to any other

responders in the chain, so there’s an alert sound to let you know the

key press is an invalid input.

Working with Actions

Responders can also be used for action messages. So far, we’ve seen

how to send action messages directly using the target-action mecha-

nism. Let’s look at a case where target-action can’t be used.

Close the Windows and Views project, and open the Shopping List

application project instead. We’ll add a menu item to the Edit menu

to allow the users to remove a selected shopping list item, one that

behaves as if they had clicked the - button in the interface.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=361

RESPONDERS AND THE RESPONDER CHAIN 362

The menu bar for the application is located in MainMenu.xib, rather than

the MyDocument.xib file, so we can’t just use Interface Builder to link the

menu bar directly to a MyDocument object.

This obviously makes sense because there may be multiple shopping

list windows open on screen, and the menu item needs to remove the

selected item in the frontmost document window. This window will be

the shopping list the user is currently editing, meaning that this win-

dow will contain the first responder.

You might be wondering whether we could make use of notifications,

since I mentioned earlier that notifications can be used for communi-

cation between objects in different nib files. Unfortunately, there are a

number of problems with this solution. First, every shopping list doc-

ument would be listening for the notification, so each shopping list

would need to check whether it was currently the main window—in

other words, contained the first responder—before reacting. Second, as

I’ve already discussed, notifications aren’t really designed for this kind

of communication. In the case of our menu item, we really need to have

some way to connect that menu item directly to the shopping list related

to the current first responder.

If we can set a menu item to target the first responder itself, the action

will be sent to whichever object is first responder at the time the menu

item is chosen and then passed up the responder chain, if necessary,

until an object can deal with it.9 This solution sounds promising; let’s

see whether it’s possible.

We’ll start by creating the new menu item. Open MainMenu.xib in Inter-

face Builder, and double-click the Main Menu object to open the menu

editor.

Click the Edit menu header in this editor to display the menu items, and

then drag a Separator Menu Item from the Library palette and drop it

under the Select All menu item. Drag out a standard Menu Item from

the library, and drop it below the new separator.

9. The responder chain for action messages is just like the one for events but slightly

extended. If none of the responders up to the enclosing window can deal with the action,

the window’s delegate is given the opportunity to respond. If the window delegate can’t

respond, the action is passed up to the application object; if the application can’t respond,

the action passes to the application’s delegate. These delegate objects are the only respon-

der objects that don’t need to inherit from NSResponder.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=362

RESPONDERS AND THE RESPONDER CHAIN 363

Figure 13.3: Adding a new menu item

Later in this section, we’ll be setting this menu item to call the removeIt-

emFromShoppingList: method, which displays an NSAlert to check that the

users are absolutely sure they want to remove the item. We need to fol-

low the Mac OS X naming convention of using an ellipsis (...) to indicate

that a menu item will require further input.

Set the title of the new menu item to “Delete Shopping List Item...”

(those aren’t three separate dot characters; they are one ellipsis charac-

ter, typed by pressing E- ;). The finished menu looks like Figure 13.3.

Targeting the First Responder

You may already have noticed that interface files contain an icon called

First Responder. This object is used as a placeholder to represent any

possible first responder object at runtime.

If you click this First Responder object to select it and then look in its

Attributes inspector, you get a list of system-defined actions supported

as standard by an object inheriting from NSResponder.

Since we need to target the removeItemFromShoppingList: action, which

obviously isn’t a system-defined action, we’ll need to add this manually

to the list of possible first responder actions.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=363

RESPONDERS AND THE RESPONDER CHAIN 364

Figure 13.4: Adding an action to First Responder

Click the + button in the First Responder’s Attributes inspector, and

change the name of the new action to “removeItemFromShoppingList:”

(don’t forget the trailing colon), as shown in Figure 13.4.

All that remains is to link the menu item to the new action. Make sure

both the menu editor and the MainMenu.xib document window are vis-

ible, and then right-click (or C-click) the menu item. Drag from its

Sent Actions selector over to the First Responder object, and choose

the removeItemFromShoppingList: from the pop-up list, as shown in Fig-

ure 13.5, on the following page.

Save the file, and switch over to Xcode. Build & Run the application,

then select a shopping list item in the Untitled shopping list. Choose

our new menu item from the Edit menu, and you’ll see the NSAlert ask-

ing if you’re sure you want to remove the item.

Wow, that was pretty easy. What happens if no shopping lists are vis-

ible? Close the Untitled shopping list document so that no shopping

lists are left open, and then open the Edit menu. Now our menu item is

disabled. Huh? How did that happen?

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=364

RESPONDERS AND THE RESPONDER CHAIN 365

Figure 13.5: Adding an action to First Responder

User Interface Validation

What appears to be absolute magic is actually the result of a complex

target/first-responder/validation interaction, happening behind the

scenes.

When you click to display the Edit menu, the application validates each

item in that menu. You can customize this validation if you need to,

but the default behavior will go through each menu item in turn to see

whether the first responder, or any other items in the responder chain,

can respond to that menu’s action. If so, the menu will be enabled;

otherwise, it will be disabled.

If we were to add another action to the First Responder object in Main-

Menu.xib but give it a name that isn’t used by any method in the project,

we’d find that any linked menu item would always be disabled, since

no responder will ever be able to respond to a method with that name.

The only downside to this automatic validation for our Delete Shopping

List Item... menu item is that it has the same problem as the - button

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=365

RESPONDERS AND THE RESPONDER CHAIN 366

in the interface; if there’s a shopping list on screen, the item is always

enabled, even if no item is selected in the list.

You might like to look at the documentation for User Interface Valida-

tion to see how to perform validation to enable or disable the menu

item. The sample code for this chapter includes a validation method

that will enable the menu item only if the user has selected a row in the

shopping list table view.

Setting Keyboard Shortcuts for Menu Items

We still have one major feature left to implement in our Shopping List

application, the all-important ability to save. Before we do this, let’s

make one simple change to the menu item we just created and add a

keyboard shortcut.

Open the MainMenu.xib file in Interface Builder, and select the Delete

Shopping List Item... menu item. Open its Attributes inspector, and click

in the box next to Key Equiv.; the box will show a focus ring, indicating

that it is Interface Builder’s current first responder, awaiting keyboard

entry.

Hold down the D key, press the J key, and then release the D key.

When you release the keys, the focus ring disappears, indicating that

the box has resigned first responder status, and the keyboard shortcut

is set as D-J, as shown in Figure 13.6, on the next page.

Save the file, return to Xcode, and Build & Run the application. Now

you can delete selected rows from the shopping list by typing the key-

board shortcut D-J.

Keyboard shortcuts are handled slightly differently than standard key-

strokes. When a keyboard shortcut is received, the window containing

the first responder is given a chance to respond (you might have a

keyboard shortcut that doesn’t have a corresponding menu item, such

as using E with the arrow keys to move the text cursor in big jumps). If

no object in the responder chain can deal with the shortcut, it is passed

to the menus.

With the Shopping List application almost complete, it’s time to add the

code we need to allow the shopping lists to save. To do this, we’re going

to need to know about NSCoding.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=366
v@v
Text Box
http://www.wowebook.com

ARCHIVING WITH NSCODING 367

Figure 13.6: Setting a keyboard shortcut

13.5 Archiving with NSCoding

When we started using a shopping list item object to hold an item’s

information, back in Section 11.5, Reworking the Shopping List Appli-

cation... Again, on page 269, we lost the ability to save the array of

shopping list items to a file using NSArray’s writeToURL:atomically: method.

This method requires that every object held within the array is either

another array, a dictionary, or an object that can be saved as a string.

Our ShoppingListItem obviously doesn’t fall under any of these types, so

the writeToURL:atomically: method no longer works.

To save the shopping list items, we need to use one of several mech-

anisms offered under Mac OS X and Cocoa to archive or serialize an

object to disk.

The easiest way for us to archive our shopping lists is through the use

of an object called NSKeyedArchiver.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=367

ARCHIVING WITH NSCODING 368

Working with Keyed Archivers

As the name suggests, NSKeyedArchiver offers us the ability to archive

objects to disk using string keys.

There are various ways to work with keyed archivers, but the simplest

is through a convenience class method:

+ archiveRootObject:toFile:

This method accepts an object that forms the top of a hierarchy of

objects to be saved, which is why it’s called the Root object, and saves

that object to a file. In the case of our Shopping List application, this

root object will be the main shoppingListArray of items.

The code we will be using to start the archival process looks like this

(but don’t implement anything in the shopping list application yet):

[NSKeyedArchiver archiveRootObject:shoppingListArray toFile:«path to save»];

When this code executes, the keyed archiver starts by telling the root

object to encode itself. This object must conform to a protocol called

NSCoding; in the case of our Shopping List application, the root is an

NSArray, which does conform to that protocol. When it’s told to encode,

the shopping list array will then cycle through its subitems, telling each

one to encode in turn.

If the root object were an array of arrays of arrays, this iterative pro-

cess would walk through each item of each array, archiving it to disk.

Alternatively, if we ended up in a situation where we have multiple root

objects rather than one object containing them all (such as an invoic-

ing application keeping track of separate arrays of customers, invoices,

receipts, bank accounts, and so on), we’d need to create a root dictio-

nary holding each of these arrays under a different key, ready to be

restored later.

Once we’ve created an archive using archiveRootObject:toFile:, the whole

object hierarchy can be restored by using the unarchiving relative of

NSKeyedArchiver, called NSKeyedUnarchiver, using code like this:

NSArray *restoredArray = [NSKeyedUnarchiver unarchiveObjectWithFile:«path to read»];

As far as our Shopping List application is concerned, it’s fine to archive

our single shopping list items array as the root, but every subitem in

that array (each one being an instance of the ShoppingListItem class) will

need to conform to the NSCoding protocol.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=368

ARCHIVING WITH NSCODING 369

Figure 13.7: Warnings about not fully implementing a protocol

Adopting NSCoding

Open the ShoppingListItem.h file inside the Shopping List project. As we’ve

just learned, any object we want to be able to archive using NSKeyed-

Archiver must adopt the NSCoding protocol, so let’s indicate this in the

interface file:

@interface ShoppingListItem : NSObject <NSCoding> {

«instance variables»

}

«method signatures and properties»

@end

If you’re running Xcode 3.2 under Snow Leopard, try building the pro-

ject (D- B) before you do anything else. You’ll find that the compiler will

complain with four warnings, which are shown in Figure 13.7.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=369

ARCHIVING WITH NSCODING 370

These warnings show what happens if you state that a class will adopt

a protocol, but fail to implement one or more of its required methods.

Select File > Open Quickly... (B-D- D); then type in “NSCoding” and

press F. Xcode will locate the protocol definition inside NSObject.h, so

click the Open button to jump to the declaration.

We see that the protocol defines two methods, neither of which is listed

as @optional:

@protocol NSCoding

- (void)encodeWithCoder:(NSCoder *)aCoder;

- (id)initWithCoder:(NSCoder *)aDecoder;

@end

These correspond with the warnings shown in Figure 13.7, on the pre-

ceding page, and we’ll need to implement both these methods in our

ShoppingListItem class.

Encoding Information with NSCoder

Let’s start by implementing the method to encode our shopping list

item. The method passes us a pointer to an instance of the NSCoder

class.

NSCoder is what’s known as an abstract class, which means that we

never work directly with an instance of NSCoder; we always work with a

concrete subclass. Because we’ll be using NSKeyedArchiver’s class meth-

od to encode the root object and start the cascade of subitem encoding,

the NSCoder we’ll be passed will itself be an instance of NSKeyedArchiver

(which is a subclass of NSCoder).

This coder is what we’ll use to save enough information from a Shop-

ping List item object so that it can be resurrected at a later date. Work-

ing with a keyed archive NSCoder is a bit like working with an NSDic-

tionary; it stores values for keys, but it stores them in a way that can be

saved straight to disk.

Since we’ll be working with keys once again and will need to make

sure we encode the information with the same keys we use to decode

it, let’s declare some global variables to hold the string keys. There

are three pieces of information relevant to each shopping list item: its

name, the quantity, and whether it has already been purchased; i.e.,

the information that’s encapsulated by each object.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=370

ARCHIVING WITH NSCODING 371

Add the following global variable declarations at the top of ShoppingLis-

tItem.m, just like we did for our WVMeasurerShowMeasurementsNotification,

earlier in the chapter:

#import "ShoppingListItem.h"

NSString * const kShoppingListItemName = @"kShoppingListItemName";

NSString * const kShoppingListQuantity = @"kShoppingListQuantity";

NSString * const kShoppingListPurchased = @"kShoppingListPurchased";

@implementation ShoppingListItem

«implementation continues»

We could call these global variables anything we wanted; the previous

names follow a common convention of starting the variable name with

a “k” to indicate a key.

Now that we’ve defined the keys, let’s see how to implement the encode-

WithCoder: method. Looking at the documentation for NSCoder, we find

that it has a number of methods listed under the “Encoding Data” head-

ing that follow the convention:

encode«dataType»:forKey:

For example:

- encodeBool:forKey:

- encodeInt:forKey:

- encodeObject:forKey:

Also notice that there are corresponding decodeTypeForKey: methods for

each data type, listed under the “Decoding Data” heading.

The quantity for our shopping list item can be encoded using the encode-

Int:forKey: method, and we can use encodeBool:forKey: to encode the pur-

chased property. But notice that there is no encodeString:forKey: method.

Instead, we have to use the encodeObject:forKey: method, which requires

that the specified object supports NSCoding. Luckily for us, NSString is

one of many Cocoa classes that do.

Implement the encodeWithCoder: method for the shopping list item like

this:

- (void)encodeWithCoder:(NSCoder *)aCoder

{

[aCoder encodeObject:itemName forKey:kShoppingListItemName];

[aCoder encodeInt:quantity forKey:kShoppingListQuantity];

[aCoder encodeBool:purchased forKey:kShoppingListPurchased];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=371

ARCHIVING WITH NSCODING 372

These lines of code are all that’s required to make our object encodable.

We just need to set the relevant values for our keys in the coder, and

Cocoa handles the rest for us.

What about decoding?

Decoding Information with NSCoder

We’ve already seen from the documentation that NSCoder has corre-

sponding decoding methods for each of the variable types, and these

are available to us when we use NSKeyedUnarchiver. The method we need

to implement in our ShoppingListItem class to handle the decoding is an

init method, with the signature:

- (id)initWithCoder:(NSCoder *)aCoder;

This method needs to work in the same way as our designated initial-

izer, initWithName:quantity:, which looks like this:

- (id)initWithName:(NSString *)newName quantity:(int)newQuantity

{

if(self = [super init])

{

itemName = [newName retain];

quantity = newQuantity;

purchased = NO;

}

return self;

}

but set the values of the instance variables to the values extracted from

the coder for the relevant keys.

Implement it like this (the differences from the designated initializer are

highlighted in bold):

- (id)initWithCoder:(NSCoder *)aDecoder

{

if(self = [super init])

{

itemName = [[aDecoder decodeObjectForKey:kShoppingListItemName] retain];

quantity = [aDecoder decodeIntForKey:kShoppingListQuantity];

purchased = [aDecoder decodeBoolForKey:kShoppingListPurchased];

}

return self;

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=372

ARCHIVING WITH NSCODING 373

That’s all there is to it! Our ShoppingListItem class is now fully archiv-

able and restorable, using NSKeyedArchiver, NSKeyedUnarchiver, and the

NSCoding protocol.

There’s just one last thing we need to add to the Shopping List appli-

cation before we can save our shopping lists. We still need to write the

code that triggers the archive process when the user saves to a file and

that unarchives the data when they open an existing shopping list.

Saving and Reopening Shopping List Files

As I mentioned earlier in this chapter, NSKeyedArchiver has a handy class

method to archive data to disc, archiveRootObject:toFile:. This method

returns a Boolean value to indicate success, just like NSArray’s write-

ToURL:atomically: method.

The only issue is that we need to specify a string for the path to the file

rather than an NSURL. Luckily, NSURL has a method called path, which

returns an NSString representing the URL’s path.

Open MyDocument.m, find the writeToURL:ofType:error: method, and rewrite

it like this:

- (BOOL)writeToURL:(NSURL *)absoluteURL ofType:(NSString *)typeName

error:(NSError **)outError

{

return [NSKeyedArchiver archiveRootObject:shoppingListArray

toFile:[absoluteURL path]];

}

That’s all we need to do to save a shopping list. Let’s see whether open-

ing existing files is as straightforward.

The existing method (which no longer works) looks like this:

- (BOOL)readFromURL:(NSURL *)absoluteURL ofType:(NSString *)typeName

error:(NSError **)outError

{

[shoppingListArray release];

shoppingListArray = [[NSMutableArray alloc] initWithContentsOfURL:absoluteURL];

[shoppingListTableView reloadData];

return YES;

}

We still need to release the existing array and reload the table view,

but we’ll need to revise the line of code that resurrects the array from

the archive so that it uses NSKeyedUnarchiver’s unarchiveObjectWithFile:

method.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=373

CHAPTER SUMMARY 374

As before, this method expects a string path to the file to open, so we’ll

need to use NSURL’s path method again.

Because this method doesn’t have the word alloc or copy in it, it will

return us an autoreleased array. We’ll need to retain this array, or the

shopping list will be deallocated from memory just when we need it!

If the unarchiving process fails, this method returns nil; we can check

for this and return NO to indicate that there was a problem opening

the file.

Implement the method like this:

- (BOOL)readFromURL:(NSURL *)absoluteURL ofType:(NSString *)typeName

error:(NSError **)outError

{

[shoppingListArray release];

NSArray *restoredList = [NSKeyedUnarchiver

unarchiveObjectWithFile:[absoluteURL path]];

if(!restoredList) return NO; // couldn't open the file

shoppingListArray = [restoredList retain];

[shoppingListTableView reloadData];

return YES;

}

We start by releasing the existing shopping list array and then try unar-

chiving an array from disc. If this fails, we return NO so the user will be

informed that the file couldn’t be opened. Otherwise, we set the shop-

pingListArray variable, retaining the array, before reloading the table view

as before.

Build & Run the application to check that this all works. You’ll find that

you can now save a shopping list to disk and then reopen it. The items

reappear exactly as they were when they were saved, with the names,

quantities, and purchased information all set correctly.

13.6 Chapter Summary

That brings us to the end of this chapter, and to the end of the main

learning chapters in this book.

We’ve covered an enormous amount of ground, looking at a number of

mechanisms offered by Mac OS X and Cocoa, with a particular focus on

messaging and event handling. You’ve also learned about Objective-C

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=374

CHAPTER SUMMARY 375

protocols and seen how to work with Cocoa protocols relating both to

delegation, and to archiving.

The Shopping List application is pretty functional at this point and

even includes a menu item (complete with shortcut) to allow the users

to remove an item from their shopping list. We’ve put back the ability to

archive shopping lists to files, along with the equally important ability

to reopen them, so the application is ready for use and initial testing.

The pace of this chapter was fast, designed to give you an idea of what’s

available to you in the future. Although the Shopping List application

is functional at a basic level, it’s really still the beginning of its journey

into what can be achieved through the Cocoa framework.

The next chapter gives you some ideas of where to go next to learn more

and what to look out for, and it highlights some key features in the

future of Mac development offered by Snow Leopard and subsequent

Mac OS X releases.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=375

Chapter 14

Where to Go from Here
One of the inherent problems with programming books for beginners

is that the example applications they build don’t really have anything

like the amount of functionality expected in a shipping Mac applica-

tion. Although it feels great to get these basic applications working, the

moment you finish the book and want to start on your own projects,

you’re quickly overwhelmed by how much you haven’t learned.

The aim of this chapter is to introduce some of the major topics we

haven’t been able to cover, partly so you’ll know the terms to search for

when you want to take your code to the next level. We’ll look at some of

the technologies that are shaping the future of Mac applications, as well

as several important mechanisms available in Cocoa that there wasn’t

room to talk about in the previous chapter.

Once you have an overview of these topics, we’ll look at where to go

to find more information. As the Mac and iPhone gain exponentially

in popularity, the number of Mac-related books, websites, and forums

increases to match demand. It’s frequently the case that if you know

the right terms to Google, you’ll find lots of sources explaining exactly

what you’re trying to achieve. If you prefer a more structured approach

to learning, we’ll mention some books along the way that are available

to help you.

Let’s start by looking at some of the other important mechanisms of-

fered by Cocoa and Mac OS X.

Prepared exclusively for James Carlson

IMPORTANT TECHNOLOGIES 377

14.1 Important Technologies

We’ve only scratched the surface of what’s available under Cocoa on the

desktop. As we’ll see in Section A, Introducing Cocoa Touch and UIKit,

on page 392, Cocoa is really an umbrella term for a large collection of

frameworks available to us when we write Mac OS X software.

Mac OS X versions 10.4 Tiger and 10.5 Leopard saw Apple introduce

a number of Core technologies to Cocoa, making key areas of an appli-

cation’s functionality much easier to implement. These technologies

are mostly higher-level technologies, meaning they add an extra level

of abstraction on top of the underlying frameworks, mechanisms, and

terrifying-looking low-level C functions.

Let’s start with the prettiest Core technology, Core Animation.

Core Animation

The award for the greatest wow factor in a Cocoa framework would

probably have to go to Core Animation, which makes it easy to add

animated effects to your application’s user interface.

Although you might be tempted to think that animating your applica-

tion is the desktop equivalent of flashing text and autoplaying sound

files on websites, animation can actually be an essential part of making

the user experience as great as possible. The user experience in soft-

ware relates to how the users perceive the application, including how

well it helps them achieve their goals, how easy it is to use, and how

fast it is to learn.

Consider what happens when you minimize a window on Mac OS X;

the window shrinks itself down to the Dock, using what’s known as the

genie effect. Yes, it looks pretty impressive, but its primary function is

to show how the window can be redisplayed.

Imagine if there was no animation—the window would seem to disap-

pear into thin air. To a first-time user, the Dock is probably the last

place they’d look to find out where the window had gone. By animating

the window and shrinking it down to its Dock representation, the users

are able to see exactly what’s happened. They already know that click-

ing something on the Dock causes it to open, so they know that clicking

the window will restore it. The learning experience is enhanced by the

fact that their expectation is confirmed when the window animates back

up on screen when clicked.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=377

IMPORTANT TECHNOLOGIES 378

Core Animation works on a keyframe principle, where you define the

start and end frames for an animation, and the underlying framework

figures out how to display the rest of the animation on screen, making

it relatively simple to accomplish extremely impressive effects.

To find out more, you might like to start by looking at Apple’s Core

Animation Programming Guide.1 There are currently two books on the

subject, Bill Dudney’s Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces [Dud08] and Marcus Zarra

and Matt Long’s Core Animation: Simplified Animation Techniques for

Mac and iPhone Development [ZL09]. As the titles imply, Core Animation

is also available on the iPhone, where animation is used for almost

everything!

Core Data

Over the course of the book, we’ve looked at a number of ways to persist

information to disk. Each of these involved keeping track of a network

of objects in memory, collected in dictionaries or arrays, and saving

those collections to disk when required.

The Core Data framework takes data storage to a whole new level.

Instead of worrying about how to handle the object persistence our-

selves, it allows us to work with managed objects tied, through an

intermediary context that keeps track of changes, to the underlying

data stored on disk.

Working with Core Data involves modeling an application’s data into

entities, which are rather like class descriptions. These entities con-

tain properties that may be either attributes, like the properties on our

shopping list object, or relationships to other objects.

It would be very straightforward to use Core Data to store a lot more

information in our Shopping List application, keeping track of items

on a list, relating them to the shops that sell those items, and record-

ing the times (and prices) at which the items had previously been pur-

chased. From a data point of view, Core Data would manage this net-

work of related objects automatically, making it incredibly easy to find

out which shop sells an item or to see how many items can be pur-

chased from one shop, leaving us “just” to worry about how to design

the interface and controllers to make everything work!

1. http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/CoreAnimation_guide

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://developer.apple.com/mac/library/documentation/cocoa/Conceptual/CoreAnimation_guide
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=378

IMPORTANT TECHNOLOGIES 379

Core Data is one of the more advanced Cocoa frameworks, and it can

take a while to get your head around the basic features. It’s also a good

idea to have a reasonable understanding of some of the mechanisms

we’ll talk about in Section 14.1, Other Cocoa Mechanisms, on the fol-

lowing page before starting out.

To get an immediate idea of the power of the Core Data framework, sev-

eral tutorials are available that allow you to build relatively impressive

data-saving applications using absolutely no code at all. Start by look-

ing at Apple’s Core Data tutorials and guides. Alternatively, see Marcus

Zarra’s Core Data: Apple’s API for Persisting Data on Mac OS X [Zar09]

or one of my own books, such as Building Data-Driven Desktop Applica-

tions for Mac OS X [Ist10a] or Core Data for iPhone: Building Data-Driven

Applications for the iPhone and iPod Touch [Ist10b].

Garbage Collection

In Chapter 7, Objects and Memory Management, on page 119, you spent

some time learning all about manual memory management, including

seeing how to use retain, release, and autorelease to make sure objects

stay in memory only as long as they are needed to avoid memory leaks.

When Apple released Objective-C 2.0, which added support for proper-

ties and fast enumeration (as you saw earlier in the book), it also added

support for garbage collection. Garbage collection simplifies and auto-

mates memory management, so you no longer need to use the retain

and release mechanism.

It’s very simple to enable garbage collection; it requires only a single

change to be made in a project’s build settings. Once enabled, calling

retain or release on an object has no effect, because the Objective-C

2.0 runtime handles the memory management automatically. When the

garbage collector collects, it searches through the network of objects in

memory, looking for orphaned objects that are no longer in use by any

other object (i.e., there are no references to them), and frees up the

memory that they occupy.

If you’re wondering why you’ve had to endure the torture of learn-

ing about manual memory management in this book, when it seems

unnecessary given you can use garbage collection, there are a number

of reasons.

First, garbage collection doesn’t completely remove the need to worry

about how much memory your application is using. If you work with

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=379

IMPORTANT TECHNOLOGIES 380

an enormous collection of objects in memory, each keeping references

to objects that they no longer need, the garbage collector won’t free up

the memory. Given that you understand manual memory management,

you also understand the need to worry about whether you really need

to keep track of some enormous array object (with all its contents), for

example, or whether you can safely “release” that array by setting any

pointers to it to nil.

You’ll also find that a large amount of sample code and tutorials still use

manual memory management, so even if you adopt garbage collection

in your own desktop projects, you won’t be able to forget about retain

and release altogether.

Furthermore, if you like what you see in Appendix A, on page 387 and

decide to write software for iPhone, you’ll have to use manual memory

management because at the time of writing, there’s no garbage collector

on the iPhone. Given that an iPhone has such a tiny memory allowance

compared to a desktop machine, it’s absolutely imperative to minimize

the amount of memory you use, or the iPhone OS will terminate your

application.

To find out more about garbage collection, start by looking at Apple’s

Garbage Collector Programming Guide.2

Other Cocoa Mechanisms

Cocoa has a number of “nuts-and-bolts” mechanisms that are either

needed in order to make use of the higher-level frameworks or that

simplify common tasks in an application’s code.

One such mechanism is Key-Value Coding (KVC). KVC makes it possible

to refer to the properties (values) of an object using string keys, rather

like the way you work with an NSDictionary.

If an object has a property backgroundColor, that object is said to be

KVC-compliant for the property if the accessor methods follow the con-

ventions mentioned in Section 11.4, Protection from the Outside World,

on page 264. For a backgroundColor property, the getter method should

be called backgroundColor, and the setter method should be called set-

BackgroundColor:.

If these conventions are followed, the backgroundColor property can also

be accessed using code like this:

2. http://developer.apple.com/mac/library/documentation/cocoa/conceptual/GarbageCollection/

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://developer.apple.com/mac/library/documentation/cocoa/conceptual/GarbageCollection/
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=380

IMPORTANT TECHNOLOGIES 381

NSColor *someColor = [someObject valueForKey:@"backgroundColor"];

[someObject setValue:someColor forKey:@"backgroundColor"];

There are various reasons why this is useful, not least because it en-

ables us to use Key-Value Observing (KVO), where one object can reg-

ister to observe the value held at a specific key in another object.

When the value at the observed key is changed, the observing object is

notified.

You’ll remember that we had to write code in our Shopping List appli-

cation to reload the relevant row in the table whenever a shopping list

item was modified. There’s another Cocoa technology, Bindings, that

makes it possible to link a user interface item with a value on a model

object such that we could bind a specific cell in the table view to the

shopping list object’s purchased value and have that cell update auto-

matically whenever the purchased value changed. In reverse, if the user

changed the state of the checkbox representing the purchased value,

the related shopping list item’s purchased attribute would be updated

automatically.

Bindings, alongside KVC and KVO, make it possible to build simple

Core Data–backed applications without writing any additional code

beyond what is already in the Xcode template project. You model the

data visually using the Xcode data modeler and then design the inter-

face, binding interface items to special controller objects that access

the underlying model, all using Interface Builder.

For more information, check out Apple’s Key-Value Coding Programming

Guide, Key-Value Observing Programming Guide, and Cocoa Bindings

Programming Topics.

Concurrency

At the time of writing, the cheapest current-model Mac is the Mac Mini,

which has an Intel Core 2 Duo processor. As the name implies, it has

two cores. The top-of-the-line Mac Pros currently have two Quad Core

processors, meaning they have a total of eight cores. It’s not hard to

imagine that future Mac lines will feature sixteen, thirty-two, or more

cores.

In the past, technological advances in the computer world were shown

by increasing processor speeds, amounts of RAM, and storage capac-

ity. Recently, however, increases in standard RAM and hard drive sizes

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=381

FINDING INFORMATION 382

have slowed down, and processor speeds are reaching the upper limit

of what’s physically possible with today’s technology.

Rather than increasing the speed of a processor to run more quickly,

the new trend is to increase the number of cores. For your software

to take advantage of this, you need to change the way you write code,

splitting any long operation into multiple short operations that can be

run across multiple CPU cores simultaneously.3

Cocoa and Objective-C 2.0 offer us a number of different ways to make

use of concurrency; the highest-level of these require us to divide up

our code into tasks or operations, which are passed to a queue, ready

to be executed as soon as processor time becomes available. Under Mac

OS X 10.6 Snow Leopard, we have access to Grand Central Dispatch

(GCD), which simplifies the process of working with asynchronous tasks

and offers great efficiency.

When you are writing your own software and deciding which frame-

work or technique to use, it’s always best to start at the top and find the

highest-level option that hides away as much of the low-level drudgery

as possible. Concurrency is no exception. If you can make use of

operations and queues, then you should; otherwise, consider working

directly with GCD. In an ideal world, you really want to avoid having

to work with the more traditional and lower-level approach of using

threads.

Check out Apple’s Concurrency Programming Guide to learn more. Writ-

ing code that takes maximum advantage of multiprocessor environ-

ments is a complex topic, so don’t put off if you struggle with some of

the terminology, mechanisms, and syntax.

14.2 Finding Information

Now that you’ve got a brief overview of some of the topics you might

want to investigate next, let’s look at some of the best sources of

information.

Books

We’ve already mentioned a few topic-specific books that cover some of

the Core technologies in Cocoa. If you’re looking for a more general

3. It’s even possible to make use of something known as OpenCL to write code that can

be run on the GPU cores available in graphics cards.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=382

FINDING INFORMATION 383

Cocoa book, take a look at Daniel Steinberg’s Cocoa Programming: A

Quick-Start Guide for Developers [Ste09] or Aaron Hillegass’s Cocoa Pro-

gramming for Mac OS X [Hil08], currently in its third edition.

If you would like to learn more about the Objective-C language, check

out Stephen Kochan’s Programming in Objective-C 2.0, Second Edition

[Koc09], or Mark Dalrymple and Scott Knaster’s Learn Objective-C on

the Mac [DK09].

Developer Documentation

As we’ve seen throughout this book, Xcode provides a built-in set of

documentation that’s a great place to find out which method does what

or to look up the exact signature for any particular delegate method

you might want to implement.

A number of guides and tutorials give an overview, rather than a ref-

erence, of certain key technologies and frameworks, some of which I

mentioned earlier in the chapter.

One of the most important documents (though it’s frequently over-

looked) is the Human Interface Guidelines (HIG), which describe the way

a Mac application is expected to look and behave. If you want a user to

be able to sit down and immediately be comfortable working with your

application, make sure it works in the same way as all their other soft-

ware. Certain menu commands should always be found under certain

menus, for example, and if you design your own custom user interface

items, they should follow certain guidelines.

There’s also a separate HIG document for the iPhone. Designing a user

interface for the iPhone is very different from designing for the Mac

desktop—you can’t just shrink the contents of a 17-inch desktop dis-

play so that they fit on a 3.5-inch iPhone screen!

The header files for Cocoa classes (accessed most easily using Xcode’s

File > Open Quickly... command) can be another useful source of infor-

mation, in the form of code comments. If you’re not sure why a method

isn’t being called or a value isn’t set correctly, you might find a note

in the header file explaining why something doesn’t behave quite as

expected.

The Internet

When it comes to finding information on specific tools and techniques,

or to solve a particular problem, Internet search engines are definitely

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=383

FINDING INFORMATION 384

the first place to start, but the success of this strategy depends on

knowing the exact terms used to describe what it is you want to do.

If you didn’t know that a dialog box that drops down from the top of

a window (like the standard Mac OS X Print dialog box) was actu-

ally called a sheet, rather than a dialog box, for example, you might

have some difficulty locating the relevant information. If you’re not

sure about the correct terminology for something, try looking in Apple’s

overview guides for the general topic or the Human Interface Guidelines

if you’re not sure what to call a particular interface element. Sheets, for

example, are introduced under the “Dialogs” section in the Windows

chapter of the HIG.

There are many Mac developer blogs out there that are a great source

for undocumented tips and tricks, warnings about common misun-

derstandings, through to tutorials that walk you through very specific

tasks.

Asking Questions

If you’ve exhausted the documentation options and can’t find a relevant

blog post, there are several ways to ask other people for help:

• StackOverflow.com is a website for developers from all platforms

and languages, and it allows anybody to ask (or answer) questions

on any programming topic.

• There are several Apple-run email lists for Mac developers. The

most common of these is cocoa-dev,4 for asking questions about

anything to do with Cocoa. There’s also an Xcode-specific list, and

some of the more advanced frameworks have their own separate

lists.

Try subscribing to cocoa-dev for a while, even if you don’t post

anything. You’ll see a huge amount of information pass through

the list, some of which you’ll want to ignore, but you’ll often catch

nuggets of information directly useful to something you are

working on.

• Apple also has its own developer forums; at the time of writing,

these are in beta and available only to paid members of the Apple

developer programs (the cheapest of which is currently $499 per

4. http://lists.apple.com/mailman/listinfo/cocoa-dev

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://lists.apple.com/mailman/listinfo/cocoa-dev
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=384

FINDING INFORMATION 385

year). The iPhone forum is accessible to paid members of the

iPhone developer program (currently $99 per year).

Before you ask for help, there are some important points to bear in

mind. First, don’t ask other people to do your work for you. Don’t post

a message that simply asks “How do I write a program to download web

pages?” You will either be ignored or greeted with a barrage of abusive

replies.

Start by searching the archives for the mailing list (or previous forum

entries) to make sure your question hasn’t already been asked and

answered. Assuming it hasn’t, start by explaining the problem clearly,

describe exactly what you’ve tried so far, and state clearly what hasn’t

worked.

You can take a look at Matt Gemmell’s blog post on this topic, avail-

able at http://www.whathaveyoutried.com, for a more detailed explanation

of how to ask questions. The fact that the blog post has a dedicated

domain name should give you some idea how important it is to follow

the correct etiquette.

Making Contacts

Twitter is an excellent way to get connected with other Mac developers.

You can follow conversations about interesting problems or see the lat-

est and greatest tools and techniques get summed up in less than 140

characters.

The best networking (the social kind) is done in person at Mac devel-

oper events. Check http://www.cocoaheads.org/ and http://nscodernight.

com to see whether there’s a local developer group near you. These

events are great for getting together, usually with drinks, and sharing

coding problems with like-minded people.

The major Mac developer conference is WWDC (http://developer.apple.

com/wwdc/), run by Apple each year in San Francisco. This is a mam-

moth event with several thousand attendees, so it can be a bit daunting

for first-timers, but there are also lots of independent conferences run

throughout the year on a smaller scale, such as C4 (http://c4.rentzsch.

com/) in Chicago, and NSConference (http://www.nsconference.com/),

which I coorganize, in the United States and Europe. These confer-

ences are often as much about networking as they are about technical

content, and they have only a few hundred attendees, so it’s easy for

everybody to get to talk to everybody else.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://www.whathaveyoutried.com
http://www.cocoaheads.org/
http://nscodernight.com
http://nscodernight.com
http://developer.apple.com/wwdc/
http://developer.apple.com/wwdc/
http://c4.rentzsch.com/
http://c4.rentzsch.com/
http://www.nsconference.com/
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=385

BOOK SUMMARY 386

14.3 Book Summary

That’s it! (Well, almost...)

Congratulations on making it through the early stages of becoming a

software developer. I hope you feel confident enough to venture out

on your own, start designing your own applications from scratch, and

figure out where to go when you need help.

It’s an overwhelming feeling when you start your first Xcode project

for your first application. You’ll probably very quickly discover that you

don’t yet know enough to do exactly what you want, but don’t panic.

Work out the general topic that you need to learn, Google a few search

terms, look at some overview guides, read a few blog posts, and every-

thing really will be OK.

As you become more accomplished, keep in mind that you should never

have any code in your project that you don’t fully understand or know

exactly why it’s there and what it does. In the beginning, this is obvi-

ously going to be difficult, and it’s tempting to copy and paste code from

any source that looks like it might work. Try to examine why each line

of code that you use is necessary, and experiment a little to see whether

you can’t make it work better.

Unless you’re writing a virus,5 working with very low-level code, or try-

ing to write information to protected directories, it’s hard to do any

permanent damage to your system, so experiment to see what works

and what doesn’t. If you find something that does work, however, make

sure you understand why it works. Don’t just assume that because

you’ve fiddled a method to work in the way you want this time, it will

always work in the right way!

This isn’t quite the end of the book. Now that you’ve learned about

Mac desktop programming, you might like to try your hand at writing

software for the iPhone; if so, Appendix A, on the following page might

be just what you’re looking for.

5. Please don’t.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=386

Appendix A

Developing for the iPhone OS
Even though this book is titled Beginning Mac Programming, there’s so

much overlap between what we’ve already learned and what’s needed

to write software for the iPhone OS, that it’s worth taking a quick peek

at what’s possible on the “other Apple platform.”

The iPhone OS is the operating system running on iPhones, iPod

touches, and also on Apple’s new iPad device. At the time of writing,

the tools and techniques used to build iPad applications are under

Non-Disclosure Agreement, so I can’t discuss them here. Rest assured,

however, that a standard iPhone OS application will run just fine on

the iPad. From now on, when I talk about the “iPhone,” take it to mean

any device that runs the iPhone OS.

In this chapter, we’re going to build a fairly simple iPhone application

that displays a message to the user when a button is pushed on screen.

To make it a little more interesting, we’ll allow the user to specify the

message to be shown, storing this preference in what’s known as user

defaults. This will be restored any time the application is run in the

future.

We’ll be learning about how the iPhone works with views and view con-

trollers and seeing how to tap into the view cycle to change interface

elements just before they appear on screen. Along the way, we’ll learn

about some of the differences between Mac and iPhone development

and look at how to work with Cocoa Touch on iPhone OS devices, rather

than the Cocoa classes we’ve been using on the desktop.

Everything that we’ll learn about user defaults also applies on the desk-

top, so even if you never plan on writing your own iPhone software, the

information will still be useful.

Prepared exclusively for James Carlson

APPENDIX A. DEVELOPING FOR THE IPHONE OS 388

Figure A.1: The New Project window for iPhone applications

Before we can get started, make sure that you have followed the instruc-

tions in Section B, Installing the iPhone SDK, on page 407. You don’t

need to have an iPhone developer account (or even an iPhone) to follow

this chapter, because we’ll be working entirely in the iPhone Simulator.

Once the iPhone SDK is installed, we’re ready to make our first iPhone

application!

Creating an iPhone Project

Launch Xcode, and choose File > New Project... (B-D- N). Then click

Application, under the iPhone OS heading, as shown in Figure A.1.

Xcode offers a number of different templates for iPhone applications:1

1. Bear in mind that just because you choose one type of application template when you

create your project, it doesn’t mean you can’t incorporate features from the other types

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=388

APPENDIX A. DEVELOPING FOR THE IPHONE OS 389

• An app based on the Navigation-Based Application template allows

the user to navigate back and forth through screens of informa-

tion, like Apple’s own Mail application on the iPhone, which navi-

gates into and out of mail inboxes and subfolders.

• An app based on the OpenGL ES Application template uses 3D

rendering with OpenGL to display its interface; this template is

often used for developing games.

• An app based on the Tab Bar Application template uses tabs along

the bottom of the interface so that the user can tap to switch

between different screens of information, like the iPhone’s all-

important Phone application, with its tabs for Favorites, Recents,

Contacts, Keypad, and Voicemail.

• The View-based and Window-based Application templates are sim-

ple starting templates, leaving you to decide how you want to

structure the application.

We’ll be using the Utility Application template for our application, so

select it in the New Project window, and click Choose.... Call the appli-

cation “MessageTapper,” and click Save.

Before we examine any of the files in the project, click Build & Run to

compile the project and launch it in the iPhone Simulator.

Once the simulator has appeared on your screen, the new application

will be installed and run, so we can see what we get bundled up for free

with the Utility Application template.

The simulator screen will fill with gray, along with a single i button.

Tap (click) this button, and you’ll be treated to a veritable masterpiece

of Core Animation technology, flipping the screen around to display

what appears on the reverse side, as shown in Figure A.2, on the next

page.

Tap the Done button, and the screen will flip back again. Press the

simulator’s Home button to exit the application, and then switch back

to Xcode to see how much code it takes to make all this work.

later—many iPhone applications exhibit characteristics from each of the Xcode template

projects. The templates are just there to give you a head start.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=389

APPENDIX A. DEVELOPING FOR THE IPHONE OS 390

Figure A.2: A Utility Application in the simulator

Examining the Files

The important code and interface files from this template are organized

into groups—expand the Main View, Flipside View, Application Dele-

gate, and Resources groups to see their contents.

You’ll find that the Resources group contains a MainWindow.xib file,

which is similar to the standard MainMenu.xib file found in desktop

apps—it sets up a “window” (which you can think of as a portal through

which information is displayed on the iPhone screen) and the applica-

tion delegate. If you open MessageTapperAppDelegate.m, you’ll see that

the template class includes two methods, applicationDidFinishLaunching:

and dealloc, just like you might find in any desktop app delegate object.

The applicationDidFinishLaunching: method creates a new view controller,

an instance of MainViewController, using the contents of the MainView.xib

interface file.

We’ve talked quite a bit about controller objects on the desktop. On

the iPhone, if you have a view that fills the screen (like a list of email

messages), that view will usually have an accompanying view controller.

We’ll look at iPhone view controllers in a minute; for now, open Main-

View.xib in Interface Builder to see how the view is set up.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=390

APPENDIX A. DEVELOPING FOR THE IPHONE OS 391

Figure A.3: The Interface Builder file for an iPhone view

When the file opens, double-click the Main View object to open the view,

and then right-click (or C-click) the little i button at the bottom right of

the view editor, as shown in Figure A.3.

You’ll find that a button object on the iPhone has a number of different

events available to connect to different actions. The Touch Up Inside outlet

of the button is connected to the showInfo method on File’s Owner, which

means that if a user taps the button and then releases their finger

still over the button, this method will be called. This is usual button

behavior, allowing a user to change their mind and drag out of the

button before releasing their finger, and it mimics the behavior we wrote

into our WVShapesView in Section 13.3, Providing Visual Feedback, on

page 356.

The File’s Owner object in MainView.xib will be a MainViewController object,

so switch back to Xcode, and open MainViewController.h to see how the

class is defined.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=391

APPENDIX A. DEVELOPING FOR THE IPHONE OS 392

The interface for the MainViewController class looks like this:

@interface MainViewController : UIViewController <FlipsideViewControllerDelegate> {

}

- (IBAction)showInfo:(id)sender;

@end

You’ll notice that this class adopts a delegate protocol, FlipsideViewCon-

trollerDelegate, which we’ll look at later. The most important thing, how-

ever, is that it inherits from UIViewController.

Although we haven’t covered them in this book, view controller objects

are also available on the Mac desktop,2 with a classname of NSViewCon-

troller. On the iPhone, the classname is UIViewController, which is the first

class we’ve seen belonging to UIKit.

Introducing Cocoa Touch and UIKit

Every single chapter of this book has referred to objects from the Cocoa

framework—so far, always bearing the initials NS. What I haven’t yet

mentioned is that “the Cocoa framework” is actually made up of multi-

ple frameworks, including Foundation and Application Kit.

The Foundation framework includes objects sch as NSObject, NSArray,

and NSDictionary—the basic building blocks for our code. The Appli-

cation Kit (or AppKit) framework includes objects such as NSWindow,

NSTextView, and NSMenuItem—the visual elements that define Mac OS X

desktop applications.

Since a window on the desktop is a very different concept from a win-

dow on an iPhone, and the iPhone doesn’t run Mac OS X, we don’t have

access to any of the AppKit classes when we develop software for the

iPhone. Instead, we have access to UIKit, containing objects like UIWin-

dow and UITextView. As you might already have realized, these classes

generally have names beginning with UI.

Although we don’t have AppKit on the iPhone, the fundamental objects

provided by the Foundation framework are available. Together with

UIKit (and lots more besides), they’re referred to as Cocoa Touch, the

iPhone-equivalent of Cocoa on the desktop.

2. They’re normally used to split a complex window interface into more manageable

components.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=392

APPENDIX A. DEVELOPING FOR THE IPHONE OS 393

Now that you know about UIKit, let’s get back to looking at how our

iPhone application works.

Flipping the View

Open MainViewController.m, and find the implementation for the showInfo:

method (the method called when the user taps the i button). It looks like

this:

- (IBAction)showInfo:(id)sender {

FlipsideViewController *controller = [[FlipsideViewController alloc]

initWithNibName:@"FlipsideView" bundle:nil];

controller.delegate = self;

controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;

[self presentModalViewController:controller animated:YES];

[controller release];

}

This method creates the new view controller, using an alloc] init...] call,

sets itself as the delegate, sets a transition style, and then calls present-

ModalViewController:animated: to display the view controller modally. A

modal view controller is like a modal dialog box on the desktop—it pre-

vents the user from doing anything else in the application until it’s dis-

missed. Finally, the controller is released (it will be retained elsewhere

while it’s on screen) to match the initial alloc.

Next, open FlipsideViewController.m to see what’s happening inside this

file. There’s another IBAction, done:,3 which is connected (in Flipside-

View.xib) to the Done button. This method looks like this:

- (IBAction)done:(id)sender {

[self.delegate flipsideViewControllerDidFinish:self];

}

A modal UIViewController has to be dismissed from the screen by the

same view controller that originally called presentModalViewController:

animated: to display it, which, in this case, is the MainViewController.

For the two view controllers to communicate, the MainViewController sets

itself as the delegate of the FlipsideViewController object, as we’ve already

seen, and conforms to a protocol defined in FlipsideViewController.h.

3. You may find that some of the IBAction methods in Xcode template files are missing the

:(id)sender. It won’t make any difference; you just won’t be able to find out which object

sent the message in the first place.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=393

APPENDIX A. DEVELOPING FOR THE IPHONE OS 394

MainViewController implements the delegate message flipsideViewControl-

lerDidFinish: to dismiss the modal view controller, like this:

- (void)flipsideViewControllerDidFinish:(FlipsideViewController *)controller {

[self dismissModalViewControllerAnimated:YES];

}

This has the effect of reversing the animation effect used to display the

flip-side view.

Note that the views displayed by the view controllers are each a sub-

class of UIView, allowing us to customize their appearance; if you look in

the code files for these views, however, you’ll find that, as in MainView.m,

the method implementations inside don’t actually do anything, so they

are effectively standard UIView instances.

Adding Our Messaging Behavior

Now that we’ve been introduced to the underlying structure of our

application, let’s add some simple messaging functionality. We’ll start

by adding a button to the main view, so open MainView.xib.

Drag a UIButton from the Library palette, drop it in the middle of the

view, and change its title to “Tap Me!”

Next, drag out a UILabel object to display the message.4 Resize it to

stretch across the view, and then use the Attributes inspector to change

the text Layout to centered and the Color to white so that your view

looks like Figure A.4, on the following page.

Switch to Xcode, and open MainViewController.h; add an outlet for the

label and an action method to display the message, like this:

@interface MainViewController : UIViewController <FlipsideViewControllerDelegate> {

IBOutlet UILabel *messageLabel;

}

- (IBAction)showInfo:(id)sender;

- (IBAction)displayMessage:(id)sender;

@end

4. Note that a label in UIKit is its own object, a UILabel, rather than just an uneditable

variety of an NSTextField under AppKit on the desktop.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=394

APPENDIX A. DEVELOPING FOR THE IPHONE OS 395

Figure A.4: The button and label in Interface Builder

Return to the MainView.xib file in Interface Builder, link up the message-

Label outlet, and then connect the displayMessage action to the button’s

Touch Up Inside event. Save the file, and return to Xcode.

Open MainViewController.m, and implement the displayMessage: method,

like this:

- (IBAction)displayMessage:(id)sender

{

[messageLabel setText:@"Hello World!"];

}

Before we test the application, there’s one very important point to

notice: IBOutlets in iPhone applications need to be specifically released

from memory, unlike their desktop counterparts.

So, find the MainViewController’s dealloc method and release the outlet:

- (void)dealloc {

[messageLabel release];

[super dealloc];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=395

APPENDIX A. DEVELOPING FOR THE IPHONE OS 396

Build & Run the application to test this in the simulator. When you

press the button, you’ll see the message displayed by the label; the

only problem is that the label shows the text “Label” when you first

start the application.

We could fix this just by removing the label’s initial title in the xib file,

but it would be even better if the label was hidden whenever the view

appeared. This would have the added benefit that if the user presses

the i button to flip the view and then presses Done, the label will be

hidden, ready to be redisplayed when the Tap Me! button is pressed.

Making Use of Inherited View Controller Functionality

There are a number of useful UIViewController methods that are called

when a controller is loaded into memory or its view displayed:

- viewDidLoad // called when a view controller is loaded into memory

- viewWillAppear: // called just before a view appears on screen

- viewDidAppear: // called just after a view has appeared on screen

- viewWillDisappear: // called just before a view disappears from screen

- viewDidDisappear: // called just after a view disappears from screen

- viewDidUnload // called when a view controller is unloaded from memory

We can use the viewWillAppear: method to hide the label just before the

view is displayed on screen; we’ll also have to show the label again after

we’ve set its text in displayMessage:. So, add the following into MainView-

Controller.m:

- (void)viewWillAppear:(BOOL)animated {

[super viewWillAppear:animated];

[messageLabel setHidden:YES];

}

- (IBAction)displayMessage:(id)sender

{

[messageLabel setText:@"Hello World!"];

[messageLabel setHidden:NO];

}

Note that we need to call the inherited viewWillAppear: method before we

do anything ourselves.5

5. The animated argument specifies whether the view appeared on screen with anima-

tion or whether it was displayed with a call like [self presentModalViewController:controller

animated:NO], which would cause the view to appear immediately.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=396

APPENDIX A. DEVELOPING FOR THE IPHONE OS 397

Build & Run the application again; this time the label will be hidden at

launch, reappear when the button is pressed, and then disappear once

more if you flip in and out of the other view. That was pretty easy!

Next, let’s make use of the flip-side view to allow users to set their own

message texts.

Allowing the User to Change the Text

We’re going to be working with a text field, an instance of the UIKit

class UITextField, so let’s add an outlet for this into FlipsideViewController.h

before setting up the interface.

The messageLabel outlet we created earlier in the chapter was declared

in the same way as every other outlet in this book, using the IBOutlet

keyword on the front of the instance variable declaration. If you look at

a lot of iPhone sample code, however, you’ll find that outlets in iPhone

code are normally specified using properties. As mentioned in the side-

bar on page 331, if you declare a @property for the outlet, the IBOutlet

should go in the property declaration, rather than the instance variable

declaration.

Let’s declare the outlet for the text field using a property, in FlipsideView-

Controller.h:

@interface FlipsideViewController : UIViewController {

id <FlipsideViewControllerDelegate> delegate;

UITextField *messageTextField;

}

@property (nonatomic, assign) id <FlipsideViewControllerDelegate> delegate;

@property (retain) IBOutlet UITextField *messageTextField;

- (IBAction)done:(id)sender;

@end

You will need to @synthesize the property in FlipsideViewController.m and re-

lease it in the dealloc method:

@implementation FlipsideViewController

@synthesize delegate;

@synthesize messageTextField;

- (void)dealloc {

[messageTextField release];

[super dealloc];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=397

APPENDIX A. DEVELOPING FOR THE IPHONE OS 398

Figure A.5: Configuring the UITextField in Interface Builder

We’re now ready to add this text field to the interface, so open Flipside-

View.xib in Interface Builder.

Start by adding a UILabel object near the top of the view, with its title

set to “Change Message:” and the Text Color set to white.

Next, drag a UITextField from the Library palette, and drop it under the

label. Resize it to fill the view horizontally, and use the Attributes in-

spector to change the font to Helvetica, 17pt, as shown in Figure A.5.

Connect the messageTextField outlet from File’s Owner to the text field,

save the file, and then return to Xcode.

Build & Run the project to see what you have so far. Once the appli-

cation has launched in the simulator, tap the i button to display the

flip-side view; tap the text field to make it first responder, and the stan-

dard iPhone keyboard will appear, ready for you to type a message.

If you click the Done button, the modal dialog box will disappear, along

with the keyboard. The only thing we haven’t yet implemented is a

means to pass the typed message over to the main view controller, ready

for display in the label.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=398

APPENDIX A. DEVELOPING FOR THE IPHONE OS 399

We might implement this behavior in several ways. One example would

be to add a method to the FlipsideViewControllerDelegate protocol to allow

us to send a message back to the main view controller.

Since we also need to be able to keep track of the message for later

retrieval, let’s see how to store the value in user defaults, giving us the

added benefit that the stored value can be accessed by the other view

controller without us having to pass it directly.

Working with User Defaults

It’s extremely common for applications, both on the desktop and on the

iPhone, to allow the user to specify preferences. An email application

might allow the user to change the font used to display the text of a

message, for example, or change the signature used at the bottom of

outgoing messages.

Both Cocoa and Cocoa Touch make it extremely easy to save this kind

of information, through the use of a class called NSUserDefaults.

Working with NSUserDefaults is just like working with a dictionary object;

you set values for specified keys, and those values are saved into a

suitable preferences file, ready to be accessed at a later stage.

Let’s see how to modify our MessageTapper application to save any

user-defined message into the user defaults; we’ll do this when the

user presses the Done button on the flip-side view.

We will need to have access to an NSUserDefaults instance—luckily, NS-

UserDefaults offers a class method, standardUserDefaults, which returns

just what we need.

So, open FilpsideViewController.m, and change the done: action to the

following:

- (IBAction)done:(id)sender {

NSString *messageString = [self.messageTextField text];

NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];

[userDefaults setObject:messageString forKey:@"kMessageString"];

[self.delegate flipsideViewControllerDidFinish:self];

}

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=399

APPENDIX A. DEVELOPING FOR THE IPHONE OS 400

We start by asking the messageTextField for its text; then, we get hold

of the standardUserDefaults object and use it to set the message string

under the key @"kMessageString".6

Add a viewWillAppear: method to display the current message string in

the text field when this flip-side view appears:

- (void)viewWillAppear:(BOOL)animated {

NSString *messageString = [[NSUserDefaults standardUserDefaults]

stringForKey:@"kMessageString"];

[self.messageTextField setText:messageString];

}

Next, we need to change the code that displays the message on the

main view so that the string is taken from the user defaults.

Open MainViewController.m, and change the displayMessage: method to

this:

- (IBAction)displayMessage:(id)sender

{

NSString *messageString = [[NSUserDefaults standardUserDefaults]

stringForKey:@"kMessageString"];

[messageLabel setText:messageString];

[messageLabel setHidden:NO];

}

Don’t test the application yet—there’s a problem with this solution: the

first time a user runs the application, there won’t be a string stored

in user defaults, so there won’t be any message to display when the

button is tapped.

We could run a test to check whether a string exists and generate one if

not, but there’s a better way. NSUserDefaults allows us to register default

values for specific keys; these values will be used until the user over-

rides them.7

6. You might prefer to consolidate these three lines of code into one: [[NSUserDefaults

standardUserDefaults] setObject:[self.messageTextField text] forKey:@"kMessageString"]; and/or use

a global string variable to keep track of the key, as described in Section 13.2, Declaring

Global Variables, on page 344 (you’ll need to refer to the sidebar on page 345 to find out

how to make that global variable accessible from other files that want to use it).
7. There’s also the added benefit that we can reset the user defaults to their original

values at any time, allowing a user to get rid of non-default preferences and return the

application to its “factory” state.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=400

APPENDIX A. DEVELOPING FOR THE IPHONE OS 401

Setting Default Values

The method we need to use to set these initial values is registerDefaults:,

which takes a dictionary containing the values we want set for each

key. This seems easy enough; the only question is when should we do

this?

To set the initial defaults to be ready the first time they are requested,

we need to register them as early as possible after the application is

launched. Any ideas when this might be?

I hope you remembered that the application delegate object has an

applicationDidFinishLaunching: method, which will be called just after the

application launches. This is the perfect place, so open MessageTapper-

AppDelegate.m, and add the following:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

NSDictionary *initialDefaults =

[NSDictionary dictionaryWithObject:@"Hello World!"

forKey:@"kMessageString"];

[[NSUserDefaults standardUserDefaults] registerDefaults:initialDefaults];

MainViewController *aController = [[MainViewController alloc]

initWithNibName:@"MainView" bundle:nil];

self.mainViewController = aController;

[aController release];

mainViewController.view.frame = [UIScreen mainScreen].applicationFrame;

[window addSubview:[mainViewController view]];

[window makeKeyAndVisible];

}

Build & Run the application, and you’ll find that the Hello World! mes-

sage is still displayed when you tap the button. You can change the

message if you want, and this message will be saved; if you exit the

application and relaunch, the message will still be there. Hooray!

Summary

This appendix has taken us on a whistle-stop tour of a simple iPhone

application. We’ve covered a lot of technical concepts—some specific to

the iPhone and some that also apply to the desktop.

Developing for the iPhone involves working with Cocoa Touch, which

includes some of the functionality from Cocoa on the desktop, but

the AppKit classes (like NSWindow) are replaced by UIKit classes (like

UIWindow).

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=401

APPENDIX A. DEVELOPING FOR THE IPHONE OS 402

We’ve seen how to work with user defaults (which work in the same way

on the desktop) to store user preferences for an application—you don’t

want to use them to store any data that users might want to locate

on disk, though, not least because most users aren’t too comfortable

trawling through Library directories, looking for unusually named files

where the values are stored.

If you are now hooked on iPhone development, you might want to

consider signing up as a registered iPhone developer through http://

developer.apple.com/iphone. This will enable you to provision an iPhone

(or iPod touch) for use as a development machine so that you can test

your applications on a real device. Once you’ve developed the killer

application you’ve got in mind, you’ll be able to submit it for sale on the

App Store and then sit back and watch the money roll in!

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://developer.apple.com/iphone
http://developer.apple.com/iphone
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=402

Appendix B

Installing Xcode
One of the great things about Apple’s developer tools is that they are

available free of charge to anybody who wants them.

There are two options for getting hold of the software, either from

Apple’s Developer Connection website or from a Mac OS X install disc.

This could be either the system disc that came with your Mac or a Snow

Leopard installation disc if you bought the upgrade later.

If you have a previous version of Xcode on your machine and want to

upgrade to the latest version, then continue reading—the process is

similar. You may find that you have some remnants of the older version

even after running the installation scripts, and we’ll look at a few ways

to clear these out.

Developer Tools Installation

The best option is to download the Developer Tools from the Web to

ensure you have the most recent version—it’s a sizeable download,

though (a gigabyte or more).

If you don’t have a fast Internet connection or don’t want to have to

register for any developer accounts, skip to Section B, Using System

Discs, on the next page, to locate the tools on your Mac OS X system

install discs.

Downloading the Tools

If you want to be able to take advantage of the iPhone information

in Appendix A, on page 387, it’s worth downloading the iPhone SDK

package now, because it includes both Mac and iPhone support. You’ll

Prepared exclusively for James Carlson

APPENDIX B. INSTALLING XCODE 404

need to register for a free iPhone developer account before you can

download anything, though, and you’ll also need an Intel-based Mac.

Here are the steps:

1. Go to http://developer.apple.com/iphone/.

2. Click the Register link (at the time of writing, this can be accessed

directly via http://developer.apple.com/iphone/sdk1/), and follow the

instructions.

3. Once you’ve registered your account and logged in, find the Down-

loads section. There may be two different download headings,

depending on whether you’re running Mac OS X 10.5 Leopard or

Mac OS X 10.6 Snow Leopard, so make sure you pick the right file

under the correct heading.

4. There should be two files listed, one with a title like iPhone SDK 3.1.2

with Xcode 3.2.1 (the version numbers may be higher) and the other

with a title like iPhone SDK 3.1.2 with Xcode 3.2.1 Readme. You want

the first of these files—don’t worry about the Readme, because it’s

included inside the SDK package anyway.

If you don’t have an Intel-based Mac or don’t want to install the whole

iPhone SDK as well as the Mac, you can download an Xcode package

without the iPhone SDK. You’ll need to register for a free Mac Developer

Program account:

1. Go to http://developer.apple.com/products/membership.html, and fol-

low the instructions to register for a free ADC online membership.

2. Once you’ve registered and logged in, find the link to download

Xcode; the name should be something like Xcode 3.2.1 under Snow

Leopard or Xcode 3.1.4 for Leopard (the version numbers may be

higher).

When the download completes, you’ll end up with a .dmg disk image;

double-click this in the Finder to mount it, and then skip to Section B,

The Installation Process, on the next page.

Using System Discs

The Mac-only Developer Tools are included on the system discs that

originally came with your Mac; they’re also on any OS Installation discs

if you purchased an OS upgrade at a later date.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://developer.apple.com/iphone/
http://developer.apple.com/iphone/sdk1/
http://developer.apple.com/products/membership.html
http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=404

APPENDIX B. INSTALLING XCODE 405

You’ll find Xcode inside the Optional Installs directory, as an installer

package with a name like Xcode.mpkg.

The Installation Process

Once you’ve located the installer, double-click it to launch it. You’ll need

to agree to a license agreement (two if you’re installing from the iPhone

SDK package) before continuing.

You’ll be asked to customize the installation, selecting various options

in the list—it’s usually fine just to accept the default options. If you’re

given the option of installing Mac OS X 10.4 Support, you might want to

leave this unchecked; if you specifically need to write software that will

run under earlier versions of Mac OS X, you can always install this

later.

Follow the rest of the instructions on screen to install the Developer

Tools package on your system.

What’s Been Installed?

When the installation finishes, it might not be immediately obvious

what’s been installed, or where.

The Developer Tools package is a collection of applications, software

development kits (SDKs), and documentation, most of which is installed

inside the Developer directory at the root level of your main hard disk.

Rather confusingly, the term Xcode can be used to refer either to the

entire Developer Tools collection or just to the specific Xcode applica-

tion. When you see Xcode mentioned in the main body of this book, it’s

generally referring to the application.

You can find Xcode in the Developer directory’s Applications directory.

You might want to add Xcode to your Dock to save having to locate

it every time you want to use it. You don’t necessarily need to add

Interface Builder to the Dock because you can launch it when you need

it by double-clicking an interface file from within an Xcode project.

This should be everything you need to work through the book!

Upgrade Problems

If you already have an older version of Xcode on your system before you

run through the installation process, you may run into some issues

where the older templates continue to show up for new projects. This

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=405

APPENDIX B. INSTALLING XCODE 406

seems to happen occasionally when upgrading from Xcode 3.1 to Xcode

3.2 on Snow Leopard.

If you run into this problem, there are various things you can do to

try to fix it—some of these fixes involve working in the command line,

some with removing files by hand from library directories, so exercise

caution!

The first thing to do is to try uninstalling the Developer Tools com-

pletely and then starting the whole installation process from scratch.

The Release Notes or Readme included with the latest version that you

have will include a section titled “Uninstalling Xcode Developer Tools”;

at the time of this writing, this involves using a Terminal window and

typing commands.

To find the Terminal application, open your main Applications directory

(as in, the one with Mail, Safari, and so on), and find the Utilities directory

inside. The terminal app allows you to interact with your Mac in a more

traditional, command-line way.

The removal instructions in the Xcode Readme involve the use of a

command preceded by the word sudo, looking something like this:

sudo <Xcode>/Library/uninstall-devtools - -mode=all

The sudo term is used to indicate that the following command should

be executed with root privileges, so you’ll be asked for your password;

type this into the terminal (the password characters won’t appear), and

press the F key to continue.

Note that it’s possible to do various nasty things to your system by

typing the wrong command into the Terminal; make sure you have a

good backup in place if you don’t feel confident with the command line.

Once this uninstall script has completed, start the whole Developer

Tools installation process again.

If you find you still have problems, you might want to try removing

the necessary files manually. This means removing the entire Developer

directory itself first and then any additional supporting files.

Check in the Library directory, inside your home directory, and open the

Application Support directory. A quick Finder shortcut to get to this direc-

tory is to select Go > Go to Folder... (B-D- G) and type the following:

~/Library/Application Support

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=406

APPENDIX B. INSTALLING XCODE 407

The first character is a tilde and will be translated into “the user direc-

tory for the current user.”

Click OK, and you will see the contents of this directory. Look for

any directories relating to Xcode or the Developer Tools and remove

them; this might include Apple Developer Tools, Xcode, and Developer

directories.

The Application Support directory is used to hold user preference and

configuration files relating to the current user. Removing these files

shouldn’t break anything, but again it’s a good idea to have a backup

of your system before proceeding.1

Installing the iPhone SDK

If you previously downloaded only the Mac tools or installed Xcode from

a system disk, the only way to get hold of the iPhone SDK is to download

it and install it on top.

You’ll need to register for an iPhone developer account (there’s a free

option) and follow the instructions from Section B, Downloading the

Tools, on page 403 onward. When you run the installer package, you’ll

find that it now indicates that some files will be installed, but some will

either just be upgraded or ignored altogether.

You’ll be able to test your iPhone applications in the iPhone simulator,

running on your Mac. If you own an iPhone or iPod Touch, you won’t

be able to test your applications on that device unless you sign up for

one of Apple’s paid iPhone developer programs (from $99 per year).

1. It’s always a good idea to have regular backups of your important files! Apple’s Time

Machine software, built into Mac OS X since 10.5 Leopard, makes it very easy to keep

regular backups. Given that large hard disks are now so inexpensive, it’s getting more

and more difficult to come up with excuses not to have a backup system in place.

Report erratum

this copy is (P1.0 printing, March 2010)
Prepared exclusively for James Carlson

http://books.pragprog.com/titles/tibmac/errata/add?pdf_page=407

Appendix C

Bibliography

[DK09] Mark Dalrymple and Scott Knaster. Learn Objective-C on the

Mac. Apress, New York, NY, 2009.

[Dud08] Bill Dudney. Core Animation for OS X: Creating Dynamic

Compelling User Interfaces. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2008.

[Hil08] Aaron Hillegass. Cocoa Programming for Mac OS X. Addi-

son-Wesley, Reading, MA, third edition, 2008.

[Ist10a] Tim Isted. Building Data-Driven Desktop Applications for Mac

OS X. Addison-Wesley, Boston, MA, 2010.

[Ist10b] Tim Isted. Core Data for iPhone: Building Data-Driven Appli-

cations for the iPhone and iPod Touch. Addison-Wesley,

Boston, MA, 2010.

[Koc09] Stephen G. Kochan. Programming in Objective-C 2.0.

Addison-Wesley, Boston, MA, second edition, 2009.

[Ste09] Daniel H Steinberg. Cocoa Programming: A Quick-Start Guide

for Developers. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2009.

[Zar09] Marcus Zarra. Core Data: Apple’s API for Persisting Data

under Mac OS X. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2009.

[ZL09] Marcus Zarra and Matt Long. Core Animation: Simpli-

fied Animation Techniques for Mac and iPhone Development.

Addison-Wesley, Boston, MA, 2009.

Prepared exclusively for James Carlson

Index
Symbols
%p, 92, 94

+ sign, 112, 141

- sign, 112

= sign, 187

@"\n" newline character, 144

@ notation, 157

@%f string, 134

[super dealloc] method, 172

!, 199

++ operator, 223, 224

-- operator, 223, 224

== operator, 201

= operator, 276

@"string", 220

&& operator, 196

|| operator, 195, 204

>= operator, 227

> operator, 225, 227

<= operator, 227

< operator, 225–227

A
Abstract class, 370

acceptsFirstResponder method, 361

Accessor methods, 200, 267, 268

Objective-C 2.0 properties, 271–277

Action signature, 62

Actions

connecting button to, 65f

connecting to, 62

sent by push button, 66f

addNewItemToShoppingList: method, 255

Address Book application, 183

Address checking, 92

Alert display, 212, 213f

alloc method, 121, 140, 143

Ampersands, 92

AND operator, 196, 197

Angle brackets, 323

Animation frames, 378

Apple developer forums, 385

Apple-run email lists, 384

Application delegate, 284, 330

Application Kit, 392

Application object, 45

applicationDidFinishLaunching: method,

332, 401

applicationWillFinishLaunching: method,

332

Archiving, 367–374

Arguments, 60

initializing with, 137–140

methods and, 105–110

rowIndex, 175

Array of arrays, 242

Arrays

adding items to, 158, 159f

collecting, 148

count message, rows, 174

counting items in, 153

creating, 172

defined, 145

editing items, 176

efficiency of, 155

index of items, 151

indices for, 228

introduced, 145–148

list view, in IB, 167f

memory and, 156

multiple, 242

naming conventions, 146

opening a saved list, 179

pointers and, 156

releasing, 172

saving, 178

setting up, 170

Prepared exclusively for James Carlson

ARRAYWITHCAPACITY: COCOA FRAMEWORK

in shopping list application, 160f,

160–181

shopping list application,

dictionaries, 251–261

static, 153

strong object reference, 156

table view, 165f

table views and, 173

using, 148–153

see also Looping, see also Objects

arrayWithCapacity:, 155

arrayWithObjects: method, 146

ASCII, 86

Ash, Mike, 209

assign keyword, 273

Assignable values, 34

Assignment operator, 81–83, 185, 186,

209, 215, 276

Asterisks, 60, 66, 94, 117

Asynchronous tasks, 382

aTableColumn, 241

Attribute inspector, 308

Attributes, 35, 178

Core Data, 378

inheritance and, 39

Attributes palette, 105

autorelease, 135, 136

Autoreleasing, 140

Autosizing, 290

awakeFromNib method, 332

B
Base object class, 44

Bezier path object, 304

Binary notation, 76

Bindings, 323, 381

Bits, 75, 76, 83

Blocks of code, 47

BOOL keyword, 72

BOOL variable, 199, 201

Boolean values, 72, 199

bounds property, 297

break keyword, 230, 235, 236

break statement, 207

Bugs, 193, 207

Build & Run command, 21, 25, 28, 54,

59, 71, 72

Buttons

adding, 105

changing text on, 127

distinguishing between, 214

writing code for delete, 215

Byte size, 93

Bytes, 75, 78, 91f, 91, 92, 129

C
C4 conference, 385

Calendar application, 221, 222f

see also Looping

Camel case, 106

Caret, 360

case keyword, 230

Cells, 240, 250, 315f, 317f, 310–318,

321

custom object, 326

delegate method, 326

table view of, 165

char keyword, 86

Checkbox, 246

Choose... button, 18

Circle example, 100–113, 127

circumferenceFromRadius: method, 108,

109

@class declaration, 323

Class description, 35, 37, 43

Class methods, 111–115

class of an object, checking, 259

Classes

adding new, 125

controller, 164, 168

descriptions for, writing, 41

file types for, 42

inheritance, 39, 45, 124

mutable, 155

naming, 44

pointers, declaring, 67

protocols, 173

public interface, 46

subclassing, 44

types of, 239

writing new, 111–115

see also specific class names

Click-release, 351

Cocoa application, 16, 18

Cocoa Bindings Programming Topics

(Apple), 381

Cocoa document-based application, 16

Cocoa framework, 22–23

base object class and, 44

concurrency, 382

control types in, 246

Core Animation, 377–378

410
Prepared exclusively for James Carlson

Cocoa Programming for Mac OS X, 3RD ED CORE GRAPHICS

Core Data, 378

defined, 22

Foundation and Application Kit, 392

multiple frameworks of, 392

reference counting technique, 131

see also Target-action mechanism

Cocoa Programming for Mac OS X, 3rd

Ed (Hillegass), 383

Cocoa Programming: A Quick-Start

Guide for Developers (Steinberg),

383

Cocoa Touch, 392

cocoa-dev, 384

Code blocks, 52

Code compiler, 62

Code consolidation, 109–110

Code readability, 87, 110, 243

Code, downloading, 29

Collecting an array, 148

Colons, 60, 106–108

Color coding, 20, 46

Colors, 298

Columns, 329

Comma-separated list, 147

Comment out code, 20

Comments

about, 20

color coding in, 20

method signatures, 322

uses for, 20

Comparative operators, 225

Comparing objects, 201

Compile-time, 74

componentsJoinedByString: method, 219

Concrete subclass, 370

Concurrency, 381

Concurrency Programming Guide

(Apple), 382

condition, 225

Conditional blocks, 203

Conditional statements, 163, 199

adding to shopping list application,

210–217

init methods, 208–210

multiple checks for, 205

Conferences, 385

Conforming, to protocol, 322, 323

Connections palette, 105

Consolidation, of code, 109–110

Constant variable, 261

Constants, 214

Content view, 291

continue keyword, 230, 235, 236

Control types, 246

controller objects, 239

Controller class, 164, 168

Controller objects, 278

Controller, linking interface to, 167

Conventions, 41, 45

accessor method names, 274

argument syntax, 60

blocks of code, 47

class descriptions, 47

class method form, 140

class method syntax, 112

class names, 44

file extensions, 164

instance method syntax, 112

logical expression syntax, 185

method syntax, 107

naming, 106

naming arrays, 146

operator syntax, 186

pointer syntax, 67

semicolons, 51

sending messages to text view, 70

strings, 157

stylistic, 202

variable syntax, 79

Coordinates, 279

copy, 266

Core Animation, 377–378

Core Animation for Mac OS X and the

iPhone: Creating Compelling

Dynamic User Interfaces (Dudney),

378

Core Animation Programming Guide

(Apple), 378

Core Animation: Simplified Animation

Techniques for Mac and iPhone

Development (Zarra & Long), 378

Core Data, 378

Core Data: Apple’s API for Persisting

Data on Mac OS X (Zarra), 379

Core Data for iPhone: Building

Data-Driven Applications for the

iPhone and iPod Touch (Isted), 379

Building Data-Driven Desktop

Applications for Mac OS X (Isted),

379

Core Foundation, 259

Core Graphics, 286

411
Prepared exclusively for James Carlson

CORES ERROR ATTRIBUTE

Cores, 381

count message, 174

Counters, 228

Counting, 153, 221–224

Create document-based application,

161

Curly braces, 47, 52, 58, 67, 125, 172,

184, 202, 212

currentIndex variable, 229–231

Cursor, 360

Custom views, 295–305

adding, 300f

frame for, 302f

square and oval in, 305f

D
Data source, 173

dealloc method, 127, 129, 171, 247

Debugger console, 53, 59, 128, 301

Decimal notation, 75

Decimal points, 85

Declaration and assignment, 87

Declaration of Independence, 266

Declaring properties, 272–273

Decrementing values, 224

Delegation, 321–337

application, 330

conforming to protocols, 324

initializing objects, 332

Objective-C protocols, 321–323

types of, 330

window, 332, 333f

Delete button, 215

Deleting information, fail-safe, 183

Deleting items alert, shopping list, 213f

Dereference, pointers, 117

Design patterns, 333f, 320–375

archiving, 367–374

delegation, 321–337

events, 347–359

notification, 337–347

responders, 363f, 364f, 365f,

360–366, 367f

Designated initializer, 139

Designing model objects, 241–251

Developer account, 404

Developer documentation, 383

Developer forums, 385

Developer Tools, 403

Dictionaries, 244f, 245f, 243–251

persisting contents to disk, 251

retrieving information from, 248–250

shopping list application redesign,

251–261

storing information from, 247–248

Dirty document, 181

Displaying an alert, 212, 213f

displaySomeText: method, 56, 59, 93, 94

returning values, 97

variable values, 99

do...while keyword, 232

Document object, 162

Documentation, 46

code consolidation, 109–110

code readability and, 87

comments and, 20

developer, 383

NSArray class, 146

NSObject, 127

NSString, 140

NSWindowDelegate, 336

User interface validation, 366

Xcode window for, 70f

doSomethingElse:, 93

Dot notation, 277

Dot syntax, 276

Downloads, for this book, 29

drawInteriorWithFrame: method, 326

drawInteriorWithFrame:inView: method, 312

drawWithFrame:inView: method, 312

Dudney, Bill, 378

E
Elevators, in UK vs. US, 152

else statement, 183–198

Encapsulation, 262–268

encodeWithCoder: method, 371

@end keyword, 46, 47, 51, 57, 108

Enter key, 105

Entities, 378

Enumerating and looping, 218–237

array enumeration, 218–221

counting, 221–224

for loops, 224–231

overview, 236

shopping list application, duplicate

items, 234–236

while loops, 231–233

Equality operator, 185, 186, 188, 215

Equals sign, 81, 187

error: ’MathUtilities’ undeclared, 113, 114f

Error attribute, 178

412
Prepared exclusively for James Carlson

ERRORS INIT METHOD

Errors, Xcode, 99

Etiquette, 385

Events, 347–359

checking which rectangle was hit,

353–355

handling clicks when the mouse is

dragged, 355–356

mouse events, 349–352

refactoring the drawing code,

352–353

simplifying the interface, 348f,

347–349

visual feedback, 356–359

EXC_BAD_ACCESS error, 193

Expressions, see Logical expressions

F
Factory methods, 140, 146

false, 233

False expressions, 185

Fast enumeration, 219, 220, 224, 233,

234

File’s Owner object, 168, 169

File extensions, 164

File types, for classes, 42

Files, see specific names of files

Finish, 41

First Responder object, 360, 361, 363

float keyword, 85, 86, 92, 97–99, 101,

104, 107, 115, 124, 133

Floating-point numbers, 85, 98

for loops, 224–231

Forums, Apple developers, 385

Foundation, 392

Frame, 282

frame method, 297

Frames, animation, 378

Framework

base object class, 44

defined, 22

Framing the view, 301, 302f

Functions, 53

G
Garbage collection, 137, 379, 380

Garbage Collector Programming Guide

(Apple), 380

Gemmell, Matt, 385

generateValue method, 98, 109

genie effect, 377

Geometry overview, 279f, 278–282,

283f

Global variable, 261

Graph, 279f, 279

Grayed-out commands, 21

Greater than comparison operator,

225, 227

Greater than or equal to comparison

operator, 227

Groups of bits, 76

Guidelines, application, 22

H
Header bars, 165

Heads-up display (HUD), 63, 64f, 64

Hexadecimal, 91

Highlights, displaying, 356

Hillegass, Aaron, 383

House developer example, 34–37

“The How and Why of Cocoa

Initializers” (Ash), 209

Human Interface Guidelines (HIG), 383

I
IBAction keyword, 61, 169

IBOutlet keyword, 67, 103, 120, 167,

169, 252, 331, 397

id keyword, 61, 142

Identity inspector, 49

Identity inspector, 50f

if statement, 184f, 183–198

combining logical operators, 195

evaluating to false, 187

magic number message, 188f

multiple expressions, 194

operators for, 186

syntax, 202

if keyword, 163, 172

Illegal access message, 190

Implementation, 51, 58

@implementation keyword, 51, 274

#import keyword, 20, 46, 114, 126, 269

Incrementing values, 223

Index, 151, 329

Indices, array, 228

Inheritance, 38–40, 45, 320, 324

initializing with, 123

overriding, 39

init method, 124, 163, 171, 172, 247,

255, 332

arguments for, 138

413
Prepared exclusively for James Carlson

INIT KEYWORD LOGICAL EXPRESSIONS

calling, 122

as designated initializer, 139

problems with, 139

writing, 208–210

init keyword, 83

Initial assignment, looping, 231

initWithCapacity:, 155

initWithContentsOfURL: method, 242

initWithFormat: method, 137

initWithFrame: method, 296

insertText method, 68

Instance methods, 112

Instance variables, initializing, 123

Instances, 35, 48, 146

int keyword, 83, 92, 117, 189

Interest, in objects, 130, 131

@interface keyword, 46, 47, 56, 67, 120,

133, 189

Interface Builder, 24, 48

action, connecting to, 62

control types, 246

file extensions, 164

file for iPhone, 391f

IBAction keyword, 62

iPhone, 395f

iPhone and, 398f

Library palette, 27f

list view, 167f

LookItUp interface, 245f

MainMenu.xib file, 25f

NSTableColumn outlets, 254f

outlets in, 68, 69f, 79

Xcode communication, 61–62

Interface guidelines, 22

Interface, linking, 103, 104f

Internet, as information tool, 384

iPhone, 387–402

adding messaging behavior, 394–399

allowing user to change text, 397

button and label in IB, 395f

configuring the UITextField, 398f

creating a project, 388–394

default values for keys, 400

developer account (free), 404

examining files, 390

flipping the view, 393

Garbage collection, 137

human interface guidelines, 383

IB file for, 391f

installing SDK, 407

memory leaks, 129

new project window, 388f

NSUserDefaults class, 399

registering as developer, 402

simulator, 388, 390f

templates, 389

UIViewController methods, 396

user defaults, 399–401

view controller objects, 392

Xcode and, 16

iPod touch, 402

isa variable, 120, 124

isEqualTo...:, 201

Isted, Tim, 379

Iteration, 145, 148

K
Key-value coding (KVC), 380, 381

Key-Value Coding Programming Guide

(Apple), 381

Key-Value Observing Programming

Guide (Apple), 381

Key-value observing (KVO), 268

Keyboard shortcuts, 366

Keys, 243, 255, 261

Keystrokes, adding, 105

keyToRetrieve, 248

keyToStoreTextfield, 247

Kill application, 193

Knaster, Scott, 383

Kochan, Stephen, 383

L
Learn Objective-C on the Mac

(Dalrymple & Knaster), 383

Less than comparison operator,

225–227

Less than or equal to comparison

operator, 227

Library palette, 26, 27f, 48, 49f, 63,

102, 210, 300

Life cycle, of objects, 130–132

List view, 167f

Listservs, 384

Live resizing, 301

location keyword, 278

Location, on screen, 280

Logical expressions

comparing objects in, 187

defined, 185

pointers and, 188

variables and, 192

414
Prepared exclusively for James Carlson

LOGICAL OPERATOR MYDOCUMENT.M FILE

see also Conditional statements

Logical operator, 185, 186, 195

Long, Matt, 378

LookItUp interface, 244, 245f, 251

Looping, 218–237

array enumeration, 218–221

counting, 221–224

for loops, 224–231

initial assignment, 231

overview, 236

shopping list application, duplicate

items, 234–236

single-line, 231

while loops, 231–233

Lorum Ipsum text, 68

M
Mac developer events, 385

Mac OS X application

Cocoa framework and, 22–23

construction process, 30

downloads for, 29

guidelines for, 22

introduction to, 15–29

Xcode, 15–18

quitting, 22

resources, 24f, 25f, 23–28

summary, 29

technologies and, 377

Mac-only Developer Tools, 404

Magic number message, 188f

main.m file, 18

mainDictionary, 247, 249

MainMenu.xib file, 24, 25f, 26, 101

Generate Text button, 148

Mark, Darlrymple, 383

Measuring text, 314

Memory

address checking, 92

allocating for objects, 121–124

arrays objects and, 156

byte size, 93

garbage collection, 137, 379, 380

for holding variables, 121

how it works, 74–79

numbers stored as bytes, 91f

numbers stored in, 77f

object structure and, 120

pointers and, 94–96

reclaiming, 130

storing numbers in, 83

variables and, 79–88

variables in, 90–94

Memory address, access and, 93

Memory leak, 129, 131

Memory management

retained counts, 131

subclassing, 44

Messages

receiving, 60–64

sending, 66–73

sending to objects, 68, 71f

Messaging functionality, 39

Method signatures, 322

Methods

adding new, 108

arguments and, 60, 105–110

calling with arguments, 108

class methods, 111–115

combining calls to, 202

defined, 51

defining new, 56–59

implementing, 58

init methods, writing, 208–210

Objective-C 2.0 properties, 271–277

passing multiple values to, 147

protocols and, 322

syntax for, 107

utility class methods, 140–144

void and, 58

with a return type, 98

see also Returning values

Model, 307

model objects, 239, 241–251

Modifier keys, 350

Months application, 221, 222f

see also Looping

Mouse click-release, 351

Mouse events, 349–352

mouseDown: method, 351, 353, 355,

356, 358

mouseDragged: method, 358

mouseUp: method, 351, 354–356, 358

Multiple operators, 195

Multiple variables, 147

Mutability, 154–159, 249

MVC, shopping list application, 239,

240

MyDocument class, 161

MyDocument.m file, 241, 269–271

415
Prepared exclusively for James Carlson

NAMING CONVENTIONS OBJECTS

N
Naming conventions, 106, 146, 274,

334

see also Conventions; Syntax

Navigation-Based Application template,

389

Negative numbers, 83, 84

Nesting, 110, 122, 202

new line keyword, 70

Next button, 41

Next responder, 360

nib vs. xib file extensions, 164

NO keyword, 72

Non-object-oriented programming,

31–33

NOT operator, 198

Notation, see Conventions; Syntax

Notification, 337–347

distributing information, 337–338

NSNotification object, 338–339

registering to receive, 339–342

sending, 342–347

Notification Programming Topics for

Cocoa (Apple), 346

NotifyingClass class, 120

NotifyingClass.h file, 44f, 46, 47, 56, 62,

64f

NSActionCell, 312

NSArray, 145, 150, 153

NSBox object, 244, 290, 293

NSButton class, 60, 61, 189, 246

NSCoder class

decoding information with, 372, 373

encoding information with, 370

NSCoding protocol, 369f, 369

NSConference, 385

NSDocument class, 164

NSEnumerator class, 232

NSInsetRect method, 353

NSKeyedArchiver object, 367, 368

NSKeyedUnarchiver object, 368

NSLog, 53, 128, 312

NSMutableArray(), 155

NSMutableDictionary class, 248

NSNotification object, 338–339

NSNotificationCenter object, 339–342

NSObject class, 44

NSObject.h, 48f

NSPoint variable, 280, 281, 286

NSPointInRect() method, 354

NSRect variable, 282, 283f

NSSize, 286

NSString class, 143

NSString object, 239

NSStringFromRect(), 312

NSTableColumn, 254f

NSTableView class, 239

NSTableViewDataSource protocol, 324

NSTextField outlets, 246

NSTextFieldCell, 326

NSUserDefaults class, 399

NSWindow delegate methods, 332, 333f

NSWindowDelegate protocol, 332

numberOfRowsInTableView: method, 252

O
Objective-C class template, 41

objc_msgSend function, 299

Object initialization, 122

Object messaging, 56–73

defining new methods, 56–59

overview, 56, 73

sending messages, 66–73

target-action mechanism, 60–64

Object pointers, 95

Object-oriented programming (OOP),

31, 33–38

Objective-C 2.0 properties, 271–277

Objective-C protocols, 321–323

Objective-C, translating into C, 299

Objects, 30–55

allocating an instance of, 126

allocating memory for, 121–124

application construction process, 30

application object, 45

autoreleasing, 135, 136

checking class of, 259

comparing, 201

conforming to protocols, 324

creating, 120

creating in code, 124–130

as data source, 173

defined, 120

defining, 33

delegation and, 333f, 321–337

designing model objects, 241–251

document, 162

encapsulation and, 262–268

equality operator and, 188

in expressions, 187

implementation, 51

index of items and, 151

416
Prepared exclusively for James Carlson

OBSERVERS PROPERTIES

inheritance, 38–40, 320

initializing, 208, 332

initializing with arguments, 137–140

instance variables, initializing, 123

instances of, 48

interest in, 130, 131

leaving in memory, 143

life cycle of, 130–132

message logging, 53

mutability in, 154–159

mutability of, 154

MyDocument.m file, reworking,

269–271

non-object-oriented programming,

31–33

notification and, 337–347

object-oriented programming, 33–38

Objective-C 2.0 properties, 271–277

relationships, 378

releasing, 132

responsibility for, 133

retain count of, 132

retaining count on, 131

sending message to self, 100

sending messages to, 68

ShoppingListItem object, 262–268

strings, 68, 81

structure of, 120

table views, 165f, 165

types of, 238–240

writing code for, 40–55

see also Arrays; Object messaging

Observers, 338

One-based index, 152

Open Quickly..., 47

OpenGL ES Application template, 389

Operators, see AND operator;

Assignment operator; Equality

operator; Logical operator; OR

operator

@optional keyword, 323, 370

OR operator, 195, 197

Origin, 280, 282

Outlets, 68, 69f, 79, 245

adding, 169, 189, 190f

buttons, 189

IBOutlet, 331

linking up, 246

Oval, drawing, 304

Overriding inherited behavior, 39

P
Parents and children application, 204

Parking lot metaphor, 90

Partial redraws, 297

Patterns, see Design patterns

Persistent storage, 74

Pixels, 280, 281

Pointers

arrays and, 145, 156

declaring, 67

defined, 66, 188

dereferencing, 117

evaluating, 200

example of, 66

logical expressions and, 188

memory and, 74, 94–96, 156

memory leak and, 129

method signature and, 115

objects as, 120

as outlets, 67

syntax, 67

as variables, 79

Points, 279, 281

Power of ten, 75

PPStrikeThroughCell object, 326

pre-loop statement, 225

Programming in Objective-C 2.0, 2nd Ed

(Kochan), 383

Programming syntax, 41, 45

arguments, 60

class descriptions, 47

class methods, 112

class names, 44

code blocks, 47

file extensions, 164

instance methods, 112

logical expressions, 185

methods, 107

naming arrays, 146

naming conventions, 106

operators, 186

OR operator, 195

pointers, 67

protocols, 322

semicolons, 51

sending messages to text view, 70

strings, 157

variables, 79

Project window, 18, 19f

Properties, 271–277

declaring, 272–273

417
Prepared exclusively for James Carlson

@PROPERTY KEYWORD SHOPPING LIST APPLICATION

declaring for object types, 274–276

dot syntax, 276

IBOutlet, 331

synthesizing, 273–274

@property keyword, 274

Property declaration, 326

Protocols, 173, 320, 321

Prototype cell, 166

Public interface, 46

Push button, 63f, 66f

Q
Quartz, 297

Questions, where to ask, 384

Quit TextApp command, 22, 25

R
Radius calculation code, see Circle

example

RAM, 74, 75, 129

Readability of code, 87, 110, 243

readFromURL:ofType:error: method, 180

Reclaiming memory, 130

Rectangles, 283f, 349

redefinition of ’anInt’ error, 90

Reference counting, 131

registerDefaults: method, 401

Registration, 404

release, 132

Remove button, for shopping list

application, 210, 211f

removeItemFromShoppingList: method,

211, 212, 255

Reopening files, 373

Resolution, 281

Resources, application, 24f, 25f, 23–28

Responder chain, 360

Responders, 360–366, 367f

actions and, 361

adding a new menu item, 363f

becoming the First Responder, 361

chain of, 360

First Responder, introduced, 360

keyboard shortcuts, 366

targeting the First Responder, 363, 364,

365f

user interface validation, 365

retain keyword, 266, 275, 276

Retaining count, 131

retrieveInformationFromDictionary: method,

248

retrieveValueFromDictionary: method, 250

retrieveValueLabel, 249

Return key, 105

return keyword, 99, 110, 123, 179, 203,

235

Returning values, 97–105

Returning variables, 100

reverseObjectEnumerator class, 233

rowIndex, 175

Runtime, 74

S
Save All..., 62

Saving a shopping list, 178

Saving files, 373

Scalar types, 74, 79, 96, 119, 122

School children application, 204

Scope, 89f, 88–90

parentheses and, 197

variables and, 191, 221

Screen locations, 280

Screen resolution, 281

Selector, 299

Selector connection, 105

self keyword, 100, 108, 123, 142

Semicolons, 51–53, 58, 229

Senders, other than expected, 193

setNeedsDisplay: method, 358

setShouldDrawLine: method, 327

setStoredNumber: method, 125

setTitle: method, 72

shape keyword, 278

Shopping list application, 160f,

160–181

adding conditional statements to,

210–217

adding items, 159f

adding new items to, 176

adding outlets and action, 169

alert display, 212

buttons, distinguishing between, 214

caveats with, 181

connecting table view to data source,

174f

connecting to interface, 170f

creating, 161

delegation, 321

deleting items, 213f

dictionaries and, 251–261

displaying items, 257

duplicate items check, 234–236

418
Prepared exclusively for James Carlson

SHOPPINGLISTITEM OBJECT SYNTAX

editing items, 176, 258

interface, 168f

interface button, 167

interface for, 164

keyboard shortcuts, 366

linking to controller, 167

MVC, 239, 240

MyDocument class, 161

MyDocument.m file, reworking,

269–271

opening a saved list, 179

purchased item feature, 306f,

306–309

remove button, 210, 211f

revised interface, 253f

saving a list, 178

saving and reopening files, 373

setting up the array, 170

ShoppingListItem object, 262–268

table views, 164

working with table views, 173

ShoppingListItem object, 262–268

Shortcuts

copying signature from header file,

58, 59f

decrementing values, 224

Developer Documentation, 68

incrementing values, 223

save all, 62

setting, for keyboard, 366

string object shorthand, 220

showMeasurements: method, 285, 293

Signature, 57, 58, 60, 61, 322, 336

action, 62

adding to interface, 108

implementation method, 62

Signed numbers, 83

Single-line loops, 231

size keyword, 278

Size inspector, 288, 289f

sizeof() method, 93

sizeWithAttributes: method, 314

Sizing Windows methods, 334

Spaces, 81

Square brackets, 70, 95, 99, 110, 122,

202

Square, drawing, 301

Square Button, 210

StackOverflow developer website, 384

statement for after each loop pass, 225

Static arrays, 153

Steinberg, Daniel, 383

Strikethrough cells, 321

String Format Specifiers link, 134

Strings, 68, 81, 133

allocating and initializing, 134

array setup and, 172

blank, 176

defined in C, 157

format, 134

functionality, 143

initializing, 133

keys for, 243, 255

mutable objects, 157

newline characters, 144

object shorthand for, 220

shorthand creation of, 144

variables and scope, 191

stringWithFormat: method, 150

Stroke, 305

Strong object reference, 156

Subclassing, 44, 311

Subview, 292, 294

Superclass, 39

switch-case construction, 206, 208, 215

switch keyword, 230

Switch statement, 205

Syntax, 41, 45

arguments, 60

class descriptions, 47

class methods, 112

class names, 44

code blocks, 47

conforming to protocol, 323

declaring a property, 273

dot notation, 277

dot syntax, 276

fast enumeration, 220, 224, 233

file extensions, 164

global variables, 261

if statements, 202

increment/decrement values, 223,

224

instance methods, 112

keys, 261

logical expressions, 185

message signature, 57

methods, 107

naming arrays, 146

naming conventions, 106

negating variables, 199

NOT operator, 198

419
Prepared exclusively for James Carlson

@SYNTHESIZE KEYWORD VERSIONS

operators, 186

OR operator, 195

pointers, 67

protocols, 322

semicolons, 51

sending messages to text view, 70

string object shorthand, 220

strings, 157

switch-case construction, 206

synthesizing properties, 273

variables, 79

@synthesize keyword, 274

Synthesizing properties, 273–274

System discs, 404

T
Tab Bar Application template, 389

Table view delegate method, 326

Table views, 164, 165f, 166, 169, 173,

174f, 174, 328

Tables, 240

tableView:objectValueForTableColumn:row:

method, 252

tableView:setObjectValue:forTableColumn:row:

method, 255

Target-action mechanism, 60–64, 106,

107, 361

Template window, 17f

Testing

conditional statements, 204

objects, creating instance of, 48

Text cells, 165

Text field

adding, 101, 102, 103f

linking to textField variable, 104f

Text, measuring, 314

TextApp, 18

adding array items, 158

application construction process, 30

arrays in, 148

conditional branches, 185

interface, making generic, 149f

project window for, 19f

Push button for, 63f

stopping from Xcode, 193f

variables, declaring, 79

window, adding, 27, 28f

TextApp-Info.plist file, 23, 24f

Threads, 382

true, 233

True expressions, 185

Twitter, 385

Type attribute, 178

U
UIKit, 393

UITextField class, 398f, 398

UIViewController methods, 396

unsigned keyword, 84

Unsigned numbers, 83

Upgrades, Xcode and, 406–407

User defaults, 387

User Interface Validation, 365

UTF-8, 86

Utility class methods, 140–144, 146

V
Validation, 365

Value column, 23

valueForKey:, 250

Values

assignable, 34

assigning to variables, 80

Boolean, 72

passing by reference, 115–117

passing to a method, 147

returning, 97–105

valueToStoreTextfield, 247

Variables

addresses in memory, 92

addresses of, 93

changing value of, 81

declaring, 79, 81, 87

declaring for single character, 86

global, 261

initial value of, 192

introduced, 79–88

logical expressions and, 192

memory and, 90–94, 121

negating, 199

passing values by reference, 115

pointers and, 79, 94–96

returning, 100

scope of, 89f, 88–90, 191, 221

signed and unsigned numbers, 83

size of, 93

storing non-number information, 86

syntax, 79

unused variable warning, 80f

validity of, 191

values assigned to, 80

Versions, of Xcode, 403

420
Prepared exclusively for James Carlson

VERTICAL BARS ZERO-BASED INDEX

Vertical bars, 195

view objects, 239

View-based Application template, 389

Views

cells and, 315f, 317f, 310–318

colors and, 298

custom views, 300f, 302f, 305f,

295–305

geometry for, 279f, 278–282, 283f

instantiating, 299

partial redraws, 297

shopping list application, purchased

item feature, 306f, 306–309

subviews, 292

view hierarchy, 291f, 293f, 290–294,

295f

view relationships, 287

working with windows, 284f, 288f,

289f, 282–290

viewWillAppear: method, 400

void keyword, 57, 61

W
Warnings, Xcode, 99

while loops, 231–233

Whitespace, 52, 81

Window object, defining, 33

Window delegates, 332, 333f

Window, frame of, 282

Window-based Application template,

389

Windows, sizing methods, 334

WonderfulNumber class factory method,

142

writeToURL: method, 242

WVMeasurer class, 286, 293

WWDC developer conference, 385

X
X and Y coordinates, 279

Xcode

application resources and, 24f, 25f,

23–28

Cocoa framework, 22–23

color coding in, 20

Debugger Console, 128, 301

directory location of, 405

documentation window, 70f

email list, 384

environment, 16–18

errors, 114f

installation, 403–407

Interface Builder communication

and, 61–62

introduction to, 15–16

New File pane, 43f

New File window, 42f

NotifiyingClass.h, 44f

project downloads, 29

project window, 18, 19f

protocol definition, 370

protocol reference, 173

registering, 404

stopping TextApp from, 193f

Template window, 17f

templates, 162f

upgrades, 406–407

uses for, 16

variable scope error, 89f

versions of, 403

warning, unused variable, 80f

warnings and errors, 99

xib vs. nib file extensions, 164

Z
Zarra, Marcus, 378, 379

Zero-based index, 151, 228

421
Prepared exclusively for James Carlson

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of March 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Continued on next page

Prepared exclusively for James Carlson

pragprog.com

Title Year ISBN Pages

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby

Pros

2010 9781934356470 240

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Continued on next page

Prepared exclusively for James Carlson

Title Year ISBN Pages

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship It! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

iPhone SDK Development 2009 9781934356258 576

Prepared exclusively for James Carlson

More on Cocoa and iPhone

Cocoa Programming
Cocoa Programming shows you how to get

productive with Cocoa–fast! You’ll learn to use the

Apple developer tools to design your user interface,

write the code, and create the data model. We’ll

show you Objective-C concepts when you are ready

to apply them throughout the book. By the end of

the book, you’ll be a Cocoa programmer.

Cocoa Programming: A Quick-Start Guide for

Developers

Daniel H Steinberg

(450 pages) ISBN: 978-19343563-0-2. $32.95

http://pragprog.com/titles/dscpq

iPhone SDK Development
Jump into application development for today’s

most remarkable mobile communications platform,

the Pragmatic way. This Pragmatic guide takes you

through the tools and APIs, the same ones Apple

uses for its applications, that you can use to create

your own software for the iPhone and iPod touch.

Packed with useful examples, this book will give

you both the big-picture concepts and the everyday

“gotcha” details that developers need to make the

most of the beauty and power of the iPhone OS

platform.

iPhone SDK Development

Bill Dudney, Chris Adamson, Marcel Molina

(545 pages) ISBN: 978-1-9343562-5-8. $38.95

http://pragprog.com/titles/amiphd

Prepared exclusively for James Carlson

http://pragprog.com/titles/dscpq
http://pragprog.com/titles/amiphd

More Mac Frameworks

Core Animation for OS X/iPhone
Have you seen Apple’s Front Row application and

Cover Flow effects? Then you’ve seen Core

Animation at work. It’s about making applications

that give strong visual feedback through movement

and morphing, rather than repainting panels. This

comprehensive guide will get you up to speed

quickly and take you into the depths of this new

technology.

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

Bill Dudney

(220 pages) ISBN: 978-1-9343561-0-4. $34.95

http://pragprog.com/titles/bdcora

Core Data
Learn the Apple Core Data APIs from the ground

up. You can concentrate on designing the model for

your application, and use the power of Core Data to

do the rest. This book will take you from beginning

with Core Data through to expert level

configurations that you will not find anywhere else.

Learn why you should be using Core Data for your

next Cocoa project, and how to use it most

effectively.

Core Data: Apple’s API for Persisting Data under

Mac OS X

Marcus S. Zarra

(256 pages) ISBN: 978-1-93435-632-6. $32.95

http://pragprog.com/titles/mzcd

Prepared exclusively for James Carlson

http://pragprog.com/titles/bdcora
http://pragprog.com/titles/mzcd

Tools and Tips

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

that will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragprog.com/titles/textmate

Debug It!
Debug It! will equip you with the tools, techniques,

and approaches to help you tackle any bug with

confidence. These secrets of professional debugging

illuminate every stage of the bug life cycle, from

constructing software that makes debugging easy;

through bug detection, reproduction, and

diagnosis; to rolling out your eventual fix. Learn

better debugging whether you’re writing Java or

assembly language, targeting servers or embedded

micro-controllers, or using agile or traditional

approaches.

Debug It! Find, Repair, and Prevent Bugs in Your

Code

Paul Butcher

(232 pages) ISBN: 978-1-9343562-8-9. $34.95

http://pragprog.com/titles/pbdp

Prepared exclusively for James Carlson

http://pragprog.com/titles/textmate
http://pragprog.com/titles/pbdp

For Your Career

Land the Tech Job You Love
You’ve got the technical chops—the skills to get a

great job doing what you love. Now it’s time to get

down to the business of planning your job search,

focusing your time and attention on the job leads

that matter, and interviewing to wow your

boss-to-be.

You’ll learn how to find the job you want that fits

you and your employer. You’ll uncover the hidden

jobs that never make it into the classifieds or

Monster. You’ll start making and maintaining the

connections that will drive your future career

moves.

You’ll land the tech job you love.

Land the Tech Job You Love

Andy Lester

(280 pages) ISBN: 978-1934356-26-5. $23.95

http://pragprog.com/titles/algh

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(232 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Prepared exclusively for James Carlson

http://pragprog.com/titles/algh
http://pragprog.com/titles/cfcar2
v@v
Text Box
http://www.wowebook.com

For Your Head

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

Pomodoro Technique Illustrated
Do you ever look at the clock and wonder where the

day went? You spent all this time at work and

didn’t come close to getting everything done.

Tomorrow, try something new. In Pomodoro

Technique Illustrated, Staffan Nöteberg shows you

how to organize your work to accomplish more in

less time. There’s no need for expensive software or

fancy planners. You can get started with nothing

more than a piece of paper, a pencil, and a kitchen

timer.

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

Staffan Nöteberg

(144 pages) ISBN: 9781934356500. $24.95

http://pragprog.com/titles/snfocus

Prepared exclusively for James Carlson

http://pragprog.com/titles/ahptl
http://pragprog.com/titles/snfocus

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Beginning Mac Programming’s Home Page

http://pragprog.com/titles/tibmac

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/tibmac.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for James Carlson

http://pragprog.com/titles/tibmac
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/tibmac
www.pragprog.com/catalog

	Contents
	Introduction
	The Intended Audience
	What's Involved?
	What's Needed?
	Acknowledgments
	Let's Go

	Your First Application
	Introducing Xcode
	The Main Event
	The Cocoa Framework
	Application Resources
	Chapter Summary

	All About Objects
	The Application Construction Process
	An Introduction to Objects
	Object Inheritance
	Writing Code for Our Own Objects
	Chapter Summary

	Object Messaging
	Defining a New Method
	The Target-Action Mechanism
	Sending Messages from Our Code
	Chapter Summary

	Variables and Memory
	How Memory Works
	Using Variables
	The Scope of a Variable
	Memory Addressing
	Pointers Again
	Chapter Summary

	Passing Information Around
	Returning Values
	Methods and Arguments
	Class Methods
	Passing Values by Reference
	Chapter Summary

	Objects and Memory Management
	Memory Considerations
	Allocating Memory for Objects
	Creating Objects in Code
	The Object Life Cycle
	Denying Responsibility
	Initializing with Arguments
	Utility Class Methods
	Chapter Summary

	Collecting Information
	Introducing Arrays
	Using Arrays in an Application
	Object Mutability
	A New Application
	Chapter Summary

	Branching Out
	Introducing if and else
	All About the Truth
	Stylistic Conventions
	Switching Around
	Writing Init Methods
	Adding Conditional Statements to the Shopping List Application
	Chapter Summary

	Looping and Enumerating
	Introducing Array Enumeration
	Counting
	Traditional for Loops
	Enumerating an Array with a Traditional for Loop
	Other Types of Loop
	A Simple Change to Our Shopping List Application
	Chapter Summary

	Objects, Encapsulation, and MVC
	The Main Types of Object
	Designing Model Objects
	Reworking the Shopping List Application
	Creating a Shopping List Item Object
	Reworking the Shopping List Application... Again
	Introducing Objective-C 2.0 Properties
	Chapter Summary

	All About Views
	Simple Geometry in Two Dimensions
	Working with Windows and Views
	The View Hierarchy
	Custom Views
	Back to the Shopping List Application
	Views and Cells
	Chapter Summary

	Mac OS X and Cocoa Mechanisms
	Delegation
	Notifications
	Working with Events
	Responders and the Responder Chain
	Archiving with NSCoding
	Chapter Summary

	Where to Go from Here
	Important Technologies
	Finding Information
	Book Summary

	Developing for the iPhone OS
	Installing Xcode
	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

