Teach Yourself Perl 5in 21 days

David Till

Table of Contents:

| ntroduction

« Who Should Read This Book?

. Special Features of This Book

. Programming Examples

. End-of-Day Q& A and Workshop
. Conventions Used in This Book

. What You'll Learn in 21 Days

Week 1 Week at a Glance

. Where You're Going

Day 1 Getting Started

. What Is Perl?
. How Do | Find Perl?
o Where Do | Get Perl?
o Other Places to Get Perl
. A Sample Perl Program
« Running a Perl Program
o If Something Goes Wrong
. The First Line of Your Perl Program: How Comments Work
o Comments
. Line 2: Statements, Tokens, and <STDI N>
o Statements and Tokens
o Tokens and White Space
o What the Tokens Do: Reading from Standard Input
. Line 3: Writing to Standard Output
o Function Invocations and Arguments
. Error Messages

. Interpretive Languages Versus Compiled Languages

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 2 Basic Operators and Control Flow

Storing in Scalar Variables Assignment
o The Definition of a Scalar Variable
o Scalar Variable Syntax
o Assigning a Value to a Scalar Variable
. Performing Arithmetic
o Example of Miles-to-Kilometers Conversion
o The chop Library Function
. EXpressions
o Assignments and Expressions
. Other Perl Operators
. Introduction to Conditional Statements
. Theif Statement
o The Conditional Expression
o The Statement Block
o Testing for Equality Using ==
o Other Comparison Operators
. Two-Way Branching Using i f and el se
. Multi-Way Branching Using el si
. Writing Loops Using the whi | e Statement
. Nesting Conditional Statements
. Looping Using the unti | Statement
. Summary
. Q&A
. Workshop
o Quiz

o Exercises

Day 3 Understanding Scalar Values

. What Is a Scalar Value?
. Integer Scalar Values
o Integer Scalar Value Limitations

. Floating-Point Scalar Values
o Floating-Point Arithmetic and Round-Off Error
. Using Octal and Hexadecimal Notation
o Decimal Notation
o Octal Notation
o Hexadecimal Notation
o Why Bother?
. Character Strings
o Using Double-Quoted Strings
o Escape Sequences
o Single-Quoted Strings
. Interchangeability of Strings and Numeric Values
o Initial Values of Scalar Variables

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 4 More Operators

. Using the Arithmetic Operators
o EXxponentiation
o The Remainder Operator
o Unary Negation
. Using Comparison Operators
o Integer-Comparison Operators
o String-Comparison Operators
o String Comparison Versus Integer Comparison
o Comparison and Floating-Point Numbers
. Using Logical Operators
o Evaluation Within Logical Operators
o Logical Operators as Subexpressions
. Using Bit-Manipulation Operators
o What Bits Are and How They Are Used
o The Bit-Manipulation Operators
. Using the Assignment Operators
o Assignment Operators as Subexpressions
. Using Autoincrement and Autodecrement
o The Autoincrement Operator Pre-Increment
o The Autoincrement Operator Post-Increment

o The Autodecrement Operator
o Using Autoincrement With Strings
. The String Concatenation and Repetition Operators
o The String-Concatenation Operator
o The String-Repetition Operator
o Concatenation and Assignment
. Other Perl Operators
o The Comma Operator
o The Conditional Operator
. The Order of Operations
o Precedence
o Associativity
o Forcing Precedence Using Parentheses

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 5 Listsand Array Variables

. Introducing Lists
. Scalar Variables and Lists
o Lists and String Substitution
. Storing Lists in Array Variables
. Accessing an Element of an Array Variable
o More Details on Array Element Names
. Using Lists and Arrays in Perl Programs
o Using Brackets and Substituting for Variables
. Using List Ranges
o Expressions and List Ranges
. More on Assignment and Array Variables
o Copying from One Array Variable to Another
o Using Array Variables in Lists
o Substituting for Array Variables in Strings
o Assigning to Scalar Variables from Array Variables
. Retrieving the Length of a List
. Using Array Slices
o Using List Ranges in Array-Slice Subscripts
o Using Variables in Array-Slice Subscripts
o Assigning to Array Slices

o Overlapping Array Slices

o Using the Array-Slice Notation as a Shorthand
. Reading an Array from the Standard Input File
. Array Library Functions

o Sorting a List or Array Variable

o Reversing a List or Array Variable

o Using chop on Array Variables

o Creating a Single String from a List

o Splitting a String into a List

o Other List-Manipulation Functions
. Summary
. Q&A
. Workshop

o Quiz

o EXxercises

Day 6 Reading from and Writing to Files

. Opening a File
o The File Variable
o The Filename
o The File Mode
o Checking Whether the Open Succeeded
. Reading from a File
o File Variables and the Standard Input File
o Terminating a Program Using di e_
o Reading into Array Variables
. Writing to aFile
o The Standard Output File Variable
o Merging Two Files into One
. Redirecting Standard Input and Standard Output
. The Standard Error File
. Closing aFile
. Determining the Status of a File
o File-Test Operator Syntax
o Available File-Test Operators
o More on the - e Operator
o Testing for Read Permission-the -r Operator
o Checking for Other Permissions
o Checking for Empty Files
o Using File-Test Operators with File Variables

. Reading from a Sequence of Files
o Reading into an Array Variable

. Using Command-Line Arguments as Values
o ARGV and the <> Operator

. Opening Pipes

. Summary

. Q&A

« Workshop
o Quiz

o EXxercises

Day 7 Pattern Matching

. Introduction
. The Match Operators
o Match-Operator Precedence
. Special Characters in Patterns
o The + Character
o The[] Special Characters
o The* and ? Special Characters
o Escape Sequences for Special Characters
o Matching Any Letter or Number
o Anchoring Patterns
o Variable Substitution in Patterns
o Excluding Alternatives
o Character-Range Escape Sequences
o Matching Any Character
o Matching a Specified Number of Occurrences
o Specifying Choices
o Reusing Portions of Patterns
o Pattern-Sequence Scalar Variables
o Special-Character Precedence
o Specifying a Different Pattern Delimiter
. Pattern-Matching Options
o Matching All Possible Patterns
o Ignoring Case
o Treating the String as Multiple Lines
o Evaluating a Pattern Only Once
o Treating the String as a Single Line
o Using White Space in Patterns
. The Substitution Operator

o Using Pattern-Sequence Variables in Substitutions
o Options for the Substitution Operator
o Evaluating a Pattern Only Once
o Treating the String as Single or Multiple Lines
o Using White Space in Patterns
o Specifying a Different Delimiter
. The Translation Operator
o Options for the Translation Operator
. Extended Pattern-Matching
o Parenthesizing Without Saving in Memory
o Embedding Pattern Options
o Positive and Negative Look-Ahead
o Pattern Comments

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Week 1 Week 1in Review

Week 2 Week 2 at a Glance

. Where You're Going

Day 8 More Control Structures

. Using Single-Line Conditional Statements

o Problems with Single-Line Conditional Statements
. Looping Using the f or Statement

o Using the Comma Operator in afor Statement
. Looping Through a List: The f or each Statement

o Theforeach Local Variable

o Changing the Value of the Local Variable

o Using Returned Lists in the f or each Statement
. The do Statement
. Exiting a Loop Using the | ast Statement
. Using next to Start the Next Iteration of a Loop
. Theredo Statement
. Using Labeled Blocks for Multilevel Jumps

o Using next and redo with Labels
. The conti nue Block
. The got o Statement

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 9 Using Subroutines

. What Is a Subroutine?
. Defining and Invoking a Subroutine
o Forward References to Subroutines
. Returning a Value from a Subroutine
o Return Values and Conditional Expressions
. Thereturn Statement
. Using Local Variables in Subroutines
o Initializing Local Variables
. Passing Values to a Subroutine
o Passing a List to a Subroutine
. Calling Subroutines from Other Subroutines
. Recursive Subroutines
. Passing Arrays by Name Using Aliases
. Using the do Statement with Subroutines
. Specifying the Sort Order
. Predefined Subroutines
o Creating Startup Code Using BEG N
o Creating Termination Code Using END
o Handling Non-Existent Subroutines Using AUTOLOAD

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 10 Associative Arrays

. Limitations of Array Variables
. Definition
. Referring to Associative Array Elements

. Adding Elements to an Associative Array
. Creating Associative Arrays
. Copying Associative Arrays from Array Variables
. Adding and Deleting Array Elements
. Listing Array Indexes and Values
. Looping Using an Associative Array
. Creating Data Structures Using Associative Arrays
o Linked Lists
o Structures
o Trees
o Databases
o Example: A Calculator Program

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 11 Formatting Your Output

. Defining a Print Format
. Displaying a Print Format
. Displaying Values in a Print Format
o Creating a General-Purpose Print Format
o Choosing a Value-Field Format
o Printing Value-Field Characters
o Using the Multiline Field Format
. Writing to Other Output Files
o Saving the Default File Variable
. Specifying a Page Header
o Changing the Header Print Format
. Setting the Page Length
o Using pri nt with Pagination
. Formatting Long Character Strings
o Eliminating Blank Lines When Formatting
o Supplying an Indefinite Number of Lines
. Formatting Output Using printf _

. Summary

. Q&A

. Workshop
o Quiz

o Exercises

Day 12 Working with the File System

. File Input and Output Functions

o Basic Input and Output Functions
Skipping and Rereading Data

o System Read and Write Functions

o Reading Characters Using get c_

o Reading a Binary File Using bi nnode_
. Directory-Manipulation Functions

o The nkdir Function

o The chdir Function

o The opendir Function

o Thecl osedi r Function

o Thereaddir Function

o Thetelldir and seekdir Functions

o Therew nddir Function

o Therndi r Function
. File-Attribute Functions

o File-Relocation Functions

o Link and Symbolic Link Functions

o File-Permission Functions

o Miscellaneous Attribute Functions
. Using DBM Files

o The dbnopen Function

o The dbntl ose Function
. Summary
. Q&A
. Workshop

n Quiz

o Exercises

O

Day 13 Process, String, and Mathematical Functions

. Process- and Program-Manipulation Functions
o Starting a Process
o Terminating a Program or Process
o Execution Control Functions
o Miscellaneous Control Functions
. Mathematical Functions

o The si n.and cos Functions
o The at an2 Function
o Thesgrt Function
o The exp Function
o Thelog Function
o The abs Function
o Therand and srand Functions
. String-Manipulation Functions
o Theindex Function
o Therindex Function
o Thelength Function
o Retrieving String Length Using tr _
o The pos Function
o The substr Function
o The study Function
o Case Conversion Functions
o The quot enet a Function
o Thej oi n Function
o Thesprintf Function
. Summary
. Q&A
. Workshop
o Quiz

o Exercises

Day 14 Scalar-Conversion and List-Manipulation Functions

. The chop Function
« The chonp Function
. Thecrypt Function
. The hex Function
. Theint Function
. The oct Function
o The oct Function and Hexadecimal Integers
. The ord and chr Functions
. The scal ar Function
. The pack Function
o The pack Function and C Data Types
. The unpack Function
o Unpacking Strings
o Skipping Characters When Unpacking

o The unpack Function and uuencode
. Thevec Function
. Thedefined Function
. The undef Function
. Array and List Functions
o The grep Function
o Thesplice Function
o The shift Function
o The unshi ft Function
o The push Function
o The pop Function
o Creating Stacks and Queues
o Thesplit Function
o Thesort andreverse Functions
o The map Function
o The want array Function
. Associative Array Functions
o The keys Function
o The val ues Function
o The each Function
o The del et e Function
o The exi sts Function

. Summary

- Q&A

. Workshop
o Quiz

o Exercises

Week 2 Week 2 in Review

Week 3 Week 3 at a Glance

. Where You're Going

Day 15 System Functions

. System Library Emulation Functions
o The get grent Function
o The set grent _and endgr ent Functions
o The get grnamFunction

o The getgrid Function

o The get net ent Function

o The get net byaddr Function

o The get net bynane Function

o The setnetent and endnet ent Functions
o The get host byaddr Function

o The get host bynane Function

o The get host ent, set host ent , and endhost ent Functions
o The getl ogi n Function

o The get pgr p and set pgr p Functions

o The get ppi d Function

o The get pwnamFunction

o The get pwi d Function

o The get pwent Function

o The set pwent and endpwent Functions
o Thegetpriority andsetpriority Functions
o The get pr ot oent Function
o The get pr ot obynanme and get pr ot obynunber Functions
o The set prot oent and endpr ot oent Functions
o The get servent Function
o The get servbyname and get ser vbyport Functions
o The set servent and endservent Functions
o The chroot Function
o Theioctl Function
o The al ar mFunction
o Calling the System sel ect Function
o The dunp Function
. Socket-Manipulation Functions
o The socket Function
o The bi nd Function
o Thelisten Function
o The accept Function
o The connect Function
o The shut down Function
o The socket pair Function
o The get sockopt and set sockopt Functions
o The get socknane and get peer nanme Functions
« The UNIX System V IPC Functions
o IPC Functions and the r equi r e Statement
o The nmsgget Function
o The msgsnd Function

o The msgrcv Function

o Thensgctl Function

o The shnget Function

o The shmwite Function
o The shnr ead Function
o Theshnctl Function

o The senget Function

o The senop Function

o Thesenct| Function

Summary

Q&A

Workshop
o Quiz

o EXxercises

Day 16 Command-Line Options

Specifying Options
o Specifying Options on the Command Line
o Specifying an Option in the Program
The - v Option: Printing the Perl Version Number
The - ¢ Option: Checking Your Syntax
The - wOption: Printing Warnings
o Checking for Possible Typos
o Checking for Redefined Subroutines
o Checking for Incorrect Comparison Operators
The - e Option: Executing a Single-Line Program
The - s Option: Supplying Your Own Command-Line Options
o The -s Option and Other Command-Line Arguments
The - P Option: Using the C Preprocessor
o The C Preprocessor: A Quick Overview
The -1 Option: Searching for C Include Files
The - n Option: Operating on Multiple Files
The - p Option: Operating on Files and Printing
The -i Option: Editing Files
o Backing Up Input Files Using the -i Option
The - a Option: Splitting Lines
The - F Option: Specifying the Split Pattern
The - 0 Option: Specifying Input End-of-Line
The -1 Option: Specifying Output End-of-Line
The - x Option: Extracting a Program from a Message

. Miscellaneous Options

o The -u Option

o The-uUOption

o The -SOption

o The -DOption

o The - T Option: Writing Secure Programs
. The -d Option: Using the Perl Debugger

. Summary

- Q&A

. Workshop
o Quiz

o Exercises

Day 17 System Variables

. Global Scalar Variables
o The Default Scalar Variable:$_
o The Program Name: $0
o The User ID: $< and $>
o The Group ID: $(and $)

o The Version Number: $]

o The Input Line Separator: $/

o The Output Line Separator: $_

o The Output Field Separator: $,

o The Array Element Separator: $"

o The Number Output Format: $#

o The eval Error Message: $@

o The System Error Code: $?

o The System Error Message: $!

o The Current Line Number: $.

o Multiline Matching: $*

o The First Array Subscript: $[

o Multidimensional Associative Arrays and the $; Variable
o The Word-Break Specifier: $:

o The Perl Process ID: $$

o The Current Filename: $ARGVY

o The Write Accumulator: $"A

o The Internal Debugging Value: $"D
o The System File Flag: $*F

o Controlling File Editing Using $71 _
o The Format Form-Feed Character: $"L_

o Controlling Debugging: $7P
o The Program Start Time: $°T
o Suppressing Warning Messages: $"W
o The $2X Variable
. Pattern System Variables
o Retrieving Matched Subpatterns
o Retrieving the Entire Pattern: $&
o Retrieving the Unmatched Text: the $° and $' Variables

o The $+ Variable
. File System Variables
o The Default Print Format: $~
o Specifying Page Length: $=
o Lines Remaining on the Page: $-
o The Page Header Print Format: $~_
o Buffering Output: $|
o The Current Page Number: $%
. Array System Variables
o The @ Variable
o The @RGV Variable
o The @ Variable
o The @NCVariable
o The % NCVariable
o The %ENV Variable
o The sl GVariable
. Built-In File Variables
o STDI N, STDOUT, and STDERR
o ARGV
o DATA
o The Underscore File Variable
Specifying System Variable Names as Words

. Summary
. Q&A
. Workshop
o Quiz
o Exercises

Day 18 Referencesin Perl 5

. Introduction to References
. Using References
. Using the Backslash Operator

. References and Arrays
. Multidimensional Arrays
. References to Subroutines
o Using Subroutine Templates
. Using Subroutines to Work with Multiple Arrays
o Pass By Value or By Reference?
. References to File Handles
o What Does the *vari abl e Operator Do?
. Using Symbolic References... Again
o Declaring Variables with Curly Braces
. More on Hard Versus Symbolic References
. For More Information

. Summary

. Q&A

. Workshop
o Quiz

. EXercises

Day 19 Object-Oriented Programming in Perl|

. An Introduction to Modules
o The Three Important Rules
. Classes in Perl
« Creating a Class
. Blessing a Constructor
o Instance Variables
. Methods
. Exporting Methods
. Invoking Methods
. Overrides
. Destructors
. Inheritance
. Overriding Methods
. A Few Comments About Classes and Objects in Perl

. Summary

. Q&A

. Workshop
o Quiz

o Exercises

Day 20 Miscellaneous Features of Perl

. Therequire Function
o Therequire Function and Subroutine Libraries
o Using r equi r e to Specify a Perl Version
. The $#array Variables
o Controlling Array Length Using $#array_
. Alternative String Delimiters
o Defining Strings Using <<
. Special Internal Values
. Using Back Quotes to Invoke System Commands
. Pattern Matching Using ?? and the reset Function
o Using reset with Variables
. Other Features of the <> Operator
o Scalar Variable Substitution and <>
o Creating a List of Filenames
. Global Indirect References and Aliases
. Packages
o Defining a Package
o Switching Between Packages
o The mai n Package
o Referring to One Package from Another
o Specifying No Current Package
o Packages and Subroutines
o Defining Private Data Using Packages
o Packages and System Variables
o Accessing Symbol Tables
. Modules
o Creating a Module
o Importing Modules Into Your Program
o Using Predefined Modules
. Using Perl in C Programs
. Perl and CGI Scripts
. Translators and Other Supplied Code

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Day 21 The Perl Debugger

. Entering and Exiting the Perl Debugger
o Entering the Debugger
o Exiting the Debugger
. Listing Your Program
o Thel command
o The - Command
o The wCommand
o The// and 22?2 Commands
o The s Command
. Stepping Through Programs
o The s Command
o The n Command
o Thef command
o The Carriage-Return Command
o Ther Command
. Displaying Variable Values
o The Xx Command
o The v Command
. Breakpoints
o The b Command
o The c Command
o The L Command and Breakpoints
o The d and D Commands
. Tracing Program Execution
. Line Actions
o The a Command
o The ACommand
o The <and > Commands
o Displaying Line Actions Using the L Command
« Other Debugging Commands
o Executing Other Perl Statements
o The HCommand: Listing Preceding Commands
o The! Command: Executing Previous Commands
o The T Command: Stack Tracing
o The p Command: Printing an Expression
o The = Command: Defining Aliases
o Predefining Aliases
o The h Command: Debugger Help

. Summary
. O&A
. Workshop

o Quiz

Week 3 Week 3in Review

Appendix A Answers

. Answers for Day 1, "Getting Started"
o Quiz
o EXercises
. Answers for Day 2, "Basic Operators and Control Flow"

O
o EXercises

. Answers for Day 3, "Understanding Scalar Values"
] .
o EXercises

. Answers for Day 4, "More Operators"

O

o EXercises

. Answers for Day 5, "Lists and Array Variables"
] .
o EXercises

. Answers for Day 6, "Reading from and Writing to Files"
] .
o EXercises

. Answers for Day 7, "Pattern Matching"
] .
o EXercises

. Answers for Day 8, "More Control Structures"

O
o EXercises

. Answers for Day 9, "Using Subroutines”
] .
o EXercises

. Answers for Day 10, "Associative Arrays"
] .
o EXercises

. Answers for Day 11, "Formatting Your Output"

O

o EXxercises
. Answers for Day 12, "Working with the File System"

O
‘(ED
N

o EXercises
. Answers for Day 13, "Process, String, and Mathematical Functions"
o Quiz
o EXercises
. Answers for Day 14, "Scalar-Conversion and List-Manipulation Functions
o Quiz
o EXercises
. Answers for Day 15, "System Functions"
o Quiz
o EXercises
. Answers for Day 16, "Command-Line Options"
o Quiz
o EXercises
. Answers for Day 17, "System Variables"
o Quiz
o EXercises
. Answers for Day 18, "References in
Perl 5"
o Quiz
o Exercises
. Answers for Day 19, "Object-Oriented Programming in Perl"
o Quiz
o Exercises
. Answers for Day 20, "Miscel laneous Features of Perl"
O ui
o Exercises
. Answers for Day 21, "The Perl Debugger"

o Quiz

N

Appendix B ASCI | Character Set

Credits

Copyright © 1996 by Sams Publishing
SECOND EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval

system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein. For information, address
Sams Publishing, 201 W. 103rd St., Indianapolis, IN 46290.

International Standard Book Number: 0-672-30894-0 HTML conversion by :
M/s. LeafWriters (India) Pvt. Ltd.
Website : http://leaf.stpn.soft.net

e-mail : leafwriters@ leaf.stpn.soft.net

Publisher and Richard K. Swadley Acquisitions Greg Wiegand

President Manager

Development Dean Miller Managing Editor Cindy Morrow

Manager

Marketing Manager John Pierce Assistant Kristina Perry
Marketing Manager

Acquisitions Editor Chris Denny Development Angelique Brittingham,
Editors Keith Davenport

Software Steve Straiger Production Editor Tonya R. Simpson

Development

Specialist

Copy Editor Kimberly K. Hannel Technical Reviewer Elliotte Rusty Harold

Editorial Bill Whitmer Technical Edit Lynette Quinn

Coordinator Coordinator

Formatter Frank Sinclair Editorial Carol Ackerman, Andi
Assistants Richter Rhonda, Tinch-

Mize

Cover Designer Tim Amrhein Book Designer Gary Adair

Copy Writer Peter Fuller Production Team Brad Chinn
Supervisor

Production Michael Brumitt, Charlotte Clapp, Jason Hand, Sonja Hart, Louisa

Klucznik, Ayanna Lacey, Clint Lahnen, Paula Lowell, Laura Robbins,
Bobbi Satterfield, Carol Sheehan, Chris Wilcox

Acknowledgments

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net

| would like to thank the following people for their help:

. David Macklem at Sietec Open Systems for al lowing me to take the time off to
work on the first edition of this book

. Everyone at Sams Publishing, for their efforts and encouragement

. Jim Gardner, for telling the people at Sams Publishing about me

I'd also like to thank all those friends of mine (you know who you are) who tolerated
my going stir-crazy as my deadlines approached.

About the Authors

David Till

David Till is a technical writer working in Toronto, Ontario, Canada. He holds a
master's degree in computer science from the University of Waterloo; programming
languages was his major field of study. He also has worked in compiler development and
on version-control software. He lists his hobbies as "writing, comedy, walking, duplicate
bridge, and fanatical support of the Toronto Blue Jays."

He can be reached via e-mail at an671@ r eenet . t or ont 0. on. ca Or davet @!| g. com Or on
the World Wide Web at http://ww. i nterl og. conml ~davet /.

Kamran Husain

Kamran Husain is a software consultant with experience in UNIX system programming.
He has dabbled in all sorts of software for real-time systems applications,
telecommunications, seismic data acquisition and navigation, X Window/Motif and
Microsoft Windows applications. He refuses to divulge any more of his qualifications.
Kamran offers consulting services and training classes through his company, MPS Inc., in
Houston, Texas. He is an alumnus of the University of Texas at Austin.

You can reach Kamran through Sams Publishing or via e-mail at khusai n@eosoft. comor
npsi @ol . com

| ntroduction

This book is designed to teach you the Perl programming language in just 21 days. When
you finish reading this book, you will have learned why Perl is growing rapidly in
popularity: It is powerful enough to perform many useful, sophisticated programming
tasks, yet it is easy to learn and use.

http://www.interlog.com/~davet/

Who Should Read This Book?

No previous programming experience is required for you to learn everything you need to
know about programming with Perl from this book. In particular, no knowledge of the C
programming language is required. If you are familiar with other programming
languages, learning Perl will be a snap. The only assumption this book does make is that
you are familiar with the basics of using the UNIX operating system.

Special Features of This Book

This book contains some special elements that help you understand Perl features and
concepts as they are introduced:

. Syntax boxes

. DO/DON'T boxes
. Notes

. Warnings

. Tips

Syntax boxes explain some of the more complicated features of Perl, such as the control
structures. Each syntax box consists of a formal definition of the feature followed by
an explanation of the elements of the feature. Here is an example of a syntax box:

The syntax of the f or statement is

for (exprl; expr2; expr3) {

st at enent bl ock

expr 1 is the loop initializer. It is evaluated only once, before the start of the loop.

expr 2 is the conditional expression that terminates the loop. The conditional expression
in expr 2 behaves just like the ones in whi | e and i f statements: If its value is zero, the
loop is terminated, and if its value is nonzero, the loop is executed.

st at ement _bl ock is the collection of statements that is executed if (and when) expr 2 has
a nonzero value.

expr 3 is executed once per iteration of the loop, and is executed after the last
statement in st at ement _bl ock Is executed.

Don't try to understand this definition yet!

DO/DON'T boxes present the do's and don'ts for a particular task or feature. Here is an
example of such a box:

Don‘t

DON'T confuse the | operator (bitwise OR) with the | |
operator (logical OR).

DO make sure you are using the proper bitwise operator.
It's easy to slip and assume you want bitwise OR when
you really want bitwise AND. (Trust me.

Notes are explanations of interesting properties of a particular program feature. Here is
an example of a note:

NOTE

In left-justified output, the value being displayed
appears at the left end of the value field. In right-
justified output, the value being displayed appears at the
right end of the value field.

Warnings warn you of programming pitfalls to avoid. Here is a typical warning:

i
= s

WARNING

You cannot use the | ast statement inside the do
statement. The do statement, although it behaves like
the other control structures, is actually implemented
differently.

Tips are hints on how to write your Perl programs better. Here is an example of a tip:

TIP

It is a good idea to use all uppercase letters for your
file variable names. This makes it easier to distinguish
file variable names from other variable names and from
reserved words.

Programming Examples

Each feature of Perl is il lustrated by examples of its use. In addition, each chapter of
this book contains many useful programming examples complete with explanations; these
examples show you how you can use Perl features in your own programs.

Each example contains a listing of the program, the input required by and the output
generated by the program, and an analysis of how the program works. Special icons are
used to point out each part of the example: Type, Input-Output, and Analysis.

In the Input-Output example fol lowing Listing IN.1, there are some special typographic
conventions. The input you enter is shown in bol d nonospace type, and the output
generated by the system or the program is shown in pl ai n nonospace type. The system
prompt ($ in the examples in this book) is shown so that you know when a command is to
be entered on the command line.

Listing IN.1. Asimple Perl program with comments.

1. #!/usr/local/bin/perl

2: # this programreads a line of input, and wites the |line
3: # back out

4: $inputline = <STDI N>; # read a line of input

5: print($inputline); # wite the |ine out

$ program N_1
This is a line of input.
This is a line of input.

$

- “ILine 1 is the header comment. Lines 2 and 3 are comments, not executable lines
of code. Line 4 reads a line of input. Line 5 writes the line of input on your screen.

End-of-Day Q& A and Workshop

Each day ends with a Q&A section containing answers to common questions relating to
that day's material. There also is a Workshop at the end of each day that consists of
quiz questions and programming exercises. The exercises often include BUG BUSTER
exercises that help you spot some of the common bugs that crop up in Perl programs. The
answers to these quiz questions as well as sample solutions for the exercises are
presented in Appendix A, "Answers."

Conventions Used in This Book

This book uses different typefaces to help you differentiate between Perl code and
regular English, and also to help you identify important concepts.

. Actual Perl code is typeset in a special nonospace font. You'l l see this font used in
listings and the Input-Output examples, as well as in code snippets. In the
explanations of Perl features, commands, filenames, statements, variables, and
any text you see on the screen also are typeset in this font.

. Command input and anything that you are supposed to enter appears in a bol d
nmonospace font. You'll see this mainly in the Input-Output examples.

. Placeholders in syntax descriptions appear in anital i c nonospace font. Replace
the placeholder with the actual filename, parameter, or whatever element it
represents.

. ltalics highlight technical terms when they first appear in the text and are
sometimes used to emphasize important points.

What You'll Learnin 21 Days

In your first week of learning Perl, you'll learn enough of the basics of Perl to write
many useful Perl programs. Here's a summary of what you'll learn in Week 1:

Day 1, "Getting Started," tells you how to get Perl, how to run Perl
programs, and how to read from your keyboard and write to your screen.

Day 2, "Basic Operators and Control Flow," teaches you about simple

arithmetic, how to assign a value to a scalar variable, and how to control
execution using conditional statements.

Day 3, "Understanding Scalar Values," teaches you about integers,

floating-point numbers, and character strings. It also shows you that all
three are interchangeable in Perl.

Day 4, ""More Operators," tells you all about operators and expressions in
Perl and talks about operator associativity and precedence.

Day 5, "Lists and Array Variables,"” introduces you to lists, which are
collections of values, and to array variables, which store lists.

Day 6, "Reading from and Writing to Files,” tells you how to interact

with your file system by reading from input files, writing to output files,
and testing for particular file attributes.

Day 7, "Pattern Matching," describes pattern-matching in Perl and shows

how you can substitute values and translate sets of characters in text
strings.

By the end of Week 2, you'l I have mastered almost all the features of Perl; you'll also
have learned about many of the library functions supplied with the language. Here's a
summary of what you'll learn:

Day 8, ""More Control Structures," discusses the control flow
statements not previously covered.

Day 9, ""Using Subroutines,” shows how you can break your program into
smaller, more manageable, chunks.

Day 10, ""Associative Arrays," introduces one of the most powerful and

useful constructs in Perl-arrays-and it shows how you can use these arrays
to simulate other data structures.

Day 11, "Formatting Your Output,” shows how you can use Perl to
produce tidy reports.

Day 12, ""Working with the File System," shows how you can interact with
your system's directory structure.

Day 13, ""Process, String, and Mathematical Functions," describes the
library functions that interact with processes running on the system. It
also describes the functions that perform trigonometric and other
mathematical operations, and the functions that operate on strings.

Day 14, ""Scalar-Conversion and List-Manipulation Functions," describes

the library functions that convert values from one form to another and
the functions that work with lists and array variables.

By the end of Week 3, you'l 1 know all the features and capabilities of Perl. It covers
the rest of the Perl library functions and describes some of the more esoteric concepts
of the language. Here's a summary of what you'll learn:

Day 15, "System Functions," describes the functions that manipulate the
Berkeley UNIX and UNIX System V environments.

Day 16, ""Command-Line Options," describes the options you can supply with
Perl to control how your program runs.

Day 17, ""'System Variables," describes the built-in variables that are
included automatically as part of every Perl program.

Day 18, ""References in Perl 5, describes the pointer and reference
features of Perl 5, including multi-dimensional arrays.

Day 19, "Object-Oriented Programming in Perl," describes the object-

oriented capabilities added to Perl 5. These enable you to hide information
and divide your program into individual file modules.

Day 20, ""Miscel laneous Features of Perl,” covers some of the more exotic
or obscure features of the language.

Day 21, ""The Perl Debugger," shows you how to use the Perl debugger to
discover errors quickly.

ol

Week at a Glance

CONTENTS

. Where You're Going

In your first week of teaching yourself Perl, you'l l learn enough of the basics to write
many useful Perl programs. Although some experience in using a programming language
will be an advantage as you read this book, it is not required. In particular, you don't
need to know the C programming language before you read this book.

To use this book effectively, you should be able to try out some of the features of Perl
as you learn them. To do this, you should have Perl running on your system. If you don't
have Perl, Day 1, "Getting Started," tells how you can get it for free.

Each chapter of this book contains quiz and exercise questions that test you on the
material covered in the day's lesson. These questions are answered in Appendix A,
"Answers."

WhereYou're Going
The first week covers the essentials of Perl. Here's a summary of what you'll learn.

Day 1, "Getting Started," tells you how to get Perl, how to run Perl programs, and how
to read input from your keyboard and write output to your screen.

Day 2, "Basic Operators and Control Flow," teaches you about simple arithmetic, how to
assign a value to a scalar variable, and how to control execution using conditional

statements.

Day 3, "Understanding Scalar Values," teaches you about integers, floating-point

numbers, and character strings. It also shows you that all three are interchangeable in
Perl.

Day 4, "More Operators,” tells you all about operators and expressions in Perl and talks
about operator associativity and precedence.

Day 5, "Lists and Array Variables,"” introduces you to lists, which are collections of
values, and to array variables, which store lists.

Day 6, "Reading from and Writing to Files," tells you how to interact with your file
system by reading from input files, writing to output files, and testing for particular
file attributes.

Finally, Day 7, "Pattern Matching," describes pattern matching in Perl and shows how
you can substitute values and translate sets of characters in text strings.

This is quite a bit of material to learn in one week; however, by the end of the week
you'll know most of the essentials of Perl and will be able to write many useful
programs.

e el e

Chapter 1
Getting Started

CONTENTS

. What Is Perl?
. How Do | Find Perl?
o Where Do | Get Perl?
o Other Places to Get Perl
. A Sample Perl Program
« Running a Perl Program
o If Something Goes Wrong
. The First Line of Your Perl Program: How Comments Work
o Comments
. Line 2: Statements, Tokens, and <STDI N>
o Statements and Tokens
o Tokens and White Space
o What the Tokens Do: Reading from Standard Input
. Line 3: Writing to Standard Output
o Function Invocations and Arguments
. Error Messages
. Interpretive Languages Versus Compiled Languages

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Welcome to Teach Yourself Perl 5in 21 Days. Today you'll learn about the following:

. What Perl is and why Perl is useful

. How to get Perl if you do not already have it

. How to run Perl programs

. How to write a very simple Perl program

. The difference between interpretive and compiled programming languages
. What an algorithm is and how to develop one

What |s Per|?

Perl is an acronym, short for Practical Extraction and Report Language. It was designed
by Larry Wall as a tool for writing programs in the UNIX environment and is
continually being updated and maintained by him.

For its many fans, Perl provides the best of several worlds. For instance:

. Perl has the power and flexibility of a high-level programming language such as
C. In fact, as you will see, many of the features of the language are borrowed
from C.

. Like shell script languages, Perl does not require a special compiler and linker to
turn the programs you write into working code. Instead, all you have to do is
write the program and tell Perl to run it. This means that Perl is ideal for
producing quick solutions to small programming problems, or for creating
prototypes to test potential solutions to larger problems.

. Perl provides all the features of the script languages sed and awk, plus features
not found in either of these two languages. Perl also supports a sed-to-Perl
translator and an awk-to-Perl translator.

In short, Perl is as powerful as C but as convenient as awk, sed, and shell scripts.
NOTE

This book assumes that you are familiar with the basics
of using the UNIX operating system

As you'll see, Perl is very easy to learn. Indeed, if you are familiar with other
programming languages, learning Perl is a snap. Even if you have very little
programming experience, Perl can have you writing useful programs in a very short time.
By the end of Day 2, "Basic Operators and Control Flow," you'l | know enough about

Perl to be able to solve many problems.

How Dol Find Perl?

To find out whether Perl already is available on your system, do the following:

. Ifyou are currently working in a UNIX programming environment, check to see
whether the file /usr/ 1 ocal / bi n/ perl exists.

. Ifyou are working in any other environment, check the place where you
normal ly keep your executable programs, or check the directories accessible from
your PATHenvironment variable.

IT you do not find Perl in this way, talk to your system administrator and ask whether
she or he has Perl running somewhere else. If you don't have Perl running in your
environment, don't despair-read on!

WhereDo | Get Perl?

One of the reasons Perl is becoming so popular is that it is available free of charge to
anyone who wants it. If you are on the Internet, you can obtain a copy of Perl with file-
transfer protocol (FTP). The following is a sample FTP session that transfers a copy of
the Perl distribution. The items shown in boldface type are what you would enter
during the session.

$ ftp prep.ai.nmt.edu
Connected to prep.ai.mt. edu.

220 aeneas FTP server (Version wu-2.4(1) Thu Apr 14 20:21:35 EDT 1994)
ready.

Nane (prep.ai.mt.edu:dave): anonynous

331 Cuest login ok, send your conplete e-mail address as password.
Passwor d:

230- Wl cone, archive user!

230-

230-1f you have probl ens downl oadi ng and are seeing "Access denied" or
230-"Perm ssi on deni ed", please make sure that you started your FTP
230-client in a directory to which you have wite perm ssion.

230-

230-1f you have any problens with the GNU software or its
downl oadi ng,

230- pl ease refer your questions to <gnu@REP.Al.MT.EDU>. If you have
any

230- ot her unusual problens, please report themto
<r oot @daeneas. M T. EDU>.

230-
230-1f you do have problens, please try using a dash (-) as the first
230-character of your password - this will turn off the continuation

230- messages that may be confusing your FTP client.

230-

230 CGuest login ok, access restrictions apply.

ftp> cd pub/gnu

250-1f you have probl ens downl oadi ng and are seeing "Access deni ed" or
250- " Perm ssi on deni ed", please make sure that you started your FTP
250-client in a directory to which you have wite pern ssion.

250-

250- Pl ease note that all files ending in are conpressed with

.9z
250-'gzip', not with the unix 'conpress’' program Get the file READMVE
250- and read it for nore information.

250-

250- Pl ease read the file READVE

250- it was last nodified on Thu Feb 1 15:00:50 1996 - 32 days ago
250- Pl ease read the file READVE-about-.diff-files

250- it was last nodified on Fri Feb 2 12:57:14 1996 - 31 days ago
250- Pl ease read the fil e READVE-about-.gz-files

250- it was last nodified on Wd Jun 14 16:59:43 1995 - 264 days ago
250 CWD command successful .

ftp> binary

200 Type set to |I.

ftp> get perl-5.001.tar.qgz

200 PORT command successful .

150 Opening ASCII node data connection for perl-5.001.tar.gz (1130765
byt es).

226 Transfer conpl ete.

1130765 bytes received in 9454 seconds (1.20 Kbytes/s)
ftp> quit

221 CGoodbye.

$

The commands entered in this session are explained in the fol lowing steps. If some of
these steps are not familiar to you, ask your system administrator for help.

1. The command

$ ftp prep.ai.nmt.edu
connects you to the main Free Software Foundation source depository at MIT.

2. The user ID anonynous tells FTP that you want to perform an anonymous FTP
operation.

3. When FTP asks for a password, enter your user ID and network address. This lets
the MIT system administrator know who is using the MIT archives. (For security
reasons, the password is not actually displayed when you type it.)

4. The command cd pub/ gnu sets your current working directory to be the directory
containing the Perl source.

5. The bi nary command tells FTP that the file you'll be receiving is a file that
contains unreadable (non-text) characters.

6. The get command copies the file perl - 5. 001. t ar. gz from the MIT source
depository to your own site. (It's usually best to do this in off-peak hours to make
things easier for other Internet users-it takes awhile.) This file is quite large
because it contains all the source files for Perl bundled together into a single
file.

7. The qui t command disconnects from the MIT source repository and returns you to
your own system.

Once you've retrieved the Perl distribution, do the fol lowing:

1. Create a directory and move the file you just received, per| - 5. 001. t ar. gz, to this
directory. (Or, alternatively, move it to a directory already reserved for this
purpose.)

2. The perl-5.001.tar. gz file is compressed to save space. To uncompress it, enter the
command

$ gunzip perl-5.001.tar.gz
gunzi pis the GNU uncompress program. If it's not available on your system, see
your system administrator. (You can, in fact, retrieve it from
prep. ai . mt.eduusing anonymous FTP with the same commands you used to
retrieve the Perl distribution.)
When you run gunzi p, the file per! -5. 001. tar. gzwill be replaced by per| -
5.001. tar, which is the uncompressed version of the Perl distribution file.

3. The next step is to unpack the Perl distribution. In other words, use the
information in the Perl distribution to create the Perl source files. To do this,
enter the following command:

$ tar xvf - <perl-5.001.tar
As this command executes, it creates each source file in turn and displays the
name and size of each file as it is created. The t ar command also creates

subdirectories where appropriate; this ensures that the Perl source files are
organized in a logical way.

4. Using your favorite C compiler, compile the Perl source code using the makefile
provided. (This makefile should have been created when the source files were
unpacked in the last step.)

5. Place the compiled Perl executable into the directory where you normally keep
your executables. On UNIX systems, this directory usually is called
/usr/1ocal /bi n,and Perl usually is named / usr /1 ocal / bi n/ perl .

You might need your system administrator's help to do this because you might not have
the necessary permissions.

Other Placesto Get Perl

IT you cannot access the MIT site from where you are, you can get Perl from the
fol lowing sites using anonymous FTP:

North America

Site Location

ftp.netlabs.com [[Internet address 192. 94. 48. 152
Directory /pub/outgoing/perl5.0

ftp.cis.ufl.edu Internet address 128. 227. 100. 198
Directory /pub/perl/src/5.0
ftp.uu. net Internet address 192. 48. 96. 9

Directory /Il anguages/ per|l

ftp. khor os. unm edu|{Internet address 198. 59. 155. 28
Directory /pub/perl

ftp.cbi.tamucc. edu|[Internet address 165. 95. 1. 3
Directory /pub/duff/Perl

ftp. netronet.com (Internet address 192. 245. 137. 1
Directory /pub/perl/sources

geneti cs. upenn. edu|lInternet address 128. 91. 200. 37
Directory /perl5

Europe

Site Location

ftp.cs.ruu.nl Internet address 131. 211. 80. 17
Directory /pub/ PERL/ perl5.0/src

ftp.funet.fi Internet address 128. 214. 248. 6

Directory

/ pub/ | anguages/ perl / ports/perl5
ftp.zrz. tu- Internet address 130. 149. 4. 40
berlin. de Di rectory /pub/unix/ per|l

src.doc.ic.ac.uk |[Internet address 146. 169. 17.5
Directory /packages/ perl5

Australia

Site Location

sungear. mane. nu. oz. auj|Internet address 128. 250. 209. 2
Directory /pub/perl/src/5.0

South America

Site Location

ftp.inf.utfsmcl Internet address 146. 83. 198. 3
Directory /pub/gnu

You also can obtain Perl from most sites that store GNU source code, or from any site
that archives the Usenet newsgroup conp. sour ces. uni x.

A Sample Per| Program

Now that Perl is available on your system, it's time to show you a simple program that
illustrates how easy it is to use Perl. Listing 1.1 is a simple program that asks for a line
of input and writes it out.

T |

Listing 1.1. Asimple Perl program that reads and writes a line of input.

1. #!/usr/local/bin/perl
2: Sinputline = <STDI N>;

3: print($inputline);

$prograntl_1
This is ny line of input.

This is ny line of input.

Line 1 is the header comment. Line 2 reads a line of input. Line 3 writes the line of input
back to your screen.

The following sections describe how to create and run this program, and they describe it
in more detail.

Running a Per| Program

To run the program shown in Listing 1.1, do the fol lowing:

1. Using your favorite editor, type the previous program and save it in a file called
programl_1.

2. Tell the system that this file contains executable statements. To do this in the
UNIX environment, enter the command

$ chnod +x progrant_1
3. Run the program by entering the command

$ progrant_1

When you run progrant_1, it waits for you to enter a line of input. After you enter the
line of input, progrant_1 prints what you entered, as fol lows:

$ progrant_1

This is ny line of input.
This is ny line of input.
$

I f Something Goes Wrong

If Listing 1.1 is stored in the file progrant_1 and run according to the preceding steps,
the program should run successfully. If the program doesn't run, one of two things has
likely happened:

. The system can't find the file programt_1.
. The system can't find Perl.

If you receive the error message

progranmil_1 not found

or something similar, your system couldn't find the file progrant_1. To tell the system
where progrant_1 is located, you can do one of two things in a UNIX environment:

. Enter the command ./ programl_1, which gives the system the pathname of
programl_1 relative to the current directory.

. Add the current directory . to your PATHenvironment variable. This tells the
system to search in the current directory when looking for executable programs
such as progrant_1.

If you receive the message

[usr/1local/bin/perl not found

or something similar, this means that Perl is not instal led properly on your machine. See
the section "How Do | Find Perl?" earlier today, for more details.

If you don't understand these instructions or are still having trouble running Listing
1.1, talk to your system administrator.

TheFirst Lineof Your Perl Program: How Comments
Work

Now that you've run your first Perl program, let's look at each line of Listing 1.1 and
figure out what it does.

Line 1 of this program is a special line that tells the system that this is a Perl program:

#! [/ usr/ 1 ocal / bi n/ perl

Let's break this line down, one part at a time:

. The first character in the line, the # character, is the Perl comment character. It
tells the system that this line is not an executable instruction.

. The! character is a special character; it indicates what type of program this is.
(You don't need to worry about the details of what the! character does. All you
have to do is remember to include it.)

. Thepath/usr/I ocal /bin/perl isthe location of the Perl executable on your
system. This executable interprets your program; in other words, it figures out what
you want to do and then does it. Because the Perl executable has the job of
interpreting Perl instructions, it usually is cal led the Perl interpreter.

If, after reading this, you still don't understand the meaning of the line

#!/usr/ 1 ocal / bi n/ perl don't worry. The actual specifics of what it does are not
important for our purposes in this book. Just remember to include it as the first line of
your program, and Perl will take it from there.

NOTE

If you are running Perl on a system other than UNIX,
you might need to replace the line

#! / usr/ 1 ocal / bi n/ perl with some other line indi-cating
the location of the Perl interpreter on your system. Ask
your system administrator for details on what you need
to include here.

After you have found out what the proper first line is in
your environment, include that line as the first line of
every Perl program you write, and you're all set

Comments

As you have just seen, the first character of the line

#! [/ usr/ 1 ocal / bi n/ perl

Is the comment character, #. When the Perl interpreter sees the #, it ignores the rest of
that line.

Comments can be appended to lines containing code, or they can be lines of their own:

$i nputline = <STDI N>; # this line contains an appended conment

this entire line is a comment

You can-and should-use comments to make your programs easier to understand. Listing
1.2 is the simple program you saw ear lier, but it has been modified to include comments
explaining what the program does.

NOTE

As you work through the lessons in this book and create
your own programs-such as the one in Listing 1.2-you
can, of course, name them anything you want. For

il lustration and discussion purposes, I've adopted the
convention of using a name that corresponds to the
listing number. For example, the program in Listing 1.2 is
called programl_2

The program name is used in the Input-Output examples
such as the one following this listing, as well as in the
Analysis section where the listing is discussed in detail.
When you follow the Input-Output example, just
remember to substitute your program's name for the one
shown in the example

T |

Listing 1.2. A simple Perl program with comments.

1. #!/usr/local/Dbin/perl

2: # this programreads a line of input, and wites the |ine
3: # back out

4: $inputline = <STDI N>; # read a line of input

5: print($inputline); # wite the |ine out

$ progranl_2

This is a line of input.

This is a line of input.

The behavior of the program in Listing 1.2 is identical to that of Listing 1.1 because the
actual code is the same. The only difference is that Listing 1.2 has comments in it

Note that in an actual program, comments normally are used only to explain
complicated code or to indicate that the following lines of code perform a specific task.
Because Perl instructions usual ly are pretty straightforward, Perl programs don't need
to have a lot of comments.

Don‘t

DO use comments whenever you think that a line of code
Is not easy to understand.

DON'T clutter up your code with unnecessary comments.
The goal is readability. If a comment makes a program
easier to read, include it. Otherwise, don't bother.

DON'T put anything else after /usr/ 1 ocal / bi n/ perl in

the first line:
#!/usr/1ocal / bi n/ perl

This line is a special comment line, and it is not treated
like the others.

Line 2: Statements, Tokens, and <smoi

Now that you've learned what the first line of Listing 1.1 does, let's take a look at line
2:

$i nputline = <STDI N>;

This is the first line of code that actually does any work. To understand what this line

does, you need to know what a Perl statement is and what its components are.
Statements and Tokens

The line of code you have just seen is an example of a Per| statement. Basically, a
statement is one task for the Perl interpreter to perform. A Perl program can be
thought of as a col lection of statements performed one at a time.

When the Perl interpreter sees a statement, it breaks the statement down into smaller
units of information. In this example, the smaller units of information are $i nput 1 i ne, =,
<STDI N>, and ; . Each of these smaller units of information is cal led a token.

Tokens and White Space

Tokens can normally be separated by as many spaces and tabs as you like. For example,
the following statements are identical in Perl:

$i nputline = <STDI N>;
$i nput | i ne=<STDI N>;

$i nputline = <STDI N>;

Your statements can take up as many lines of code as you like. For example, the
following statement is equivalent to the ones above:

$i nputline

<STDI N>

The collection of spaces, tabs, and new lines separating one token from another is
known as white space.

When programming in Perl, you should use white space to make your programs more
readable. The examples in this book use white space in the fol lowing ways:

. New statements always start on a new line.
. One blank space is used to separate one token from another (except in special
cases, some of which you'l I see today).

What the Tokens Do: Reading from Standard I nput

As you've seen already, the statement

$i nputline = <STDI N>;

consists of four tokens: $i nput | i ne, =, <STDI N>, and ; . The following subsections explain
what each of these tokens does.

The $i nput | i ne and = Tokens

The first token in line 1, $i nput I i ne (at the left of the statement), is an example of a
scalar variable. In Perl, a scalar variable can store one piece of information.

The = token, cal led the assignment operator, tells the Perl interpreter to store the item
specified by the token to the right of the = in the place specified by the token to the left
of the =. In this example, the item on the right of the assignment operator is the <STDI N>
token, and the item to the left of the assignment operator is the $i nput | i ne token.
Thus, <STDI N> is stored in the scalar variable $i nput | i ne.

Scalar variables and assignment operators are covered in more detail on Day 2, "Basic
Operators and Control Flow."”

The <STDI N> Token and the Standard I nput File

The next token, <STDI N>, represents a line of input from the standard input file. The
standard input file, or STDIN for short, typically contains everything you enter when
running a program.

For example, when you run progrant_1 and enter

This is a line of input.

the line you enter is stored in the standard input file.

The <STDI N> token tells the Perl interpreter to read one line from the standard input
file, where a line is defined to be a set of characters terminated by a new line. In this
example, when the Perl interpreter sees <STDI N>, it reads in

This is a line of input.

If the Perl interpreter then sees another <STDI N> in a different statement, it reads
another line of data from the standard input file. The line of data you read earlier is

destroyed unless it has been copied somewhere else.
NOTE

If there are more lines of input than there are <STDI N>
tokens, the extra lines of input are ignored

Because the <STDI N> token is to the right of the assignment operator =, the line

This is a line of input.

Is assigned to the scalar variable $i nput | i ne.
The; Token

The ; token at the end of the statement is a special token that tells Perl the statement
is complete. You can think of it as a punctuation mark that is like a period in English.

Line 3: Writing to Standard Output

Now that you understand what statements and tokens are, consider line 3 of Listing 1.1,
which is

print ($inputline);
This statement refers to the library function that is called pri nt. Library functions, such

as print, are provided as part of the Perl interpreter; each library function performs a
useful task.

The pri nt function's task is to send data to the standard output file. The standard output
file stores data that is to be written to your screen. The standard output file sometimes
appears in Perl programs under the name STDOUT.

In this example, pri nt sends $i nput | i ne to the standard output file. Because the second
line of the Perl program assigns the line

This is a line of input.

to $i nput | i ne, thisis what pri nt sends to the standard output file and what appears on
your screen.

Function I nvocations and Arguments

When a reference to pri nt appears in a Perl program, the Perl interpreter calls, or
invokes, the pri nt library function. This function invocation is similar to a function
invocation in C, a GOSUB statement in BASIC, or a PERFORMstatement in COBOL. When
the Perl interpreter sees the pri nt function invocation, it executes the code contained
in print and returns to the program when pri nt is finished.

Most library functions require information to tell them what to do. For example, the
pri nt function needs to know what you want to print. In Perl, this information is
supplied as a sequence of comma-separated items located between the parentheses of the
function invocation. For example, the statement you've just seen:

print ($inputline);

supplies one piece of information that is passed to pri nt : the variable $i nput | i ne. This
piece of information commonly is cal led an argument.

The following call to pri nt supplies two arguments:

print ($inputline, $inputline);

You can supply pri nt with as many arguments as you like; it prints each argument
starting with the first one (the one on the left). In this case, pri nt writes two copies of
$i nput | i ne to the standard output file.

You also can tell print to write to any other specified file. You'l | learn more about
this on Day 6, "Reading From and Writing To Files."

Error Messages

IT you incorrectly type a statement when creating a Perl program, the Perl interpreter
will detect the error and tell you where the error is located.

For examp