
Upload by mohaa99 ™ (show some respect to the original uploader)

Praise for Head First HTML with CSS & XHTML

“Head First HTML with CSS & XHTML is a thoroughly modern introduction to forward-looking
practices in Web page markup and presentation. It correctly anticipates readers’ puzzlements
and handles them just in time. The highly graphic and incremental approach precisely mimics
the best way to learn this stuff: make a small change and see it in the browser to understand
what each new item means.”

	 — Danny Goodman, author of Dynamic HTML: The Definitive Guide

“Eric and Elisabeth Freeman clearly know their stuff. As the Internet becomes more complex,
inspired construction of web pages becomes increasingly critical. Elegant design is at the core of
every chapter here, each concept conveyed with equal doses of pragmatism and wit.”

	 — Ken Goldstein, Executive Vice President &
 Managing Director, Disney Online

“The Web would be a much better place if every HTML author started off by reading this
book.”

	 — L. David Baron, Technical Lead, Layout & CSS, Mozilla Corporation
 http://dbaron.org/

“I’ve been writing HTML and CSS for ten years now, and what used to be a long trial and
error learning process has now been reduced neatly into an engaging paperback. HTML used
to be something you could just hack away at until things looked okay on screen, but with the
advent of web standards and the movement towards accessibility, sloppy coding practice is not
acceptable anymore... from a business standpoint or a social responsibility standpoint. Head
First HTML with CSS & XHTML teaches you how to do things right from the beginning without
making the whole process seem overwhelming. HTML, when properly explained, is no more
complicated than plain English, and the Freemans do an excellent job of keeping every concept
at eye-level.”

 	 — Mike Davidson, President & CEO, Newsvine, Inc.

“The information covered in this book is the same material the pros know, but taught in an
educational and humorous manner that doesn’t ever make you think the material is impossible
to learn or you are out of your element.”

 	 — Christopher Schmitt, Author of The CSS Cookbook
 and Professional CSS, schmitt@christopher.org

Oh, great. You made an XHTML book simple enough a CEO can understand it. What will you
do next? Accounting simple enough my developer can understand it? Next thing you know we’ll
be collaborating as a team or something.

 	 — Janice Fraser, CEO, Adaptive Path

More Praise for Head First HTML with CSS & XHTML

“I *heart* Head First HTML with CSS & XHTML – it teaches you everything you need to learn
in a ‘fun coated’ format!”
 	 — Sally Applin, UI Designer and Fine Artist, http://sally.com.

“This book has humor, and charm, but most importantly, it has heart. I know that sounds
ridiculous to say about a technical book, but I really sense that at its core, this book (or at least
its authors) really care that the reader learn the material. This comes across in the style, the
language, and the techniques. Learning – real understanding and comprehension – on the
part of the reader is clearly top most in the minds of the Freemans. And thank you, thank
you, thank you, for the book’s strong, and sensible advocacy of standards compliance. It’s
great to see an entry level book, that I think will be widely read and studied, campaign so
eloquently and persuasively on behalf of the value of standards compliance in web page code.
I even found in here a few great arguments I had not thought of – ones I can remember and
use when I am asked – as I still am – ‘what’s the deal with compliance and why should we
care?’ I’ll have more ammo now! I also liked that the book sprinkles in some basics about the
mechanics of actually getting a web page live - FTP, web server basics, file structures, etc.”

	 — Robert Neer, Director of Product Development, Movies.com

“Freeman’s Head First HTML with CSS & XHTML is a most entertaining book for learning how
to build a great web page. It not only covers everything you need to know about HTML, CSS,
and XHTML, it also excels in explaining everything in layman’s terms with a lot of great
examples. I found the book truly enjoyable to read, and I learned something new!”

	 — Newton Lee, Editor-in-Chief, ACM Computers in Entertainment
 http://www.acmcie.org

“My wife stole the book. She’s never done any web design, so she needed a book like Head First
HTML with CSS & XHTML to take her from beginning to end. She now has a list of web sites
she wants to build – for our son’s class, our family, ... If I’m lucky, I’ll get the book back when
she’s done.”

	 — David Kaminsky, Master Inventor, IBM

“Beware. If you’re someone who reads at night before falling asleep, you’ll have to restrict Head
First HTML with CSS & XHTML to daytime reading. This book wakes up your brain.”

	 — Pauline McNamara, Center for New Technologies and Education,
 Fribourg University, Switzerland

Previous Praise for books by the authors

From the awesome Head First Java folks, this book uses every conceivable trick to help you
understand and remember. Not just loads of pictures: pictures of humans, which tend to interest
other humans. Surprises everywhere. Stories, because humans love narrative. (Stories about things
like pizza and chocolate. Need we say more?) Plus, it’s darned funny.

	 — Bill Camarda, READ ONLY

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that
helps even non-programmers think well about problem-solving.”

	 — Cory Doctorow, co-editor of Boing Boing
	 and author of “Down and Out in the Magic Kingdom”
	 and “Someone Comes to Town, Someone Leaves Town”

“I feel like a thousand pounds of books have just been lifted off of my head.”

	 — Ward Cunningham, inventor of the Wiki
	 and founder of the Hillside Group

“This book is close to perfect, because of the way it combines expertise and readability. It speaks
with authority and it reads beautifully. It’s one of the very few software books I’ve ever read that
strikes me as indispensable. (I’d put maybe 10 books in this category, at the outside.)”

	 — David Gelernter, Professor of Computer Science,
	 Yale University and author of “Mirror Worlds” and “Machine Beauty”

“A Nose Dive into the realm of patterns, a land where complex things become simple, but where
simple things can also become complex. I can think of no better tour guides than the Freemans.”

	 — Miko Matsumura, Industry Analyst, The Middleware Company
 Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

	 — Daniel Steinberg, Editor-in-Chief, java.net

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of
tired, stale professor-speak.”

	 — Travis Kalanick, Founder of Scour and Red Swoosh
	 Member of the MIT TR100

“I literally love this book. In fact, I kissed this book in front of my wife.”

	 — Satish Kumar

Make it Stick

Other related books from O’Reilly

HTML Pocket Reference

CSS Pocket Reference

CSS Cookbook

Cascading Style Sheets: The Definitive Guide

HTML & XHTML: The Definitive Guide

Dynamic HTML: The Definitive Reference

Learning Web Design: A Beginner’s Guide to HTML, Graphics, and Beyond

Other books in O’Reilly’s Head First series

Head First JavaTM

Head First Object-Oriented Analysis and Design (OOA&D)

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Physics

Head First Statistics

Head First Rails

Head First PHP & MySQL

Head First Algebra

Head First HTML
with CSS & XHTML

Beijing • Cambridge • Köln • Sebastopol • Taipei • Tokyo

Wouldn’t it be dreamy
if there was an HTML book

that didn’t assume you knew what
elements, attributes, validation,

selectors, and pseudo-classes were,
all by page three? It’s probably just

a fantasy...

Elisabeth Freeman
Eric Freeman

Head First HTML with CSS and XHTML
by Elisabeth Freeman and Eric Freeman

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Associate Publisher: 	 Mike Hendrickson

Series Creators: 	 Kathy Sierra, Bert Bates

Series Advisors: 	 Elisabeth Freeman, Eric Freeman

Editor: 	 Brett McLaughlin

Cover Designers: 	 Ellie Volckhausen, Karen Montgomery

HTML Wranglers: 	 Elisabeth Freeman, Eric Freeman

Structure:	 Elisabeth Freeman

Style:	 Eric Freeman

Page Viewer:	 Oliver

Printing History:
December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The Head First series designations, Head First HTML with CSS and XHTML, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First HTML with CSS & XHTML to, say, run a nuclear power plant,
you’re on your own. We do, however, encourage you to visit the Head First Lounge.

No elements or properties were harmed in the making of this book.

Thanks to Clemens Orth for the use of his photo, “applestore.jpg”, which appears in Chapter 5.

ISBN: 978-0-596-10197-8
[C]										 [1/09]

To the W3C, for saving us from the browser wars and
for their brilliance in separating structure (HTML) from
presentation (CSS)...

And for making HTML, CSS, and XHTML complex enough
that people need a book to learn it.

Browser wars? You’ll
find out in Chapter 6.

viii

Authors of Head First HTML with CSS & XHTML

the authors

Eric is a computer scientist with a passion for media and
software architectures. He just wrapped up four years at
a dream job – directing Internet broadband and wireless
efforts at Disney – and is now back to writing, creating cool
software, and hacking Java and Macs.

Eric spent a lot of the ‘90s working on alternatives to the
desktop metaphor with David Gelernter (and they’re
both still asking the question “why do I have to give a file
a name?”). Based on this work, Eric landed a Ph.D. at
Yale University in ’97. He also co-founded Mirror Worlds
Technologies (now acquired) to create a commercial
version of his thesis work, Lifestreams.

In a previous life, Eric built software for networks and
supercomputers. You might know him from such books as
JavaSpaces Principles Patterns and Practice. Eric has fond
memories of implementing tuple-space systems on
Thinking Machine CM-5s and creating some of the first
Internet information systems for NASA in the late 80s.

Eric is currently living on Bainbridge Island. When he’s
not writing text or code you’ll find him spending more
time tweaking than watching his home theater and trying
to restoring a circa 1980s Dragon’s Lair video game. He
also wouldn’t mind moonlighting as an electronica DJ.

Write to him at eric@oreilly.com or visit his blog at
http://www.ericfreeman.com

Elisabeth is an author and software developer.
She’s been involved with the Internet since the early
days, having co-founded The Ada Project (TAP), an
award winning web site for women in computing
now adopted by the ACM. More recently Elisabeth
led research and development efforts in digital media
at the Walt Disney Company where she co-invented
Motion, a content system that delivers terabytes of
video every day to Disney, ESPN, and Movies.com
users.

Elisabeth is a computer scientist at heart and holds
graduate degrees in Computer Science from Yale
University and Indiana University. She’s worked in
a variety of areas including visual languages, RSS
syndication, and Internet systems. She’s also been an
active advocate for women in computing, developing
programs that encourage woman to enter the field.
These days you’ll find her sipping some Java or Cocoa
on her Mac, although she dreams of a day when the
whole world is using Scheme.

Elisabeth has loved hiking and the outdoors since her
days growing up in Scotland. When she’s outdoors her
camera is never far away. She’s also an avid cyclist,
vegetarian, and animal lover.

You can send her email at beth@oreilly.com

Elisabeth Freeman

Eric Freeman

ix

Intro
Your brain on HTML & CSS. Here you are trying to learn something, while

here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid and

whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing HTML & CSS?

Who is this book for?	 xxvi

We know what your brain is thinking	 xxvii

Metacognition	 xxix

Bend your brain into submission	 xxxi

Technical reviewers	 xxxiv

Acknowledgments	 xxxv

Table of Contents (summary)
 Intro	 xxv

1 	 The Language of the Web: getting to know HTML	 1

2	 Meet the ‘HT’ in HTML: going further, with hypertext	 43

3	 Web Page Construction: building blocks	 77

4	 A Trip to Webville: getting connected	 125

5	 Meeting the Media: adding images to your pages	 165

6	 Serious HTML: standards, compliance, and all that jazz	 223

7	 Putting ‘X’ into HTML: moving to XHTML	 265

8	 Adding a Little Style: getting started with CSS	 285

9	 Expanding your Vocabulary: styling with fonts and colors	 341

10	 Getting Intimate with Elements: the box model	 385

11	 Advanced Web Construction: divs and spans	 429

12	 Arranging Elements: layout and positioning	 487

13	 Getting Tabular: tables and lists	 549

14	 Getting Interactive: XHTML forms	 591

Appendix: The Top Ten Topics (we didn’t cover): leftovers	 639

Table of Contents (the real thing)

x

1 The Language of the Web

getting to know html

“I

 ne
ed t

he HTML file ‘lounge.html’”

“Found it, here ya go”

Web Server

No pressure, but
thousands of people are going

to visit this Web page when you’re
finished. It not only needs to

be correct, it’s gotta look
great, too!

The only thing that is standing between you and getting
yourself on the Web is learning to speak the lingo:

HyperText Markup Language, or HTML for short. So, get ready for some language

lessons. After this chapter, not only are you going to understand some basic

elements of HTML, but you’ll also be able to speak HTML with a little style. Heck, by

the end of this book you’ll be talking HTML like you grew up in Webville.

The Web killed the video star					 2

What does the Web server do?				 3

What you write (the HTML)...				 4

What the browser creates...					 5

Your big break at Starbuzz Coffee				 9

Creating the Starbuzz Web page				 11

Creating an HTML file (Mac)				 12

Creating an HTML file (Windows)				 14

Meanwhile, back at Starbuzz Coffee...				 17

Opening your Web page in a browser				 19

Taking your page for a test drive...				 20

Tags dissected...						 25

Meet the style element					 29

Giving Starbuzz some style...					 30

Who does what?						 32

Fireside Chat						 34

Bullet Points						 36

Exercise Solutions 						 38

table of contents

xi

2 Meeting the ‘HT’ in HTML

going further, with hypertext

Did someone say “hypertext?” What’s that? Oh, only the entire basis of

the Web. In Chapter 1 we kicked the tires of HTML and found it to be a nice markup

language (the ‘ML’ in HTML) for describing the structure of Web pages. Now we’re

going to check out the ‘HT’ in HTML, hypertext, which will let us break free of a single

page and link to other pages. Along the way we’re going to meet a powerful new

element, the <a> element, and learn how being “relative” is a groovy thing. So, fasten

your seat belts – you’re about to learn some hypertext.

Head First Lounge, New and Improved				 44

Creating the new lounge					 46

What did we do?						 48

What does the browser do?					 49

Understanding attributes					 51

Technical difficulties					 58

Planning your paths...					 60

Fixing those broken images...					 66

Exercise Solutions						 73

xii

3 Web Page Construction

building blocks

h2

img

img

p

h2

h2

h1

p

p

p

I was told I’d actually be creating Web pages in this book?
You’ve certainly learned a lot already: tags, elements, links, paths... but it’s all for

nothing if you don’t create some killer Web pages with that knowledge. In this chapter

we’re going to ramp up construction: you’re going to take a Web page from conception

to blueprint, pour the foundation, build it, and even put on some finishing touches. All

you need is your hard hat and your tool belt, as we’ll be adding some new tools and

giving you some insider knowledge that would make Tim “The Toolman” Taylor proud.

From Journal to Web site, at 12mph				 79

The rough design sketch					 80

From a sketch to an outline					 81

From the outline to a Web page				 82

Test driving Tony’s Web page					 84

Meet the <q> element					 86

Looooong Quotes						 90

Adding a <blockquote>					 91

The real truth behind the <q> and <blockquote> mystery	 94

Use the <p> element to make a list...				 103

Constructing HTML lists in two easy steps			 104

Putting one element inside another is called “nesting”		 109

To understand the nesting relationships, draw a picture		 110

Using nesting to make sure your tags match			 111

Inline or block?						 113

Exercise Solutions						 119

table of contents

xiii

4 A Trip to Webville

getting connected

Web pages are a dish best served on the Internet. So far

you’ve only created HTML pages that live on your own computer. You’ve also

only linked to pages that are on your own computer. We’re about to change all

that. In this chapter we’ll encourage you to get those Web pages on the Internet

where all your friends, fans, and customers can actually see them. We’ll also

reveal the mysteries of linking to other pages by cracking the code of the h, t, t, p,

:, /, /, w, w, w. So, gather your belongings; our next stop is Webville.

Getting Starbuzz (or yourself) onto the Web			 126

Finding a hosting company					 127

How can you get a domain name?				 128

Moving in						 130

Getting your files to the root folder				 131

As much FTP as you can possibly fit in two pages			 132

Back to business...						 135

Mainstreet, URL						 136

What is the HTTP Protocol?					 137

What’s an absolute path?					 138

How default pages work					 141

How do we link to other Web sites?				 144

Linking to Caffeine Buzz					 145

Web page fit and finish					 149

Linking into a page						 151

Using the <a> element to create a destination			 152

How to link to destination anchors				 153

Linking to a new window					 157

Opening a new window using target				 158

Exercise Solutions						 162

xiv

5 Meeting the Media

adding images to your pages

Here’s one pixel.Here’s a lot
of pixels that
together make up
the upper part of
the right wing of
the butterfly.

This image is made up
of thousands of pixels
when it’s displayed on
a computer screen.

Smile and say “cheese.” Actually, smile and say “gif”, “jpg”,
or “png” – these are going to be your choices when “developing pictures” for the

Web. In this chapter you’re going to learn all about adding your first media type to

your pages: images. Got some digital photos you need to get online? No problem.

Got a logo you need to get on your page? Got it covered. But before we get into all

that, don’t you still need to be formally introduced to the element? So sorry, we

weren’t being rude, we just never saw the right opening. To make up for it, here’s an

entire chapter devoted to . By the end of the chapter you’re going to know all

the ins and outs of how to use the element and its attributes. You’re also going

to see exactly how this little element causes the browser to do a lot extra work to

retrieve and display your images.

How the browser works, with images				 166

How images work						 169

And now for the formal introduction: meet the element	 173

Always provide an alternative					 176

Creating the ultimate fan site: myPod				 178

Whoa! The image is way too large				 181

Fixing up the myPod HTML					 191

Reworking the site to use thumbnails				 195

Turning the thumbnails into links				 199

So, how do I make links out of images?				 201

What format should we use?					 206

To be transparent, or not to be transparent? That is the question...	 207

Wait, what is the color of the Web page background?		 209

Check out the logo with a matte				 210

Add the logo to the myPod Web page				 211

Exercise Solutions						 216

table of contents

xv

6 Serious HTML

standards, compliance, and all that jazz

What else is there to know about HTML? You’re well on your way to

mastering HTML. In fact, isn’t it about time we move on to CSS and learn how to make

all this bland markup look fabulous? Before we do, we need to make sure your HTML is

really tight (you know... buttoned up, ship shape, nailed down) and we’re going to do that

by getting serious about the way we write our HTML. Don’t get us wrong, you’ve been

writing first-class HTML all along, but there’s a few things you can do to help the browser

faithfully display your pages and to make sure that little mistakes don’t creep into your

markup. What’s in it for you? Pages that display more uniformly across browsers (and

are readable on mobile devices and screen readers for the visually impaired), pages that

load faster, and pages that are guaranteed to play well with CSS. Get ready, this is the

chapter where you move from Web tinkerer to Web professional.

Cubicle Conversation					 224

A brief history of HTML					 226

We can’t have your pages putting the browser into quirks mode	 229

Adding the document type definition				 231

Meet the W3C validator					 234

Validating the Head First Lounge				 235

Houston, we have a problem...				 236

Adding a <meta> tag to specify the content type			 240

Making the validator happy with a <meta> content tag...		 241

Third time’s the charm?					 242

Changing the doctype to strict				 246

Do we have validation?					 247

Fixing the nesting problem					 249

One more chance to be strict...				 250

Strict HTML 4.01, grab the handbook				 252

Fireside Chat 						 256

HTML Archeology 					 259

Exercise Solutions						 263

xvi

7 Putting the ‘X’ into HTML

moving to xhtml

We’ve been keeping a dirty secret from you. We know you

thought you bought an HTML book, but this is really an XHTML book in disguise. In

fact, we’ve been teaching you mostly XHTML all along. You’re probably wondering,

just what the heck is XHTML? Well, meet eXtensible HTML – otherwise known as

XHTML – the next evolution of HTML. It’s leaner, meaner, and even more tuned

for compatibility with a wide range of devices beyond browsers. In this short little

chapter we’re going to get you from HTML to XHTML in three simple steps. So,

turn the page, you’re almost there... (and then we’re on to CSS).

Maintains her
own blog.

I like keeping up with
trends and technologies.

XHTML is the future, and since
it’s almost exactly like HTML,

why not go with the better
technology?

What is XML? 						 267

What does this have to do with HTML?			 268

So why would you want to use XHTML?			 270

The XHTML 1.0 checklist					 272

Going from strict HTML to XHTML 1.0			 274

Old school HTML 4.01 Strict				 275

New and improved XHTML 1.0				 275

Validation: it’s not just for HTML				 277

Fireside Chat						 280

HTML or XHTML? The choice is yours...			 282

Exercise Solutions						 284

table of contents

xvii

8 Adding a Little Style

getting started with CSS

Five-Minute
Mystery

body

html

title

head

stylemeta h1 p h2 pp

img a em a

I was told there’d be CSS in this book. So far you’ve been

concentrating on learning XHTML to create the structure of your Web pages. But as

you can see, the browser’s idea of style leaves a lot to be desired. Sure, we could

call the fashion police, but we don’t need to. With CSS, you’re going to completely

control the presentation of your pages, often without even changing your XHTML.

Could it really be so easy? Well, you are going to have to learn a new language; after

all, Webville is a bilingual town. After reading this chapter’s guide to learning the

language of CSS, you’re going to be able to stand on either side of Main Street and

hold a conversation.

You’re not in Kansas anymore...				 286

Overheard on Webville’s “Trading Spaces”		 	 288

Using CSS with XHTML					 289

Let’s put a line under the welcome message, too			 295

Specifying a second rule, just for the <h1>			 296

Getting the Lounge style into the elixirs and directions pages	 303

Linking to the external style sheet				 305

It’s time to talk about your inheritance...			 311

What if we move the font up the family tree?			 312

Overriding inheritance					 314

Creating a selector for the class				 318

Taking classes further...					 320

The world’s smallest and fastest guide to how styles are applied	 322

Who gets the inheritance?					 326

Making sure the Lounge CSS validates				 329

Exercise Solutions						 333

xviii

9 Expanding your Vocabulary

styling with fonts and colors

table of contents

Your CSS language lessons are coming along nicely.
You already have the basics of CSS down and you know how to create CSS

rules to select and determine the style of the elements. Now what you need is

to increase your vocabulary, and that means picking up some new properties

and learning about what they can do for you. In this chapter we’re going to work

through some of the most common properties that affect the display of text. To

do that, you’ll need to learn a few things about fonts and color. You’re going to

see you don’t have to be stuck with the fonts everyone else uses, or the clunky

sizes and styles the browser uses as the defaults for paragraphs and headings.

You’re also going to see there is a lot more to color than meets the eye.

1

2
3

4
5 6

7 8

9

A
B

C
D

E

10 11

F

12
13

14
150

Text and fonts from 30,000 feet				 342

What is a font family anyway?				 344

Specifying font families using CSS				 347

Dusting off Tony’s Journal					 348

How do I deal with everyone having different fonts?		 351

So, how should I specify my font sizes? 				 354

Let’s make these changes to the font sizes in Tony’s Web page	 356

Changing a font’s weight					 359

Adding style to your fonts					 361

Styling Tony’s quotes with a little italic				 362

How do Web colors work?					 364

How do I specify Web colors? Let me count the ways...		 367

The two minute guide to hex codes				 370

How to find Web colors					 372

Back to Tony’s page... 					 375

Everything you ever wanted to know about text-decorations		 377

Removing the underline...					 378

Exercise Solutions						 381

xix

10 Getting Intimate with Elements

the box model

To do advanced Web construction you really need to know
your building materials. In this chapter we’re going to take a close look

at our building materials: the XHTML elements. We’re going to put block and inline

elements right under the microscope and see what they’re made of. You’re going to

see how you can control just about every aspect of how an element is constructed

with CSS. But we’re not going to stop there; you’re also going to see how you can

give elements unique identities. And, if that weren’t enough, you’re going to discover

why you might want to use multiple style sheets.

The lounge gets an upgrade					 386

Starting with a few simple upgrades				 388

Checking out the new line height				 390

Getting ready for some major renovations			 391

A closer look at the box model...				 392

What you can do to boxes...					 394

Creating the guarantee style					 399

Padding, border, and margins for the guarantee			 401

Adding some padding					 401

Now let’s add some margin					 402

Adding a background image					 404

Fixing the background image					 407

How do you add padding only on the left?			 408

How do you increase the margin just on the right?		 409

A two-minute guide to borders				 410

Border fit and finish					 412

Interview with an HTML class				 414

The id attribute						 416

Using an id in the lounge					 418

Remixing style sheets					 420

Using multiple style sheets					 421

Exercise Solutions 						 426

xx

11 Advanced Web Construction

divs and spans

table of contents

It’s time to get ready for heavy construction. In this chapter

we’re going to roll out two new XHTML elements, called <div> and . These

are no simple “two by fours;” these are full blown steel beams. With <div> and

, you’re going to build some serious supporting structures, and once you’ve

got those structures in place, you’re going to be able to style them all in new and

powerful ways. Now, we couldn’t help but notice that your CSS toolbelt is really

starting to fill up, so it’s time to show you a few shortcuts that will make specifying all

these properties a lot easier. And, we’ve also got some special guests in this chapter,

the pseudo-classes, which are going to allow you to create some very interesting

selectors. (But, if you’re thinking that “pseudo-classes” would make a great name for

your next band; too late, we beat you to it.)Weekly Elixir
Specials

Lemon Breeze

Chai Chiller

Black Brain Brew

The ultimate healthy drink,

this elixir combines herbal

botanicals, minerals, and

vitamins with a twist of

lemon into a smooth citrus

wonder that will keep your

immune system going all

day and all night.

Not your traditional chai,

this elixir mixes maté with

chai spices and adds

 an extra chocolate kick

for a caffeinated taste

sensation on ice.

Want to boost your

memory? Try our Black

Brain Brew elixir, made

with black oolong tea and

just a touch of espresso.

Your brain will thank you

for the boost.

Join us any evening for these and all

our wonderful elixirs.

A close look at the elixirs HTML				 431

Let’s explore how we can divide a page into logical sections		 433

Adding a border 						 440

An over-the-border test drive					 440

Adding some real style to the elixirs section			 441

The game plan						 442

Working on the elixir width					 442

Adding the basic styles to the elixirs				 447

What we need is a way to select descendants			 453

Changing the color of the elixir headings			 455

Fixing the line height					 456

It’s time to take a little shortcut...				 458

Adding s in three easy steps				 464

The <a> element and its multiple personalities			 468

How can you style elements based on their state?			 469

Putting those pseudo-classes to work				 471

Isn’t it about time we talk about the “cascade”?			 473

The cascade						 475

Welcome to the “What’s my specificity game”			 476

Putting it all together					 477

Exercise Solutions						 483

xxi

12 Arranging Elements

layout and positioning

It’s time to teach your XHTML elements new tricks. We’re not

going to let those XHTML elements just sit there anymore; it’s about time they get

up and help us create some pages with real layouts. How? Well, you’ve got a good

feel for the <div> and structural elements and you know all about how the

box model works, right? So, now it’s time to use all that knowledge to craft some real

designs. No, we’re not just talking about more background and font colors, we’re

talking about full blown professional designs using multi-column layouts. This is the

chapter where everything you’ve learned comes together.

Did you do the Super Brain Power?				 488

Use the flow, Luke						 489

What about inline elements?					 491

How it all works together					 492

How to float an element					 495

Behind the scenes at the lounge				 497

The new Starbuzz						 499

Move the sidebar just below the header				 504

Set the width of the sidebar and float it				 504

Fixing the two-column problem				 507

Setting the margin on the main section				 508

Back to clearing up the overlap problem			 511

Righty tighty, lefty loosey					 514

Liquid and frozen designs					 517

How absolute positioning works				 520

Changing the Starbuzz CSS					 523

One tradeoff you can make to fix the footer			 527

Positioning the award					 529

How does fixed positioning work?				 535

Using a negative left property value				 537

Getting relative						 539

To three-columns and beyond...				 541

Exercise Solutions						 544

p

h2

p

p
img img img img

em span
emspan

p id=”amazing”

text

text
text
text

h2

h1 text

text

text

text
text text

text

xxii

13
table of contents

Getting Tabular

tables and more lists

If it walks like a table and talks like a table... There comes a

time in life when we have to deal with the dreaded tabular data. Whether you need to

create a page representing your company’s inventory over the last year, or a catalog

of your Beanie Babies collection (don’t worry, we won’t tell), you know you need to

do it in HTML; but how? Well, have we got a deal for you: order now and in a single

chapter we’ll reveal the secrets of tables that will allow you to put your very own

data right inside HTML tables. But there’s more: with every order we’ll throw in our

exclusive guide to styling HTML tables. And, if you act now, as a special bonus, we’ll

throw in our guide to styling HTML lists. Don’t hesitate, call now!

How do we make tables with HTML?				 551

How to create a table using HTML				 552

What the browser creates					 553

Tables dissected...						 554

Adding a caption and a summary				 557

Before we start styling, let’s get the table back into Tony’s page...	 559

Getting those borders to collapse				 564

How about some color?					 566

Tony made an interesting discovery...				 567

Another look at Tony’s table					 568

How to tell cells to span more than one row			 569

The new and improved table					 571

Trouble in paradise?					 572

Overriding the CSS for the nested table headings			 576

Giving Tony’s site the final polish				 577

Exercise Solutions		 				 588

xxiii

14 Getting Interactive
xhtml forms

So far all your Web communication has been one way:
from your page to your visitors. Golly, wouldn’t it be nice if your visitors

could talk back? That’s where HTML forms come in: once you enable your pages

with forms (along with a little help from a Web server), your pages are going to be

able to gather customer feedback, take an online order, get the next move in an

online game, or collect the votes in a “hot or not” contest. In this chapter you’re going

to meet a whole team of XHTML elements that work together to create Web forms.

You’ll also learn a bit about what goes on behind the scenes in the server to support

forms, and we’ll even talk about keeping those forms stylish (a controversial topic –

read on and see why).

How forms work						 592

How forms work in the browser				 593

What you write in XHTML					 594

What the browser creates					 595

How the <form> element works				 596

Getting ready to build the Bean Machine form			 604

Adding the <form> element					 605

How <form> element names work				 606

Back to getting those <input> elements in your XHTML...		 608

Adding some more input elements to your form			 609

Adding the <select> element					 610

Give the customer a choice of whole or ground beans		 612

Punching the radio buttons					 613

Completing the form					 614

Adding the checkboxes and textarea				 615

Watching GET in action					 621

To Table or Not to Table? That’s the question...			 626

Getting the form elements into a table				 627

Styling the form and the table with CSS			 630

Exercise Solutions 						 635

xxiv

15 The Top Ten Topics (we didn’t cover)

i Index 	 651	

table of contents

appendix: leftovers

We covered a lot of ground, and
you’re almost finished with this
book. We’ll miss you, but before we let you go,

we wouldn’t feel right about sending you out into

the world without a little more preparation. We

can’t possibly fit everything you’ll need to know

into this relatively small chapter. Actually, we did

originally include everything you need to know

about XHTML and CSS (not already covered by

the other chapters), by reducing the type point

size to .00004. It all fit, but nobody could read it.

So, we threw most of it away, and kept the best

bits for this Top Ten chapter.

More Selectors					 640

Frames						 642

Multimedia & Flash				 643

Tools for Creating Web Pages				 644

Client-side Scripting				 645

Server-side Scripting				 646

Tuning for Search Engines				 647

More about Style Sheets for Printing			 648

Pages for Mobile Devices				 649

Blogs						 650

xxv

Make it Stick

Intro
how to use this book

I can’t believe
they put that in an

HTML book!

In this section, we answer the burning questi
on:

“So, why DID they put that in an
HTML book?”

how to use this book

xxvi intro

Who is this book for ?

1 Do you have access to a computer with a Web browser
and a text editor?

2 Do you want to learn, understand, and remember how
to create Web pages using the best techniques and the
most recent standards?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to computers?
(You don’t need to be advanced, but you should
understand folders and files, simple text editing
applications, and how to use a Web browser.)

3

this book is not for you.

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if HTML tags are anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt Web developer looking for a
reference book?

[Note from marketing: this book is for anyone with a credit card.]

3 Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

If you have access to any computer manufactured in the last decade, the answer is yes.

the intro

you are here� xxvii

“How can this be a serious book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-
free zone. You’re studying. Getting ready for an exam. Or trying to
learn some tough technical topic your boss thinks will take a week,
ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how little
I’m registering on the emotional Richter scale right now, I really do
want you to keep this stuff around.”

And we know what your brain is thinking.

Your brain thinks THIS is important.

Great. Only
637 more dull,

dry, boring pages.

Your brain t
hinks

THIS isn’t worth
saving.

how to use this book

xxviii intro

We think of a “Head First” reader as a learner.

It really sucks to forget

your <body> element.

Does it make sense to

create a bathtub class for

my style, or just to style

the whole bathroom?

The head elem
ent is

where you put
 things

about your p
age.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone,

and make learning much more effective (up to 89% improvement in

recall and transfer studies). It also makes things more understandable.

Put the words within or near the graphics they relate to,

rather than on the bottom or on another page, and learners will be

up to twice as likely to solve problems related to the content.

Use a conversational and personalized style. In recent

studies, students performed up to 40% better on post-learning tests if the content

spoke directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t

take yourself too seriously. Which would you pay more attention to: a stimulating

dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless

you actively flex your neurons, nothing much happens in your head.

A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge.

And for that, you need challenges, exercises, and thought-provoking

questions, and activities that involve both sides of the brain,

and multiple senses.

Get—and keep—the reader’s attention. We’ve

all had the “I really want to learn this but I can’t stay awake past

page one” experience. Your brain pays attention to things that

are out of the ordinary, interesting, strange, eye-catching, unexpected.

Learning a new, tough, technical topic doesn’t have to be boring. Your brain will

learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re

talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or realize you know

something that “I’m more technical than thou” Bob from engineering doesn’t.

Browsers make requests for HTML
pages or other resources, like images.

“Found it, here ya go”Web Server

the intro

you are here� xxix

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught how to learn.

But we assume that if you’re holding this book, you really want to learn
how to create Web pages. And you probably don’t want to spend a lot of
time. And you want to remember what you read, and be able to apply it.
And for that, you’ve got to understand it. To get the most from this book,
or any book or learning experience, take responsibility for your brain.
Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best
to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So how DO you get your brain to think HTML & CSS
are as important as a tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try
to make sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

how to use this book

xxx intro

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1024 words. And when text and pictures work together, we
embedded the text in the pictures because your brain works more effectively when the text is
within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to feel something
is more likely to be remembered, even if that feeling is nothing more than a little humor,
surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 100 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, while someone else just wants to see a
code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can
be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going to be a kick-butt Web developer,
this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

Here’s what WE did:

 BULLET POINTS

Puzzles

Be the Browser

body

html

h1 h2p p

img a em a

p

the intro

you are here� xxxi

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

4 Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing-time, some of what you
just learned will be lost.

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

6 Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

9 Create something!
Apply this to something new you’re designing, or
rework an older project. Just do something to get some
experience beyond the exercises and activities in
this book. All you need is a pencil and a problem
to solve... a problem that might benefit from using
HTML and CSS.

cut this out and stick it on your refrigerator.

8 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

xxxii intro

Read Me

how to use this book

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the first time through, you need to begin at the beginning, because
the book makes assumptions about what you’ve already seen and learned.

We begin by teaching basic HTML, then standards-based HTML
4.01, and then on to XHTML.
To write standards-based HTML or XHTML, there are a lot of technical details you
need to understand that aren’t helpful when you’re trying to learn the basics of HTML.
Our approach is to have you learn the basic concepts of HTML first (without worrying
about these details), and then, when you have a solid understanding of HTML, teach you
to write standards compliant HTML and XHTML. This has the added benefit that the
technical details are more meaningful after you’ve already learned the basics.

It’s also important that you be writing compliant HTML or XHTML when you start
using CSS, so, we make a point of getting you to standards-based HTML and XHTML
before you begin any serious work with CSS.

We don’t cover every single HTML element or attribute or CSS
property ever created.
There are a lot of HTML elements, a lot of attributes, and a lot of CSS properties. Sure,
they’re all interesting, but our goal was to write a book that weighs less than the person
reading it, so we don’t cover them all here. Our focus is on the core HTML elements and
CSS properties that matter to you, the beginner, and making sure that you really, truly,
deeply understand how and when to use them. In any case, once you’re done with Head
First HTML & CSS, you’ll be able to pick up any reference book and get up to speed
quickly on all the elements and properties we left out.

This book advocates a clean separation between the structure of
your pages and the presentation of your pages.
Today, serious Web pages use HTML and XHTML to structure their content, and
CSS for style and presentation. 1990s-era pages often used a different model, one where
HTML was used for both structure and style. This book teaches you to use HTML for
structure and CSS for style; we see no reason to teach you out-dated bad habits.

We encourage you to use more than one browser with this book.
While we teach you to write HTML, CSS, and XHTML that is based on standards, you’ll
still (and probably always) encounter minor differences in the way Web browsers display

the intro

you are here� xxxiii

pages. So, we encourage you to pick at least two up-to-date browsers and test your pages
using them. This will give you experience in seeing the differences among browsers and in
creating pages that work well in a variety of browsers.

We often use tag names for element names.
Rather than saying “the a element”, or “the ‘a’ element”, we use a tag name, like “the <a>
element”. While this may not be technically correct (because <a> is an opening tag, not a
full blown element), it does make the text more readable, and we always follow the name
with the word “element” to avoid confusion.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are the
only things you don’t have to do, but they’re good for giving your brain a chance to think
about the words in a different context.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for
the two lines they need to understand. Most examples in this book are shown within the
smallest possible context, so that the part you’re trying to learn is clear and simple. Don’t
expect all of the examples to be robust, or even complete—they are written specifically for
learning, and aren’t always fully-functional.

We’ve placed all the example files on the Web so you can download them. You’ll find them
at http://www.headfirstlabs.com/books/hfhtml/

The ‘Brain Power’ exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises you will find hints to point you in the right direction.

xxxiv intro

Tech Reviewers

the review team

Fearless leader
of the Extreme
Review Team.

Johannes de Jong

Lousie Barr
Barney Marispini

Ike Van Atta

Valentin Crettaz

Our reviewers:

We’re extremely grateful for our technical review team. Johannes de Jong
organized and led the whole effort, acted as “series dad,” and made it all
work smoothly. Pauline McNamara, “co-manager” of the effort, held
things together and was the first to point out when our examples were a little
more “baby boomer” than hip. The whole team proved how much we needed
their technical expertise and attention to detail. Valentin Crettaz, Barney
Marispini, Marcus Green, Ike Van Atta, David O’Meara, Joe Konior, and
Corey McGlone left no stone unturned in their review and the book is a much
better book for it. You guys rock! And further thanks to Corey and Pauline for
never letting us slide on our often too formal (or we should just say it, incorrect)
punctuation. A shout out to JavaRanch as well for hosting the whole thing.

A big thanks to Louise Barr, our token Web designer, who kept us honest on our
designs and on our use of XHTML & CSS (although you’ll have to blame us for
the actual designs).

Corey McGlone

Marcus Green

Joe Konior

Pauline McNamara

David O’Meara

Pauline gets the “kick
ass reviewer” award.

Eiffel Tower

the intro

you are here� xxxv

Even more technical review:

We’re also extremely grateful to our esteemed technical reviewer David Powers.
We have a real love/hate relationship with David because he made us work
so hard, but the result was oh so worth it. The truth be told, based on David’s
comments, we made significant changes to this book and it is technically twice the
book it was before. Thank you, David.

At O’Reilly:

Our biggest thanks to our editor, Brett McLaughlin, who cleared the path for
this book, removed every obstacle to its completion, and sacrificed family time to
get it done. Brett also did hard editing time on this book (not an easy task for a
Head First title). Thanks Brett, this book wouldn’t have happened without you.

Our sincerest thanks to the whole O’Reilly team: Greg Corrin, Glenn
Bisignani, Tony Artuso, and Kyle Hart all led
the way on marketing and we appreciate their out-
of-the-box approach. Thanks to Ellie Volkhausen
for her inspired cover design that continues to serve
us well, and to Karen Montgomery for stepping in and bringing life to this book’s
cover. Thank you, as always, to Colleen Gorman for her hardcore copyedit (and for
keeping it all fun). And, we couldn’t have pulled off a color book like this without Sue
Willing and Claire Cloutier.

No Head First acknowledgment would be complete without thanking Mike
Loukides for shaping the Head First concept into a series, and to Tim O’Reilly for always being

there and his continued support. Finally, thanks to Mike Hendrickson for bringing us into the Head First
family and having the faith to let us run with it.

Kathy Sierra and Bert Bates:

Last, and anything but least, to Kathy
Sierra and Bert Bates, our partners
in crime and the BRAINS who created the
series. Thanks guys for trusting us even more
with your baby. We hope once again we’ve
done it justice. The three-day jam session was
the highlight of writing the book, we hope to
repeat it soon. Oh, and next time around can
you give LTJ a call and tell him he’s just going
to have to make a trip back to Seattle?

Acknowledgments*

Kathy Sierra

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you’d like to be in the
acknowledgment of our next book, and you have a large family, write to us.

Don’t let the sweater fool
you, this guy is hard core
(technically of course).

Hard at work researching
Head First Parelli.

Bert Bates

Kara

Esteemed Reviewer,
David Powers

Brett McLaughlin

this is a new chapter 1

The only thing that is standing between you and getting
yourself on the Web is learning to speak the lingo:

HyperText Markup Language, or HTML for short. So, get ready for some language

lessons. After this chapter, not only are you going to understand some basic

elements of HTML, but you’ll also be able to speak HTML with a little style. Heck,

by the end of this book you’ll be talking HTML like you grew up in Webville.

The Language of the Web
1 getting to know HTML

Not so fast... to get to
know me you’ve got to speak the
universal language. You know,

HTML and CSS.

2 Chapter 1

Video killed the radio star
The Web

Want to get an idea out there? Sell something? Just need a
creative outlet? Turn to the Web – we don’t need to tell you
it has become the universal form of communication. Even
better, it’s a form of communication YOU can participate in.

But, if you really want to use the Web effectively, you’ve got
to know a few things about HTML, not to mention how the
Web works. Let’s take a look from 30,000 feet:

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

The Internet

To make Web pages, you
create files written in the
HyperText Markup Language
(HTML for short) and place
them on a Web server (we’ll
talk about how to get your
files on a server later in the
book).

Once you’ve put your files on
a Web server, any browser can
retrieve your Web pages over
the Internet.

And there are a lot of PCs and devices
connected to the Internet all running Web
browsers. More importantly, there are
friends, family, fans, and potential customers
using those PCs!

Web Server

The HTML in your Web page tells the
browser everything it needs to know to
display your page. And, if you’ve done your
job well, your pages will even display well on
PDAs and mobile devices, and work with
speech browsers and screen magnifiers for
the visually impaired.

html powers the web

getting to know html

you are here � 3

What does the Web server do?
Web servers have a full time job on the Internet, tirelessly waiting for requests from Web
browsers. What kinds of requests? Requests for Web pages, images, sounds, or maybe even a
movie. When a server gets a request for any of these resources, the server finds the resource,
and then sends it back to the browser.

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

What does the Web browser do?
You already know how a browser works: you’re surfing around the Web and you click on a link
to visit a page. That click causes your browser to request an HTML page from a Web server,
retrieve it, and display the page in your browser window.

Each server
stores HTML
files, pictures,
sounds and other
file types.

Browsers make requests for HTML pages or other resources, like images.

...and if the server can
locate the resource, it
sends it to the browser.

“I

 ne
ed t

he HTML file ‘lounge.html’”

“Found it, here ya go”

Web Server

Web Server

The serve
r “serves

 up”

Web pages
 and sen

ds

them to the
browser.

The browser retrieves the page...<html>
 <head>
 <title>
 Head First Lounge 	
 </title>
 <head>
 <body>
 <h1>Welcome to Head
 </h1>
 <img src=”drinks.gi
 <p>Join us any even
 </p>
 <p>
 ...

The server’s just a computer
connected to the Internet waiting

for requests from browsers.

...and the browser displays
the HTML page.

But, how does the browser know how to display a page? That’s where HTML comes in. HTML tells the
browser all about the content and structure of the page. Let’s see how that works...

4 Chapter 1

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the Head First Lounge</h1>

 <p>

 Join us any evening for refreshing elixirs,

 conversation and maybe a game or

 two of Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You’ll find us right in the center of

 downtown Webville. Come join us!

 </p>

 </body>

</html>

A

B

C

D

E

F

G

What you write (the HTML)...
So, you know HTML is the key to getting a browser to display your pages, but,
what exactly does HTML look like? And, what does it do?

Let’s have a look at a little HTML... imagine you’re going to create a Web
page to advertise the Head First Lounge, a local hangout with some good tunes,
refreshing elixirs, and wireless access. Here’s what you’d write in HTML:

Relax
We don’t expect you to know
HTML, yet.

 At this point you should just be getting
a feel for what HTML looks like; we’re

going to cover everything in detail in a bit. For
now, study the HTML and see how it gets represented
in the browser on the next page. Be sure to pay careful
attention to each letter annotation and how and where
it is displayed in the browser.

writing some html

getting to know html

you are here � 5

What the browser creates...
When the browser reads your HTML, it interprets all the tags that
surround your text. Tags are just words or characters in angle brackets,
like <head>, <p>, <h1>, and so on. The tags tell the browser about
the structure and meaning of your text. So rather than just giving the browser
a bunch of text, with HTML you can use tags to tell the browser what
text is in a heading, what text is a paragraph, what text needs to be
emphasized, or even where images need to be placed.

Let’s check out how the browser interprets the tags in the
Head First Lounge:

A

B

C

D
E

F

G

Notice how each tag in
the HTML maps to what
the browser displays.

6 Chapter 1

Q: So HTML is just a bunch of tags
that I put around my text?

A: For starters. Remember that HTML
stands for HyperText Markup Language, so
HTML gives you a way to “mark up” your
text with tags that tell the browser how your
text is structured. But there is also the
HyperText aspect of HTML, which we’ll talk
about a little later in the book.

Q: How does the browser decide how
to display the HTML?

A: HTML tells your browser about
the structure of your document: where the
headings are, where the paragraphs are,
what text needs emphasis, and so on.
Given this information, browsers have built-
in default rules for how to display each of
these elements.
But, you don’t have to settle for the default
settings. You can add your own style and
formatting rules with CSS that determine
font, colors, size, and a lot of other
characteristics of your page. We’ll get back
to CSS later in the chapter.

Q: The HTML for the Head First
Lounge has all kinds of indentation and
spacing, and yet I don’t see that when it
is displayed in the browser. How come?

A: Correct, and good catch. Browsers
ignore tabs, returns, and most spaces in
HTML documents. Instead, they rely on
your markup to determine where line and

paragraph breaks occur.
So why did we insert our own formatting if
the browser is just going to ignore it? To
help us more easily read the document when
we’re editing the HTML. As your HTML
documents become more complicated,
you’ll find a few spaces, returns, and tabs
here and there really help to improve the
readability of the HTML.

Q: So there are two levels of
headings, <h1> and a subheading <h2>?

A: Actually there are six, <h1>
through <h6>, which the browser typically
displays in successively smaller font sizes.
Unless you are creating a complex and
large document, you typically won’t use
headings beyond <h3>.

Q: Why do I need the <html> tag?
Isn’t it obvious this is a HTML document?

A: The <html> tag tells the browser
your document is actually HTML. While
some browsers will forgive you if you omit
it, some won’t, and as we move toward
“industrial strength HTML” later in the book,
you’ll see it is quite important to include
this tag.

Q: What makes a file an HTML file?

A: Basically an HTML file is a simple
text file. Unlike a word processing file, there
is no special formatting embedded in it. By
convention we add a “.html” or “.htm” (on
systems that only support three letter file

extensions) to the end of the file name to
give the operating system a better idea of
what the file is. But, as you’ve seen, what
really matters is what we put inside the file.

Q: Markup seems silly. What-you-
see-is-what-you-get applications have
been around since, what, the ‘70s? Why
isn’t the Web based on a format like
Microsoft Word or a similar application?

A: The Web is created out of text files
without any special formatting characters.
This enables any browser in any part of
the world to retrieve a Web page and
understand its contents. You’ll see that
on the Web, in many ways HTML is more
powerful than using a proprietary document
format.

Q: Is there any way to put comments
to myself in HTML?

A: Yes, if you place your comments
in between <!-- and --> the browser will
totally ignore them. Say you wanted to write
a comment “Here’s the beginning of the
lounge content”. You’d do that like this:
<!-- Here’s the beginning of

 the lounge content -->

Notice that you can put comments on
multiple lines. Keep in mind anything you
put between the “<!--” and the “-->”, even
HTML, will be ignored by the browser.

there are noDumb Questions

more about markup and tags

getting to know html

you are here � 7

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the Head First Lounge</h1>

 <p>

 Join us any evening for refreshing elixirs,

 conversation and maybe a game or

 two of Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You’ll find us right in the center of

 downtown Webville. Come join us!

 </p>

 </body>

</html>

You’re closer to learning HTML than you think...

Here’s the HTML for the Head First Lounge again. Take a look at the tags and see
if you can guess what they tell the browser about the content. Write your answers
in the space on the right; we’ve already done the first couple for you.

Tells the browser this is the start of HTML..
Starts the page “head” (more about this later).

Sharpen your pencil

8 Chapter 1

<html>

 <head>

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the Head First Lounge</h1>

 <p>

 Join us any evening for refreshing elixirs,

 conversation and maybe a game or

 two of Dance Dance Revolution.

 Wireless access is always provided;

 BYOWS (Bring your own web server).

 </p>

 <h2>Directions</h2>

 <p>

 You’ll find us right in the center of

 downtown Webville. Come join us!

 </p>

 </body>

</html>

Tells the browser this is the start of HTML.

answers

Gives the page a title.

Start of the body of page.

Tells browser that “Welcome to...” is a heading.

Places the image “drinks.gif” here.

Start of a paragraph.

End of paragraph.

Tells the browser that “Directions” is a subheading.
Start of another paragraph.

End of paragraph.

End of the body.

Tells the browser this is the end of the HTML.

End of the header.

Starts the page “head”.

Puts emphasis on Dance Dance Revolution.

Sharpen your pencil

what the markup does

getting to know html

you are here � 9

Starbuzz Coffee has made a name for itself as the fastest
growing coffee shop around. If you’ve seen one on your local
corner, look across the street – you’ll see another one.

In fact, they’ve grown so quickly, they haven’t even managed
to put up a web page, yet... and therein lies your big break:
By chance, while buying your Starbuzz Chai Tea, you run
into the Starbuzz CEO...

Your big break at Starbuzz Coffee

Word has it you
know a little about HTML.
We really need a Web page
that features the Starbuzz

offerings. Can you help?

The Starbuzz CEO

❏ A.	 Give dog a bath.

❏ B.	 Finally get my checking account
balanced.

❏ C.	 Take the Starbuzz gig and launch
BIG-TIME Web career.

❏ D.	 Schedule dentist appointment.

Decisions, decisions.
Check your first priority below (choose only one):

brain
power?

10 Chapter 1

Wonderful! We’re
so glad you’ll be helping us.
Here’s what we need on our

first page...

Take a look at the napkin. Can you
determine the structure of it? In other
words, are there obvious headings?
Paragraphs? Is it missing anything like a
title?

Go ahead and mark up the napkin (using
your pencil) with any structure you see,
and add anything that is missing.

You’ll find our answers at the end of
Chapter 1.

Thanks for giving us a hand
!

On the Web page we just need

something simple (see below) that

includes the beverage nam
es, prices,

and descriptions.

House Blend, $1.49
A smooth, mild blend of coffees from

 Mexico, Bolivia

and Guatemala.

Mocha Cafe Latte, $2.35

Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89
A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85
A spicy drink made with black tea, spices, milk and honey.

Starbuzz Coffe
e

St
ar

buzz Coffee

The CEO scribbles

something on a
 napkin

and hands i
t to you...

* If by chance you chose options A, B, or D on the previous page, we
recommend you donate this book to a good library, use it as kindling this
winter, or what the hell, go ahead and sell it on Amazon and make some cash.	

*

Sharpen your pencil

what goes on the starbuzz page

getting to know html

you are here � 11

Create an HTML file using your favorite
text editor.

Of course, the only problem with all this is that
you haven’t actually created any Web pages, yet.
But, that’s why you decided to dive head first
into HTML, right?
No worries, here’s what you’re going to do on
the next few pages:

Type in the menu the Starbuzz CEO wrote
on the napkin.

1

2

Save the file as “index.html”.3

Open the file “index.html” in your favorite
browser, step back, and watch the magic
happen.

4

Creating the Starbuzz Web page

No pressure, but
thousands of people are

going to visit this Web page
when you’re finished. It not
only needs to be correct, it’s

gotta look great, too!

12 Chapter 1

Creating an HTML file (Mac)

Navigate to your Applications folder

Locate and run TextEdit

Keep TextEdit in your Dock

All HTML files are text files. To create a text file you
need an application that allows you to create plain
text without throwing in a lot of fancy formatting and
special characters. You just need plain, pure text.

We’ll use TextEdit on the Mac in this book; however,
if you prefer another text editor, that should work
fine as well. And, if you’re running Windows, you’ll
want to skip ahead a couple of pages to the Windows
instructions.

The TextEdit application is in the
Applications folder. The easiest way to get
there is to choose “New Finder Window”
from the Finder’s File menu and then look
for the Application directly in your shortcuts.
When you’ve found it, click on Applications.

You’ll probably have lots of applications listed
in your applications folder, so scroll down
until you see TextEdit. To run the application,
double click on the TextEdit icon.

If you want to make your life easier,
click and hold on the TextEdit icon in
the Dock (this icon appears once the
application is running). When it displays
a popup menu, choose “Keep in Dock.”
That way, the TextEdit icon will always
appear in your Dock and you won’t have
to hunt it down in the Applications folder
every time you need to use it.

Step one:

Step two:

Step three (optional):

Your Finder
shortcuts.

Here’s TextEdit.

writing html on a macintosh

getting to know html

you are here � 13

Change your TextEdit Preferences
By default, TextEdit is in “rich text”
mode, which means it will add its own
formatting and special characters to
your file when you save it – not what
you want. So, you’ll need to change
your TextEdit Preferences so that
TextEdit saves your work as a pure
text file. To do this, first choose the

“Preferences” menu item from the
TextEdit menu.

Step four:

Set Preferences for Plain text
Once you see the Preferences dialog
box, there are three things you need
to do.

First, choose “Plain text” as the
default editor mode in the New
Document tab.

Second, in the “Open and Save”
tab, make sure that the “Add .txt
extension to plain text files” is
unchecked.

Last, make sure “Ignore rich text
commands in HTML files” is
checked.

That’s it; to close the dialog box
click on the red button in the top
left corner.

Step five:

Quit and restart
Now quit out of TextEdit by choosing
Quit from the TextEdit menu, and then
restart the application. This time, you’ll
see a window with no fancy text formatting
menus at the top of the window. You’re
now ready to create some HTML.

Step six:

This text formatting menu means you’re in “rich text” mode. If you see these, you need to change your preferences.

See, the formatting menu is gone: that means we’re in text mode.

14 Chapter 1

Creating an HTML file (Windows)

Open the Start menu and navigate to Notepad

If you’re reading this page you must be a Windows XP user. If not,
you might want to skip a couple of pages ahead. Or, if you just want to
sit in the back and not ask questions, we’re okay with that too.

To create HTML files in XP we’re going to use Notepad – it ships
with every copy of Windows, the price is right, and it’s easy to use. If
you’ve got your own favorite editor that runs on XP, that’s fine too; just
make sure you can create a plain text file with an “.html” extension.

Assuming you’re using Notepad, here’s how you’re going to create your
first HTML file.

You’ll find the Notepad application in Accessories. The
easiest way to get there is to click on the “Start” menu,
then on “All Programs”, then “Accessories”. You’ll see
Notepad listed there.

Step one:

If you’re using anothe
r

version of Windows you’ll

find Notepad there as well.

Or another version of Windows.

writing html on windows

getting to know html

you are here � 15

Open Notepad
Once you’ve located Notepad in the
Accessories folder, go ahead and click
on it. You’ll see a blank window ready
for you to start typing HTML.

Step two:

Don’t hide extensions of well
known file types.

By default XP’s File Explorer hides the
file extensions of well known file types.
For example, a file named, “Irule.html”
will be shown in the Explorer as “Irule”
without its “.html” extension.

It’s much less confusing if XP shows
you these extensions, so let’s change
your folder options so you can see the
file extensions.

First, in any Explorer window select
“Folder Options...” from the Tools
menu.

Next, in the “View” tab, under
“Advanced settings”, scroll down until
you see “Hide extensions for known file
types” and uncheck this option.

That’s it. Click on the OK button to
save the preference and you’ll now see
the file extensions in the Explorer.

Step three (optional):

But recommended.

16 Chapter 1

Q: Why am I using a simple text
editor? Aren’t there powerful tools like
Dreamweaver, FrontPage and GoLive for
creating Web pages?

A: You’re reading this book because
you want to understand the true technologies
used for Web pages, right? Now those are all
great tools, but they do a lot of the work for
you, and until you are a master of HTML and
CSS you want to learn this stuff without a big
tool getting in your way.
Once you’re a master, however, these tools
do provide some nice features like syntax
checking and previews. At that point,
when you view the “code” window, you’ll
understand everything in it, and you’ll find
that changes to the raw HTML and CSS are
often a lot faster than going through a user
interface. You’ll also find that as standards
change, these tools aren’t always updated
right away and may not support the most
recent standards until their next release
cycle. Since you’ll know how to change the
HTML and CSS without the tool, you’ll be
able to keep up with the latest and greatest
all the time.

Q: I get the editor, but what browser
am I supposed to be using? There are so
many – Internet Explorer, Firefox, Opera,
Safari – what’s the deal?

A: The simple answer: use whatever
browser you like. HTML and CSS are
industry standards, which means that all
browsers try to support HTML and CSS in
the same way (just make sure you are using
the newest version of the browser for the
best support).
The complex answer: in reality there are
slight differences in the way browsers
handle your pages. If you’ve got users who
will be accessing your pages in a variety of
browsers, then always test your web page
in several different browsers. Some pages
will look exactly the same; some won’t. The
more advanced you become with HTML and
CSS, the more these slight differences may
matter to you, and we’ll get into some of
these subtleties throughout the book.
If you’re looking for a good browser, give
Mozilla’s Firefox a try; it has very good
HTML and CSS support.

Q: I’m creating these files on my own
computer – how am I going to view these
on the Web/Internet?

A: That’s one great thing about HTML:
you can create files and test them on your
own computer and then later publish them
on the Web. Right now we’re going to worry
about how to create the files and what goes
in them. We’ll come back to getting them on
the Web a bit later.

there are noDumb Questions

editors and html

getting to know html

you are here � 17

Okay, now that you know the basics of creating a plain text file, you just
need to get some content into your text editor, save it, and then load it into
your browser.

Start by typing in the beverages straight from the CEO’s napkin; these
beverages are the content for your page. You’ll be adding some HTML
markup to give the content some structure in a bit, but for now, just get the
basic content typed in. While you’re at it, go ahead and add “Starbuzz
Coffee Beverages” at the top of the file.

Meanwhile, back at Starbuzz Coffee...

Mac
Windows

Type in the info from
the napkin like this.

18 Chapter 1

Saving your work...
Once you’ve typed in the beverages from the CEO’s napkin,
you’re going to save your work in a file called “index.html”.
Before you do that, you’ll want to create a folder named

“starbuzz” to hold the site’s files.

To get this all started, choose “Save” from the File menu and
you’ll see a “Save As” dialog box. Then, here’s what you need
to do:

Mac Windows

Windows

First, create a “starbuzz” folder
for all your Starbuzz related
files. You can do this with the
New Folder button.

1

Next, click on the newly created
“starbuzz” folder and then enter
“index.html” as the file name and click
on the Save button.

2

Using Windows you need to also
choose “All Files” as your type,
otherwise Notepad will add a
“.txt” to your filename.

Create a new
folder here.

Create a new
folder here.

saving your html

getting to know html

you are here � 19

Opening your Web page
in a browser
Are you ready to open your first Web page? Using your
favorite browser, choose “Open File...” (or “Open...”
using Windows XP and Internet Explorer) from the
File menu and navigate to your “index.html” file. Select
it and click “Open”.

Mac

On the Mac, navigate to your
file, and select it by clicking
on the file icon and then on
the Open button.

Then click “Browse” to get a
browse dialog and navigate to
where you saved your file.

Windows

In Windows Internet Explorer it’s a two step process. First you’ll get the open dialog box.

20 Chapter 1

Mac

WindowsTaking your page for a
test drive...

Depending on your
operating system and browser,
often you can just double-click
the HTML file or drag it on top
of the browser icon to open it.

Much simpler.

Success! You’ve got the page loaded in
the browser, although the results are
a little... uh... unsatisfying. But that’s
just because all you’ve done so far is go
through the mechanics of creating a page
and viewing it in the browser. And, so
far, you’ve only typed in the content of the
Web page. That’s where HTML comes
in. HTML gives you a way to tell the
browser about the structure of your page.
What’s structure? As you’ve already seen,
it is a way of marking up your text so
that the browser knows what’s a heading,
what text is in a paragraph, what text is a
subheading, and so on. Once the browser
knows a little about the structure, it can
display your page in a more meaningful
and readable manner.

testing your html

getting to know html

you are here � 21

Starbuzz Coffee Beverages

House Blend, $1.49
A smooth, mild blend of coffees from Mexico, Bolivia
and Guatemala.

Mocha Cafe Latte, $2.35
Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89
A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85
A spicy drink made with black tea, spices, milk and
honey.

Markup Magnets
So, let’s add that structure...

Your job is to add structure to the text from the Starbuzz napkin.
Use the fridge magnets at the bottom of the page to mark up the
text so that you’ve indicated which parts are headings, subheadings
and paragraph text. We’ve already done a few to get you started.
You won’t need all the magnets below to complete the job; some
will be left over.

<h
1>

Use this magnet
to start a
heading. Use this magnet

to end a heading.

Use this magnet
to end a
subheading.Use this magnet

to start a
subheading.

Use this magnet
to end a
paragraph.

Use this
magnet to
start a
paragraph.

<h1>
<h1>

<h1> </h1>

</h1>
</h

1></h1>
<h2>
<h2>

<h2>
</h2>
</h

1></h2>

<p>
<p>

<p> </p>

</p>
</p>

<h2> </h2>

</p><p>

22 Chapter 1

Congratulations,
you’ve just written
your first HTML!

They might have looked like fridge
magnets, but you were really marking up
your text with HTML. Only, as you know,
we usually refer to the magnets as tags.

Check out the markup below and compare it to
your magnets on the previous page.

Use the <h1> and </h1> tags t
o mark

headings. All the text in between is

the actual content of the he
ading.

The <h2> and </h2> tags
go around a subheading.
Think of an <h2> heading
as a subheading of an <h1>
heading.

The <p> and </p> tags go around a block of text that is a paragraph. That can be one or many sentences.

Notice that you don’t have to put matching tags on the same line. You can put as much content as you like between them.

<h1>Starbuzz Coffee Beverages</h1>

<h2>House Blend, $1.49</h2>
<p>A smooth, mild blend of coffees from Mexico,
Bolivia and Guatemala.</p>

<h2>Mocha Cafe Latte, $2.35</h2>
<p>Espresso, steamed milk and chocolate syrup.</p>

<h2>Cappuccino, $1.89</h2>
<p>A mixture of espresso, steamed milk and foam.</p>

<h2>Chai Tea, $1.85</h2>
<p>A spicy drink made with black tea, spices, milk
and honey.</p>

your first html markup

getting to know html

you are here � 23

Are we there yet?
You have an HTML file with markup – does that make a Web page? Almost.
You’ve already seen the <html>, <head>, <title>, and <body> tags, and
we just need to add those to make this a first class HTML page...

Next add <head> and </head
> tags. The

head contains information about your Web

page, like its title. For now, think about it

this way: the head allows you to tell the

browser things about the Web page.

The body contains all the content and structure of your Web page – the parts of the Web page that you see in your browser.

<html>

	 <head>

		 <title>Starbuzz Coffee</title>

	 </head>

	 <body>

		 <h1>Starbuzz Coffee Beverages</h1>

		 <h2>House Blend, $1.49</h2>

		 <p>A smooth, mild blend of coffees from Mexico,

			 Bolivia and Guatemala.</p>

		 <h2>Mocha Cafe Latte, $2.35</h2>

		 <p>Espresso, steamed milk and chocolate syrup.</p>

		 <h2>Cappuccino, $1.89</h2>

		 <p>A mixture of espresso, steamed milk and foam.</p>

		 <h2>Chai Tea, $1.85</h2>

		 <p>A spicy drink made with black tea, spices,

			 milk and honey.</p>

	 </body>

</html>

The head consists of the <head>
& </head> tags and everything
in between.

The body consists
of the <body>
& </body> tags
and everything in
between.

Keep your
head and body
separate when
writing HTML.

First, surround your
HTML with <html> &
</html> tags. This tells
the browser the content
of the file is HTML.

Go ahead and put a title
inside the head. The title
usually appears at the top
of the browser window.

24 Chapter 1

Notice that the title,
which you specified in
the <head> element,
shows up here.

Another test drive...
Go ahead and change your “index.html” file by adding
in the <head>, </head>, <title>, </title>, <body> and
</body> tags. Once you’ve done that, save your changes
and reload the file into your browser.

You can reload the index.html file by
selecting the “Open File” menu item again,
or by using your browser’s reload button.

Now things look a bit better.
The browser has interpreted
your tags and created a
display for the page that is
not only more structured but
also more readable.

Sweet!

another test with some markup

getting to know html

you are here � 25

This is the closin
g tag

that ends the
heading;

in this case the
 </h1>

tag is ending an
 <h1>

heading. You k
now it’s

a closing tag be
cause

it comes after the

content, and it
’s got

a “/” before th
e “h1”.

All closing tags h
ave a

“/” in them.

The whole shebang is called an element. In this case we
can call it the <h1> element. An element consists of the
enclosing tags and the content in between.

Here’s the opening tag
that begins the heading.

Tags dissected...
Okay, you’ve seen a bit of markup, so let’s zoom in
and take a look at how tags really work...

<h1> Starbuzz Coffee Beverages </h1>

You usually put tags around some piece of content.
Here we’re using tags to tell the browser that our
content, “Starbuzz Coffee Beverages”, is a top
level heading (that is, heading level one).

Tags consist
 of the tag

 name

surrounded
by angle bra

ckets;

that is, the
 < and > ch

aracters.

To tell the browser about the structure of your
page, use pairs of tags around your content.

Remember,

Element = Opening Tag + Content + Closing Tag

We call an opening tag
and its closing tag
matching tags.

26 Chapter 1

Tags can be a little more interesting than what you’ve seen so far. Here’s the
paragraph tag with a little extra added to it. What do you think this does?

brain
power?

<p id=”houseblend”>A smooth, mild
blend of coffees from Mexico, Bolivia
and Guatemala.</p>

Q: So matching tags don’t have to be
on the same line?

A: No; remember the browser doesn’t
really care about tabs, returns, and most
spaces. So, your tags can start and end
anywhere on the same line or they can start
and end on different lines. Just make sure
you start with an opening tag, like <h2>, and
end with a closing tag, like </h2>.

Q: Why do the closing tags have that
extra “/”?

A: That “/” in the closing tag is to help
both you and the browser know where a
particular piece of structured content ends.
Otherwise, the closing tags would look just
like the opening tags, right?

Q: I’ve noticed the HTML in some
pages doesn’t always match opening
tags with closing tags.

A: Well, the tags are supposed to
match. In general, browsers do a pretty
good job of figuring out what you mean if you
write incorrect HTML. But, as you’re going
to see, these days there are big benefits to
writing totally correct HTML. If you’re worried
you’ll never be able to write perfect HTML,
don’t be; there are plenty of tools to verify
your code before you put it on a Web server
so the whole world can see it. For now, just
get in the habit of always matching your
opening tags with closing tags.

Q: Well, what about that <img
src=”drinks.gif”> tag in the lounge
example? Did you forget the closing tag?

A: Wow, sharp eye. There are some
elements that use a shorthand notation with
only one tag. Keep that in the back of your
mind for now and we’ll come back to it in a
later chapter.

Q: An element is an opening tag +
content + closing tag, but can’t you have
tags inside other tags? Like the head and
body are inside an <html> tag?

A: Yes, HTML tags are often “nested”
like that. If you think about it, it’s natural
for an HTML page to have a body, which
contains a paragraph, and so on. So many
HTML elements have other HTML elements
between their tags. We’ll take a good look
at this kind of thing in later chapters, but
for now just get your mind noticing how the
elements relate to each other in a page.

there are no
Dumb Questions

elements and matching tags

getting to know html

you are here � 27

Oh, I forgot to mention,
we need our company mission

on a page, too. Grab the mission
statement off one of our coffee

cups and create another page
for it...

To provide all the

caffeine that you

need to power your
life.

 Just drink it.

Starbuzz Coffee’s

Mission

Write the HTML for the new
“mission.html” page here.

Type in your HTML using a
text editor, and save it as

“mission.html” in the same
folder as your “index.html”
file.

Once you’ve done that, open
“mission.html” in your browser.

Check your work at the end
of the chapter before moving
on...

1

2

3

4

Exercise

28 Chapter 1

Okay, it looks like you’re
getting somewhere. You’ve

got the main page and the mission
page all set. But, don’t forget the
CEO said the site needs to look

great too. Don’t you think it
needs a little style?

using css for style

You already know that HTML gives
you a way to describe the structure
of the content in your files. When the
browser displays your HTML, it uses
its own built-in default style to present
this structure. But, relying on the
browser for style obviously isn’t going
to win you any “designer of the month”
awards.

That’s where CSS comes in. CSS
gives you a way to describe how your
content should be presented. Let’s get
our feet wet by creating some CSS that
makes the Starbuzz page look a little
more presentable (and launch your
Web career in the process).

Right. We have the
structure down, so now
we’re going to concentrate
on its presentation.

CSS is an abbreviation for Cascading Style Sheets. We’ll get into what that all means later, but for now just know that CSS gives you a way to tell the browser how elements in your page should look.

getting to know html

you are here � 29

Meet the style element
To add style, you add a new (say it with us) E-L-E-M-E-N-T
to your page – the <style> element. Let’s go back to the
main Starbuzz page and add some style. Check it out...

<html>
	 <head>
		 <title>Starbuzz Coffee</title>
		 <style type=”text/css”>

		 </style>
	 </head>

	 <body>
		 <h1>Starbuzz Coffee Beverages</h1>

		 <h2>House Blend, $1.49</h2>
		 <p>A smooth, mild blend of coffees from Mexico, Bolivia and 		
			 Guatemala.</p>

		 <h2>Mocha Caffe Latte, $2.35</h2>
		 <p>Espresso, steamed milk and chocolate syrup.</p>

		 <h2>Cappuccino, $1.89</h2>
		 <p>A mixture of espresso, steamed milk and milk foam.</p>

		 <h2>Chai Tea, $1.85</h2>
		 <p>A spicy drink made with black tea, spices, milk and honey.</p>
	 </body>
</html>

Just like other elements, the <style>
element has an opening tag, <style>,
and a closing tag, </style>...

The <style> element is placed inside the

head of your HTML.

...but, the <style> tag also requires an
attribute, called type, which tells the
browser the kind of style you’re using.
Because you’re going to use CSS, you
need to specify the “text/css” type.

And, here’s where you’re
going to define the styles
for the page.

there are no
Dumb Questions

Q: An element can have an “attribute?” What does that
mean?

A: Attributes give you a way to provide additional information
about an element. Like, if you have a style element, the attribute
allows you to say exactly what kind of style you’re talking about.
You’ll be seeing a lot more attributes for various elements; just
remember they give you some extra info about the element.

Q: Why do I have to specify the type of the style,
“text/css”, as an attribute of the style? Are there other kinds
of style?

A: There aren’t currently any other styles that work with
today’s browsers, but those designers of HTML are always
planning ahead and anticipate that there may be other types of
style in the future. Personally, we’re holding our breath for the
<style type=“50sKitsch”> style.

30 Chapter 1

Now that you’ve got a <style> element in the HTML head, all you need to do
is supply some CSS to give the page a little pizazz. Below you’ll find some CSS
already “baked” for you. Whenever you see the logo, you’re seeing
HTML and CSS that you should type in as-is. Trust us. You’ll learn how the
markup works later, after you’ve seen what it can do.

So, take a look at the CSS and then add it to your “index.html” file. Once you’ve
got it typed in, save your file.

Ready
Bake

Giving Starbuzz some style...

<html>
	 <head>
		 <title>Starbuzz Coffee</title>
		 <style type=”text/css”>
			 body {
				 background-color: #d2b48c;
				 margin-left: 20%;
				 margin-right: 20%;
				 border: 1px dotted gray;
				 padding: 10px 10px 10px 10px;
				 font-family: sans-serif;
			 }	
		 </style>
	 </head>

	 <body>
		 <h1>Starbuzz Coffee Beverages</h1>

		 <h2>House Blend, $1.49</h2>
		 <p>A smooth, mild blend of coffees from Mexico, Bolivia and 		
			 Guatemala.</p>

		 <h2>Mocha Caffe Latte, $2.35</h2>
		 <p>Espresso, steamed milk and chocolate syrup.</p>

		 <h2>Cappuccino, $1.89</h2>
		 <p>A mixture of espresso, steamed milk and milk foam.</p>

		 <h2>Chai Tea, $1.85</h2>
		 <p>A spicy drink made with black tea, spices, milk and honey.</p>
	 </body>
</html>

Ready Bake
CSS

CSS uses a syntax that
is totally different from
HTML.

adding a style element

getting to know html

you are here � 31

Now we have margins
around the content.

Cruisin’ with style...
It’s time for another test drive, so reload your “index.html” file again.
This time you’ll see the Starbuzz Web page has a whole new look.

We’ve got a gray border around
the content as well...

We’re using a
different font for
a cleaner look.

There’s now some
padding between the
content and the
border (on all sides).

Background color is now tan.

Margin

Whoa! Very nice. We’re in
business now!

32 Chapter 1

background-color: #d2b48c;

margin-left: 20%;
margin-right: 20%;

border: 1px dotted gray;

padding: 10px 10px 10px 10px;

font-family: sans-serif;

Q: CSS looks like a totally different
language than HTML. Why have two
languages? That’s just more for me to
learn, right?

A: You are quite right that HTML and
CSS are completely different languages,
but that is because they have very different
jobs. Just like you wouldn’t use English to
balance your checkbook, or Math to write a
poem, you don’t use CSS to create structure
or HTML to create style because that’s not
what they were designed for. While it does
mean you need to learn two languages,
you’ll discover that because each language

is good at what it does, this is actually easier
than if you had to use one language to do
both jobs.

Q: #d2b48c doesn’t look like a color.
How is #d2b48c the color “tan”?

A: There are a few different ways to
specify colors with CSS. The most popular is
called a “hex code”, which is what #d2b48c
is. This really is a tan color. For now, just go
with it, and we’ll be showing you exactly how
#d2b48c is a color a little later.

Q: Why is there a “body” in front of
the CSS rules? What does that mean?

A: The “body” in the CSS means that
all the CSS between the “{” and “}” applies to
content within the HTML <body> element.
So when you set the font to sans-serif,
you’re saying that the default font within the
body of your page should be sans-serif.
We’ll go into a lot more detail about how
CSS works shortly, so keep reading. Soon,
you’ll see that you can be a lot more specific
about how you apply these rules, and by
doing so you can create some pretty cool
designs.

there are noDumb Questions

Even though you’ve just glanced at CSS, you’ve already begun to see
what it can do. Match each line in the style definition to what it does.

Defines the font to use for text.

Defines a border around the body that
is dotted and the color gray.

Sets the left and right margins to take
up 20% of the page each.

Sets the background color to a tan
color.

Creates some padding around the
body of the page.

looking more closely at css

getting to know html

you are here � 33

Write the HTML for the “mission.html” page below, and then
add the new CSS.

Update your “mission.html” file to include the new CSS.

Once you’ve done that, reload “mission.html” in your browser.

Make sure your mission page looks like ours, at the end of
the chapter.

1

2

3

4

Now that you’ve put a little style in the Starbuzz “index.html” page, go ahead and
update your “mission.html” page to have the same style.Exercise

34 Chapter 1

Greetings CSS; I’m glad you’re here because
I’ve been wanting to clear up some confusion
about us.

Really? What kind of confusion?

Lots of people think that my tags tell the
browsers how to display the content. It’s just not
true! I’m all about structure, not presentation.

Well, you can see how some people might get
confused; after all, it’s possible to use HTML
without CSS and still get a decent-looking page.

“Decent” might be overstating it a bit, don’t you
think? I mean, the way most browsers display
straight HTML looks kinda crappy. People
need to learn how powerful CSS is and how
easily I can give their web pages great style.

Tonight’s talk: HTML and CSS on content and style.

HTML CSS

Heck yeah - I don’t want people giving you
credit for my work!

Hey, I’m pretty powerful too. Having your
content structured is much more important
than having it look good. Style is so superficial;
it’s the structure of the content that matters.

Get real! Without me web pages would be
pretty damn boring. Not only that, take away
the ability to style pages and no one is going to
take your pages seriously. Everything is going
to look clumsy and unprofessional.

Whoa, what an ego! Well I guess I shouldn’t
expect anything else from you – you’re just
trying to make a fashion statement with all that
style you keep talking about.

content and style

getting to know html

you are here � 35

Fashion statement? Good design and layout
can have a huge effect on how readable and
usable pages are. And you should be happy
that my flexible style rules allow designers to
do all kinds of interesting things with your
elements without messing up your structure.

Right. In fact we’re totally different languages,
which is good because I wouldn’t want any of
your style designers messing with my structure
elements.

Don’t worry, we’re living in separate universes.

Yea, that is obvious to me any time I look at
CSS – talk about an alien language.

Millions of web writers would disagree with you.
I’ve got a nice clean syntax that fits right in with
the content.

Yeah, like HTML can be called a language?
Who has ever seen such a clunky thing with all
those tags?

Just take a look at CSS; it’s so elegant and
simple, no goofy angle brackets <around>
<everything>. <See> <I> <can><talk>
<just><like><Mr.><HTML><,><look><at>
<me><!>

Hey stupid, ever heard of closing tags?

Just notice that no matter where you go, I’ve
got you surrounded by <style> tags. Good luck
escaping!

Ha! I’ll show you... because, guess what? I can
escape...

HTML CSS

36 Chapter 1

Not only is this one fine cup of
House Blend, but now we’ve got a web
page to tell all our customers about our

coffees. Excellent work.

I’ve got some bigger ideas for the future;
in the meantime, can you start thinking

about how we are going to get these
pages on the Internet so other people

can see them?

 BULLET POINTS

�	 HTML and CSS are the languages we use
to create web pages.

�	 Web servers store and serve Web pages,
which are created from HTML and CSS.
Browsers retrieve pages and render their
content based on the HTML and CSS.

�	 HTML is an abbreviation for HyperText
Markup Language and is used to structure
your web page.

�	 CSS is an abbreviation for Cascading
Style Sheets, and is used to control the
presentation of your HTML.

�	 Using HTML we mark up content with tags
to provide structure. We call matching
tags, and their enclosed content, elements.

�	 An element is composed of three parts:
an opening tag, content and a closing tag.
There are a few elements, like , that
are an exception to this rule.

�	 Opening tags can have attributes. We’ve
seen a couple: type and align.

�	 Closing tags have a “/” after the left
angle bracket, in front of the tag name to
distinguish them as closing tags.

�	 Your pages should always have an <html>
element along with a <head> element and
a <body> element.

�	 Information about the Web page goes into
the <head> element.

�	 What you put into the <body> element is
what you see in the browser.

�	 Most whitespace (tabs, returns, spaces)
are ignored by the browser, but you can
use these to make your HTML more
readable (to you).

�	 CSS can be added to an HTML Web page
by putting the CSS rules inside the <style>
element. The <style> element should
always be inside the <head> element.

�	 You specify the style characteristics of the
elements in your HTML using CSS.

review of basic html and css

getting to know html

you are here � 37

It’s time to sit back and give your left brain something
to do. It’s your standard crossword; all of the solution
words are from this chapter.

1 2

3

4 5

6

7 8 9

10 11 12

13

14

15

16

17

18

Across

4. We emphasized this.
5. Always separate these in HTML.
7. CSS is used when you need to control this.
11. You markup content to provide this.
14. Only style available.
15. About your web page.
16. Two tags and content.
17. You define presentation through this tag.
18. Company that launched your web career.

Down

1. What you see in your page.
2. The "M" in HTML.
3. Browsers ignore this.
6. Style we're all waiting on.
8. Tags can have these to provide additional
information.
9. Purpose of <p> element.
10. Appears at the top of the browser for each
page.
12. Opening and closing.
13. There are six of these.

6

1 2

3

4 5

6

7 8 9

10 11 12

13

14

15

16

17

18

Across

4. We emphasized this.
5. Always separate these in HTML.
7. CSS is used when you need to control this.
11. You markup content to provide this.
14. Only style available.
15. About your web page.
16. Two tags and content.
17. You define presentation through this tag.
18. Company that launched your web career.

Down

1. What you see in your page.
2. The "M" in HTML.
3. Browsers ignore this.
6. Style we're all waiting on.
8. Tags can have these to provide additional
information.
9. Purpose of <p> element.
10. Appears at the top of the browser for each
page.
12. Opening and closing.
13. There are six of these.

6

HTMLcross

38 Chapter 1

Thanks for giving us a hand
!

On the Web page we just need

something simple (see below) that

includes the beverage nam
es, prices

and descriptions.

House Blend, $1.49
A smooth, mild blend of coffees from

 Mexico, Bolivia

and Guatemala.

Mocha Cafe Latte, $2.35

Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89
A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85
A spicy drink made with black tea, spices, milk and honey.

Not going to be part
of the web page

Starbuzz Coffe
e

St
ar

buzz Coffee

Starbuzz Coffee
Beverages

A sub-heading..

Another sub-
heading.

More sub-headings.

Paragraphs.

Add a page h
eading.

Go ahead and mark up the napkin (using your pencil) with any structure you see,
and add anything that is missing.

Sharpen your pencil
Solution

exercise solutions

getting to know html

you are here � 39

Markup Magnets Solution
Your job is to add some structure to the text from the Starbuzz
napkin. Use the fridge magnets at the bottom of the page to mark
up the text so that you’ve indicated which parts are headings,
subheadings and paragraph text. We’ve already done a few to get
you started. You won’t need all the magnets below to complete the
job; some will be left over.

Starbuzz Coffee Beverages

House Blend, $1.49
A smooth, mild blend of coffees from Mexico, Bolivia
and Guatemala.

Mocha Cafe Latte, $2.35
Espresso, steamed milk and chocolate syrup.

Cappuccino, $1.89
A mixture of espresso, steamed milk and foam.

Chai Tea, $1.85
A spicy drink made with black tea, spices, milk and
honey.

<h
1>

<h1>
<h1>

<h1> </h1>

</h1>
</h

1></h1>

<h2> </h2>

</p><p>

<h2>

<p>

<h2>

<p>

</p>

</h2>

</h2>

</p>

</p>
<p>

<h2> </h2>

40 Chapter 1

To provide all the

caffeine that you

need to power your
life.

 Just drink it.

Starbuzz Coffee’s

Mission

<html>

 <head>

 <title>Starbuzz Coffee’s Mission</title>

 </head>

 <body>

 <h1>Starbuzz Coffee’s Mission</h1>

 <p>To provide all the caffeine that you need to

power your life.</p>

 <p>Just drink it.</p>

 </body>

</html>

Here’s the HTML.

Here’s the HTML displayed in a browser.

Exercise
Solutions

exercise solutions

getting to know html

you are here � 41

<html>
 <head>
 <title>Starbuzz Coffee’s Mission</title>
 <style type=”text/css”>
 body {
 background-color: #d2b48c;
 margin-left: 20%;
 margin-right: 20%;
 border: 1px dotted gray;
 padding: 10px 10px 10px 10px;
 font-family: sans-serif;
 }	
 </style>
 </head>
 <body>
 <h1>Starbuzz Coffee’s Mission</h1>
 <p>To provide all the caffeine that you need to power your life.</p>
 <p>Just drink it.</p>
 </body>
</html>

Exercise
Solutions

42 Chapter 1

background-color: #d2b48c;

margin-left: 20%;
margin-right: 20%;

border: 1px dotted gray;

padding: 10px 10px 10px 10px;

font-family: sans-serif;

Even though you’ve just glanced at CSS, you’ve already seen the beginnings
of what it can do. Match each line in the style definition to what it does.

Defines the font to use for text.

Defines a border around the body that
is dotted and the color gray.

Sets the left and right margins to take
up 20% of the page each.

Sets the background color to a tan
color.

Creates some padding around the
body of the page.

Exercise
Solutions

exercise solutions

this is a new chapter 43

Did someone say “hypertext?” What’s that? Oh, only the entire basis of

the Web. In Chapter 1 we kicked the tires of HTML and found it to be a nice markup

language (the ‘ML’ in HTML) for describing the structure of Web pages. Now we’re

going to check out the ‘HT’ in HTML, hypertext, which will let us break free of a single

page and link to other pages. Along the way we’re going to meet a powerful new

element, the <a> element, and learn how being “relative” is a groovy thing. So, fasten

your seat belts – you’re about to learn some hypertext.

Meeting the ‘HT’ in HTML
2 going further, with hypertext

Right, that’s me, they
call me Hyper Ted.

You’re not
listening. I came here
to meet HyperTEXT!

44 Chapter 2

Remember the Head First Lounge? Great site, but wouldn’t it be nice if
customers could view a list of the refreshing elixirs? Even better, we should
give customers some real driving directions so they can find the place.

Head First Lounge, New and Improved

The “detailed directions”
link leads to an HTML page
with driving directions.

Here’s the new
and improved
page.

We’ve added
links to two
new pages, one
for elixirs and
one for driving
directions.

The “elixirs” l
ink points to

 a page

with a full list
 of elixir sel

ections.

directions.html

improving the head first lounge

going further with hypertext

you are here � 45

A page listing some
refreshing and healthy
drinks. Feel free to grab
one before going on.

Creating the new and improved
lounge in three steps...

1 The first step is easy because we’ve already
created the “directions.html” and

“elixir.html” files for you.
You’ll find them in the
source files for the book,
which are available at
http://www.headfirstlabs.com.

Ready
Bake

elixir.html
2 Next you’re going to edit the “lounge.html”

file and add in the HTML needed to link to
“directions.html” and “elixir.html”.

Let’s rework the original Head First Lounge
page so it links to the two new pages.

3 Last, you’ll give the pages a test drive and
try out your new links. When you get back
we’ll sit down and look at how it all works.

Flip the page and let’s get started...

46 Chapter 2

chapter2

Go ahead and grab the source files from http://www.headfirstlabs.com. Once
you’ve downloaded them, look under the folder “chapter2/lounge” and you’ll find

“lounge.html”, “elixir.html”, and “directions.html” (and a bunch of image files).

Grab the source files1

The Head First Lounge is already growing; do you think that keeping all the site’s files in
a single directory is a good way to organize the site? What would you do differently?

brain
powerA

Creating the new lounge

directions.html

lounge

blue.jpg

drinks.gif

red.jpg

green.jpg

lightblue.jpg

<html>
.
.
.
</html>

lounge.html

<html>
.
.
.
</html>

<html>
.
.
.
</html>

elixir.html

You’ll find the lounge directo
ry

here in your source files.

All the lounge files
are in this folder.

Here’s the current
 lounge

file, without links.

Two new files, already
written for you. Go
ahead and take a
peek - you already know
everything you need to
understand them.

And here’s all the
images needed
for our new and
improved lounge.

looking at the source files

going further with hypertext

you are here � 47

When you’re finished with the changes, save the file “lounge.html” and open it in
your browser. Here are a few things to try...

Save lounge.html and give it a test drive.

Open “lounge.html” in your editor. Add the new text and HTML that is highlighted below.
Go ahead and type this in; we’ll come back and see how it all works on the next page.

<html>
 <head>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for
 refreshing elixirs,
 conversation and maybe a game or two of
 Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown Webville.
 If you need help finding us, check out
 our detailed directions.
 Come join us!
 </p>
 </body>
</html>

Let’s add “New and Improved” to the heading.

Here’s where we add the HTML for the link to the elixirs.

And here’s where we add the link to the directions, again using an <a> element.

We need to add some text
here to point customers to
the new directions.

To create links we use the
<a> element; we’ll take a
look at how this element
works in just a sec...

Edit lounge.html2

3

Click on the elixir link and the new elixir page will display.

Click on the browser’s back button and “lounge.html”
should be displayed again.

Click on the directions link and the new directions page
will display.

3

2

1

48 Chapter 2

<a>elixirs

The content of the <a> element acts as a label for the
link. In the browser the label appears with an underline
to indicate you can click on it.

What did we do?

Okay, I’ve loaded the
new lounge page, clicked
the links, and everything
worked. But, I want to

make sure I understand
how the HTML works.

Behind
the Scenes

Let’s step through creating the HTML links. First we need to put
the text we want for the link in an <a> element, like this:

1

<a>driving directions

2

elixirs

driving directions

Now that we have a label for each link, we need to add some
HTML to tell the browser where the link points to:

The <a> element is used to create a link to another page.

The href attribute is
how you specify the
destination of the link.

For this link, the browser will
display an “elixirs” label that,
when clicked, will take the user
to the “elixir.html” page.

And for this link, the browser will display a
“driving directions” link that, when clicked, will
take the user to the “directions.html” page.

how to create links

going further with hypertext

you are here � 49

Use the <a> element to create a hypertext link to another web page.
The content of the <a> element becomes clickable in the web page.
The href attribute tells the browser the destination of the link.

elixirs

First, as the browser renders the page, if it encounters an <a>
element, it takes the content of the element and displays it
as a clickable link.

1

detailed directions

Both “elixirs” and “detailed
directions” are between the
opening and closing <a> tags,
so they end up being clickable
labels in the web page.

What does the browser do?
Behind
the Scenes

50 Chapter 2

elixirs

Next, when a user clicks on a link, the browser uses the “href”
attribute to determine the page the link points to.

2

detailed directions

The user clicks on either the
elixirs link or...

...on detailed directions.

When “detailed directions” is
clicked, the browser grabs the
value of the href attribute, in
this case “directions.html”...

...and loads “directions.html”.

If elixirs was clicked, the
browser grabs the href value
“elixir.html”...

...and displays the
“elixir.html” page.

Behind
the Scenes

how links work

going further with hypertext

you are here � 51

Understanding attributes
Attributes give you a way to specify additional information about
an element. While we haven’t looked at attributes in detail, you’ve
already seen a few examples of them:

 <style type=”text/css”>

Let’s cook up an example to give you an even better feel for how
attributes work:

What if <car> was an element?
If <car> was an element, then you’d naturally want to write some
markup like this:

But this <car> element only gives a descriptive name for your
car – it doesn’t tell us the make, precise model, whether it is a
convertible, or a zillion other details we might want to know. So, if
<car> were really an element, we might use attributes like this:

<car make=”BMW” model=”Mini Cooper” convertible=”no”>My Red Mini</car>

Better, right? Now this markup tells us a lot more information in
an easy to write, convenient form.

Safety
First

The type attribute specifies which style
language we’re using, in this case CSS.

The href attribute tells us the destination of a hyperlink.

The src attribute specifies the filename of the picture an img tag displays.

Attributes are always written the same
way: first comes the attribute name,

followed by an equals sign, and then the
attribute value surrounded in double quotes.
You may see some sloppy HTML on the Web
that leaves off the double quotes, but don’t
get lazy yourself. Being sloppy can cause you
a lot of problems down the road (as we’ll see
later in the book).

Great Movies

Great Movies

Do this (correct form)

Not this (incorrect form)

attribute name
equals sign

double quote

double quote
attribute value

WRONG - no double quotes around the attribute value.

<car>My Red Mini</car>

With no attributes, all we can supply is
a descriptive name for the car.

But with attributes, we can
customize the element with all
kinds of information.

52 Chapter 2

Q: Can I just make up new attributes for an
HTML element?

A: No, because Web browsers only know about
a predefined set of attributes for each element. If you
just made up attributes, then Web browsers wouldn’t
know what to do with them, and as you’ll see later in
the book, doing this will very likely get you into trouble.
When a browser recognizes an element or an attribute,
we like to say that it “supports” that element or attribute.
You should only use attributes that you know are
supported.

Q: Who decides what is “supported?”

A: There are standards committees that worry
about the elements and attributes of HTML. These
committees are made up of people with nothing better
to do who generously give their time and energy to
make sure there’s a common HTML roadmap that all
companies can use to implement their browsers.

Q: How do I know what attributes and elements
are supported? Or, can all attributes be applied to
any element?

A: Only certain attributes can be used with a given
element. Think about it this way: you wouldn’t use an
attribute “convertible” with the element <toaster>, would
you? So, you only want to use attributes that make sense
and are supported by the element.
We’re going to be learning which attributes are supported
by which elements as we make our way through the
book. After you’ve finished the book there are lots of
great references you can use to refresh your memory,
such as HTML & XHTML: The Definitive Guide (O’Reilly).

there are no
Dumb Questions

...rhymes with
“space chef”.

The “href” attribute is
pronounced “h - ref”...

attributes and elements

going further with hypertext

you are here � 53

HeadFirst: Welcome, href. It’s certainly a pleasure to interview as big an
attribute as you.

href: Thanks. It’s good to be here and get away from all the linking; it can wear
an attribute out. Every time someone clicks on a link, guess who gets to tell the
browser where to go next? That would be me.

HeadFirst: We’re glad you could work us into your busy schedule. Why don’t
you take us back to the beginning... What does it mean to be an attribute?

href: Sure. Well, attributes are used to customize an element. It’s easy to wrap
some <a> tags around a piece of content, like “Sign up now!” – we do it like
this: <a>Sign up now! – but without me, the href attribute, you have
no way to tell the <a> element the destination of the link.

HeadFirst: Got it so far...

href: ...but with an attribute you can provide additional information about the
element. In my case, that’s where the link points to:
Sign up now!. This says that the
<a> element, which is labeled “Sign up now!”, links to the “signup.html” page.
Now, there are lots of other attributes in the world, but I’m the one you use with
the <a> element to tell it where it points to.

HeadFirst: Nice. Now, I have to ask, and I hope you aren’t offended, but what
is with the name? href ? What’s with that?

href: It’s an old Internet family name. It means “hypertext reference”, but all
my friends just call me “href ” for short.

HeadFirst: Which is?

href: A hypertext reference is just another name for a resource that is on the
Internet or your computer. Usually the resource is a Web page, but I can also
point to audio, video... all kinds of things.

HeadFirst: Interesting. All our readers have seen so far are links to their own
pages; how do we link to other pages and resources on the Web?

href: Hey, I gotta get back to work, the whole Web is getting gunked up without
me. Besides, isn’t it your job to teach them this stuff ?

HeadFirst: Okay okay, yes, we’re getting to that in a bit... thanks for joining us,
href.

This week’s interview:
Confessions of the href attribute

Attributes Exposed

54 Chapter 2

You’ve created links to go from “lounge.html” to “elixir.html” and
“directions.html”; now we’re going to go back the other way. Below you’ll
find the HTML for “elixir.html”. Add a link with the label “Back to the
Lounge” at the bottom of the elixir page that points back to “lounge.html”.

<html>
 <head>
 <title>Head First Lounge Elixirs</title>
 </head>
 <body>
 <h1>Our Elixirs</h1>

 <h2>Green Tea Cooler</h2>
 <p>

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>

 </body>
</html>

When you are done, go ahead and do the same with “directions.html” as well.

Your new HTML
goes here.

Exercise

linking back to the main page

going further with hypertext

you are here � 55

Q: I’ve seen many pages where I can click on an image
rather than text. Can I use the <a> element for that?

A: Yes, if you put an element between the <a> tags
then your image will be clickable just like text. We’re not going to talk
about images in depth for a few chapters, but they work just fine as
links.

Q: So I can put anything between the <a> tags and it will be
clickable? Like, say, a paragraph?

A: Whoa now. Not so fast. Not every element can be placed
inside an <a> element. In general you’ll just be using text and
images (or both) within the <a> element. What tags will go inside
other tags is a whole other topic, but don’t worry; we’ll get there soon
enough.

there are no
Dumb Questions

Label Destination What you write in HTML

Hot or Not?

Eye Candy

Resume cv.html

See my mini mini-cooper.html

candy.html

 let’s play

We need some help constructing and deconstructing <a> elements. Given your new
knowledge of the <a> element, we’re hoping you can help. In each row below you’ll find
some combination of the label, destination, and the complete <a> element. Fill in any
information that is missing. The first row is done for you.

Hot or Not? hot.html

56 Chapter 2

Getting organized
Before you start creating more HTML pages, it’s time to get
things organized. So far, we’ve been putting all our files and
images in one folder. You’ll find that even for modestly-sized Web
sites, things are much more manageable if you organize your
Web pages, graphics, and other resources into a set of folders.
Here’s what we’ve got now:

Your work on the Head First
Lounge has really paid off. With

those enticing elixirs and directions, lots of
people are frequenting the place and visiting

the Web site. Now we’ve got plans for
expanding the lounge’s online content in all

sorts of directions.

directions.html

lounge

blue.jpg

drinks.gif

red.jpg

green.jpg

lightblue.jpg

<html>
.
.
.
</html>

lounge.html

<html>
.
.
.
</html>

<html>
.
.
.
</html>

elixir.html

And here are all the images. See, this is
getting sorta cluttered already, and we only
have three pages and a few graphics. Let’s
do something about it....

We’ve got a top-level folder
called “lounge” that holds all

our files in the site.

This is often referred to as the “root” folder of
the site, which means it is the top-level folder
that contains the entire site.

Here are the
three HTML
files: for the
lounge, the
elixirs page,
and the
directions.

organizing your site with folders

going further with hypertext

you are here � 57

Organizing the lounge...
Let’s give the lounge site some meaningful organization now.
Keep in mind there are lots of ways to organize any site; we’re
going to start simple and create a couple of folders for pages.
We’ll also group all those images into one place.

Q: Since you have a folder for
images, why not have another one
called “html” and put all the HTML in
that folder?

A: You could. There aren’t any
“correct” ways to organize your files; rather,
you want to organize them in a way that
works best for you and your users. As with
most design decisions, you want to choose
an organization scheme that is flexible
enough to grow, while keeping things as
simple as you can.

Q: Or, why not put an images folder
in each other folder, like “about” and
“beverages.”

A: Again, we could have. We expect
that some of the images will be reused
among several pages, so we put images in
a folder at the root (the top level) to keep
them all together. If you have a site that
needs lots of images in different parts of
the site, you might want each branch to
have its own image folder.

Q: “Each branch”?

A: You can understand the way folders
are described by looking at
them as upside down
trees. At the top is the
root and each path
down to a file or folder
is a branch.

there are no
Dumb Questions

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Our root folder is still th
e

“lounge” folder.

We’re going to leave the main “lounge.html” page in the “lounge” folder.

Let’s create a folder to hold pages about the lounge, like the directions. We could also add new pages here about the management, events, and so on.

We’ll also create a folder to hold
pages about the lounge’s beverages.
Right now that’s just the elixirs, but
we’ll be adding more soon.

And, let’s group
all images into
one folder.

58 Chapter 2

Technical difficulties
It looks like we’ve got a few problems
with the lounge page after moving
things around.

Now you need to create the file and folder structure shown on the previous
page. Here’s exactly what you need to do:

�	 Locate your “lounge” folder and create three new subfolders
named “about”, “beverages”, and “images”.

�	 Move the file “directions.html” into the “about” folder.

�	 Move the file “elixir.html” into the “beverages” folder.

�	 Move all the images into the “images” folder.

�	 Finally, load your “lounge.html” file and try out the links.
Compare with how ours worked below.

4

3

2

1

5

We’ve got an image that isn’t displaying. We usually call this a “broken image”.

And, when you click on elixirs (or detailed
directions) things get much worse: we get an
error saying the page can’t be found.

Some browsers display
this error as a web page
rather than a dialog box.

Exercise

reorganizing and broken links

going further with hypertext

you are here � 59

I think the problem is that
the browser thinks the files

are still in the same folder as
“lounge.html”. We need to change
the links so they point to the files

in their new folders.

So far you’ve used href values that
point to pages in the same folder. Sites
are usually a little more complicated,
though, and you need to be able to
point to pages that are in other folders.

To do that, you trace the path from
your page to the destination file. That
might mean going down a folder or two,
or up a folder or two, but either way we
end up with a relative path that we can
put in the href.

Right. We need to tell the
browser the new location
of the pages.

60 Chapter 2

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Start here...

...and find a
path to here.

elixirs

Planning your paths...
What do you do when you’re planning that vacation
in the family truckster? You get out a map and
start at your current location, and then trace a path
to the destination. The directions themselves are
relative to your location – if you were in another city,
they’d be different directions, right?

To figure out a relative path for your links, it’s the
same deal: you start from the page which has the
link, and then you trace a path through your folders
until you find the file you need to point to.

Let’s work through a couple of relative paths (and
fix the lounge at the same time):

Okay, you’d
really go to
Google maps,
but work
with us here!

Linking down into a subfolder

Linking from “lounge.html” to “elixir.html”.
We need to fix the elixirs link in the “lounge.html” page. Here’s what the
<a> element looks like now:

Identify the source and the destination.
When we re-organized the lounge, we left “lounge.html” in the “lounge” folder, and
we put “elixir.html” in the “beverages” folder, which is a subfolder of “lounge”.

Right now we’re just using the
filename “elixir.html”, which tells
the browser to look in the same
folder as “lounge.html”.

1

2

There are other kinds of paths too. We’ll get to those in later chapters.

working with paths

going further with hypertext

you are here � 61

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Trace a path from the source to the destination.
Let’s trace the path. To get from the “lounge.html” file to “elixir.html”, we need to go
into the “beverages” folder first, and then we’ll find “elixir.html” in that folder.

3

First we need to
go down into the
“beverages” folder.

And “elixir.html” is
directly in that folder.

Create an href to represent the path we traced.
Now that we know the path, we need to get it into a format the browser
understands. Here’s how you write the path:

4

elixirs

beverages / elixir.html

First we go into the
beverages folder.

Finally we have the
file name.

Separate all parts of
the path with a “/”.

Putting it all together...

We put the relative path into the href value. Now when the link is clicked on, the browser will look for the “elixir.html” file in the “beverages” folder.

62 Chapter 2

 detailed directions

YOUR ANSWER HERE

Your turn: trace the relative path from “lounge.html” to “directions.html”. When you’ve
discovered it, complete the <a> element below. Check your answer in the back of the
chapter, and then go ahead and change both <a> elements in “lounge.html.”

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Sharpen your pencil

a little practice with paths

going further with hypertext

you are here � 63

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Start here...

...and find a
path to here.

Back to the Lounge

Going the other way; linking up into a “parent” folder

Linking from “directions.html” to “lounge.html”.
Now we need to fix those “Back to the Lounge” links. Here’s what the <a>
element looks like in the “directions.html” file:

Identify the source and the destination.
Let’s take a look at the
source and destination.
The source is now
the “directions.html”
file, which is down in
the “about” folder. The
destination is the

“lounge.html” file that sits
above the “about” folder,
where “directions.html”
is located.

Right now we’re just
using the filename
“lounge.html”, which tells
the browser to look in
the same folder as
“directions.html”. That’s
not going to work.

1

2

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Trace a path from the source to the destination.
Let’s trace the path.
To get from the

“directions.html” file to
“lounge.html”, we need to
go up one folder into the

“lounge” folder, and then
we’ll find “lounge.html”
in that folder.

3

First we need to
go UP into the
“lounge” folder...

...and “lounge.html” is
directly in that folder.

64 Chapter 2

Create an href to represent the path we traced.
We’re almost there. Now that you know the path, you need to get it
into a format the browser understands. Let’s work through this:

4

Back to the Lounge

.. / lounge.html

First you need to go
 up

one folder. How do you

do that? With a “..”.
That’s right, two periods.

Go with it, we’ll explain

in a sec.

Finally you have the
file name.

Separate all parts of
the path with a “/”.

Putting it all together...

Now when you click on the link, the browser will look for the “lounge.html” file in the folder above. Up, down,
housewares,

lingerie?

Pronounce “..” as “dot dot”.

Dot dot

building the href

going further with hypertext

you are here � 65

Q: What’s a parent folder? If I have a
folder “apples” inside a folder “fruit”, is
“fruit” the parent of “apples”?

A: Exactly. Folders (you might have
heard these called directories) are often
described in terms of family relationships.
For instance, using your example, “fruit” is
the parent of “apples”, and “apples” is the
child of “fruit”. If you had another folder
“pears” that was a child of “fruit”, it would be
a sibling of “apples.” Just think of a family
tree.

Q: Okay, parent makes sense, but
what is “..”?

A: When you need to tell the browser
that the file you’re linking to is in the parent
folder, you use “..” to mean “move UP to the
parent folder.” In other words, it’s browser-
speak for parent.
In our example, we wanted to link from
“directions.html”, which is in the “about”
folder, to “lounge.html”, which is in the
“lounge” folder, the parent of “about”. So we
had to tell the browser to look UP one folder.
“..” is the way we tell the browser to go UP.

Q: What do you do if you need to go
up two folders instead of just one?

A: You can use “..” for each parent
folder you want to go up. Each time you use
“..” you’re going up by one parent folder. So,
if you want to go up two folders, you’d type
“../..”. You still have to separate each part
with the “/”, so don’t forget to do that (the
browser won’t know what “....” means!).

Q: Once I’m up two folders, how do I
tell the browser where to find the file?

A: You combine the “../..” with the
filename. So, if you’re linking to a file called
“fruit.html” in a folder that’s two folders up,
you’d write “../../fruit.html”. You might expect
that we’d call “../..” the “grandparent” folder,
but we don’t usually talk about them that
way, and instead say, “the parent of the
parent folder,” or “../..” for short.

Q: Is there a limit to how far up I can
go?

A: You can go up until you’re at the root
of your Web site. In our example, the root
was the “lounge” folder. So, you could only
go up as far as “lounge”.

Q: What about in the other direction
– is there a limit to how many folders I
can go down?

A: Well, you can only go down as many
folders as you have created. If you create
folders that are 10 deep, then you can write
a path that takes you down 10 folders.
But we don’t recommend that – when you
have that many folder levels, it probably
means your website organization is too
complicated!
In addition, there is a limit to the number
of characters you can have in a path: 255
characters. That’s a lot of characters, so
it’s unlikely you’ll ever need that many, but
if you have a large site, it’s something to be
aware of.

Q: My operating system uses “\” as
a separator; shouldn’t I be using that
instead of “/”?

A: No; in Web pages you always use
“/”. Don’t use “\”. Various operating systems
use different file separators (for instance,
Windows uses “\” instead of “/”) but when
it comes to the Web, we pick a common
separator and all stick to it. So, whether
you’re using Mac, Windows, Linux, or
something else, always use “/” in the paths
in your HTML.

there are no
Dumb Questions

brain
powerA

Your turn: trace the relative path from “elixir.html” to “lounge.html” from the “Back to
the Lounge” link. How does it differ from the same link in the “directions.html” file?

Answer: It doesn’t, it is exactly the same.

66 Chapter 2

You’ve almost got the lounge back in working order; all you
need to do now is fix those images that aren’t displaying.

We haven’t looked at the element in detail yet (we will
in a couple of chapters), but all you need to know for now is
that the element’s src attribute takes a relative path,
just like the href attribute.

Here’s the image element from the “lounge.html” file:

Here’s the relative path, which tells the
browser where the image is located. We
specify this just like we do with the href
attribute in the <a> element.

Fixing those broken images...

Hey, it’s nice you fixed all those
links, but didn’t you forget

something? All our images are broken!
Don’t leave us hanging, we’ve got a

business to run.

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Start here...

...and find a
path to here.

Finding the path from “lounge.html” to “drinks.gif”
To find the path, we need to go from the “lounge.html” file to
where the images are located, in the “images” folder.

So putting (1) and (2) together our path looks like “images/drinks.gif ”, or:

GOAL: we’re in the lounge

folder and we need to get

down into the images folder.

(1) Go down into
the images folder.

(2) There’s our
file, “drinks.gif”.

relative paths and images

going further with hypertext

you are here � 67

The elixirs page contains images of several drinks: “red.jpg”,
“green.jpg”, “blue.jpg”, and so on. Let’s figure out the path to
“red.jpg” and then the rest will have a similar path because they
are all in the same folder:

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Start here...

...and find a
path to here.

Finding the path from “elixir.html” to “red.jpg”

So putting (1) , (2), and (3) together we get:

GOAL: we’re in the
beverages folder and we
need to get over to the
images folder.

(1) So we go up to the parent
folder, “lounge”. Remember
this will be written as “..” in
the path.

(2) And then down into the “images” folder.

(3) Finally, we find “red.jpg” .

.. / images / red.jpg

Up to the
parent folder.

“/” in between. “/” in between.
Down into
the “images”
folder.

And the file name itself.

68 Chapter 2

You did it! Now we’ve
got organization and all our links
are working. Time to celebrate.

Join us and have a green tea
cooler.

And then we
can take the site to

the next level!

That covers all the links we broke when we reorganized the lounge, although
you still need to fix the images in your “lounge.html” and “elixir.html” files. Here’s
exactly what you need to do:

�	 In “lounge.html”, update the image src attribute
to have the value “images/drinks.gif”.

�	 In “elixir.html”, update the image src attribute so
that “../images/” comes before each image name.

�	 Save both files and load “lounge.html” in your
browser. You’ll now be able to navigate between
all the pages and view the images.

3

2

1

P.S. If you’re having any trouble, the folder
“chapter2/completelounge” contains a working version
of the lounge. Double-check your work against it.

Exercise

fixing images with relative links

going further with hypertext

you are here � 69

�	 When you want to link from one page to
another, use the <a> element.

�	 The href attribute of the <a> element
specifies the destination of the link.

�	 The content of the <a> element is the
label for the link. The label is what you
see on the Web page. By default, it’s
underlined to indicate you can click on it.

�	 You can use words or an image as the
label for a link.

�	 When you click on a link, the browser
loads the Web page that’s specified in the
href attribute.

�	 You can link to files in the same folder, or
files in other folders.

�	 A relative path is a link that points to other
files on your Web site relative to the Web
page you’re linking from. Just like on
a map, the destination is relative to the
starting point.

�	 Use “..” to link to a file that’s one folder
above the file you’re linking from.

�	 “..” means “parent folder.”

�	 Remember to separate the parts of your
path with the “/” character.

�	 When your path to an image is incorrect,
you’ll see a broken image on your Web
page.

� Don’t use spaces in names when you’re
choosing names for files and folders for
your Web site.

�	 It’s a good idea to organize your Web site
files early on in the process of building
your site, so you don’t have to change a
bunch of paths later when the Web site
grows.

�	 There are many ways to organize a Web
site; how you do it is up to you.

 BULLET POINTS

70 Chapter 2

Here’s your chance to put your relativity skills to the test. We’ve got a Web site
for the top 100 albums in a folder named “music”. In this folder you’ll find HTML
files, other folders and images. Your challenge is to find the relative paths we
need so we can link from our Web pages to other Web pages and files.
On this page, you’ll see the Web site structure; on the next page you’ll find the
tasks to test your skills. For each source file and destination file, it’s your job to
make the correct relative path. If you succeed, you will truly be champion of
relative paths.
Good luck!

The Relativity Grand Challenge

<html>
.
.
.
</html>

pinkfloyd.html
darkside.gif

logo.gif

<html>
.
.
.
</html>

top100.html

<html>
.
.
.
</html>

genres.html

floyd.gif

music

 rock

 genres images

 cdcovers artists
<html>
.
.
.
</html>

coldplay.html
xandy.gif chris.gif

Feel free to draw right

on this Web site picture

to figure out the pat
hs.

going further with hypertext

you are here � 71

Round One
<html>
.
.
.
<html>

top100.html logo.gif

Round Two
<html>
.
.
.
<html>

genres.html logo.gif

Bonus Round
<html>
.
.
.
<html>

coldplay.html chris.gif

“top100.html” is in the
“music” folder, so to get

to “genres.html”, we had

to go down into the
“genres” folder.

It’s time for the competition to begin.

Ready... set... write!

<html>
.
.
.
<html>

top100.html

Round Three

pinkfloyd.html

<html>
.
.
.
<html>

Example
<html>
.
.
.
<html>

top100.html

genres/genres.html

genres.html

<html>
.
.
.
<html>

72 Chapter 2

1 2

3

4 5

6 7 8

9 10

11 12

13 14 15

16

17

Across

1. ../myfiles/index.html is this kind of link.
3. Another name for a folder.
6. Flavor of blue drink.
9. what href stands for.
13. Everything between the <a> and is this.
16. Can go in an <a> element, just like text.
17. Pronounced "..".

Down

2. href and src are two of these.
4. Hardest working attribute on the web.
5. Rhymes with href.
7. Top folder of your site.
8. The "H " in HTML.
10. Healthy drink.
11. A folder at the same level.
12. Use .. to reach this kind of directory.
14. Text between the <a> tags acts as a ______.
15. A subfolder is also called this.

T

HTMLcross
How does a crossword help you learn HTML? Well, all the words are HTML-related
and from this chapter. In addition, the clues provide the mental twist and turns that will
help you burn alternative routes to HTML right into your brain!

some fun for your left brain

going further with hypertext

you are here � 73

<html>
 <head>
 <title>Head First Lounge Elixirs</title>
 </head>
 <body>
 <h1>Our Elixirs</h1>

 <h2>Green Tea Cooler</h2>
 <p>

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>
 <p>
 Back to the Lounge
 </p>
 </body>
</html>

Here’s the new <a> element pointing back

to the lounge.

We put the link inside its own paragraph
to keep things tidy. We’ll talk more about
this in the next chapter.

Exercise
Solutions

74 Chapter 2

Exercise solutions

Label Destination Element

Hot or Not?

Eye Candy

Resume cv.html

See my mini mini-cooper.html

candy.html

 let’s play

Resume

hot.htmlHot or Not?

candy.htmlEye Candy

See my mini

let’s playmillionaire.html

R
1

E L A
2

T I V E

T

D
3

I R E C T O R Y

R

H
4

I S
5

R
6

A S P B E R
7

R Y P H
8

E U O A Y

F T O C P

H
9

Y P E R T E X T R E F E
10

R E N C E

S C L R

S
11

P
12

H I T

I C
13

L
14

I C
15

K A B L E X E

B A H R F I X

L B I E R T

I
16

M A G E L N

N L D
17

O T D O T

G

Across

1. ../myfiles/index.html is this kind of link.
[relative]
3. Another name for a folder. [directory]
6. Flavor of blue drink. [raspberry]
9. what href stands for. [hypertextreference]
13. Everything between the <a> and is this.
[clickable]
16. Can go in an <a> element, just like text. [image]
17. Pronounced "..". [dotdot]

Down

2. href and src are two of these. [attributes]
4. Hardest working attribute on the web. [href]
5. Rhymes with href. [spacechef]
7. Top folder of your site. [root]
8. The "H" in HTML. [hypertext]
10. Healthy drink. [elixir]
11. A folder at the same level. [sibling]
12. Use .. to reach this kind of directory. [parent]
14. Text between the <a> tags acts as a ______.
[label]
15. A subfolder is also called this. [child]

exercise solutions

going further with hypertext

you are here � 75

 detailed directions

YOUR ANSWER HERE

Trace the relative path from “lounge.html” to “directions.html”. When you’ve discovered it,
complete the <a> element below.
Here’s the solution. Did you change both <a> elements in “lounge.html”?

“about”

“directions.html”

about/directions.html

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
<html>
.
.
.
</html>

lounge.html

beveragesabout images
drinks.gif

red.jpg

Solution
Sharpen your pencil

76 Chapter 2

exercise solutions

The Relativity Grand Challenge Solution

Round One
<html>
.
.
.
<html>

top100.html logo.gif

images/logo.gif

pinkfloyd.html

<html>
.
.
.
<html>

top100.html

Round Three
genres/rock/pinkfloyd.html <html>

.

.

.
<html>

Round Two
<html>
.
.
.
<html>

genres.html logo.gif

../images/logo.gif

<html>
.
.
.
<html>

Bonus Round

coldplay.html chris.gif

../../images/artists/chris.gif

top100.html is in the
music folder, so to
get to logo.gif, we had
to go down into the
images folder.

genres.html is down in
the genres directory, so
to get to logo.gif, we
first had to go up to
music, and then down into
the images folder.

From top100.html, we go

down into genres, t
hen

down into rock, an
d find

pinkfloyd.html.

This was a tricky one. From
coldplay.html, which is down in
the rock folder, we had to go
up TWO folders to get to music,
and then go down into images,
and finally artists to find the
image chris.gif. Whew!

this is a new chapter 77

Web Page Construction
3 building blocks

We better find some hard
hats, Betty. It’s a real

construction zone around here,
and these Web pages are

going up fast!

I was told I’d actually be creating Web pages in this book?
You’ve certainly learned a lot already: tags, elements, links, paths... but it’s all for

nothing if you don’t create some killer Web pages with that knowledge. In this chapter

we’re going to ramp up construction: you’re going to take a Web page from conception

to blueprint, pour the foundation, build it, and even put on some finishing touches. All

you need is your hard hat and your tool belt, as we’ll be adding some new tools and

giving you some insider knowledge that would make Tim “The Toolman” Taylor proud.

78 Chapter 3

What better way to enjoy
my new Segway than to hit the open

road? I’m riding it across the entire USA
and I’ve been documenting my travels in
my journal. What I really need to do is
get this in a Web page so my friends

and family can see it.

Tony

Tony’s Segway

Make sure you read through Tony’s adventures - they’ll come in

handy throughout the chapter.

Tony’s Journal

My first day of
the trip! I can’

t believe I

finally got ever
ything packed a

nd ready to go
.

Because I’m on a Segway, I wasn’t able to br
ing

a whole lot with me: cell phone, iP
od, digital

camera, and a prot
ein bar. Just the essentia

ls.

As Lao Tzu would have said,
“A journey of a

thousand miles begins with one step Se
gway.”

June 2, 2005

I saw some Burma Shave style s
igns on the sid

e of

the road today
: “Passing cars,

 When you can’t s
ee,

May get you, A glimpse, Of eternity.” I
definitely

won’t be passing
 any cars!

July 14, 2005

Segway’n USA

Documenting my trip around t
he US on my

very own Segway!

August 20 2005

Well I made it 1200 miles already, a
nd I passed

through some interesting
places on the

 way:

Walla Walla, WA, Magic City, ID, Bountiful,

UT, Last Chance, CO, Why, AZ and Truth or

Consequences, N
M.

meet tony and his segway

building blocks

you are here � 79

From Journal to Web site, at 12mph

Tony’s got his hands full driving across the United States on his Segway.
Why don’t you give him a hand and create a Web page for him.

Here’s what you’re going to do:

1 First, you’re going to create a rough sketch of the journal that is the basis for
your page design.

2 Next, you’ll use the basic building blocks of HTML (<h1>, <h2>, <h3>, <p>, and so on)
to translate your sketch into an outline (or blueprint) for the HTML page.

3 Once you have the outline, then you’re going to translate it into real HTML.

4 Finally, with the basic page done, you’ll add some enhancements and meet
some new HTML elements along the way.

Take a close look at Tony’s journal and
think about how you’d present the same
information in a Web page.
Draw a picture of that page on the right.
No need to get too fancy, you’re just
creating a rough sketch. Assume all his
journal entries will be on one page.
Things to think about:

�	 Think of the page in terms of large
structural elements: headings,
paragraphs, images, and so on.

�	 Are there ways his journal might be
changed to be more appropriate for
the Web?

STOP! Do this exercise before turning the page.

The Segway’s top speed.

Your sketch
goes here.

Sharpen your pencil

recommended

80 Chapter 3

My first day of the trip! I can’t believe finally
got everything packed and ready to go. Because
I’m on a Segway, I wasn’t able to bring a whole
lot with me: cellphone, iPod, digital camera, and
a protein bar. Just the essentials. As Lao Tzu
would have said, “A journey of a thousand miles
begins with one Segway.”

June 2, 2005

I saw some Burma Shave style signs on the side of
the road today: “Passing cars, When you can’t see,
May get you, A glimpse, Of eternity”. I definitely
won’t be passing any cars!

July 14, 2005

Segway’n USA
Documenting my trip around the US on my
very own Segway!

August 20, 2005

Well I made it 1200 miles already, and I passed
through some interesting places on the way: Walla Walla,
WA, Magic City, ID, Bountiful, UT, Last Chance, CO,
Why, AZ and Truth or Consequences, NM.

Tony’s journal looks a lot like a Web page; all we need to do to
create the design sketch is to get all his entries on one page and
map out the general organization. It looks like, for each day
that Tony creates an entry, he has a date heading, an optional
picture, and a description of what happened that day. Let’s
look at the sketch...

Tony gave his journal a title, “Segway’n USA”, so let’s get that right at the top as a heading.

He also gave his journal a description.
We’ll capture that here as a small
paragraph at the top.

Each day, Tony creates an entry that includes
the date, usually a picture, and a description
of the day’s adventures. So, that’s a heading,
an image, and another paragraph of text.

The rough design sketch

Sometimes he doesn’t include a picture. In this
entry he just has a heading (the date) and a
description of the day’s events.

Unlike Tony’s paper journal, our page length isn
’t

limited, so we can fit many entries on one Web page.

His friends and family can just use the scroll bar to

scroll through his entries...

However, notice that we reversed the order of

the journal entries from newest to oldest. That

way the most recent entries appear at the top

where users can see them without scrolling.

The third entry should look just
like the first one: a heading, an
image, and a paragraph.

making a rough sketch

building blocks

you are here � 81

From a sketch to an outline
Now that you’ve got a sketch of the page, you can take
each section and draw something that looks more like
an outline or blueprint for the HTML page...

All you need to do now is figure out which HTML
element maps to each content area, and then you can
start writing the HTML.

Here we’ve taken each area of the
sketch and created a corresponding
block in our blueprint. h1

EXERCISE: Web Construction

p

img

h2

h3

h4

h5

h6

a

h1

p

img

h2

h3

h4

h5

h6

a

h1

p

img

h2

h3

h4

h5

h6

a

h1

You’ve already figured out the major

architectural areas of the page; now you just

need to nail down the building materials. Use

the elements below to label each area. You

won’t use them all, so don’t worry if you have

some building materials left over. And don’t

forget to wear your hard hat.

82 Chapter 3

From the outline to a Web page

Now that you know
what “building blocks” make up
each part of the page, you can
translate this blueprint directly

into HTML.

You’re almost there. You’ve created an outline of
Tony’s Web page. Now all you need to do is create
the corresponding HTML to represent the page
and fill in Tony’s text.

Before you begin, remember that every Web page
needs to start with the <html> element and include
the <head> and <body> elements.

h1

p

h2

img

p

h2

p

h2

img

p

turning the outline into a web page

building blocks

you are here � 83

<html>
 <head>
 <title>My Trip Around the USA on a Segway</title>
 </head>
 <body>

 <h1>Segway’n USA</h1>
 <p>
 Documenting my trip around the US on my very own Segway!
 </p>

 <h2>August 20, 2005</h2>

 <p>
 Well I made it 1200 miles already, and I passed
 through some interesting places on the way: Walla Walla,
 WA, Magic City, ID, Bountiful, UT, Last Chance, CO,
 Why, AZ and Truth or Consequences, NM.
 </p>

 <h2>July 14, 2005</h2>
 <p>
 I saw some Burma Shave style signs on the side of the
 road today: “Passing cars, When you can’t see, May get
 you, A glimpse, Of eternity.” I definitely won’t be passing
 any cars.
 </p>

 <h2>June 2, 2005</h2>

 <p>
 My first day of the trip! I can’t believe I finally got
 everything packed and ready to go. Because I’m on a Segway,
 I wasn’t able to bring a whole lot with me: cellphone, iPod,
 digital camera, and a protein bar. Just the essentials. As
 Lao Tzu would have said, “A journey of a thousand miles begins
 with one Segway.”
 </p>

 </body>
</html>

Don’t forget, you always need the <html>,

<head>, <title> and <body>
 elements.

We’re using the title of the journal as the
title of the Web page.

Here’s the heading and
description of Tony’s jo

urnal.

Here’s Tony’s most
recent entry.

And at the bottom
,

Tony’s first entry
,

with the image
“segway1.jpg”.

Last, but not least, don’t forget to close
your <body> and <html> elements.

Go ahead and type this in. Save your file to the “chapter3/journal” folder as “journal.html”. You’ll find the images “segway1.jpg”
and “segway2.jpg” already in the “images” folder. When you’re done, give this page a test drive.

Here’s his second
entry, which doesn’t
have an image.

heading
image
description

84 Chapter 3

Test driving Tony’s Web page

Look how well this page has
 come

together. You’ve
 put everything

in

Tony’s journal in
to a readable an

d

well-structured Web page.

Fantastic! This looks
great; I can’t wait to

add more entries to my page.

Tony’s calling in
from the road...

My first day of
the trip! I can’

t believe I

finally got ever
ything packed a

nd ready to go
.

Because I’m on a Segway, I wasn’t able to br
ing

a whole lot with me: cellphone, iPo
d, digital

camera, and a prot
ein bar. Just the essentia

ls.

As Lao Tzu would have said,
“A journey of a

thousand miles begins with one step Se
gway.”

June 2, 2005

I saw some Burma Shave style s
igns on the sid

e of

the road today
: “Passing cars,

 When you can’t s
ee,

May get you, A glimpse, Of eternity.” I
definitely

won’t be passing
 any cars!

July 14, 2005

Segway’n USA

Documenting my trip around t
he US on my

very own Segway!

August 20 2005

Well I made it 1200 miles already, a
nd I passed

through some interesting
places on the

 way:

Walla Walla, WA, Magic City, ID, Bountiful,

UT, Last Chance, CO, Why, AZ and Truth or

Consequences, N
M.

test driving tony’s page

building blocks

you are here � 85

Adding some new elements
You have the basic elements of HTML down. You’ve gone from a hand-
written journal to an online version in just a few steps using the basic
HTML elements <p>, <h1>, <h2>, and .

Now we’re going to s-t-r-e-t-c-h your brain a little and add a few more
common elements. Let’s take another look at Tony’s journal and see
where we can spruce things up a bit...

Check this out: Tony has a little quote stuck
at the end of his first post. It’s his remixed
version of a Lao Tzu quote: “A journey of a
thousand miles begins with one Segway.”

HTML has an element, <q>, for just that kind of thing.
Let’s take a look on the next page...

86 Chapter 3

Got a short quote in your HTML? The <q> element is just what
you need. Here’s a little test HTML to show you how it works:

Meet the <q> element

<html>
 <head>
 <title>Quote Test Drive</title>
 </head>
 <body>
 <p>
 You never know when you’ll need a good quote, how
 about <q>To be or not to be</q>, or <q>Wherever you go, there you are</q>.
 </p>
 </body>
</html>

We’ve got two quotes in this HTML...

We surround each quote with a <q> opening tag and
a </q> closing tag. Notice that we don’t put our own
double quote characters around the quotes.

And here’s how the quotes look in the
browser. Notice the browser has gone to
the trouble of adding the double quotes.

...and check out the test drive...

This is unfortunate, because if you add your own

double quotes, some browsers will display TWO sets

of quotes. The only way to solve this conundrum is

to use CSS to add some visual style to your quotes,

such as italics. We’ll show you how to add italics to

your elements in Chapter 9.

Some browsers, including

Internet Explorer version 6, do

not display double quotes around

the content in the <q> element.
Watch it!

quotes in your html

building blocks

you are here � 87

Wait a sec... you removed
the double quotes and substituted a

<q> element, which just displays double
quotes? Am I supposed to be impressed?

Are you trying to make things more
complicated?

There are lots of reasons people use double quotes in
text, but when we use <q> that means something specific

– it means the text of an actual quote (in Tony’s case, a
“remixed” quote).

In other words what we’ve done is to add some
additional meaning by marking up the quote. Before we
added the <q> element, the browser just knew it had a
paragraph of text with a few double quote characters
in it. Now, because we’re using the <q> element, the
browser knows that some of that text is a real quote.

So what? Well, now that the browser knows this is a
quote it can display it in the best way possible. Some
browsers will display double quotes around the text,
some won’t, and in instances where browsers are using
non-English languages, other methods might be used.
And don’t forget mobile devices, like cell phones, or
audio HTML browsers for the visually impaired. It’s
also useful in other situations, such as a search engine
that scours the Web looking for Web pages with quotes.
Structure and meaning in your pages are Good Things.

One of the best reasons (as you’ll see when we get back
to presentation and CSS later in the book) is that you’ll
be able to style quotes to look just the way you want.
Suppose you want quoted text to be displayed in italics
and colored gray? If you’ve used the <q> element to
structure the quoted content in your Web pages, you’ll be
able to do just that.

No. We’re trying to make things
more structured and meaningful.

See! Using double quotes
doesn’t make something
an actual quote.

88 Chapter 3

Here’s Tony’s journal. Go ahead and rework his Lao Tzu quote to use the <q>
element. After you’ve done it on paper, make the changes in your “journal.html”
file and give it a test drive. You’ll find the solution in the back of the chapter.

<html>
 <head>
 <title>Segway’n USA</title>
 </head>
 <body>

 <h1>Segway’n USA</h1>
 <p>
 Documenting my trip around the US on my very own Segway!
 </p>

 <h2>August 20, 2005</h2>

 <p>
 Well I made it 1200 miles already, and I passed
 through some interesting places on the way: Walla Walla,
 WA, Magic City, ID, Bountiful, UT, Last Chance, CO,
 Why, AZ and Truth or Consequences, NM.
 </p>

 <h2>July 14, 2005</h2>
 <p>
 I saw some Burma Shave style signs on the side of the
 road today: “Passing cars, When you can’t see, May get
 you, A glimpse, Of eternity.” I definitely won’t be passing
 any cars.
 </p>

 <h2>June 2, 2005</h2>

 <p>
 My first day of the trip! I can’t believe I finally got
 everything packed and ready to go. Because I’m on a Segway,
 I wasn’t able to bring a whole lot with me: cellphone, iPod,
 digital camera, and a protein bar. Just the essentials. As
 Lao Tzu would have said, “A journey of a thousand miles begins
 with one Segway.”
 </p>
 </body>
</html>

Exercise

adding a quote

building blocks

you are here � 89

The Case of the Elements Separated at Birth
Identical twins were born in Webville a number of years ago and by a
freak accident involving an Internet router malfunction, the twins were
separated shortly after birth. Both grew up without knowledge of the
other, and only through another set of freak circumstances did they later
meet and discover their identity, which they decided to keep secret.

After the discovery, they quickly learned that they shared a surprising
number of things in common. Both were married to wives named
Citation. They also both had a love for quotations. The first twin,
the <q> element, loved short, pithy quotes, while the second,
<blockquote>, loved longer quotes, often memorizing

complete passages from books or poems.

Being identical twins, they bore a strong resemblance to each other, and
so they decided to put together an evil scheme whereby they might stand
in for each other now and then. They first tested this on their wives (the
details of which we won’t go into) and they passed with flying colors
– their wives had no idea (or at least pretended not to).

Next they wanted to test their switching scheme in the work place
where, as another coincidence, they both performed the same job:
marking up quotes in HTML documents. So, on the chosen day, the
brothers went to the other’s work place fully confident they’d pull off
their evil plan (after all, if their wives couldn’t tell, how could their
bosses?), and that’s when things turned bad. Within 10 minutes of
starting the work day, the brothers had both been found to be imposters
and the standards authorities were immediately alerted.

How were the twins caught in the act?
Keep reading for more clues...

Five-Minute
Mystery

90 Chapter 3

Looooong Quotes
Now that you know how to do short quotes, let’s
tackle long ones. Tony’s given us a long quote
with the Burma Shave jingle.

In his journal Tony just put the Burma Shave
quote right inside his paragraph, but wouldn’t it
be better if we pulled this quote out into a “block”
of its own, like this:

I saw some Burma Shave style signs on the side of
the road today:
 Passing cars,
 When you can’t see,
 May get you,
 A glimpse,
 Of eternity.
I definitely won’t be passing any cars.

It’s important
to use the right tool
for the job, and the

<blockquote> element is
perfect for this job.

That’s where the <blockquote> element comes
in. Unlike the <q> element, which is meant for
short quotes that are part of an existing paragraph,
the <blockquote> element is meant for longer
quotes that need to be displayed on their own.

If you don’t know what
“Burma Shave” slogans are,
we’ll tell you all about
them in just a few pages...

creating longer quotes

building blocks

you are here � 91

Adding a <blockquote>

We also put each line of text on a separate
line so it reads more like a Burma Shave slogan.

<blockquote> creates a
separate block (like <p>
does), plus it indents
the text a bit to
make it look more like
a quote. Just what we
wanted...

1 Open your “journal.html” file and locate the July 14th
entry. Rework the paragraph to look like this:

2 Time for another test drive. Open “journal.html” in your browser
and take a look at the results of your work:

Let’s get a <blockquote> into Tony’s online journal.

But our quote isn’t look
ing

quite like we wanted because

all the lines are running

together. We really wanted

them on different lines.

Hmmm. Let’s come back to

that in a bit...

To insert the <blockquote>
element, we need to end this
paragraph first.

Next we put the Burma Shave text in the
<blockquote> element.

And finally, we need to add a <p> tag to start this paragraph after the <blockquote>.

<h2>July 14, 2005</h2>
<p>
 I saw some Burma Shave style signs on the
 side of the road today:
</p>
<blockquote>
 Passing cars,
 When you can’t see,
 May get you,
 A glimpse,
 Of eternity.
</blockquote>
<p>
 I definitely won’t be passing any cars.
</p>

92 Chapter 3

Q: So let me see if I have this
right: I use <q> when I just want to
have some quote in with the rest of
my paragraph, and I use <blockquote>
when I have a quote that I want to break
out on its own in my Web page?

A: You’ve got it. In general you’ll
use <blockquote> if you want to quote
something that was a paragraph or more,
while you can use <q> anytime you just
want to throw in a quote as part of your
running text.

Q: Multiple paragraphs in a block
quote? How do I do that?

A: Easy. Just put paragraph
elements inside your <blockquote>, one
for each paragraph. Do try this at home.

Q: How do I know what my quotes
or block quotes will look like in other
browsers? It sounds like they may
handle it differently.

A: Yes. Welcome to the World Wide
Web. You don’t really know what your
quotes will look like without trying them
out in different browsers. Some browsers
use double quotes, some use italics and
some use nothing at all. The only way to
really determine how they’ll look is to style
them yourself, and we’ll certainly be doing
that later.

Q: I get that the <blockquote>
breaks its text out into a little block of
its own and indents it, so why isn’t the
<blockquote> inside the paragraph, just
like the <q> element is?

A: Because the <blockquote>
really is like a new paragraph. Think
about this as if you were typing it into a
word processor. When you finish one
paragraph you hit the return key twice
and start a new paragraph. To type a
block quote you’d do the same thing and
indent the quote. Put this in the back of
your mind for a moment; it’s an important
point and we’re going to come back to it
in a sec.
Also, remember that the indenting is
just the way some browsers display
a <blockquote>. Not all browsers use
indentation for <blockquote>, and those
that do might not in new versions. So,
don’t rely on a <blockquote> to look the
same in all browsers.

Q: Can I combine quote elements?
For instance, could I use the <q>
element inside the <blockquote>
element?

A: Sure. Just like you can put a
<q> element inside the <p> element, you
can put <q> inside <blockquote>. You
might do this if you’re quoting someone
who quoted someone else. But, a
<blockquote> inside a <q> doesn’t really

make sense, does it? Q: You said that we can style these
elements with CSS, so if I want to
make the text in my <q> element italics
and gray, I can do that with CSS. But
couldn’t I just use the element to
italicize my quotes?

A: Well, you could, but it wouldn’t
be the right way to do it, because you’d
be using the element for its effect
on the display rather than because
you’re really writing emphasized text. If
the person you were quoting really did
emphasize a word, or you want to add
emphasis to make a strong point about
the quote, then go right ahead and use
the element inside your quote. But
don’t do it simply for the italics. There
are easier and better ways to get the look
you want for your elements with CSS.

there are noDumb Questions

all about quotes and blockquotes

building blocks

you are here � 93

Five-Minute
Mystery

Solved

Solved: The Case of the Elements Separated at Birth
How were the identical quote twins found to be imposters so quickly?

As you’ve no doubt guessed by now, <q> and <blockquote> were
discovered as soon as they went to work and began
to mark up text. <q>’s normally unobtrusive little
quotes were popping out into blocks of their own,
while <blockquote>’s quotes were suddenly being
lost inside regular paragraphs of text. In follow-up
interviews with the victims of the pranks, one editor
complained, “I lost an entire page of liner quotes thanks
to these wackos.” After being reprimanded and sent back to their
respective jobs, <blockquote> and <q> fessed up to their wives, who
immediately left town together in a T-Bird convertible. But that’s a whole
’nother story (it didn’t end well).

94 Chapter 3

The real truth behind the <q> and <blockquote> mystery
Okay, it’s time to stop the charade: <blockquote> and <q> are actually different
types of elements. The <blockquote> element is a block element and the <q>
element is an inline element. What’s the difference? Block elements are always
displayed as if they have a linebreak before and after them, while inline elements
appear “in line” within the flow of the text in your page.

h2

p

blockquote

Remember: block elements stand on their own;
inline elements go with the f low.

<h1>, <h2>, ..., <h6>, <p>, and <blockquote> are all block elements.

Block: stands on its own Inline: goes with the flow

Each block element is
displayed on its own, as if
it has a linebreak before
and after it.

<q>, <a>, and are inline elements.

<q> on the other
hand, like all inline
elements, is just
displayed in the flow
of the paragraph
it’s in.Block elements

separate content
into blocks.

p

q

block and inline elements

building blocks

you are here � 95

Q: I think I know what a linebreak is; it’s like hitting the carriage return on
a typewriter or the return key on a computer keyboard. Right?

A: Pretty much. A linebreak is literally a “break in the line,” like
this, and happens when you hit the Return key, or on some computers, the Enter key. You already know that
linebreaks in HTML files don’t show up visually when the browser displays a page, right? But now you’ve also
seen that any time you use a block element, the browser uses linebreaks to separate each “block”.

there are noDumb Questions

Once again, this
all sounds great,

but why is all this talk of
linebreaks, blocks, and inline
elements useful? Can we get

back to Web pages?

Don’t underestimate the power of knowing how HTML
works. You’re soon going to see that the way you
combine elements in a page has a lot to do with whether
elements are block or inline. We’ll get to all that.

In the meantime, you can also think about block versus
inline this way: block elements are used as the major
building blocks of your Web page, while inline elements
mark up small pieces of content. When you’re designing
a page, you typically start with the bigger chunks (the
block elements) and then add in the inline elements as
you refine the page.

The real payoff is going to come when we get to
controlling the presentation of HTML with CSS. If you
know the difference between inline and block, you’re
going to be sipping martinis while everyone else is still
trying to get their layout right.

96 Chapter 3

Hey there, Block. I’m kind of surprised to see
you here.

Because you’re kind of a loner. You’ve always
got those linebreaks hanging around keeping
everyone away from you, like they’re your body
guards or something.

Don’t get too big on yourself over there. Yeah,
you’re great, but where would you be without
inline content? Paragraphs and headings and all
that are kind of pointless without text and inline
content like links.

I’ll tell you right now <a> isn’t going anywhere.
He’s born and bred inline. And if your pages
don’t have <a>, , <q>, and all the other
inline elements, you’re not going to have very
interesting pages, even if you have a good
foundation.

Why’s that?

I’m just a busy guy. Block elements are really
the major building blocks of all these Web sites.
If you didn’t have me, these pages would just
crumble.

I agree <a> is an important element, and
we’ve actually been trying to recruit him over
to our side. But the most important part
of a page is that it be designed well at the
foundation, and that takes block elements. You
can’t just take a bunch of links and make a real
page, now can you?

Tonight’s talk: Inline and Block air their differences.

Inline Block

inline versus block

building blocks

you are here � 97

Well, a lot of people do think at first that the
 element is block, but he’s not, and he
makes much more sense as an inline element.
People like images mixed in with all their text
and links.

Because people like to use small quotes
inline with their text. I’ve got no issue with
<blockquote>, so why are you picking on
<q>? You know, for thinking inline elements
aren’t very important, you sure are recruiting a
lot of them.

Oh, how convenient. Let me know how all that
page building goes without any inline elements.
I’m sure those are going to be some useful pages.
Not!

We may not get <a>, but I’ve been telling
 he should come over to our side for
years. He’d make a great block element.

We’ll see about that. I’ll tell you another thing,
this <blockquote> versus <q> thing is silly.
We’ve got a perfectly good block quote; why do
we need <q>?

Where are those linebreak body guards when
I need them? Look how behind I am now. I
gotta get back to building some pages.

Inline Block

98 Chapter 3

I’ve been thinking about the
Burma Shave lines. I wasn’t
surprised that they weren’t

broken up because we’ve said from
the beginning that whitespace and
linebreaks aren’t displayed by

the browser...

<h2>July 14, 2005</h2>
<p>
 I saw some Burma Shave style signs on the
 side of the road today:
</p>
<blockquote>
 Passing cars,

 When you can’t see,

 May get you,

 A glimpse,

 Of eternity.

</blockquote>
<p>
 I definitely won’t be passing any cars.
</p>

Add a
 element to any line
when you want to break the
flow and insert a “linebreak.”

... but the only way I can
think of to fix this is to put
each one in a block element

like a paragraph. Otherwise, how
can you get the browser to add

linebreaks?

Wouldn’t that be nice? You’d actually be able to make
the browser pay attention and insert some carriage
returns for a change.

Turns out there is an element, the
 element, just
for that purpose. Here’s how you use it:

What if you had an element
whose only job was to give you a
linebreak when you needed one?

Here’s the July
14th snippet from
Tony’s page.

carriage returns and the br element

building blocks

you are here � 99

Here’s what the changes should
look like. Now it reads like a
Burma Shave slogan should read!

Go ahead and add the
 elements to Tony’s journal. After
you make the changes, save the file, and give it a test drive.

Each line now has a
linebreak after it.

Exercise

100 Chapter 3

Here’s the closing tag.

 </br>

Here’s the opening tag.

Content? Hmm, the whole point of
this element is to insert a linebreak.
There’s really no content.

 </br>

Okay, typing this in is REALLY silly. We know there’s never going to be any content between those tags.

In Chapter 1 we said that
an element is an opening tag +

content + closing tag. So how is

 an element? It doesn’t have

any content, and it doesn’t even
have a closing tag.

The
 element is an element that doesn’t have any content. Why? Because it’s just
meant to be a linebreak, nothing else. So, when an element doesn’t have any real content
by design, we just use a shorthand to represent the element and it ends up looking like

. After all, if we didn’t have this shorthand, you’d be writing
</br> every
time you needed a linebreak, and how much sense does that make?

 isn’t the only element like this; there are others, and we have a name for them:
empty elements. In fact, we’ve already seen another empty element, the element.
We’ll be coming back to look at the element in detail in a couple chapters.

Keep in mind, the reason for the shorthand isn’t laziness so much as it is efficiency. It’s
more efficient to represent empty elements this way (efficient in typing, in the number
of characters that end up in a page, and so on). In fact, after reading HTML for a while,
you’ll find that it is easier on your eyes too.

Exactly, it doesn’t have any content.

Yeah, if we just type this
then it really represents
the same thing.

I’m half the
element I used to
be... (sniff sniff).

empty elements have no closing tag

building blocks

you are here � 101

Q: So, the only purpose of
 is to
insert a linebreak?

A: Right; the only place the browser typically
inserts breaks in your content is when you start a
new block element (like <p>, <h1>, and so on). If
you want to insert a linebreak into your text, then
you use the
 element.

Q: Why is
 called an “empty”
element?

A: Because it has no content, as in
element = opening tag + content + closing tag.
So, it’s empty because there’s no content.

Q: I still don’t get it. Explain why the

 element is “empty”?

A: Think about an element like <h1> (or <p>
or <a>). The whole point of the element is to tag
some content, like:
<h1>Don’t wait, order now</h1>
With the
 element, the point is just to insert
a linebreak into your HTML. There is no content
you are trying to mark up, so it’s empty. Since
it is empty, we don’t need all the extra brackets
and markup, so we just shorten it into a more
convenient form.
If an element doesn’t need to mark up some text,
then it is probably an empty element.

Q: Are there any other empty elements?
I think must be an empty element, too,
right?

A: Yes, there are a few of them. You’ve
already seen us use the element, and we’ll
be getting to the details of this element soon.

Q: Can I make any element empty? For
instance if I have a link, and don’t want to give
it any content, can I just write
 instead?

A: No. There are two types of elements in
the world: normal elements, like <p>, <h1>, and
<a>, and then there are empty elements, like

 and . You don’t switch back and forth
between the two. For instance, if you just typed
, that’s not an empty
element – it’s an opening tag without content and
a closing tag.

there are no
Dumb Questions

Elements that don’t have any HTML
content by design are called empty
elements. When you need to use an
empty element, like
 or ,
you only use an opening tag. This is a
convenient shorthand that reduces the
amount of markup in your HTML.

102 Chapter 3

You’ve come a long way already in this chapter: you’ve
designed and created Tony’s site, you’ve met a few new
elements, and you’ve learned a few things about elements
that most people creating pages on the Web don’t even
know (like block and inline elements, which are really
going to come in handy in later chapters).

But you’re not done yet. We can take Tony’s site from
good to great by looking for a few more opportunities to
add some markup.

Like what? How about lists? Check this out:

Meanwhile, back at Tony’s site...

Well I’ve made it 1200 miles already, and I passed
through some interesting places on the way:
 1. Walla Walla, WA
 2. Magic City, ID
 3. Bountiful, UT
 4. Last Chance, CO
 5. Why, AZ
 6. Truth or Consequences, NM

Wouldn’t it be great if we could mark up this text so the
browser knows this text is a list? Then the browser could
display the list items in a more useful way. Something like this:

There’s a list right here. Tony wrote the list of cities that he’s been
through in his August journal entry.

Note that not only is this a
list, but it’s an ordered list.
Tony visited these cities in a
particular order.

we need a list for tony’s site

building blocks

you are here � 103

You should be sensing a common theme by now. You
always want to choose the HTML element that is closest
in meaning to the structure of your content. If this is a
list, let’s use a list element. Doing so gives the browser and
you (as you’ll see later in the book) the most power and
flexibility to display the content in a useful manner.

<p>
1. Red Segway
</p>
<p>
2. Blue Segway
</p>

It wouldn’t be hard to make a list using the <p> element.
It would end up looking something like this:

Of course, you could use the <p>
element to make a list...

But there are lots of reasons not to.

❏ A.	 HTML has an element for lists. If you
use that, then the browser knows the
text is a list, and can display it in the
best way possible.

❏ B.	 The paragraph element is really meant
for paragraphs of text, not lists.

❏ C.	 It probably wouldn’t look much like
a list, just a bunch of numbered
paragraphs.

❏ D.	 If you wanted to change the order of
the list, or insert a new item, you’d
have to re-number them all. That
would suck.

Why not use <p> to make lists?
(Choose all that apply.)

brain
power?

Remember, it’s
important to use the
right tool for the job,
and the <p> element is

NOT the right tool
for this job.

Answer: A, B, C, & D

Top two preferred
colors for Segway.

104 Chapter 3

Constructing HTML lists in two easy steps

<h2>August 20, 2005</h2>

<p>
Well I’ve made it 1200 miles already, and I passed
through some interesting places on the way:

</p>

Walla Walla, WA
Magic City, ID
Bountiful, UT
Last Chance, CO
Why, AZ
Truth or Consequences, NM

<h2>July 14, 2005</h2>

<p>
I saw some Burma Shave style signs on the side of
the road today:
</p>

Put each list item in an element.
To create a list, you put each list item in its own element,
which means enclosing the content in an opening tag and
a closing tag. As with any other HTML element, the
content between the tags can be as short or as long as you like
and broken over multiple lines.

Step One:

Locate this HTML in your “journal.html” file and keep up with the changes as we make them.

...and then enclose each list item with an , set of tags.

Each of these
elements will become an
item in the list.

Creating an HTML list requires two elements that, when used together,
form the list. The first element is used to mark up each list item. The
second determines what kind of list you’re creating: ordered or unordered.

Let’s step through creating Tony’s list of cities in HTML.

First move the list items outside of the paragraph. The list
is going to stand on its own.

We’re just showing a fragment of the HTML

from Tony’s journal here.

constructing a list

building blocks

you are here � 105

Enclose your list items with either the or element.
If you use an element to enclose your list items, then
the items will be displayed as an ordered list; if you use ,
the list will be displayed as an unordered list. Here’s how you
enclose your items in an element.

Step Two:

<h2>August 20, 2005</h2>

<p>
Well I’ve made it 1200 miles already, and I passed
through some interesting places on the way:
</p>

 Walla Walla, WA
 Magic City, ID
 Bountiful, UT
 Last Chance, CO
 Why, AZ
 Truth or Consequences, NM

<h2>July 14, 2005</h2>

<p>
I saw some Burma Shave style signs on the side of
the road today:
</p>

We want this to be an ordered list, because Tony visit
ed the

cities in a specific order. So we use an opening tag.

And here we close the element.

All the list items sit in the
middle of the element and
become its content.

Is a block element or inline? What about ?

brain
powerA

Make it Stick

HTML

Wash

Use
ul or ol

for lists

the
cat

is for
structure

unordered list = ul
ordered list = ol
list item = li

Again, we’re just showing a fragment of the
HTML from Tony’s journal here.

106 Chapter 3

Here’s the new and
improved list of cities.

It turns out Tony actually visited Arizona after New Mexico. Can you rework the list so the numbering is correct?

Taking a test drive through the cities
Make sure you’ve added all the HTML for the list, reload your

“journal.html” file and you should see something like this:

Notice that the browser takes care of
automatically numbering each list item
(so you don’t have to).

There’s a linebreak before the list starts,
so must be a block element.

But there’s also a linebreak after each item,
so must be a block element too!

Sharpen your pencil

testing out the list

building blocks

you are here � 107

Here’s another list from Tony’s journal: cell phone, iPod, digital camera, and a
protein bar. You’ll find it in his June 2nd entry. This is an unordered list of items.
The HTML for this entry is typed below. Go ahead and add the HTML to change
the items into an HTML unordered list (remember, you use for unordered
lists). We’ve already reformatted some of the text for you.
When you’ve finished, check your answers in the back of the chapter. Then
make these changes in your “journal.html” file and test.

 <h2>June 2, 2005</h2>

 <p>
 My first day of the trip! I can’t believe I finally got
 everything packed and ready to go. Because I’m on a Segway,
 I wasn’t able to bring a whole lot with me:

 cell phone
 iPod
 digital camera
 and a protein bar

 Just the essentials. As
 Lao Tzu would have said, <q>A journey of a
 thousand miles begins with one Segway.</q>
 </p>

Exercise

108 Chapter 3

Q: Do I always have to use and together?

A: Yes, you should always use and together (or
and). Neither one of these elements really makes sense without
the other. Remember, a list is really a group of items: the
element is used to identify each item, and the element is used
to group them together.

Q: Can I put text or other elements inside an or
element?

A: No, the and elements are designed to work only
with the element.

Q: What about unordered lists? Can I make the bullet look
different?

A: Yes. But hold that thought. We’ll come back to that when
we’re talking about CSS and presentation.

Q: What if I wanted to put a list inside a list? Can I do that?

A: Yes, you sure can. Make the content of any either
or and you’ll have a list within a list (what we call a nested list).

 Charge Segway
 Pack for trip

 cell phone
 iPod
 digital camera
 a protein bar

 Call mom

Q: I think I basically understand block elements and inline
elements, but I’m totally confused about what elements can
go inside other elements, or, as you say, what can be “nested”
inside of what.

A: That’s one of the hardest things to get straight with HTML.
This is something you’re going to be learning for a few chapters,
and we’ll show you a few ways to make sure you can keep the
relationships straight. But, we’re going to back up and talk about
nesting a little more first. In fact, since you brought it up, we’ll do
that next.

Q: So HTML has ordered and unordered lists. Are there any
other list types?

A: Actually there is another type: definition lists. A definition list
looks like this:

<dl>
 <dt>Burma Shave Signs</dt>
 <dd>Road signs common in the U.S. in the 1920s
and 1930s advertising shaving products.</dd>
 <dt>Route 66</dt>
 <dd>Most famous road in the U.S. highway
system.</dd>
</dl>

Q: Burma Shave?

A: Burma Shave was a company that made brushless shaving
cream in the early part of the 20th century. They began advertising
their product using roadside signs in 1925, and these signs proved to
be very popular (if somewhat distracting for drivers).
The signs were grouped in bunches of four, five or six, each with one
line from the slogan. At one point, there were 7,000 of these signs
on roadsides throughout the United States. Most are gone now, but
there are still a few left, here and there.

there are noDumb Questions

Nested list
Here’s the
. It
encloses
the nested
list.

Each item in the list
has a term, <dt>, and a
description, <dd>.

Type this in and
give it a try.

more about lists

building blocks

you are here � 109

Putting one element inside
another is called “nesting”
When we put one element inside another element, we
call that nesting. We say, “the <p> element is nested
inside the <body> element.” At this point, you’ve
already seen lots of elements nested inside other
elements. You’ve put a <body> element inside an
<html> element, a <p> element inside a <body>
element, a <q> element inside a <p> element, and
so on. You’ve also put a <head> element inside the
<html> element, and a <title> element inside the
<head>. That’s the way HTML pages get constructed.

The more you learn about HTML, the more
important having this nesting in your brain becomes.
But no worries – before long you’ll naturally think
about elements this way.

<html>
<body>

<p>
<q>

<q> nested inside <p>,
nested inside <body>,
nested inside <html>.

110 Chapter 3

To understand the nesting
relationships, draw a picture

title

head body

html

p

q

Drawing the nesting of elements in a Web
page is kind of like drawing a family tree. At
the top you’ve got the great-grandparents,
and then all their children and grandchildren
below. Here’s an example...

<html> is always the
element at the root of
the tree.

Simple Web page.

<html> has two nested
elements: <head> and <body>.
You can call them both
“children” of <html>.

The parent of <q> is <p>, the parent of <p> is <body>, the parent of <body> is <html>.

<title> is nested within the
<head> element.

<html>
 <head>
 <title>Musings</title>
 </head>
 <body>
 <p>
 To quote Buckaroo,
 <q>The only reason
 for time is so
 that everything
 doesn’t happen
 at once.</q>
 </p>
 </body>
</html>

Let’s translate this into
a diagram, where each

element becomes a box, and
each line connects the element

to another element that is nested
within it.

<body> is nested within the <html>
element, so we say <body> is the “child”
of <html>.

understanding nesting by drawing

building blocks

you are here � 111

Your first payoff for understanding how elements are nested is that
you can avoid mismatching your tags. (And there’s gonna be more
payoff later, just wait.)

What does “mismatching your tags” mean and how could that
happen? Take a look at this example:

<p>I’m so going to blog this</p>

p

em

GOOD: here the element is
nested inside the <p>.

SAFETY FIRST

Properly
nest
your

elements

Using nesting to make sure your tags match

So far, so good, but it’s also easy to get sloppy and write some HTML
that looks more like this:

It’s okay to mess up your nesting if you like playing Russian roulette. If you write HTML
without properly nesting your elements, your pages may work on some browsers but not
on others. By keeping nesting in mind, you can avoid mismatching your tags and be sure
that your HTML will work in all browsers. This is going to become even more important
as we get more into “industrial strength HTML” in later chapters.

<p>I’m so going to blog this</p>

p

em

p

em

Here’s how this HTML looks, is nested inside <p>.

Given what you now know about nesting, you know the element
needs to be nested fully within, or contained in, the <p> element.

BAD: here the element has leaked outside of the <p>
element, which means it’s not properly nested inside it.

So what?

WRONG: the <p> tag
ends before the
tag! The element
is supposed to be inside
the <p> element.

112 Chapter 3

Below, you’ll find an HTML file
with some mismatched tags in it.
Your job is to play like you’re the
browser and locate all the errors.

After you’ve done the
exercise look at the
end of the chapter to
see if you caught all
the errors.

BE the Browser

<html>
<head>
 <title>Top 100</title>
<body>
<h1>Top 100
<h2>Dark Side of the Moon</h2>
<h3>Pink Floyd</h3>
<p>
 There’s no dark side of the moon; matter of fact <q>it’s all dark.
</p></q>

 Speak to Me / Breathe
 On The Run
 Time
 The Great Gig in The Sky
 Money
 Us And Them
 Any Colour You Like
 Brain Damage
 Eclipse

</p>
<h2>XandY</h3>
<h3>Coldplay</h2>

 Square One
 What If?
 White Shadows
 Fix You
 Talk
 XandY
 Speed of Sound
 A Message
 Low
 Hardest Part
 Swallowed In The Sea
 Twisted Logic

</body>
</head>

catching mismatched tags

building blocks

you are here � 113

Who am I?

A bunch of HTML elements, in full costume, are playing a party
game, “Who am I?” They’ll give you a clue – you try to guess who
they are based on what they say. Assume they always tell the
truth about themselves. Fill in the blanks to the right to identify
the attendees. Also, for each attendee, write down whether or not
the element is inline or block.
Tonight’s attendees:
Any of the charming HTML elements you’ve seen so far just
might show up!

I’m the #1 heading.

I’m all ready to link to another page.

Emphasize text with me.

I’m a list, but I don’t have my affairs in order.

I’m an item that lives inside a list.

I’m a real linebreaker.

Name
Inline or
block?

I keep my list items in order.

I’m all about image.

Quote inside a paragraph with me.

Use me to quote text that stands on its own.

114 Chapter 3

I was just creating a Web
page explaining everything I was

learning from this book, and I wanted
to mention the <html> element inside
my page. Isn’t that going to mess up
the nesting? Do I need to put double

quotes around it or something?

Because browsers use < and > to begin and end tags, using
them in the content of your HTML can cause problems.
But, HTML gives you an easy way to specify these and other
special characters using a simple abbreviation called a character
entity. Here’s how it works: for any character that is considered

“special” or that you’d like to use in your Web page, but that
may not be a typeable character in your editor (like a copyright
symbol), you just look up the abbreviation and then type it into
your HTML. For example, the > character’s abbreviation is
> and the < character’s is <.

So, say you wanted to type “The <html> element rocks.” in
your page. Using the character entities, you’d type this instead:

 The <html> element rocks.

Another important special character you should know about
is the & character. If you’d like to have an & in your HTML
content, use the character entity & instead of the &
character itself.

So what about the copyright symbol? And all those other
symbols and foreign characters? You can look common ones
up at this URL:

 http://www.w3schools.com/tags/ref_entities.asp

or, for a more exhaustive list, use this URL:

 http://www.unicode.org/charts/

You’re right, that can cause problems.

character entities are for special characters

building blocks

you are here � 115

Q: Wow, I never knew the browser
could display so many different
characters. There are a ton of different
characters and languages at the
www.unicode.org site.

A: Be careful. Your browser will
only display all these characters if your
computer or device has the appropriate
fonts installed. So, while you can
probably count on the basic entities
from the www.w3schools.com page to
be available on any browser, there is no
guarantee that you can display all these
entities. But, assuming you know

something about your users, you should
have a good idea of what kind of foreign
language characters are going to be
common on their machine.

Q: You said that & is special and
I need to use the entity & in its
place, but to type in any entity I have
to use a &. So for, say, the > entity, do I
need to type &gt;?

A: No, no! The reason & is special is
precisely because it is the first character
of any entity. So, it’s perfectly fine to use
& in your entity names, just not by itself.

Just remember to use & anytime you type
in an entity, and if you really need an & in
your content, use & instead.

Q: When I looked up the entities
at the www.w3cschools.com, I noticed
that each entity has a number too.
What do I use that for?

A: You can use either the number,
like d or the name of an entity in
your HTML (they do the same thing).
However, not all entities have names, so
in those cases your only choice is to use
the number.

there are noDumb Questions

Dr. Evel, in his quest for world domination, has put up a private Web page to be
used by his evil henchmen. You’ve just received a snippet of intercepted HTML
that may contain a clue to his whereabouts. Given your expert knowledge of
HTML, you’ve been asked to crack the code and discover his location. Here’s a
bit of the text from his home page:

Crack the Location Challenge

There’s going to be an evil henchman meetup
next month at my underground lair in
Ðετröìτ.
Come join us.

Hint: visit http://www.w3schools.com/tags/ref_entities.asp and/or type
in the HTML and see what your browser displays.

116 Chapter 3

Here’s a bunch of elements you
already know, and a

few you don’t.
Remember, half the fun of HTML

is experimenting! So make
some files of your own and try

these out.

<q>

<hr>

<bl
ock

quo
te>

<pre>

<code>

Use this element for short
quotes... you know, like “to be or
not to be”, or “No matter where
you go, there you are.”

Use this element for
formatted text when you want
the browser to show your text
exactly as you typed it.

Blockquote is for lengthy quotations.
Something that you want to
highlight as a longer passage, say,
from a book.

The code element is used
for displaying code from a
computer program.

Need to display a list? Say, a list of ingredients in a recipe or a todo list? Use the element.

If you need an ordered
list instead, use the
element.

An empty element for
making linebreaks...

... and another one for
making horizontal lines
(called “horizontal
rules”), like to start a
new section without a
heading.

For items in lists,

like chocolate, h
ot

chocolate, choco
late

syrup ...

<a>

Whenever you want to make a link, you’ll need the <a> element.
<address>

This element tells the browser
that the content is an address,
like your contact info.

<p>Just give me a
paragraph, please.

 Use this element to mark up
text you want emphasized with
extra strength.

Use this
element to
mark up text
you want
emphasized.

Element
Soup

tasting a few elements

building blocks

you are here � 117

Rockin’ page. It’s perfect
for my trip and it really does a

good job of providing an online version
of my journal. You’ve got the HTML

well-organized too, so I should be able
to add new material myself. So,
when can we actually get this off

your computer and onto the
Web?

Plan the structure of your Web pages before nn
you start typing in the content. Start with a
sketch, then create an outline, and finally write
the HTML.
Plan your page starting with the large, block nn
elements, and then refine with inline elements.
Remember, whenever possible, use elements nn
to tell the browser what your content means.
Always use the nn element that most closely
matches the meaning of your content. For
example, never use a paragraph when you
need a list.
<p>, <blockquote>, , , and are all nn
block elements. They stand on their own and
are displayed with space above and below the
content within them.
<q>, , and <a> are all inline elements. nn
The content in these elements flows in line
with the rest of the content in the containing
element.
Use the
 element when you need to insert nn
your own linebreaks.

 is an “empty element.”nn

Empty elements have no content.nn

An empty element consists of only one tag.nn

A nested element is an element contained nn
completely within another element. If your
elements are nested properly, all your tags will
match correctly.
You make an HTML list using two elements in nn
combination: use with for an ordered
list; use with for an unordered list.
When nn the browser displays an ordered list, it
creates the numbers for the list so you don’t
have to.
You can specify your own ordering in an nn
ordered list with the start attribute. To change
the values of the individual items, use the
value attribute.
You can build nested lists within lists by nn
putting or elements inside your
elements.
Use entities for special characters in your nn
HTML content.

 BULLET POINTS

118 Chapter 3

1

2 3

4 5 6

7

8

9

10

11 12

13

14

15

Across

2. Block element for quotes.
7. Major building blocks of your pages.
9. Requires two elements.
10. Element without content.
11. <q> is this type of element.
13. Famous catchy road signs.
14. Tony's transportation.
15. Another empty tag.

Down

1. Left together in a T-Bird.
3. Use for these kinds of lists.
4. Empty elements have none.
5. Putting one element inside another is called this.
6. Use for these kinds of lists.
8. Max speed of Segway.
12. Tony won't be doing any of this.

1

2 3

4 5 6

7

8

9

10

11 12

13

14

15

Across

2. Block element for quotes.
7. Major building blocks of your pages.
9. Requires two elements.
10. Element without content.
11. <q> is this type of element.
13. Famous catchy road signs.
14. Tony's transportation.
15. Another empty tag.

Down

1. Left together in a T-Bird.
3. Use for these kinds of lists.
4. Empty elements have none.
5. Putting one element inside another is called this.
6. Use for these kinds of lists.
8. Max speed of Segway.
12. Tony won't be doing any of this.

HTMLcross
It’s time to give your right brain a break and put that left brain to work: all the words
are HTML-related and from this chapter.

left brain resting station

building blocks

you are here � 119

Okay, it doesn’t LOOK any
different, but don’t you FEEL
better now?

Here’s the rework of Tony’s Lao Tzu quote using the <q> element.
Did you give your solution a test drive?

We’ve added the <q> opening t
ag

before the start of the quot
e

and the </q> closing tag at
the

very end.

Notice that we also
removed the double quotes.

<p>
 My first day of the trip! I can’t believe I finally got
 everything packed and ready to go. Because I’m on a
 Segway, I wasn’t able to bring a whole lot with me:
 cellphone, iPod, digital camera, and a protein bar. Just
 the essentials. As Lao Tzu would have said, <q>A journey
 of a thousand miles begins with one Segway.</q>
</p>

Here’s the part that changes...

And, here’s the test drive...

Exercise
Solutions

120 Chapter 3

Here’s another list from Tony’s journal: cell phone, iPod, digital
camera, and a protein bar. You’ll find it in his July 14th entry.
This is an unordered list of items.
Make these changes in your “journal.html” file, too. Does it look
like you expected?

 <h2>June 2, 2005</h2>

 <p>
 My first day of the trip! I can’t believe I finally got
 everything packed and ready to go. Because I’m on a Segway,
 I wasn’t able to bring a whole lot with me:
 </p>

 cell phone
 iPod
 digital camera
 and a protein bar

 <p>
 Just the essentials. As
 Lao Tzu would have said, <q>A journey of a
 thousand miles begins with one Segway.</q>
 </p>

First end the previous paragra
ph.

Start the unordered list.

Put each item into an element.

End the unordered list.

And, we need to start a new paragraph.

Exercise
Solutions

exercise solutions

building blocks

you are here � 121

<html>
<head>
 <title>Top 100</title>
<body>
<h1>Top 100
<h2>Dark Side of the Moon</h2>
<h3>Pink Floyd</h3>
<p>
 There’s no dark side of the moon; matter of fact <q>it’s all dark.
</p></q>

 Speak to Me / Breathe
 On The Run
 Time
 The Great Gig in The Sky
 Money
 Us And Them
 Any Colour You Like
 Brain Damage
 Eclipse

</p>
<h2>XandY</h3>
<h3>Coldplay</h2>

 Square One
 What If?
 White Shadows
 Fix You
 Talk
 XandY
 Speed of Sound
 A Message
 Low
 Hardest Part
 Swallowed In The Sea
 Twisted Logic

</body>
</head>

Solution
BE the Browser

Missing </head> closing
 tag.

Missing </h1> closing tag.

<p> and <q> are not nested properly:
the </p> tag should come after the
</q> tag.

We have a closing where we should
have a closing tag.

Here’s a closing </p> that doesn’t match
any opening <p> tag.

We mixed up the closing </h2> and </h3> tags on these headings.
We started an list, but it’s matched
with a closing tag.

We’re missing all our
closing tags.

This doesn’t match the opening tag at the start of the list, above.
Here’s our missing </head> tag; but we’re missing a closing </html> tag.

122 Chapter 3

Who am I?

I’m the #1 heading.

I’m all ready to link to another page.

Emphasize text with me.

I’m a list, but I don’t have my affairs in order.

I’m an item that lives inside a list.

I’m a real linebreaker.

Name
Inline or
block?

I keep my list items in order.

I’m all about image.

Quote inside a paragraph with me.

Use me to quote text that stands on its own.

h1 block

a

ul

em

br

li

ol

img

q

blockquote

inline

block

inline

inline

inline

block

block

block

A bunch of HTML elements, in full costume, are playing a party
game “Who am I?” They gave you a clue – you tried to guess
who they were based on what they said.
Tonight’s attendees:
Quite a few of the charming HTML elements you’ve seen so
far showed up for the party!

Stumped?

 is in
limbo land
between block
and inline. It
does create a
linebreak, but
isn’t typically
displayed with
space above
and below
it, like block
elements are.

We haven’t
talked about
this in detail
yet, but, yes,
 is inline.
Give it some
thought and
we’ll come
back to this in
Chapter 5.

Exercise
Solutions

exercise solutions

building blocks

you are here � 123

W
1

I

V

B
2

L O
3

C K Q U O T E

R S

C
4

N
5

D U
6

B
7

L O C K E L E M E N T S

N S R O 1
8

L
9

I S T S T E R 2

E I D D E
10

M P T Y

I
11

N L I N E E P
12

P

T G B
13

U R M A S H A V E

E S

D S
14

E G W A Y

I

N

I
15

M G

Across

2. Block element for quotes. [blockquote]
7. Major building blocks of your pages.
[blockelements]
9. Requires two elements. [lists]
10. Element without content. [empty]
11. <q> is this type of element. [inline]
13. Famous catchy road signs. [burmashave]
14. Tony's transportation. [Segway]
15. Another empty tag. [img]

Down

1. Left together in a T-Bird. [wives]
3. Use for these kinds of lists. [ordered]
4. Empty elements have none. [content]
5. Putting one element inside another is called this.
[nesting]
6. Use for these kinds of lists. [unordered]
8. Max speed of Segway. [12mph]
12. Tony won't be doing any of this. [passing]

Crack the Location Challenge

There’s going to be an evil henchman meetup
next month at my underground lair in
Ðετröìτ.
Come join us.

You could have looked up each entity, or
typed them in. In either case, the answer
looks like Detroit!

Exercise
Solutions

this is a new chapter 125

Web pages are a dish best served on the Internet. So far

you’ve only created HTML pages that live on your own computer. You’ve also

only linked to pages that are on your own computer. We’re about to change all

that. In this chapter we’ll encourage you to get those Web pages on the Internet

where all your friends, fans, and customers can actually see them. We’ll also

reveal the mysteries of linking to other pages by cracking the code of the h, t, t, p,

:, /, /, w, w, w. So, gather your belongings; our next stop is Webville.

WARNING: once you get to Webville, you may never come back. Send us a

postcard.

A Trip to Webville

4 getting connected

We’re going to
Webville! We’re leaving our
dusty ol’ local file system

behind for good.

126 Chapter 4

Getting Starbuzz (or yourself)
onto the Web
You’re closer to getting Starbuzz – or even better, your own site
– on the Web than you might think. All you need to do is find
a “Web Hosting Company” (we’ll call this a “hosting company”
from now on) to host your pages on their servers, and then copy
your pages from your computer to one of those servers.

Of course it helps to understand how your local folders are
going to “map” to the server’s folders, and once you put your
pages on the server, how you point a browser to them. But we’ll
get to all that. For now, let’s talk about getting you on the Web.
Here’s what you’re going to need to do:

Remember me from way
back in Chapter 1? You were

going to get the Starbuzz Web
site online so our customers

could actually see it.

Find yourself an hosting company.

Find a way to get your files from your
computer to a server at the hosting
company (there are a few ways).

1

2

3

Point your friends, family, and fans
to your new site and let the fun
begin.

4

Choose a name for your site (like
“www.starbuzzcoffee.com”).

We’re going to take you through each of these steps, and even
if you’re not going to set up a Web site online right now, follow
along because you’ll learn some important things you’ll need
to know later. So, get ready for a quick detour from HTML...

 A Web Detour

getting on the web

getting connected

you are here � 127

Finding a hosting company
To get your pages on the Web, you need a server that
actually lives on the Web full-time. Your best bet is to find
a hosting company and let them worry about the details
of keeping a server running. No worries, though; finding a
hosting company is fairly straightforward and inexpensive.

Which company? Well, we’d love to sign you up for Web
hosting at Head First Hip Web Hosting, Inc., but that doesn’t
really exist. So, you’re going to have to do a little homework
on your own. While finding a company to host your pages
isn’t difficult, it’s kind of like choosing a cable TV company:
there are lots of options and plans. You really have to shop
around for the best deals and for the service that works for
you.

The good news is that you should be able to get started for
almost nothing out of your pocket, and you can always
upgrade later if you need additional features. While we
can’t suggest a particular provider, we can tell you a few
things to look for in a provider, and we also list a few of the
more popular providers at:
http://www.headfirstlabs.com/providers.html

Relax
You don’t have to

get your pages on

the Web to finish

this book.

While it’s a lot more fun if your pages

are actually on the Web, you can finish

the rest of this book by working on

your own computer.

In either case, follow along for the next

few pages so you know how everything

fits together.

Note from marketing:
if a hosting company
writes a big enough
check we can!

We can’t tell you everything you need to know
about getting a hosting company (after all,
this book is about HTML and CSS), but we’re
going to give you a good push in the right
direction. Here are some features to think
about while you’re shopping.
�	 Technical support: Does the hosting

company have a good system for handling
your technical questions? The better ones
will answer your questions quickly either
over the phone or via email.

�	 Data transfer: This is a measure of the
amount of pages and data the hosting
company will let you send to your visitors
during a given month. Most hosting
companies offer reasonable amounts of
data transfer for small sites in their most
basic plans. If you’re creating a site that
you expect will have lots of visitors, you
may want to carefully look into this.

�	 Backups: Does the hosting company
regularly make a backup of your pages
and data that can be recovered in the
event that the server has a hardware
failure?

�	 Domain names: Does the hosting
company include a domain name in its
pricing? More about these on the next
page.

�	 Reliability: Most hosting companies report
keeping Web sites up 99% of the time or
better.

�	 Goodies: Does your package include
other goodies such as email addresses,
forums, or support for scripting languages
(something that may become important to
you in the future)?

One minute hosting guide

 A Web Detour

what’s the goal

128 Chapter 4

 A Web Detour

HELLO, my name is...

After years of
struggling, we finally

have our very own
domain name.

Even if you’ve never heard of a domain name, you’ve seen and used a
zillion of them; you know... google.com, yahoo.com, amazon.com,
disney.com, and a maybe a few you wouldn’t want us to mention.

So what is a domain name? Just a unique name that is used to
locate your site. Here’s an example:

www.starbuzzcoffee.com

This part is the domain name.

This part is the
name of a specific
server IN the
domain.

There are different domain “endings” for different purposes: .com, .org, .gov, .edu; and also for different countries: .co.uk, .co.jp, and so on. When choosing a domain, pick the one that best fits you.

domain

How can you get a domain name?
The easy answer is to let your hosting company worry about it.
They’ll often throw in your domain name registration with one of
their package deals. However, there are hundreds of companies
that would be glad to help – you can find a list of them at

As with finding a hosting company, we’re afraid we’ll have to leave
you to find and register your own domain name. You’ll probably
find that going through your hosting company is the easiest way to
get that done.

There are a couple of reasons you should care about domain
names. If you want a unique name for your site, you’re going to
need your own domain name. Domain names are also used to link
your pages to other Web sites (we’ll get to that in a few pages).

There is one other thing you should know. Domain names are
controlled by a centralized authority (called ICANN) to make sure
that only one person at a time uses a domain name. Also (you
knew it was coming), you pay a small annual registration fee to
keep your domain name.

http://www.internic.net/regist.html

getting connected

you are here � 129

Q: Why is it called a “domain name”
rather than a “Web site name”?

A: Because they are different things.
If you look at www.starbuzzcoffee.com,
that’s a Web site name, but only the
“starbuzzcoffee.com” part is the domain
name. You could also create other Web
sites that use the same domain name, like
corporate.starbuzzcoffee.com or employees.
starbuzzcoffee.com. So the domain name
is something you can use for a lot of Web
sites.

Q: If I were going to get the domain
name for Starbuzz, wouldn’t I want to
get the name www.starbuzzcoffee.com?
Everyone seems to use Web sites with
the www at the front.

A: Again, don’t confuse a domain name
with a Web site name: starbuzzcoffee.com is
a domain name, while www.starbuzzcoffee.
com is the name of a Web site. Buying
a domain is like buying a piece of land,
let’s say, 100mainstreet.com. On that land
you can build as many Web sites as you
like, for example: home.100mainstreet.
com, toolshed.100mainstreet.com and
outhouse.100mainstreet.com. So www.
starbuzzcoffee.com is just one Web site in
the starbuzzcoffee.com domain.

Q: What’s so great about a domain
name anyway? Do I really need one? My
hosting company says I can just use their
name, “www.dirtcheaphosting.com”?

A: If that meets your needs there is
nothing wrong with using their name. But
(and it’s a big but) here’s the disadvantage:

should you ever want to choose another
hosting company, or should that hosting
company go out of business, then everyone
who knows your site will no longer be able
to easily find it. If, on the other hand, you
have a domain name, you can just take that
with you to your new hosting company (and
your users will never even know you’ve
switched).

Q: If domain names are unique, that
means someone might already have
mine. How can I find out?

A: Good question. Most companies
that provide registration services for domain
names allow you to search to see if a name
is taken (kind of like searching for vanity
license plates). You’ll find a list of these
companies at
http://www.internic.net/regist.html

there are no
Dumb Questions

DO try this at home
It’s time to seek out a hosting company and grab a domain name for your site. Remember,
you can visit Head First Labs for some suggestions and resources. Also, remember that
you can complete the book without doing this (even though you really should!).

My Web Hosting Company:

My Domain Name:

Here’s an exercise you really need to go off and do on your own. We’d love to
personally help but there’s only so much you can ask of book authors (and feeding
the cat while you’re on vacation is probably out too).

 A Web Detour

what’s the goal

130 Chapter 4

starbuzz

Here’s the new Web server. The
hosting company has already
created a root folder for you,
which is where all your pages
are going to go.

starbuzz
index.html

mission.html

Your computer, where the
Starbuzz pages currently live.

starbuzz

<html>
.
.
.
</html>

index.html

<html>
.
.
.
</html>

mission.html

Remember your
Starbuzz pages? There
are two: the main page
(index.html) and the
page that contains
the mission statement
(mission.html).

Here’s the root folder
for Starbuzz.

Congratulations! You’ve got your hosting company
lined up, you’ve found a domain name, and you’ve
got a server all ready for your Web pages. (Even
if you don’t, keep following along because this is
important stuff.)

Now what? Well, it’s time to move in, of course.
So, take that For Sale sign down and gather up all
those files, we’re going to get them moved to the
new server. Like any move, the goal is to get things
moved from, say, the kitchen of your old place to
the kitchen of your new place. On the Web, we’re
just worried about getting things from your own root
folder to the root folder on the Web server. Let’s get
back to Starbuzz and step through how we do this.
Here’s what things look like now:

Moving in

www.starbuzzcoffee.com

Here’s the new Web site name.
We’re using the starbuzzcoffee.com
domain (since we beat you to it,
you’ll have to use your own domain
name instead).

 A Web Detour

getting connected

you are here � 131

 A Web Detour

Getting your files to the root folder

starbuzz

<html>
.
.
.
<html>

index.html

<html>
.
.
.
<html>

mission.html

Q: Wait a sec, what’s the “root
folder” again?

A: Up until now the root folder has
just been the top-level folder for your
pages. On the Web server, the root folder
becomes even more important because
anything inside the root folder is going to
be accessible on the Web.

Q: My hosting company seems to
have called my root folder
“mydomain_com”. Is that a problem?

A: Not at all. Hosting companies call
root folders lots of different things. The
important thing is that you know where
your root folder is located on the server,
and that you can copy your files to it (we’ll
get to that in a sec).

Q: So let me make sure I
understand. We’ve been putting all our
pages for the site in one folder, which
we call the root folder. Now we’re going
to copy all that over to the server’s root
folder?

A: Exactly. You’re going to take all
the pages on your own computer, and put
them all inside your site’s root folder on the
hosting company server.

Q: What about subfolders, like the
“images” folder. Do I copy those too?

A: Yes, you’re basically going to
replicate all the pages, files, and folders
in your own root folder onto the server. So
if you’ve got an “images” folder on your
computer, you’ll have one on the server
too.

there are no
Dumb Questions

You’re now one step away from getting Starbuzz Coffee on the Web:
you’ve identified the root folder on your hosting company’s server
and all you need to do is copy your pages over to that folder. But
how do you transfer files to a Web server? There are a variety of
ways, but most hosting companies support a method of file transfer
called FTP, which stands for File Transfer Protocol. You’ll find a
number of applications out there that will allow you to transfer your
files via FTP; we’ll take a look at how that works on the next page.

www.starbuzzcoffee.com

Here’s the root folder
on the server.

starbuzz
index.html

mission.html

The files are sitting
on your computer.

You need to transf
er them

to the server, and
then

they’ll be “live” on
the Web.

what’s the goal

132 Chapter 4

 A Web Detour

As much FTP as you can possibly fit in two pages
Seriously, this really is an HTML and CSS book, but we didn’t want to leave you up a creek
without a paddle. So, here’s a very quick guide to using FTP to get your files on the Web. Keep
in mind your hosting company might have a few suggestions for the best way to transfer your files
to their servers (and since you are paying them, get their help). After the next few pages, we’re off
our detour and back to HTML and CSS until we reach the end of the book (we promise).

We’ll assume you’ve found an FTP application. Some are command-line driven, some have
complete graphical interfaces, and some are even built into applications like Dreamweaver and
GoLive. They all use the same commands, but with some applications you type them in yourself,
while in others you use a graphical interface. Here’s how FTP works from 10,000 feet:

1 First connect to your server using FTP.

2 Use the “cd” command to change your current directory
to the directory where you want to transfer files.

3 Transfer your files to the server using the “put” command.

To connect, you’ll need a
username and password supplied
by your hosting company.

www.starbuzzcoffee.com

ftp www.starbuzzcoffee.com

starbuzz

Changes your
directory to
starbuzz

Transfers a copy of the
“index.html” file into
the current directory
on the server.

cd starbuzz

starbuzz
index.html

mission.html

starbuzz

www.starbuzzcoffee.com

<html>
.
.
.
</html>

index.html

starbuzz
index.html

mission.html

put index.html

www.starbuzzcoffee.com

<html>
.
.
.
</html>

index.html
starbuzz

The words “folder”
and “directory” are
interchangeable. Most
FTP applications use
the word “directory”.

In other words, make sure you’re in th
e

folder “starbuzz” o
n the server before

you

transfer your files
there.

getting connected

you are here � 133

File Edit Window Help Jam

%ftp www.starbuzzcoffee.com

Connected to www.starbuzzcoffee.com

Name: headfirst
Password:******
230 User headfirst logged in.

ftp> dir
drwx------ 4096 Sep 5 15:07 starbuzz

ftp> cd starbuzz
CWD command successful
ftp> put index.html
Transfer complete.
ftp> dir
-rw------- 1022 Sep 5 15:07 index.html

ftp> mkdir images
Directory successfully created

ftp> cd images
CWD command successful
ftp> bye

Connect and login.

Get a directory of
what is there. One

directory
called
starbuzz.Change to the

starbuzz directory.
Transfer index.html
there.

Look at the
directory, there’s
index.html.

Make a directory for images, and
then quit using the bye command

 A Web Detour

4 You can also make a new directory on the server
with the “mkdir” command.

5 You can retrieve files too, with the “get” command.

Let’s put all that together. Here’s an example of
FTP being used from a command-line application:

Whether you’re typing in FTP commands
on the command-line, or using an FTP
application with a graphical interface, the
commands or operations you can perform
are pretty much the same.
�	 dir: get a listing of the current directory.
�	 cd: change to another directory. “..”

means up one directory here, too.
�	 pwd: display the current directory you’re

in.
�	 put <filename>: transfers the specified

filename to the server.
�	 get <filename>: retrieves the specified

filename from the server, back to your
computer.

FTP commands

Creates a new
directory called

“images”, inside the
starbuzz directory
on the server.

Transfers a copy of the
file from the server
back to your computer.

starbuzz
index.html

mission.html

mkdir images

www.starbuzzcoffee.com

<html>
.
.
.
</html>

index.html

starbuzz

images

starbuzz
index.html

mission.html

get index.html

www.starbuzzcoffee.com

<html>
.
.
.
</html>

index.html

starbuzz
<html>
.
.
.
</html>

index.html

images

This is just like making a new folder, only you’re doing it on the server, not your own computer.

Most FTP applications come with much friendlier

graphical interfaces, so feel free to
 skip right

over this if you’re using one of tho
se.

134 Chapter 4

 A Web Detour

Q: My hosting company told
me to use SFTP, not FTP. What’s the
difference?

A: SFTP, or Secure File Transfer
Protocol, is a more secure version of FTP,
but works mostly the same way. Just make
sure your FTP application supports SFTP
before you make a purchase.

Q: So do I edit my files on my
computer and then transfer them each
time I want to update my site?

A: Yes, for small sites, that is normally
the way you do things. Use your computer
to test your changes and make sure things
are working the way you want before
transferring your files to the server. For
larger Web sites, organizations often create
a test site and a live site so that they can
preview changes on the test site before they
are moved to the live site.
If you’re using a tool like Dreamweaver or
GoLive, these tools will allow you to test
your changes on your own computer, and
then when you save your files, they are
automatically transferred to the Web site.

Q: Can I edit my files directly on the
Web server?

A: That usually isn’t a good idea
because your visitors will see all your
changes and errors before you have time to
preview and fix them.
That said, some hosting companies will
allow you to log into the server and make
changes on the server. To do that you
usually need to know your way around a
DOS or Linux command prompt, depending
on what kind of operating system your
server is running.

there are no
Dumb Questions

Most FTP
applications have
a trial version you
can download to
try before you buy.

Here’s a few of the most popular FTP applications for Mac and

Windows:

For Mac OS X:

ßß Fetch (http://fetchsoftworks.com/) is one of the most popular

FTP applications for Mac. $

ßßTransmit (http://www.panic.com/transmit/) $

ßßCyberduck (http://cyberduck.ch/) FREE

For Windows:

ßßSmart FTP (http://www.smartftp.com/download/) $

ßßWS_FTP (http://www.ipswitch.com/products/file-transfer.

asp). FREE for the basic version, $ for the Pro version

Popular FTP applications

getting connected

you are here � 135

starbuzz

<html>
.
.
.
</html>

index.html

<html>
.
.
.
</html>

mission.html

www.starbuzzcoffee.com

Back to business...

DO try this at home

It’s another homework assignment for you (check each item as you do it):

®	 Make sure you know where your root folder is on the server at
your hosting company.

®	 Figure out the best way (and the best tool to use) to transfer
files from your computer to the server.

®	 For now, go ahead and transfer the Starbuzz “index.html” and
“mission.html” files to the root folder of the server.

End of Web Detour

That’s the end of the detour and we’re back on the Web
superhighway. At this point you should have the two
Starbuzz pages, “index.html” and “mission.html”, sitting
under your root folder on a server (or if not, you’re at least
following along).

After all this work, wouldn’t it be satisfying to
make your browser retrieve those pages over
the Internet and display them for you? Let’s
figure out the right address to type into your
browser...

http:// www.starbuzzcoffee.com / index.html

All Web page addresses
start with this, right?
We’ll look into what http
means in a sec.

Here’s the Web site name.
For the root folder
we just use “/”.

And here’s the
page file name.

136 Chapter 4

Come on down to http://www.earlsautos.com

Mainstreet, USA
URL

You’ve probably heard the familiar “h” “t” “t” “p” “colon”
“slash” “slash” a zillion times, but what does it mean? First, of
all, the Web addresses you type into the browser are called
URLs or Uniform Resource Locators.

If it were up to us we would have called them “Web addresses,”
but no one asked, so we’re stuck with Uniform Resource
Locators. Here’s how to decipher a URL:

A Uniform Resource
Locator (URL) is a
global address that
can be used to locate
anything on the Web,
including HTML
pages, audio, video,
and many other forms
of Web content.

In addition to
specifying the location
of the resource, a
URL also names the
protocol that you can
use to retrieve that
resource.

http://www.starbuzzcoffee.com/index.html

The second part is
the Web site name.
At this point you
know all about that.

To locate anything on the Web, as long as you know the server
that hosts it, and an absolute path to the resource, you can create
a URL and most likely get a Web browser to retrieve it for you
using some protocol – usually HTTP.

The first part of
the URL tells you
the protocol that
needs to be used
to retrieve the
resource.

And the third part is
the absolute path to
the resource from the
root folder.

uniform resource locators

getting connected

you are here � 137

Whatever you do,
don’t pronounce URL as

“Earl,” because that’s my
name. It’s pronounced

U-R-L.

What is the HTTP Protocol?
HTTP is also known as the HyperText Transfer Protocol. In other words,
it’s an agreed-upon method (a protocol) for transferring hypertext
documents around the Web. While “hypertext documents” are usually
just HTML pages, the protocol can also be used to transfer images, or
any other file that a Web page might need.

HTTP is a simple request and response protocol. Here’s how it works:

www.starbuzzcoffee.com

HTTP Request: could I please
have the file /index.html?

HTTP response: I found
that file, here it is.

So each time you type a URL into your browser’s address bar, the
browser asks the server for the corresponding resource using the HTTP
protocol. If the server finds the resource, it returns it to the browser and
the browser displays it. What happens if the server doesn’t find it?

www.starbuzzcoffee.com

HTTP Request: could I please have
the file /hardtofind.html?

HTTP response: error
#404, I can’t find it.

If the resource can’t be found, you’ll get the familiar “404 Error”,
which the server reports back to your browser.

138 Chapter 4

What’s an Absolute Path?
The last time we talked about paths we were writing HTML to make links with
the <a> element. The path we’re going to look at now is the absolute path part
of a URL, the last part that comes after the protocol (http) and the Web site
name (www.starbuzzcoffee.com).

 An absolute path tells the server how to get from your root folder to a particular
page or file. Take Earl’s Autos site, for example. Say you want to look in Earl’s
inventory to see if your new Mini Cooper has come in. To do that, you’ll need
to figure out the absolute path to the file “inventory.html” that is in the “new”
folder. All you have to do is trace through the folders, starting at the root, to get
to the “new” folder where his “inventory.html” file is located. The path is made
up of all the folders you go through to get there.

So, that looks like root (we represent root with a “/”), “cars”, “new”, and finally,
the file itself, “inventory.html”. Here’s how you put that all together:

earls_autos

cars

new used
<html>
.
.
.
</html>

inventory.html

<html>
.
.
.
</html>

inventory.html

Earl’s Autos
root folder.

cars

new

inventory.html

/cars/new/inventory.html

“/”

Absolute path to
“inventory.html”.

Always start
at the root.

Add on each folder
as you navigate to
the file.

And then add on
the filename.

In between the folder
names, put a “/” to
keep them separate.

/

/

absolute paths to your files

getting connected

you are here � 139

Q: What is important about the
absolute path?

A: The absolute path is what a server
needs to locate the file you are requesting.
If the server didn’t have an absolute path, it
wouldn’t know where to look.

Q: I feel like I understood the pieces
(protocols, servers, Web sites, and
absolute paths), but I’m having trouble
connecting them.

A: If you add all those things together
you have a URL, and with a URL you
can ask a browser to retrieve a page (or
other kinds of resources) from the Web.
How? The protocol part tells the browser
the method it should use to retrieve the
resource (in most cases, this is HTTP).
The Web site part (which consists of the
server name and the domain name) tells
the browser which computer on the Internet
to get the resource from. And the absolute
path tells the server what page you’re after.

Q: We learned to put relative paths
in the href attribute of our <a> elements.
How can the server find those links if
they aren’t absolute?

A: Wow, great question. When you
click on a link that is relative, behind the
scenes the browser creates an absolute
path out of that relative path and the path of
the page that you click on. So, all the Web
server ever sees are absolute paths, thanks
to your browser.

Q: Would it help the browser if I put
absolute paths in my HTML?

A: Ah, another good question, but hold
that thought, we’ll get back to that in a sec.

there are no
Dumb Questions

protocol Web site name absolute path
://

You’ve waited long enough. It’s time to give your new URL a spin. Before you
do, fill in the blanks below and then type in the URL (like you haven’t already). If
you’re having any problems, this is the time to work with your hosting company to
get things sorted out. If you haven’t set up an hosting company, fill in the blanks
for www.starbuzzcoffee.com, and type the URL into your browser anyway.

Sharpen your pencil

140 Chapter 4

I’d like my visitors to be able to
type “http://www.starbuzzcoffee.com”

and not have to type the “index.html”. Is
there a way to do that?

http://www.starbuzzcoffee.com/

http://www.starbuzzcoffee.com/images/

it will change it to:

http://www.starbuzzcoffee.com

Yes, there is. One thing we haven’t talked about is what
happens if a browser asks for a directory rather than a file
from a Web server. For instance, a browser might ask for:

or

http://www.starbuzzcoffee.com/

When a Web server receives a request like this, it tries to
locate a default file in that directory. Typically a default file is
called “index.html” or “default.htm” and if the server finds
one of these files, it returns the file to the browser to display.

So, to return a file by default from your root directory (or
any other directory), just name the file “index.html” or

“default.htm”.

The images directory in
the root directory.

The root directory itself.

Oops, you sure did. When a server receives a request like
yours without the trailing “/” and there is a directory with
that name, then the server will add a trailing slash for you.
So if the server gets a request for:

But I asked about
“http://www.starbuzzcoffee.com”,
which looks a little different. It

doesn’t have the ending “/”.

which will cause the server to look for a default file, and in
the end it will return the file as if you’d originally typed:

http://www.starbuzzcoffee.com/index.html

Remember, when we’re
talking about Web servers
or FTP, we usually use the
term “directory” instead
of “folder.” But they’re
really the same thing.

But, you need to find out

what your hosting company
wants you to name your
default file, because it
depends on the type of
server they use.

easier urls

getting connected

you are here � 141

Q: So anyone who comes to my site
with the URL http://www.mysite.com is
going to see my “index.html” page?

A: Right. Or, possibly “default.htm”
depending on which kind of Web server
your hosting company is using. (Note that
“default.htm” usually has no “l” on the end.
This is a Microsoft Web Server oddity.)

There are other possible default filenames,
like “index.php”, that come into play if you
start writing scripts to generate your pages.
That’s way beyond this book, but that
doesn’t mean you won’t be doing it in the
future.

Q: So when I’m giving someone my
URL, is it better to include the
“index.html” part or not?

A: Not. It’s always better to leave it off.
What if, in the future, you change to another
Web server and it uses another default file
name like “default.htm”? Or you start writing
scripts and use the name “index.php”? Then
the URL you originally gave out would no
longer be valid.

www.starbuzzcoffee.com

HTTP Request: could I please
have the file “/drinks/”?

The user types
http://www.starbuzzcoffee.com/drinks/
into the browser.

Behind
the Scenes1

2

3

4

The server says “that
looks like a directory,
is there a default file
in that directory?”

starbuzz

<html>
.
.
.
</html>

index.htmldrinks

Server locates a
default file called

“index.html” in the
drinks directory.

HTTP response: you asked for a
directory, but I found “index.html”
in that directory, so that’s what
I’m sending back.

5

there are no
Dumb Questions

How default pages work

142 Chapter 4

Earl needs a little help with his URLs

earls_autos

<html>
.
.
.
</html>

index.html

cars

<html>
.
.
.
</html>

directions.html

new

<html>
.
.
.
</html>

index.html

<html>
.
.
.
</html>

inventory.html

used

<html>
.
.
.
</html>

index.html

<html>
.
.
.
</html>

inventory.html

images images
minicooper.gif thunderbird.gif

mustang.gifelement.gif

A

E

B

D

C

Earl may know Earl, but he doesn’t know U-R-L. He needs a little help figuring out the URL
for each of the files below, labeled A, B, C, D, and E. On the right, write in the URL needed
to retrieve each corresponding file from www.earlsautos.com.

Earl’s root folder.

getting connected

you are here � 143

E

D

C

B

A

Write the URL here.

144 Chapter 4

URLs aren’t just for typing into browsers; you can use them right in your
HTML. And, of course, right on cue, the Starbuzz CEO has a new task
for you: make a link from the main Starbuzz page over to the caffeine
information at http://buzz.headfirstlabs.com. As you can
probably guess, we’re going to throw that URL right into an <a> element.
Here’s how:

Fantastic! We’re up and
running on the Web. I’m

already hearing great buzz
about our site in the stores. By the way, we’ve got a new

caffeine awareness program; we
figure if we’re going to be pumping people

full of caffeine we want them to know
how to take it to the limit. Can we point

people to the caffeine information
over on buzz.headfirstlabs.com from

our site?

How do we link to other Web sites?

Caffeine Buzz

An everyday, normal, garden-
variety <a> element.

We’ve put a URL in the href. Clicking on the label “Caffeine Buzz”
will retrieve a page from buzz.headfirstlabs.com.

That’s all there is to it. To link to any resource on the Web, all you need is its
Uniform Resource Locator, which goes in the <a> element as the value of the
href attribute. Let’s go ahead and add this in the Starbuzz “index.html” page.

linking to other web pages

getting connected

you are here � 145

<html>
 <head>
 <title>Starbuzz Coffee</title>
 <style type=”text/css”>
		 body {
			 background-color: #d2b48c;
			 margin-left: 20%;
			 margin-right: 20%;
			 border: 1px dotted gray;
			 padding: 10px 10px 10px 10px;
			 font-family: sans-serif;
		 }
 </style>
 </head>

 <body>
 <h1>Starbuzz Coffee Beverages</h1>
 <h2>House Blend, $1.49</h2>
 <p>A smooth, mild blend of coffees from Mexico,
 Bolivia and Guatemala.</p>

 <h2>Mocha Cafe Latte, $2.35</h2>
 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>
 <p>A mixture of espresso, steamed milk and foam.</p>

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices,
 milk and honey.
 </p>
 <p>
 Read about our Mission

 Read the Caffeine Buzz
 </p>
 </body>
</html>

Open your Starbuzz “index.html” file in the “chapter4/starbuzz” folder, and scan down to
the bottom. Let’s add two new links: a relative link to the mission statement in

“mission.html”, and a link to Caffeine Buzz. Make the changes below, then save and load
your “index.html” file in your browser. Click on the link and enjoy the Caffeine Buzz.

Linking to Caffeine Buzz

Here’s where we’ve added the link to the buzz.headfirstlabs.com page.

Here’s the link to th
e “mission.

html” file. This uses a

relative path to link
 to

“mission.html”. We added a
 to
put the links on tw

o
different lines.

And we’ve added some structure here by grouping the links and text into a paragraph.

146 Chapter 4

And now for the test drive... Here’s the page with the new link, just as we planned.

And when you click on the link,
your browser will make an HTTP
request to buzz.headfirstlabs.com
and then display the result.

Here’s the new link. Notice, we only
linked the words “Caffeine Buzz” so
it looks a little different from the
other link.

testing those links

getting connected

you are here � 147

there are no
Dumb Questions

Q: It seems like there are two ways
to link to pages now: relative paths and
URLs.

A: Well, relative paths can only be
used to link to pages within the same Web
site, while URLs are typically used to link
to other Web sites.

Q: Wouldn’t it be easier if I just
stuck with URLs for links to my own
pages and outside pages? That would
work wouldn’t it?

A: Sure, it would work, but there’s
a couple of reasons you don’t want to go
there. One problem is that URLs are hard
to manage when you have a lot of them in
a Web page: they’re long, difficult to edit,
and they make HTML more difficult to read
(for you, the page author).
Also, if you have a site with nothing but
URLs that link to local pages and you
move the site or change its name, you
have to go change all those URLs to
reflect the new location. If you use relative
paths, as long as your pages stay in the
same set of folders – because the links
are all relative – you don’t have to make
any changes to your <a> element href
attributes.
So, use relative links to link to your own
pages in the same site, and URLs to link
to pages at other sites.

Q: Haven’t we seen one other
protocol? I kept seeing “file://” before
we started using a Web server.

A: Yes; good catch. The file protocol
is used when the browser is reading files
right off your computer. The file URL,

for example, “file:///chapter4/starbuzz/
index.html”, tells the browser that the
file “index.html” is located at the path
“/chapter4/starbuzz/”. This path may look
different depending on your operating
system.
One important thing to notice in case you
try to type in a file URL is that the file URL
has three slashes, not two, like HTTP.
Remember it this way: if you take an HTTP
URL and delete the Web site name you’ll
have three slashes, too.

Q: Are there other protocols?

A: Yes, many browsers can support
retrieval of pages with the FTP protocol,
and there is a mail protocol that can send
data via email. HTTP is the protocol you’ll
be using most of the time.

Q: I’ve seen URLs that look like
this: http://www.mydomain.com:8000/
index.html. Why is there a “:8000” in
there?

A: The “:8000” is an optional “port”
that you can put in an HTTP URL. Think
of a port like this: the Web site name is
like an address, and the port is like a
mailbox number at an address (say, in an
apartment complex). Normally everything
on the Web is delivered to a default port
(which is 80), but sometimes Web servers
are configured to receive requests at a
different port (like 8000). You’ll most likely
see this on test servers. Regular Web
servers almost always accept requests
on port 80. If you don’t specify a port, it
defaults to 80.

At Caffeine Buzz we use relative
links to other pages on our site,

and URLs to link offsite, like
www.caffeineanonymous.com.

148 Chapter 4

The Case of Relatives and Absolutes
PlanetRobots, Inc., faced with the task of developing a Web site for each
of its two company divisions – PlanetRobot Home and PlanetRobot
Garden – decided to contract with two firms to get the work done.
RadWebDesign, a seemingly experienced firm, took on the Home
division’s Web site and proceeded to write the site’s internal links using
only URLs (after all, they’re more complicated, they must be better). A

less experienced, but well-schooled firm, CorrectWebDesign, was
tasked with PlanetRobot’s Garden site, and used relative paths for
links between all the pages within the site.

Just as both projects neared completion, PlanetRobots called with
an urgent message: “We’ve been sued for trademark infringement,

so we’re changing our domain name to RobotsRUs. Our new Web
server is going to be www.robotsrus.com.” CorrectWebDesign
made a couple of small changes that took all of five minutes and was
ready for the site’s unveiling at the RobotsRUs corporate headquarters.
RadWebDesign, on the other hand, worked until 4 a.m. to fix their pages
but luckily completed the work just in time for the unveiling. However,
during a demo at the unveiling, the horror-of-horrors occurred: as the
team leader for RadWebDesign demonstrated the site he clicked on a link
that resulted in a “404 - Page Not Found” error. Displeased, the CEO
of RobotsRUs suggested that RadWebDesign might want to consider
changing their name to BadWebDesign and asked CorrectWebDesign if
they were available to consult on fixing the Home site.

What happened? How did RadWebDesign flub things up so
badly when all that changed was the name of the Web server?

Five-Minute
Mystery

time for a little mystery

getting connected

you are here � 149

Can you say “Web career?” You’ve certainly delivered everything the
Starbuzz CEO has asked for, and you’ve now got a high profile Web site
under your belt (and in your portfolio).

But you’re not going to stop there. You want your Web sites to have that
professional “fit and finish” that makes good sites into great ones. You’re
going to see lots of ways to give your sites that extra “polish” in the rest of
this book, but let’s start here with a way to improve your links.

Web page fit and finish

Improving accessibility by adding a title to your links

Read the <a href=”http://buzz.headfirstlabs.com”
 title=”Read all about caffeine on the Buzz”>Caffeine Buzz

Wouldn’t it be nice if there was a way to get more information about the link
you’re about to click on? This is especially important for the visually impaired
using screen readers because they often don’t want the entire URL spoken to
them: (“h” “t” “t” p” “:” “slash” “slash” “w” “w” “w” “dot”) and yet the link’s
label usually only gives a limited description, like “Caffeine Buzz”.

The <a> element has an attribute called title just for this purpose. Some
people are confused by this attribute name because there’s an element called
<title> that goes in the <head>. They have the same name because they
are related – it is often suggested that the value of the title attribute be
the same as value of the <title> element of the Web page you are linking
to. But that isn’t a requirement and often it makes more sense to provide your
own, more relevant description in the title attribute.

Here’s how you add a title attribute to the <a> element:

The title element has a value that is a textual
description of the page you are linking to.

Now that we’ve got a title attribute, let’s see how your visitors would make use
of it. Different browsers make different use of the title, but many display a
tool tip. Add the changes above to your “index.html” file and reload the page
to see how it works in your browser.

Exercise

150 Chapter 4

The title test drive...
For most browsers, the title is displayed
as a “tool tip” when you pass the
mouse over a link. Remember that
browsers for the visually impaired may
read the link title aloud to a visitor.

The title is displayed
as a “tool tip” in
most browsers. Just
pass your mouse over
the link and hold it
there a second to see
the tool tip.

The Head First Guide to Better Links
Here are a few tips to keep in mind to further improve the fit and finish of your links:
b Keep your link labels concise. Don’t make entire sentences or large pieces of text into links. In general, keep them to a few words. Provide additional information in the title attribute.
b Keep your link labels meaningful. Never use link labels like “click here” or “this page”. Users tend to scan pages for links first, and then read pages second. So, providing meaningful links improves the usability of your page. Test your page by reading just the links on it; do they make sense? Or do you need to read the text around them?

b Avoid placing links right next to each other; users have trouble distinguishing between links that are placed closely together.

best practices for your links

getting connected

you are here � 151

Open your Starbuzz “index.html” file and add a title to the link to
“mission.html” with the text “Read more about Starbuzz Coffee’s
important mission”. Notice that we didn’t make the mission link’s label
as concise as it should be. Shorten the link label to “our Mission”.
Check the back of the chapter for the answer, and test your changes.

Great job on the links. I’d
really like for people to link

directly to the coffee section
of the Buzz site. Is that

possible?

So far, whenever you’ve linked to another page, the page loads
and your browser displays it from the top.

But, the CEO’s asking you to link into a particular spot in the page:
the Coffee section.

Sound impossible? Come on, this is Head First – we’ve got the
technology. How? Well, we haven’t told you everything about the
<a> element yet. Turns out the <a> element can play two roles:
you’ve already seen it act as the jumping off point for traveling
from one page to another, but it can also act as a landing point or
destination of a link.

Linking into a page

Exercise

152 Chapter 4

Using the <a> element to create a destination

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices, milk and
honey.</p>

Here’s the snippet
from “index.html”
with the Chai heading
and description.

When you use an <a> element to create a destination, we call that a
“destination anchor.” Creating a destination anchor is straightforward.
Here’s how you can do it in three short steps:

1 Find the location in the page where you’d like to
create a landing spot. This can be any text on
the page, but often is just a short piece of text in
a heading.

2 Wrap the text within an <a> element.

3 Choose a identifier name for the destination, like
“coffee” or “summary” or “bio”, and insert an id
attribute into your <a> element.

Let’s give it a try. Say you want to provide a way to link to the Chai Tea item on
the Starbuzz page. Here’s what it looks like now:

Following the three steps above, we get this:

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices, milk and
honey.</p>

Add the <a> opening
tag before the text.

And we’ll give this
destination the
identifier “chai”.

And then end
the element with
a closing tag. Make sure your <a>

element is properly
nested inside your
<h2> element.

You’ve made a destination anchor
out of the Chai Tea heading in
the “index.html” page.

creating destinations

getting connected

you are here � 153

How to link to destination anchors

See Chai Tea

You already know how to link to pages using either relative links or URLs. In
either case, to link more specifically to a destination anchor in a page, just
add a # on the end of your link, followed by the destination anchor identifier.
So if you wanted to link from any Starbuzz Coffee Web page to the “chai”
destination anchor you’d write your <a> element link this:

Unfortunately, linking to Chai Tea with a destination anchor isn’t very
impressive because the whole page is small enough that it easily fits in the
browser. Let’s link to the Coffee section of http://buzz.headfirstlabs.com
instead. Here’s what you’re going to do:

1 Figure out the id of the destination anchor.

2 Alter the existing <a> element in the Starbuzz Coffee
“index.html” file to point to the destination anchor.

3 Reload your “index.html” page and test out the link.

Finding the destination anchor
To find the destination anchor, you’re going to have
to look at the buzz.headfirstlabs.com page and view
their HTML. How? Almost all browsers have a

“View Source” option. So, visit the page and when
it is fully loaded, choose the “View Source” option,
and you’ll see the markup for the page.

The main benefit of
destination anchors i

s to

link to locations in lo
ng files

so your visitors don’t
 have

to scroll through the
 file

looking for the right
 section.

In most browsers, you can
right-click to “View Source”.
You’ll also find “View Source”
in the browser menu, usually
under “View”.

154 Chapter 4

This is similar to the naming problem
with mateine and guaranine.
</p>

<h3>Coffee</h3>
<p>
<i>All fluid ounces are U.S. fluid ounces.</i>
</p>

Now that you’ve got your hands on their HTML...
Scroll down until you see the Coffee section; it looks like this:

Just a small snippet from
the Caffeine Buzz page.

Here’s the Coffee section. You can
see the heading for it along with
the start of the paragraph below.

Ahhh, and here is the destination anchor. It has the name “Coffee”.

Reworking the link in “index.html”

Read the <a href=”http://buzz.headfirstlabs.com#Coffee”
 title=”Read all about caffeine on the Buzz”>Caffeine Buzz

This is a snippet from the
Starbuzz “index.html” file.

Now all you need to do is revisit the link to Caffeine Buzz
and add on the destination anchor name, like this:

Add # along with the
destination anchor id to
your href.

Make this change to your Starbuzz
“index.html” file. Reload and click on
the “Caffeine Buzz” link. You should be
taken directly to the Coffee section of
Caffeine Buzz’s front page.

Exercise

linking to a destination anchor

getting connected

you are here � 155

there are no
Dumb Questions

Q: When I have two attributes in
an element, is the order important? For
example, should the title attribute always
come after the href?

A: The order of attributes is not
important in any element (if it were we’d all
have headaches 24/7). So, use any ordering
you like.

Q: Normally when I use an <a>
element the browser underlines the text,
but when I used the id attribute instead of
href, it doesn’t.

A: Right. When you use the id attribute
it has no effect on the look of the text the
<a> element surrounds. Remember, the
point of the destination anchor (<a> with the
id attribute) is just to mark the location within
the page, not to create a link, so there isn’t
any need to display it visually.

Q: Why is it called an anchor?
What’s anchor-like about it?

A: On this one we’re just going to say
it like it is: ”anchor” was a bad choice of
names and has confused tens of thousands
before you, if not millions. We’re not even
going to try to give you a cute metaphor
to understand how it could possibly be an
anchor. Basically we’re all stuck with the
name, but now you do know what it does,
and before long you won’t even give the
name a second thought.

Q: Well even with the bad name,
why use the same element to do such
different things? Why not have separate
linking and destination elements?

A: Think of it this way: you have to
link from something to something else. The
<a> element with an href provides a way
to describe the from something. And the
to something has always been just the top
of the other Web page – in other words,
you got the to something for free. With the
destination anchor you can also define the
to something yourself. So, while confusing,
there is some sanity to the naming.

Q: I noticed in the anchor id names,
you used “chai” with all lowercase letters
and Caffeine Buzz used “Coffee” with a
upper case “C”. Does it matter?

A: You can use any combination
of upper- and lowercase characters in
your id attributes. Just make sure you
are consistent and always use the same
upper- and lowercase letters in your hrefs
and destination anchor id (which is why
it is often easier to make these names
entirely lowercase every time). If you aren’t
consistent, don’t expect your links to work
correctly on every browser.

Q: Can I put a link to a destination
anchor from within the same document?

A: Sure. In fact, it is common to
define a destination anchor “top” at the top
of a page and have a link at the bottom
of the page saying “Back to top”. It is also
common in long documents to have a
table of contents for the entire page. For
instance, to link to the “top” destination
anchor in the same page, you would write
Back to top.

Q: If a Web page doesn’t provide a
destination anchor and I still need to link
to a specific part of the page, how can I?

A: You can’t. If there is no destination
anchor then you can’t direct the browser to
go to a specific location in a Web page. You
might try to contact the page author and
ask them to add one (even better, tell them
how!).

Q: Can I have a destination anchor id
like “Jedi Mindtrick” or does an id have
to be only one word?

A: To work consistently with the most
browsers, always start your id with a letter
(A-Z or a-z) and follow it with any letter,
digit, hyphen, underscore, colon, or period.
So, since you can’t use a space, you can’t
have a name like “Jedi Mindtrick”; but that
isn’t much of a restriction because you
can always have “Jedi-Mindtrick”, “Jedi_
Mindtrick”, “JediMindtrick”, and so on.

Q: How can I tell others what
destination anchors they can link to?

A: There is no established way of doing
this, and in fact, “View Source” remains the
oldest and best technique for discovering the
destination anchors you can link to.

156 Chapter 4

The Case of Relatives and Absolutes
So, how did RadWebDesign flub up the demo? Well, because
they used URLs for their hrefs instead of relative links, they
had to edit and change every single link from
http://www.planetrobots.com to http://www.robotsrus.com. Can

you say error-prone? At 3:00 a.m., someone yawned
and accidently typed http://www.robutsru.com (and
as fate has it, that was the same link that the CEO
clicked on at the demo).

CorrectWebDesign, on the other hand, used relative
paths for all internal links. For example, the link from

the company’s mission statement to the products page,
, works whether the site is
called PlanetRobots or RobotsRUs. So, all CorrectWebDesign
had to do was update the company name on a few pages.

So RadWebDesign left the demo sleep-deprived and with a little
egg on their face, while CorrectWebDesign left the meeting
with even more business. But, the story doesn’t end there. It
turns out that RadWebDesign dropped by a little coffeehouse/
bookstore after the demo and, determined not to be outdone,
picked up a certain book on HTML & CSS. What happened?
Join us in a few chapters for “The Case of Brute Force versus
Style.”

Five-Minute
Mystery

Solved

Oops...
someone
forgot an “s”
on the end
of the name.

case solved, its all about relative and absolute

getting connected

you are here � 157

Awesome job linking
to the Buzz site... I know I keep

asking for changes, but really, this
is the last one. Can you make the Buzz site

come up in a separate window when I click
on the link? I don’t want the Starbuzz

page to go away.

Linking to a new window
We have another new requirement from the
Starbuzz CEO (there are always new requirements
for Web sites). What he wants is this: when you
click on the “Caffeine Buzz” link in the Starbuzz
Coffee page, the Starbuzz Coffee page shouldn’t go
away. Instead a whole new window should open
up with the Caffeine Buzz page in it, like this:

Here’s the main
Starbuzz Coffee page

What the CEO wants is a whole new window to open when you click on the Caffeine Buzz link

When the Caffeine Buzz
window pops open, it will open
over the top of the Starbuzz
page, but the Starbuzz page
will still be there.

158 Chapter 4

Opening a new window using target

To open a page in a new window, you need to tell the browser the name of the window in
which to open it. If you don’t tell the browser a specific window to use, the browser just opens
the page in the same window. You can tell the browser to use a different window by adding a
target attribute to the <a> element. The value of the target attribute tells the browser
the “target window” for the page. If you use “_blank” for the target, the browser will always
open a new window to display the page. Let’s take a closer look:

<a target=”_blank” href=”http://buzz.headfirstlabs.com”
 title=”Read all about caffeine on the Buzz”>Caffeine Buzz

Q: What if I have more than one <a> element
with a target? If there’s already a “_blank” new
window open, will it open in the window that’s
already open? Or will it open in a new “_blank”
window?

A: If you give the name “_blank” to the targets
in all your <a> elements, then each link will open in a
new blank window. However, this is a good question
because it brings up an important point: you don’t
actually have to name your target “_blank”. If you
give it another name, say, “coffee”, then all links
with the target name “coffee” will open in the same
window. The reason is that when you give your target
a specific name, like “coffee”, you are really naming
the new window that will be used to display the page
at the link. “_blank” is a special case that tells the
browser to always use a new window.

there are no
Dumb Questions

Open your Starbuzz “index.html”
file. Add the target attribute
to the <a> tag that links to the
Caffeine Buzz page. Now give it a
try – did you get a new window?

The target attribute tells the browser where to open the Web page that is at the link in the href attribute. If there is no target, then the browser opens the link in the same window. If the target is “_blank” then the browser opens the link in a new window.

Can you think of some advantages
and some disadvantages to using
the target attribute to open a page
in a new window?

brain
power?

Exercise

targeting windows

getting connected

you are here � 159

This week’s interview:
Using target considered bad?

 The Target Attribute Exposed

Head First: Hello target, we’re so glad you
could join us.

Target Attribute: I’m glad to be here. It’s
nice to know you’re still interested in hearing
about me.

Head First: Why do you say that?

Target: Well, to be honest, I’m not as popular
as I used to be.

Head First: Why do you think that is?

Target: I think it’s because users want to be
in control of when a window opens. They
don’t always like new windows popping open at
unexpected times.

Head First: Well, it can be very confusing
– we’ve had complaints from people who end
up with so many windows on their screens, they
can’t find the original page.

Target: But it’s not like it’s difficult to get rid of
the windows... just click on the little close button.
What’s so hard about that?!

Head First: True, but if users don’t know
a new window has opened then they can
get confused. Sometimes the new window
completely covers the old window and it’s hard
to tell what’s happening. That can be confusing
for anyone, but especially for someone with a
visual impairment.

Target: Oh, I never thought of that.

Head First: Well, think about it: if someone’s
got their browser window magnified, and a
whole new window opens on top of the one

they’re reading, it can be very confusing for
them. It’s hard to tell what’s going on when
you’re not looking at the whole screen at once.

Target: Yeah I suppose it would be. It’s
probably difficult for using screen readers, too.

Head First: Yup. Some screen readers play
a sound when a new window opens, but others
just ignore the new window completely, or else
they jump right to the new window immediately.
Either way, it’s gotta be confusing for someone
who can’t see what’s going on. And of course,
since the page is in a whole new window, there’s
no way to use the back button to get back to the
original window.

Target: [Sigh] I’m starting to see why I’m not
as popular as I used to be.

Head First: Don’t get too depressed; there are
times when it’s nice to have a new window open,
right?

Target: Yes, I always thought having those little
informational windows for “extra information”
was handy, and I’m especially proud when
people use me to open large versions of images.
That way, the user can view the large image and
then go right back to the main page.

Head First: Okay, see, you do come in handy
at times. We’ve just got to remember to use you
when it’s appropriate, but to keep in mind those
people who might be visually impaired and not
overuse you.

Target: Right!

160 Chapter 4

HTMLcross
Here are some mind benders for your left brain.

1

2 3 4

5

6 7

8 9 10

11

12

13

14

Across

2. Wrong way to pronounce URL.
4. Attribute used to anchor an <a> element to a
page.
7. Earl sold these.
8. Web address to a resource.
9. Protocol we've been using up until this chapter.
11. Unique name on the Web.
12. Always use these kinds of links when linking to
pages on the same server.
13. Request/response protocol.
14. Most popular Mac FTP application.

Down

1. People scan these rather than reading text.
3. Path from the root.
5. What are you supposed to send back from
Webville?
6. Informative caffeine site.
7. Keep your link labels ______.
10. Controls domain names.
11. _______ file you get when you ask for a
directory.
12. Top directory of your Web site.

a little brain crossover

getting connected

you are here � 161

Typically the best way to get on the Web is nn
to find a hosting company to host your Web
pages.
A domain name is a unique name, like nn
amazon.com or starbuzzcoffee.com, that is
used to identify a site.
A hosting company can create one or more nn
Web servers in your domain. Servers are
often named “www”.
The File Transfer Protocol (nn FTP) is a common
means of transferring your Web pages and
content to a server.
FTP applications, like Fetch for Mac or nn
WS_FTP for Windows, can make using FTP
easier by providing a graphical user interface.
A nn URL is a Uniform Resource Locator, or Web
address, that can be used to identify any
resource on the Web.
A typical URL consists of a protocol, a Web nn
site name, and an absolute path to the
resource.
HTTP is a request and response protocol nn
used to transfer Web pages between a Web
server and your browser.

The file protocol is used by the browser to nn
read pages from your computer.
An absolute path is the path from the root nn
folder to a file.

“index.html” and nn “default.htm” are examples
of default pages. If you specify a directory
without a filename, the Web server will look for
a default page to return to the browser.
You can use relative paths or URLs in your nn
<a> element’s href attribute to link to other
Web pages. For other pages in your site, it’s
best to use relative paths, and use URLs for
external links.
Use the id attribute to create a destination nn
anchor in a page. Use ‘#’ followed by a
destination anchor id to link to that location in
a page.
To help nn accessibility, use the title attribute
to provide a description of the link in <a>
elements.
Use the target attribute to open a link in nn
another browser window. Don’t forget that
the target attribute can be problematic for
users on a variety of devices and alternative
browsers.

Wait, wait! Before you go, we need
our logo on the Web page! Hello?

Oh, I guess they’ve already gone on to
Chapter 5...

 BULLET POINTS

162 Chapter 4

protocol Web site name absolute path
://http www.starbuzzcoffee.com /index.html

Your Web site name here.

L
1

E
2

A
3

R L I
4

D

B N

S P
5

K

B
6

O O C
7

A R S

U
8

R L S O F
9

I
10

L E

Z U T N C

Z T C C D
11

O M A I N

R
12

E L A T I V E N

O R S F N

O D E A

H
13

T T P U

L

F
14

E T C H

Across

2. Wrong way to pronounce URL. [earl]
4. Attribute used to anchor an <a> element to a
page. [id]
7. Earl sold these. [cars]
8. Web address to a resource. [url]
9. Protocol we've been using up until this chapter.
[file]
11. Unique name on the Web. [domain]
12. Always use these kinds of links when linking to
pages on the same server. [relative]
13. Request/response protocol. [http]

Down

1. People scan these rather than reading text.
[links]
3. Path from the root. [absolute]
5. What are you supposed to send back from
Webville? [postcard]
6. Informative caffeine site. [buzz]
7. Keep your link labels ______. [concise]
10. Controls domain names. [ICANN]
11. _______ file you get when you ask for a
directory. [default]
12. Top directory of your Web site. [root]

Sharpen your pencil
Solution

exercise solutions

getting connected

you are here � 163

http://www.earlsautos.com/directions.html

http://www.earlsautos.com/cars/used/inventory.html

http://www.earlsautos.com/cars/new/images/minicooper.gif

http://www.earlsautos.com/cars/new/

Earl needs a little help with his URLs

E

D

C

B

A
http://www.earlsautos.com/

Solution

164 Chapter 4

<html>
 <head>
 <title>Starbuzz Coffee</title>
 <style type=”text/css”>
		 body {
			 background-color: #d2b48c;
			 margin-left: 20%;
			 margin-right: 20%;
			 border: 1px dotted gray;
			 padding: 10px 10px 10px 10px;
			 font-family: sans-serif;
		 }
 </style>
 </head>

 <body>
 <h1>Starbuzz Coffee Beverages</h1>
 <h2>House Blend, $1.49</h2>
 <p>A smooth, mild blend of coffees from Mexico,
 Bolivia and Guatemala.</p>

 <h2>Mocha Cafe Latte, $2.35</h2>
 <p>Espresso, steamed milk and chocolate syrup.</p>

 <h2>Cappuccino, $1.89</h2>
 <p>A mixture of espresso, steamed milk and foam.</p>

 <h2>Chai Tea, $1.85</h2>
 <p>A spicy drink made with black tea, spices,
 milk and honey.
 </p>
 <p>
 Read about <a href=”mission.html”
 title=”Read more about Starbuzz Coffee’s important mission“>our Mission

 Read the <a href=”http://buzz.headfirstlabs.com”
 title=”Read all about caffeine on the Buzz”>Caffeine Buzz
 </p>
 </body>
</html>

Move the “Read about” outside the <a> element.

Add a title
attribute
to the
mission link.

Add a title to the link to “mission.html” with the text “Read more about
Starbuzz Coffee’s important mission”. Notice that we didn’t make the mission
link’s label as concise as it should be. Shorten the link label to “our Mission”.
Here’s the solution; did you test your changes?

Exercise
Solutions

exercise solutions

this is a new chapter 165

Smile and say “cheese.” Actually, smile and say “gif”, “jpg”, or “png”
– these are going to be your choices when “developing pictures” for the Web. In this chapter you’re

going to learn all about adding your first media type to your pages: images. Got some digital photos

you need to get online? No problem. Got a logo you need to get on your page? Got it covered. But

before we get into all that, don’t you still need to be formally introduced to the element? So

sorry, we weren’t being rude, we just never saw the “right opening.” To make up for it, here’s an entire

chapter devoted to . By the end of the chapter you’re going to know all the ins and outs of how

to use the element and its attributes. You’re also going to see exactly how this little element

causes the browser to do extra work to retrieve and display your images.

Meeting the Media
5 adding images to your pages

166 Chapter 5

How the browser works with images
Browsers handle elements a little differently than other
elements. Take an element like an <h1> or a <p>. When the
browser sees these tags in a page, all it needs to do is display
them. Pretty simple. But, when a browser sees an
element something very different happens: the browser has to
retrieve the image before it can be displayed in a page.

The best way to understand this is to look at an example. Let’s
take a quick look back at the elixirs page from the Head First
Lounge, which has four elements:

<html>
 <head>
 <title>Head First Lounge Elixirs</title>
 </head>
 <body>
 <h1>Our Elixirs</h1>

 <h2>Green Tea Cooler</h2>
 <p>

 Chock full of vitamins and minerals, this elixir
 combines the healthful benefits of green tea with
 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>

 Combining raspberry juice with lemon grass,
 citrus peel and rosehips, this icy drink
 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>

 Blueberries and cherry essence mixed into a base
 of elderflower herb tea will put you in a relaxed
 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>

 Wake up to the flavors of cranberry and hibiscus
 in this vitamin C rich elixir.
 </p>
 <p>
 Back to the Lounge
 </p>
 </body>
</html>

We’ve got four images
in this HTML.

images in your html

adding images to your web pages

you are here � 167

Browser

Browser

<html>

 <head>

 <title>Head

First Lounge Elix-

irs</title>

 </head>

 <body>

 <h1>Our Elix-

irs</h1>

...

</html>

<html>

 <head>

 <title>Another

Page</title>

 </head>

 <body>

 <h1>Another

Page</h1>

...

</html>

Web Server

First the browser retrieves the file “elixir.html” from the server.

Behind
the Scenes

1

“I
 ne

ed t
he HTML file ‘elixir.html’”

“ Found it, here ya go”

Next the browser reads the “elixir.html” file, displays it, and sees it
has four images to retrieve. So, it needs to get each one from the Web
server, starting with “green.jpg”.

2

<html>

 <head>

 <title>Head

First Lounge Elix-

irs</title>

 </head>

 <body>

 <h1>Our Elix-

irs</h1>

...

</html>

<html>

 <head>

 <title>Another

Page</title>

 </head>

 <body>

 <h1>Another

Page</h1>

...

</html>

Web Server

“O

h,
it lo

oks lik
e I need green.jpg, too”

“ Found it, here ya go”

Now let’s take a look behind the scenes and step through how the
browser retrieves and displays this page when it is requested from
http://lounge.headfirstlabs.com:

The HTML page is retrieved, but the browser
still needs to get the images.

Empty browser window, nothing retrieved yet.

168 Chapter 5

Having just retrieved “green.jpg”, the browser displays it and then
moves on to the next image: “lightblue.jpg”.

3

<html>

 <head>

 <title>Head

First Lounge Elix-

irs</title>

 </head>

 <body>

 <h1>Our Elix-

irs</h1>

...

</html>

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

Web Server

“O
h,

 it
 loo

ks lik
e I need lightblue.jpg, too”

“ Found it, here ya go”

Now the browser has retrieved “lightblue.jpg”, so it displays that
image and then moves on to the next image, “blue.jpg”. This process
continues for each image in the page.

4

<html>

 <head>

 <title>Head

First Lounge Elix-

irs</title>

 </head>

 <body>

 <h1>Our Elix-

irs</h1>

...

</html>

<html>
 <head>
 <title>
 My Playlist
 </title>
 <head>
 <body>
 <h1>Kick’n Tunes
 </h1>
 <p>BT - Satellite:
nice downbeat tune.
 </p>
 <p>
 ...

Web Server

“O

h,
it l

ooks
 like I

need blue.jpg, too”

“ Found it, here ya go”

Browser

Browser

“green.jpg”
displayed.

“lightblue.jpg”
displayed.

how browsers load images

adding images to your web pages

you are here � 169

How images work
Images are just images, right? Well, actually there are a zillion
formats for images out there in the world, all with their own
strengths and weaknesses. But luckily, only two of those formats
are commonly used on the Web: JPEG and GIF. The only tricky
part is deciding which to use when.

What’s the difference between JPEG and GIF?

Use JPEG for photos and
complex graphics

Use GIF for images with solid
colors, logos, and geometric shapes.

Works best for continuous tone images,
like photographs.

Is a “lossy” format because to
reduce the file size, it throws away
some information about the image.

GIF also compresses the file to
reduce its size, but doesn’t throw
anything way. So, it is a “lossless”
format.

Can represent images with up to 16
million different colors.

Works best for images with a few
solid colors, and images with lines,
like logos, clip art, and small text in
images.

Can represent images with up to 256
different colors.

Does not support transparency. Allows one background color to be
set to “transparent” so that anything
underneath the image will show
through.

170 Chapter 5

Hello again, GIF. Didn’t I just see you on a
Web page?

Yeah... wouldn’t it be nice if everyone just stuck
to GIF? Then I wouldn’t have to run into you
so often.

Hah. As soon as you get good at representing
complex images, like photos, I’m sure people
will be happy to stick with you, but you still
don’t know how to represent anything that
needs more than a puny 256 colors.

You wanna talk to me about quality? I let my
users choose exactly how much quality they
want.

Yeah, but at what cost? Face it, to get a photo
down to a size that is reasonable to transmit
over the Web, you have to lose a little quality in
the image.That’s true, but most people are more than

happy with that. Not everyone needs super high-
resolution images on their pages. With me, users
can usually choose a quality setting of low or
medium and they are just fine with the quality
of the images. And, if they used you instead,
they’d have huge files for the same image.

Tonight’s talk: JPEG and GIF compare
their images.

JPEG GIF

Sure, sure, but have you ever looked at lines,
logos, small text, solid colors? They don’t look so
great with JPEG.

Hey, representing photos is easy if you’re willing
to lose quality. But I’m all about quality. If I
can’t represent an image fully, I won’t do it. Just
take a look at some of the logos you’ve tried to
represent ... Yuck.

differences between gif and jpeg

adding images to your web pages

you are here � 171

{GIF disappears, literally}

{GIF reappears}

Don’t panic. I’m just proving a point. If JPEG
is so great, how come you can’t make parts
of your images transparent like I can? With
transparency, what is underneath the image
shows through. If my users want a logo on
a Web page, and the page has a colored
background, they’ll use me because they know
I’ll let the background show through the parts
of the logo without any color.

I think you make way too much of this
transparency thing – I say, just build that
background color into the image. Sure, and then someone changes the Web page

color. No way. Transparency is the way to go,
and to get it, you gotta use me.

Well, I’m not too worried about it; there aren’t
many photos without backgrounds.

Oh yeah? How about if you want to cut out a
picture of a person, or even a tree, and use it
on a Web page without a background?

Yeah, sure, GIF works great for those, but only
as long as there are a small number of those
colors. You’re just like a lesser version of me. I
can do anything you can.

Say what? GIF? We’re doing a show here.
Where’d you go?

When would that ever happen?

JPEG GIF

You’d be surprised how often I get to represent
photos just because my users want that
transparent background.

Yeah, right. Stick to your logos and simple text
images, and I’ll stick to photos and complex
images. Everyone knows I’m better for
handling complexity. Hey, someone is asking me to do transparency...

gotta run.

172 Chapter 5

?
Congratulations: you’ve been elected “Grand Image Format Chooser” of the day.
For each image below, choose the format that would best represent it for the Web.

WHICH Image Format?
dd

d

n

JPEG or GIF

® ®

® ®

® ®

® ®

® ®

when to use gif or jpeg

adding images to your web pages

you are here � 173

You already know
 is an empty
element.

And now for the formal introduction: meet the
 element.

We’ve held off on the introductions long enough. As you can see,
there’s more to dealing with images than just the HTML markup.
Anyway, enough of that for now... it’s time to meet the
element.

Let’s start by taking a closer look at the element (although you’ve
probably already picked up on most of how works by
now):

The src attribute specifies the location
of an image file to be included in the
display of the Web page.

Here’s the element.

The element is an inline
element. It doesn’t cause linebreaks
to be inserted before or after it.

Uh, I don’t mean to be
rude, but we’re on the ninth

page of the IMAGES chapter and
you STILL haven’t introduced me!
JPEG, GIF, blah, blah, blah... could

you get on with it?

So, is that it? Not quite. There are a couple of attributes you’ll
want to know about. And of course you’ll also want to know how
to use the element to reference images on the Web that
aren’t on your own site. But really, you already know the basics of
using the element.

Let’s work through a few of the finer points of using the
element, and then put all this knowledge to work.

174 Chapter 5

: it’s not just relative links anymore

Here’s a “Sharpen your pencil” that is actually about pencils (oh, and images too). This exercise involves a bit of
trivia: Given a typical, brand-new pencil, if you drew one continuous line with it, using the entire pencil up, how
long would the line be?
What’s that got to do with images? To find the answer you’re going to have to write some HTML. The answer to
this trivia is contained in the image that is at the URL: http://www.headfirstlabs.com/trivia/pencil.gif. Your job is to
add an image to this HTML and retrieve the answer:

<html>
 <head>
 <title>Sharpen your pencil trivia</title>
 </head>
 <body>
 <p>How long a line can you draw with the typical pencil?</p>
 <p>

 </p>
 </body>
</html>

Put your image element here.

The src attribute can be used for more than just relative links; you can also put a URL
in your src attribute. Images are stored on Web servers right alongside HTML pages, so
every image on the Web has its own URL, just like Web pages do.

You’ll generally want to use a URL for an image if you’re pointing to an image at a different
Web site (remember, for links and images on the same site, it’s better to use relative paths).

Here’s how you link to an image using a URL:

To include an image using its URL,
just put the whole URL of the
image in the src attribute.

The URL is the path to the image,
so the filename at the end is always
the filename of an image. There’s
no such thing as a default image
like there is for Web pages.

Sharpen your pencil

using urls with images

adding images to your web pages

you are here � 175

there are noDumb Questions
Q: So the element is quite
simple – it just provides a way to specify
the location of the image that needs to be
displayed in the page?

A: Yes, that about sums it up. We’ll talk
about a couple of attributes you can add to
the element. Later, you’ll see a number of
ways to use CSS to change the visual style
of an image.
But there’s a lot to know about the images
themselves. What are the different image
formats for? When should I use one over the
other? How big should they be? How do I
prepare images for use in a Web page?

Q: We’ve learned that empty
elements are elements without content.
We’ve also learned that the
element is empty. But, doesn’t it have
content (the image)?

A: Well, to be more precise, an empty
element is an element that doesn’t have any
content in the HTML page to put the open
and closing tags around. True, an image
is content, but the element refers to
the image. The image isn’t part of the HTML
page itself. Instead, the image replaces the
 element when the browser displays
the page. And remember, HTML pages
are purely text, so the image could never
be directly part of the page. It’s always a
separate thing.

Q: Back in the example of a Web
page loading with images... when I load a
Web page, I don’t see the images loading
one after the other. Why?

A: Browsers often retrieve the images
concurrently. That is, the browser makes
requests for multiple images at the same
time. Given the speed of computers and
networks, this all happens fast enough that
you usually see a page display along with
its images.

Q: If I see an image on a Web page,
how do I determine its URL so that I can
link to it?

A: Most browsers allow you to
“right-click” on an image, which brings up
a contextual menu with some choices. In
these choices you should see “Copy Image
Address” or “Copy Image Link”, which will
place the URL in your clipboard. Another
way to find the URL is to right-click and
choose “Open Image in New Window”, which
will open the image in a browser window.
Then you can get the URL of the image from
the browser’s address bar. A last option is
to use your browser’s “View Source” menu
option and look through the HTML. Keep in
mind, though, you might find a relative link to
the image, so you’ll have to “reconstruct” the
URL using the Web site domain name and
the path of the image.

Q: What makes a JPEG photo better
than a GIF photo, or a GIF logo better
than a JPEG logo?

A: “Better” is usually defined as some
combination of image quality and file size.
A JPEG photo will usually be much smaller
than an equivalent quality GIF, while a GIF
logo will usually look better, and have a
smaller file size than in JPEG format.

Q: I’ve heard about the PNG image
format too. Why didn’t you mention that?

A: PNG is the latest newcomer in
graphic formats, and an interesting one as
it can support both JPEG and GIF styles
of images. It also has more advanced
transparency features than GIF. Right now,
PNG is a little on the cutting edge because
not all browsers support it. But its popularity
is growing quickly. You should feel free to
use PNG, but just be aware that it won’t
work on every browser.

176 Chapter 5

Always provide an alternative
One thing you can be sure of on the Web is that you never know exactly which
browsers and devices will be used to view your pages. Visitors are likely to show
up with mobile devices, screen readers for the visually impaired, browsers that are
running over very slow Internet connections (and may retrieve only the text, not
the images, of a site), cell phones, Internet-enabled toasters... Who knows?

But in the middle of all this uncertainty you can be prepared. Even if a browser can’t
display the images on your page, there is an alternative. You can give the visitor
some indication of what information is in the image using the element’s
alt attribute. Here’s how it works:

<img src=”http://www.headfirstlabs.com/trivia/pencil.gif”
 alt=”Pencil line 35 miles long”>

Take your HTML from the previous exercise.

Update the image element to include the alt attribute
“Pencil line 35 miles long”.

Change the image name of “pencil.gif” to “broken.gif”. This
image doesn’t actually exist, so you’ll get a broken image.

Reload the page in your browser.

Finally, download a couple of other browsers and give this
a try. Did you get different results?

1

2

3

4

In this exercise you’re going to see how your browser handles the alt attribute when
you have a broken image. The theory goes that if an image can’t be found, the alt
attribute is displayed instead. But not all browsers implement this, so your results
may vary. Here’s what you need to do:

5

Look at the end of the chapter to see our results...

If the image can’t be displayed, then
this text is used in its place.

The alt attribute just requires a short bit
of text that describes the image.

For instance, you could try Firefox
(http://www.mozilla.org/) or Opera
(http://www.opera.com/).

Exercise

use the alt attribute for accessibility

adding images to your web pages

you are here � 177

Sizing up your images
There’s one last attribute of the element you should know about –
actually, they’re a pair of attributes: width and height. You can use these
attributes to tell the browser, up front, the size of an image in your page.

Here’s how you use width and height:

The height attribute
tells the browser how
tall the image should
appear in the page.

The width attribute tells the
browser how wide the image
should appear in the page.

Q: Why would I ever use these
attributes if the browser just figures it
out anyway?

A: On many browsers, if you supply
the width and height in your HTML, then
the browser can get a head start laying
out the page before displaying it. If you
don’t, the browser often has to readjust the
page layout after it knows the size of an
image. Remember, the browser downloads
images after it downloads the HTML file and
begins to display the page. The browser
can’t know the size of the images before it
downloads them unless you tell it.
You can also supply width and height values
that are larger or smaller than the size of the
image and the browser will scale the image

to fit those dimensions. Many people do
this when they need to display an existing
image at a size that is larger or smaller than
its original dimensions. As you’ll see later,
however, there are many reasons not to use
width and height for this purpose.

Q: Do I have to use these attributes
in pairs? Can I just specify a width or a
height?

A: You can, but if you’re going to go to
the trouble to tell the browser one dimension,
supplying the second dimension is about the
same amount of work (and there isn’t a lot
to be gained by supplying just a width or a
height unless you’re scaling the image to a
particular width or height).

Q: We’ve said many times that we
are supposed to use HTML for structure,
and not for presentation. These feel like
presentation attributes. Am I wrong?

A: It depends on how you are using
these attributes. If you’re setting the image
width and height to the correct dimensions,
then it is really just informational. However,
if you are using the width and height to
resize the image in the browser, then you
are using these attributes for presentation.
In that case, it’s probably better to consider
using CSS to achieve the same result.

there are noDumb Questions

Both width and height are specified using the number of pixels. If
you’re not familiar with pixels, we’ll go into what they are in a little
more detail later in this chapter. You can add width and height
attributes to any image; if you don’t, the browser will automatically
determine the size of the image before displaying it in the page.

178 Chapter 5

Creating the ultimate
fan site: myPod
iPod owners love their iPods, and they take them
everywhere. Imagine creating a new site called “myPod”
to display pictures of your friends and their iPods from
their favorite locations, all around the world.

What do you need to get started? Just some knowledge
of HTML, some images, and a love for your iPod.

We’ve already written some of the HTML for this site,
but we haven’t added the images yet – that’s where
you come in. But before you get to the images, let’s
get things set up; look for the “chapter5” folder in the
sample source for the book. There you’ll find a folder
named “mypod”. Open the “mypod” folder and here’s
what you’ll see inside:

We’ve already written some
of the HTML for the
myPod site. You’ll find it
in the “index.html” file.

You’ll find this in the
chapter5 folder.

Here’s the first iPod
image:an image of Seattle.

We’re going to use the
photos folder to hold
the images for the site.

mypod
<html>
.
.
.
</html>

photos

seattle.jpg

index.html

My iPod in Seattle! You can see rain clouds
and the Space Needle. You can’t see the 628
coffee shops.

Note: you’ll find a couple of other fold
ers

in “mypod” too, but ignore those for now.

a fan site for ipods

adding images to your web pages

you are here � 179

<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Photo, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we’ll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
 </p>

 </body>
</html>

Open up the file “index.html” and you’ll see work has already
begun on myPod. Here’s the HTML so far:

This HTML should look familiar, as we’re using
the basic building blocks: <h1>, <h2>, and <p>.

Check out myPod’s “index.html” file

And here’s how it looks in
the browser. Not bad, but
we need images.

We threw in some Ready Bake CSS here. Just
type this in for now - all it does is give
the page a light green background. We’ll be
getting to CSS in a few chapters - promise!

180 Chapter 5

As you can see, a lot of the HTML is already written to
get myPod up and running. All you need to do is add
an element for each photo you want to include.
There’s one photo so far, “seattle.jpg”, so go ahead and
add an element to place that image in the page below.
When you’ve finished, load the page in your browser and
check out the view of Seattle. We need an

image, right here.
<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod from, the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Photo, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we’ll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
 </p>

 <p>

 </p>

 </body>
</html>

This is where you need to
place the first photo.

Your element is
going to go right here.

Sharpen your pencil

inserting an image

adding images to your web pages

you are here � 181

Here’s the full size of the image,
which is bigger than the size of the
browser window... much bigger.

Whoa! The image is way too large

Here’s our browser. It’s about the
size of the typical browser window.

And here’s the “seattle.jpg” image you
added to “index.html.”

If the image fits
nicely in your
browser window,
then your browser
may have an “auto
image resize” option
turned on. More on
this in just a sec...

Watch it!

Well, the image is right there where it should be, but that is one
large image. Then again, most of the images that come from digital
cameras these days are that large (or larger). Should we just leave
the image like it is and let visitors use the scroll bar? You’re going to
see there are a couple of reasons why that’s a bad idea.

Let’s take a look at the image and the browser and see just how bad
this situation is...

The image is 1200 pixels wide.

We could use the scroll
bars to see the rest of
the image, but wouldn’t
it be better if we could
fit this image into the
browser window?

The browser
window is about
800 pixels wide.

182 Chapter 5

Q: What’s wrong with having the user just use the scroll
bar to see the image?

A: In general, Web pages with large images are hard to use.
Not only can your visitors not see the entire image at once, but using
scroll bars is cumbersome. Large images also require more data to
be transferred between the server and your browser, which takes
a lot of time and may result in your page being very slow to display,
particularly for users on dialup or other slow connections.

Q: Why can’t I just use the width and height attribute to
resize the images on the page?

A: Because the browser still has to retrieve the entire large
image before it scales it down to fit your page.

Q: You said the browser window is 800 pixels wide; what
exactly does that mean?

A: Your computer’s display is made up of millions of dots called
pixels. If you look very closely at your display you’ll see them:

And, while screen sizes and resolutions tend to vary (some people
have small monitors, some large), 800 pixels is the typical width that
most people set their browsers to. So, 800 pixels is a good rule of
thumb for the maximum width of your images (and your Web pages
too, but we’ll get to that in a later chapter).

Q: How do the number of pixels relate to the size of the
image on the screen?

A: A good rule of thumb is 72 pixels to every inch, although
depending on your monitor, you can have up to 120 pixels in an inch.
Assuming your monitor has 72 pixels per inch, if you want an image
to be approximately 3” wide and high, you’d make it 72 (pixels) times
3 (inches) = 246 pixels, or, rounding up, 250 by 250 pixels.

Q: Well, how large should I make my images then?

A: In general, you want to keep the width of your image to
less than 800 pixels. Of course, you may want your images to be
significantly smaller depending on what you’re using the image for.
What if the image is a logo for your page? You probably want that
small, but still readable. After all, you don’t need a logo the width
of the entire Web page. Logos tend to run between 100 and 200
pixels wide. So, ultimately, the answer to your question depends on
the design of your page. For photos – which you usually do want to
view as large as possible – you may want to have a page of small
thumbnail images that load quickly, and then allow the user to click
on each thumbnail to see a larger version of the image. We’ll get to
all that shortly.

Q: I think my browser automatically resized the image of
Seattle, because it fits perfectly in the window. Why did my
browser do this?

A: Some browsers have a feature that resizes any image that
doesn’t fit within the width of your browser. But many browsers don’t
do this, so you don’t want to rely on it. Even if every browser did
have this feature, you’d still be transferring a lot more data than
necessary between the server and browser, which would make your
page slow to load and less usable.

there are noDumb Questions

Here’s a lot
of pixels that
together make up
the upper part of
the right wing of
the butterfly.

This image is made up
of thousands of pixels
when it’s displayed on a
computer screen.

Here’s one pixel.

all about image sizes

adding images to your web pages

you are here � 183

Resize the image to fit in the browser

Let’s fix up this image so it fits the browser page better. Right now this image
is 1200 pixels wide by 800 pixels tall (you’ll see how to determine that in a sec).
Because we want the width of the image to be less than 800 pixels, we need to
decide on a width that would fit our myPod Web page nicely. The whole point
of myPod is viewing photos of iPods in their surroundings, so we probably
want to have reasonably large images. If we reduce this image size by one
half to 600 pixels wide by 400 pixels high, that will still take up most of the
browser width, while still allowing for a little space on the sides. Sound good?
Let’s get this image resized...

1200 pixels

600 pixels
800
pixels

400
pixels

We need to resize the
image so that it’s still
reasonably large, but
is less than 800 pixels
wide. 600 seems like a
nice width that happens
to be one half the
current size.

Open the image using a photo editing application.

Reduce the image size by one half (to 600 pixels by 400 pixels).

Save the image as “seattle_med.jpg”.

Here’s what you’re going to do:

1

2

3

184 Chapter 5

Good question – there are lots of photo editing
applications on the market (some freely available),
which are all quite similar. We’re going to use
Adobe’s Photoshop Elements to resize the images,
because it is one of the most popular photo
editing applications, and is available on both
Windows and the Macintosh. If you own another
photo editing application, you should have no
problem following along and translating each
editing task to your own application.

If you don’t yet have a photo editing application,
you might first check to see if there was one
included with your operating system. If you have
a Mac, you can use iPhoto to edit your photos. If
you’re a Windows user, you might find Microsoft’s
Digital Image Suite on your computer already.
If you still don’t have an editing application
available to you, follow along and and for each
step you can use the HTML and images included
in the example folders.

Before we get
started, which photo editing
application are we going to
use to resize the image? I

have Photoshop Elements. Will
that work?

If you don’t have Adobe Photoshop Elements, but you’d like to follow along for the rest of the chapter with it, you can download it and try it out free for 30 days. The URL to download it is:http://www.adobe.com/products/tryadobe/main.jsp

choosing a photo editor

adding images to your web pages

you are here � 185

First, start your photo editing application and open the “seattle.jpg”
image. In Photoshop Elements, you’ll want to choose the “Browse
Folders...” menu option under the “File” menu, which will open
the “File Browser” dialog box. You’re going to use this to navigate
to the image “seattle.jpg” in the “chapter5/mypod/photos” folder.

Here’s the File Browser
dialog box. Use this
dialog to navigate to the
“seattle.jpg” image.

When you’ve located the “seattle.jpg”
image, double-click it to open.

Open the image

As you navigate through folders, you’ll see a
preview of the images in those folders here.

Single clicking the preview
image shows you a larger
preview of the image.

Or, if you’re using Windows, use
the File > Open menu to open
the “seattle.jpg” image directly.

186 Chapter 5

Now that “seattle.jpg” is open, we’re going to use the “Save for Web” dialog
to both resize the image and save it. To get to that dialog box, just choose the

“Save for Web” menu option from the “File” menu.

Resizing the image

Here’s the “seattle.jpg”
image

in Photoshop Elements.

To resize the image, choose “Save
for Web” from the File menu.

resizing an image

adding images to your web pages

you are here � 187

After you’ve selected the “Save for Web” menu option, you should see the
dialog box below; let’s get acquainted with it before we use it.

This dialog lets you do all kinds of interesting things. For
now, we’re going to focus on how to use it to resize and save
images in JPEG format for Web pages. Here’s where you choose the format to

save your file. Currently it’s set to save

as GIF; we’re going to change this to

JPEG in a couple of pages...

Here’s the
current size
of the image:
1200 pixels by
800 pixels.

This split window shows you your original image on the left, and the image in the format you’re saving it for the Web on the right. Currently this is showing “GIF” format; we’ll be changing this to JPEG in an upcoming step.

Resizing the image, continued...

188 Chapter 5

(1) Change the image size here
to a width of 600 and a height
of 400. If you have “Constrain
Proportions” checked, then all you
have to do is type the new width,
600, and Elements will change the
height to 400 for you.

(2) Once the width and
height are set correctly,
click “Apply” to let
Elements know this is
the size you want.

As you can see, there’s a lot of functionality built into this
dialog. Let’s put it to good use. To resize the image, you
need to change the width to 600 pixels and the height
to 400 pixels. Then you need to save the image in JPEG
format. Let’s start with the resize...

This will not affect the original image,
just the file you’re going to save.

You must click Apply to reduce the image size; otherwise,
the image will be saved at its original width and height.

using save for web

adding images to your web pages

you are here � 189

You’ve resized - now save

(1) Now that the image size is set, you just
need to choose the format for the image.
Currently it’s set to save as GIF; change this
to JPEG like we’ve done here.

(3) That’s it;
click “OK” and go to the next page.

(2) Set the quality to “Medium”.

Now you just need to save the image in the correct format
(JPEG). To do that, you need to choose JPEG format and set
the quality to “Medium”. We’ll talk more about quality in a sec.

Notice that when you clicked “Apply”
in the previous step, the image was
resized and redisplayed.

190 Chapter 5

Q: Can you say more about the
quality setting in “Save for Web”?

A: The JPEG format allows you to
specify the level of image quality you need.
The lower the quality, the smaller the file
size. If you look at the preview pane in the

“Save for Web” dialog you can see both the
quality and file size change as you change
the quality settings.

The best way to get a feel for quality
settings and the various image formats is to
experiment with them on your own images.
You’ll soon figure out what quality levels
are needed for your image and the type of
Web page you’re developing. You’ll also get
to know when to use JPEG versus other
formats.

Q: What is the number 30 next to the
Quality label in the JPEG Options dialog
box?

A: 30 is a number that Photoshop
Elements considers “Medium” quality. JPEG
actually uses a scale of 1-100%, and Low,
Medium, High, etc. are just preset values
that many photo editing applications use.

Q: Couldn’t I just use the
element’s width and height attributes to
resize my image instead?

A: You could use the width and height
attributes to resize an image, but that’s
not a good idea. Why? Because if you do
that, you’re still downloading the full-size
image, and making the browser do the
work to resize the image (just like when you
have the auto resize option on in browsers
that support that feature). The width and
height attributes are really there to help
the browser figure out how much space to
reserve for the image; if you use them, they
should match the actual width and height of
the image.

After you click OK, you’ll get a Save dialog. Save the image as
“seattle_med.jpg” so you don’t overwrite the original photo.

Save the image

Change the filename to seattle_med.jpg.

Make sure you’re
saving the image in the

“mypod/photos” folder.

Click “Save” to save
the image.

there are noDumb Questions

Image format.
Image size (1K equals 1024 bytes in size).

Photoshop Elements even
tells you how long it would
take to transfer over a
dialup modem to a browser.

Notice that you’re changing the filename from “seattle.jpg” to “seattle_med.jpg”. Why? People usually like to save their original, high-quality, big photos for printing, and put smaller versions on the Web. If you saved this as “seattle.jpg”, you’d be losing the original photo!

image saving and quality

adding images to your web pages

you are here � 191

Now the image fits nicely in the browser window.

Fixing up the myPod HTML
Once you’ve saved the image, you can quit out of Photoshop Elements. Now all you need to do is
change the myPod “index.html” page to include the new version of the photo, “seattle_med.jpg”.
Here’s a snippet of the “index.html” file, showing only the parts you need to change.

<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>
 .
 .
 .
 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
 </p>

 <p>

 </p>

 </body>
</html>

And now for the test drive...

All you need to do is change the
filename in the element to
the name of the image you just
made: “seattle_med.jpg”.

The rest of the HTML goes here. You’ve
already got it in your “index.html” file.

Go ahead and make the changes, save them, and
reload “index.html” in your browser. Things
should look much better. Now the image is sized
just right to give your visitors a good view – without
overwhelming them with a large photo.

192 Chapter 5

?WHICH Image Format?

Format Quality Size Time Winner

JPEG

JPEG

JPEG

JPEG

JPEG

GIF

Maximum

Very High

High

Medium

Low

N/A

®

®

®

®

®

®

2

Your task this time: open the file “chapter5/testimage/eye.jpg” in Photoshop Elements. Open the “Save for
Web” dialog and fill in the blanks below by choosing each quality setting for JPEG (low, medium, high, etc.).
You’ll find this information in the preview pane below the image. Once you’ve finished, determine which
setting makes the most sense for this image. Format.

Size of image.
Time to transfer over
dialup modem.

dd
d ncomparing image settings

adding images to your web pages

you are here � 193

<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod, from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Photo, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we’ll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
 </p>

 <p>

 </p>

 <h2>Birmingham, England</h2>
 <p>
 Here are some iPod photos around Birmingham. We’ve obviously got some
 passionate folks over here who love their iPods. Check out the classic
 red British telephone box!
 </p>

 <p>

 </p>
 </body>
</html>

A new batch of photos has arrived for myPod: two more from Seattle and
a few from a friend in Britain. The photos have already been resized to less
than 800 pixels wide. Add the elements for them (you’ll find the
images already in the photos folder):

More photos for myPod

Let’s keep all the Seattle photos together.

Same with the
Birmingham photos...

Feel free to add some of your
own photos here as well. Just
remember to resize them first.

194 Chapter 5

Taking myPod for another test drive
At this point we don’t need to tell you to reload the page
in your browser; we’re sure you’re way ahead of us. Wow,
what a difference a few images make, don’t you think?
This page is starting to look downright interesting.

But that doesn’t mean you’re there yet. While you’ve got
a great set of images on the page, and even though you’ve
already resized them, the images are still quite large. Not
only is the page going to load more and more slowly as
you add more images, but the user has to do a lot of
scrolling to see them all. Wouldn’t it be better if users
could see a small “thumbnail” image for each photo, and
then click on the thumbnail to see the larger image?

And, here’s what the page looks like now, close up.

Here’s what
the whole page
looks like now,
with all the
images.

viewing mypod with resized images

adding images to your web pages

you are here � 195

Reworking the site to use thumbnails

Create a new directory for the thumbnails.

Resize each photo to 150 by 100 pixels and save it in a
“thumbnail” folder.

Set the src of each element in “index.html”
to the thumbnail version of the photo.

Add a link from each thumbnail to a new page
containing the larger photo.

1

2

3

4

You’re now going to make this page more usable by substituting a
smaller image (which we’ll call a thumbnail) for each photo, and then
you’ll create a link from that thumbnail to each of the larger photos.
Here’s how you’re going to do this, one step at a time:

Create a new directory for thumbnails
To keep things organized, create a separate folder for the thumbnail
images. Otherwise, you’ll end up with a folder of larger images
and small thumbnails all lumped together, which could get quite
cluttered after you’ve added a significant number of photos.

Create a folder called “thumbnails” under the “mypod” folder. If
you’re working from the book example files, you’ll find this folder
already in there.

Create a new folder
called “thumbnails” in
the “mypod” folder.

mypod
<html>
.
.
.
</html>

photos

index.html

thumbnails

196 Chapter 5

Create the thumbnails
You’ve got a place to put your thumbnails, so let’s create them. Start by
opening “seattle_med.jpg” with your photo editing application. You’re
going to resize it to 150x100 pixels using the same method you used to
create the 600x400 version:

With the image resized, choose “OK” and save it as the same name
but in the thumbnail folder. Be careful: if you save it to the “photos”
folder you’ll be replacing the larger image.

Now, repeat this for each photo in your “photos” folder.

If you’re working with the example
files, you’ll find the thumbnails
already in the “thumbnails” folder
so you don’t have to do every one
(after all, you’re learning HTML,
not batch photo processing).

What about
the photos from

Birmingham – they are
taller than they are wide.

Does 150x100 make sense?

Good catch. Because these images are taller
than they are wide, we have two choices: we can
switch the dimensions and make them 100x150
or we can crop each image and make a 150x100
pixel thumbnail from it. We’re going to make
ours 100x150; feel free to crop them and create
150x100 pixel images if you’d like to explore how
to do that in your photo editing application.

In Photoshop Elements,
choose the “Save for Web”
menu option.

Then change the width
to 150 and the height to
100 and click “Apply”. Finally,

click OK.

Don’t forget to change the
format to JPEG, Medium quality.

using thumbnail images

adding images to your web pages

you are here � 197

<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod, from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Photo, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we’ll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
 </p>

 <p>

 </p>

 <h2>Birmingham, England</h2>
 <p>
 Here are some iPod photos around Birmingham. We’ve obviously got some
 passionate folks over here who love their iPods. Check out the classic
 red British telephone box!
 </p>

 <p>

 </p>
 </body>
</html>

Now you just need to change the HTML so that the elements get their images from
the “thumbnails” folder rather than the “photos” folder. And, because you’re currently
using relative paths like “photos/seattle_med.jpg”, that’s going to be simple: for each
 element, all you need to do is change the folder from “photos” to “thumbnails”.

Rework the HTML to use the thumbnails

All you need to do is change the
folder from “photos” to “thumbnails”.

198 Chapter 5

Take myPod for another test drive
Ahhh... much better. Visitors can see all the
available pictures at a glance. They can also tell
which photos go with each city more easily. Now we
need to find a way to link from each thumbnail to
the corresponding large image.

Wait a sec, don’t
you think you’re

pulling a fast one? The
images used to be on top

of each other; now
they’re side by side.

In other words, we didn’t “pull anything.” Because
is an inline element, it doesn’t cause linebreaks to be
inserted before and after the element is displayed. So, if
there are several images together in your HTML, the

browser will fit them side by side if the browser window is
wide enough.

The reason the larger photos weren’t side by side is
because the browser didn’t have room to display them
next to each other. Instead, it displayed them on top
of each other. A browser always displays vertical space
before and after a block element, and if you look back at
the screenshots, you’ll see the images are right on top of
each other with no space in between. That’s another sign
 is an inline element.

Right; but remember the element
is an inline element.

images and layout

adding images to your web pages

you are here � 199

Turning the thumbnails into links
You’re almost there. Now you just need to create a link from each
thumbnail image to its larger version. Here’s how this is going to work:

A visitor sees a thumbnail they like,
say the downtown iPod thumbnail...

Click

...the visitor clicks
on the thumbnail...

...and displays it.

The visitor can click
the back button
to get back to the
myPod page.

To do this you need two things:

Let’s create the pages first, and then we’ll come back and
finish off the links.

...the browser retrieves a new page with the large image...

A page to display each photo along with a
heading that describes its content.
A link from each thumbnail in “index.html”
to its corresponding photo page.

1

2

200 Chapter 5

Create individual pages for the photos

<html>
 <head>
 <title>myPod: Seattle Ferry</title>
 <style type=”text/css”> body { background-color: #eaf3da; } </style>
 </head>
 <body>
 <h1>Seattle Ferry</h1>
 <p>

 </p>
 </body>
</html>

As you’ve probably
guessed, we’ve already
created this folder for
you in the book examples.

mypod
<html>
.
.
.
</html>

photos

index.html

 htmlthumbnails

First, create a new folder called “html” to hold these individual pages, just
below the “mypod” folder:

Now we’re going to create one HTML file for each photo. If the photo is called
“seattle_med.jpg”, then let’s call the HTML file “seattle_med.html” just to be
consistent. In each HTML file, we’ll have a heading that describes the photo,
followed by the photo. Here’s the HTML for the first Seattle photo. All the
other pages will follow this same format:

Title for the page. This
should describe the photo.

Here’s our ready bake CSS again, just to keep the page a consistent color.

Here’s the element that points to the large
“seattle_med.jpg” photo. Let’s also give the image
a descriptive alt attribute.

Notice that we need to use “..” in the relative path
because the “html” folder is a sibling of the “photos”
folder, so we have to go up one folder and then down
into “photos” when using relative links.

Here we give the page a descriptive heading.

adding individual image pages

adding images to your web pages

you are here � 201

 <img src=”thumbnails/seattle_downtown.jpg”
 alt=”An iPod in downtown Seattle, WA”>

So, how do I make links out of images?

If you look in the “html” folder in the chapter example files, you’ll find
all of the single photo pages already there, except one – the page for

“seattle_downtown.jpg”. Create a page called “seattle_downtown.html” in
the “html” folder, and test it out. Get this working before you move on.
You’ll find the answer in the back of the chapter if you have any problems.

You’ve got your large photos, your smaller thumbnails, and even a set of
HTML pages for displaying individual photos. Now you need to put it all
together and get those thumbnails in “index.html” linked to the pages in the

“html” folder. But how?

To link an image, you put the element inside an <a> element, like this:

The element is nested
directly inside the <a> element.

Here’s the element for
the “seattle_downtown.jpg”
thumbnail, just as it is in the
“index.html” file.

And here’s an <a>
opening tag just before
the element.

The href is linked to the new HTML page for the photo, “seattle_downtown.html”, which is in the “html” directory.

Here’s the
closing <a> tag.

Once you’ve placed the element into an <a> element, the
browser treats the image as a clickable link. When you click the
image, the browser will retrieve the page in the href.

Exercise

202 Chapter 5

<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>

 <h1>Welcome to myPod</h1>
 <p>
 Welcome to the place to show off your iPod, wherever you might be.
 Wanna join the fun? All you need is any iPod, from the early classic
 iPod to the latest iPod Nano, the smallest iPod Shuffle to the largest
 iPod Photo, and a digital camera. Just take a snapshot of your iPod in
 your favorite location and we’ll be glad to post it on myPod. So, what
 are you waiting for?
 </p>

 <h2>Seattle, Washington</h2>
 <p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
 </p>

 <p>

 </p>

 <h2>Birmingham, England</h2>
 <p>
 Here are some iPod photos around Birmingham. We’ve obviously got some

Add the image links to “index.html”
This is the last step. You just need to wrap <a> elements around each
thumbnail’s element in your “index.html” file. Remember, the
href of each <a> element should link to the page containing the large
version of the image in the “html” folder. Make sure that your links,
thumbnails, and pages all match up correctly.

Here’s the complete “index.html” file. All you need to do is add the
HTML marked in gray.

adding links to images

adding images to your web pages

you are here � 203

 passionate folks over here who love their iPods. Check out the classic
 red British telephone box!
 </p>

 <p>

 </p>
 </body>
</html>

Add these <a> elements to your “index.html” file.
Save, load into your browser and check out myPod!

For each thumbnail image, wrap an <a> element around it.
Just be careful to get the right href in each link!

there are noDumb Questions

Q: When we put an <a> element around text we get
an underline. Why don’t we get something equivalent with
images?

A: Actually, most browsers DO put a border around an image
to show it is linked. (Our browser, Safari, is one of the few that
don’t.) If your browser puts a border around your linked images,
and you don’t like it, hold on a few more chapters and you’ll
learn how to take that border off with CSS. Also notice that when
you pass your mouse over an image, your cursor will change to
indicate you can click on the linked image. In most cases your
users will know an image is linked by context and by the mouse
cursor, even if there’s no border.

Q: Can’t we just link to the JPEG image directly without
all those HTML pages? I thought the browser was smart
enough to display images by themselves.

A: You’re right, you could link directly to the image, like this:
 If you did that
and clicked on the link, the browser would display the image
by itself on a blank page. In general though, linking directly to
an image is considered bad form, because you usually want to
provide some context for the images you are displaying.

204 Chapter 5

The myPod Web page is
looking awesome! I think

you should add a logo to the
page - that would add a
great finishing touch.

Great idea. In fact, we’ve got a myPod
logo all ready to go.

Take another look in the folder
“chapter5/mypod”, and you’ll find a
folder called “logo”. In that folder
you’ll find a file called “mypod.psd”.
The “.psd” means that the file has
been saved in the Photoshop format, a
common format for digital images. But
Photoshop format files are meant for
processing digital images, not for Web
pages, so we’ll have to do some work to
get a “Web ready” image from it.

Many photo editing applications understand .psd files, so even if you don’t have Photoshop Elements, follow along for the next few pages. If your application can’t open the “.psd” file, you’ll find the images from each step in the “logo” folder.

adding a logo

adding images to your web pages

you are here � 205

If your photo editing
application won’t open
the file, follow along
anyway - the same
principles apply for
other formats as well.

You’ll find the “logo” folder in the “chapter5/mypod” folder.

Open the myPod logo
Let’s check out the myPod logo: open up the file “mypod.psd”
in the “chapter5/mypod/logo” folder in Photoshop Elements:

Nice logo; it’s got some typography combined with two circles,
one gray and one white (obviously inspired by the click-wheel
controls on the iPod).

But what is that checkered pattern in the background? That’s
the way most photo editing applications show you areas that
are transparent. Keep all that in mind as we choose a graphic
format for the logo...

A closer look...

Whenever you see this
checkered pattern,
that indicates a
transparent area in
the image.

206 Chapter 5

What format should we use?

Remember, use this pulldown menu to set the format. We’re going to set the format to GIF to save the logo.

You already know that we have a couple of options in deciding how to save
this image: we could use JPEG or GIF. This logo uses only three colors,
text, and some geometric shapes. From what you’ve learned about the two
formats, you’re probably leaning towards GIF (good choice!).

So, go ahead and choose GIF in the format drop down, and you’ll see we
have a few more options. Let’s take a look...

When you set the
format to GIF, this
Transparency checkbox
appears. By default,
it’s checked. Do we
want a transparent
background?

Here’s where Photoshop
Elements shows you the
number of colors being
used to save the GIF.
It’s already set to the
maximum, 256. We’ll
leave it there.

Try unchecking the Transparency checkbox:
you’ll see the GIF preview at the bottom
change to a white background.

Also note the
Matte option.
This is related to
transparency, as
you’ll see in a sec.

choosing between gif and jpeg

adding images to your web pages

you are here � 207

To be transparent, or not to be transparent?
That is the question...
The myPod logo is going to be placed on a light green
background, so you might think that transparency is going
to be a good thing, right? Well, let’s compare how the logo
looks using a few options in the “Save for Web” dialog:

Without transparency thi
ngs look

pretty bad. Clearly, a white

background isn’t going t
o work

on a green Web page. (It might,

however, work just fine on a

white Web page).

Here’s what we get if we check
Transparency and save. Better...
but what’s that white “halo”
around the letters in the logo?

Ah, now we’re talking; this looks great. For this
version we told Photoshop Elements to create the
matte around the text using a green background.
How? We’ll show you next.

The halos happen because the
photo editing application creates
a “matte” to soften the text’s
edges against the background
color. When it did that for this
logo, however, it assumed it was
softening the edges against a
white background.

Here’s the logo saved in three different ways and
displayed on a Web page with a green background.

208 Chapter 5

You know you want a transparent GIF version of the logo,
and you also know we’ll need to use a matte to prevent the
halos around the text. Let’s check out the GIF panel of the

“Save for Web” dialog.

Save the transparent GIF

You know to
choose GIF
already.

And check
Transparency.

Now we need to take a look at
the Matte option.

The Matte option allows you to select the color for the matte
around the text. And we want that to be the color of the Web
page background. The Matte option

supplies the color for
softening the edges
of the text. Since the
Web page is a light
green, we want to use
the same color for the
matte.

Choose “Other...” since
our color isn’t listed.

creating a transparent gif

adding images to your web pages

you are here � 209

What? You can’t tell that’s light
green? For now take our word for
it; we’ll come back to this in a few
chapters and explain all about colors.

The Color Picker gives you a lot
of different ways to choose the
matte color. We just want to set
it to the background of the Web
page, and we already know that
is eaf3da...

When you click on the Matte pulldown menu and choose the “Other...” menu
option, Photoshop Elements will bring up the Color Picker dialog.

Wait, what is the color of the Web page background?

<style type=”text/css”>
 body { background-color: #eaf3da;}
</style>

Here’s the background
color right here.

Remember that Ready Bake CSS in the myPod “index.html” file?
That CSS is what sets the background color of the page to light
green. And that’s where we can get the color:

Set the matte color

... which is going to go right here.

210 Chapter 5

Type these letters in right here.
This box is designed specifically for
colors written in the Web format.
You can type the letters in upper-
or lowercase, it doesn’t matter.

Set the matte color, continued

Once you’ve typed the color
into the Color Picker, click
“OK” and it will apply the
change to the logo.

Now, when you look close up at the
logo, you’ll see the matte matches the
green color in the background of the
“mypod.html” Web page.

Go ahead and enter the color, “eaf3da”, into the “Color Picker” dialog box.
You’ll see the color change to the background color of the myPod page.

Check out the logo with a matte
Now take a close look at the logo again in the preview pane. You’ll see Photoshop
Elements has added a light green matte around the hard edges, which will give the
myPod logo text a softer, more polished look when the logo is in the Web page.

setting a matte color

adding images to your web pages

you are here � 211

Save the logo

Okay you’ve made all the adjustments you need to in the “Save for Web”
dialog, so go ahead and click “OK” to save the image as “mypod.gif ”.

Elements will automatically
change the extension of your
filename to “.gif”. Save the
image as “mypod.gif” in the
“logo” folder.

Add the logo to the myPod Web page

Add the logo image at the top of the myPod Web page. Remember to use the correct relative path for the logo, in the “logo” folder, and add an alt attribute that describes the image.

<html>
 <head>
 <title>myPod</title>
 <style type=”text/css”>
 body { background-color: #eaf3da;}
 </style>
 </head>
 <body>
 <p>

 </p>

 <h1>Welcome to myPod</h1>
 .
 .
 .
 </body>
</html>

Rest of “index.html” HTML here...

Now all you need to do is add the logo to the myPod Web page.
We’ll add it to the top so it appears above the Web site description
and iPod images. That way, it’s the first thing your visitors see
when they come to your myPod page.

212 Chapter 5

Excellent work. The
logo looks great. You’ve
got a kick-ass myPod

Web site here!

And it works - all that

hard work paid off. You

have a great looking
 logo

on your myPod Web page.

And now for the final test drive
Let’s test this puppy! Reload the Web page in the browser
and see how your myPod transparent GIF logo works.

testing the transparent gif

adding images to your web pages

you are here � 213

Q: Do I really need to know all this stuff about
image formats to write good Web pages?

A: No. You can build great Web pages without any
images. However, images are a big part of the Web, so
some knowledge of how images work can really help.
Sometimes just an image or two makes the difference
between a good page and a great one. There’s a lot to
know about images, but it’s easy to learn as you go.

Q: Why does the text need its edges softened?

A: Check out the two versions of the myPod logo
below:

You’ll see the top version has very hard, jagged edges
and is less readable. This is the way text is displayed by
default on a computer screen. The second version has had
its edges softened using a technique called anti-aliasing.
Words that are anti-aliased on a computer screen are more
readable and more pleasant to the eye.

Q: So where does the “Matte” come in?

A: The process of anti-aliasing softens the edges
relative to the background color. If you put the bottom
version of the logo (from the previous Q&A) against a
colored background, you’d see it has white edges in it. The
Matte option in Photoshop Elements allows you to specify
the color of the background that the text will be placed on,
so when the text is softened it is done so against that color.

Q: Does this technique just work for text?

A: No, it works for any lines in your graphics that might
result in “jaggies”. Check out the circle in the myPod logo; it
was matted too.

Q: Why can’t I just make the logo background
color solid and match the color to the Web page?

A: You could do that too, but there is one disadvantage:
if there are other things in your Web page that are showing
through the transparency, then they won’t be seen with the
solid color version. You haven’t seen any examples of this
yet, but when we get into CSS, you will.

Q: What if I change my background color after I
make the matted version?

A: A slight variation in your background color probably
wouldn’t be noticeable; however, if you change the color
dramatically, you’ll have to recreate the GIF with a new
matte color.

there are noDumb Questions

214 Chapter 5

Use the nn element to place images in
your Web page.
Browsers treat elements a little nn
differently than other HTML elements; after
reading the HTML page, the browser retrieves
each image from the Web server and displays
it.
If you have more than a couple of large nn
images on a Web page, you can make
your Web page more usable and faster to
download by creating thumbnails – small
images that the user can click on to see the
large version of the image.
The element is an inline element, nn
which means that the browser doesn’t put a
linebreak before or after an image.
The src attribute is how you specify the nn
location of the image file. You can include
images from your own site using a relative
path in the src attribute, or images from other
sites using a URL.
The alt attribute of an element is a nn
meaningful description of the image. It is
displayed in some browsers if the image can’t
be located, and is used by screen readers to
describe the image for the visually impaired.
A width of less than 800 pixels is a good nn
rule of thumb for the size of photo images
in a Web page. Most photo images that are
created by digital cameras are too large for
Web pages, so you’ll need to resize them.
Photoshop Elements is one of many photo nn
editing applications you can use to resize your
images.

Images that are too large for the browser nn
make Web pages difficult to use and slow to
download and display.
A pixel is the smallest dot that can be nn
represented on the screen. Each image is
composed of thousands of pixels. Depending
on your monitor, there can be anywhere from
72 pixels in an inch to 120 pixels in an inch.
JPEG and GIF are the two formats for images nn
that are widely supported by Web browsers.
The JPEG format is best for photographs and nn
other complex images.
The GIF format is best for logos and other nn
simple graphics with solid colors, lines, or text.
JPEG images can be compressed at a variety nn
of different qualities, so you can choose the
best balance of quality and file size for your
needs.
The GIF image format allows you to make an nn
image with a transparent background. If you
put an image with a transparent background
in a Web page, what’s behind the image, such
as the background color of the page, will show
through the transparent parts of the image.
In Photoshop Elements, use the Matte color nn
menu in the “Save for Web” dialog to choose
the right color for softening the edges of your
transparent GIF image.
Images can be used as links to other Web nn
pages. To create a link from an image, use
the element as the content of an <a>
element, and put the link in the href attribute
of the <a> element.

 BULLET POINTS

review using images with html

adding images to your web pages

you are here � 215

HTMLcross
It’s time to give your right brain a break and put that left brain to work.
All these words are HTML-related and from this chapter.

1 2

3 4

5 6

7

8 9

10

11 12

13 14

15

Across

3. Smallest element on a screen.
5. Web server makes a request for each one of
these.
7. Better for solid colors, lines, and small text.
9. Newcomer image format.
10. Most Web s retrieve images this way.
11. Miles you can draw with a pencil.
13. Small images on a page.
14. You used Photoshop Elements to do this to
images.
15. The alt attribute improves this.

Down

1. Lovable MP3 player.
2. With JPEG you can control this.
4. The larger the image, the _____ it takes to
transfer it.
6. GIF has it, JPEG doesn't.
8. Technique for softening edges of text.
12. Better for photos with continuous tones.

brow ers

216 Chapter 5

?
Congratulations: you’ve been elected “Grand Image Format Chooser” of the day.
For each image below, choose the format that would best represent it on the Web.

WHICH Image Format?
dd

d

n

JPEG or GIF

® ®

® ®

® ®

® ®

® ®

This image is borderline. It has
lots of continuous colors (JPEG),
but is also slightly geometric
(GIF) and you may want to
use this in a way that requires
transparency (GIF).

A photo with lots of continuous
shades of gray.

Only a couple of colors with some
text; definitely a GIF.

A photo with lots of colors;
definitely a JPEG.

Just a simple black and
white icon; a GIF.

Exercise
Solutions

exercise solutions

adding images to your web pages

you are here � 217

<html>
 <head>
 <title>Sharpen your pencil trivia</title>
 </head>
 <body>
 <p>How long a line can you draw with the typical pencil?</p>
 <p>

 </p>
 </body>
</html>

Here’s a “Sharpen your pencil” that is actually about pencils (oh, and images of course). This
exercise involves a bit of trivia: Given a typical, brand-new pencil, if you drew one continuous
line with it, using the entire pencil up, how long would the line be?
What’s that got to do with images? To find the answer you’re going to have to write some
HTML. The answer is contained in the image that is at the URL: http://www.headfirstlabs.com/
trivia/pencil.gif. Your job is to add an image to this HTML and retrieve the answer:

Source: http://www.papermate.com

Sharpen your pencil
Solution

218 Chapter 5

Here are the results of having a broken image in a few different browsers. In most
cases, the browser is able to use the extra alt attribute information to improve what
is displayed. Why do we care? After all, this is an error in a Web page; we should just
fix it, right? Well, in the real world things are often not ideal; sometimes things break,
Internet connections go bad in the middle of a page load, or visually impaired users
need to hear what is in the image, because they can’t see it.

The Firefox browser just displays the alt
attribute, as if it were text, if the image
can’t be retrieved.

PC

Mac
Internet
Explorer
displays a
broken image
icon and the
alt attribute
text next
to it.

On the Mac, Internet
Explorer also displays
a broken image icon
and the alt attribute
text next to it.

Safari on the Mac
doesn’t make good use
of the alt attribute
from broken images.

Exercise
Solutions

exercise solutions

adding images to your web pages

you are here � 219

?WHICH Image Format?

Format Quality Size Time Winner

JPEG

JPEG

JPEG

JPEG

JPEG

GIF

Maximum

Very High

High

Medium

Low

N/A

®

®

®

®

®

®

2

232K

112K

64K

30K

18K

221K

83 Seconds

41 Seconds

24 Seconds

12 Seconds

7 Seconds

80 Seconds

Is the winner really Medium? Not necessarily. It all depends on what your needs are. If you want a really
high quality image, then you might want Very High. If you want the fastest possible site, then try Low.
We’ve chosen Medium because it is a nice trade off in size versus the quality of the image. You may think
Low is good enough, or that it’s worth bumping the quality up to High. So, it’s all very subjective. One
thing is for sure however, GIF doesn’t work very well for this image (which should not be a surprise).

Note that your numbers may differ depending on
the version of software you are using.

Did you notice how
the image quality
degrades?

dd
d

n
Exercise
Solutions

220 Chapter 5

<html>
 <head>
 <title>myPod: Seattle Downtown</title>
 <style type=”text/css”> body { background-color: #eaf3da; } </style>
 </head>
 <body>
 <h1>Downtown Seattle</h1>
 <p>

 </p>
 </body>
</html>

Here’s the HTML; this file should
be called “seattle_downtown.html”.

mypod

photos htmlthumbnails

This file should go in the “html” folder under “mypod”. Here’s the test drive.

If you look in the “html” folder with the chapter examples, you’ll find all of the single
photo pages already there, except one: the page for “seattle_downtown.jpg”. Create
a page called “seattle_downtown.html” in the “html” folder, and test it out. Get this
working before you move on.
Here’s the answer:

Exercise
Solutions

exercise solutions

adding images to your web pages

you are here � 221

I
1

Q
2

P
3

I X E L
4

U

O O I
5

M A G E T
6

D N L R

G
7

I F I A

E A
8

T P
9

N G

C
10

O N C U R R E N T L Y S

T P

T
11

H I R T Y F I V E J
12

A

A P R

T
13

H U M B N A I L S R
14

E S I Z E

I G N

A C

A
15

C C E S S I B I L I T Y

Across

3. Smallest element on a screen. [pixel]
5. Web server makes a request for each one of
these. [image]
7. Better for solid colors, lines, and small text.
[GIF]
9. Newcomer image format. [png]
10. Most Web servers retrieve images this way.
[concurrently]
11. Miles you can draw with a pencil. [thirtyfive]
13. Small images on a page. [thumbnails]

Down

1. Lovable MP3 player. [ipod]
2. With JPEG you can control this. [quality]
4. The larger the image, the _____ it takes to
transfer it. [longer]
6. GIF has it, JPEG doesn't. [transparency]
8. Technique for softening edges of text.
[antialias]
12. Better for photos with continuous tones.
[JPEG]

Exercise
Solutions

Here’s how you add the image “seattle.jpg” to the file “index.html”.

<h2>Seattle, Washington</h2>
<p>
 Me and my iPod in Seattle! You can see rain clouds and the
 Space Needle. You can’t see the 628 coffee shops.
</p>

<p>

</p>

Sharpen your pencil

this is a new chapter 223

Serious HTML
6 standards, compliance, and all that jazz

What else is there to know about HTML? You’re well on your way to

mastering HTML. In fact, isn’t it about time we move on to CSS and learn how to make

all this bland markup look fabulous? Before we do, we need to make sure your HTML is

really tight (you know... buttoned up, ship shape, nailed down) and we’re going to do that

by getting serious about the way we write our HTML. Don’t get us wrong, you’ve been

writing first-class HTML all along, but there’s a few things you can do to help the browser

faithfully display your pages and to make sure that little mistakes don’t creep into your

markup. What’s in it for you? Pages that display more uniformly across browsers (and

even display well on mobile devices and screen readers for the visually impaired), pages

that load faster, and pages that are guaranteed to play well with CSS. Get ready, this is

the chapter where you move from Web tinkerer to Web professional.

224 Chapter 6

Jim: Button up?

Frank: You know, make sure it meets the HTML
“standards.”

Jim: Our HTML is just fine... here, look at it in the
browser. It looks beautiful. We’re a careful bunch. We
know how to correctly form our elements.

Joe: Yeah, that’s what I think... they’re just trying to give
us another thing to worry about. Standards, schmandards.
We know what we’re doing.

Frank: Actually guys, I hate to admit it but I think the
boss is right on this one.

Jim, Joe: Huh?!

Joe: Come on, this is just going to mean even more work.
We’ve already got enough to do.

Frank: Guys, what I’m saying is that I think this will help
us do less work in the future.

Joe: Ha! This should be good...

Frank: Okay, here goes: the browser reads our HTML
and then does its best to display it, right? In fact, browsers
are pretty forgiving... you can have a few mistakes here
and there, or use HTML incorrectly – like putting a block
element accidentally inside an inline element – and the
browser tries to do the right thing.

Jim: Yeah, and?

Hey guys, the
boss just sent an email.

Before we move Head First
Lounge to CSS, he wants us to

button up our HTML.

Jim
Joe

Frank

writing standard html

standards, compliance, and all that jazz

you are here � 225

Frank: But different browsers (say Internet Explorer versus Firefox versus
Safari) have different ways of handling imperfect HTML. In other words, if you
have mistakes in your HTML, then all bets are off in terms of how your pages
will look in different browsers. It’s only when you don’t have mistakes that most
browsers display things consistently. And when we start adding presentation to
our HTML with CSS, the differences will get even more dramatic if our HTML
isn’t up to snuff.

So, by making sure we’re, as they say, “compliant” with the “standards,” we’ll
have a lot fewer problems with our pages displaying incorrectly for our customers.

Jim: If that reduces the number of 3 a.m. calls I get, then that sounds like a
good idea to me. After all, our customers use every browser under the sun.

Joe: Wait a sec, I still don’t get it. Aren’t we compliant now? What’s wrong with
our HTML?

Frank: Maybe nothing, but there are a few things we can to do to make sure.

Joe: Like what?

Frank: Well, we can start by helping the browser a bit by telling it exactly which
version of HTML we’re using.

Joe: I’m not even sure I know which version we’re using.

Frank: Ah ha! So there is some room for improvement here. Okay, let’s begin
by figuring out which version of HTML we’re using and how we can tell the
browser about it. There are a few other things we need to do too, but don’t worry,
this isn’t a big deal. And, when we’re done, life will be much easier when we start
using CSS.

Browsers all do a pretty good job of consistently displaying your pages
when you write correct HTML, but when you make mistakes or do
nonstandard things in your HTML, pages are often displayed differently
from one browser to another. Why do you think that is the case?

brain
power?

226 Chapter 6

A Brief History of HTML

HTML 1.0-2.0 HTML 3

These were the early days;
you could fit everything
there was to know about
HTML into the back of
your car. Pages weren’t
pretty, but at least they
were hypertext enabled.
No one cared much about
presentation, and just
about everyone on the
Web had their very own

“home page.” Even a count
of the number of pencils,
paperclips, and Post-it
notes on your desk was
considered “Web content”
back then (you think we’re
kidding).

The long, cold days of the
“Browser Wars.” Netscape
and Microsoft were duking
it out for control of the
world. After all, he who
controls the browser
controls the Universe,
right?

At the center of the fallout
was the Web developer.
During the wars, an
arms race emerged as
each browser company
kept adding their own
proprietary extensions in
order to stay ahead. Who
could keep up? And not
only that, back in those
days, you had to often write
two separate Web pages:
one for the Netscape
browser and one for
Internet Explorer. Not good.

Ahhh... the end of the
Browser Wars and, to
our rescue, the World
Wide Web Consortium
(nickname: W3C). Their
plan: to bring order to the
Universe by creating the
ONE HTML “standard” to
rule them all.

The key to their plan?
Separate HTML’s structure
and presentation into two
languages – a language for
structure (HTML 4.0) and a
language for presentation
(CSS) – and convince the
browser makers it was in
their best interest to adopt
these standards.

But did their plan work?

Uh, almost... with a few
changes (see HTML 4.01).

HTML 4

1989 1991 1995 1998

html timeline

standards, compliance, and all that jazz

you are here � 227

Ah, the good life. HTML 4.01
entered the scene in 1999,
and is the most current
version of HTML. While
everyone hoped 4.0 would be
the ONE, it’s always the case
that a few fixes are needed
here and there. No biggies
and nothing to worry about.

Compared to the early days
of HTML (when we all had
to walk barefoot in 6 feet of
snow, uphill both ways), we
were all cruising along writing
HTML 4.01 and sleeping well
at night knowing that almost
all browsers (at least the ones
anyone would care about) are
going to display your content
just fine.

HTML 4.01

1999

????
And what will happen
in the future? Will we
all be going to work
in flying cars and
swallowing nutrition
pills for dinner? Keep
reading to find out.

2000

Starting in Chapter 7, our goal is to be faithful to XHTML 1.0. As always, the world keeps moving, so we’ll also talk later in the book about where things are going.

But, of course, just as we
were all getting comfortable,
new technologies were
created and things changed.
HTML and another markup
language known as XML
got together, and sooner
than you can say “arranged
marriage,” XHTML 1.0 was
born. XHTML inherited traits
from both parents: popularity
and browser-friendliness from
HTML, and extensibility and
strictness from XML. What
does that mean? You’ll find
out soon enough, because
we’re going to have you
creating XHTML Web
pages before you can say

“Extensible Hypertext Markup
Language.” Well, at least in
the next chapter.

XHTML 1.0

Our goal in this chapter is to
get ourselves up to HTML 4.01.

228 Chapter 6

Head First: We’re glad to have you here, Browser.
As you know, “HTML versions” have become a
popular issue. What’s the deal with that? You’re a
Web browser after all. I give you HTML and you
display it the best you can.

Browser: Being a browser is tough these days...
there are a lot of Web pages out there and many are
written with old versions of HTML or with mistakes
in their markup. Like you said, my job is to try to
display every single one of those pages, no matter
what.

Head First: So what’s the big deal? What does it
really matter which version of HTML I use?

Browser: Remember the browser wars? All kinds
of elements were added to HTML that we aren’t
supposed to use anymore. But some people expect us
browsers to be able to display them anyway, and we
don’t always agree on how that should be done.

Head First: Why aren’t we supposed to use those
elements any more?

Browser: Well, before CSS was invented, HTML
had elements that were there for presentation, not
structure. Now, with CSS, we don’t need those
anymore, but there are still plenty of Web pages out
there that use them.

Head First: I think I’m starting to see the problem.
So how do you manage to display all these pages in
all these different versions of HTML? That’s quite a
tall order.

Browser: Yeah, like I said, it’s tough being a
browser. What we end up doing is having two sets of
rules for displaying Web pages: one for old HTML
and one for the newer, standard HTML. When I use
the old rules, I call that my “quirks mode” because

there are so many weird things that can happen on
those pages.

Head First: That sounds like a pretty good
solution to me...

Browser: Well, it can get you into trouble, though.
If you’re writing new HTML, but you don’t tell me
you’re writing new HTML, then I have to assume
you’re writing old HTML, and go into quirks mode
just in case. And you don’t want that.

Head First: What do you mean?

Browser: Not all browsers agree on how to display
the older stuff, but we all do a pretty consistent job
with standard HTML. So if you’re using standard
HTML, tell me and you’ll get more consistent results
in all browsers.

Head First: Oh, so you can end up using the
quirks mode rules on the pages written using new
HTML?

Browser: Exactly. If I don’t know you’re writing
new HTML, I go into my quirks mode and do the
best I can. But, you don’t want that because all those
“quirks” mean that your pages might end up looking
a bit off, when they could have looked beautiful if I’d
only known you were using new HTML.

Head First: Ahh. So, what’s the solution to this
mess? We definitely want our Web pages to look
good.

Browser: Easy. Tell me up front which version of
HTML you’re using. That way I know which rules
to use to display your page.

Head First: Got it. Thank you, Browser!

This week’s interview:
Why do you care which version
of HTML you’re displaying?

 The Browser Exposed

browsers and quirks mode

standards, compliance, and all that jazz

you are here � 229

We can’t have your pages putting
the browser into Quirks Mode!
We’ll all be better off for telling the browser up front: “Hey, we’re
an HTML page that gets it. We’re standards compliant. This is
HTML 4.01, baby!”

When you do that, the browser knows exactly how to handle your
page and (at least on any browser you’d care about) the page is
going to display as you’d expect.

So, how do you tell the browser? Easy, you just add one line to the
top of your HTML files. Here’s what the line looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>

Notice that this is NOT an HTML
element. It has a “!” after the “<”
at the beginning, which tells you this
is something different.

This is all tricky to type in with all the slashes, quotes, and so on. So
instead of typing it in, you can copy and paste this text from the file
“doctype.txt”. You’ll find this file in the “chapter6” folder when you
download the files for the book from the headfirstlabs.com Web site.

Tells the
 browser this

is

specifyin
g a docum

ent

type for
 this pag

e.

You can type this all on
one line, or if you want,
you can add a return
where we did. Just
make sure you only press
return in between the
parts in the quotes.

Okay, we know that is one butt ugly line, but keep in mind, it is
written for your browser, not you. This line is called a document type
definition because it tells the browser the type of the document, and in
this case, the document is your HTML page. Let’s just take a quick
peek at this line to get a feel for it. But again, this is browser speak,
not something you need to know well or memorize. Just throw it in
the top of your HTML and you’re ready to go.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>

This means
that <html>
is the root
(first) element
in your page.

This points to a file that identifies
this particular standard.

This part says we’re using
HTML version 4.01 and
that HTML markup is
written in English.

This just means
the HTML
4.01 standard
is publicly
available.

We’ll talk
more about
the word
transitional
in a bit....

230 Chapter 6

Q: What exactly do you mean when you say we’re
“compliant,” or that we’re writing “standard HTML?”

A: “Standard HTML” just means the version of HTML that
everyone has agreed is “the standard,” and right now that is HTML
4.01.
Being compliant is just another way of saying your pages meet the
standard.

Q: And why should I care about standard HTML, or about
making my pages compliant? They look fine to me.

A: Do you really want to go to all the trouble of writing Web
pages and then styling them with CSS, only to have them display
inconsistently (which is another way of saying “display badly”) in
some browsers? By making them compliant, you’re assuring that
your pages are going to display as consistently as possible in a
variety of browsers.

Q: How do I make sure my pages are compliant, then?

A: You need to do a couple of things, which we’re going to go
through, but we’re also going to make use of a freely available tool
on the Web that checks your pages to make sure they’re compliant.

Q: So, we’re calling HTML 4.01 the standard?

A: Yes, HTML 4.01 is the HTML standard most widely supported
by browsers. The Web keeps moving ahead, though, so we’ll talk in
the very next chapter about what’s new in the standards world.

Q: What happens when there is an HTML 5?

A: Good question. It’s likely that there won’t be an HTML 5
because the new standard for writing Web pages is XHTML. You’re
going to learn all about XHTML in the next chapter. The good news
is that you’re already in great shape to use either HTML 4.01 or

XHTML, so no matter which standard you choose, it will be easy for
you to write Web pages based on what you’ve learned so far.

Q: Let me get this straight: if I throw the document type
definition in the top of my HTML file, then the browser sees it
and can make certain assumptions about my HTML, which is a
good thing?

A: That’s right. The document type definition tells your browser,
“I’m using HTML 4.01.” When the browser sees that, it assumes
you know what you’re talking about and that you really are writing
HTML 4.01. That’s good because the browser will use the layout
and display rules for HTML 4.01, and not use quirks mode.

Q: What if I tell the browser I’m using HTML 4.01, and I’m
not?

A: The browser will figure out that you’re not really writing
HTML 4.01 and go back to quirks mode. And then you’re back to the
problem of having the various browsers handle your page in different
ways. The only way you can get predictable results is to tell the
browser you’re using “HTML 4.01” and to actually do so.

Q: I really don’t have to worry about what’s in the document
type line? Just throw it on my page?

A: Yup, that’s pretty much the case. Although there is one
gotcha: there are a few different document types you might want to
know about and we’re going to talk about another one of those in
just a sec. But, in terms of using the document type, just throw it in
the top of your file. Once you’ve got the DOCTYPE in there, no one
worries on a daily basis about what it has in it.

Q: The word “transitional” in that document type worries
me a bit. I thought this was a standard, but it sounds less than
standard if it is “transitional.”

A: Good catch, and you’ve got good instincts. If you’ll hold on a
few pages we’ll get to the bottom of that question.

there are no
Dumb Questions

html, standards, and document types

standards, compliance, and all that jazz

you are here � 231

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>
<html>
 <head>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring Your Own Web Server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Adding the document type definition
Enough talk, let’s get that DOCTYPE in the HTML. You can attempt

to type it in yourself (we hope you have really good eyes), or you can
copy and paste it from the file “doctype.txt” in the “chapter6” folder.

Remember, you can type it all on one line, or
you can hit return between the quoted parts
like we’ve done here.

Okay, I think we’ve got
it now. Let’s get that

DOCTYPE in the lounge files.

Here’s the
DOCTYPE line. Just
add it as the very
first thing in the
“lounge.html” file.

232 Chapter 6

Wow, no difference. Well, we didn’t
really expect any because all the
DOCTYPE does is let the browser
know for sure you’re using HTML 4.01.

The DOCTYPE test drive
Make the changes to your “lounge.html” file in the

“chapter6/lounge” folder and then load the page in your browser.

Add a DOCTYPE to the “directions.html” and “elixir.html” file as well. Go
ahead and give them a good test. Just like “lounge.html”, you won’t see
any fireworks (but you might sleep a bit better tonight).Exercise

testing with a document type

standards, compliance, and all that jazz

you are here � 233

See, piece of cake.
The DOCTYPE is in our
pages and working fine.

Jim: Yeah, really easy. But here’s what I still don’t get: we put this
DOCTYPE at the top of our file to tell the browser our page is HTML 4.01
but that doesn’t ensure that the file really is HTML 4.01. We could have
made a mistake. So what’s the point?

Frank: You’re right, because your promise to the browser is only good if
you actually have written perfect HTML 4.01. That’s what I was going to
get to next. What we can do is make use of a free online service that can
look at a page and tell us if it’s compliant.

Jim: Really? How does that work?

Frank: Well, this service first looks at the document type and then checks
all your HTML and makes sure it’s actually correct... like checking to make
sure you’re spelling your tag names right, your elements are nested properly,
that your inline elements are inside block elements and so on. It’s called a
validator.

Jim: Wow, and this is free? Who provides this service?

Frank: The guys who came up with the standards. They’re called the
World Wide Web Consortium, or W3C for short.

Jim: This sounds like the answer to writing compliant HTML. But how do
I know all those things you just mentioned, like what elements go inside what
elements?

Frank: Let’s check out the validator first and then we’ll come back to that...

234 Chapter 6

Meet the W3C validator

There are three ways you
can check your HTML:

The W3C validator is located at http://va
lidator.w3.org.

(1) If your page is on the Web, then
you can type in the URL here,
click the “Check” button, and the
service will retrieve your HTML
and check it.

(2) You can click “Choose file” (or
“Browse” if you’re using Windows)
and choose a file on your computer.
When you’ve selected the file, click

“Check”, and the browser will upload
the page for the service to check.

(3) Or, copy and paste your
HTML into this form. Then
click “Check” and the service
will check your HTML.

Let’s give the validator a spin and have it check out the
lounge files. To follow along, just point your browser to
http://validator.w3.org.

validating your html

standards, compliance, and all that jazz

you are here � 235

Validating the Head First Lounge

We’re going to use option (3) to validate the “lounge.html”
file. That means we need to copy and paste the HTML from

“lounge.html” into the form at the bottom of the W3C validator
Web page; keep following along and give it a try...

We’re using method (2) here. We clicked on the “Choose File” button and browsed to
the file “lounge.html”, which now has the DOCTYPE for Transitional HTML 4.01 at
the top. We’re ready for the big moment... will the Web page validate? Bets anyone?
Click “Check” (and turn the page) to find out...

Feel free to use method (1) or
(3) if it’s more convenient.

236 Chapter 6

Houston, we have a problem...
That red on the page can’t be good. It doesn’t look
like the page validated. We’d better take a look...

This doesn’t look bad. It looks like in
HTML 4.01 we have to put an alt
attribute in the element.

We failed the
validation. It
looks like there
is one error.

This must be
the error.

Because the W3C frequently revises the

validator, you may not see exactly the

same error messages. No worries, just

keep following along because all the stuff

in the next few pages is important, even if

you don’t see the error above.

The W3C is constantly
revising the validator. Watch it!

the alt attribute is required

standards, compliance, and all that jazz

you are here � 237

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>
<html>
 <head>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring Your Own Web Server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Why do you think the alt attribute is required in HTML 4.01?

brain
power?

Fixing that error

You know the alt attribute;
add it into the element.

Okay, this looks pretty simple to fix. You just need to add an
alt attribute to your elements in HTML 4.01. Go
ahead and open “lounge.html”, make the change, save, and
then let’s try to validate again.

238 Chapter 6

We’re not there yet...
Hmm; it looks like we’re now “tentatively valid HTML 4.01 Transitional.” That
sounds like “close, but no cigar.” Let’s take a look:

There’s definitely some
issue with the lounge Web
page, but what the heck
does this mean??

It looks like
if we fix the
problem above
we’ll have valid
HTML.

So, we’ve got a perfectly valid HTML file in terms of how we’ve
written the HTML, but it looks like we have to tell it something
about our “Character Encoding”. To solve that we’re going to have
to find out what the heck it means...

tentatively valid html

standards, compliance, and all that jazz

you are here � 239

See, we’re getting this
error message that

the validator can’t find a
character encoding.

Frank: The character encoding tells the browser what kind of
characters are being used in the page. For instance, pages can be
written using encodings for English, Chinese, Arabic, and lots of other
types of characters.

Jim: What’s so hard about figuring out how to display a character?
If there’s an “a” in the file, then the browser should display an “a”.
Right?

Frank: Well, what if you’re using Chinese in your pages? It’s an
entirely different “alphabet” and it has a heck of a lot more than 26
A-Z characters.

Jim: Oh. Good point.... But shouldn’t the browser be able to tell the
difference? Those other languages look nothing like English.

Frank: No; the browser is just reading data. It could assume it was
getting English-language characters, but what if it’s not? The character
encoding takes the guesswork out of it.

Jim: We’ve had the site up for a long time; why is this an issue now?

Frank: Because the validator is saying “Hey, if I’m going to validate
your page, you’d better tell me up front what characters you’re going
to use!” And think about it, we’d want to do that for the browsers out
there anyway. Don’t stress, we just need to add one more line to our
HTML, called a <meta> tag. I should have thought of this sooner.

Jim: Got any other surprises for us? I really thought our Web page
would validate after we put the document type definition in our file...

Frank: I sure hope there are no more surprises! Let’s get the <meta>
tag in there and find out.

240 Chapter 6

using <meta> to specify a content type

Adding a <meta> tag to specify the content type

<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>

Most of you reading this book are probably using English or Western-European
languages (the so-called “Latin” languages), so you’ll need a <meta> tag in your
HTML that looks like this:

Just like other HTML tags, the
<meta> tag has attributes.

“meta” means we’re

going to tell th
e

browser something

about the page
...

You’re going to throw this line in as the first thing inside the <head> element of your
HTML. This tag tells any browser the content type of your file, and what kinds of
characters are used to encode it. Let’s look at the <meta> tag in a little more detail...

And we’re going to
tell it something
more about the
content type of
the page.

First we tell it that this is an HTML
file. This is a bit redundant, because the
browser already knows that (remember we
told it that in the DOCTYPE as well).

The content attribute
is where we specify
the content type
information.

<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>

Here’s the new part; this tells
the browser that we’re using
the ISO-8859-1 character
encoding.

Q: DOCTYPES, <meta> tags... ugh, do I need to really
remember all this to write Web pages?

A: Specifying a DOCTYPE and a <meta> content tag
are kind of like taxes: you gotta do them to be compliant. Look
at it this way: you already understand them more than 99% of
the Web page writing population, which is great. But at the end
of the day, everyone just puts the DOCTYPE and <meta> tag in
their HTML and moves on with life. So make sure you’ve got the
right DOCTYPE and <meta> tag and then go do something much
more fun.

Q: ISO-8859-1?

A: Work with us here. It’s like WD-40; you don’t worry about
why it’s called that, you just use it.
ISO-8859-1 is the character encoding for “Latin-1” characters,
which can represent almost all the European languages. If
you’re writing in another language, check out the information on
character encoding at
http://www.w3.org/International/O-charset.html.

there are no
Dumb Questions

Notice that this whole
string is the value of the
content attribute.

standards, compliance, and all that jazz

you are here � 241

Making the validator (and more
than a few browsers) happy with a
<meta> content tag...
Okay, you know the plan. You just need to type the <meta> content type
line right into your HTML. Let’s first add it to the “lounge.html” file:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/html4/loose.dtd”>
<html>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring Your Own Web Server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Want to place another bet? Is this going to validate? First, make the
changes to your “lounge.html” file, save it and reload it into your
browser. Once again, you won’t notice any change, but the browser will.
Now let’s see if it validates...

Here’s the <meta> tag. We’ve added it to the <head> element above the <title> element.

Always add this line
above any other
elements in the
<head> element.

242 Chapter 6

Just like before, upload your “lounge.html” HTML file to the W3C validator Web
page at http://validator.w3.org. Or, you can validate by copying and pasting your
HTML into the form, or even transfer the files to your Web site and give the validator
your URL, whichever you prefer. Once you’ve done that, click the “Check” button...

“Passed validation”,
you’re golden!

Red was bad, green’s
got to be good.

Like it says, you told the browser
(and the validation service) that you
are using HTML 4.01 Transitional,
and the service was able to validate
your page successfully.

Third time’s the charm?

See! That was nothing
and now we’re writing valid

HTML 4.01. I think we’re going to
be talking BONUS when the boss

sees how fast we’re moving.

testing the meta tag

standards, compliance, and all that jazz

you are here � 243

Okay, it’s been more than
a “few pages” since you said

you were going to talk about what
“transitional” means. What’s with this

transitional stuff? If we’re writing
“standard” HTML 4.01, why is it

transitional?

Imagine you’ve got a Web site with hundreds of Web
pages, all written in nonstandard HTML. You’d like to
improve the site and get all that HTML up to the 4.01
standard, but you’re using lots of old legacy stuff from
back in the 2.0 and 3.2 days of HTML.

What do you do? Use the HTML 4.01 Transitional
DOCTYPE, which allows you to validate your pages but
still permits some of the legacy HTML. That way, you
can be sure you don’t have any outright mistakes in your
markup (like typos, mismatched tags, and so on) but you
won’t have to rework all your HTML to get it to validate.

Then, after you’ve removed all the legacy HTML, you’re
all ready for the strict document type, which ensures you
have a fully compliant, standardized Web site.

There are actually two DOCTYPEs, one
for those transitioning to HTML 4.01,
and a more strict DOCTYPE for those
who are already there.

244 Chapter 6

Okay, so it gives us
a transition point between

old style HTML and standard
HTML 4.01. But why are we
using it? Why didn’t we just

start with strict?

That would have been a perfectly valid
approach. But, while we’ve been writing pretty
decent HTML in this book, we’re just now
learning how to write it in a way that is correct
and standardized. Right? And, as you can see,
it took us a few steps to get there, what with
all the DOCTYPEs and <meta> tags and the
alt attribute.

But now that we’re there, and we’ve got
validated transitional 4.01 HTML, we’re in a
good position to start using the strict form of
HTML. Let’s give strict a try and then we can
talk a little more about transitional versus strict.

We certainly could have.

questions about strictness

standards, compliance, and all that jazz

you are here � 245

I think we’ve been pretty
darn strict in our HTML.
Let’s throw the strict

DOCTYPE in and see what
happens.

To move from transitional HTML 4.01 to strict, we
change the DOCTYPE to the strict version. Once we’ve
done that, the validator (and browsers) will assume we’re
playing by stricter rules that don’t allow some of the
legacy HTML. We’ll talk about those rules in a sec, but
for now let’s give the strict DOCTYPE a try. To do that,
we’ll start by taking a quick look at the DOCTYPE:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

Remember this URL defines what
belongs in strict HTML.

The word “Transitional” is gone.
This stuff is the same as
the transitional DOCTYPE.

No big differences here. The “transitional” word is
gone and we have a different URL that defines the strict
version of HTML 4.01. Let’s replace the transitional
DOCTYPE with the strict and try to validate.

Overall this all looks
remarkably similar.

Here’s the strict version of
the HTML 4.01 DOCTYPE.

246 Chapter 6

Changing the DOCTYPE to strict

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring Your Own Web Server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Open your “lounge.html” file again. To change from transitional to
strict, you just need to do two things to the DOCTYPE: delete the word

“Transitional” and, in the URL, change “loose.dtd” to “strict.dtd”. Or if
you like, you can delete the old line and type the new one in.

First, remove the word
“Transitional”.

That’s it. Just make sure your DOCTYPE looks exactly as it does above.

Now all that remains is to ask the validator if our HTML is compliant with
the strict version of HTML 4.01. Use the validator again to check the page,
after making sure your page has the changes above.

And then replace “loose.dtd” with “strict.dtd”.

making your html strict

standards, compliance, and all that jazz

you are here � 247

Do we have validation?

Let’s look at the error message: it
looks like strict HTML doesn’t like
where we put the element.
But transitional was okay with it...
sounds like maybe the nesting rules
changed in strict HTML?

“I think we’ve been
pretty darn strict...”

How’s this for strict?

Uh oh, red again. That can’t be good.

It looks like we’re not valid under
the strict rules, but why?

248 Chapter 6

Come on guys, no fighting. I
see your problem. You’re not

using the right nesting for strict
HTML 4.01. But it’s easy to fix.

Joe: We’re not?

Judy: No. Look here, you’ve got an element that’s nested in the
<body> element. That was okay in older versions of HTML, and 4.01
transitional lets it slide, but in the current standard, inline elements belong
inside block elements.

Joe: Oh right, is an inline element.

Judy: Yup. It’s easy to fix though; all you have to do is stick your image in a
block element like <p> and you’ll be good to go.

Joe: I guess that’s clear if you look at that error message... the elements I
recognize are all block elements. Like <h1>, <p>, etc.

Judy: Exactly.

Joe: But I don’t see all the block elements we’ve used... for instance,
<blockquote> seems to be missing from the list. That’s a block element,
right?

Judy: Good point. You can’t stick the element into just any block
element in HTML 4.01 strict. <blockquote> is an example of a block
element that you can’t nest inline elements directly inside.

Joe: Well, how are we supposed to know if we’re nesting things properly before
we try to validate – is there a list of “nesting rules” somewhere?

Judy: There is, but you can remember most of them using common sense
once you’ve looked at the rules.

Frank: Judy, are there any other places where we didn’t nest things properly?

Judy: I don’t see any... the rest of this looks pretty good to me. But that’s why
we have validators. They never miss a thing. Humans do.

Frank: Okay, well let’s fix it and get this page validated. I’m ready to see the
green bar of success here, guys.

Judy: Good luck and good work. It looks like you’ve almost got it.

Judy

diagnosing why the html isn’t strict

standards, compliance, and all that jazz

you are here � 249

Fixing the nesting problem

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
 <head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>
 <title>Head First Lounge</title>
 </head>
 <body>
 <h1>Welcome to the New and Improved Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring Your Own Web Server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

So it looks like strict HTML 4.01 prefers that images, which are
inline elements, be nested inside a block element, like a paragraph or
a heading. That’s a simple change to make. Open your “lounge.html”
file and add a <p> element around the element.

Now, the image “drinks.gif” is safely
nested inside a <p> element.

All our other inline elements,
like <a> and , are already
inside block elements - these
paragraphs.

Once you’ve done that, save and reload the page in your
browser. You’ll see it doesn’t really affect the look of the page.
Why? Because the heading above the image and the paragraph
below are already block elements with linebreaks below and
above them, respectively. So the <p> element around the image
doesn’t actually add any new linebreaks or spacing.

250 Chapter 6

One more chance to be strict...

It works! The big green
badge of success.

You know the game. Ask the validator to give your “lounge.html”
file another try. Let’s see if we’re worthy...

And we’re HTML
4.01 Strict.

Can you say “HTML
Superstar?” Oh yeah,

bring on that strict 4.01.
We’re ready. Is that “bring it on

as long as we have Judy
around to bail us out?” Come
on guys, we’ve gotta figure
out what we can and can’t

do in HTML 4.01.

a successful strict test

standards, compliance, and all that jazz

you are here � 251

Your turn. Add the strict DOCTYPE and the <meta> tag to
“directions.html” and “elixir.html”. Try validating them – do
they validate? If not, fix them so that they do.

Q: Okay, I think I get all this, and
it was kind of fun having the validator
check my HTML, but SO WHAT? Again,
what is all this “compliance” really
getting me?

A: How does happier customers
sound? If you know your HTML is valid,
then it’s more likely that your Web pages
will work consistently in a wide variety of
browsers, which is going to give your Web
page users a better experience. There
are a few other benefits: Web pages with
compliant HTML load faster and work
better on other devices that are now
being used to surf the Web (like TVs and
phones). They’re also more accessible to
the visually impaired who are using aural
screen readers.

Q: So can you explain the error in
detail? I want to understand exactly
what it means.

A: The error was caused by the
 element not being nested inside
a block element. Imagine the browser is
reading through your HTML, and sees
an element where it expected

a block element. The first thing it does
is say, “Hey, I expected a block element
here.” It keeps reading, and then gets to
the end of the element (which,
since is an empty element,
happens as soon as it sees the “>” at the
end of the tag) and says, “Hey
you can’t be ending an element
here because there shouldn’t be an
 element here to start with.”
Also, you might find that you see multiple
error messages from one mistake. Just
take it one error message at a time, fix
your mistake, and you’ll often find you
eliminate more than one error message in
the process.

Q: Are all the validator’s error
messages so difficult to understand?

A: Generally, yes, the error
messages can be a little difficult to
decipher. This is a piece of software
telling you what is wrong, not a human
or a Head First book. Remember, the
validator doesn’t know what you meant to
do and can only attempt to decipher and
indicate errors in what you actually did.
Most of the time, it will point you to the
right line in your HTML where your error
is occurring, which is half the battle. Then

hopefully you’ll spot your mistake.
After reading these error messages for a
while you’ll start to get the hang of them
and often know what they are referring
to, even if the validator doesn’t tell you
specifically.

Q: Why are all the element
names listed in that error message in
uppercase? I thought element names
were written in lowercase.

A: Good question. HTML actually
allows element names to be uppercase
or lowercase, or even mixed case. You
could write or even if you
wanted. However, the W3C is changing
the rules, so in the future element names
will all be lowercase. So, while technically
the validator for Strict HTML 4.01 still
allows (and displays) uppercase tags,
we’re only using lowercase so you’ll get
into the habit of using only lowercase.
This means you won’t have to update your
tag names down the road (and that means
less work for you). And when we say
“down the road,” we actually mean in the
next chapter.

there are noDumb Questions

Exercise

252 Chapter 6

You’ve been in Webville for a few chapters now. Don’t you think it’s about time you
learn the local rules of the road? Luckily, Webville has prepared a handy guide to
using strict HTML 4.01. This guide is meant for you – someone who is new to
Webville. It isn’t an exhaustive reference, but rather focuses on the more important
common sense rules of the road. And you’ll definitely be adding to the knowledge in
this guide as you get to know your way around Webville in coming chapters. But for
now, take one – they’re FREE.

Strict HTML 4.01, grab the handbook

understanding how to be strict

standards, compliance, and all that jazz

you are here � 253

The <html> element: don’t leave home without it.
Always start each page with a DOCTYPE, but following
that, the <html> element must always be the top, or
root, element of your Web page. So, after the DOCTYPE,
the <html> tag will start your page and the </html> tag
should end it, with everything else in your page nested
inside.

Remember to use both your <head> and your
<body> for better HTML.
Only the <head> and <body> elements can go directly
inside your <html> element. This means that every
other element must go either inside the <head> or the
<body> element. No exceptions!

Feed your <body> only wholesome block elements.
You can put only block elements (<h1>, <h2>, ..., <h6>,
<p>, <blockquote>, and so on) directly inside your
<body> element. All inline elements and text need to be
inside another block element before they can go in the
<body> element.

What’s a <head> without a <title>?
Always give your <head> element a <title> element.
It’s the law. Failure to do so will result in HTML that isn’t
compliant. The <head> element is the only place you
should put your <title>, <meta>, and <style> elements.

Webville Guide to Strict HTML 4.01
Traveling on the information super-highway can be dangerous if you don’t
know the rules. In this handy guide, we’ve boiled strict HTML 4.01 down
into a common sense set of rules, starting with the major rules first:

Keep block elements out of your inline elements.
The only things you can put in an inline element are text
and other inline elements. Block elements are not allowed
under any circumstances.

254 Chapter 6

Keep block elements out of your <p> element.
Paragraphs are for text, so keep block elements out
of your paragraphs. Of course it is perfectly fine to use
all the inline elements you want in them (, <a>,
, , <q>, and so on).

Lists are for list items.
Only the element is allowed in the and
elements. Why would you want to put anything other
than a list item in an unordered or ordered list anyway?

Who knew? The <blockquote> only likes
block elements.
The <blockquote> element requires one or more
block elements inside it. While it’s common to see text
directly inside a block quote, that isn’t up to code here
in Webville. Please always put your text and inline
elements inside block elements before adding them to
a <blockquote>.

Go ahead, put whatever you want in a list item.
Webville has very liberal laws when it comes to the
element: you can put text, inline elements, or block
elements inside your list items. Oops! We weren’t

up to the 4.01
standard when
we did Tony’s
<blockquote> in
Chapter 3. That
text should have
been put inside a
<p> first.

Webville Guide to Strict HTML 4.01 Continued
Now that you’ve got the major rules down, let’s look at some of the finer
points of the law.

Be careful about nesting an inline element
inside another inline element.
While you can nest just about any inline element in
another, there are a couple of cases that don’t make
sense. Never nest an <a> element inside another <a>
element because that would be too confusing for our
visitors. Also, empty elements like provide no
way to nest other inline elements within them.

strict html fine points

standards, compliance, and all that jazz

you are here � 255

Q: That wasn’t too bad; I was expecting pages
of rules I had to remember. Can I really write strict
HTML 4.01 just following these rules?

A: These rules will get you a long way, but
remember, you haven’t learned everything about HTML
yet, so there are going to be a few new things that
you’ll need to keep in mind too. That said, there is no
reason to memorize all these rules. Your common
sense and this guide is a good start, and from there
you can also consult an HTML reference or just ask the
validator if your HTML is valid (you should anyway!)
when you get into some tricky areas.

Q: So whenever possible, always go with
strict?

A: It depends. Just throwing up a page that three
people in the world will see? Hey, as long as it looks
good in all your browsers, who cares. But if you’re
doing something a fair number of people will visit,
you’ll be better off keeping your HTML up to standards
and validating it. Should that be the transitional or
strict standard? Well, the world is moving in the
strict direction, so you can pay now or pay later, but
eventually, it will be in your best interest to go strict.
When you’re starting fresh, strict is just as easy. And
if you use strict, moving to XHTML will be a lot easier,
and we’re going to do that in the very next chapter and
use XHTML in the rest of the book.

Q: So I get that putting an <a> inside an <a>
is confusing and wouldn’t work anyway. But I can
really put an inside an ? What’s the
point of that?

A: In principle, someone might want to put
emphasis on emphasis. That seems silly, but since it
doesn’t cause problems, like nested <a> elements
do, the standard just says, if you want to do it, you
can. What about a <q> within a <q>, would that ever
make sense? Sure, you might quote someone who

quotes someone else. So, in general you can nest
any of the inline elements inside other inline elements.
Some of these make more sense than others, but the
<a> element is the only one that you can’t nest inside
itself. Remember too, that the element is
empty, so you can’t nest anything inside it.

Q: So why can’t I put text directly in a
<blockquote>? A list item can have text or a block
element. That seems inconsistent.

A: ’Cause the standard says so. Just kidding.
You’re right, it does seem inconsistent, but it’s all
based on the intent of the element. Take the <p>
element, for instance. It’s for one text paragraph, so
of course no other block elements are allowed in it.
<blockquote>? It’s for quoting large portions of text
from another source, which might include headings,
paragraphs, whatever. So the point is to “quote
blocks.” List items? They’re like the contortionists of
the element world – they have to be able to hold simple
text, large bits of text like paragraphs or even other
lists, so they can handle everything.

Q: I noticed the validator said
the standard requires the “alt”
attribute on elements. Are
there any other attributes that are
required?

A: Wow, good catch. Yes, the alt attribute
is required on images for accessibility, so that, for
instance, the visually impaired can know what the
image is, even if they can’t see it. The other required
attribute is the src attribute on an image – what good
is an element if it doesn’t point to an image?
There are also some attributes that were okay with
HTML 3.2 that you can’t use anymore with strict HTML
4.01. Why? Because most of them affected the way
Web pages looked, and you’re supposed to be using
CSS for that kind of styling (more on this topic in just a
couple of chapters).

Validator

Webville’s a friendly
place. Forget a rule? Just
run it by me, the Validator.

I’ll get you pointed in the
right direction.

there are noDumb Questions

256 Chapter 6

Hey there, Strict. You here to talk about how
much you love frustrating Web page writers?

Oh, you know, all those Web page writers out
there who are struggling to get their Web pages
to validate with your strict DOCTYPE. You’re
pretty tough, you know.

Tough love?

Oh, please. Not everyone wants to be strict all
the time.

Not everyone can, or wants to, transition their
entire Web site to the strict standard overnight,
you know. Sheesh, I’m playing an important
role here.

How is it future-proofing anything?

What’s that supposed to mean?

It’s tough love, man.

Yeah. Sooner or later any page of importance
really needs to move to strict. You may think
I’m tough now, but you’ll love me later.

Huh? You encourage people to stay behind
the times with all those old tags and attributes.
You’re just a crutch.

The way I see it, people get to say they’re
“standard HTML” when in reality, they’re still
relying on old habits. I say, strict is the way to
go. That’s the only way to future-proof a Web
site.

Hey man, some of your tags have been
“deprecated.” Do you know what that means? It
means they’re going away. By going strict now,
it’ll be a lot easier to update to the next version
of HTML.

Tonight’s talk: Transitional and Strict try to
recruit followers.

Transitional Strict

pondering strict versus transitional

standards, compliance, and all that jazz

you are here � 257

Transitional Strict

So, you’re just going to leave behind all those
millions of Web pages out there that still use older
versions of HTML? Ignore them completely? I
bet you use some nonstrict Web pages yourself.
How ’bout I come over and check your history list?

Not everyone wants to be on the cutting edge,
you know. Some people like using those old tags.
Other people want to take things a bit slower,
make sure they understand exactly what the new
standard is before jumping in and willy-nilly
changing their pages.

You know, you really should be nice to me; I’ve
helped a lot of pages move to strict.

True, they can just start strict and won’t need me.
Anyway, I’m going back to my kinder and gentler
method of moving pages to strict. You can go back
to cracking your whip.

Yeah, yeah. Did you bother telling the readers that
by the end of the chapter, you’ll be obsolete too?

Oh no, you’re not coming near my browser
history; keep your grubby paws off it. You’re
right, there are a lot of useful pages out there
that need to be updated, and maybe they never
will be, but we’re trying to build a better Web.
So stop encouraging people to stay behind the
times.

Willy-nilly? There’s nothing willy-nilly about
4.01. It’s actually cleaner and simpler to
understand than the older HTML versions.
And, if people write their Web pages correctly,
they’ll be well prepared to have their pages
work well in browsers for a long time.

Okay, it is helpful for people to be able to mark
their pages as transitional until they learn the
new stuff. All I’m saying here is transitional
shouldn’t be used as a crutch. And anyone
reading this book who is new to HTML and
CSS has no need to be transitional.

Hey! Watch it. Pages will be thanking me down
the road for keeping them strict.

Uhhhh....

258 Chapter 6

One more question
about this transitional

stuff. What is all this old
markup that isn’t allowed in

strict? Have we seen any
examples?

Even though we haven’t been including a
DOCTYPE or a <meta> tag, and we’ve
been a little lazy on the image nesting rules,
throughout this book you’ve been writing
HTML that is very close to the standard. So,
you haven’t had much opportunity to see the
phased out elements and attributes.

Want to see some? Just visit a few Web pages
with your browser and choose “View Source”
from the “View” menu (your browser’s menus
may differ). Any tag or attribute that looks
like it is used to alter the display of the page is
most likely deprecated in HTML 4.01 (because
that is now CSS’s job). It doesn’t hurt to know
a little about these legacy elements, because
you are quite likely to run into some of them
now and then. Let’s take a quick look...

No, we’ve been writing mostly
strict HTML all along.

That’s a good thing, because
sometimes unlearning a bad
habit is the hardest part of
a new standard.

html and deprecated markup

standards, compliance, and all that jazz

you are here � 259

<html>
<head>
 <title>Webville Forecast</title>
</head>

<body bgcolor=”tan” text=”black”>

 <p>
 The weather report says lots of rain and wind in store for
 Webville today, so be sure to
 stay inside if you can.
 </p>

 Tuesday: Rain and 60 degrees.
 Wednesday: Rain and 62 degrees.

 <p align=right>
 Bring your umbrella!

 <center>This page brought to you buy Lou’s
 Diner, a Webville institution for over 50 years.
 </center>

</body>
</html>

Here are some attributes that
controlled presentation. bgcolor sets
the background color of the page, and
text sets the color of the body text.

Font changes were made with the
 element and its face attribute.

You could get away without some
closing tags, like and </p>.

Here are two ways to align text.
Right align a paragraph, or
center a piece of text.

Text size was controlled with
the element, using
the size attribute.

We did some digging and found an HTML 3.2 page
that contains some elements and attributes that are no
longer part of the standard, as well as a couple of common
mistakes that are no longer allowed in strict HTML 4.01.

Or even without double quotes around
attribute values.

HTML
Archeology

260 Chapter 6

Below, you’ll find an HTML
file. Your job is to play like
you’re the validator and locate
ALL the errors. After you’ve
done the exercise, look at the
end of the chapter to see if you
caught them all.

BE the Validator

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>
</head>
<body>

 <h1>Tips for Enjoying Your Visit in Webville</h1>
 <p>
 Here are a few tips to help you better enjoy your stay in Webville.

 Always dress in layers and keep an html around your
 head and body.
 Get plenty of rest while you’re here, sleep helps all
 those rules sink in.
 Don’t miss the work of our local artists right downtown
 in the CSS gallery.

 </p>
 <p>
 Having problems? You can always find answers at
 Head First Labs.
 Still got problems? Relax, Webville’s a friendly place, just ask someone
 for help. And, as a local used to say:
 </p>
 <blockquote>
 Don’t worry. As long as you hit that wire with the connecting hook
 at precisely 88mph the instant the lightning strikes the tower...
 everything will be fine.
 </blockquote>
</body>
</html>

Use the validator to check
your work once you’ve done
(or if you need hints).

test your knowledge of strict

standards, compliance, and all that jazz

you are here � 261

HTML 4.01 is the HTML nn standard that is most
widely supported by browsers.
The World Wide Web Consortium (W3C) is nn
the standards organization that defines what

“standard HTML” is.
Many browsers have two modes for displaying nn
HTML: “quirks” mode for old HTML and
standards mode for HTML 4.01.
If you don’t tell the browser which version of nn
HTML you are using, many browsers will use
quirks mode, which may cause inconsistent
page display in various browsers.
The document type definition (DOCTYPE) is nn
used to tell the browser which version of HTML
your Web page is written in.
The strict DOCTYPE is used if you are writing nn
fully compliant HTML 4.01.
Use the transitional DOCTYPE if you are nn
transitioning HTML that still includes display-
oriented elements and attributes.

The <meta> tag in the <head> element tells nn
the browser additional information about a
Web page, such as the content type and
character encoding.
A character encoding tells the browser the nn
character set that is used in the Web page.
Most Western-European languages used on nn
computers today can be represented with the
ISO-8859-1 character encoding.
The nn W3C validator is a free online service that
checks pages for compliance with standards.
Use the validator to ensure that your HTML nn
is well formed and that your elements and
attributes meet the standards.
By adhering to nn standards, your pages will
display more quickly and with fewer display
differences between browsers.

Doh! We got it
wrong – the boss wants

us to go to strict XHTML, not
HTML. Help! That’s a whole

different language isn’t it?

 BULLET POINTS

262 Chapter 6

It’s been a heck of a chapter. Go ahead and grab a cup of your favorite
beverage, sit back, and strengthen those neural connections by doing this
crossword. All the answers come from the chapter.

1 2

3

4 5

6

7

8

9 10

11 12

13

14

15

Across

3. True or false: element names should be
lowercase.
4. Required in the <head> element.
6. Standards organization that supplies the
validator.
7. When your HTML meets the standards, it is
this.
8. Microsoft versus Netscape.
9. The boss wanted to standardize before adding
this to the HTML.
11. attribute required in standard HTML.
14. DOCTYPE that allows older HTML tags.
15. Definition that tells the browser and validator
what kind of HTML you're using.

Down

1. This service will check your HTML for
compliance with the standards.
2. In the old days of HTML, this was mixed with
HTML structure.
5. Reason alt attribute is required.
6. Victim of the browser wars.
7. The ________ encoding tells the browser which
set of characters you're using.
10. DOCTYPE that expects your HTML to be fully
compliant with 4.01.
12. If the browser can't tell what version of HTML
a page is, it uses this mode.
13. Tag that tells the browser about the page.

HTMLcross

are you awake?

standards, compliance, and all that jazz

you are here � 263

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
<head>
 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1”>
</head>
<body>

 <h1>Tips for Enjoying Your Visit in Webville</h1>
 <p>
 Here are a few tips to help you better enjoy your stay in Webville.

 Always dress in layers and keep an html around your
 head and body.
 Get plenty of rest while you’re here, sleep helps all
 those rules sink in.
 Don’t miss the work of our local artists right downtown
 in the CSS gallery.

 </p>
 <p>
 Having problems? You can always find answers at
 Head First Labs.
 Still got problems? Relax, Webville’s a friendly place, just ask someone
 for help. And, as a local used to say:
 </p>
 <blockquote>
 Don’t worry. As long as you hit that wire with the connecting hook
 at precisely 88mph the instant the lightning strikes the tower...
 everything will be fine.
 </blockquote>
</body>
</html>

<title> should be
in the <head>.

No alt attribute.

Block element inside a <p>.

<blockquote> only accepts block elements directly in it.

Inline element at top level of <body>.

Below, you’ll find an HTML
file. Your job is to play like
you’re the validator and
locate ALL the errors. Here’s
the solution.

BE the Validator

Exercise
Solutions

264 Chapter 6

V
1

S
2

A T
3

R U E

L Y

T
4

I T L E A
5

D E W
6

3 C C

A E C

T B C
7

O M P L I A N T E

O D H S

B
8

R O W S E R W A R S S

V R C
9

S
10

S I

E A
11

L T T Q
12

B

M
13

L C R U I

E O T
14

R A N S I T I O N A L

D
15

O C T Y P E E C R I

A E R T K T

R S Y

Across

3. True or false: element names should be
lowercase. [true]
4. Required in the <head> element. [title]
6. Standards organization that supplies the
validator. [w3c]
7. When your HTML meets the standards, it is
this. [compliant]
8. Microsoft versus Netscape. [browserwars]
9. The boss wanted to standardize before adding
this to the HTML. [css]
11. attribute required in standard HTML. [alt]
14. DOCTYPE that allows older HTML tags.
[transitional]
15. Definition that tells the browser and validator
what kind of HTML you're using. [doctype]

Down

1. This service will check your HTML for
compliance with the standards. [validator]
2. In the old days of HTML, this was mixed with
HTML structure. [style]
5. Reason alt attribute is required. [accessibility]
6. Victim of the browser wars. [webdeveloper]
7. The ________ encoding tells the browser which
set of characters you're using. [character]
10. DOCTYPE that expects your HTML to be fully
compliant with 4.01. [strict]
12. If the browser can't tell what version of HTML
a page is, it uses this mode. [quirks]
13. Tag that tells the browser about the page.
[meta]

Solution

exercise solutions

Your turn. Add the strict DOCTYPE and the <meta> tag to
“directions.html” and “elixir.html”. Try validating them – do
they validate? If not, fix them so that they do.
Solution: To validate “elixir.html”, you’ll have to add the
alt attribute to each of your elements.

Exercise
Solution

this is a new chapter 265

Putting an ‘X’ into HTML
7 moving to XHTML

We’ve been keeping a dirty secret from you. We know you thought you

bought an HTML book, but this is really an XHTML book in disguise. In fact, we’ve been

teaching you mostly XHTML all along. You’re probably wondering, just what the heck is

XHTML? Well, meet eXtensible HTML – otherwise known as XHTML – the next evolution of

HTML. It’s leaner, meaner, and even more tuned for compatibility with browsers on a wide

range of devices. In this short little chapter we’re going to get you from HTML to XHTML in three

simple steps. So, turn the page, you’re almost there... (and then we’re on to CSS).

You mean, there’s still
MORE HTML? Doesn’t
this EVER end? When do

we get to CSS?

266 Chapter 7

Joe: I can’t believe our manager knows what it is.

Frank: Hey guys, XHTML is the new standard for
HTML. There’s not going to be an HTML 5; the new
standard is XHTML 1.0.

Jim: That’s great, but do we need to be so cutting edge?

Frank: Actually, XHTML 1.0 has been around since
2000, so it’s not as cutting edge as it sounds.

Jim: What’s the “X” for? Because it sounds cool...
X-Men, X-Games, X-Files, gen-X, and now X-HTML?

Frank: Good one, Jim, but no. The X in XHTML is for
“eXtensible,” which is another way of saying it’s based on
something called XML.

Joe: Don’t the software guys use that to store some of our
data?

Frank: Yup, they sure do. XML stands for eXtensible
Markup Language.

Joe: Uh oh, I see some comparison to Hypertext Markup
Language coming.

Frank: Yes, exactly, Joe. XML is a markup language like
HTML, but you can use it to do all kinds of things beyond

“marking up” Web pages. Here, let me show you...

Jim
Joe

Frank

This is like déjà vu.
Weren’t we standing in exactly
the same place in the last chapter,
but moving to HTML 4.01? Now we

have to move to XHTML, and I
don’t even know what that is!

xml and html, and xhtml

moving to xhtml

you are here � 267

What is XML?

<recipe xmlns=”http://www.foodnetwerk.com/recipe” lang=”en” xml:lang=”en”>

 <name>Head First Lounge Iced Tea</name>

 <description>A brisk iced tea with a bit of a kick. We

 serve this all day long.

 </description>

 <ingredients>

 <ingredient measurement=”6 cups”>water</ingredient>

 <ingredient measurement=”2 bags”>black tea</ingredient>

 <ingredient measurement=”2 bags”>earl grey tea</ingredient>

 <ingredient measurement=”6 cups”>ice</ingredient>

 </ingredients>

 <preparation>

 <time duration=”10 minutes” />

 <step>Boil one cup of water in a pan, remove pan, and

 add tea. Let steep for five minutes.</step>

 <step>Add ice to a pitcher, then add tea,

 then 5 cups cold water.</step>

 <step>Mix well and serve. Give tea a

 quick shake in a shaker for an

 extra touch.</step>

 </preparation>

</recipe>

Okay, we’re going to take a big step back, for a page or two, and look at XML (not to be
confused with XHTML). This is going to be a fast ride, so hang on...

Let’s use HTML for comparison. With HTML you’re basically told what elements you
can and can’t use, right? So, if you want to just make up an element, like <cool>, to
wrap around content, you can’t do it, can you? Ah, but with XML, you can. If fact, you
can invent totally new markup languages using XML. Let’s look at an example:

Wow, look at these tags. The
<h1>s and <p>s are all gone, and
instead we’ve got <recipe>, <name>,
<description>, <ingredient>s,
<preparation>, and so on.

Just by looking at the
element names you can
tell this is a recipe.

Other than the element names, the way the
elements look and are used is just like HTML
(opening tags, closing tags, and so on). Think about how you would

create a Web page using HTML
to represent the recipe. How
would that be different from
using XML?

brain
power?

This empty element looks
a little strange. We’ll come
back to that in a bit.

Here’s the root element. It’s not called <html>, it’s called <recipe>,
since this is the XML for a recipe. Notice it has some extra attributes
in it, which you’ve never seen on an <html> element in HTML.

268 Chapter 7

What does this have to do with HTML?
If XML is a language that can be used to invent new markup languages, and HTML
is a markup language, can we use XML to recreate HTML? We sure can. Let’s see how
this might look before we talk about why in the heck you’d actually want to:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8” />

 <title>Head First Lounge</title>

 </head>

 <body>

 <h1>Welcome to the New and Improved Head First Lounge</h1>

 <p></p>

 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring Your Own Web Server).
 </p>

 <h2>Directions</h2>

 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>

 </body>

</html>

And here’s a DOCTYPE. You’ve seen these
before, but notice that we’re now using
XHTML 1.0, instead of HTML 4.01. The <html> element now

has an xmlns attribute,
and lang and xml:lang
attributes, like the
recipe did.

But the rest of the HTML
is EXACTLY like HTML
4.01 Strict. Wow, XHTML
looks a lot like HTML.

Everything here looks normal, except
the empty elements have that weird
“/>” on the end again.

how html relates to xhtml

moving to xhtml

you are here � 269

I don’t get it. We changed
the DOCTYPE and added a couple
of new attributes, but the rest of
this example is totally like HTML

4.01. So, what’s the big deal?

This is going to sound very anticlimatic, but
XHTML is XML while HTML is, well, just
HTML. The big distinction may be difficult for
you to see at first glance, but the reason XML
is a good thing (and the reason the W3C and
others have gone to all the trouble of creating
XHTML, when they already had HTML) is that
once your pages are written in XHTML, all sorts
of things become possible that aren’t possible
with HTML. (You’ll get a feel for some of those
things in just a sec).

There’s another way to look at this: the
differences between HTML and XHTML can
all be seen on the previous page. You’ve got a
new DOCTYPE, and some minor changes to
attributes and the way you write empty elements.
These small changes are all that is required to
turn your HTML into XHTML.

Now that you know that moving to XHTML is
so easy, it’s time for you to get a better idea of
what it gets you.

270 Chapter 7

So why would you want to use XHTML?
By using HTML 4.01 Strict, you’re already reaping some of the
benefits of XHTML. However, because XHTML is XML, it has
some interesting advantages beyond HTML 4.01. Let’s take a look
at everything XHTML gets you, including some of the benefits
you’re already getting out of using HTML 4.01 Strict, through the
eyes of a few people already using XHTML.

Unlike HTML, XHTML can
be extended to include new
markup. For instance, there

are already extensions that add
elements for vector graphics
and mathematical formulas.

Mathematics researcher,
large university.

XHTML’s strict
syntax allows aural

screen readers and other
browsers for the visually

impaired to more easily
consume Web content.

Visually impaired
Web user.

By using XHTML
I’m future-proofing my Web
pages to take advantage of all

the latest and greatest browser
advances to come. My pages are also

more likely to work on mobile devices
and a variety of browsers.

Hobbyist, runs a
popular gaming
Web site.

Maintains her
own blog.

I like keeping up with
trends and technologies.

XHTML is the future, and since
it’s almost exactly like HTML,

why not go with the better
technology?

reasons to consider xhtml

moving to xhtml

you are here � 271

XHTML is becoming the
language of choice for browsers

on mobile devices and cell phones. In
the future, XHTML is going to let

us pick and choose the parts of the
language we want to support in each

mobile device, as well.

Junior software
developer.

XHTML can be read
by our existing software
applications that already

understand how to read XML.

Business development,
mobile phone
company.

Librarian at major
metropolitan library.

Database engineer,
media company.

There’s already a lot
of data and information
written in XML, and it’s more
easily transformed into XHTML

than to HTML. So, we’ll be able to
get all that information on the

Web more easily with
XHTML.

XHTML gives us the benefits of
XML (which is great for storing large,

structured document collections) along
with the benefits of HTML, such as CSS

for creating presentation.

272 Chapter 7

The XHTML 1.0 checklist

❏ 	 Change your DOCTYPE to Strict XHTML. Or, you can

use Transitional XHTML if you’re still using Transitional

HTML.

❏ 	 Add the xmlns, lang, and xml:lang attributes to your

<html> opening tag.

❏ 	 The <html> tag must be the first tag after the DOCTYPE

and the </html> closing tag must be the last tag in the

document.

❏ 	 All element names must be written with lowercase letters.

❏ 	 All opening tags must have closing tags. Or, if an element is

empty, the tag must end with a space and then />.

❏ 	 All attributes must have values, and those values must be

surrounded by double quotes.

❏ 	 Don’t use & in the content of your HTML. & is for starting

entities, so use & instead. Also convert any other special

characters to entities.

Here’s the list of things you must do to convert from HTML to XHTML.

We’ve checked off the
requirements that you’re
already on top of. So,
that doesn’t leave you with
much to do to move to
XHTML 1.0.

If you started from scratch reading this book and you’ve been diligent in using
strict HTML 4.01, then moving to XHTML 1.0 is going to be fast for you.
You really only have a few things you need to take care of, and we’ll talk about
those next.

On the other hand, if you have a lot of legacy HTML you need to convert,
then you may have a big job on your hands. But, even in that case, there are
some tools that can help get you there. We’ll talk about those too.

You’re much closer to using XHTML than
you might think
Even though HTML and XHTML are almost the same, there are a few small
differences, as you’ve seen. Here’s a handy checklist for moving from HTML 4.01
Strict to XHTML 1.0 Strict:

We’re going to talk
about what this means.

a checklist for xhtml strict

moving to xhtml

you are here � 273

If my HTML is
transitional 4.01, and I want
to switch to XHTML strict,
then I have a little more work

to do, right?

HTML 4.01 Strict and XHTML 1.0 Strict are
basically the same. So, going from transitional
HTML 4.01 to HTML Strict or XHTML Strict is
about the same amount of work. To change your
transitional HTML to either, you’ll first need to do
all the things we mentioned in Chapter 6 to remove
presentation tags and clean up your HTML.

There is also a transitional XHTML 1.0 version,
which is essentially the same as transitional HTML
4.01. They both allow deprecated presentational
elements, and inline elements directly in the body
of your page. So, if you want to use that instead,
remember to use the transitional XHTML 1.0
DOCTYPE instead of the strict DOCTYPE.

Right. The checklist assumes
you’re already writing strict HTML.

274 Chapter 7

1 Change your DOCTYPE to XHTML 1.0 Strict.
You already know all about DOCTYPEs and you’re used to seeing the
HTML 4.01 Strict document type. Well, there’s also a document type for
XHTML 1.0 Strict, and you need to change your DOCTYPE to use it
instead. Here’s what it looks like:

<!DOCTYPE html
 PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

Just like the HTML DOCTYPE,
this is a public document type. It’s for the XHTML 1.0

Strict version of XHTML.

And it has a URL pointing to the
definition of XHTML 1.0 Strict.

2 Add the xmlns, lang and xml:lang attributes to your <html> element.
Remember that XML can be used to define many markup languages other
than XHTML. To keep all those languages straight, XML needs to know
which language you’re talking about when you use the element <html> (after
all, someone could come along and make up their own language with XML
and call it the “Hippo Tipping Markup Language,” which would cause
mass confusion). So, to keep things straight, the xmlns attribute specifies
which language the <html> element belongs to. And what about all the rest
of the elements inside the <html> element? By default, they inherit the
xmlns attribute of their parent.

The <html> element also needs lang and xml:lang attributes, which
specify the language being used in the XML document. Here’s what your
<html> opening tag should look like in XHTML:

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>

The xmlns attribute is used to identify which XML language “html” belongs to.

XML uses a URL as a unique identifier for a
language. If someone has written a “Hippo Tipping
Markup Language” they might have used “http://www.
hippotipping.com/html” as their identifier. It doesn’t
matter what is at the URL - the URL alone is
enough to make it unique.

And we just need to specify
that we’re using English.

Going from strict HTML to XHTML 1.0 in three steps

going from html to xhtml

Depending on the way your
XHTML is interpreted by the
browser, you may need either
one of these, so it’s best
practice to use both.

moving to xhtml

you are here � 275

3 All empty tags should end in “ />”, not “>”.
This is the final, and most bizarre step of the HTML to XHTML 1.0
transformation. But it’s not so mysterious if you know the background.

We’ve told you XHTML is stricter than HTML, and one area where it is
stricter is with closing tags. In HTML, you can have an empty element
without a closing tag. But in XHTML, if you aren’t going to have a closing
tag, you have to tell the browser about it by putting a slash before the final

“>”. So, take the
 element as an example. In HTML we just write

. But in XHTML, we write
. That little slash on the end tells the
browser it shouldn’t expect a closing tag, because the
 is all there is.

Now you might have noticed we didn’t include a space before the “/>”.
That’s because XHTML doesn’t require it. However, some older browsers
can’t recognize “/>” without a space before the slash, so, to be backwards
compatible, just put a space before your slash in “ />”.

Let’s look at a couple of examples so you know how to transform HTML
empty elements into XHTML empty elements:

Old school HTML 4.01 Strict

New and improved XHTML 1.0

No closing tags? No
problem in HTML.

But with XHTML we gotta
declare our intentions. If your
element is empty, let the
browser know by putting a “/”
before the ending “>”.

And, give those older
browsers a break by
inserting a space before
the forward slash.

276 Chapter 7

Q: Can you explain the xmlns
attribute a bit more; I feel like I missed
something.

A: You’re not the only one. This is one
of the most confusing parts of XML. Okay,
it works like this: lots of people can create
XML languages (personally, we say get out
and see the world, but some people seem
to be into this sort of thing). Let’s say two
people call their elements the same thing.
Take the name <table>, for instance. For
some people this is an element in HTML;
for others, it’s part of an XML language for
furniture. So, if you use <table> in your XML,
how do we know which one you mean?
That’s where the xmlns attribute comes in.
The xmlns attribute holds a unique identifier
that determines which language you mean.
In the case of XHTML, that identifier is
http://www.w3.org/1999/xhtml

Q: But wait, that’s a URL, not an
identifier.

A: Yeah, XML people are weird that
way. It may look like a URL to you, but just
think of it as something that is supposed to
be unique. The idea is that you could visit
that URL and find out something about the
language, although there is no requirement
that anything actually exist at the URL.

Q: If this is XHTML, how come the
root element isn’t <xhtml> rather than
<html>?

A: Because XHTML is meant to be
backwards compatible with HTML. If they
changed the root element to <xhtml> then
older browsers wouldn’t know how to display
your pages.

Q: You mentioned some tools earlier
that could help convert my HTML to
XHTML.

A: Yes, there’s a great little tool called
Tidy that can do much of the work to get
your HTML documents validating and ready
for XHTML. Tidy has a number of options
and can take nonvalidating HTML and
perform many of the tasks needed to make
HTML validate. It can also remove a fair
amount of legacy presentational HTML and
replace it with CSS. You can find Tidy at
http://tidy.sourceforge.net.

Q: So if I have strict HTML, this is
really all I have to do to move to XHTML?

A: That’s right. In fact, let’s give
it a try...

there are noDumb Questions

You’re going to take Tony’s journal (remember him from Chapter 3?) and convert it
to XHTML. We already cleaned up his code and changed it to HTML 4.01 Strict for
you – we nested his elements inside <p> elements and added alt attributes,
put his Burma Shave slogan in a <p> element, and added a <meta> tag. You’ll find
this HTML 4.01 Strict version of “journal.html” in the “chapter7/journal” folder.
Here’s what you need to do:

1

2

3

4

Change your DOCTYPE from HTML 4.01 Strict to XHTML 1.0 Strict.
Add the xmlns, lang and xml:lang attributes to your <html> opening tag.
Change the ending “>” characters on your empty elements to “ />”.
Save, and reload the page in your browser.

Be sure to check your work at the end of the chapter.

Exercise

root elements and namespaces

moving to xhtml

you are here � 277

Validator

We’re totally up
on the new XHTML

standards and ready to
enforce them.

Validation: it’s not just for HTML
After Chapter 6, you’re an expert at using the W3C validator, and you’ll
find the validator is up to date and ready to validate your XHTML. You
do that in exactly the same way that you validated HTML.

Go to validator.w3.org and either paste
in your XHTML, upload it, or point the
validator to your URL.

The validator will check
your XHTML and report
that it’s valid, or report
any errors to you.

Q: How does the validator know whether
I’m validating HTML or XHTML? After all, this
is the same page I used for HTML.

A: The validator looks at your DOCTYPE
declaration, which states that the document is
either XHTML Transitional or XHTML Strict, and
that’s what it bases its validation on.

there are noDumb Questions

278 Chapter 7

You didn’t think we’d let you off the hook
without validating your XHTML did you?
Validate the “lounge.html” file in the
“chapter7/lounge” folder, and the
“journal.html” file in the “chapter7/journal/”
folder (the one you turned into XHTML a
couple of pages ago) at the W3C. If you
see any errors, check your typing, get
them fixed, and try again.

Congratulations,
you’ve just written
your first XHTML!

You’ve done it: you’ve transitioned
your HTML over to XHTML. While

your markup doesn’t look much different,
there’s a whole new set of possibilities
coming down the road for XHTML
documents. And, even better, you’ve

adopted a whole technology that isn’t that
much different from what you already know. Now’s
the time you can go tell all your friends you’re already
using XHTML (we won’t tell them there isn’t much of a
difference between HTML and XHTML if you don’t).

Oh, and if we haven’t said so already, XHTML is just
as compatible with CSS for styling, and you’re just a few
pages from adding your first style to an XHTML page.

Exercise

validating xhtml

moving to xhtml

you are here � 279

XHTML does seem like a good thing, and moving from HTML 4.01
Strict is almost trivial, so, why not just go for it? But, before you do, you
should know that XHTML is still a little ahead of the curve in terms of
browser support. So, while you can use XHTML today, there are a few
issues you need to keep in mind.

Right now the biggest problem you’re going to encounter is that while
you might be using XHTML, some browsers are still going to treat your
pages as HTML. In most cases, this is fine, because XHTML is designed
to be backwards compatible with HTML. However, in the worst case, a
browser may display your XHTML in the dreaded quirks mode (look
back at Chapter 6 if you’ve forgotten about quirks mode), so you could
get some inconsistent display of your XHTML. What to do? Well, the
best you can do right now is test your XHTML in a variety of browsers
to make sure things are working as you expect.

XHTML sounds like a
good thing. Is it really
ready for prime time?

It really comes down to whether or not the XML benefits
of XHTML are meaningful to you. If they are, you
can start using XHTML today – just be diligent about
validating so that in the future, when real, strict XHTML
browsers emerge, your pages will play well with them.
(Because XHTML browsers are strict, they won’t accept
invalid XHTML.)

HTML has a long life ahead of it, so if you don’t have
a good reason to switch, you can stick with HTML for a
while. And, if you use HTML 4.01 Strict and validate
your pages, you’ll be ready to switch to XHTML at a
moment’s notice.

If browsers are
just going to treat

my XHTML like HTML,
then why should I bother

writing XHTML? Seems
like a waste of time

to me.

280 Chapter 7

Tonight’s talk: HTML and XHTML
ask for your support.

HTML XHTML

I’m certainly glad to have the opportunity to
persuade you to stick with me: HTML 4.01. I’m
going to be around a long time, have no worries
there. HTML, face it, you’re yesterday’s news. The

standards guys have already moved on. I’m
the future. Anyone with their head on straight
should be moving to XHTML.

There’s really just not enough difference between
you and me for people to really care. I mean, 4.01
is exactly the same as XHTML 1.0.

How can you say we’re the same? You’re
HTML; I’m XML.

And right now, that and a quarter won’t
even get you a cup of coffee.

Ah, but just wait. The number of devices that
read XHTML is increasing every day. And
there are a lot of applications out there that
are gearing up to use XHTML.

That’s the problem: you think everyone wants to
have applications using XHTML, or that everyone
is creating Web sites for mobile devices. Some
people just wanna make good Web sites. Why are
you asking them to go through all this pain?

Well that’s just it – there really is no pain.
If you’re already using HTML 4.01, then
XHTML is just a hop, skip, and jump away.
All you have to do is change your DOCTYPE,
and add a couple of attributes to your <html>
element. So, what’s the big deal? Why not have
the latest and greatest with just a few minutes
work?

html versus xhtml

moving to xhtml

you are here � 281

HTML XHTML

Hey, that’s a good thing. The designers of
XHTML knew that not all browsers would
support XHTML, so they made it backwards
compatible. In other words, you can move to
XHTML today, and still have it all work even
on older browsers.

You’re forgetting a few of the downsides. A lot
of browsers don’t handle XHTML very well. In
fact, they just see it as HTML. So you do all that
work and then you’re just fooling yourself that your
XHTML is somehow different.

Ah, but that’s changing; more and more
support for XHTML is arriving every day. So,
I say, go ahead and change over. It’s easy, and
when the new browsers and devices get here,
you’ll be ready without even trying.

But what’s the point? If your XHTML is just
considered HTML by a browser, then it’s just
HTML!

You can’t envision all the ways XHTML is
going to be used in the future. XHTML is the
way, and by moving to XHTML now, you’ll be
ready.

This is all great, but I keep saying people just don’t
care. I’m already good enough for them. Lots of
people have no need for XML.

Okay; let’s say you’re right, and XHTML is going
to be the way of the future. Fine. But as you also
said, XHTML is just a hop, skip, and a jump away.
So, my users can just wait until XHTML gets here,
and they can hop, skip, and jump then.

What’s that saying? “You can’t teach an old
dog a new trick?”

I think you mean “You can lead a horse to
water...”

282 Chapter 7

HTML or XHTML? The choice is yours...
Do any of the advantages of XHTML matter to you? Are you
translating existing XML into HTML for the Web? Are you working
on pages that you need to display well on mobile devices? Are some
of the newer XHTML technologies going to be important to you in the
near future? Or, do you just want to be on the cutting edge? Well, we
have good news: you can move to XHTML today. All it will cost you

is a new DOCTYPE and some minor changes to a couple of tags.
Now, not every browser will give you credit for moving
to XHTML, but sooner or later they will have to, and,
until they do, your pages will display just fine because

the browser will treat them as HTML (although, don’t forget
the caveat we already mentioned). So, bon voyage, and enjoy your

journey to XHTML.

None of that is important to you? You’re mainly concerned with
making great Web pages? We have good news for you, too: you can
easily stick with HTML 4.01 Strict and reap all the rewards of using
the browser’s current choice of languages. And, should you ever feel
the need to upgrade to XHTML, then you can follow the three-step
program outlined in this chapter to get you there.

So, no matter what your choice is, you’ve made an excellent one,
and we wish you the best. That said, the differences between HTML
and XHTML are really minimal, so why not go ahead and move to
XHTML? We have, and in the rest of this book we’ll be using XHTML
1.0. If, for some reason, you need to stick with HTML 4.01, that’s fine.
And in fact, since they really are basically the same, you’ll have no
problems with the rest of the book. Just make sure you’re using the
right DOCTYPE for whichever version you’re using.

making a decision between html and xhtml

moving to xhtml

you are here � 283

Micro XHTMLcross
It’s been a small chapter (aren’t you glad!). Here’s a Micro XHTMLcross for you.

1 2

3

4

5

6 7

8

9

Across

1. Used to double check your XHTML.

6. XHTML is this type of markup.

8. Use these for special characters.

9. We invented an XML language for these.

Down

2. XHTML requires additional ______ in the <html>

element.

3. The X in XHTML is for _________.

4. In XHTML you have to explicitly have _____

tags.

5. In XHTML all element names must be this.

7. These kinds of devices are adopting XHTML.

284 Chapter 7

Micro XHTMLcross Solution
It’s been a small chapter (aren’t you glad!). Here’s a Micro XHTMLCross for you.

V
1

A L I D A
2

T O R

T

T E
3

R C
4

X

L
5

I L T

O B O E

X
6

M
7

L W U S N

O E
8

N T I T I E S

B R E N I

I C S G B

L A L

R
9

E C I P E S E

E

Across

1. Used to double check your XHTML. [validator]

6. XHTML is this type of markup. [xml]

8. Use these for special characters. [entities]

9. We invented an XML language for these.

[recipes]

Down

2. XHTML requires additional ______ in the <html>

element. [attributes]

3. The X in XHTML is for _________. [extensible]

4. In XHTML you have to explicitly have _____

tags. [closing]

5. In XHTML all element names must be this.

[lowercase]

7. These kinds of devices are adopting XHTML.

[mobile]

<!DOCTYPE html

 PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />

 <title>My Trip Around the USA on a Segway</title>

 .

 .

 .

 </body>

</html>

Add the three
attributes to the
<html> opening tag.

Change the DOCTYPE to
XHTML 1.0 Strict.

You’re going to take Tony’s journal (remember him from
chapter 3?) and convert it to XHTML. We’ve put the most
recent version of the journal in the “chapter7/journal” folder,
where you’ll find an HTML 4.01 strict version of “journal.html”.
Here’s the solution:

Don’t forget to put “ />” in
your empty elements.

Exercise
Solutions

The <meta> tag needs
a “ />”, too.

exercise solutions

this is a new chapter 285

Adding a Little Style
8 getting started with CSS

I was told there’d be CSS in this book. So far you’ve been

concentrating on learning XHTML to create the structure of your Web pages. But as

you can see, the browser’s idea of style leaves a lot to be desired. Sure, we could

call the fashion police, but we don’t need to. With CSS, you’re going to completely

control the presentation of your pages, often without even changing your XHTML.

Could it really be so easy? Well, you are going to have to learn a new language; after

all, Webville is a bilingual town. After reading this chapter’s guide to learning the

language of CSS, you’re going to be able to stand on either side of Main Street and

hold a conversation.

Don’t get me wrong, the
hair, the hat, it all looks great.
But don’t you think he’d like it
if you spent a little more time

adding some style to your
XHTML?

286 Chapter 8

You’re not in Kansas anymore
You’ve been a good sport learning about markup
and structure and validation and proper syntax and
nesting and compliance, but now you get to really
start having some fun by styling your pages. But no
worries, all those XHTML pushups you’ve been
doing aren’t going to waste. In fact, you’re going to
see that a solid understanding of XHTML is crucial
to learning (and using) CSS. And, learning CSS is
just what we’re going to do over the next several
chapters.

Just to tease you a bit, on these two pages we’ve
sprinkled a few of the designs you’re going to work
with in the rest of the book. Quite a difference from
the pages you’ve been creating so far, isn’t it? So,
what do you need to do to create them? Learn the
language of CSS of course.

Let’s get started...

Remember the Wizard of Oz? Well, this
is the part of the book where things go
from black & white to color.

getting started with css

you are here � 287

288 Chapter 8

Overheard on Webville’s “Trading Spaces”

Okay, let’s get some design in this place...

bedroom {
 drapes: blue;
 carpet: wool shag;
}

...and this bathroom needs
some serious help!

bathroom {
 tile: 1in white;
 drapes: pink;
}

Not up on the latest reality TV? No problem, here’s a recap: take two
neighbors, two homes, and $1,000. The two neighbors switch homes, and
using the $1,000, totally redesign a room or two in 48 hours. Let’s listen in...

Of course, in the Webville edition of the show, everyone talks about
design in CSS. If you’re having trouble understanding them, here’s a little
translation tip: each statement in CSS consists of a location (like bedroom),
a property in that location (like drapes, or carpet), and a style to apply to
that property (like the color blue, or 1 inch tiles).

the css language

getting started with css

you are here � 289

Using CSS with XHTML
We’re sure CSS has a bright future in the home design category, but let’s get
back to XHTML. XHTML doesn’t have rooms, but it does have elements
and those elements are going to be the locations that we’re styling. Want to
paint the walls of your <p> elements red? No problem; only paragraphs
don’t have walls, so you’re going to have to settle for the paragraph’s
background-color property instead. Here’s how you do that:

 p {
 background-color: red;
 }

The first thing you do is select the
element you want to style, in this case
the <p> element. Notice in CSS, you
don’t put <> around the name.

Then you specify the property you
want to style, in this case the <p>
element’s background color.

And you’re going to set the
background-color to red.

Place all the styles
for the <p> element in between { } braces.

There’s a colon in between the
property and its value.

At the end,
put a semicolon.

You could also write the rule like this:

 p { background-color: red; }

Here, all we’ve done is remove the linebreaks. Like XHTML, you can format
your CSS pretty much as you like. For longer rules you’ll usually want to add
some linebreaks and indenting to make the CSS more readable (for you).

Wanna add more style?
You can add as many properties and values as you like in each CSS rule. Say you
wanted to put a border around your paragraphs, too. Here’s how you do that:

 p {
 background-color: red;
		 border: 1px solid gray;
 }

All you have to do is add
another property and value.

The <p> element
will have a border... ...that is 1 pixel thick, solid, and gray.

We call the whole
thing a RULE.

290 Chapter 8

Say you have an element
inside a paragraph. If you change the
background color of the paragraph, do
you think you also have to change the
background of the element so it
matches the background color of the
paragraph?

brain
power?

Q: Does every <p> element have the same
style? Or can I, say, make two paragraphs
different colors?

A: The CSS rules we’ve used so far define
the style for all paragraphs, but CSS is very
expressive: it can be used to specify styles in lots
of different ways, for lots of different elements
– even subsets of elements. You’ll see how to
make paragraphs two different colors later in this
chapter.

Q: How do I know what properties I can set
on an element?

A: Well, there are lots of properties that can
be set on elements, certainly more than you’d
want to memorize, in any case. You’re going to get
quite familiar with the more common properties in
the next few chapters. You’ll probably also want
to find a good CSS reference. There are plenty
of references online, and O’Reilly’s CSS Pocket
Reference is a great little book.

Q: Remind me why I’m defining all this
style in a separate language, rather than in
XHTML. Since the elements are written in
XHTML, wouldn’t it be easier just to write style
in XHTML, too?

A: You’re going to start to see some big
advantages to using CSS in the next few chapters.
But, here’s a quick answer: CSS really is better
suited for specifying style information than XHTML.
Using just a small bit of CSS, you can create fairly
large effects on the style of your XHTML. You’re
also going to see that CSS is a much better way
to handle styles for multiple pages. You’ll see how
that works later in this chapter.

there are noDumb Questions

more about css and xhtml

getting started with css

you are here � 291

Getting CSS into your XHTML
Okay, you know a little about CSS syntax now. You know how to select an
element and then write a rule with properties and values inside it. But you still
need to get this CSS into some XHTML. First, we need some XHTML to put
it in. In the next few chapters, we’re going to revisit our old friends – Starbuzz,
and Tony and his Segway journal – and make things a little more stylish. But,
who do you think is dying to have their site styled first? Of course, the Head
First Lounge guys. So, here’s the XHTML for the Head First Lounge main
page. Remember, in the last chapter we fixed things up a little and made it
strict XHTML (would you have expected any less of us?). Now, we’re adding
some style tags, the easiest way to get style into your pages.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en” >
 <head>
 <meta http-equiv=“Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Head First Lounge</title>

 <style type=”text/css”>

 </style>

 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

But not necessarily the best
way. We’ll come back to this
later in the chapter and see
another way.

Here’s what we’re interested in: the <style> element.
To add CSS style directly to your XHTML, add
opening and closing style tags in the <head> element.

And a style type of “text/css”.
And your CSS rules are
going to go right in here.

292 Chapter 8

Adding style to the lounge
Now that you’ve got the <style> element in your XHTML, you’re going to
add some style to the Lounge to get a feel for writing CSS. This design probably
won’t win you any “design awards,” but you gotta start somewhere.

The first thing we’re going to do is change the color (something to match those
red lounge couches) of the text in the paragraphs. To do that, we’ll use the CSS
color property like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type”
 content=”text/html; charset=ISO-8859-1” />
 <title>Head First Lounge</title>
 <style type=”text/css”>

 p {
 color: maroon;
 }

 </style>
 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center
 of downtown Webville. If you need
 help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

Here’s the rule
that is going to
specify the font
color of the
paragraphs.

The p selector
selects all the
paragraphs in the
XHTML.

The property to change the font color is
named “color” (you might think it would be

“font-color” or “text-color”, but it’s not).

We’re selecting just
the <p> element to
apply this style to.

We’re setting the text to a lovely maroon color that happens to match the lounge couches.

adding a style to the lounge

getting started with css

you are here � 293

Cruising with style: the test drive

Instead of setting the color, what if you set background-color of
the <p> elements to maroon instead? How would it change the way
the browser displays the page?

Here’s our
new maroon
paragraph text.

Go ahead and make all the changes from the last couple of
pages to your “lounge.html” file in the “chapter8/lounge” folder,
save, and reload the page in your browser. You’ll see that the
paragraph text color has changed to maroon:

brain
power?

Everything else is
as it should be: the
headings are still black,
because all we selected
to style were the <p>
elements.

Notice that the color of
the links didn’t change.
Keep that in the back of
your mind...

294 Chapter 8

How about a different
font for the Lounge

headings? Make them really
stand out. I’m seeing big,

clean, gray...

Style the heading

h1 {
 font-family: sans-serif;
 color: gray;
}

h2 {
 font-family: sans-serif;
 color: gray;
}

p {
 color: maroon;
}

Now let’s give those headings some style. How about changing the
font a bit? Let’s change both the type of font, and also the color of
the heading fonts:

Actually, since these rules are exactly the same, we can
combine them, like this:

h1, h2 {
 font-family: sans-serif;
 color: gray;
}

p {
 color: maroon;
}

Here’s the rule to select <h1>
elements and change the
font-family to sans-serif
and the font color to gray.
We’ll talk a lot more about
fonts later.

And here’s another rule to do the exact same thing to the <h2> element.

To write a rule for more than one
element, just put commas between
the selectors, like “h1, h2”.

Test drive...
Add this new CSS to your “lounge.html” file
and reload. You’ll see that with one rule, you’ve
selected both the <h1> and <h2> headings.

Both of the headings on
the page are now styled
with a sans-serif font
and colored gray.

styling headings

getting started with css

you are here � 295

Let’s put a line under the welcome message too
Let’s touch up the welcome heading a bit more. How about a line under it?
That should set the main heading apart visually and add a nice touch. Here’s
the property we’ll use to do that:

border-bottom: 1px solid black;

This property controls how the border under an element looks. We’re going to style the bo
ttom

border so that it is a 1 p
ixel

thick, solid black line.

The trouble is, if we add this property and value to the combined “h1, h2”
rule in our CSS, we’ll end up with borders on both our headings:

h1, h2 {
 font-family: sans-serif;
 color: gray;
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

If we do this...
... we get bottom borders on both our headings. Not what we want.

Here we’re adding a property to
change the bottom border for
both the <h1> and <h2> elements.

So, how can we set the bottom border
on just the <h1> element, without
affecting the <h2> element? Do we
have to split up the rules again? Turn the
page to find out...

296 Chapter 8

We have the technology: specifying a
second rule, just for the <h1>
We don’t have to split the “h1, h2” rule up, we just need to add another
rule that is only for “h1” and add the border style to it.

h1, h2 {
 font-family: sans-serif;
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

The first rule stays the same. We’re
still going to use a combined rule
for the font-family and color for
both <h1> and <h2>.

But now we’re adding a second rule that adds another property just to <h1>: the border-bottom property.

Another test drive...
Change your CSS and reload the page. You’ll see that the new rule
added a black border to the bottom of the main heading, which gives
us a nice underline on the heading and really makes it stand out.

Here’s the bottom
border in black.

And no border
here, just what we
wanted.

getting more sophisticated with selectors

getting started with css

you are here � 297

So, how do selections really work?

 h1 {
	 color: gray;
 }

You’ve seen how to select an element to style it, like this:

Or, how to select more than one element, like this:

You’re going to see that CSS allows you to specify all kinds of selectors that determine which elements
your styles are applied to. Knowing how to use these selectors is the first step in mastering CSS, and
to do that you need to understand the organization of the XHTML that you’re styling. After all, how
can you select elements for styling if you don’t have a good mental picture of what elements are in the
XHTML, and how they relate to one another?

So, let’s get that picture of the Lounge XHTML in your head, and then we’ll dive back into selectors.

 h1, h2 {
	 color: gray;
 }

We call this the selector.

Another selector. The style is applied to <h1> and <h2> elements.

The style is applied to the elements
described by the selector - in this
case, <h1> elements.

Q: So how does that work when you
have more than one rule for an element?

A: You can have as many rules as
you want for an element. Each rule adds to
the style information of the rule before it.
In general, you try to group together all the
common styles between elements, like we
did with <h1> and <h2>, and then any style
that is specific to an element, you write in
another rule, like we did with the border-
bottom style for the main heading.

Q: What’s the advantage of that
approach? Isn’t it better to organize each
element separately, so you know exactly
what styles it has?

A: Not at all. If you combine common
styles together, then if they change, you
only have to change them in one rule. If you
break them up, then there are many rules
you have to change, which is error-prone.

Q: Why do we use a bottom border
to underline text? Isn’t there an underline
style for text?

A: Good question. There is an
underline style for text and we could use
that instead. However, the two styles have
slightly different effects on the page: if you
use border-bottom then the line will extend
to the edge of the page. An underline is only
shown under the text itself. The property to
set text underline is called text-decoration
and has a value of “underline” for underlined
text. Give it a try and check out the
differences.

there are noDumb Questions

298 Chapter 8

body

html

head style
meta

h1

p h2

p

p

img

a

em

Markup Magnets
Remember drawing the diagram of HTML elements in Chapter 3?
You’re going to do that again for the Lounge’s main page. Below,
you’ll find all the element magnets you need to complete the
diagram. Using the Lounge’s XHTML (on the right), complete the
tree below. We’ve done a couple for you already. You’ll find the
answer in the back of the chapter.

title

head body

html

p

q

a

title

Like this.

drawing the lounge’s structure

getting started with css

you are here � 299

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Head First Lounge</title>

 <style type=“text/css”>
 h1, h2 {
 	 font-family: sans-serif;
 	 color: gray;
 }

 h1 {
 	 border-bottom: 1px solid black;
 }

 p {
 	 color: maroon;
 }
 </style>

 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 <p>
 Join us any evening for refreshing
 elixirs,
 conversation and maybe a game or two
 of Dance Dance Revolution.
 Wireless access is always provided;
 BYOWS (Bring your own web server).
 </p>
 <h2>Directions</h2>
 <p>
 You’ll find us right in the center of downtown
 Webville. If you need help finding us, check out our
 detailed directions.
 Come join us!
 </p>
 </body>
</html>

The Head First
Lounge XHTML.

300 Chapter 8

body

html

h1 h2 pp

img a em a

Seeing selectors visually

h1 {
 font-family: sans-serif;
}

Let’s take some selectors and see how they map
to the tree you just created. Here’s how this “h1”
selector maps to the graph:

This selector matches any
<h1> elements in the page, and
there’s only one.

We can only style
elements in the body,
so we’re not showing
the <head> element
and everything under it.

head

body

html

h1 h2 pp

img a em a

h1, h2 {
 font-family: sans-serif;
}

Now the selector
matches both <h1> and
<h2> elements.

p

p

And here’s how the “h1, h2” selector looks:

If we use a “p” selector, here’s how that looks:

body

html

h1 h2p p

img a em a

p

p {
 font-family: sans-serif;
}

This selector matches all the
<p> elements in the tree.

visual selectors

getting started with css

you are here � 301

Color in the elements that are selected by these selectors:

p, h2 {
 font-family: sans-serif;
}

p, em {
 font-family: sans-serif;
}

body

html

h1 h2p p

img a em a

p

body

html

h1 h2p p

img a em a

p

Sharpen your pencil

302 Chapter 8

The Case of Brute Force versus Style
When we last left RadWebDesign in Chapter 4, they had just blown
the corporate demo and lost RobotsRUs’ business. CorrectWebDesign
was put in charge of the entire RobotsRUs site and got to work getting
everything nailed down before the site launch later in the month. But,
you’ll also remember that RadWebDesign decided to bone up on their
XHTML & CSS. They decided to rework the RobotsRUs site on their
own, using strict XHTML and style sheets, just to get some experience

under their belt before they took on another consulting job.

As fate would have it, just before RobotsRUs’ big site launch,
it happened again: RobotsRUs called CorrectWebDesign with
an urgent message. “We’re changing our corporate look and

we need all the colors, backgrounds, and fonts changed on our
site.” At this point, the site consisted of almost a hundred pages, so

CorrectWebDesign responded that it would take them a few days to
rework the site. “We don’t have a few days!” the CEO said. Desperate,
the CEO decided to call in RadWebDesign for help. “You flubbed up
the demo last month, but we really need your help. Can you help the
CorrectWebDesign guys convert the site over to the new look and feel?”
RadWebDesign said they could do better than that; in fact they could
deliver the entire site to them in less than an hour.

How did RadWebDesign go from disgrace to Web page
superheroes? What allowed them to change the look and feel of
a hundred pages faster than a speeding bullet?

Five-Minute
Mystery

winning with css

getting started with css

you are here � 303

Getting the Lounge style into the
elixirs and directions pages
It’s great that we’ve added all this style to “lounge.html”, but what about

“elixir.html” and “directions.html”? They need to have a look that is
consistent with the main page. Easy enough... just copy the style element
and all the rules into each file, right? Not so fast. If you did that, then
whenever you needed to change the style of the site, you’d have to
change every single file – not what you want. But, luckily, there is a better
way. Here’s what you’re going to do:

1 Take the rules in “lounge.html” and place
them in a file called “lounge.css”.

2 Create an external link to this file from your
“lounge.html” file.

3 Create the same external links in “elixir.html”
and “directions.html”.

4 Give all three files a good test drive.

Uh, I think you
forgot to style the elixirs

and directions pages?

304 Chapter 8

Creating the “lounge.css” file
You’re going to create a file called “lounge.css” to contain the style rules
for all your Head First Lounge pages. To do that, create a new text file
named “lounge.css” in your text editor.

 h1, h2 {
 font-family: sans-serif;
 color: gray;
 }

 h1 {
 border-bottom: 1px solid black;
 }

 p {
 color: maroon;
 }

green.jpg

lightblue.jpg

blue.jpg
<html>
.
.
.
</html>

directions.html

<html>
.
.
.
</html>

elixir.html

lounge
h1, h2 {
 fon
 col
}
p {

lounge.css

beveragesabout images
drinks.gif

red.jpg

<html>
.
.
.
</html>

lounge.html

Create “lounge.css” in
the “lounge” folder (the
root folder).

Now type, or copy and paste from your “lounge.html” file, the CSS rules
into the “lounge.css” file. Delete the rules from your “lounge.html” file
while you’re at it.

Note that you should not copy the <style> and </style> tags
because the “lounge.css” file contains only CSS, not XHTML.

Your “lounge.css” file should
look like this. Remember, no
<style> tags!

We often call CSS
files “style sheets”.

creating a css file

getting started with css

you are here � 305

Linking from “lounge.html” to the external style sheet
Now we need a way to tell the browser that it should style this page with the
styles in the external style sheet. We can do that with an XHTML element
called <link>. Here’s how you use the <link> element in your XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type”
 content=”text/html; charset=ISO-8859-1” />
 <title>Head First Lounge</title>
 <link type=”text/css” rel=”stylesheet” href=”lounge.css” />
 <style type=”text/css”>
 </style>

 </head>
 <body>
 <h1>Welcome to the Head First Lounge</h1>
 <p>

 </p>
 .
 .
 .
 </p>
 </body>
</html>

Here’s the XHTML that links
to the external style sheet.

You don’t need the <style> element any more - just delete it.

The rest of the XHTML is the same.

XHTML Up Close

Let’s take a closer look at the <link> element since you haven’t seen it before:

<link type=”text/css” rel=”stylesheet” href=”lounge.css” />

Use the link elem
ent

to “link in” ext
ernal

information.

The type of this information is
“text/css”. In other words, a
CSS style sheet.

And the style sheet is located
at this href (in this case we’re using a relative link, but it could be a full-blown URL).

The rel attribute specifies the relationship between
the XHTML file and the thing you’re linking to. We’re
linking to a style sheet, so we use the value “stylesheet”.

<link> is an
empty element.

306 Chapter 8

Linking from “elixir.html” and “directions.html”
to the external style sheet
Now you’re going to link the “elixir.html” and “directions.html” files just as
you did with “lounge.html”. The only thing you need to remember is that

“elixir.html” is in the “beverages” folder, and “directions.html” is in the
“about” folder, so they both need to use the relative path “../lounge.css”.

So, all you need to do is add the following <link> element to both files:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Head First Lounge Elixirs</title>
 <link type=”text/css” rel=”stylesheet” href=”../lounge.css” />
 </head>
 <body>
 .
 .
 .
 </body>
</html>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type” content=”text/html; charset=ISO-8859-1” />
 <title>Head First Lounge Directions</title>
 <link type=”text/css” rel=”stylesheet” href=”../lounge.css” />
 </head>
 <body>
 .
 .
 .
 </body>
</html>

This is “elixir.html”. Just add the <link> line.

Same for “directions.html”. Add the <link> line here.

creating an external link

getting started with css

you are here � 307

Test driving the entire lounge...
Save each of these files and then open

“lounge.html” with the browser. You should
see no changes in its style, even though the
styles are now coming from an external file.
Now click on the “elixirs” and “detailed
directions” links.

Wow! We have a whole new style for the
Elixirs and Directions pages with only a one
line change to the HTML in each file! Now
you can really see the power of CSS.

308 Chapter 8

The Case of Brute Force versus Style
So, how did RadWebDesign become Web page superheroes?
Or, maybe we should first ask how the “do no wrong”
CorrectWebDesign firm flubbed things up this time? The root
of the problem was that CorrectWebDesign was creating the
RobotsRUs pages using circa 1998 techniques. They were

putting their style rules right in with their HTML
(copying and pasting them each time), and, even
worse, they were using a lot of old HTML elements
like and <center> that have now been
deprecated. So, when the call came to change the

look and feel, that meant going into every Web page
and making changes to the CSS. Worse, it meant going

through the HTML to change elements as well.

Compare that with what RadWebDesign did: they used strict
XHTML 1.0, so they had no old presentation HTML in their
pages, and they used an external style sheet. The result? To
change the style of the entire site, all they had to do was go
into their external style sheet and make a few changes to
the CSS, which they easily did in minutes, not days. They
even had time to try out multiple designs and have three
different versions of the CSS ready for review before the site
launch. Amazed, the RobotsRUs CEO not only promised
RadWebDesign more business, but he also promised them the
first robot that comes off the assembly line.

Five-Minute
Mystery

Solved

use css for flexibility

getting started with css

you are here � 309

Now that you’ve got one external style file (or “style sheet”), use it to change all the
paragraph fonts to “sans-serif” to match the headings. Remember, the property to change
the font style is “font-family”, and the value for sans-serif font is “sans-serif”. You’ll find the
answer on the next page.

The headings use sans-serif fonts,
which don’t have “serifs” and have a
very clean look.

The paragraphs still use the
default serif fonts, which have
“serifs”, and are often considered
more difficult to read on a
computer screen.

any
serifs.

Sharpen your pencil

310 Chapter 8

Solution

Just add a font-family property
to your paragraph rule in the
“lounge.css” file.

I’m wondering if that is
really the best solution. Why are

we specifying the font-family for EACH
element? What if someone added a <blockquote>
to the page - would we have to then add a rule

for that too? Can’t we just tell the whole
page to be sans-serif?

h1, h2 {
	 font-family:	 sans-serif;
	 color:		 gray;
}

h1 {
	 border-bottom: 1px solid black;
}

p {
	 font-family: sans-serif;
	 color: 	 maroon;
}

Sharpen your pencil

understanding inheritance

getting started with css

you are here � 311

It’s time to talk about your inheritance...

body

html

h1 h2p p

img a em a

p

Did you notice when you added the font-family
property to your “p” selector that it also affected the
font family of the elements inside the <p> element?
Let’s take a closer look:

When you added the font-family
property to your CSS p selector, it

changed the font family of your
<p> elements. But it also changed

the font family of the two links
and the emphasized text.

Just like you can inherit your blue eyes or brown hair from your parents, elements can inherit
styles from their parents. In this case, the <a> and elements inherited the font-
family style from the <p> element, which is their parent element. It makes sense that
changing your paragraph style would change the style of the elements in the paragraph,
doesn’t it? After all, if it didn’t, you’d have to go in and add CSS rules for every inline
element in every paragraph in your whole site... which would definitely be so NOT fun.

Let’s take a look at our XHTML tree to see how inheritance works:

Not to mention, error-
prone, tedious, and
time-consuming.

The elements inside the <p> element inherit the
font-family style from <p>

The <a>, , and <a>
elements in the two
paragraphs inherit the
font-family from their
parent elements, the
<p> elements.

The <p> elements, of course, would

be styled with the font-family.

Not every style is
inherited. Just some
are, like font-family.

If we set the font-family of all the <p> elements, here
are all the elements that would be affected.

The element is a
child of a paragraph, but
it doesn’t have any text,
so it’s not affected.

312 Chapter 8

What if we move the font up the family tree?

body

html

h1 h2

aimg a

p p

em

p

We’re going to move the font-family

property from the paragraphs and

headings to the body.

If most elements inherit the font-family property, what if we move it up
to the <body> element? That should have the effect of changing the font for
all the <body> element’s children, and children’s children.

body {
	 font-family: 	sans-serif;
}

h1, h2 {
	 font-family:	 sans-serif;
	 color:		 gray;
}

h1 {
	 border-bottom: 1px solid black;
}

p {
	 font-family: sans-serif;
	 color: 	 maroon;
}

Wow, this is powerful. Simply by changing the font-
family property in the body rule, we could change
the font for an entire site.

What are you waiting for... give it a try

Here’s what you’re going to do.

 First, add a new rule that selects
the <body> element. Then add the
font-family property with a value
of sans-serif.

Then, take the font-family
property out of the h1, h2
rule, as well as the p rule.

Now all these elements are going to
inherit the font-family.

Remember, images
don’t have text.

And so are their children.

Open your “lounge.css” file and add a new rule that selects the <body>
element. Then remove the font-family properties from the headings and
paragraph rules, because you’re not going to need them anymore.

moving rules to the body element

getting started with css

you are here � 313

Test drive your new CSS
As usual, go ahead and make these changes in the “lounge.css”
style sheet, save, and reload the “lounge.html” page. You shouldn’t
expect any changes, because the style is the same. It’s just coming
from a different rule. But you should feel better about your CSS
because now you can add new elements to your pages and they’ll
automatically inherit the sans-serif font.

Okay, so now that the whole
site is set to sans-serif with

the body selector, what if I want one
element to be a different font? Do
I have to take the font-family out
of the body and add rules for every

element separately again?

Surprise, surprise. This doesn’t look any
different at all, but that is exactly what we
were expecting, isn’t it? All you’ve done is move
the sans-serif font up into the body rule and
let all the other elements inherit that.

314 Chapter 8

Overriding inheritance
By moving the font-family property up into the body, you’ve set that
font style for the entire page. But what if you don’t want the sans-serif
font on every element? For instance, you could decide that you want
 elements to use the serif font instead.

The font-family property is set in

the body rule, so every element inside

the body inherits the sans-serif

font-family property from <body>.

But you’ve decided you want your elements to have the serif font-family instead. You need to override the inheritance with a CSS rule.

body {
	 font-family: 	sans-serif;
}

h1, h2 {
	 color:		 gray;
}

h1 {
	 border-bottom: 1px solid black;
}

p {
	 color: 	 maroon;
}

em {
	 font-family: serif;
}

Well, then you can override the inheritance by supplying a
specific rule just for . Here’s how you add a rule for
to override the font-family specified in the body:

To override the font-family property

inherited from body, add a new rule

selecting em with the font-family

property value set to serif.

body

html

h1 h2

aimg a

p p

em

p

when you don’t want to inherit

getting started with css

you are here � 315

Test drive
Add a rule for the element to your CSS with a
font-family property value of serif, and reload
your “lounge.html” page:

Notice that the “Dance Dance
Revolution” text, which is the text in
the element, is now a serif font.

As a general rule, it’s not a good idea to change fonts
in the middle of a paragraph like this, so go ahead and
change your CSS back to the way it was (without the em
rule) when you’re done testing.

Q: How does the browser know
which rule to apply to when I’m
overriding the inherited value?

A: With CSS, the most specific rule
is always used. So, if you have a rule for
<body>, and a more specific rule for
elements, it is going to use the more specific
rule. We’ll talk more later about how you
know which rules are most specific.

Q: How do I know which CSS
properties are inherited and which are
not?

A: This is where a good reference
really comes in handy, like O’Reilly’s CSS
Pocket Reference. In general, all of the
styles that affect the way your text looks,

such as font color (the color property), the

font-family, as you’ve just seen, and other
font related properties such as font-size,
font-weight (for bold text), and font-style
(for italics) are inherited. Other properties,
such as border, are not inherited, which
makes sense, right? Just because you want
a border on your <body> element doesn’t
mean you want it on all your elements. A
lot of the time you can follow your common
sense (or just try it and see), and you’ll get
the hang of it as you become more familiar
with the various properties and what they do.

Q: Can I always override a property
that is being inherited when I don’t want
it?

A: Yes. You can always use a more
specific selector to override a property from
a parent.

Q: This stuff gets complicated. Is
there any way I can add comments to
remind myself what the rules do?

A: Yes. To write a comment in your
CSS just enclose it between /* and */. For
instance:
/* this rule selects all para-
graphs and colors them blue */

Notice that a comment can span multiple
lines. You can also put comments around
CSS and browsers will ignore it, like:
/* this rule will have no effect
because it’s in a comment

p { color: blue; } */

there are noDumb Questions

316 Chapter 8

I was thinking it would
be cool to have the text below
each elixir match the color of

the elixir. Can you do that?

Green text.

Blue text.

Purple text.

Red text... oh,
we don’t need to
change this one.

Can you style each of these paragraphs separately
so that the color of the text matches the drink? The
problem is that using a rule with a “p” selector applies
the style to all <p> elements. So, how can you select
these paragraphs individually?

That’s where classes come in. Using both XHTML and
CSS, we can define a class of elements, and then apply
styles to any element that belongs to that class. So, what
exactly is a class? Think of it like a club – someone
starts a “greentea” club, and by joining you agree to all
the rights and responsibilities of the club, like adhering
to their style standards. Anyway, let’s just create the class
and you’ll see how it works.

We’re not sure we agree with the
aesthetics of that suggestion,
but, hey, you’re the customer.

styling individual paragraphs

getting started with css

you are here � 317

Adding a class to “elixir.html”
Open up the “elixir.html” file and locate the 	“Green Tea Cooler” paragraph.
This is the text we want to change to green. All you’re going to do is add the <p>
element to a class called greentea. Here’s how you do that:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <title>Head First Lounge Elixirs</title>
 <link type=“text/css” rel=”stylesheet” href=”../lounge.css” />
 </head>
 <body>
 <h1>Our Elixirs</h1>
 <h2>Green Tea Cooler</h2>
 <p class=“greentea”>
		
		 Chock full of vitamins and minerals, this elixir
		 combines the healthful benefits of green tea with
		 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p>
		
		 Combining raspberry juice with lemon grass,
		 citrus peel and rosehips, this icy drink
		 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p>
		
		 Blueberries and cherry essence mixed into a base
		 of elderflower herb tea will put you in a relaxed
		 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>
		
		 Wake up to the flavors of cranberry and hibiscus
		 in this vitamin C rich elixir.
 </p>
 </body>
</html>

To add an element to a class, just add
the attribute “class” along with the name
of the class, like “greentea”.

And, now that the green tea paragraph belongs to the greentea class, you just
need to provide some rules to style that class of elements.

318 Chapter 8

Creating a selector for the class

 body {
 font-family: sans-serif;
 }

 h1, h2 {
 color: gray;
 }

 h1 {
 border-bottom: 1px solid black;
 }

 p {
 color: maroon;
 }

 p.greentea {
 color: green;
 }

To select a class, you write the selector like this:

 p.greentea {
		 color: green;
 }

Then use a “.” to
specify a class.

This selector selects
all paragraphs in the
greentea class.

The p selector
is first.

Last is the
class name.

And here’s the rule... make any text in a paragraph in the greentea class the color green.

So now you have a way of selecting <p> elements that belong to a certain class.
All you need to do is add the class attribute to any <p> elements you want to be
green, and this rule will be applied. Give it a try: open your “lounge.css” file and
add the p.greentea class selector to it.

class selectors

getting started with css

you are here � 319

Your turn: add two classes, “raspberry” and “blueberry”, to the correct
paragraphs in “elixir.html”, and then write the styles to color the text blue and
purple, respectively. The property value for raspberry is “blue” and for blueberry
is “purple”. Put these at the bottom of your CSS file, under the greentea rule:
raspberry first, and then blueberry.

A greentea test drive
Save, and then reload to give your new class a test drive.

Here’s the new greentea class
applied to the paragraph. Now
the font is green and matches
the Green Tea Cooler. Maybe
this styling wasn’t such a bad
idea after all.

Yeah, we know you’re probably thinking, how can a
raspberry be blue? Well, if Raspberry Kool-aid is
blue, that’s good enough for us. And seriously, when
you blend up a bunch of blueberries, they really are
more purple than blue. Work with us here.

Sharpen your pencil

320 Chapter 8

Taking classes further...
You’ve already written one rule that uses the greentea class to change any
paragraph in the class to the color “green”:

 p.greentea {
 color: green;
 }

But what if you wanted to do the same to all <blockquote>s?
Then you could do this:

 blockquote.greentea, p.greentea {
 color: green;
 }

Just add another selector to handle
<blockquote>s that are in the greentea
class. Now this rule will apply to <p> and
<blockquote> elements in the greentea class.

So what if I want to
add <h1>, <h2>, <h3>, <p>, and

<blockquote> to the green tea
class? Do I have to write one

huge selector?

No, there’s a better way. If you want all
elements that are in the greentea class
to have a style, then you can just write
your rule like this:

 .greentea {
 color: green;
 }

If you leave out all the element names,
and just use a period followed by a
class name, then the rule will apply to
all members of the class.

dealing with class selectors

And in your XHTML you’d write:

<blockquote class=”greentea”>

getting started with css

you are here � 321

Cool! Yes, that works.
One more question... you said
being in a class is like being in a
club. Well, I can join many clubs.

So, can an element be in more
than one class?

It’s easy to put an element into more than one class. Say
you want to specify a <p> element that is in the greentea,
raspberry, and blueberry classes. Here’s how you
would do that in the opening tag:

Yes, elements can be in more than one class.

<p class=”greentea raspberry blueberry”>

Place each class
name into the
value of the class
attribute, with a
space in between
each. The ordering
doesn’t matter.

Now you may be wondering what happens when an element belongs
to multiple classes, all of which define the same property – like our <p>
element up there. How do you know which style gets applied? You know
each of these classes has a definition for the color property. So, will the
paragraph be green, blue (raspberry), or purple?

We’re going to talk about this in great detail after you’ve learned a bit
more CSS, but on the next page you’ll find a quick guide to hold you over.

So, for example, I could
put an <h1> into my “products”

class that defines a font size and
weight, and also a “specials” class

to change its color to red when
something’s on sale?

Exactly. Use multiple classes when you want
an element to have styles you’ve defined in
different classes. In this case, all your <h1>
elements associated with products have a
certain style, but not all your products are
on sale at the same time. By putting your

“specials” color in a separate class, you can
simply add only those elements associated with
products on sale to the “specials” class to add
the red color you want.

322 Chapter 8

The world’s smallest & fastest guide to how
styles are applied
Elements and document trees and style rules and classes... it can get downright confusing.
How does all this stuff come together so that you know which styles are being applied to
which elements? As we said, to fully answer that you’re going to have to know a little more
about CSS, and you’ll be learning that in the next few chapters. But before you get there,
let’s just walk through some common sense rules-of-thumb about how styles are applied.

First, do any selectors select your element?
Let’s say you want to know the font-family property value for an element. The first
thing to check is: is there a selector in your CSS file that selects your element? If there is,
and it has a font-family property and value, then that’s the value for your element.

What about inheritance?
If there are no selectors that match your element, then you rely on inheritance. So, look at
the element’s parents, and parents’ parents, and so on, until you find the property defined.
When and if you find it, that’s the value.

Struck out again? Then use the default
If your element doesn’t inherit the value from any of its ancestors, then you use the default
value defined by the browser. In reality, this is a little more complicated than we’re describing
here, but we’ll get to some of those details later in the book.

What if multiple selectors select an element?
Ah, this is the case we have with the paragraph that belongs to all three classes:

There are multiple selectors that match this element and define the same color property.
That’s what we call a “conflict”. Which rule breaks the tie? Well, if one rule is more specific
than the others, then it wins. But what does more specific mean? We’ll come back in a later
chapter and see exactly how to determine how specific a selector is, but for now, let’s look at
some rules and get a feel for it:

p { color: black;}

.greentea { color: green; }

p.greentea { color: green; }

p.raspberry { color: blue; }

p.blueberry { color: purple; }

Here’s a rule that selects any old
paragraph element.

This rule selects members of the greentea class.
That’s a little more specific.

And this rule selects only paragraphs that are in
the greentea class, so that’s even more specific.

These rules also select only paragraphs in a
particular class. So they are about the same in
specificity as the p.greentea rule.

<p class=”greentea raspberry blueberry”>

intro to applying styles

getting started with css

you are here � 323

And if we still don’t have a clear winner?
So, if you had an element that belonged only to the greentea class there
would be an obvious winner: the p.greentea selector is the most specific,
so the text would be green. But you have an element that belongs to all three
classes: greentea, raspberry, and blueberry. So, p.greentea,
p.raspberry, and p.blueberry all select the element, and are of
equal specificity. What do you do now? You choose the one that is listed
last in the CSS file. If you can’t resolve a conflict because two selectors are
equally specific, you use the ordering of the rules in your style sheet file.
That is, you use the rule listed last in the CSS file (nearest the bottom). And
in this case, that would be the p.blueberry rule.

In your “lounge.html” file, change the greentea paragraph to include all the
classes, like this:
<p class=”greentea raspberry blueberry”>

Save, and reload. What color is the Green Tea Cooler paragraph now?

Next, reorder the classes in your XHTML:

<p class=”raspberry blueberry greentea”>

Save, and reload. What color is the Green Tea Cooler paragraph now?

Next, open your CSS file and move the p.greentea rule to the bottom of the file.

Save, and reload. What color is the Green Tea Cooler paragraph now?

Finally, move the p.raspberry rule to the bottom of the file.

Save, and reload. What color is the Green Tea Cooler paragraph now?

After you’ve finished, rewrite the green tea element to look like it did originally:

<p class=”greentea”>

Save, and reload. What color is the Green Tea Cooler paragraph now?

Exercise

324 Chapter 8

Did you see that? I’m like Houdini! I broke right
out of your <style> element and into my own
file. And you said in Chapter 1 that I’d never
escape.

Have to link me in? Come on; you know your
pages wouldn’t cut it without my styling.

If you were paying attention in this chapter, you
would have seen I’m downright powerful in what
I can do.

Well now, that’s a little better. I like the new
attitude.

Don’t get all excited; I still have to link you in
for you to be at all useful.

Here we go again... while me and all my
elements are trying to keep things structured,
you’re talking about hair highlights and nail
color.

Okay, okay, I admit it; using CSS sure makes
my job easier. All those old deprecated styling
elements were a pain in my side. I do like the
fact that my elements can be styled without
inserting a bunch of stuff in the XHTML,
other than maybe an occasional class attribute.

But I still haven’t forgotten how you mocked
my syntax... <remember>?

Tonight’s talk: CSS & XHTML compare languages

CSS XHTML

language comparison: css and xhtml

getting started with css

you are here � 325

You have to admit XHTML is kinda clunky, but
that’s what you get when you’re related to an
early ’90s technology.

Are you kidding? I’m very expressive. I can
select just the elements I want, and then
describe exactly how I want them styled. And
you’ve only just begun to see all the cool styling
I can do.

Yup; just wait and see. I can style fonts and
text in all kinds of interesting ways. I can even
control how each element manages the space
around it on the page.

Bwahahahaa. And you thought you had me
controlled between your <style> tags. You’re
going to see I can make your elements sit, bark,
and rollover if I want to.

I call it standing the test of time. And you think
CSS is elegant? I mean, you’re just a bunch of
rules. How’s that a language?

Oh yeah?

Hmmm... sounds as if you have a little too
much power; I’m not sure I like the sound of
that. After all, my elements want to have some
control over their own lives.

Whoa now! Security... security?!

CSS XHTML

326 Chapter 8

Who gets the inheritance?
Sniff, sniff; the <body> element has gone to that great browser in the sky. But he left
behind a lot of descendants and a big inheritance of color “green”. Below you’ll find his
family tree. Mark all the descendants that inherit the <body> element’s color green. Don’t
forget to look at the CSS below first.

body {
	 color: green

;

}

p {
	 color: black

;

}

body

h1 p h2 blockquotep

a p

h2

em

em

p

em a

a img

Here’s the CSS. Use this to
determine which of the above
elements hit the jackpot and
get the green (color).

testing your inheritance skills

getting started with css

you are here � 327

Below, you’ll find the CSS file
“style.css”, with some errors in it.
Your job is to play like you’re the
browser and locate all the errors.

After you’ve done the
exercise look at the
end of the chapter to
see if you caught all
the errors.

BE the Browser

<style>

body {
 background-color: white

h1, {
 gray;
 font-family: sans-serif;
}

h2, p {
 color:
}

 {
 font-style: italic;
}

</style>

The file “style.css”

If you have errors in your CSS,
usually what happens is all the rules
below the error are ignored. So, get
in the habit of looking for errors now,
by doing this exercise.

328 Chapter 8

The exercise got me
thinking... is there a way to

validate CSS like there is with
HTML and XHTML?

Those W3C boys and girls aren’t just sitting
around on their butts, they’ve been working hard.
You can find their CSS validator at:

http://jigsaw.w3.org/css-validator/

Type that URL in your browser and we think
you’ll feel quite at home when you get there.
You’re going to find a validator that works almost
exactly like the HTML and XHTML validators.
To use the CSS version,
just point the validator to
your CSS URL, upload a
file with your CSS in it, or
just paste it into the form
and submit.

You shouldn’t encounter
any big surprises, like
needing DOCTYPEs or
character encodings with
CSS. Go ahead, give it a
try (like we’re not going
to make you do it on the
next page, anyway).

Of course!

validating css

getting started with css

you are here � 329

Making sure the Lounge CSS validates
Before you wrap up this chapter, wouldn’t you feel a lot better if all that Head First
Lounge CSS validated? Sure you would. Use whichever method you want to get
your CSS to the W3C. If you have your CSS on a server, type your URL into the
form; otherwise, either upload your CSS file or just copy and paste the CSS into the
form. (If you upload, make sure you’re directing the form to your CSS file, not your
XHTML file.) Once you’ve done that, click on “Check”.

This is just telling you that the CSS needs correct XHTML to style, so make sure your XHTML (or HTML) also validates.

Here are some warnings about the CSS. These

are more suggestions than real warnings. For

instance, all these warnings are telling you to set a

background color on the headings
and paragraphs.

And here’s all the valid CSS,
which is ALL your CSS, so this
means your CSS validates.

If your CSS didn’t validate, check
it with the CSS a few pages back
and find any small mistakes you’ve
made, then resubmit.

Q: Do I need to worry about those
warnings? Or do what they say?

A: It’s good to look them over, but
you’ll find some are more in the category of
suggestions than “must do’s”. The validator
can err on the side of being a little anal, so
just keep that in mind.

there are noDumb Questions There’s no “green badge of success” when
you pass validation like there is when you
validate XHTML. So check the top of
the page for “Errors”. If you don’t see
that, your CSS validated!

330 Chapter 8

CSS has a lot of style properties.
You’ll see quite a few of these in
the rest of this book, but have a

quick look now to get an idea
of all the aspects of style
you can control with CSS.

font
-wei

ght

list-s
tyle

margin

border

bac
kgr

oun
d-i

mag
e

letter-spacing

This property contro
ls the

weight of text. Use it to

make text bold.

This lets you set the spacing
between letters. L i k e t h i s.

Use this property
to put an image
behind an element..

This property sets the
space between lines in a
text element.

This property puts a border around an element. You can have a solid border, a ridged border, a dotted border...

If you need space
between the edge of an
element and its content,
use margin.

font
-sty

le

Use this property for
italic or oblique text.

This property lets you
change how list items
look in a list.

font-size

Makes text bigger

or smaller.

color

Use color to set the font color of text elements. background-color
This property controls the
background color of an element.

left
This is how you tell an
element how to position its
left side.

text-alig
n

Use this property to align your text
to the left, center, or right.

top
Controls the
position of the
top of the
element.

Property
Soup

line-height

getting a feel for some other properties

getting started with css

you are here � 331

CSS contains simple statements, called rules.nn

Each rule provides the style for a selection of nn
XHTML elements.
A typical rule consists of a selector along with nn
one or more properties and values.
The selector nn specifies which elements the rule
applies to.
Each property declaration ends with a nn
semicolon.
All properties and values in a rule go between nn
{ } braces.
You can select any element using its name as nn
the selector.
By separating element names with commas, nn
you can select multiple elements at once.
One of the easiest ways to include a style in nn
HTML is the <style> tag.
For XHTML and for sites of any complexity, nn
you should link to an external style sheet.

The <link> element is used to include an nn
external style sheet.
Many properties are inherited. For instance, nn
if a property that is inherited is set for the
<body> element, all the <body>’s child
elements will inherit it.
You can always override properties that are nn
inherited by creating a more specific rule for
the element you’d like to change.
Use the nn class attribute to add elements to
a class.
Use a “.” between the element name and the nn
class name to select a specific element in that
class.
Use nn “.classname” to select any elements that
belong to the class.
An element can belong to more than one class nn
by placing multiple class names in the class
attribute with spaces between the names.
You can validate your CSS using the W3C nn
validator, at http://jigsaw.w3.org/css-validator.

It looks like you’re
getting the hang of this style
stuff. We’re looking forward to
seeing what you come up with in

the next couple of chapters.

 BULLET POINTS

332 Chapter 8

XHTMLcross
Here are some clues with mental twist and turns that will help you burn alternative
routes to CSS right into your brain!

1

2 3

4 5 6

7 8

9

10

11

12

13

Across

1. Defines a group of elements.

2. Ornamental part of some fonts.

4. Styles are defined in these.

7. Fonts without serifs.

9. Each rule defines a set of properties and?

10. How elements get properties from their

parents.

11. Use this element to include an external style

sheet.

12. Selects an element.

13. Reality show.

Down

1. With inheritance, a property set on one element

is also passed down to its _______.

2. You can place your CSS inside these tags in an

HTML file.

3. Won this time because they used external style

sheets.

5. Property that represents font color.

6. Property for font type.

7. An external style file is called this.

8. They really wanted some style.

time for some mental pushups

getting started with css

you are here � 333

body

html

title

head

stylemeta h1 p h2 pp

img a em a

Markup Magnets Solution
Remember drawing the diagram of XHTML elements in
Chapter 3? You did that again for the Lounge’s main page.
Here’s the answer:

title

head body

html

p

q

Like this.

334 Chapter 8

The selected elements are colored:

body

html

h1 h2p p

img a em a

p

body

html

h1 h2p p

img a em a

p

Solution
Sharpen your pencil

p, h2 {
 font-family: sans-serif;
}

p, em {
 font-family: sans-serif;
}

exercise solutions

getting started with css

you are here � 335

Your turn: add two classes, “raspberry” and “blueberry” to the
correct paragraphs in “elixir.html” and then write the styles to
color the text blue and purple respectively. The property value for
raspberry is “blue” and for blueberry is “purple”.

body {
 font-family: sans-serif;
}

h1, h2 {
 color: gray;
}

h1 {
 border-bottom: 1px solid black;
}

p {
 color: maroon;
}

p.greentea {
 color: green;
}

p.raspberry {
 color: blue;
}

p.blueberry {
 color: purple;
}

Solution
Sharpen your pencil

336 Chapter 8

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <title>Head First Lounge Elixirs</title>
 <link type=“text/css” rel=”stylesheet” href=”../lounge.css” />
 </head>
 <body>
 <h1>Our Elixirs</h1>
 <h2>Green Tea Cooler</h2>
 <p class=“greentea”>
		
		 Chock full of vitamins and minerals, this elixir
		 combines the healthful benefits of green tea with
		 a twist of chamomile blossoms and ginger root.
 </p>
 <h2>Raspberry Ice Concentration</h2>
 <p class=“raspberry” >
		
		 Combining raspberry juice with lemon grass,
		 citrus peel and rosehips, this icy drink
		 will make your mind feel clear and crisp.
 </p>
 <h2>Blueberry Bliss Elixir</h2>
 <p class=“blueberry” >
		
		 Blueberries and cherry essence mixed into a base
		 of elderflower herb tea will put you in a relaxed
		 state of bliss in no time.
 </p>
 <h2>Cranberry Antioxidant Blast</h2>
 <p>
		
		 Wake up to the flavors of cranberry and hibiscus
		 in this vitamin C rich elixir.
 </p>
 </body>
</html>

Sharpen your pencil
Solution

exercise solutions

getting started with css

you are here � 337

Who gets the inheritance?

body

h1 p h2 blockquote

em

p h2

a p

em

p

em a

a img

Exercise solutions

h1 and h2 get the inheritance
because they don’t have a color
property, so they inherit their
color from body. Lucky them!

There are no CSS rules for blockquote, so blockquote also inherits its color from body. (But, since p overrides the color to black, the blockquote color won’t matter.)

This one em is fortunate to be a child of h2, who inherits the body color. Since there’s no em rule overriding the color with its own property, this em inherits body’s color.

Unfortunately for these em
elements, they are children
of parents who override the
body color, the p element.
So they don’t get any color
inheritance from body.

And, these poor a elements are

also children of p, so they d
on’t

inherit the body color eithe
r.

img is a child of p, so img
doesn’t inherit the color
from body. img wouldn’t get
a color inheritance anyway
(poor guy).

body {
	 color: green

;

}

p {
	 color: black

;

}

338 Chapter 8

Below, you’ll find a CSS file with
some errors in it. Your job is to
play like you’re the browser and

locate all the errors. Did you
find them all?

BE the Browser

<style>

body {

 background-color: white

h1, {

 gray;

 font-family: sans-serif;

}

h2, p {

 color:

}

 {

 font-style: italic;

}

</style>

No XHTML in your CSS! The
<style> tags are XHTML and
don’t work in a CSS style sheet.

Missing semicolon.

Missing }
Extra comma.

Missing property name.

Missing property value and semicolon.

Using the XHTML tag instead of just
the element name. This should be em.

No </style> tags needed in
the CSS stylesheet.

Exercise
solutions

exercise solutions

getting started with css

you are here � 339

C
1

L A S S

H

S
2

E R
3

I F I

T A R
4

U L E S C
5

F
6

Y D D O O

L W R L N

E E E O T

B S
7

A N S S E R I F - L
8

D T F O

E Y V
9

A L U E S

S L M N

I
10

N H E R I T A N C E I G

G S L E

L
11

I N K H Y G

S
12

E L E C T O R U

E Y

T
13

R A D I N G S P A C E S

Across

1. Defines a group of elements. [class]

2. Ornamental part of some fonts. [serif]

4. Styles are defined in these. [rules]

7. Fonts without serifs. [sansserif]

9. Each rule defines a set of properties and?

[values]

10. How elements get properties from their

parents. [inheritance]

11. Use this element to include an external style

sheet. [link]

12. Selects an element. [selector]

Down

1. With inheritance, a property set on one element

is also passed down to its _______. [children]

2. You can place your CSS inside these tags in an

HTML file. [style]

3. Won this time because they used external style

sheets. [RadWebDesign]

5. Property that represents font color. [color]

6. Property for font type. [font-family]

7. An external style file is called this. [stylesheet]

8. They really wanted some style. [loungeguys]

In your “lounge.html” file, change the greentea paragraph to include all the
classes, like this:
<p class=”greentea raspberry blueberry”>

Save, and reload. What color is the Green Tea Cooler paragraph now?

Next reorder the classes in your XHTML:

<p class=”raspberry blueberry greentea”>

Save, and reload. What color is the Green Tea Cooler paragraph now?

Next open your CSS file and move the p.greentea rule to the bottom of the file.

Save, and reload. What color is the Green Tea Cooler paragraph now?

Finally, move the p.raspberry rule to the bottom of the file.

Save, and reload. What color is the Green Tea Cooler paragraph now?

After you’ve finished, rewrite the green tea element to look like it did originally:

<p class=”greentea”>

Save, and reload. What color is the Green Tea Cooler paragraph now?

purple

purple

green

blue

green

It’s purple because the
blueberry rule is last in
the CSS file.

It’s still purple because the
ordering of the names in the
class attribute doesn’t matter.

Now, it’s green, because
the greentea rule comes
last in the CSS file.

Now, it’s blue, because the
raspberry rule comes last
in the CSS file.

Okay, now the <p> element
only belongs to one class, so
we use the most specific
rule, which is p.greentea.

Exercise
Solutions

this is a new chapter 341

Expanding your
9 styling with fonts and colors

Vocabulary

Your CSS language lessons are coming along nicely. You already

have the basics of CSS down and you know how to create CSS rules to select and specify

the style of an element. Now it’s time to build your vocabulary, and that means picking up

some new properties and learning what they can do for you. In this chapter we’re going

to work through some of the most common properties that affect the display of text. To do

that, you’ll need to learn a few things about fonts and color. You’re going to see you don’t

have to be stuck with the fonts everyone else uses, or the clunky sizes and styles the

browser uses as the defaults for paragraphs and headings. You’re also going to see there

is a lot more to color than meets the eye.

342 Chapter 9

A lot of the CSS properties are dedicated to helping you style your text. Using
CSS, you can control typeface, style, color, and even the decorations that are
put on your text, and we’re going to cover all these in this chapter. We’ll start
by exploring the actual fonts that are used to display your pages. You’ve already
seen the font-family property and in this chapter you’re going to learn a lot
more about specifying fonts.

Before we dive in, let’s get the 30,000 foot view of some properties you can use
to specify and change the look of your fonts. After that, we’ll take the fonts one
by one and learn the ins and outs of using each.

Text and fonts from 30,000 feet

Andale Mono

Arial
Arial Black
Comic Sans
Courier New

Georgia

Impact

Times New Roman
Trebuchet MS

Verdana

body is 14px

h1 is 21px p is 14px h2 is 17px
body {
	 font-size: 14px;
}

body {
	 font-family: Verdana, Geneva, Arial, sans-serif;
}

Customize the fonts in your pages with the font-family property.
Fonts can have a dramatic effect on your page designs. In CSS, fonts are
divided into “font families” from which you can specify the fonts you’d
like used in each element of your page. Only certain fonts are commonly
installed on most computers, so you need to be careful in your font
choices. In this chapter we’ll take you through everything you need to
know to specify and make the best use of fonts.

Control the size of your fonts with the font-size property.
Font size also has a big impact on the design and the readability of your
Web pages. There are several ways to specify font sizes with CSS, and in
this chapter we’ll cover each one, but we’ll also teach you how to specify
your fonts in a way that allows your users to increase the font size without
affecting your designs.

common text properties

styling with fonts and colors

you are here � 343

Yellow

Orange

Maroon

TealRed

PurpleOlive

NavyLime

Aqua

GreenGrayFuchsia

BlueBlack

White

Silver

body {
	 color: silver;
}

Add color to your text with the color property.
You can change your text color with the color property. To do that, it
helps to know a little about Web colors, and we’ll take you through all the
ins and outs of color, including the mysterious color “hex codes.”

bolder
bold
normal
lighter

body {
	 font-weight: bold;
}

Affect the weight of your fonts with the font-weight property.
Why settle for boring, average fonts when you can give them some extra
weight when needed? Or, are your fonts looking too heavy? Slim them down
to a normal weight. All this is easily done with the font-weight property.

body {
	 text-decoration: underline;
}

Add even more style to your text with the text-decoration property.
Using the text-decoration property you can decorate your text with
decorations including overlines, underlines, and line-throughs. And if you didn’t
get enough of blinking text on the Web in the 1990s, the designers of CSS have
even included a blink value for text-decoration (although thankfully they
don’t require browsers to implement it).

none
underline
overline
line-through
blink

344 Chapter 9

What is a font family anyway?
You’ve already come across the font-family property, and so far you’ve
always specified a value of “sans-serif ”. You can get a lot more creative than
that with the font-family property, but it helps to know what a font family
is first. Here’s a quick rundown...

Times

Serif Family

Arial

Verdana

Geneva

Sans-serif Family

The sans-serif family includes fonts
without serifs. These fonts are usually
considered more readable on computer
screens than serif fonts.

The serif family includes fonts with serifs.
A lot of people associate the look of
these fonts with newspaper print.

Each font-family contains a set of fonts that
share common characteristics. There are five
font families: sans-serif, serif, monospace,
cursive, and fantasy. Each family includes a
large set of fonts, so on this page you’ll see
only a few examples of each.

Serifs are the
decorative barbs
and hooks on the
ends of the letters.

Sans-serif means
“without serifs”.

Fonts aren’t consistently available from
one computer to another. In fact, the set of
available fonts will vary depending on the
operating system as well as what fonts and
applications a user has installed. So keep
in mind that the fonts on your machine may
differ from what is available to your users.

Times New Roman

Arial Black

Trebuchet MS

Georgia

overview of font families

styling with fonts and colors

you are here � 345

Courier

Monospace Family

Comic Sans	

Apple Chancery

Cursive Family

The Cursive family
includes fonts that
look handwritten. You’ll
sometimes see these fonts
used in headings.

The Monospace family is made up of fonts that have constant
width characters. For instance, the horizontal space an “i” takes
up will be the same width that an “m” takes up. These fonts are
primarily used to show software code examples.

Last NinjA

Impact

Fantasy Family

The Fantasy font family contains
stylized decorative fonts. These fonts are usually not widely available and are rarely used for serious Web designs.

Take a good look at the font families: serif
fonts have an elegant, traditional look,
while sans-serif fonts have a very clean and
readable look. Monospace fonts feel like
they were typed on a typewriter. Cursive and
Fantasy fonts have a playful or stylized feel.

Andale Mono

Courier New

346 Chapter 9

Font Magnets
Your job is to help the fictional fonts below find their way home
to their own font family. Move each fridge magnet on the left into
the correct font family on the right. Check your answers before
you move on. Review the font family descriptions on the previous
pages if you need to.

Quarter

Nautica
Crush

Savannah

Messenger

Iceland

Angel

Palomino

Cartoon

Bainbridge

Serif Family

Monospace Family

Cursive Family

Sans-serif Family

Fantasy Family

develop your sense of fonts

styling with fonts and colors

you are here � 347

Okay, so there are a lot of good fonts out there from several font families. How do
you get them in your pages? Well, you’ve already had a peek at the font-family
property in the last chapter, when you specified a font-family of “sans-serif ” for
the lounge. Here’s a more interesting example:

Specifying font families using CSS

body {
	 font-family: Verdana, Geneva, Arial, sans-serif;
}

Check to see if the font
Verdana is available on the
computer and if so, use
it as the font for this
element (in this case, the
<body> element).

You can specify more than one
font using the font-family
property. Just type the font
names separated by commas.

Write font names as they
are spelled, including upper-
and lower-case letters. Always put a generic font family name at the

end, like “serif”, “sans-serif”, “cursive”, or
“monospace”. You’ll see what this does in a sec.

How font-family specifications work
Here’s how the browser interprets the fonts listed in your font-family specification:

body {
	 font-family: Verdana, Geneva, Arial, sans-serif;
}

If Verdana isn’t
available, then look
for the font Geneva,
and if it is available,
use it for the body.

Finally, if none of the specific
fonts can be found, just use
whatever the browser considers
its default “sans-serif” font.

You don’t have to specify four alternative fonts; you
can have two, three, etc. In the last chapter we only
used one - the default sans-serif font - although
we don’t recommend that because it doesn’t give you
much control over the fonts you’d like used.

The font-family property gives you a way to create a list of preferred fonts.
Hopefully most browsers will have one of your first choices, but if not, you can at least
be assured that the browser will provide a generic font from the same family.

Let’s get some fonts into your pages...

If Geneva isn’t
available, then look for
the font Arial, and if
it is available, use it
for the body.

Usually your font-family specification contains a
list of alternative fonts, all from the same family.

348 Chapter 9

Dusting off Tony’s Journal
Now that you know how to specify fonts, let’s take
another look at Tony’s Segway’n USA page and
give it a different look. We’ll be making some small,
incremental changes to the text styles in Tony’s
page and while no single change is going to look
dramatically different, by the end of the chapter
we think you’ll agree the site has a slick new look.
Let’s get an idea of where we might make some
improvements and then let’s give Tony a new
font-family.

Remember that we haven’t applied
any styles to Tony’s site, so his site
is using a serif font-family for the
entire page.

The quote is just indented. It
would be nice to improve its look
a bit by adding some font-style.

The default size of the heading fonts is also pretty
large and doesn’t make for an attractive page.

Except for the photos, this page
is rather monochromatic, so we’ll
also add some font color to make
it a little more interesting.

improving tony’s journal

styling with fonts and colors

you are here � 349

body {
 font-family: Verdana, Geneva, Arial, sans-serif;
}

Getting Tony a new font-family

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
 <head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <link type=“text/css” rel=“stylesheet” href=“journal.css” />
 <title>My Trip Around the USA on a Segway</title>
 </head>
 <body>
 .
 .
 .
 </body>
</html>

Let’s get Tony set up with a font-family. We’re going to start with
some clean sans-serif fonts. First, create a new file, “journal.css” in the

“chapter9/journal” folder and add this rule:

Remember, you fixed up Tony’s journal to
be strict XHTML in Chapter 7.

We’ve chosen a set of
sans-serif fonts here.

You’ll see Verdana
on most PCs. And Geneva on

most Macs.
Arial is
common
on both.

And if all else
fails, we have
the default
sans-serif.

We’re setting the
font-family property
on the <body> element.
Remember, the
elements in the <body>
will inherit these fonts.

After you’ve made this change, save the file, fire up your browser and load the page.

Now you need to link Tony’s journal to the new style sheet file. To do that, open
the file “journal.html” in the “chapter9/journal” folder. All you need to add is the
<link> element to link in the style in “journal.css”, like we did below.

Here’s where we’re
linking in the new
“journal.css” file.

350 Chapter 9

Test driving Tony’s new fonts

The font definitely gives Tony’s Web page a
new look. The headings now have a cleaner look
without the serifs on the letters, although they
still look a tad large on the page.

Open the page with the new CSS in the browser and you
should see we’ve now got a nice set of sans-serif fonts.
Let’s check out the changes...

The paragraph text is also
clean and very readable.

Because font-family is an inherited property,
all elements on the page are now using a
sans-serif font, even the list elements...

... and the <blockquote>s.

And if the serif fonts were more
your cup of tea, don’t let us stop you.
You can always redo the font-family
declaration to use serif fonts.

Q: How do I specify a font
with multiple words in the
name, like Courier New?

A: Just put double quotes
around the name in your font-
family declaration, like this:
font-family: “Courier New”,
Courier;

Q: So the font-family
property is really a set of
alternative fonts?

A: Yes. It’s basically a
priority list of fonts. The first is
the font you’d like used, followed
by a good substitute, followed by
more substitutes, and so on. For
the last font, you should specify
the catch-all generic “sans-serif”
or “serif”, which should be in the
same family as all the fonts in
your list.

Q: Are “serif” and “sans-
serif” real fonts?

A: “serif” and “sans-serif”
are not the names of actual
fonts. However, your browser
will substitute a real font in
place of “serif” or “sans-serif” if
the other fonts before it in the
font-family declaration can’t be
found. The font used in its place
will be whatever the browser
has defined as the default font in
that family.

Q: How do I know which
to use? Serif or sans-serif?

A: There are no rules.
However, on a computer display,
many people consider sans-serif
the best for body text. You’ll
find plenty of designs that use
serif for body text, or mix serif
fonts with sans-serif fonts. So,
it really is up to you and what
kind of look you want your page
to have.

there are no
Dumb Questions

some fonts questions

styling with fonts and colors

you are here � 351

How do I deal with everyone having
different fonts?

font-family: Verdana, Geneva, Arial, sans-serif;

The unfortunate thing about fonts is that you
can’t control what fonts are on your users’
computers. The best you can do is to create a
list of fonts that are most appropriate for your
pages and then hope the user has one of those
fonts installed. If they don’t, well, at least we
can count on the browser to supply a generic
font in the same font family.

At least, that’s the basic strategy for ensuring
your page is displayed using appropriate
fonts. But it turns out, given the differences
in fonts between operating systems (especially
Windows versus Mac), you do have to take
this a little further to really do your job well.
What you need to do is ensure that your
font-family declaration includes fonts that
are likely to occur on both Windows and the
Mac (as well as any other platforms your users
might be using, like Linux or perhaps mobile
devices).

Here’s a quick guide to some of the common
fonts on each operating system, but we
encourage you to explore this area more if you
need to closely control the fonts on your pages.

Andale Mono

Arial
Arial Black
Comic Sans
Courier New

Georgia

Impact

Times New Roman
Trebuchet MS

Verdana

Geneva
Courier

Helvetica
Times

These fonts
are likely to
be available on
both Windows
and Macintosh
computers.

These fonts are
most likely to be
found on Macintosh
computers.

(1) We’d like for
Verdana to be
used, but...

(2) If it’s not, Geneva would
be nice, but this will probably
only happen on Macs. But if
it’s not...

(3) That’s okay, because we
can probably count on Arial
to be on either Windows or
Macs, but if it’s not...

(4) Then that’s still
okay, we’ll just let the
browser choose a sans-
serif font for us.

Let’s take a look at
our definition for Tony’s
pages again...

352 Chapter 9

font-size: 14px;

You can specify your font size in pixels, just like the pixel dimensions you used
for images in Chapter 5. When you specify font size in pixels, you’re telling
the browser how many pixels tall the letters should be.

In CSS you specify pixels with
a number followed by “px”.
This says that the font-size
should be 14 pixels high.

h i p

Setting a font to 14 pixels high
means that there will be 14
pixels between the lowest part of
the letters and the highest.

14 pixels

The px must come right after the number of
pixels. You can’t have a space in between.

Adjusting font sizes
Now that Tony has a new set of fonts, we need to work on those font sizes, as most
people find the default sizes of the headings a bit large, at least aesthetically. To do
that, you need to know how to specify font sizes, and there are actually a few ways to
do this. Let’s take a look at some ways to specify font-size and then we’ll talk
about how best to specify font size so they are consistent and user friendly.

font-size: 150%;

Unlike pixels, which tell the font exactly how big it should be in pixels, a font size specified
as a percentage tells the font how big it should be relative to another font size. So,

says that the font size should be
150% of another font size. But,
which other font size? Well, since
font-size is a property that is
inherited from the parent element,
when you specify a % font size, it is
relative to the parent element. Let’s
check out how that works...

body {
	 font-size: 14px;
}
h1 {
	 font-size: 150%;
}

px

%

If you do things right, any
user will be able to increase
the font sizes on your Web
page for readability. You’ll
see how in a couple of pages.

Here we’ve specified a body font size in
pixels, and a level one heading as 150%.

body {
	 font-size: 14px;
}

Here’s how you’d specify
font-size within a body rule.

how to specify font sizes

styling with fonts and colors

you are here � 353

You can also specify font sizes using “em”, which, like percentage, is another
relative unit of measure. With em you don’t specify a percentage; instead you
specify a scaling factor. Here’s how you use em:

font-size: 1.2em;
This says that the
font size should be
scaled by 1.2.

body is 14px

h1 is 21px p is 14px

body is 14px

h1 is 21px p is 14px h2 is 17px

The <h1> heading is
150% of the <body>
font size, which is 21px.

Since we didn’t specify a font
size for <p>, it inherits the
<body> font size of 14px.

body {
	 font-size: 14px;
}
h1 {
	 font-size: 150%;
}
h2 {
	 font-size: 1.2em;
}

Say you use this measurement to specify the size of an
<h2> heading. Your <h2> headings will be 1.2 times
the font size of the parent element, which in this case is
1.2 times 14px, which is about 17px.

It’s actually 16.8, but
most browsers will
round it up to 17.

em

If we draw a little document tree, you can see that <h1>
inherits from <body>, so its font is going to be 150% of
the body’s font size.

Here’s the <h1> specified
by a percentage.

And here’s the <h2>
specified by 1.2em.

Don’t mix this
up with the
 element!

354 Chapter 9

There’s one more way to specify font sizes: keywords. You
can specify a font size as xx-small, x-small, small,
medium, large, x-large, or xx-large and the
browser will translate these keywords into pixel values using
defaults that are defined in the browser.

keywords

This is typically how the various keyword sizes relate to
one another. Each size is about 20% larger than the
previous size and small is usually defined to be around
12 pixels in height. Keep in mind, however, that the
keywords aren’t always defined the same way in every
browser, and that users can redefine them if they want.

xx-small
x-small
small
medium
large
x-large
xx-large

body {
	 font-size: small;
}

So, how should I specify my font sizes?
You’ve got quite a few choices for specifying font sizes: px, em, percentages,
and keywords. So, which do you use? Here’s a recipe for specifying font sizes
that will give you consistent results for most browsers.

1

2

In most browsers this will result in the body text being about 12 pixels.

Nice recipe, but what’s good about it? By defining your fonts relative to the
body font size, it’s really easy to change the font sizes in your Web page simply
by changing the body font size. Want to redesign the page to make the fonts
larger? If your body font size value is small, simply change it to medium
and, voilà – every other element will automatically get larger in proportion
because you specified their font sizes relative to the body’s font size. Better yet,
say your users want to resize the fonts on the page. Again, no problem; using
this recipe, all the fonts on the page will automatically readjust.

Choose a keyword (we recommend small or medium) and specify it as the
font size in your body rule. This acts as the default size for your page.

Specify the font sizes of your other elements relative to your body font size
using either em or percentages (the choice between em and percentages
is yours, as they are essentially two ways to do the same thing).

using keywords for size

styling with fonts and colors

you are here � 355

body is small

h1 is 150% of body p is small h2 is 120% of body

body { font-size: small; }
h1 { font-size: 150%; }
h2 { font-size: 120%; }

body is large

h1 is 150% of body p is large h2 is 120% of body

We’ve set <h2>’s
font size to 120%
of its parent’s size.

h2 is still 120% the size of
the body font size. In this
case it’s 120% of “large”.

Now, let’s say you decide to make your
font size bigger, OR the user makes the
font size bigger using the browser.

All your other elements
automatically get bigger too,
without you having to do a thing.

The font size of <h1>
is 150% the font size
of <body>.

That gives you a document tree that looks like this:

The <p> doesn’t have a font-size value set, so
by default, it inherits the <body> font size.

Now, let’s say you want to increase the size of the fonts on the page,
or perhaps the user does. Then you get a tree that looks like this:

Let’s look at how this all works. First, you set a size for your
<body> element. Then, you set all the other font sizes relative to
that size, like this:

Now the body font size has changed to large, and everything else has
changed too, in relation to the body font size. That’s great, because
you didn’t have to go through and change all your other font sizes;
all you had to do was change the body font size. And if you’re a user,
everything happened behind the scenes. When you increased the text
size, all the text got bigger because all the elements are sized relative to
one another, so the page still looks good at a larger font size.

Unfortunately, Internet Explorer
users cannot resize fonts if your
font sizes are specified using
pixels. So, that’s one reason to
stay away from pixel sizes. If you use pixels, you’ll be reducing the
accessibility of your pages for
many of your users.

Fortunately, if you follow the
recipe of supplying a keyword to
define your body’s font size, and
use relative sizes for your other
elements using em or %, then IE
will properly scale your fonts if the browser is asked to make the text bigger or smaller.

Internet Explorer
does NOT
support text

scaling when the font size is specified using pixels.

Watch it!

356 Chapter 9

Let’s make these changes to the
font sizes in Tony’s Web page

body {
 font-family: Verdana, Geneva, Arial, sans-serif;
 font-size: small;
}
h1 {
 font-size: 170%;
}
h2 {
 font-size: 130%;
}

It’s time to try these font sizes in Tony’s Web page. Add the new properties to the
“journal.css” file in the “chapter9/journal” folder. Once you’ve made the changes,
reload the page in the browser and check out the differences in the font size. If you
don’t see a difference, check your CSS carefully for errors.

And we’ll set the other fonts relative to the body font size. In the case of <h1> we’ll try a font size that is 170% of the base font size.

Following our recipe, we’re using a font-size
of small for the <body> element. This will
act as the base font size.

We’ll make the <h2> font size a tad smaller than <h1>, or 130% of the body font size.

If you specified <h1> and <h2>’s font sizes using em rather than
percentage, what would their values be?

Answer: <h1> would be 1.7em and <h2> 1.3em.

Sharpen your pencil

setting up tony’s font sizes

styling with fonts and colors

you are here � 357

Test driving the font sizes

The body text is a
tad smaller. The
default body text
font size is usually
16px, although it
does depend on the
browser. But it’s
still easily readable
at the “small” size,
which is probably
about 12px.

The <h2> heading
is a bit smaller too,
and is a good size
compared to the
<h1> heading.

Here’s the evolving journal, complete with new
smaller fonts. Check out the differences...

Here’s the pre
vious

version befor
e the

change in fon
t sizes.

Here’s the new version with smaller
fonts. The design is starting to
look a little less clunky!

This <h1> heading looks
much better now. It
doesn’t overwhelm the
body text and the
page in size.

358 Chapter 9

Q: So, by defining a font size in the
<body> element, I’m somehow defining a
default size for the page? How does that
work?

A: Yes, that’s right. By setting a font
size in your <body> element, you can then
define the other font sizes of your elements
in relation to their parent. What’s so great
about that? Well, if you need to change the
font size, then all you need to do is change
the body font size, and everything else will
change in proportion.

Q: Do we really need to worry about
users resizing their browser fonts? I
never do that.

A: Yes. Almost all browsers allow their
user to make the text of a page bigger or
smaller, and many users take advantage
of this feature. If you define your fonts in a
relative manner, then your users will have no
trouble doing this. Just be careful not to use
pixel sizes, because some browsers have
problems resizing those.

Q: I like the idea of using pixels
because then my page will look exactly
like I specify it.

A: There is some truth to that – by
using pixels for every element’s font size,
you are choosing the precise font size you
want for each element. But you do that at
the cost of giving some of your users (the
ones using certain versions of Internet
Explorer) the flexibility to pick a font size that
is appropriate for their display and eyesight.

You also are creating pages that are a little
harder to maintain because if you suddenly
want to increase the font sizes of all the
elements in a page, you have a lot of
changes to make.

Q: What’s the difference between em
and %? They seem like the same thing.

A: They are basically two different ways
to achieve the same thing. Both give you a
way to specify a size relative to the parent
font size. A lot of people find percent easier
to think about than em, and also easier
to read in your CSS. But you should use
whichever you want.

Q: If I don’t specify any font sizes, do
I just get the default font sizes?

A: Yes, and what those sizes are
depends on your browser, and even the
version of the browser you are running. But
in most cases the default body font size will
be 16 pixels.

Q: And what are the default sizes for
the headings?

A: Again, it depends on the browser,
but in general, <h1> is 200% of the default
body text font size, <h2> is 150%, <h3>
is 120%, <h4> is 100%, <h5> is 90%, and
<h6> is 60%. Notice that by default <h4> is
the same font size as the body font size, and
<h5> and <h6> are smaller.

Q: So rather than using the size
keywords, can I use em or % in the body
rule? If I use 90% for the font-size of the
body, what does that mean exactly? It’s
90% of what?

A: Yes, you can do that. If you specify
a font size of 90% in your body rule, then
that would be 90% of the default font size,
which we just said is usually 16 pixels, so
90% would be about 14 pixels. If you’d like a
font size slightly different than the keywords
provide, go ahead and use % or em.

Q: There seems to be so many
differences between browsers: font-
family, font-size, various default settings,
and so on. How will I ever know if my
design looks good on other browsers?

A: Great question. The easy answer
is that if you follow the guidelines in this
chapter then most of your designs are going
to look just fine in other browsers. However,
you should know that they may look slightly
different in different browsers – the fonts
may be slightly bigger or smaller, spacing
here and there may be different, etc. But,
all the differences should be very minor
and should not affect the readability of your
pages.
However, if you really care about having
your pages looking almost identical in many
browsers, then you really need to test them
in lots of browsers. And, to really take this
to the extreme, you’ll find a variety of CSS
“hacks” to try to make different browsers
behave the same. If you want to take it this
far, there’s nothing wrong with that, but just
keep in mind a lot of these activities take
time and have diminishing returns.

there are noDumb Questions

some more questions on font size

styling with fonts and colors

you are here � 359

Changing a font’s weight
The font-weight property allows you to control
how bold the text looks. As you know, bold text looks
darker than normal text and tends to be a bit fatter too.
You can make any element use bold text by setting the
font-weight property to bold, like this:

Starbuzz Coffee
Beverages

Starbuzz Coffee
Beverages

font-weight: normal;

font-weight: bold;

font-weight: bold;

You can also go the other way. If you have an element
that is set to bold by default, or is inheriting bold from a
parent, then you can remove the bold style like this:

font-weight: normal;

Write the CSS to change the headings in Tony’s page from their default bold value to
normal weight. Then, add the rule to your CSS and give it a test drive. You’ll find the
answer to this one on the next page.

There are also two relative font-weight properties:
bolder and lighter. These will make your text
style a little bolder or a little lighter relative to its
inherited value. These values are seldom used and
because not many fonts allow for slight differences in
the amount of boldness, in practice these two values
often have no effect.

You can also set your font-weight property to a
number between 100 and 900, but again, this is not
well supported across fonts and browsers and so is
not often used.

Sharpen your pencil

360 Chapter 9

Test drive the normal weight headings

body {
	 font-family: Verdana, Geneva, Arial, sans-serif;
	 font-size: small;
}
h1, h2 {
	 font-weight: normal;
}
h1 {
	 font-size: 170%;
}
h2 {
	 font-size: 130%;
}

Here’s what your CSS should look like after you make the change to
use a normal font-weight for both the <h1> and <h2> headings:

Here we’re changing the font-weight of both headings to normal in the same CSS rule. It’s a good idea to combine common properties into one rule like this to avoid duplication.

And here are the results. The
headings are now lighter looking.

using normal weight

styling with fonts and colors

you are here � 361

Adding style to your fonts
You’re familiar with italic text, right? Italic text
is slanted, and sometimes has extra curly serifs.
For example, compare these two styles:

oblique
not oblique

italic
not italic The italic text is slanted to the right

and has extra curls on the serifs.

You can add an italic style to your text in
CSS using the font-style property:

font-style: italic;

However, not all fonts support the italic style,
so what you get instead is called oblique text.
Oblique text is also slanted text, but rather
than using a specially designed slanted set of
characters in the font, the browser just applies
a slant to the normal letters. Compare these
non oblique and oblique styles:

The regular letters are
slanted to the right in
the oblique style.

font-style: oblique;

You can use the font-style property
to get oblique text too, like this:

In practice, you’re going to find that, depending
on your choice of font and browser, sometimes
the two styles will look identical, and sometimes
they won’t. So, unless italic versus oblique is
very important to you, choose one and move
on. If, on the other hand, it is important, you’ll
need to test your font and browser combination
for the best effect.

A common mistake is to
write “italic” as “italics”.
If you do, you won’t see
italic text. So remember
to check your spelling.

Italic and oblique styles
are two styles that
give fonts a slanted
appearance.

Unless you can control
the fonts and browsers
your visitors are
using, you’ll find that
sometimes you get italic,
and sometimes oblique,
no matter which style
you specify.

So just go with italic
and don’t worry about
the differences (you
probably can’t control
them anyway).

362 Chapter 9

Styling Tony’s quotes
with a little italic
Now we’re going to use the font-style property
to add a little pizazz to Tony’s quotes. Remember
the Burma Shave slogan in the <blockquote>
element? We’re going to change the slogan to italic
style to set it off from the rest of the text. To do that
we just need to style the <blockquote> with a
font-style of italic, like this:

blockquote {
	 font-style: italic;
}

Add this new CSS rule to the CSS in your
“journal.css” file, save it, and give the page a
test drive. You should see the Burma Shave
slogan change to italic; here’s our test drive.

Here’s the new style on the Burma Shave
slogan in Tony’s page. We got slanted text,
just like we wanted.

Q: The text for the <blockquote> is actually inside
a <p> that’s inside the <blockquote>. So, how did this
change the paragraph to italic?

A: Remember, by default most elements get their font
styles from their parents, and the parent of this paragraph
is the <blockquote> element. So the paragraph within the
<blockquote> inherits the italic style.

Q: Why didn’t we just put the text into an
element inside the <blockquote>? Wouldn’t that do the
same thing and make the <blockquote> italic?

A: Remember that is for specifying structure.
 says that a set of words should be emphasized. What
we’re doing is styling a <blockquote>, we are not indicating
that the text in the <blockquote> should be emphasized. So,
while you’re right, on most browsers is styled with italic,
it’s not the right way to style the text in the <blockquote>.
Also, keep in mind that the style of could change, so
you shouldn’t count on always being italic.

there are no
Dumb Questions

using a font style

styling with fonts and colors

you are here � 363

Cool. Love the new look. Hey,
how about a little color in those
fonts? Say, ummm... the color of

my shirt? I love orange!

You’d think we could just tell you there
was a color property and send you on
your way to use it. But, unlike font sizes
or weights or text styles, you’ve got to
understand a fair bit about color to be able
to work with it and specify it in CSS.

So, over the next few pages, you’re going
to dive into color and learn everything
you need to know to use it on your pages:
how colors on the screen work, the various
ways of describing color in CSS, what
those mysterious hex codes are all about,
whether you should be worried about

“Web safe colors,” and what’s the easiest
way to find and specify colors.

364 Chapter 9

How do Web colors work?

100% Red 100% Blue

100% Green

60% Red 60% Blue

60% Green

You’re starting to see that there are lots of places you can add color to your
pages: background colors, border colors, and soon, font colors as well. But,
how do colors on a computer actually work? Let’s take a look.

Web colors are specified in terms of how
much red, green, and blue make up the
color. You specify the amount of each
color from 0 to 100% and then add them
all together to arrive at a final color. For
instance if you add 100% red, 100% green,
and 100% blue together, you get white.
Notice that on a computer screen, mixing
together colors results in a lighter color.
After all, this is light we’re mixing!

But, if you add, say, only 60% of each
component (red, green, and blue) then
what would you expect? Less white,
right? In other words, you get a gray
color, because we’re sending equal
amount of the three colors, but not as
much light to the screen.

Here’s red, green and blue being
mixed together. If you look at the
center you’ll see how they all add up.

overview of web colors

styling with fonts and colors

you are here � 365

80% Red 0% Blue

40% Green

On a computer screen, if 0% blue is added,
then blue doesn’t add anything to the color.

Mixing 80% red and
40% green we get a
nice orange color.

Or, say you mix together 80% red and 40%
green. You’d expect an orange color, right?
Well, that’s exactly what you’ll get. Notice
that if a color is contributing zero, then it
doesn’t affect the other two colors. Again,
this is because there is no blue light being
mixed with red and green.

And what if you mix 0% of red, green, and
blue, then what do you get? That means
you’re sending no light of any kind to the
screen, so you get black.

0% Red 0% Blue

0% Green

366 Chapter 9

Why do I need to know all
this “color theory”? Can’t I just
specify my colors by name? Like
“red”, “green”, or “blue”? That’s

what we’ve been doing so far.

Having seventeen colors in your palette
gets old pretty quickly and really limits
the expressiveness of your pages. We’re
going to show you how to specify colors
in a way that will allow you to name a
lot more than seventeen colors; in fact,
you’ll be able to work from a palette of
sixteen million colors.

Now, you’ve already seen a few examples
of colors in XHTML, and yes, they do
look a little funky, like #fc1257. So,
let’s first figure out how to specify colors
and then you’ll see how you can easily
use color charts or your photo-editing
application to pick your colors.

You certainly can use
color names all you
like, but CSS defines the
names of only 17 colors.

the color names

styling with fonts and colors

you are here � 367

How do I specify Web colors?
Let me count the ways...
CSS gives you a few ways to specify colors. You can specify the
name of a color, specify a color in terms of its relative percentages
in red, green and blue, or you can specify your color using a hex
code, which is shorthand for describing the red, green, and blue
components of the color.

While you might think that the Web would have decided on one
format by now, all these formats are commonly used, so it’s good
to know about them all. However, hex codes are by far the most
common way of specifying Web colors. But, remember that all
these ways of specifying color ultimately just tell the browser the
amount of red, green, and blue that goes into a color.

Let’s work through each method of specifying colors in CSS.

Specify color by name

The most straightforward way to describe a color in CSS is just to use
its name. But, as you know, there are only seventeen colors that can
be specified this way. Let’s say you want to specify the color “silver”
as the background color of a body element; here’s how you write
that in CSS:

body {
	 background-color: silver;
}

Here’s the body rule. And the background-color
property.

And the color
written as a name.

So, to specify a color by name, just type the color name as the
value of the property. CSS color names are case-insensitive, so you
can type silver, Silver, or SILVER and all will work. Here are the
seventeen predefined colors in CSS. Remember these are just names
for predefined amounts of red, green, and blue.

Yellow

Orange

Maroon

Teal

Red

Purple

OliveNavy

Lime

Aqua

GreenGray

FuchsiaBlue

Black

White

Silver

Color in a book happens by light bouncing off the printed page.

On a computer, the light is emitted by the screen, so these

colors will look slightly different in your Web pages.

368 Chapter 9

Specify color in red, green and blue values

You can also specify a color as the amount of red, green, and blue. So,
say you wanted to specify the orange color we looked at a couple of
pages back, which consisted of 80% red, 40% green, and 0% blue.
Here’s how you do that:

body {
	 background-color: rgb(80%, 40%, 0%);
}

Begin with “rgb”, short
for red, green, blue.

80% Red 0% Blue

40% Green

And then specify the percentages for
red, green, and blue within parentheses,
and with a % sign after each one.

You can also specify the red, green, and blue values as a numeric value
between 0 and 255. So, instead of 80% red, 40% green, and 0% blue,
you can use 204 red, 102 green, and 0 blue.

Here’s how you use straight numeric values to specify your color:

Where did these numbers come from?

 80% of 255 is 204,
 40% of 255 is 102, and
 0% of 255 is 0.

body {
	 background-color: rgb(204, 102, 0);
}

We still start with “rgb”.
To specify numeric values and not
percentages, just type in the value
and don’t use a “%”.

Q: Why are there two different ways
to specify rgb values? Don’t percentages
seem more straightforward?

A: Sometimes they are more
straightforward, but there is some sanity to
using numbers between 0 and 255. This
number is related to the number of values
that can be held in one byte of information.
So, for historical and technical reasons, 255
is often used as a unit of measurement for
specifying red, green, and blue values in a
color. In fact, you might have noticed that

photo-editing applications often allow you
to specify color values from 0 to 255 (if not,
you’ll see how to do that shortly).

Q: I never see anyone use rgb or
actual color names in their CSS. It seems
everyone uses the #00fc9a type of color
codes.

A: Using rgb percents or numeric
values are becoming more common, but you
are right, “hex codes” are still the most

widely used because people consider them
a convenient way to specify color.

Q: Is it important that I look at
something like rgb(100, 50, 200) and
know what color it is?

A: Not at all. The best way to know
what rgb(100, 50, 200) looks like is to load
it in your browser or use a photo-editing
application to see it.

there are no
Dumb Questions

using rgb values

styling with fonts and colors

you are here � 369

Specify color using hex codes

Now let’s tackle those funky looking hex codes. Here’s the secret to them: each set of two
digits of a hex code just represents the red, green, and blue component of the color. So the
first two digits represent the red, the next two the green, and the last two represent the blue.
Like this:

#cc6600
red bluegreen

Always start a hex code
with the # sign.

Then specify the
red, green, and blue
components, using
two digits for each.

Wait a sec, how
is “f” or “c” a digit?

Those are letters!

Okay, here’s the second secret to reading hex codes: each set of
two digits represents a number from 0 to 255. (Sound familiar?)
The problem is that if we used numbers, we’d only be able to
represent up to 99 in two digits, right? Well, not wanting to be
constrained by something as simple as the digits 0-9, computer
scientists decided they could represent all 255 values with the
help of some letters too (A through F).

Let’s take a quick look at how hex codes really work and then
we’ll show you how to get them from color charts or your photo
editing application.

Believe it or not, they are digits, but they’re
written using a notation only a computer
scientist could love.

370 Chapter 9

1

2
3

4
5 6

7 8

9

A
B

C

D

E

10 11

F

12
13

14
150

The two minute guide to hex codes
The first thing you need to know about hex codes is that they aren’t based on ten
digits (0 to 9) – they’re based on 16 digits (0 to F). Here’s how hex digits work:

Using hex, you only need a single
digit to count all the way from
0 to 15. When you get above 9,
you start using letters.

So if you see a hex number like B, you know that just means 11. But, what does BB,
or E1, or FF mean? Let’s disassemble a hex color and see what it actually represents.
In fact, here’s how you can do that for any hex color you might encounter.

CC 66 00#

Separate the hex color into its three components.
Remember that each hex color is made up of a red, green and blue component.
The first thing you want to do is separate those.

Step one:

Take your hex color and
break it up into its red,
green, and blue components.

0066CC

Red BlueGreen

understanding hex codes

styling with fonts and colors

you are here � 371

Convert each hex number into its decimal equivalent.
Now that you have the components separated you can compute the value for
each from 0 to 255. Let’s start with the hex number for the red component:

Step two:

Take the right-most
number and write down
its decimal value.CC

12Now take the left-most
number and convert it to
its decimal value, and also
multiply it by 16. 12 * 16 = 192

Finally, add these two
numbers together. 192 + 12 = 204

Now do this for the other two values.
Repeat the same method on the other two values. Here’s what you should get:

Step three:

CC 66 00

204 102 0

That’s it. Now you’ve got the numbers for each component and you know
exactly how much red, green, and blue go into the color. You can disassemble
any hex color in exactly the same way. Now let’s see how you’ll usually
determine Web colors.

There is no step four, you’re done!
Step four:

To calculate 66, you have
(6 * 16) + 6 = 102

To calculate 00, you have
(0 * 16) + 0 = 0

So 204 is the decimal

equivalent of CC in hex.

372 Chapter 9

How to find Web colors

80% Red 0% Blue

40% Green

Putting it all together
You’ve now got a few different ways to specify colors. Take our orange
color that is made up of 80% red, 40% green, and 0% blue. In CSS
we could specify this color in any of these ways:

body {
	 background-color: rgb(80%, 40%, 0%);
}

body {
	 background-color: rgb(204, 102, 0);
}

body {
	 background-color: #cc6600;
}

Specify by the percentage
of red, green and blue.

Specify the amount of red, green and

blue on the scale 0-255.

Specify using a compact hex code.

The two most common ways to find Web colors are to use a color chart or an
application like Photoshop Elements. You’ll also find a number of Web pages
that allow you to choose Web colors and translate between rgb and hex codes.
Let’s check out Photoshop Elements (most photo-editing applications offer the
same functionality).

Most photo-editing
applications provide a Color
Picker that allows you to
visually choose your color
by using one or more color
spectrums. Once you’ve picked

a color, the Color
Picker will show
you the color as
both rgb values and
a hex code.

Color Pickers also
allow you to select
only “Web safe” colors.
We’ll talk about this
in a sec.

using a photo editor for web colors

styling with fonts and colors

you are here � 373

You’ll also find some useful color charts on the
Web. These charts typically display Web colors
that are arranged according to a number of
different criteria with their corresponding hex
code. Using these colors is as easy as choosing
the colors you want in your page and copying
the hex codes into your CSS.

Using an online color chart

This chart is maintained by the wikipedia
at http://en.wikipedia.org/wiki/Web_colors
You’ll also find many others by searching
for “HTML color charts”.

Make sure you use the hex
code for your colors, not the
decorative name, which isn’t likely
to be supported across browsers.

Q: I heard that if I don’t use Web-safe
colors, my pages will never look right on
other browsers. Why haven’t we talked
about Web-safe colors?

A: Back in the early days of Web
browsers, few people had computer screens
that supported a lot of colors, so the
Web-safe palette of colors was created to
ensure that pages looked consistent on most
displays.
Today the picture has changed drastically
and most Web users have computer
displays that support millions of colors. So,
unless you have a special set of users that

you know have limited color displays, you
can pretty much count “Web-safe colors” as
a thing of the past.

Q: I know how to specify colors now,
but how do I choose font colors that work
well together?

A: It would take an entire book to
answer that question properly, but there
are some basic guidelines to selecting
font colors. The most important is to use
colors with high contrast for the text and the
background to aid readability. For instance,
black text on a white background has the
highest contrast. You don’t always have to
stick with black and white, but do try to use

a dark hue for the text, and a light hue for
the background. Some colors, when used
together, can create strange visual effects
(like blue and orange, or red and green),
so try your color combinations out on some
friends before launching them on the world.

Q: I’ve seen hex codes like #cb0;
what does that mean?

A: You’re allowed to use shorthand
if each two-digit pair shares the same
numbers. So, for instance, #ccbb00 can
be abbreviated #cb0, or #11eeaa as #1ea.
However, if your hex code is something like
#ccbb10, then you can’t abbreviate it.

there are no
Dumb Questions

374 Chapter 9

Dr. Evel’s master plans have been locked away inside his personal safe and
you’ve just received a tip that he encodes the combination in hex code. In fact,
so he won’t forget the combination, he makes the hex code the background
color of his home page. Your job is to crack his hex code and discover the
combination to the safe. To do that, simply convert his Web color into its red,
green, and blue decimal values and you’ll have the right-left-right numbers of
his combination. Here’s the background Web color from his home page:

Crack the Safe Challenge

body {
	 background-color: #b817e0;
}

Crack the code, and then write the combination here:

right left right

put your hex skills to the test

styling with fonts and colors

you are here � 375

body {
	 font-family: Verdana, Geneva, Arial, sans-serif;
	 font-size: small;
}

h1, h2 {
	 font-weight: normal;
	 color: #cc6600;
 text-decoration: underline;
}

h1 {
	 font-size: 170%;
}

h2 {
	 font-size: 130%;
}

blockquote {
	 font-style: italic;
}

We’re going to make both <h1> and <h2>
orange, so we’re putting the color property
in the shared rule.

Back to Tony’s page... We’re going to make the
headings orange, and add an underline too
Now that you know all about color, it’s time to add some color to Tony’s Web
page. He wanted orange and he’s going to get orange. But, rather than making all
his text orange – which would probably be unattractive and hard to read against
a white background – we’re going to add a subtle splash of color in his headings.
The orange is dark enough that there is good contrast between the text and the
background, and by color-coordinating with the orange in the photos (Tony’s shirt),
we’re creating a color relationship between the headings and the photos that should
tie the images and text together. And just to make sure the headings stand out and
create separation between the journal entries, we’ll also add an underline to each
heading. You haven’t seen how to add an underline yet, but let’s do it, and then we’ll
look at more about text decorations.

Here are all the changes in the CSS. Make these changes in your “journal.css” file.

Here’s the hex code for the orange color Tony
wants, otherwise known as rgb(80%, 40%, 0%).

And here’s the way we create an
underline. We use the text-decoration
property and set it to underline.

376 Chapter 9

What do all these colors have in common? Try each one in a Web page, say as a
font color, or use your photo-editing application’s color picker to determine what colors
they are by entering the hex code into the dialog box directly.

#111111
#222222
#333333

#444444
#555555
#666666

#777777
#888888
#999999

#aaaaaa
#bbbbbb
#cccccc

#dddddd
#eeeeee

Test drive Tony’s orange headings

Now both <h1> and <h2> headings
are orange. This ties in nicely with
Tony’s orange theme and shirt.

Once you’ve made the changes to your “journal.css”
file to add the color property to the “h1, h2” rule,
reload the Web page and check out the results.

The headings are also set off further with underlines.
Hmmm... we thought this would be a good way to
distinguish the headings, but actually they seem to look
a little too much like clickable links, since people tend to
think anything underlined in a Web page is clickable.

So, underlines may have been a bad choice.
Let’s quickly look at some other text
decorations, then we’ll reconsider these
underlines in the Web page.

Sharpen your pencil

testing and more hex colors

styling with fonts and colors

you are here � 377

Everything you ever wanted to know about
text-decorations in less than one page

em {
	 text-decoration: line-through;
}

Text decorations allow you to add decorative effects to your text like underlines, overlines,
line-throughs (also known as a strike-through) and, on some browsers, blinking text. To
add a text decoration, just set the text-decoration property on an element, like this:

You can set more than one decoration at a time. Say you want underline and overline at
the same time, then you specify your text decoration like this:

em {
	 text-decoration: underline overline;
}

And if you have text that is inheriting text decoration you don’t want, just use the value “none”:

em {
	 text-decoration: none;
}

This rule will cause the
 element to have a
line through the middle
of the text.

This rule results in the
element having an underline
AND overline.

With this rule, elements
will have no decoration.

Q: So if I have two different rules for
an , and one specifies overline and
the other underline, will they be added
together so I get both?

A: No. You need to combine the
two values into one rule to get both text
decorations. Only one rule is chosen for the
text-decoration, and decorations in separate
rules are not added together. Only the rule
that is chosen for the text-decoration styling
will determine the decoration used, so the
only way to get two decorations is to specify
them both in the same text-decoration
declaration.

Q: I’ve been meaning to ask why the
color property isn’t called text-color?

A: The color property really controls the
foreground color of an element, so it controls
the text and the border color, although you
can give the border its own color with the
border-color property.

Q: I like the line-through decoration.
Can I use it on text I’m editing to indicate
things that need to be deleted?

A: You could, but there’s a better way.
XHTML has an element we haven’t talked
about called that marks content in

your XHTML as content that should be
deleted. There is a similar element called
<ins> that marks content that should be
inserted. Typically browsers will style these
elements with a strike-through and underline
respectively. And with CSS you can style
them any way you like. By using and
<ins>, you are marking the meaning of your
content in addition to styling it.

Q: When would you use the blink
decoration?

A: Blink is a holdover from an old
Netscape style. Browsers aren’t required
to implement it, and most people consider
using blink to be in bad Web taste. So we
recommend forgetting we ever mentioned it.

there are no
Dumb Questions

378 Chapter 9

Removing the underline...
Let’s get rid of that confusing underline and instead add
a nice bottom border like we did in the Lounge. To do
that, open your “journal.css” file and make these changes
to the combined “h1, h2” rule:

h1, h2 {
	 font-weight: normal;
	 color: #cc6600;
 border-bottom: thin dotted #888888;
 text-decoration: underline;
}

Now we’ve got borders under the <h1>
and <h2> element, not underlines.

Delete the text decoration.
And here’s how our new “underline” looks.
Definitely more stylish and less confusing
than a text decoration underline.

Add a border on the bottom of the <h1> and
<h2> elements. You can almost read this like
English: “add a thin, dotted line with the
color #888888 on the bottom border”...

... In the next chapter we are going to go into
borders in detail. Hang on, we’re almost there!

Notice that borders extend all th
e way

to the end of the page, rather
than

just under the text. Why? You’ll find

out in the next chapter.

using a border instead of an underline

styling with fonts and colors

you are here � 379

�	 CSS gives you lots of control over the look of your
fonts, including properties like font-family, font-
weight, font-size, and font-style.

�	 A font-family is a set of fonts that share common
characteristics.

�	 The font families for the Web are serif, sans-serif,
monospace, cursive, and fantasy. Serif and sans-
serif fonts are most common.

�	 The fonts that your visitors will see in your Web
page depend on the fonts they have installed on
their own computers.

�	 It’s a good idea to specify font alternatives in your
font-family CSS property in case your users don’t
have your preferred font installed.

�	 Always make the last font a generic font like serif
or sans-serif, so that the browser can make an
appropriate substitution if no other fonts are found.

�	 Font-sizes are usually specified using px, em, %, or
keywords.

�	 If you use pixels (“px”) to specify your font size,
you are telling the browser how many pixels tall to
make your letters.

�	 em and % are relative font sizes, so specifying your
font size using em and % means the size of the
letters will be relative to the font size of the parent
element.

�	 Using relative sizes for your fonts can make your
pages more maintainable.

�	 Use the font size keywords to set the base font size
in your body rule, so that all browsers can scale

the font sizes if users want the text to be bigger or
smaller.

�	 You can make your text bold using the font-weight
CSS property.

�	 The font-style property is used to create italic or
oblique text. Italic and oblique text is slanted.

�	 Web colors are created by mixing different amounts
of red, green, and blue.

�	 If you mix 100% red, 100% green, and 100% blue,
you will get white.

�	 If you mix 0% red, 0% green, and 0% blue, you will
get black.

�	 CSS has 17 predefined colors, including black,
white, red, blue, and green.

�	 You can specify which color you want using
percentages of red, green, and blue, using
numerical values of 0-255 for red, green, and blue,
or using a color’s hex code.

�	 An easy way to find the hex code of a color you
want is to use a photo-editing application’s color
picker or one of many online Web tools.

�	 Hex codes have 6 digits, and each digit can be from
0-F. The first two digits represent the amount of
red, the second two the amount of green, and the
last two the amount of blue.

�	 You can use the text-underline property to create an
underline for text. Underlined text is often confused
as linked text by users, so use this property
carefully.

 BULLET POINTS

380 Chapter 9

XHTMLcross
You’ve absorbed a lot in this chapter: fonts, color, weights, and styles. It’s time to do
another crossword and let it all sink in.

1 2

3 4

5 6

7

8 9

10

11

12

13

Across

3. Hex codes use this many different digits.
4. Colors like #111111 through #EEEEEE, are all
shades of _____.
5. Similar fonts are grouped into ______.
7. Browser that doesn't handle pixel font sizes
well.
8. Element that can be used to mark text for
deletion.
9. em and % are both this kind of size.
10. Font family almost never used in Web pages.
12. Controls how bold a font looks.
13. Underline and line-through are examples of
text _______.

Down

1. Fonts with little barbs on them.
2. You can specify fonts in terms of pixels, em, or
________.
3. Considered cleaner and easier to read on a
computer display.
6. When you specify fonts in the font-family
property, you are specifying ______.
11. A text decoration you would never use.

a crossword on color

styling with fonts and colors

you are here � 381

Markup Magnets Solutions
Your job is to help the fictional fonts below find their way home
to their own font family. Move each fridge magnet on the left into
the correct font family on the right. Check your answers before
you move on. Here’s the solution.

Serif Family

Monospace Family

Cursive Family

Sans-serif Family

Fantasy Family

Quarter

Nautica

Crush

Savannah

Messenger

Angel

Palomino

Bainbridge

Iceland Cartoon

382 Chapter 9

Crack the Safe Solution

body {
	 background-color: #b817e0;
}

right left right

(11 * 16) + 8 =
184

(1 * 16) + 7 =
23

(14 * 16) + 0 =
224

Dr. Evel’s master plans have been locked away inside his personal safe and
you’ve just received a tip that he encodes the combination in hex code. In fact,
so he won’t forget the combination, he makes the hex code the background
color of his home page. Your job is to crack his hex code and discover the
combination to the safe. To do that, simply convert his Web color into its red,
green, and blue decimal values and you’ll have the right-left-right numbers of
his combination. Here’s the background Web color from his home page:

Crack the code, and then write the combination here:

exercise solutions

styling with fonts and colors

you are here � 383

#111111
#222222
#333333
#444444
#555555
#666666
#777777
#888888
#999999
#aaaaaa
#bbbbbb
#cccccc
#dddddd
#eeeeee

What do all these colors have in common? You
can try each one in a Web page, or use the color
picker to determine what colors they are, by
entering the hex code into the dialog box directly.

All colors that use just
one digit in their hex
codes are grays, from
very dark (almost black)
to very light (almost
white).

S
1

P
2

E E

R S
3

I X T E E N G
4

R A Y

I A C

F
5

O N T - F A
6

M I L I E S

S L N

- I
7

N T E R N E T E X P L O R E R

S E

D
8

E L R
9

E L A T I V E

R N

I F
10

A N T A S Y

F T B
11

W
12

E I G H T L

V I

D
13

E C O R A T I O N

S K

Across

3. Hex codes use this many different digits.
[sixteen]
4. Colors like #111111 through #EEEEEE, are all
shades of _____. [gray]
5. Similar fonts are grouped into ______. [font-
families]
7. Browser that doesn't handle pixel font sizes
well. [internetexplorer]
8. Element that can be used to mark text for
deletion. [del]
9. em and % are both this kind of size. [relative]
10. Font family almost never used in Web pages.
[fantasy]
12. Controls how bold a font looks. [weight]
13. Underline and line-through are examples of
text _______. [decoration]

Down

1. Fonts with little barbs on them. [serif]
2. You can specify fonts in terms of pixels, em, or
________. [percent]
3. Considered cleaner and easier to read on a
computer display. [sans-serif]
6. When you specify fonts in the font-family
property, you are specifying ______. [alternatives]
11. A text decoration you would never use. [blink]

XHTMLcross
Solution

Sharpen your pencil
Solution

this is a new chapter 385

10 the box model

Getting Intimate

To do advanced Web construction you really need to know
your building materials. In this chapter we’re going to take a close look

at our building materials: the XHTML elements. We’re going to put block and inline

elements right under the microscope and see what they’re made of. You’ll see how

you can control just about every aspect of how an element is constructed with CSS.

But we don’t stop there – you’ll also see how you can give elements unique identities.

And, if that weren’t enough, you’re going to learn when and why you might want to use

multiple style sheets. So, turn the page and start getting intimate with elements.

I think we’d be a little
closer if it weren’t for all
the padding, margins, and

this damn table.

with Elements

386 Chapter 10

The lounge gets an upgrade
You’ve come a long way in nine chapters, and
so has the Head First Lounge. In fact, over
the next two chapters, we’re giving it a total
upgrade with all new content for the main page
and restyling it from scratch. And, just to entice
you, we’re going to give you a little sneak peek
before we even get started. Check this out – on
this page you’ll find the new unstyled lounge
page with all the new content. On the next page
you’ll find the stylized version that we’re going to
create by the end of the next chapter.

There’s a new graphic for the
header of the page.

The lounge guys have supplied a
lot of new text describing the
lounge and what it offers.

They’ve included a set of
elixir specials for the week.

And they even let visitors sample some of the
music that is played in the lounge each week, a
common request of customers.

Finally, they’ve got some legalese in the
footer of the page with a copyright.

what we’re going to do with the lounge

the box model

you are here � 387

Not too shabby. Now the Lounge design might
be a tad on the, well, “ultra-stylish” side for
you, but hey, it is a lounge. And we’re sure
that you can see this design is starting to look
downright sophisticated – just think what the
same techniques could do for your pages. Well,
after this chapter and the next, designs like this
are going to be easily within your reach.

The new and improved,
ultra-stylish lounge

We’ve got headings that match the site’s
color theme, an aquamarine. The fonts
are also a very readable sans-serif.

This paragraph has been highly stylized, which helps
set it off from the text and gives the page an
attractive look. It also looks like the font is a serif
font, which is different from the main text.

The music CDs and artists are
styled now too.

And the footer is centered and displayed in a very
small font.

The elixirs have been
dramatically restyled into an
appetizing display of drinks.

The elixirs have also been moved over to
the side. How did that happen?

388 Chapter 10

1

2

3

Starting with a few simple upgrades
Now you’re all ready to start styling the lounge. Let’s add a few
rules to your CSS just to get some basics out of the way – like the
font family, size, and some color – that will immediately improve
the lounge (and give you a good review from the last chapter). So,
open your “lounge.css” and add the following rules.

Setting up the new lounge

Take a look at the “chapter10/lounge” folder and you’ll find the file “lounge.html”,
with all new content. Open the file in your editor and have a look around. Everything
should look familiar: head, paragraphs, a few images, and a list.

You’re going to spend most of this chapter adding style to this XHTML, so you need a
place for your CSS. You’re going to create all new styles for the lounge in the style sheet
file “lounge.css”, so you’ll find your <link> element in the <head> of “lounge.html” is
still there, but the previous version of “lounge.css” style sheet is gone.

Next, you need to create the new “lounge.css” in the “chapter10/lounge” folder. This file
is going to hold all the new CSS for the new lounge.

Before we start the major construction, let’s get familiar with the new lounge.
Here’s what you need to do:

Remember, this <link> element tells the browser to look for an external style sheet called
“lounge.css”.

body {
	 font-size: small;
	 font-family: Verdana, Helvetica, Arial, sans-serif;
}

h1, h2 {
	 color: #007e7e;
}

h1 {
	 font-size: 150%;
}

h2 {
	 font-size: 130%;
}

Here’s the default
font size for the page.

We’re going to go with a sans-serif font-
family for the lounge. We’ve picked a few
font alternatives, and ended the declaration
with the generic sans-serif font.

Now let’s get some reasonable heading sizes for <h1> and <h2>.
Since we’re setting two different sizes for these, we need separate
rules and can’t add them to the combined rule for <h1> and <h2>.

We’re going to set the color of the <h1> and <h2>
elements to an aquamarine to match the glass in the logo.

 <link type=”text/css” rel=”stylesheet” href=”lounge.css” />

starting with simple styles

the box model

you are here � 389

A very quick test drive
Let’s do a quick test drive just to see how these
styles affect the page. Make sure you’ve made all the
changes; then save, and test.

Headings are now sans-serif
and a color that matches
the logo, creating a theme
for the page.

Paragraph text is also sans-serif
since every element inherits the
<body>’s font-family property.

The <h2> heading is also
styled with a new color and
sans-serif, but a tad smaller.

This link looks oddly out of place
with its default blue color. We’ll
have to fix that (later).

We haven’t applied any styles
to the <h3> so it just inherits
the font-family property
from <body>.

One more adjustment
We’re going to make one more adjustment to the
lounge before we move on to start making some bigger
changes. This adjustment involves a new property
you haven’t seen before, but, at this point, you’ve got
enough experience under your belt that we’re not going
to treat you with kid gloves every time a new property
comes along. So, just jump in and give it a try.

Here’s what we’re going to do: we’re going to adjust the
line height of the text on the entire page so that there’s
more vertical space between each line. To do that we
add a line-height property in the body rule:

body {
	 font-size: small;
	 font-family: Verdana, Helvetica, Arial, sans-serif;
	 line-height: 1.6em;
}

Here we’re changing the space between each line to 1.6em,
in other words, 1.6 times the font size.

Increasing the line height of your text
can improve readability. It also gives
you another way to provide contrast
between different parts of your page
(you’ll see how that works in a bit).

390 Chapter 10

Checking out the new line height
As you might have guessed, the line-height property allows you to specify the
amount of vertical space between each line of your text. Like other font-related
properties, you can specify the line height in pixels, or using an em or percent
value that’s relative to the font size.

Let’s see what the effect of the line-height property is on the lounge. Make
sure you add the line-height property to your CSS file and then save. You
should see the line height increase when you refresh.

Using the line-height property we’ve
increased the space between each line of
text from the default to 1.6em. Before

AfterThe space between lines is

known as “leading” in the

publishing industry.

Try a few different values for line-height, like 200%, .5em, and 20px to see the effect.
Which looks the best? The worst? Which is most readable? When you’re done, make
sure you change the line-height back to 1.6em.

The line-height property is inherited, so by
setting it in the body, all the elements on the
page now have a line height of 1.6em.

Exercise

learning about line height

the box model

you are here � 391

Getting ready for some major
renovations
After only a few pages of this chapter, you already have a ton of
text style on the new lounge. Congrats!

Now things are going to get really interesting. We’re going to
move from changing simple properties of elements, like size,
color, and decorations, to really tweaking some fundamental
aspects of how elements are displayed. This is where you move
up to the big leagues.

But to move up to the big leagues, you’ve got to know the box
model. What’s that? It’s how CSS sees elements. CSS treats
every single element as if it were represented by a box. Let’s see
what that means.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Every box is made up of a
content area along with optional
padding, border, and margins.From the perspective of CSS, every

element is a box.

All elements are treated as boxes:
paragraphs, headings, block quotes,
lists, list items, and so on. Even inline
elements like and links are
treated by CSS as boxes.

The content area, which holds
the content (text or an image,
for instance).

The content area is surrounded
by optional transparent padding.

An optional border can be
placed around the padding.

And finally, an optional transparent margin surrounds everything.

392 Chapter 10

A closer look at the box model

What is the
content area?
Every element starts with some
content, like text or an image,
and this content is placed inside
a box that is just big enough
to contain it. Notice that the
content area has no whitespace
between the content and the
edge of this box.

The content area holds the element’s
content. It’s typically just big enough
to hold the content.

Any box can have a layer of padding
around the content area. Padding is
optional, so you don’t have to have it,
but you can use padding to create visual
whitespace between the content and
the border of the box. The padding
is transparent and has no color or
decoration of its own.

We’ve drawn an edge
around the content
area just so you know
how big it is. But in a
browser there is never
a visible edge around
the content area.

You’re going to be able to control every aspect of the box with
CSS: the size of the padding around the content, whether or not
the element has a border (as well as what kind and how large),
and how much margin there is between your element and other
elements. Let’s check out each part of the box and its role:

The browser adds optional padding around
the content area.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

What is the padding?

Using CSS, you’re going to be able to control the width of
the padding around the entire content area, or even control
the padding on any one side (top, right, bottom, or left).

the box model

the box model

you are here � 393

Elements can have an optional
border around them. The border
surrounds the padding and,
because it takes the form of a
line around your content, borders
provide visual separation between
your content and other elements
on the same page. Borders can be
various widths, colors, and styles.

The margin is also optional and
surrounds the border. The
margin gives you a way to add
space between your element
and other elements on the
same page. If two boxes are
next to each other, the margins
act as the space in between
them. Like padding, margins are
transparent and have no color or
decoration of their own.

This is the entire element. We have a
content area, surrounded by optional
padding, surrounded by an optional border,
surrounded by an optional margin.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Border.
Padding.

Content.

Margin.

What is the border?

Border.

Padding.

Content.

Using CSS, you’re going to be able to control
the width, color, and style of the border.

Notice that the padding
separates the content area
from the border.

What is the margin?

Using CSS, you’re going to be able to control
the width of the entire margin, or of any
particular side (top, right, bottom, or left).

394 Chapter 10

What you can do to boxes
The box model may look simple with just the content,
some padding, a border, and margins. But when you
combine these all together there are endless ways
you can determine the layout of an element with its
internal spacing (padding) and the spacing around it
(margins). Take a look at just a few examples of how
you can vary your elements.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

You can style a box to
have padding, a border,
and a margin.

Or, just
padding and
a border.

Or just a
border.

Or a margin with
no border and no
padding.

Boxes Borders

You can have solid
borders, thick or thin.

Or no border at all.

Or choose from
eight different
styles of borders,
like dashed.

Or even color
your borders.

how boxes can be configured

the box model

you are here � 395

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Padding Margins

Content Area

With CSS you can
control padding on any
side of the content
area. Here we’ve got a
lot of left and right
padding.

And here a lot of top
and bottom padding.

And here the
content is
offset to the
bottom right
with padding on
the top and left.

You have the same
level of control over
the margins. Here
there’s a lot of top
and bottom margin.

And here’s a lot of
left and right margin.

And like padding,
you can specify all
sides independently
to create margins
like this.

You can even control
width and height in a
variety of ways. Here,
the content area has
been made wide.

And
here the
content
area is tall
but thin.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Our guarantee: at the lounge, we’re committed to providing
you, our guest, with an exceptional experience every time you
visit. Whether you’re just stopping by to check in on email over
an elixir, or are here for an out-of-the-ordinary dinner, you’ll
find our knowledgeable service staff pay attention to every
detail. If you’re not fully satisfied have a Blueberry Bliss Elixir
on us.

Our guarantee: at
the lounge, we’re
committed to
providing you, our
guest, with an
exceptional experience
every time you visit.
Whether you’re just
stopping by to check
in on email over an
elixir, or are here for
an out-of-the-ordinary
dinner, you’ll find our
knowledgeable service
staff pay attention to
every detail. If you’re
not fully satisfied have
a Blueberry Bliss Elixir
on us.

396 Chapter 10

Q: It seems like knowing this
box stuff would be important if I were
someone creating the software for a
Web browser, but how is this going to
help me make better Web pages?

A: To go beyond simple Web pages
that use the browser’s default layout,
you need to be able to control how
elements sit on the page, as well as the
relative position of other elements. To do
that, you alter various aspects of each
element’s padding and margins. So to
create interesting Web page designs,
you definitely need to know something
about the box model.

Q: What’s the difference between
padding and margin? They seem like
the same thing.

A: The margin provides space
between your element and other
elements, while padding gives you extra
space around your content. If you have
a visual border, the padding is on the
inside of the border and the margin on
the outside. Think of padding as part of
the element, while the margin surrounds
your element and buffers it from the
things around it.

Q: I know they are all optional,
but do you need to have padding to
have a border or a margin?

A: No, they are all totally optional
and don’t rely on each other. So you
can have a border and no padding, or a
margin and no border, and so on.

Q: I’m not sure I get how
elements get laid out and how
margins fit into that.

A: Hold that thought. While you’re
going to see a little of how margins
interact with other elements in this
chapter, we’ll get way into this topic
in Chapter 11 when we talk about
positioning.

Q: So other than size, it sounds
like I can’t really style padding and
margins?

A: That’s basically right. Both are
used to provide more visual space, and
you can’t give the padding or margin a
direct color or any kind of decoration.
But, because they are transparent, they
will take on the color of any background
colors or background images. One
difference between padding and margins
is that the element’s background color
(or background image) will extend under
the padding, but not the margin. You’ll
see how this works in a bit.

Q: Is the size of the content area
determined solely by the size of the
content in it?

A: Browsers use a lot of different
rules to determine the width and height
of the content area, and we’ll be looking
at that more in-depth later. The short
answer is that you can set the width and
height yourself if you need control over
the size of the element.

there are noDumb Questions

Hey guys, love the shop talk,
really do. But did you forget

you were in the middle of
renovating the lounge?

some details about boxes

the box model

you are here � 397

Meanwhile back at the lounge...
We do have our work cut out for us on the lounge page, so let’s get back to it. Did you notice
the blue, stylized paragraph when you looked at the final version of the lounge page in the
beginning of the chapter? This paragraph contains text with the lounge’s guarantee to their
customers, and obviously they want to really highlight their promise. Let’s take a close look at
this paragraph, and then we’ll build it.

The paragraph has a
blue background.

And the text looks
serif, not sans-serif,
and it’s italic.

Notice the
paragraph looks
indented a bit.

There’s a stylish, ragged
looking border.

The text is offset
from the border.

There’s even a
graphic in the
paragraph.

398 Chapter 10

See if you can identify the padding, border and margins of this paragraph.
Mark all the padding and margins (left, right, top, and bottom):

Before going on to the next page, think about how you might use
padding, borders, and margins to transform an ordinary paragraph
into the “guarantee paragraph.”

brain
power?

Sharpen your pencil

working through padding, borders, and margins

the box model

you are here � 399

<p class=”guarantee”>
	 Our guarantee: at the lounge, we’re committed to providing
 you, our guest, with an exceptional experience every time you
 visit. Whether you’re just stopping by to check in on email
 over an elixir, or are here for an out-of-the-ordinary dinner,
 you’ll find our knowledgeable service staff pay attention to every
 detail. If you’re not fully satisfied have a Blueberry Bliss Elixir
 on us.
</p>

Open your “lounge.html” file and locate the paragraph that starts “Our
guarantee”. Add a class called “guarantee” to the element like this:

1

Add the class attribute along with a value of “guarantee”.
Remember, a class will allow you to style this paragraph
independently of the other paragraphs.

Save your “lounge.html” file and open the “lounge.css” file. You’re going
to add a border and background color to the guarantee paragraph. Add
the following CSS to the bottom of your style sheet and then save.

2

.guarantee {
	 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
}

The first three properties add a border to any
element that is in the guarantee class. So far
that’s just this paragraph.

We’re making the color of the border black...
... and one pixel thick...
... and solid.

We’re also giving the element a background color, which
will help you see the difference between padding and
margins, and make the guarantee look good.

Creating the guarantee style
Let’s get started by making a few small changes to the style of the
guarantee paragraph just to get a feel for how the paragraph’s box is set up.
To do that you’re going to add the paragraph to a class called “guarantee”
so that you can create some custom styles for just this paragraph. You’re
then going to add a border along with a little background color, which will
let you see exactly how the paragraph is a box. Then we’ll get to work on
the rest of the style. Here’s what you need to do:

400 Chapter 10

Our guarantee: at the lounge, we’re committed to providing you, our guest, with
an exceptional experience every time you visit. Whether you’re just stopping by to
check in on email over an elixir, or are here for an out-of-the-ordinary dinner, you’ll
find our knowledgeable service staff pay attention to every detail. If you’re not fully
satisfied have a Blueberry Bliss Elixir on us.

A test drive of the paragraph border
Reload the page in your browser and you’ll now see the guarantee
paragraph with an aquamarine background and a thin black border
around it. Let’s examine this a little more closely...

It doesn’t look like the paragraph has any
padding around the content - there is no
space between the text and the border.

There isn’t a noticeable margin between
the left and right edges of the
paragraph and the browser window edges.

But there does seem to be a margin on the top
and bottom of the paragraph element.

Here’s what the paragraph would look like if we drew it
as a box model diagram:

We’ve got a top and bottom margin.

But the left and right
margins are very small.

And we have a border, but it’s right up against the content, which
means the padding is set very small, or there’s no padding at all.

a first cut on paragraph styling

the box model

you are here � 401

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

Padding, border, and margins for the guarantee
Now that you’ve seen how the padding, border, and margins are
currently set on the guarantee paragraph, let’s think more about
how we’d actually like them to look.

And we want some more margin
space around the paragraph.

We definitely need some padding
all around the content.

We’re also going to need a
slightly different border.
This border looks ragged,
not like a solid line.

Adding some padding
Let’s start with the padding. CSS has a padding property that you can
use to set the same padding for all four sides of the content. You can set
this property either to a number of pixels or a percentage of area inside
the border. We’ll use pixels and set the padding to 25 pixels.

.guarantee {
	 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
}

We’re adding 25 pixels of padding
to all sides of the content (top,
right, bottom, and left).

402 Chapter 10

Now you can see 25 pixels of space between the
edge of the text content and the border.

Notice that the background
color is under both the content
and the padding. But it doesn’t
extend into the margin.

Now let’s add some margin
Margins are easy to add using CSS. Like padding, you can
specify the margin as a percentage or in pixels. You’re going to
add a 30-pixel margin around the entire guarantee paragraph.
Here’s how you do that:

.guarantee {
	 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 margin: 30px;

}

We’re adding 30 pixels of margin to all sides of the
content (top, right, bottom, and left).

A test drive with some padding
When you reload the page in your browser, you’ll notice the text
in the guarantee paragraph has a little more breathing room
on the sides now. There’s some space between the text and the
border, and it’s much easier to read.

testing the padding

the box model

you are here � 403

Now we have 30 pixels of margin on all sides.

A test drive with the margin
When you reload the lounge page, you’ll see the paragraph is really beginning to
stand out on the page. With the margins in place, the paragraph looks inset from
the rest of the text, and that, combined with the background color, makes it look
more like a “call out” than an ordinary paragraph. As you can see, with only a few
lines of CSS, you’re doing some powerful things.

If you look at the guarantee paragraph as it’s supposed to look in its final form,
it has an italic, serif font, a line height greater than the rest of the page, and if
you’re looking really close, gray text. Write the CSS below to set the line height
to 1.9em, the font style to italic, the color to #444444, and the font family to
Georgia, “Times New Roman”, Times, serif. Check your CSS with the answers
in the back of the chapter, then type it in and test.

Exercise

404 Chapter 10

Adding a background image
You’re almost there. What’s left? We still need to get the white “guarantee star”
graphic into the paragraph and work on the border, which is a solid, black line.
Let’s tackle the image first.

If you look in the “chapter10/lounge/images” folder, you’ll find a GIF image called
“background.gif ” that looks like this:

.guarantee {
	 line-height: 1.9em;
	 font-style: italic;
	 font-family: Georgia, “Times New Roman”, Times, serif;
	 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 margin: 30px;
 background-image: url(images/background.gif);
}

Now, you just need to get that image into your paragraph element, so you’ll be
using an element, right? Not so fast. If you’re adding an image to the
background of an element, there is another way. Using CSS, you can add a
background image to any element using the background-image property.
Let’s give it a try and see how it works:

This image is a simple star-like
pattern in white against a
transparent background. Notice
that it also has a matte around
it that matches the color of
the background.

Add this to your CSS, save, and reload your page.

Here are the properties you added
in the exercise on the previous page.

background images

the box model

you are here � 405

Wait a sec, it seems
like we have two ways to put

images on a page. Is background-
image a replacement for the

 element?

No, the background-image property
has a very specific purpose, which is to set
the background image of an element. It isn’t
for placing images in a page – for that you
definitely want to use the element.

Think about it this way: a background image
is pure presentation, and the only reason you
would use a background-image is to
improve the attractiveness of your element. An
 element, on the other hand, is used to
include an image that has a more substantial
role in the page, like a photo or a logo.

Now, we could have just placed the image
inside the paragraph, and we could probably
get the same look and feel, but the guarantee
star is pure decoration – it has no real meaning
on the page and it’s only meant to make
the element look better. So, background-
image makes more sense.

406 Chapter 10

Test driving the background image
Well, this is certainly an interesting test drive – we have
a background image, but it appears to be repeated
many times. Let’s take a closer look at how to use CSS
background images, and then you’ll be able to fix this.

Here’s the guarantee star image in the background.
Notice that it sits on top of the background color,
and because it has a transparent background, it
lets the color show through.

Also notice that background images, like the background
color, only show under the content area and padding,
and not outside the border in the margin.

CSS Up Close

background-image: url(images/background.gif);

The background-image property is set
to a URL, which can be a relative path
or a full blown URL (http://...).

Notice that no quotes are
required around the URL.

The background-image property places an image in the background
of an element. Two other properties also affect the background image:
background-position and background-repeat.

more about the background-image property

the box model

you are here � 407

The background-position property sets the position of the image and can be specified in pixels, or
as a percentage, or by using keywords like top, left, right, bottom, and center.

background-position: top left;

Places the image in the top, left of the element.

There are many different ways to position things in CSS and
we’ll be talking more about that in two chapters.

By default, a background image is “tiled”, or repeated over and over to fill the background space.
The background-repeat property controls how this tiling behaves.

background-repeat: repeat;

Here are the other background-repeat values you can use.

Sets the image to repeat both
horizontally and vertically. This is the
default behavior.

no-repeat

repeat-x

repeat-y

inherit

Display the image once, don’t
repeat the image at all.
Repeat the image only horizontally.
Repeat the image only vertically.

Just do whatever the parent element does.

.guarantee {
	 line-height: 1.9em;
	 font-style: italic;
	 font-family: Georgia, “Times New Roman”, Times, serif;
	 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 margin: 30px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

By default, background images are repeated. Luckily there is a no-repeat value
for the background-repeat property. Also, by default, browsers position a
background image in the top, left of the element, which is where we want it, but
let’s also add a background-position property just to give it a try.

You’ve got two new
properties to add.

Fixing the background image

We want the
background image
to not repeat.And we want it in

the top left corner.

408 Chapter 10

Another test drive of the background image
Here we go again. This time, it looks like we’re
much closer to what we want. But, since this is a
background image, the text can sit on top of it. How
do we fix this? That’s exactly what padding is for!
Padding allows you to add visual space around the
content area. Let’s increase the padding on the left
and see if we can nail this down once and for all.

This is much better. Now
the image isn’t repeated.

But we’d really like for
the text not to run over
the top of the image.

How do you add padding only on the left?
For padding, margins, and even borders, CSS has a property for every
direction: top, right, bottom, and left. To add padding on the left side,
use the padding-left property, like this:

.guarantee {
	 line-height: 1.9em;
	 font-style: italic;
	 font-family: Georgia, “Times New Roman”, Times, serif;
	 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 padding-left: 80px;
 margin: 30px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

We’re using the padding-left property to
increase the padding on the left..

Notice that we first set the padding on all sides to 25 pixels, and then we specify a property for the left side.

Order matters here - if you switch the order, then
you’ll set the padding for the left side first, and then
the general padding property will set all sides back to 25
pixels, including the left side!

getting more sophisticated with padding

the box model

you are here � 409

Are we there yet?
Make sure you save your changes and reload the
page. You should see more padding on the left side
of the paragraph, and the text is now positioned
well with respect to the guarantee star. This is a
great example of where you use padding instead
of margins. If you need more visual space around
the content area itself, use padding, as opposed to if
you want space between elements or the sides of the
page, in which case, use margin. In fact, we could
actually use a little more margin on the right side to
set the paragraph off even more. Let’s do that, and
then all we need to do is fix the border.

The padding looks great. Now the text is well positioned with respect to the graphic.

We could increase the
margin on the right
now to give this a little
more of a “call out”
look on the page.And we still need

a better border.

How do you increase the margin just on the right?
You do this just like you did with the padding: add another property,
margin-right, to increase the right margin.

.guarantee {
	 line-height: 1.9em;
	 font-style: italic;
	 font-family: Georgia, “Times New Roman”, Times, serif;
	 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 padding-left: 80px;
 margin: 30px;
 margin-right: 250px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

Remember we’re already setting
the margins to be 30 pixels.

See the pattern? There’s a property
to control all sides together, and
properties for each side if you want
to set them individually.

And now we’re going to override that setting for the right
side, and set it to 250 pixels.

Add the new margin-right property and reload. Now the
paragraph should have 250 pixels of margin on the right side.

250 pixels

410 Chapter 10

A two-minute guide to borders
There’s only one thing left to do to perfect the guarantee paragraph:
add a better border. Before you do, take a look at all the different ways
you can control the border of an element.

The solid style is
just what it sounds
like, a solid border.

The double style
uses two lines.

A groove style
looks like a groove
in the page
(difficult to see
in a book).

The outset style looks
like an outset that
rises from the page.

09/30/2005 10:49 PMborders.html

Page 2 of 3file:///Volumes/Macintosh%20HD/Users/eric/HFDP/HeadFirst/HTML/Chapters/Chapter9/Code/borders/borders.html

Nothings
better
looking
that dotted

Except
dashed

Nah, inset
borders
are the
way

The dotted
style looks like
a series of dots.

And the dashed
style is just a
set of dashes
round the
border.

The inset style
looks like an inset
that sinks into
the page.

The ridge style
looks like a raised
ridge on the page.

09/30/2005 10:49 PMborders.html

Page 3 of 3file:///Volumes/Macintosh%20HD/Users/eric/HFDP/HeadFirst/HTML/Chapters/Chapter9/Code/borders/borders.html

I like to
think
outset of
the box

Ruffles
have
ridged
borders

09/30/2005 10:49 PMborders.html

Page 3 of 3file:///Volumes/Macintosh%20HD/Users/eric/HFDP/HeadFirst/HTML/Chapters/Chapter9/Code/borders/borders.html

I like to
think
outset of
the box

Ruffles
have
ridged
borders

Go with me, I’ve
been better since
the outset.

Once you go
dotted you’ll
never go back.

Ignore dotted,
use dashed.

I’m the only
“in” style:
inset.

I’m more fun;
I’ve got ridges.

The border-style property controls the visual style of the border. There are eight
border styles available, from a solid line to dotted lines to ridges and grooves.

border-style: groove;
To specify a border style just use the
border-style property and a value of one
of the available styles.

Border Style

09/30/2005 10:48 PMborders.html

Page 1 of 3file:///Volumes/Macintosh%20HD/Users/eric/HFDP/HeadFirst/HTML/Chapters/Chapter9/Code/borders/borders.html

Solid
borders
are the
only way
to go

But I'm
double
good

Yea but I
groove

I’m the border
that’s got the
groove.

Go with solid,
the original.

Go with
double, I’m
twice the fun.

overview of borders

the box model

you are here � 411

thin
medium
thick

1px
2px
3px
4px
5px
6px

border-top-color
border-top-style
border-top-width

border-right-color
border-right-style
border-right-width

border-bottom-color
border-bottom-style
border-bottom-width

border-left-color
border-left-style
border-left-width

Border Width
The border-width property controls
the width of the border. You can use
keywords or pixels to specify the width.

Border Color
The border-color property sets the color
of the border. This works just like setting
font colors; you can use color names, rgb
values, or hex codes to specify color.

Specifying Border Sides
Just like margins and padding you
can specify border style, width,
or color on any side (top, right,
bottom, or left):

border-top-color: black;

border-top-style: dashed;

border-top-width: thick;

These properties are for the top border
only. You can specify each side of the
border independently.

border-color: red;
border-color: rgb(100%, 0%, 0%);
border-color: #ff0000;

Use border-color
to specify the color
of a border. You
can use any of the
common ways to
specify color.

border-width: thin;
border-width: 5px;

You can specify widths using the keywords thin,
medium, or thick, or by the number of pixels.

412 Chapter 10

Browsers can have different default sizes for the
keywords thin, medium, and thick, so if the size
of your border is really important to you, consider
using pixel sizes instead.

Browsers don’t always agree on the size
of thin, medium, and thick.Watch it!

Border fit and finish
It’s time to finish off the guarantee paragraph. All we need to do is give
it a ragged-looking border. But which style is that? The available styles
are solid, double, dotted, dashed, groove, ridge, inset, and outset. So how
do we make it look ragged? It’s actually just a trick: we’re using a dashed
border that has its color set to white (matching the background color of the
page). Here’s how you do it. Begin by just making the border dashed. Find
the border-style property in your “lounge.css” and change it, like this:

 border-style: dashed;

Here we’ve changed
the border from solid
to dashed.

Go ahead and save the file and reload. You should see a border like this:

Now, to get a ragged-looking border, just set the color of the border
to white. This makes the border look like it is cutting into the
background color. Give it a try: find the border-color property
and set it to white.

 border-color: white;

And here we’ve changed
the border color from
black to white.

Save the file and reload again. Now you should see the ragged border:

getting fancy with borders

the box model

you are here � 413

Nice! I can’t wait to see
the entire page remodeled.
Take a break and have an

iced chai on me!

Congratulations!
Bravo! You’ve taken an ordinary HTML
paragraph and transformed it into something
a lot more appealing and stylish using only
fifteen lines of CSS.

It was a long trip getting here, so at this point
we encourage you to take a little break. Grab
yourself an iced chai and take a little time to
let things sink in – when you come back, we’ll
nail down a few more of the fine points of CSS.

414 Chapter 10

Welcome back, and good timing. We’re just about to listen
in on an interview with an XHTML class...

This week’s interview: are
classes always right?

 The Class Exposed

Head First: Hey, Class; you know we’ve been making good use of you, but we
still don’t know a lot about you.

Class: Well, there’s not all that much to know. If you want to create a “group, ”
so to speak, that you can style, just come up with a class, put your elements in it,
and then you can style all the elements in that class together.

Head First: So the class lets you take sets of elements and apply one or more
style properties to them?

Class: Exactly. Say you have some holiday-themed areas in your page; one
Halloween, one Christmas. You could add all Halloween elements to the

“halloween” class and all Christmas elements to the “christmas” class. Then you
can style those elements independently, say orange for Halloween and red for
Christmas, by writing rules that apply to each class.

Head First: That makes a lot of sense. We just saw a good example of that in
this chapter, didn’t we?

Class: I’m not sure, I was off working. You’ll have to catch me up.

Head First: Well, we have a paragraph on the Head First Lounge page that
contains a written guarantee from the owners, and they want this paragraph to
stand out independently of the other paragraphs.

Class: So far, so good... but let me ask you this: are there a few of these
paragraphs, or just the one?

Head First: Well, I don’t think there is any reason to have multiple guarantee
paragraphs and I don’t see the same style being applied anywhere else in the
page, so just the one.

Class: Hmmm, I don’t like the sound of that. You see, classes are meant to be
used for styles that you want to reuse with multiple elements. If you’ve got one
unique element that you need styled, that’s not really what classes are for.

Head First: Wait a second – a class seemed to work perfectly... how can this
be wrong?

Class: Whoa, now, don’t freak out. All you need to do is switch your class
attribute to an id attribute. It will only take you a minute.

when to use classes

the box model

you are here � 415

Head First: An id attribute? I thought those were for those destination anchors,
like in Chapter 4?

Class: ids have lots of uses. They’re really just unique identifiers for elements.

Head First: Can you tell us a little more about id attributes? This is all news to
me. I mean, I just went through an entire chapter using class incorrectly!

Class: Hey, no worries; it’s a common mistake. Basically all you need to know
is that you use a class when you might want to use a style with more than one
element. And, if what you need to style is unique and there’s only one on your
page, then use an id. The id attribute is strictly for naming unique elements.

Head First: Okay, I think I’ve got it, but why does it really matter? I mean,
class worked just fine for us.

Class: Because there are some things you really want only one of on your page.
The guarantee paragraph you mentioned is one example; but there are better
examples, like the header or footer on your page, or a navigation bar. You’re not
going to have two of those on a page. Of course, you can use a class for just one
element, but someone else could come along and add another element to the
class, and then your element won’t have a unique style anymore. It also becomes
important when you are positioning HTML elements, which is something you
haven’t gotten to yet.

Head First: Well, okay, Class. This conversation has certainly been educational
for us. It sounds like we definitely need to convert that paragraph from a class to
an id. Thanks again for joining us.

Class: Anytime, Head First!

Choose whether you’d use class or id for
the following elements:

brain
power?

Answer: The footer, the picture of the day, and the to do
list are great candidates for using id.

A paragraph containing the footer of a
page.

A set of headings and paragraphs that
contain company biographies.

An element containing a “picture
of the day.”

A set of <p> elements containing movie
reviews.

An element containing your to do
list.

<q> elements containing Buckaroo Bonzai
quotes.

❏ ❏

❏ ❏

❏ ❏

❏ ❏

❏ ❏

❏ ❏

id class id class

416 Chapter 10

The id attribute

there are no
Dumb Questions

Q: What’s the big deal? Why do I need an id just to
prove something is unique on the page? I could use a class
exactly the same way, right?

A: Well, you can always “simulate” a unique id with a class,
but there are many reasons not to. Say you’re working on a Web
project with a team of people. One of your teammates is going
to look at a class and think it can be reused with other elements.
If, on the other hand, she sees an id, then she’s going to know
that’s for a unique element. There are a couple of other reasons
ids are important that you won’t see for a few chapters. For

instance, when you start positioning elements on a page, you’ll
need each element you want to position to have a unique id.

Q: Can an element have an id and also belong to a
class?

A: Yes, it can. Think about it this way: an id is just a
unique identifier for an element, but that doesn’t prevent it from
belonging to one or more classes (just like having a unique
name doesn’t prevent you from joining one or more clubs).

Because you’ve already used ids on <a> elements, and because you already know how
to use a class attribute, you’re not going to have to learn much to use the id attribute.
Say you have a footer on your page. There’s usually only one footer on any page, so that
sounds like the perfect candidate for an id. Here’s how you’d add the identifier “footer” to
a paragraph that contains the footer text:

<p id=”footer”>Please steal this page, it isn’t copyrighted in any way</p>

Similar to a class, just add the
attribute “id” and choose a
unique id name.

Unlike a class, you can only
have one element in your
page with an id of “footer”.

Each element can
have only one id.

id names must start with a letter and be
followed by only letters and digits. No
spaces or special characters are allowed.

Giving an element an id is similar to adding an element to a class. The only differences are
that the attribute is called “id”, not “class”, an element can’t have multiple ids, and you
can’t have more than one element on a page with the same id.

identifying elements

the box model

you are here � 417

But how do I use id in CSS?
You select an element with an id almost exactly like you select an element with a
class. To quickly review: if you have a class called “specials”, there are a couple
of ways you can select elements using this class. You could select just certain
elements in the class, like this:

p.specials {
	 color: red;
}

.specials {
	 color: red;
}

Or, you can select all the elements that belong to the “specials” class, like this:

This selects only paragraphs that are in the specials class.

This selects all elements in the specials class.

#footer {
	 color: red;
}

This selects any element that has the id “footer”.

Using an id selector is very similar. To select an element by its id, you use a “#” character
in front of the id (compare this to class, where you use a “.” in front of the class name).
Say you want to select any element with the id “footer”:

Or, you could select only a <p> element with the id “footer”, like this:

p#footer {
	 color: red;
}

This selects a <p> element if it has the id “footer”.

The only other difference between class and id is that an id selector should match
only one element in a page.

418 Chapter 10

Using an id in the lounge
Our “guarantee paragraph” really should have an id since it’s
intended to be used just once in the page. While we should have
designed it that way from the beginning, making the change is
going to be quite simple.

Step One: change the class attribute to an id in your “lounge.html”:

Step Two: change the “.guarantee” class selector in “lounge.css” to an id selector:

#guarantee {
	 line-height: 1.9em;
	 font-style: italic;
	 font-family: Georgia, “Times New Roman”, Times, serif;
	 color: #444444;
 border-color: white;
 border-width: 1px;
 border-style: dashed;
 background-color: #a7cece;
 padding: 25px;
 padding-left: 80px;
 margin: 30px;
 margin-right: 250px;
 background-image: url(images/background.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

<p id=”guarantee”>
	 Our guarantee: at the lounge, we’re committed to providing
 you, our guest, with an exceptional experience every time you
 visit. Whether you’re just stopping by to check in on email
 over an elixir, or are here for an out-of-the-ordinary dinner,
 you’ll find our knowledgeable service staff pay attention to every
 detail. If you’re not fully satisfied have a Blueberry Bliss Elixir
 on us.
</p>

Just change the class
attribute to an id.

Just change the “.” to a
“#” in the selector.

using and selecting an id

the box model

you are here � 419

Step Three: save your changes and reload the page.

Well, everything should look
EXACTLY the same. But, don’t
you feel much better now that
everything is as it should be?

there are no
Dumb Questions

Q: So why did you make the selector #guarantee rather
than p#guarantee?

A: We could have done either and they both would select
the same thing. On this page we know that we will always have
a paragraph assigned to the id, so it doesn’t really matter (and
#guarantee is simpler). However, on a more complex set of pages
you might have some pages where the unique id is assigned to,
say, a paragraph, and on others it’s assigned to a list or block
quote. So you might want several rules for the id, like p#someid,
and blockquote#someid, depending on which kind of element is on
the page.

Q: Should I always start with a class, and then change it
to an id when I know it’s going to be unique?

A: No. You’ll often know when you design your pages if an
element is going to be unique or not. We only did things this way
in the chapter because, well, you didn’t know about id when we
started. But don’t you think we tied id into the story rather nicely?

Q: In Chapter 4 we used the id attribute with the <a>
element to create a destination anchor. When I put an id on
other types of elements, do they become destinations too?

A: That’s the idea, and most modern browsers support this,
but older browsers don’t.

420 Chapter 10

Remixing style sheets
Before we wind this chapter down, let’s have a little fun
remixing some style sheets. So far you’ve been using only
one style sheet. Well, who ever said you can’t use more
than one style sheet? You can specify a whole set of style
sheets to be used with any XHTML. But you may be
wondering why anyone would want to? There are a couple
of good reasons. Here’s the first one...

Imagine that the Head First Lounge takes off, gets
franchised, does the IPO, and so on (all thanks to you
and your terrific Web work, of course). Then there
would be a whole corporate Web site with hundreds of
pages, and obviously you’d want to style those pages
with external CSS style sheets. There would be various
company divisions and they might want to tweak the styles
in individual ways. And the lounge franchises also might
want some control over style. Here’s how that might look:

Corporate

Beverage
Division

Seattle Lounge
(part of the Beverage

Division)

We’ve set up all
the main styles to be used
by the company Web sites.

Fonts, colors, and so on.

We use all the
corporate colors and

fonts, but we add in a few
special touches of our own, like

a different line height.

We’ve got a young,
hip clientele. We tweak

the colors a bit and add a little
edge, but overall we use the

division’s main styles.

using more than one style sheet

the box model

you are here � 421

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en” xml:lang=“en” >
 <head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <title>Head First Lounge</title>

 <link type=“text/css” href=“corporate.css” rel=“stylesheet” />

 <link type=“text/css” href=“beverage-division.css” rel=“stylesheet” />

 <link type=“text/css” href=“lounge-seattle.css” rel=“stylesheet” />

 </head>

 <body>

 .

 .

 .

 </body>

</html>

In your XHTML you can
specify more than one style
sheet. Here, we’ve got three. One style sheet

for the entire
corporation.

The beverage division can add
to the corporate style a little,
or even override some of the
corporate styles.

And the lounge in Seattle
has its own tweaks in
their style sheet.

Order matters! A style
sheet can override the
styles in the style sheets
linked above it.

So how do you start with a corporate style and then allow the division and
the lounge franchises to override and make changes to the styles? You use
several style sheets, like this:

Using multiple style sheets

there are no
Dumb Questions

Q: So the order of the style sheets
matters?

A: Yes, they go top to bottom, with
the style sheets on the bottom taking
precedence. So if you have, say, a font-
family property on the <body> element in
both the corporate and the division style
sheets, the division’s takes precedence,
since it’s the last one linked in the XHTML.

Q: Do I ever need this for a simple
site?

A: You’d be surprised. Sometimes
there’s a style sheet you want to base your
page on, and rather than changing that style
sheet, you just link to it, and then supply
your own style sheet below that to specify
what you want to change.

Q: Can you say more about how the
style for a specific element is decided?

A: We talked a little about that in
Chapter 8. And for now, just add to that
knowledge that the ordering of the style
sheets linked into your file matters. Then in
the next chapter, after you’ve learned a few
other CSS details, we’re going to go through
exactly how the browser knows which style
goes with which element.

422 Chapter 10

Style sheets - they’re not just for
desktop browsers anymore...

<link type=”text/css” rel=”stylesheet” href=”lounge-screen.css” media=”screen” />

The media attribute allows you to specify
the type of device this style sheet is for.

Here we’re specifying that this
style sheet is appropriate for
computer screens.

You can specify multiple <link> elements with different media
types in one XHTML file, like this:

<link type=”text/css” href=”lounge.css” rel=”stylesheet” />

<link type=”text/css” href=”lounge-print.css” rel=”stylesheet” media=”print” />

<link type=”text/css” href=”lounge-mobile.css” rel=”stylesheet” media=”handheld” />

Now we have two other <link>
elements, one that specifies
print and one for small devices
with small screens and limited
communication speeds.

If you don’t supply a media
type then the style file should
be suitable for all devices.

And now for the second reason you might want to have multiple
style files. Let’s say you want to have slightly different styles
for computer screens, PDAs, or mobile devices, and printed
versions of your pages. There is an optional attribute for the
<link> element called media, that you can use to specify the
kinds of devices your style files are intended for.

If you’re interes
ted in more

information on print st
yles

and styles for m
obile devices,

check out the a
ppendix for

some pointers.

targeting media types

the box model

you are here � 423

there are no
Dumb Questions

Q: That’s pretty cool. So I can set
up different style sheets for different
devices?

A: Yes, you can set up several style
sheets and then link to them all in your
XHTML. It’s the browser’s job to grab the
right style sheet based on the media type.

Q: Say you have a “handheld” link
and a link that applies to all browsers;
which one gets applied?

A: The handheld browser will grab both
of them. But, assuming the “handheld” link
is below the “all” link, the handheld rules
take precedence, just like we talked about
before with the corporate, division, and
lounge CSS files.

Q: So we have screen (computers),
print (print-like media), handheld (mobile
devices and cell phones). What else is
there?

A: Here are a few more: aural (for
speech browsers), Braille (for people
who need tactile readers), projection (for
projected presentations or slides), tty
(for teletypes and terminals), and tv (for
televisions, of course).

In your “chapter10/lounge/print” folder, you’ll find “print.css”. Open up “lounge.html”
in the “chapter10/lounge” folder and add a new link to this style sheet for the media
type “print”. Make sure you also add the attribute media=“screen” to the <link>
element that links to “lounge.css”, so you have one style sheet for the screen, and
one for the printer. Then save, reload the page, and choose your browser’s “Print”
option. Run to the printer to see the result!

Optional printer required, not included with book.

<link type=”text/css” href=”print/print.css”

 rel=”stylesheet” media=”print” />

Here’s the new link you need to
add to your “lounge.html” file.

Here’s the printed version. You’ve totally
changed how the page looks when it’s
printed, using CSS. That structure versus
presentation thing is really paying off.

Unfortunately, not all browsers
support the media attribute, so if
you didn’t get this result, try a
newer browser.

Exercise

424 Chapter 10

CSS uses a nn box model to control how
elements are displayed.
Boxes consist of the content area and optional nn
padding, border, and margin.
The content area contains the content of the nn
element.
The padding is used to create visual space nn
around the content area.
The border surrounds the padding and content nn
and provides a way to visually separate the
content.
The margin surrounds the border, padding, nn
and content, and allows space to be added
between the element and other elements.
Padding, border, and margin are all optional. nn

An element’s background will show under the nn
content and the padding, but not under the
margin.
Padding and margin size can be set in pixels nn
or percentages.
Border width can be set in pixels or by using nn
the keywords thin, medium, and thick.
There are eight different styles for borders, nn
including solid, dashed, dotted, and ridge.
When setting margins, padding, or the border, nn
CSS provides properties for setting all the
sides (top, right, bottom, left) at once, or it
allows them to be set independently.

Use the nn line-height property to add space
between lines of text.
You can place an image in the background nn
of an element with the background-image
property.
Use the nn background-position and background-
repeat properties to set the position and tiling
behavior of the background image.
Use the class attribute for elements that you nn
want to style together, as a group.
Use the id attribute to give an element a nn
unique name. You can also use the id
attribute to provide a unique style for an
element.
There should only be one element in a page nn
with a given id.
You can select elements by their id using the nn
id # selector; for example #myfavoriteid.
An element can have only one id, but it can nn
belong to many classes.
You can use more than one style sheet in your nn
XHTML.
If two style sheets have conflicting property nn
definitions, the style sheet that is last in the
XHTML file will receive preference.
You can target media devices such as “print” nn
or “handheld” by using the media attribute in
your <link> element.

 BULLET POINTS

review of boxes, backgrounds, classes, and ids

the box model

you are here � 425

You’re really expanding your HTML & CSS skills. Strengthen those neural
connections by doing a crossword. All the answers come from this chapter.

1 2

3

4

5 6

7 8

9

10

11

12

Across

2. CSS sees every element as a _____.
4. The preferred font-style used in the guarantee
paragraph.
5. Optional <link> attribute for other kinds of
______.
7. Between padding and margin.
9. We changed the ______ class to an id.
10. If you want your element to have a unique style,
use this kind of selector.
11. The space between the content and the border.
12. Style of border we used on the guarantee
paragraph.

Down

1. Publishing term for the space between lines.
2. Which kind of elixir do you get if you're not
fully satisfed?
3. By default, background images do this.
6. Property used to increase the space between
lines of text.
8. Padding, borders and margins are all ________.

XHTMLcross

family

426 Chapter 10

L
1

B
2

O X

R
3

E L

G
4

E O R G I A U

P D M
5

E D I A L
6

B
7

O
8

R D E R I B I

P A N E N

T T G
9

U A R A N T E E

I
10

D R -

O Y H

N B E

A L I

L P
11

A D D I N G G

S H

D
12

A S H E D T

Across

2. CSS sees every element as a _____. [box]
4. The preferred font-style used in the guarantee
paragraph. [georgia]
5. Optional <link> attribute for other kinds of
______. [media]
7. Between padding and margin. [border]
9. We changed the ______ class to an id.
[guarantee]
10. If you want your element to have a unique style,
use this kind of selector. [id]
11. The space between the content and the border.
[padding]
12. Style of border we used on the guarantee
paragraph. [dashed]

Down

1. Publishing term for the space between lines.
[leading]
2. Which kind of elixir do you get if you're not
fully satisfed? [blueberrybliss]
3. By default, background images do this. [repeat]
6. Property used to increase the space between
lines of text. [line-height]
8. Padding, borders and margins are all ________.
[optional]

XHTMLcross Solution

exercise solutions

the box model

you are here � 427

See if you can identify the padding, border and margins of this paragraph.
Mark all the padding and margins (left, right, top, and bottom):

Left
margin

Right
margin

Top margin

Bottom margin

Left
padding

Right
padding

Bottom padding

Top padding

Sharpen your pencil
Solution

428 Chapter 10

.guarantee {
	 line-height: 1.9em;
	 font-style: italic;
	 font-family: Georgia, “Times New Roman”, Times, serif;
	 color: #444444;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 background-color: #a7cece;
 padding: 25px;
 margin: 30px;
}

You can add the new properties anywhere in
the rule. We added them at the top.

If you look at the guarantee paragraph as it’s supposed to look in its final form, it
has a italic, serif font, a greater line height than the rest of the page, and if you’re
looking really close, gray text. Write the CSS below to set the line height to 1.9em,
the font style to italic, the color to #444444, and the font family to Georgia, ‘Times
New Roman’, Times, serif. Here’s the solution... did you test it?

Notice that if a font name has spaces in it
you should surround it with quotes.

An italic, serif font.Increased line height.

Gray color gives the
text a softer look.

Exercise
Solutions

exercise solutions

this is a new chapter 429

11 divs and spans

Advanced Web Construction

It’s time to get ready for heavy construction. In this chapter

we’re going to roll out two new XHTML elements, called <div> and . These

are no simple “two by fours,” these are full blown steel beams. With <div> and

, you’re going to build some serious supporting structures, and once you’ve

got those structures in place, you’re going to be able to style them all in new and

powerful ways. Now, we couldn’t help but notice that your CSS toolbelt is really

starting to fill up, so it’s time to show you a few shortcuts that will make specifying all

these properties a lot easier. And, we’ve also got some special guests in this chapter,

the pseudo-classes, which are going to allow you to create some very interesting

selectors. (If you’re thinking that “pseudo-classes” would make a great name for your

next band, too late, we beat you to it.)

Some builders say
“measure twice, cut once.”
I say “plan, div, and span.“

430 Chapter 11

You know, we’d love it if
you could make the elixir specials

a little more attractive on the
Web page. Could you make it look

just like our handout menu?

The elixir
mixer, Alice

Here’s the handout menu with the elixir
specials. Wow, the design is a lot different
than the rest of the page: it’s thin, the
text is centered, there are red headings, an
aquamarine border around the whole thing,
and even some cocktail graphics at the top.

Weekly Elixir Specials

Lemon Breeze

Chai Chiller

Black Brain Brew

The ultimate healthy drink, this elixir combines herbal botanicals, minerals, and vitamins with a twist of lemon into a smooth citrus wonder that will keep your immune system going all day and all night.

Not your traditional chai, this elixir mixes maté with chai spices and adds an extra chocolate kick for a caffeinated taste sensation on ice.

Want to boost your memory? Try our Black Brain Brew elixir, made with black oolong tea and just a touch of espresso. Your brain will thank you for the boost.
Join us any evening for these and all our wonderful elixirs.

a new lounge assignment

divs and spans

you are here � 431

A close look at the elixirs XHTML

<h2>Weekly Elixir Specials</h2>

<p>
	
</p>
<h3>Lemon Breeze</h3>
<p>
	 The ultimate healthy drink, this elixir combines
	 herbal botanicals, minerals, and vitamins with
	 a twist of lemon into a smooth citrus wonder
	 that will keep your immune system going all
	 day and all night.
</p>

<p>
	
</p>
<h3>Chai Chiller</h3>
<p>
	 Not your traditional chai, this elixir mixes maté
	 with chai spices and adds an extra chocolate kick for
	 a caffeinated taste sensation on ice.
</p>

<p>
	
</p>
<h3>Black Brain Brew</h3>
<p>
	 Want to boost your memory? Try our Black Brain Brew
	 elixir, made with black oolong tea and just a touch
	 of espresso. Your brain will thank you for the boost.
</p>

<p>
	 Join us any evening for these and all our
	 other wonderful
	 <a href=“beverages/elixir.html”
	 title=“Head First Lounge Elixirs”>elixirs.
</p>

Alice sure has asked for a tall order, hasn’t she? She wants us to take the existing lounge
XHTML and make it look like the handout menu. Hmmm... that looks challenging, but we
do have CSS on our side, so let’s give it a try. But, before we jump right into styling, let’s get
an overview of the existing XHTML. Here’s just the XHTML snippet for the elixir specials;
you’ll find it in “lounge.html” in the “chapter11/lounge” folder:

The elixir specials section begins
with an <h2> heading.

Each elixir has
an image in a
<p> element.
...a name, in an
<h3> heading...

...and a
description,
also in a
paragraph.

And, finally, at the
bottom, there is
another paragraph, with
some text and a link to
the real elixirs page.

And this
structure is
repeated for
each elixir.

We have
three
elixirs,
each with
the same
structure.

432 Chapter 11

Jim: Come on, Frank, you know we can just create a class or two and then
style all the elixir elements separately from the rest of the page.

Frank: That’s true. Maybe this isn’t so bad. I’m sure there is a simple
property to make text align to the center And we know how to handle the
colored text.

Jim: Wait a sec, what about that border around everything?

Frank: Piece of cake. We just learned how to make borders. Remember,
every element can have one.

Joe: Hmm, I don’t think so. If you look at the XHTML, this is a bunch
of <h2>, <h3>, and <p> elements. If we put separate borders on every
element, they’ll just look like separate boxes.

Frank: You’re right, Joe. What we need is an element to nest all these
other elements inside, so we can put a border on that. Then we’ll have one
border around everything in the elixirs section of the page.

Jim: Well, I see why you get paid the big bucks, Frank. Could we nest the
elixir stuff inside a <p> element, or a <blockquote>?

Frank: We can’t use <p> because <p> can’t contain other block elements,
and the headings and paragraphs are obviously block elements. I don’t
think we’d want to do that anyway; paragraphs are for text.

Joe: And <blockquote>’s not right either, because this is an elixir menu,
not a quote.

Frank: Actually, I think we’re on the right track. I’ve been reading a certain
book on HTML & CSS and I’m just up to a section on a new element called
<div>. I think it might be the tool we need.

Joe: <div> – what’s that? It sounds like it’s for math.

Frank: That’s not far off, because a <div> lets you divide your page into
logical sections or groupings.

Jim: Hey, that sounds like exactly what we need!

Frank: Yup. Let me show you guys how to divide a page into logical
sections, and then I’ll show you what I know about <div>...

This looks tough, guys. There
are a lot of style changes we’ve
got to make, and the elixirs style

doesn’t really match the rest of
the page.

Jim Frank
Joe

a new element called div

divs and spans

you are here � 433

Let’s explore how we can divide
a page into logical sections

This is a pretty normal
looking page: lots of
headings, paragraphs,
and an image in there.

p

h2

img

h2

h1

p

p

p

Dogs

p

p

p

h1

h2

img

h2

p

Cats

Take a look at the Web page to the right: it’s a Web
page for PetStorz.com and we’re going to spend a few
pages looking at how we might add some additional
structure to it by identifying some logical sections and
then enclosing those inside a <div> element.

But by just focussing on the structure of the page,
you can’t really tell a whole lot about the page.
What elements make up the header? Is there a
footer on the page? What are the content areas?

Okay, so our job is to locate “logical sections”
in this page. What’s a logical section? It’s just
a group of elements that are all related on the
page. For instance, in the PetStorz.com Web
page, there are some elements that are used for
the cats area on the page, and some that are
used for dogs. Let’s check it out.

Identifying your logical sections

The PetStorz page has two main content
areas, one for cats, and one for dogs. It
has some other areas too, but we’ll come
back to those.

In this case, both the cats and dogs sections
consist of two elements, a heading and a
paragraph. But often these groupings can
contain many more elements.

We’ve drawn an outline
of the PetStorz page.

434 Chapter 11

p

div

div

p

h2

p
img

h2

h1

p

p

h2

img

h2

h1

p

p

p

div id=“dogs”

div id=“cats”

Now that you know which elements belong
in each section, you can add some XHTML
to mark up this structure. The common
way to do this is to place <div> opening
and closing tags around the elements that
belong to a logical section. Let’s first do this
pictorially, and then we’ll come back to the
real markup in a couple of pages.

Using <div>s to mark sections Let’s nest the elements in each
grouping in a <div> element.

Here’s our cat group.

And here’s our
dog group.

Just by nesting your elements in
<div>s, you’ve indicated that all those
elements belong to the same group.
But you haven’t given them any kind
of label that says what the grouping
means, right?

A good way to do that is to use an id
attribute to provide a unique label for
the <div>. For instance, let’s give the
cats <div> an id of “cats” and the
dogs <div> an id of “dogs”.

Labelling the <div>s

Here we’ve added an id
of “cats” to the first
<div> to indicate what
the logical section is for.

And likewise for dogs.

how to mark logical sections with divs

divs and spans

you are here � 435

brain
power?

On a referral from the Starbuzz
CEO, you’ve been asked to
come in and consult on style
changes to PetStorz main
page. How quickly would you
understand the PetStorz Web
page if you were shown Page
One?

What about Page Two?

p

h2

img

h2

h1

p

p

p

div id=“dogs”

div id=“cats”

p

h2

img

h2

h1

p

p

p

Page TwoPage One

Okay, so you’ve added some logical
structure to the PetStorz page, and you’ve
also labeled that structure by giving each
<div> a unique id. That’s all you need
to start styling the group of elements
contained in the <div>.

Adding some style Now the <div>s
have a little style.

Here we have two rules, one
for each <div>. Each <div> is
selected by an id selector.

p

h2

img

h2

h1

p

p

p

div id=“dogs”

div id=“cats”

#cats {
 background-image: url(leopard.jpg);
}

#dogs {
 background-image: url(mutt.jpg);
}

Each rule sets the
background-image
property. For cats we
have a leopard image,
and for dogs we have
a mutt image.

By setting the
background on the
<div>, it also shows
through the elements
contained in the <div>.

The elements in the <div> will also
inherit some properties from the
<div>, just as any child element
does (like font-size, color, etc).

436 Chapter 11

There are a couple of reasons you might
want to add more structure to your
pages with <div>s. First, you may
want to further expose the underlying
logical structure of your pages, which
can help others understand them, and
also help in maintaining them. Second,
there are times when you need the
structure so that you have a way to apply
style to a section. Often, you’ll want to
add the structure for both reasons.

So, in the case of PetStorz, we could
take this to the next level and add a few
more <div>s...

Exposing even more structure

Now we’ve added
another <div> with an
id indicating this is the
header of the page.

And another indicating
the footer of the page.

div id=“header”

p

h2

img

h2

h1

p

p

p

div id=“dogs”

div id=“cats”

div id=“footer”

And you don’t have to stop there. It is
common to nest structure, too. For instance,
in the PetStorz page, we have a cat section
and a dog section, and the two together are
logically the “pets” section of the page. So,
we could place both the “cat” and “dog”
<div>s into a “pets” <div>.

Adding structure on structure
div id=“header”

p

img

h1

p

h2

h2

p

p

div id=“dogs”

div id=“cats”

div id=“footer”

div id=“pets”

Adding this structure through <div>s
can even help you think through your
page design. For instance, does this
lone <p> really need to be here?

Now we’ve marked up this XHTML so that
we know there is a logical section in the page
with “pets” content in it. Further, that “pets”
section has two logical subsections, one for
“cats” and one for “dogs”.

nesting divs

divs and spans

you are here � 437

Q: So, a <div> acts like a container
that you can put elements into to keep
them all together?

A: It sure does. In fact, we often
describe <div>s as “containers”. Not only
do they act as logical containers that you
can use to hold a bunch of related elements
(like the “cat” elements) together, but when
we start styling <div>s and using them for
positioning in the next chapter, you’ll see
they act as graphical containers, too.

Q: Beyond the structure I’m already
putting into my pages with headings and
paragraphs and so on, should I also be
adding a higher level of structure with
<div>s?

A: Yes and no. You want to add
structure where it has a real purpose, but
don’t add structure for structure’s sake.
Always keep your structure as simple as
possible to get the job done. For instance,

if it is helpful to add a “pets” section
that contains both “cats” and “dogs” to
the PetStorz page, by all means add it.
However, if it provides no real benefit, then
it just complicates your page. After working
with <div>s for a while, you’ll start to get a
feel for when and how much to use them.

Q: Do you ever put <div>s in a class
instead of giving it an id?

A: Well, remember that an element can
have an id and be in one or more classes at
the same time, so the choice isn’t mutually
exclusive. And, yes, there are many times
you create <div>s and place them into
classes. Say you have a bunch of album
sections in a page of music playlists; you
might put all the elements that make up the
album into a <div> and then put them all in a
class called “albums”. That identifies where
the albums are, and they can all be styled
together with the class. At the same time
you might give each album an id so that it
can have additional style applied separately.

Q: I was having a little trouble
following the <div> within <div> stuff,
with the “pets” and “cats” and “dogs”.
Could you explain that a little more?

A: Sure. You’re used to elements being
nested in other elements, right? Like a <p>
nested in a <body> nested in an <html>
element. You’ve even seen lists nested
within lists. The <div> is really no different;
you’re just nesting an element inside another
element, and, in the case of PetStorz, we’re
using it to show larger chunks of structure
(a “cats” and “dogs” nested in a “pets”
section). Or, you might use <div>s to have a
beer section nested in a beverages section
nested in a menu section.
But, the best way to understand why you’d
want something like a <div> within a <div> is
by using them and encountering a situation
where they mean something to you. Put this
in the back of your mind and you’ll see an
example soon enough where we need one.

there are noDumb Questions

Use, don’t abuse, <div>s in your pages. Add additional
structure where it helps you separate a page into logical
sections for clarity and styling. Adding <div>s just for
the sake of creating a lot of structure in your pages
complicates them with no real benefit.

438 Chapter 11

Meanwhile, back at the lounge...
Okay, enough “theory” about <div>s – let’s get one into the lounge page. Remember, we’re trying to get
all the elixir elements into a group and then we’re going to style it to make it look like the elixir handout.
So, open up your “lounge.html” file in the “chapter11/lounge” folder, locate the elixirs elements, and then
insert opening and closing <div> tags around them.

<div id=“elixirs”>
 <h2>Weekly Elixir Specials</h2>

 <p>

 </p>
 <h3>Lemon Breeze</h3>
 <p>
 The ultimate healthy drink, this elixir combines
 herbal botanicals, minerals, and vitamins with
 a twist of lemon into a smooth citrus wonder
 that will keep your immune system going all
 day and all night.
 </p>

 <p>

 </p>

 <h3>Chai Chiller</h3>
 <p>
 Not your traditional chai, this elixir mixes maté
 with chai spices and adds an extra chocolate kick for
 a caffeinated taste sensation on ice.
 </p>

 <p>

 </p>

 <h3>Black Brain Brew</h3>
 <p>
 Want to boost your memory? Try our Black Brain Brew
 elixir, made with black oolong tea and just a touch
 of espresso. Your brain will thank you for the boost.
 </p>

 <p>
 Join us any evening for these and all our
 other wonderful
 <a href=“beverages/elixir.html”
 title=“Head First Lounge Elixirs”>elixirs.
 </p>
</div> And, here’s the closing tag.

Here’s the opening tag,
and we’ve given it an id of
“elixirs” to identify it.

Remember we’re just
showing a snippet of
XHTML from the
entire file. When you
open “lounge.html”, you’ll
see all the markup for
the page.

adding divs to the lounge

divs and spans

you are here � 439

Taking the <div> for a test drive
That was easy, wasn’t it? Now that we’ve got a more
structured page, let’s fire up the browser and see
how it looks...

Hmmm... no change at all!
But that’s okay: the <div>
is pure structure, and it
doesn’t have any “look” or
default style in the page.

That said, a <div> is just a block
element, and you can apply any styles
you want to it. So, once you know how
to style a block element (and you do),
you know how to style a <div>.

brain
power?

Remember, the goal here is to restyle the elixir content on the page
so it looks like the handout.

Before we took a detour to learn about <div>s, we were trying to
figure out how to get a border around the entire set of elixirs. Now
that you’ve got a <div> in “lounge.html”, how would you go about
adding a border?

Weekly Elixir Specials

Lemon Breeze

Chai Chiller

Black Brain Brew

The ultimate healthy drink, this elixir combines herbal botanicals, minerals, and vitamins with a twist of lemon into a smooth citrus wonder that will keep your immune system going all day and all night.

Not your traditional chai, this elixir mixes maté with chai spices and adds an extra chocolate kick for a caffeinated taste sensation on ice.

Want to boost your memory? Try our Black Brain Brew elixir, made with black oolong tea and just a touch of espresso. Your brain will thank you for the boost.
Join us any evening for these and all our wonderful elixirs.

440 Chapter 11

An over-the-border test drive
After you’ve added the CSS, save it and then reload
your “lounge.html” file.

Here’s the border that you just added
to the elixirs <div> element.

Notice that the border goes
around all the elements inside
the <div> element. The <div>
is a box like every other
element, so, when you add
a border, the border goes
around the content, which is
all the elements in the <div>.

You added a visible border
to this <div>, but it still has
no padding and no margin.
We’ll need to add that too.

Adding a border
Okay, now that you have a <div> around all the elements in the elixirs
section, the fun begins: you can style it.

The first thing we want to reproduce in the elixirs handout is a border that
wraps around all the elements in the elixirs section, right? Well, now that
you actually have a <div> element that wraps around the elixirs section,
you can style it and add a border. Let’s try that now.

You’ll need a new rule in the lounge’s CSS to select the <div> element
using its id. Open up your “lounge.css” file in the “chapter11/lounge”
folder, and add this rule at the end:

#elixirs {
 border-width: thin;
 border-style: solid;
 border-color: #007e7e;
}

Add this at the end of your CSS file. It
selects the elixirs <div> element using its id,
and adds a thin, solid border in our favorite
aquamarine color.

adding style to a div

divs and spans

you are here � 441

Adding some real style to
the elixirs section

The main heading
and the paragraph
text are black, while
the drink names are
a red color that
matches the red in
the logo.

The text and images
are centered, and
there’s padding on
the sides to add
space between the
text and the border.

The line-height of the
paragraphs looks a lot more
like the default line height for
the page (before we changed it
in the last chapter).

The font family is a sans-serif font, just
like the body font, so we don’t have to
change that. Remember that the <div>
element and all the elements nested in it
inherit the font family from the body.

The width of the elixirs
handout is narrower than the
rest of the page.There’s a background

image at the top.
So far, so good. We’ve found a way to get
that border around the entire section. Now
you’re going to see how to use the <div> to
customize the styling of the entire elixirs section
independent of the rest of the page.

We obviously have some padding issues to deal
with, because the border is right up against the
content. But there’s a lot of other style we need
to work out, too. Let’s take a look at everything
we need to take care of...

This link is aquamarine.

442 Chapter 11

That’s a lot of new style, so let’s get a game plan together before
attacking it. Here’s what we need to do:

First, we’re going to change the width of the elixirs <div> to
make it narrower.

Next, we’ll knock out some of the styles you’re already familiar
with, like padding and the background image. We’ll also play
with the text alignment, which you haven’t seen before.

Then all we’ve got left are the text line heights and the heading
colors. You’re going to see that you need to upgrade your CSS
selector skills just a bit to get those changed.

Working on the elixir width

The game plan

That’s a lot to do, so let’s get started.

The width property lets you specify the width of
the element’s content area. Here we’re specifying
that the content width be 200 pixels.

We’d like the elixirs to be quite narrow, so it looks like the narrow
handout menu at the lounge; about 1/4 the width of a typical
browser window should be about right. So, if most people set their
browser windows to 800 pixels wide, that would be about 200
pixels. You’ve set the widths of padding, borders, and margins,
but you’ve never set the width of an element before. To do that
you use the width property, like this:

#elixirs {
 border-width: thin;
 border-style: solid;
 border-color: #007e7e;
 width: 200px;
}

Give this a try. Open your “lounge.css” and add this rule to the bottom.

We’re setting this on the elixirs <div>. So the content
in the elixirs <div> will be 200 pixels wide, and the
browser’s layout rules will work to fit all the elements
nested in the <div> within that width.

❏

❏

❏

plan of attack

divs and spans

you are here � 443

Now all the content in the elixirs
<div> fits into a space that is 200
pixels wide. It doesn’t change, even if
you make your browser window really
wide, or really narrow. Try it!

200 pixels

Compare the behavior of the <div>
to that of the other elements
when you make your browser
window wide. The paragraphs
automatically expand to fill the
width of the browser. We’ll talk
about that more in a sec...

Notice that the
height of the elixirs
section got a lot
taller. That’s because
we made it narrower,
so the content
takes up more room
vertically instead.

Next, save the CSS and then reload the “lounge.html” file. You’ll see the elixirs
section get much skinnier, thanks to the width you gave it. The width of the
content in the <div> is now exactly 200 pixels. There’s also some interesting
behavior you should check out...

Test driving the width

brain
power?

Can you resize your browser window to less than the width of the elixirs <div>? Some browsers
won’t let you go that narrow; others will. If you can go narrower, compare the text in the elixirs
<div> with the rest of the text on the page. The other paragraphs resize themselves no matter
how wide or narrow you go, but the elixirs <div> never gets narrower or wider than 200 pixels.

444 Chapter 11

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

I was wondering how the
width property relates to padding

and margins. Is this the width of the
content itself? Or the entire box

including the padding and margin?

To figure out the width of the entire box, you
need to add the width of the content area to the
width of the left and right margins, the left and
right padding, and the border width. Don’t forget
that you have to include twice the border width,
because there is a border on the left and the right.

The width property specifies the
width for the content area only.

lef
t m

arg
in

wid
th

bo
rd

er
wid

th
lef

t p
ad

din
g w

idt
h

rig
ht

 pa
dd

ing
 w

idt
h

rig
ht

 m
arg

in
wid

th
bo

rd
er

wid
th

width
(specified
in width
property)

total width

more about box widths

divs and spans

you are here � 445

Well then how do we
specify the width of the

entire element?

Say you set the content area width to be 300 pixels using the width property
in a CSS rule.

And let’s say you’ve set the margins to 20 pixels, the padding to 10 pixels, and you
have a 1 pixel border. What’s the width of your element’s box? Well, it’s the width of
the content area added to the width of the left and right margins, the left and right
padding, and the left and right border width. Let’ see how to calculate that...

You don’t. You specify the width of the content area,
the padding, the border, and the margin. All of that
added together is the width of the entire element.

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

20
 pi

xe
ls

1 p
ixe

l
10

 pi
xe

ls

10
 pi

xe
ls

20
 pi

xe
ls

1 p
ixe

l300

300 pixels

20 + 1 + 10 10 + 1 + 20

3131

31 + 31 = 62

(1) The content area is 300 pixels.

(2) Figure out how much is taken up by
the margins, padding, and border.

(3) It looks like 62 pixels are taken up, so
add that to the content area’s width of
300 pixels, and we have 300 + 62 = 362
pixels for the entire box.

446 Chapter 11

Q: If I don’t set the width of an
element, then where does the width come
from?

A: The default width for a block element
is “auto”, which means that it will expand to
fill whatever space is available. If you think
about any of the Web pages we’ve been
building, each block element can expand to
the entire width of the browser, and that’s
exactly what it does. Now, hold this thought,
because we’re going to go into this in detail
in the next chapter. Just remember that
“auto” allows the content to fill whatever
space is available (after taking padding,
border, and margin into account).

Q: What if I don’t have any margin,
padding, or borders?

A: Then your content gets to use the
entire width of the box. If the width of the
content area is 300 pixels, and you have no
padding, border, or margin, then the width of
the entire box would also be 300 pixels.

Q: What are the different ways I can
specify widths?

A: You can specify an actual size
– usually in pixels – or you can specify a
percentage. If you use a percentage, then
the width is calculated as a percentage
of the width of container the element is in

(which could be the <body>, a <div>, etc.).Q: What about the height?

A: In general, the height of an element
is left at the default, which is auto, and the
browser expands the content area vertically
so all of the content is visible. Take a look
at the elixirs section after we set the width
to 200 pixels and you’ll see the <div> got a
lot taller.
You can explicitly set a height, but you
risk cutting off the bottom of your content
if your height isn’t big enough to contain
it. In general, leave your element heights
unspecified so they default to auto. We’re
going to talk about this more in the next
chapter as well.

there are noDumb Questions

Sharpen your pencil
Here’s a box that has all the widths labelled. What is the width of the entire box?

Our guarantee: at the lounge, we’re
committed to providing you, our guest,
with an exceptional experience every
time you visit. Whether you’re just
stopping by to check in on email over
an elixir, or are here for an out-of-
the-ordinary dinner, you’ll find our
knowledgeable service staff pay attention
to every detail. If you’re not fully satisfied
have a Blueberry Bliss Elixir on us.

30
 pi

xe
ls

2
pix

els
5 p

ixe
ls

10
 pi

xe
ls

20
 pi

xe
ls

2
pix

els200 pixels

Your answer here

box width and height fine points

divs and spans

you are here � 447

We’ve got the width out of the way. What’s left to do?

#elixirs {
 border-width: thin;
 border-style: solid;
 border-color: #007e7e;
 width: 200px;

 padding-right: 20px;
 padding-bottom: 20px;
 padding-left: 20px;

 margin-left: 20px;

 text-align: center;

 background-image: url(images/cocktail.gif);
 background-repeat: repeat-x;

}

Adding the basic styles to the elixirs

The default padding on a <div> is 0 pixels, so
we’re going to add some padding to provide a bit

of space for the content. Notice that we’re not

adding any padding at the top because there’s
already plenty of room there thanks to the
default margin on the <h2> heading (look back at

the last test drive and you’ll see there’s plenty
of

room above the <h2>). But we do need it on the

right, bottom, and left.

Use text-align on block elements to
align the text they contain. Here we’re
going to center-align the text.

First, we’re going to change the width of the elixirs <div> to
make it narrower.

Next, we’ll knock out some of the styles you’re already familiar
with, like padding, text alignment, and the background image.

Then all we’ve got left are the text line heights and the heading
colors. You’re going to see that you need to upgrade your CSS
selector skills just a bit to get those changed.

❏

❏

❏

Now we’re going to concentrate on some of the basic styles, like the
padding, the text alignment, and also getting that background image
of the cocktail glasses in the elixirs <div>. You’re already familiar
with how most of this works, so let’s take a quick look at the CSS:

And finally we’re specifying an image to use in the background, in this
case the cocktail image. We’re setting the background-repeat property
to repeat-x, which will tile the image only in the horizontal direction.

Remember we’re going to apply all this style to the
elixirs <div> so that it only affects the <div> and
the elements it contains, not the entire page.

We’re adding some margin on the left to indent

the elixirs from the rest of the page a bit.

This is going to come in handy later...

We’re doing this step next.

448 Chapter 11

Wait just a sec... why
does the text-align

property affect the alignment
of the images? Shouldn’t it align

only text? Seems like it should be
called something else if it aligns

images too.

Good point... it doesn’t seem right, does it? But the truth is
that text-align will align all inline content in a block element.
So in this case, we’re setting the property on the <div>
block element and all its inline content is nicely centered
as a result. Just remember that text-align, despite
its name, works on any kind of inline element. One other
thing to keep in mind: the text-align property should
be set on block elements only. It has no effect if it’s used
directly on inline elements (like).

Test driving the new styles
Now it’s time to add those new properties to your

“lounge.css” file and reload the page. Let’s check out
the changes: the headings, the images, and the text
are all centered in the <div> and have a little more
breathing room now that there’s some padding in
place. We’ve also got a little decoration at the top
with the tiled cocktail image.

We’ve got some
padding here, and
at the bottom
and left...

... and
everything’s
centered nicely.

The tiled image looks
nice, and it only tiles
horizontally.

how text-align works

divs and spans

you are here � 449

Good catch. All the text inside the <div>
element is in nested block elements, but it is
all aligned now. That’s because these block
elements inherit the text-align property
from the <div>. So here’s the difference:
rather than the <div> itself aligning the
text in the headings and the paragraphs
(which it won’t do because these are block
elements), the headings and paragraphs
are inheriting the text-align value of

“center”, and then aligning their own content
to center.

So what? Well, if you think about it, this
gives you a lot of leverage when you use a
<div>, because you can wrap a section of
content in a <div> and then apply styles
to the <div> rather than each individual
element. Of course, keep in mind that not
all properties are inherited by default, so
this won’t work for all properties.

That’s interesting because
I noticed the text inside the

<div> is all inside other block elements,
like <h2>, <h3>, and <p>. So, if text-

align is aligning inline elements in the
<div> block element, how is the text

in these nested block elements
getting aligned?

450 Chapter 11

So now that you understand widths, what’s the total width of the
elixirs box? To start with, we know the content area is 200 pixels.
We’ve also set some left and right padding that affects the width,
as well as a border that’s set to “thin”. Just assume a thin border
is 1 pixel thick, like it is on most browsers. And what about
margins? We set a left margin value, but no right margin value,
so the right margin is 0 pixels by default.

Here are all the properties that relate to width. Your job is to
figure out the total width of the elixirs <div>.

 border-width: thin;

 width: 200px;

 padding-right: 20px;
 padding-bottom: 20px;
 padding-left: 20px;

 margin-left: 20px;

Weekly Elixir Specials

Lemon Breeze

Chai Chiller

Black Brain Brew

The ultimate healthy drink, this elixir combines herbal botanicals, minerals, and vitamins with a twist of lemon into a smooth citrus wonder that will keep your immune system going all day and all night.

Not your traditional chai, this elixir mixes maté with chai spices and adds an extra chocolate kick for a caffeinated taste sensation on ice.

Want to boost your memory? Try our Black Brain Brew elixir, made with black oolong tea and just a touch of espresso. Your brain will thank you for the boost.
Join us any evening for these and all our wonderful elixirs.

?

Sharpen your pencil

calculating box widths

divs and spans

you are here � 451

We’re close to having the elixirs done. What’s left?

We’re almost there...

Sounds pretty easy, right? After all, you’ve done
all this before. In fact, given that you know
you can just set styles on the <div> and
they will be inherited, you can take care of
this real fast.

First, we’re going to change the width of the elixirs <div> to
make it narrower.

Next, we’ll knock out some of the styles you’re already familiar
with, like padding, text alignment, and the background image.

Then all we’ve got left are the text line heights and the heading
colors. You’re going to see that you need to upgrade your CSS
selector skills just a bit to get those changed.

❏

❏

❏

Frank: Yeah, this is interesting.
The main elixirs heading, which is
an <h2>, has the aquamarine color
because there is already an <h2> rule in
the CSS. But we need for that to be black. Then
we’ve got the <h3>s in the elixirs, which need to be red.

Jim: Yeah, no problem, we’ll just add a few more rules.

Frank: But wait a sec... if we change the <h2> rule, or add an <h3> rule,
then we’re going to change the heading colors on the entire page. We just
want these colors in the elixirs section.

Jim: Oh, good point. Hmmm... Well, we could use two classes.

Frank: That would work, although it’s a bit messy. Anytime you add a new
heading to the elixirs <div> you’ll have to remember to add it to the class.

Jim: Yeah, well, c’est la vie.

Frank: Actually Jim, before you use classes, go check out descendant
selectors. I think they’ll work better here.

Jim: Descendant selectors?

Frank: Right, they’re just a way of specifying a selector like “select an
<h2> element, but only if it’s inside an elixirs <div>”.

Joe: I’m not following.

Frank: Okay, let’s step through this...

We’ve almost got this done,
we just need to change the
header colors and also the

line height.

JimFrank

We’re on the last step.

452 Chapter 11

What are we trying to do?

div id=”elixirs”

h3h2 h3

body

html

h1 h2

h3

div id=”elixirs”

h3h2 h3

body

html

h1

h3

h2

Let’s take a quick look at what we’re trying to do
to the heading colors.

Here’s just the main
heading elements in the
lounge XHTML.

Right now the CSS says to color <h1>
and <h2> element text aquamarine. So
all <h1> and <h2> elements are that
color, even in the elixirs <div>.

What we have now

What we want

h1, h2 {
	 color: #007e7e;
}And here’s the rule specifying the <h1>

and <h2> color in the “lounge.css” file.

h1, h2 {
	 color: #007e7e;
}

?

We want the <h1> and <h2> in
the main page to stay aquamarine.

And we want to change the <h2>
and <h3> elements in the elixirs
section to be black and red.

But if we change the existing rule for <h2>, we’ll affect
the font color of every <h2> in the main page. And, if we
add a new rule for <h3>, then any <h3>s that get added
to the main page later will be red, which is not what we
want. Now, we could use a class like Jim suggested, but
we’re going to give Frank’s idea a try first...

selecting only certain headings

divs and spans

you are here � 453

What we need is a way to select descendants
What we’re really missing is a way to tell CSS that we want to only select
elements that descend from certain elements, which is kinda like specifying that you
only want your inheritance to go to the children of one daughter or son. Here’s
how you write a descendant selector.

div h2 {
 color: black;
}

Leave a space between
the parent name and
the descendant name.

div id=”elixirs”

h3h3

html

body

h1

h3

h2

h2

Here’s the
parent element.

And here’s its
descendant.

Write the rest of
your rule just like
you always do.

This rule says to select
any <h2> that is a
descendant of a <div>.

Here’s what this rule
selects in the lounge.

Now the only problem with this rule is that if someone created another <div>
in the “lounge.html” file, they’d get black <h2> text, even if they didn’t want it.
But we’ve got an id on the elixirs <div>, so let’s use it to be more specific about
which descendants we want:

#elixirs h2 {
 color: black;
}

div id=”elixirs”

h3h3

html

body

h1

h3

h2

h2

Now the parent
element is the
element with
the id elixirs.

And here’s its
descendant.

This rule says to select any <h2> that is a
descendant of an element with the id “elixirs”.

This rule selects the same element. But it’s more
specific, so if we added another <div> with an
<h2> to the page, that’s okay because this rule
selects only <h2>s in the elixirs <div>.

454 Chapter 11

Your turn. Write the selector that selects only <h3> elements inside the elixirs <div>.
In your rule, set the color property to #d12c47. Also label the elements in the graph
below that are selected.

div id=”elixirs”

h3h3

html

body

h1

h3

h2

h2

div id=”calendar”

h2 h3h1h2

Q: Descendant usually means child,
grandchild, great-grandchild. Here, we’re
just selecting the child descendants,
right?

A: That’s a really good point.
The selector “#elixirs h2” means ANY
descendant of elixirs, so the <h2> could be
a direct child of the <div> or nested down
inside a <blockquote> or another nested
<div> (making it a grandchild) and so on.
So a descendant selector selects any <h2>
nested inside an element, no matter how
deeply it is nested.

Q: Well, is there a way to select a
direct child?

A: Yes. For example, you could use
“#elixirs > h2”, to select <h2> only if it is
the direct child of an element with an id of
“elixirs”.

Q: What if I need something more
complex, like an <h2> that is the child of
a <blockquote> that is in elixirs?

A: It works the same way. Just use
more descendants, like this:
#elixirs blockquote h2 {

 color: blue;

}

This selects any <h2> elements that
descend from <blockquote>s that descend
from an element with an id of “elixirs”.

there are noDumb Questions

Sharpen your pencil

more on selecting children

divs and spans

you are here � 455

Changing the color of the elixir headings
Now that you know about descendant selectors, let’s set the <h2> heading to
black and the <h3> headings to red in the elixirs. Here’s how you do that:

#elixirs h2 {
 color: black;
}

#elixirs h3 {
 color: #d12c47;
}

Here we’re using the descendant
selectors to target just the <h2>
and <h3> elements in the elixirs <div>.
We’re setting <h2> to black, and <h3>
to a red color, using a hex code.

A quick test drive...
Go ahead and add these new properties to the bottom of your

“lounge.css” file, save, and reload “lounge.html”.

We’ve got black and red headings
in the elixirs section, and we
haven’t affected the aquamarine
color being used for <h2>
headings in the main page.

Now all we need to do is
fix the line height.

456 Chapter 11

another way to specify line height

Fixing the line height
Recall that in the last chapter we made the line height of the text in
the lounge a little taller than normal. This looks great, but in the
elixirs we want our text to be a normal, single-spaced, line height to
match the handout. Sounds easy enough, right? Just set the line-height
property on the <div> and everything will be fine, because line-height
is inherited. The only problem is that the headings will also inherit the
line-height, and we’ll end up with something like this.

If you set the line-height property on
the entire <div> then it will be inherited
by all elements in the <div>, including the
headings. Notice that the line height in
the heading is too small and the two lines
are starting to run together.

#elixirs {
 line-height: 1em;
}

The reason that the line-height for the elixirs heading is
too small is because every element in the elixirs <div>
inherits the line-height of 1em, or “1 times the font size of
the elixirs element”, which in this case is “small”, or about
12 pixels (depending on your browser). Remember, the
elixirs <div> is inheriting its font-size from the <body>
element, which we set to “small.”

What we really want is for all the elements in the elixirs
<div> to have a line-height that’s based not on the
font-size of the elixirs <div>, but rather the font-size of
each element itself. We want the <h2> heading to have
a line-height that is 1 times its font-size (which is 120% of

“small”), and the <p> should also have a line-height of 1
times its font-size (which is “small”). How can you do this?
Well, line-height is a bit special because you can use just a
number instead of a relative measure – like em or % – for
line-height. When you use just a number, you’re telling
each element in the elixirs <div> to have a line-height
of 1 times its own font-size, rather than the font-size of
the elixirs <div>. Give it a try; set the line-height of the
elixirs <div> to 1, and you’ll see that it fixes the heading.

#elixirs {
 line-height: 1;
}

div id=”elixirs”
size is “small”

h2 is 120% of “small”

body size is “small”

body line-height is
1.6 times “small”

h2 is 120% of “small”
line-height is 1 times

120% of small, or
about 14 pixels

div id=”elixirs”
 line-height is 1 times

“small”, or about 12 pixels

Here are the font sizes of the elements. We set body to “small”, so that’s inherited by elixirs.

The line-height of
<h2> is set to 1 times
the font size of
elixirs, which is “small”,
or about 12 pixels.

We want <h2> to
have a line-height
that is 1 times
its own font size,
that is, 14 pixels
(120% of small).

Add a line-height of 1
to the elixirs <div> to
change the line-height
of each element in it.

The font-size of the p element is “small” (p inherits
its font-size from the elixirs <div>) so it will have a
line-height of 12 pixels, which is what we want.

divs and spans

you are here � 457

Look what you’ve accomplished...

Wow, that’s fantastic!
You were able to make the
elixirs section on the Web site
look like the handout, with
just a little CSS.

Take a look at the elixirs section now. You’ve
completely transformed it, and now it looks
just like the handout. And, other than adding
a <div> and an id attribute to your XHTML,
you were able to do this with just a few CSS
rules and properties.

By now, you should be realizing just how
powerful CSS is, and how flexible your Web
pages are when you separate your structure
(XHTML) from your presentation (CSS). You
can give your XHTML a whole new look,
simply by changing the CSS.

Remember, this is how the
elixirs section looked when
we started...

... and here’s
what it looks
like now.

458 Chapter 11

It’s time to take a little shortcut
You’ve probably noticed that there are quite a few CSS properties that seem to
go together. For instance, padding-left, padding-right, padding-
bottom, and padding-top. Margin properties are the same way. How about
background-image, background-color, and background-repeat?
Those all set different property values on the background of an element. Have you
also noticed it gets a little tedious typing all those in? There are better things to spend
your time on than typing all this, right?

padding-top: 0px;
padding-right: 20px;
padding-bottom: 30px;
padding-left: 10px;

That’s a lot of typing just to
specify four numbers.

Well, here’s a special bonus for this chapter. You’re going to learn how to specify all
those values without risking carpal tunnel. Here’s how:

Here’s the old school way of
specifying your padding.

padding-top: 0px;
padding-right: 20px;
padding-bottom: 30px;
padding-left: 10px;

padding: 0px 20px 30px 10px;

And here’s the new and improved
way to write them as a shorthand.

top right
bottom

left

You can use the same sort of shorthand with margins:

margin-top: 0px;
margin-right: 20px;
margin-bottom: 30px;
margin-left: 10px;

margin: 0px 20px 30px 10px;

top right
bottom

left
Just like padding, you can use
a shorthand to specify all your
margin values with one property.

If your padding or margins are the same value on all sides,
you can make the shorthand really short:

padding-top: 20px;
padding-right: 20px;
padding-bottom: 20px;
padding-left: 20px;

padding: 20px;

This says that the
 padding

should be 20 pixels on

every side of the
 box.

If all your padding values are the same,
then you can write it like this.

specifying properties with shorthand

divs and spans

you are here � 459

border-width: thin;
border-style: solid;
border-color: #007e7e;

border: thin solid #007e7e;
Rewrite border
properties as one
property. These can be
in any order you like.

But there’s more...
Here’s another common way to abbreviate margins (or padding):

margin-top: 0px;
margin-right: 20px;
margin-bottom: 0px;
margin-left: 20px;

margin: 0px 20px;

top and bottom

right and leftIf the top and bottom, as well as the right and left
margins are the same, then you can use a shorthand.

And what about the border properties we mentioned?
You can use a shorthand for those too.

The border shorthand is even more flexible than margins or padding
because you can specify them in any order you like.

border: solid thin #007e7e;

border: #007e7e solid thin;

border: solid thin;

border: #007e7e solid;

border: solid;

These are all perfectly
valid border shorthands.

background-color: white;
background-image: url(images/cocktail.gif);
background-repeat: repeat-x;

You can also use shorthand for backgrounds:

...and don’t forget the shorthand for backgrounds

background: white url(images/cocktail.gif) repeat-x;

Like border, values can go in any order
in this shorthand. There are also a
few other values you can specify in the
shorthand, like background-position.

top and bottom
are the same.

right and left
are the same.

460 Chapter 11

And even more shorthands
No description of shorthands would be complete without mentioning font shorthands.
Check out all the properties we need for fonts: font-family, font-style,
font-weight, font-size, font-variant, and don’t forget line-height.
Well, there’s a shorthand that wraps all these into one. Here’s how it works:

font: font-style font-variant font-weight font-size/line-height font-family

These values are all optional. You can specify any combination of them, but they need to come
before font-size.

You must specify
font size.

The line-height is
optional. If you want
to specify one, just
put a / right after
the font-size and
add your line height.

Use commas
between your
font family
names.

Here are the properties that go into the
font shorthand. Ordering matters here
unless we say otherwise...

So let’s give this a try. Here are the font properties for the lounge body:

	 font-size: small;

	 font-family: Verdana, Helvetica, Arial, sans-serif;

	 line-height: 1.6em;

Now let’s map those to the shorthand:

font: font-style font-variant font-weight font-size/line-height font-family

We’re not using any of these, but that’s okay, they’re all optional.

And now let’s write the shorthand:

font: small/1.6em Verdana, Helvetica, Arial, sans-serif;

And here’s the shorthand version. Wow, that’s quite a
shorthand, huh? You’re going to be able to double your time
at the slopes (or on the beach) now.

Finally you need to add
your font families. You only
need to specify one font,
but alternatives are highly
encouraged.

shortcuts for fonts

divs and spans

you are here � 461

It’s time to put all your new knowledge to work. You’ll notice that at the bottom of the lounge, there’s a small
section with copyright information that acts as a footer for the page. Add a <div> to make this into its own
logical section. After you’ve done that style it with these properties:

Let’s make the text really small.
You know, FINE PRINT.

And let’s center the text.

We’re also setting the line-height to be
“normal”, which is a keyword you haven’t seen
yet. “Normal” allows the browser to pick an
appropriate size for the line-height, which is
typically based on the font.

And let’s add some top margin to give the
footer a little breathing room.

And while you’re at it, have a look over the entire “lounge.css” file. Is there anywhere you might want to
simplify things with shorthands? If so, go ahead and make those changes.

Q: Should I always use shorthand?

A: Not necessarily. Some people find the long form more
readable. Shorthands do have the advantage of reducing the size
of your CSS files, and certainly they are more quickly entered
because they require less typing. However, when there is a
problem, they are a little more difficult to “debug” if you have
incorrect values or the wrong order. So, you should use whichever
form is more comfortable because they are both perfectly valid.

Q: Shorthands are more complex because I have to
remember the ordering and what is and isn’t optional. How do
I memorize it all?

A: Well, you’ll be surprised how quickly it becomes second
nature, but those of us in the “biz” have a little secret we like to call

there are noDumb Questions

To remember the
ordering of the padding and margin shorthand values, think of a
clock labelled with top, right, bottom, and left. Then, always go in a clockwise direction: top to right to bottom to left.

Make it Stick

margin: 0px 20px 30px 10px;

top right
bottom

left

a “reference manual.” Just pick one up, and should you need
to quickly look up property names or the syntax of a property,
just grab your handy reference manual and look it up. We’re
particularly fond of the CSS Pocket Reference by Eric Meyer.
It’s tiny and makes a great reference.

font-size: 50%;
text-align: center;
line-height: normal;
margin-top: 30px;

Exercise

462 Chapter 11

I saw the nice job you
did on the elixirs. Can you

give us a hand with the music
recommendations on the site?

We don’t need much, just
some simple styling.

The lounge’s
resident DJ.

All the CD titles are
in an italic font style.

And all the artists
are in bold.

What do you think is the best way to style the CD and artists in the
“What’s playing at the Lounge” section?

brain
power?

another lounge assignment

divs and spans

you are here � 463

Frank: Yeah, but that’s kind of like using a <blockquote> just to
indent text. What I mean is that we don’t really want to emphasize and
strongly emphasize the CD and artists. We just want italic and bold.
Plus, what if someone changes the style for and ?
That would show up on the CDs and artists too.

Jim: Well, I actually thought about that, but I couldn’t think of any
other way to do it. I mean this is just text in the same list item. It’s not
like we have any way to style it.

Frank: What do you mean?

Jim: We can only style elements, and here we just have a bit of text,
like, “Music for Airports, Brian Eno”. We’d need an element around
each piece of text to be able to style them differently.

Frank: Oh, right, right. I see what you mean.

Jim: I suppose we could use something like

 <div class=”cd”>Music for Airports</div>

 <div class=”artist”>Brian Eno</div>.

But that’s a block element, so that is going to cause linebreaks.

Frank: Ahhh, I think you’re on to something, Jim. There’s another
element like <div> that is for inline elements. It’s called a .
That could work out perfectly.

Jim: I’m game. How does it work?

Frank: Well, a gives you a way to create a grouping of inline
characters and elements. Here, let’s just give it a try...

I was thinking we could just
wrap and elements
around the CDs and artists. On

most browsers that’s going to give
us italic and bold.

Jim Frank

464 Chapter 11

Adding s in three easy steps
 elements give you a way to logically separate inline content in the same
way that <div>s allow you to create logical separation for block level content. To
see how this works, we’re going to style the music recommendations by first adding
 elements around the CDs and artists, and then we’ll write two CSS rules
to style the s. Here’s exactly what you’re going to do:

You’re going to nest the CDs and artists in separate elements.

You’re going to add one to the “cd” class and the
other to the “artist” class.

1

2

3 You’re going to create a rule to style the “cd” class with italic, and
the “artist” class with bold.

Steps one and two: adding the s
Open your “lounge.html” file and locate the “Who’s playing at the Lounge”
heading. Just below that you’ll see the unordered list of recommendations.
Here’s what it looks like:

Buddha Bar, Claude Challe
When It Falls, Zero 7
Earth 7, L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!, Enigma
Music for Airports, Brian Eno

Buddha Bar, Claude Challe
When It Falls, Zero 7
Earth 7, L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!, Enigma
Music for Airports, Brian Eno

Each list item consists of a CD title, a
comma, and then the music artist.

Let’s try adding s to the first CD and artist:

Just add a opening tag along with
the class attribute and a value of “cd”.

Next, add a closing tag
after the CD title.

Do the same for the artist. Nest it in a element, only this time put the in the “artist” class.

how to use spans

divs and spans

you are here � 465

Nice job, guys. This
next one’s for you.

Step three: styling the s
Before we move on, save the file and reload it in your browser. Like a <div>, by default
a has no effect on style, so you should see no changes.

Now let’s add some style. Add these two rules to the bottom of your “lounge.css” file:

.cd {
	 font-style: italic;
}

.artist {
	 font-weight: bold;
}

We’re going to add a rule for each of
the new classes, cd and artist.

For CDs we’ll make
the font style italic.

And for artists we’ll
set the font-weight
to bold.

Test driving the spans
That’s it. Save and reload. Here’s what you’ll see:

Now the
first music
recommendation
has the correct
styling.

466 Chapter 11

Q: When do I use a rather
than another inline element like or
?

A: As always, you want to mark up your
content with the element that most closely
matches the meaning of your content. So,
if you are emphasizing words, use ;
if you’re trying to make a big point, use
. But, if what you really want is
to change the style of certain words, say,
the names of albums or music artists on a
fan site Web page, then you should use a
 and put your elements into
appropriate classes to group them and style
them.

Q: Can I set properties like width on
 elements? Actually, what about
inline elements in general?

A: You can set the width of inline
elements like , and ,
but you won’t notice any effect until you
position them (which you’ll learn how to do in
the next chapter). You can also add margin
and padding to these elements, as well as
a border. Margins and padding on inline
elements work a little differently from block
elements – if you add a margin on all sides
of an inline element, you’ll only see space
added to the left and right. You can add
padding to the top and bottom of an inline
element, but the padding doesn’t affect the

spacing of the other inline elements around
it, so the padding will overlap other inline
elements.
Images are a little different from other
inline elements. The width, padding, and
margin properties all behave more like they
do for a block element. Remember from
Chapter 5: if you set the width of an image
using either the width attribute in the
element or the width property in CSS, the
browser scales the image to fit the width you
specify. This can sometimes be handy if
you can’t edit the image yourself to change
the dimensions, and you want the image to
appear bigger or smaller on the page. But
remember, if you rely on the browser to
scale your image, you may be downloading
more data than you need (if the image is
larger than you need).

there are noDumb Questions

more on span

You need to finish the job. Add elements to the rest of
the music recommendations and test your page. You’ll find the
solution in the back of the chapter.

Buddha Bar, Claude Challe
When It Falls, Zero 7
Earth 7, L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!, Enigma
Music for Airports, Brian Eno

Sharpen your pencil

divs and spans

you are here � 467

Think about the <a> element. Is
there something about its style that
seems different from other elements?

brain
power?

Hey guys, I know you think
you’re about done, but you

forgot to style the links. They’re
still that default blue color, which

kinda clashes with our site.

468 Chapter 11

The <a> element and its multiple personalities

Have you noticed that links act a little differently when it comes
to style? Links are chameleons of the element world because,
depending on the circumstance, they can change their style at a
moment’s notice. Let’s take a closer look:

Here’s a link you’ve never clicked on before. This is called an “unvisited link”, or just ‘link”, and it’s blue by default.

And if you hold your mouse over a link without
clicking, this is called “hovering”. On some
browsers you’ll see a tool tip that displays the
text of the “title” attribute. And, if you pay
close attention, on some Web pages, you’ll see a
different style as you hover.

And here’s a link you
have clicked on before.
We call these “visited
links”. Usually, visited
links are displayed
in a different color
than unvisited links so
that you can tell the
difference. In most
browsers, visited links
are purple by default.

Unlike other elements, the style of an <a> element changes depending
on its state. If the link has never been clicked on, it has one style, and
if it has been clicked on, another. And if you hover over a link, it can
have yet another style. Perhaps there’s more to styling <a> elements
than meets the eye? You betcha... let’s take a look.

how to style links

divs and spans

you are here � 469

How can you style elements
based on their state?
A link can be in a few states: it can be unvisited, visited,
or in the “hover” state (and a couple of other states too).
So, how do you take advantage of all those states? For
instance, it would be nice to be able to specify what the
visited and unvisited colors are. Or maybe highlight the
link when the user is hovering over it. If only there were
a way...

Well, of course there is, but if we told you it involves
using pseudo-classes you’d probably just decide you’ve read
enough for the night, and close the book. Right? But
hold on! Pretend we never said the word pseudo-class and
let’s just look at how you can style your links:

a:link {
 color: green;
}

a:visited {
 color: red;
}

a:hover {
 color: yellow;
}

This selector is applied
to links when they are
in an unvisited state.

And this selector is
applied to links when
they are visited.

And this selector
is applied when you
hover over a link.

Add these rules to the bottom of your
“lounge.css” file and then save and reload
“lounge.html”. Play around with the links to
see them in each state. Note that you might
have to clear your browser history to see the
unvisited color (green). Once you’re done,
make sure you take these rules out of your

“lounge.css” file before you continue.

Q: What happens if I just style the <a>
element like a normal element? Like:
 a { color: red; }

A: You certainly can do that, but then your links
will look the same in all states, which makes your
links less user-friendly because you can’t tell which
ones you’ve visited and which ones you haven’t.

Q: What are the other link states you
mentioned?

A: There are two others: focus and active. The
focus state occurs when the browser focuses on your
link. What does that mean? Some browsers allow you
to press your tab key to rotate through all the links on
your page. When the browser comes to a link, that
link has the “focus.” The active state occurs when
the user first clicks on a link. One word of warning
about these two states: they aren’t well supported by
all browsers yet, so make sure and test them if they
are important to your design.

Q: Can’t my links be in multiple states at
the same time? For instance, my link could be
visited, have the mouse hovering over it, and the
user could be actively clicking on it all at once.

A: They sure can. You determine which style
is applied by the ordering of your rules. So, the
right ordering is generally considered to be: link,
visited, focus, hover, and then active. If you use that
ordering, you’ll get the results you expect.

Q: Okay, I give. What’s a pseudo-class?

A: Only one of the most confusing words in the
CSS language. But, as you’ve seen, styling links is
pretty straightforward. So, let’s talk about pseudo-
classes...

there are noDumb Questions

Notice we have the element <a>, followed by a
“:”, followed by the state we want to select.

Exercise

470 Chapter 11

This week’s interview: getting to know the
pseudo-class.

 The Pseudo-class Exposed

Head First: Welcome, Pseudo-class. It’s a
pleasure to have you here. I must confess that
when they first asked me to do this interview,
I drew a blank. Pseudo-class? The only thing
that came to mind was that ’80s Phil Collins
song.

Pseudo-class: Uh, that would be Sussudio.
My name is Pseudo.

Head First: Oops. Honest mistake.
Maybe we could start there. Can you tell us
a little about where Pseudo came from?

Pseudo-class: Pseudo usually means
something that looks like the real thing, but
isn’t.

Head First: And the last name? Class?

Pseudo-class: Everyone knows what a
CSS class is. It’s a grouping you create to
place elements in so you can style them
together. Put “pseudo” and “class” together
and you have a pseudo-class: it acts like a
class, but it isn’t a real class.

Head First: What’s not real about it if it
acts like a class?

Pseudo-class: Okay, open up an XHTML
file and look for the class :visited, or :link, or
:hover. Let me know when you find one.

Head First: I don’t see any.

Pseudo-class: And yet, a:link, a:visited,
and even a:hover all allow you to specify
style, just like they were classes. So, those are
pseudo-classes. In other words, you can style
pseudo-classes, but no one ever types them
into their XHTML.

Head First: Well then, how do they work?

Pseudo-class: You can thank your browser
for that. The browser goes through and adds
all your <a> elements to the right pseudo-
classes. If a link’s been visited, no problem;
it goes into the “visited” class. Is the user
hovering over a link? No problem, the
browser throws it in the “hover” class. Oh,
now the user isn’t hovering? The browser
yanks it out of the “hover” class.

Head First: Wow, I never knew. So there
are all these classes out there that the browser
is adding and removing elements from
behind the scenes.

Pseudo-class: That’s right, and it’s
damned important to know about, otherwise
how would you give your links style that
adapted to what state the link was in?

Head First: So, Pseudo, do you just do
links?

Pseudo-class: No, I do other elements
too. Some browsers already support pseudo-
classes like active and hover on other types of
elements. And there are some other pseudo-
classes, too. For instance, the pseudo-class
:first-child is assigned to the first child of
any element, like the first paragraph in
a <blockquote>. But be careful on
everything other than :link, :visited, and
:hover because browser support isn’t fully
there yet.

Head First: Well, I’ve certainly learned
something in this interview. Who knew that
song was actually called “Sussudio”?! Thanks
for being here Pseudo-class.

more on pseudo-classes

divs and spans

you are here � 471

Putting those pseudo-classes to work

#elixirs a:link {
 color: #007e7e;
}

#elixirs a:visited {
 color: #333333;
}

#elixirs a:hover {
 background: #f88396;
 color: #0d5353;
}

Okay, let’s be honest. You’ve probably just learned the most important thing in this
book: pseudo-classes. Why? No, no, not because it allows you to style elements based
on various “classes” your browser decides they belong to, like :link or :first-
child. And, no, not because they give you really powerful ways to style elements
based on things that happen while your visitors are using your page, like :hover.
It’s because the next time you’re in that design meeting and you start talking about
pseudo-classes with a real understanding, you’re going to move to the head of the class.
We’re talking promotions and bonuses... at a minimum, the awe and respect of your
fellow Web buddies.

So, let’s put those pseudo-classes to good use. You’ve already added some pseudo-class
rules to your “lounge.css” and they had a dramatic impact on the look of the links, but
they’re probably not quite right for the lounge. So let’s rework the style a little:

Okay, big change here. We’re using a descendant selector

combined with a pseudo-class. The first selector says

to select any unvisited <a> element that is nested in an

element with the id “elixirs”. So we’re JUST styling the

links inside elixirs.

On these two we’re setting the color.
For unvisited links, a nice aquamarine...

...and for visited links
we’re using a dark gray.

Now for the really interesting rule. When
the user is hovering over the link, we’re
changing the background to red. This
makes the link look highlighted when you
pass the mouse over it. Give it a try!

Open up your “lounge.css” and rework your a:link, a:visited, and
a:hover rules to use the new descendant selector and the new
style definitions. Save, reload, and turn the page.

Exercise

472 Chapter 11

Test drive the links

Your job is to give the “detailed directions” link in the lounge some style. Just like the elixirs
link, we want all unvisited links to be aquamarine, and all visited links to be gray. However,
we don’t want the other links in the lounge to have any hover style... that’s unique to the
elixirs. So, how would you do it? Fill in the blanks to give the “detailed directions” link, and
any other links you might add to the lounge later, this style. Check your answer in the back of
the chapter and then make the changes in your lounge files.

____________ { __________: #007e7e; }

____________ { __________: #333333; }

When you reload you should see some new
style in the elixirs section. Keep in mind, to see
the unvisited links you may have to clear your
browser’s history, otherwise the browser will
know you’ve visited these links before.

Now we’ve got green unvisited
links, gray visited links, and a
very cool red highlight when
you hover over the link.

Sharpen your pencil

using pseudo-classes for links

divs and spans

you are here � 473

Isn’t it about time we talk about the “cascade”?
Well, well, we’re quite far into this book (473 pages to be exact) and we still haven’t
told you what the “Cascade” in Cascading Style Sheets is all about. Truth be told,
you have to know a lot about CSS to fully understand the cascade. But guess what,
you’re almost there, so wait no more.

Here’s just one last piece of information you need to understand the cascade. You
already know about using multiple style sheets to either better organize your styles
or to support different types of devices. But there are actually some other style sheets
hanging around when your users visit your pages. Let’s take a look:

The Author
(that’s you!)

The Reader
(your users)

The Browser

First, there are all
the style sheets you’ve
written for your page.

But some browsers also allow users
to create their own styles for
XHTML elements. If your style
sheet doesn’t define these styles,
the user’s style sheet is used instead.

And finally, you already
know that the browser
itself maintains a set of
default styles that are
used if you don’t define
the styles for an element.
These are also the styles
that are used if you don’t
have any author or reader
style sheets.

Note that there is a way for a reader
to actually override your styles. To do
that they put “!important” at the end
of a property declaration.

When the browser needs to determine
which style to apply to an element, it uses
all these style sheets. Priority is given first
to the author’s styles (that is, your styles),
then to the reader’s styles, and then
finally to the browser’s default styles.

474 Chapter 11

So, to review, as the page
authors, we can use multiple

style sheets with our XHTML. And, the
user might also supply their own styles,

and then the browser has its default styles,
too. And on top of all that we might have
multiple selectors that apply to the same

element. How do we figure out which
styles an element gets?

That’s actually another way of asking what
cascade does. The cascade is the way the
browser decides, given a bunch of styles
in a bunch of style sheets, which style is
going to be used. To answer that question
we need to bring everything together – all
the various style sheets hanging around,
the rules, and the individual property
declarations in those rules.

In the next two pages we’re going to step
through the nitty gritty details of how all
this works. The details involve a lot of
sorting and various details of determining
which rules are the most specific with
respect to an element. But here’s the payoff:
after going through the next two pages,
you’ll be able to get to the bottom of any
styles that don’t seem to be applied in the
way you expect, and further, you’re going
to understand more about the cascade than
99% of Web page developers out there
(we’re not kidding).

what the cascade does

divs and spans

you are here � 475

The cascade
For this exercise, you need to “be the browser”. Let’s say you’ve got an <h1>
element on a page and you want to know the font-size property for it.
Here’s how you do it:

Gather all your style sheets together.
For this step you need ALL the styles sheets: the style sheets the
Web page author has written, any style sheets that the reader has
added to the mix, and the browser’s default styles. (Remember,
you’re the browser now, so you have access to all this stuff !)

Step one:

Find all the declarations that match.
We’re looking specifically for the font-size property, so look at all the
declarations for font-size that have a selector which could possibly select
the <h1> element. Go through all the style sheets and pull out any rules that
match <h1> and also have a font-size property.

Step two:

Now take all your matches, and sort them.
Now that you’ve got all the matching rules together, sort them in the order of
author, reader, browser. In other words, if you wrote them as the author of the
page, then they are more important than if the reader wrote them. And, in
turn, the reader’s styles are more important than the browser’s default styles.

Step three:
Remember we
mentioned that the
reader could put
!important on their
CSS properties, and if
they do that, those
properties come first
when you sort.

Now sort all the declarations by how specific they are.
Remember, we talked about this a little, way back in Chapter 8. You can
intuitively think about a rule being more specific if it more accurately selects
an element; for instance, the descendant selector “blockquote h1” is more
specific than just the “h1” selector because it only selects <h1>s inside of
<blockquote>s. But there is a little recipe you can follow to calculate exactly
how specific a selector is, and we’ll do that on the next page.

Step four:

Finally, sort any conflicting rules in the order they appear in their
individual style sheets.
Now you just need to take the list, and order any conflicting rules so that the ones
appearing later (closer to the bottom) of their respective style sheets are more important.
That way, if you put a new rule in your style sheet, it can override any rules before it.

Step five:

That’s it! The first rule in the sorted list is the winner, and its font-size property is
the one to use. Now let’s see how you determine how specific a selector is.

476 Chapter 11

Welcome to the “What’s my specificity game”
To calculate the specificity you start with a set of three numbers, like this:

0 0 0

In the old days we
used four numbers,
but that was before
XHTML... aren’t you
glad you’re learning
this now?

Does the selector have
any element names?
One point for each.

Does the selector
have any classes
or pseudo-classes?
One point each.

Does the selector
have any ids? One
point each.

0 0 0

And then we just tally up various things from the selector, like this:

For instance, the selector “h1” has one element in it, so you get:

0 0 1
As another example, the selector “h1.blue” has one element and
one class, so you’d get:

0 1 1

Both “h1” and “h1.blue” have one
element, so they both get a “1” in
the right most number column.

Sharpen your pencil
Try your hand at calculating the specificity of these selectors using the rules above:

h1.greentea

p img

a:link

ol li p

.green

#elixirs h1

em

span.cd

#sidebar

After you’ve tallied up all the ids, classes, and elements, the bigger the specificity
number, the more specific the rule. So, since “h1.blue” has a specificity of 11, it
is more specific than “h1”, which has a specificity number of 1.

Read this as the
number one.

Read this as the
number eleven.

“h1.blue” also has one class, so it gets
a “1” in the middle number column.

Neither have ids in their
selectors, so they both get a

“0” in the left number column

calculating specificity

divs and spans

you are here � 477

Q: What makes a specificity number
bigger than another?

A: Just read them like real numbers:
100 (one hundred) is bigger than 010 (ten)
which is bigger than 001 (one), and so on.

Q: What about a rule like “h1, h2”;
what is its specificity?

A: Think of that as two separate rules:
an “h1” rule, which has a specificity of “001”
and an “h2” rule that also has a specificity
of “001”.

Q: Can you say more about the
!important thing?

A: The reader can override a style by
putting an “!important” on the end of their
property declarations like this:
h1 {

 font-size: 200%
!important;

}

and this will override any author styles.

Q: I can’t get the reader’s style sheet,
so how can I ever figure out the way the
cascade works?

A: You can’t, but look at it this way: if
the reader overrides your styles, then that
is really beyond your control. So just make
your pages look like you want them to using
your styles. If the reader chooses to override
them, then they’ll get what they ask for (for
better or for worse).

there are noDumb Questions

Putting it all together
Woo hoo! It’s time for an example. Say you want to know the color
property for this <h1> element:

<h1 class=”blueberry”>Blueberry Bliss Elixir</h1>

Let’s take this through all the cascade steps:

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

The Author The Reader

The Browser
h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Gather all your style sheets together.
Step one:

Remember, you’re
the browser, because
you’re trying to
figure out how to
display this <h1>
element.

That’s you (for now).

Usually, you’re the author (the person writing the CSS). But right now, you’re the browser. The person using the browser.

478 Chapter 11

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Find all the declarations that match.
Step two:

Now take all your matches, and sort them by
author, reader, browser.

Step three:

Now sort the declarations by how specific they are. To do that we need to
first calculate each specificity score, and then reorder the rules.

Step four:

Here are all the rules that
could possibly match the <h1>
element and that contain
the color property.

Reader

Author

Browser

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Reader

Author

Browser

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1 {
 color: #efefef;
}

h1.blueberry {
 color: blue;
}

Here we’ve just
reordered the
rules by author,
then reader, and
then browser.

0 0 1

0 1 1

0 0 2

0 0 1
h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1.blueberry {
 color: blue;
}

h1 {
 color: #efefef;
}

0 1 1

0 0 1

0 0 2

0 0 1

The rule with
the blueberry
class moves
to the top
because it has
the highest
specificity.

Notice that we only sort within the author,
reader, and browser categories. We don’t re-sort
the entire list, or else the “body h1” rule would
move above the “h1” rule set by the author.

using the cascade

divs and spans

you are here � 479

Step five:

h1 {
 color: black;
}

body h1 {
 color: #cccccc;
}

h1.blueberry {
 color: blue;
}

h1 {
 color: #efefef;
}

We’re okay here, because we don’t have
any conflicting rules at this point. The
blueberry, with a score of 11, is the clear
winner. If there had been two rules with
a score of 011, then the rule appearing
latest would be the winner.

Finally, sort any conflicting rules in the order
that they appear in their individual style sheets.

Q: So, one more time: I get that
the lower in the CSS file the higher
the precedence, but how does having
multiple links to style sheets in my
XHTML work?

A: It’s always top to bottom, whether it
is in the same CSS file or not. Just pretend
that you inserted the CSS all together right
into your file in the order the files are linked.
That’s the order that counts.

Q: So when you sort for specificity,
you don’t re-sort everything?

A: No. Think of each time you sort as
refining what you’ve done before. So first
you sort for author, reader, browser. Then,
within each of those sortings, you sort for
specificity. And then, for any elements that
have the same specificity, you sort again
based on the ordering in the style sheets.

Q: Do readers really make their own
style sheets?

A: By and large, no. But there are
cases where people with visual impairments
do, and of course you’ve always got the
crowd that just has to tinker with everything.
But, since each reader is controlling only
how they see things, it really shouldn’t factor
into your designs.

Q: How much of this do I really need
to remember?

A: You’re going to develop some
intuition for how all these style sheets fit
together, and on a day to day basis that
intuition will get you a long way. Every once
in a while, though, you’ll see a style popping
up in your pages that just boggles your
mind, and that’s when you fall back on your
training. You’ll be able to work through the
cascade and before you know it, you’ll know
exactly what’s happening in your page.

there are noDumb Questions

We have a winner...
After sweating through the first choice of elements, the
sorting, more sorting, and being judged on specificity,
the “h1.blueberry” rule has risen to the top. So the color
property in the <h1> element will be blue.

Author

Reader

Browser

480 Chapter 11

Ah, good question. We actually talked about this a little in
Chapter 8. If you don’t find a match for the property in
any rules in the cascade, then you try to use inheritance.
Remember that not all properties are inherited, like
border properties for instance. But for the properties that
are inherited (like color, font-family, line-height, and so on),
the browser looks at the ancestors of the element, starting
with its parent, and tries to find a value for the property.
If it does, there’s your property value.

Then the only thing left to do is fall back
on the default values that are set in the
browser’s style sheets, and all browsers
should have default styles for every element.

So, what happens if,
after all this, I still don’t

have any rules with a property
declaration for the property
value I’m trying to figure out?

Got it. Hey, but what
if the property isn’t inherited
or I can’t find a value in the
ancestor’s rules? Then what?

Oh, and why is this
called the “cascade”

anyway?

The name “cascade” was chosen because of the
way that styles coming from multiple style sheets can
all “cascade” down into the page, with the most specific
styling being applied to each element. (If that doesn’t clear
things right up for you about why it’s called cascade, don’t
feel bad. It didn’t make it any clearer for us, either. Just
call it “CSS” and move on.)

when the cascade doesn’t provide a value

divs and spans

you are here � 481

Super
 brain
power?

This is a special brain power; so special that we’re going to let
you think about it between chapters. Here’s what you need to do:

4 Open the file “lounge.css”.

5 Locate the “#elixirs” rule.

6 Add this declaration at the bottom of the rule:

7 Save your file, and reload the page in your browser.

float: right;

What changed? What do you think this declaration does?

1 Open the file “lounge.html” and locate the elixirs <div>.

2 Move the entire elixirs <div> section to the top of the
file so it’s just below the paragraph that contains the
lounge logo.

3 Save and reload your page. What changed?

STOP! Do this exercise before going
on to the next chapter!

482 Chapter 11

Since you’ve got a Super Brain Power to work on, we gave the XHTMLcross

a vacation in this chapter. Don’t worry, he’ll be back in the next one.
XHTMLcross on Vacation

<div> elements are used to group related nn
elements together into logical sections.
Creating logical sections can help you identify nn
the main content areas, header, and footer of
your page.
You can use nn <div> elements to group
elements together that need a common style.
Use nested <div> elements to add further nn
structure to your files for clarity or styling. But
don’t add structure unless you really need it.
Once you have grouped together sections of nn
content with <div> elements, you can style
the <div>s just like you would any other block
element. For example, you can add a border
around a group of elements using the border
property on the <div> they are nested in.
The width property sets the width of the nn
content area of an element.
The total width of an element is the width nn
of the content area, plus the width of any
padding, border, and margins you add.
Once you set the width of an element, it no nn
longer expands to fit the entire width of the
browser window.
Text-align is a property for block elements that nn
centers all inline content in the block element.
It is inherited by any nested block elements.

You can use descendant selectors to select nn
elements nested within other elements. For
instance, the descendant selector
 div h2 { ... }
selects all <h2>s nested in <div> elements
(including children, grandchildren, etc.).
You can use shortcuts for related properties. nn
For instance, padding-top, padding-right,
padding-bottom, and padding-left are all
related to padding, and can be specified with
one shortcut rule, padding.
Padding, margin, border, background, and nn
font properties can all be specified with
shortcuts.
The nn inline element is similar to the
<div> element: it is used to group together
related inline elements and text.
Just like with <div>, you can add nn
elements to classes (or give elements
unique ids) to style them.
The <a> element is an example of an element nn
with different states. The main <a> element
states are unvisited, visited, and hover.
You can style each of these states separately nn
with pseudo-classes. The pseudo-classes
used most often with the <a> element are :link,
for unvisited links, :visited, for visited links,
and :hover, for the hover state.
Other elements support the :hover pseudo-nn
class, and some browsers also support the
:first-child, :active, and :focus pseudo-classes
for other elements.

 BULLET POINTS

review of divs, spans, and pseudo-classes

divs and spans

you are here � 483

20 + 20 + 200 + 1 + 1 + 0 + 20 = 262
lef

t p
ad

din
g

rig
ht

 pa
dd

ing

con
te

nt
 ar

ea

lef
t b

ord
er

rig
ht

 bo
rd

er
rig

ht
 m

arg
in

lef
t m

arg
in

Your turn. Write the selector that selects only <h3> elements inside the elixirs <div>.
In your rule, set the color property to #d12c47. Also label the elements in the graph
below that are selected. Here’s the solution.

#elixirs h3 {
 color: #d12c47;
}

div id=”elixirs”

h3h3

html

body

h1

h3

h2

h2

div id=”calendar”

h2 h3h1h2

Here’s the rule. We select any
<h3> descendant of an element
with the id elixirs. And here’s
what the graph looks like.

Here’s a box that has all the widths labelled. Your job was to figure out the
width of an entire box. Here’s the solution.

30 + 2 + 5 + 200 + 10 + 2 + 20 = 269

So now that you understand widths, what’s the total width of
the elixirs box? To start with, we know the content area is 200
pixels. We’ve also set some left and right padding that affects the
width, as well as a border that’s set to “thin”. Just assume a thin
border is 1 pixel thick, like it is on most browsers. And what about
margins? We set a left margin, but no right margin, so the right
margin is 0 pixels by default.

Your job was to figure out the total width of the elixirs <div>.
Here’s the solution.

Sharpen your pencil

Sharpen your pencil

Sharpen your pencil
Solution

Solution

Solution

484 Chapter 11

It’s time to put all your new knowledge to work. You’ll notice at the bottom of the
lounge there’s a small section with copyright information that acts as a footer for the
page. Add a <div> to make this into its own logical section. After you’ve done that
style it with these properties:

	 font-size: 50%;
	 text-align: center;
	 line-height: normal;
	 margin-top: 30px;

Let’s make the text really small.
You know, FINE PRINT.

And let’s center the text.

We’re also setting the line-height
to be “normal”.

And let’s add some top margin to give the
footer a little breathing room.

<div id=”footer”>

 <p>

 © 2005, Head First Lounge

 All trademarks and registered trademarks appearing on

 this site are the property of their respective owners.

 </p>

</div>

Place <div> tags around the
copyright information.

And give it an id named “footer”.

#footer {
 font-size: 50%;
 text-align: center;
 line-height: normal;
 margin-top: 30px;
}

And here’s the CSS for the footer.

Exercise
Solutions

exercise solutions

divs and spans

you are here � 485

Your job was to finish adding the elements to the rest of the
music recommendations and test your page. Here’s the solution:

Buddha Bar,
 Claude Challe
When It Falls,
 Zero 7
Earth 7,
 L.T.J. Bukem
Le Roi Est Mort, Vive Le Roi!,
 Enigma
Music for Airports,
 Brian Eno

Sharpen your pencil
Solution

486 Chapter 11

____________ { __________: #007e7e; }

____________ { __________: #333333; }

a:link
a:visited

color
color

Sharpen your pencil
Try your hand at caclulating the specificity of these selectors using the
cascade rules. Here’s the solution.

h1.greentea 0 1 1

p img 0 0 2

a:link 0 1 1

ol li p

.green

#elixirs h1

0 0 3

0 1 0

1 0 1

em

span.cd

#sidebar

0 0 1

0 1 1

1 0 0

Sharpen your pencil

Your job is to give the “detailed directions” link in the lounge some style. Just like the elixirs
link, we want all unvisited links to be aquamarine, and all visited links to be gray. However,
we don’t want the other links in the lounge to have any hover style... that’s unique to the
elixirs. So, how would you do it? Fill in the blanks to give the “detailed directions” link, and
any other links you might add to the lounge later, this style. Here’s the solution.

Solution

Solution

exercise solutions

this is a new chapter 487

Arranging Elements
12 layout and positioning

It’s time to teach your XHTML elements new tricks. We’re not

going to let those XHTML elements just sit there anymore – it’s about time they get

up and help us create some pages with real layouts. How? Well, you’ve got a good

feel for the <div> and structural elements and you know all about how the

box model works, right? So, now it’s time to use all that knowledge to craft some real

designs. No, we’re not just talking about more background and font colors, we’re

talking about full blown professional designs using multi-column layouts. This is the

chapter where everything you’ve learned comes together.

You can bet all my divs and
spans are in the right place.

488 Chapter 12

Did you do the Super Brain Power?

If you didn’t do the Super Brain Power at the end of
the last chapter, then march right back there and
do it. It’s required.

Okay, now that we have that out of the way, at
the end of the last chapter, we left you with a bit
of a cliffhanger. We asked you to move the elixirs
<div> up under the logo, and then add one little
property to the elixirs rule in your CSS, like this:

float: right;

And, wow, what a difference one property
can make! All of a sudden the page has gone
from a fairly ordinary-looking Web page to a
great-looking Web page with two columns. It’s
immediately more readable and pleasant to the
eye.

So what’s the magic? How did this seemingly
innocent little property produce such big effects?
And, can we use this property to do even more
interesting things with our pages? Well, of course,
this is Head First, after all. But first, you’re
going to need to learn how a browser lays out
elements on a page. Once you know that, we can
talk about all kinds of ways you can alter how it
does that layout, and also how you can start to
position your elements on the page.

Here’s the good news: you already know all
about block elements and inline elements, and
you even know about the box model. These are
the real foundations of how the browser puts
a page together. Now all you need to know is
exactly how the browser takes all the elements in
a page, and decides where they go.

examining a two column page

layout and positioning

you are here � 489

The Flow is what gives a CSS master his power. It’s an
energy field created by all living things. It surrounds us
and penetrates us. It binds the galaxy together....
Oh, sorry.

Flow is what the browser uses to lay out a page of
XHTML elements. The browser starts at the top of any
XHTML file and follows the flow of elements from top
to bottom, displaying each element it encounters. And,
just considering the block elements for a moment, it
puts a linebreak between each one. So the first element
in a file is displayed first, then a linebreak, followed by
the second element, then a linebreak, and so on, from
the top of your file to the bottom. That’s flow.

Use the flow, Luke

And here’s the XHTML flowed
onto a page.

p

h2

p

h1

h2

p

p

<html>
 <head>...</head>
 <body>
 <h1>...</h1>
 <h2>...</h2>
 <p>...</p>
 <h2>...</h2>
 <p>...</p>
 <p>...</p>
 <p>...</p>
 </body>
</html>

Here’s a little “abbreviated” XHTML.

Each block element is
taken in the order it
appears in the markup,
and placed on the page.

Each new block
element causes a
linebreak.

Notice that elements
take up the full width
of the page.

490 Chapter 12

Open your “lounge.html”
file and locate all the
block elements. Flow each
one on to the page to the
left. Just concentrate on
the block elements nested
directly inside the body
element. You can also
ignore the “float” property
in your CSS because you

don’t know what it does yet. Check
your answer before moving on.

BE the

h1

h2

ul

p pp
ppp p

div

Here’s your page. Flow
the block elements in
“lounge.html” here.

Here are all the block
elements you’ll need to
complete the job.

div

playing with flow

layout and positioning

you are here � 491

What about inline elements?
So you know that block elements flow top to
bottom, with a linebreak in between each element.
Easy enough. What about the inline elements?

Inline elements are flowed next to each other,
horizontally, from top left to bottom right. Here’s
how that works.

em

If we take the inline
content of this <p> element
and flow it onto the page,
we start at the top left.

<p>
Join us any evening for
these and all our other wonderful <a
href=”beverages/elixir.html” title=”Head
First Lounge Elixirs”>elixirs.
</p>

Here’s another little
snippet of XHTML.

a

p

em
a

text text

em

p

a

text

text
text

text

p
text

text
text

The inline elements are laid next to one
another horizontally, as long as there is
room on the right to place them.

Here, there’s room to fit all the inline
elements horizontally. Notice that text
is a special case of an inline element. The
browser breaks it into inline elements that
are the right size to fit the space.So what if we make the browser window

a little thinner, or we reduce the size of
the content area with the width property?
Then there’s less room to place the inline
elements in. Let’s see how this works.

Now the content has been flowed left to
right until there’s no more room, and then
the content is placed on the next line. Notice
the browser had to break the text up a little
differently to make it fit nicely.

And if we make the content area even thinner,
look what happens. The browser uses as many lines
as necessary to flow the content into the space.

492 Chapter 12

Now that you know how block and inline elements are
flowed, let’s put them together. We’ll use a typical page
with headings, paragraphs, and a few inline elements like
spans, some emphasis elements, and even images. And,
we can’t forget inline text.

How it all works together

p

h2

p

h1

h2

p

p

span em span em

img img img img

text

text

text

text

text

text
text

p

h2

p

h1

h2

p

p

span em span
em

img img

imgimg

text

text

text

text

text
text

text

text

text

text

We’re starting with a browser
window that’s been resized to
a fairly wide width.

Each block element is
flowed top to bottom
as you’d expect, with a
linebreak in between each.

And the inline
elements are
flowed from the
top left to the
bottom right
of the element’s
content area.

If the inline content of each block fits the
width of the content area, then it’s placed
there; otherwise, more vertical room is made for
the content and it’s continued on the next line.

Here, we’ve resized the browser
window, squeezing all the content
into a smaller horizontal size.

Things flow the same way, although in
some places, the inline elements take
up more vertical lines to fit.

Now the block elements take up
more vertical room because the inline
content has to fit into a smaller
horizontal space.

how flow works

layout and positioning

you are here � 493

During your stay at the lounge, you’ll
enjoy a smooth mixture of ambient and
mystic sounds, filling the lounge and
adding an extra dimension to your dining
experience. The decor surrounds you
with the relaxing sentiments of sights
from eras past. And, don’t forget, the
lounge offers free wireless access to the
Internet, so bring your laptop.

The Head First Lounge is, no doubt, the
biggest trendsetter in Webville. Stop in
to sample the eclectic offering of elixirs,
teas, and coffees, or, stay a bit longer
and enjoy the multicultural culinary
menu that combines a harmony of taste,
texture, and color with the best in fresh
and healthy ingredients.

During your stay at the lounge, you’ll
enjoy a smooth mixture of ambient and
mystic sounds, filling the lounge and
adding an extra dimension to your dining
experience. The decor surrounds you
with the relaxing sentiments of sights
from eras past. And, don’t forget, the
lounge offers free wireless access to the
Internet, so bring your laptop.

The Head First Lounge is, no doubt, the
biggest trendsetter in Webville. Stop in
to sample the eclectic offering of elixirs,
teas, and coffees, or, stay a bit longer
and enjoy the multicultural culinary
menu that combines a harmony of taste,
texture, and color with the best in fresh
and healthy ingredients.

During your stay at the lounge, you’ll
enjoy a smooth mixture of ambient and
mystic sounds, filling the lounge and
adding an extra dimension to your dining
experience. The decor surrounds you
with the relaxing sentiments of sights
from eras past. And, don’t forget, the
lounge offers free wireless access to the
Internet, so bring your laptop.

The Head First Lounge is, no doubt, the
biggest trendsetter in Webville. Stop in
to sample the eclectic offering of elixirs,
teas, and coffees, or, stay a bit longer
and enjoy the multicultural culinary
menu that combines a harmony of taste,
texture, and color with the best in fresh
and healthy ingredients.

Let’s zoom in just a bit and look at one more aspect of how the browser lays
out block and inline elements. It turns out that the browser treats margins
differently depending on which type of element is being placed on the page.

One more thing you should know about flow and boxes

When the browser is placing two inline
elements next to each other...
When the browser has the task of placing two inline elements side by side, and
those elements have margins, then the browser does what you might expect. It
creates enough space between the elements to account for both margins. So,
if the left element has a margin of 10 pixels and the right has a margin of 20
pixels, then there will be 30 pixels of space between the two elements.

When the browser is placing two block
elements on top of each other...

Here we’ve got two images side
by side. Images are inline elements,
right? So, the browser uses both
of their margins to calculate the
space that goes between them.

margin

Here’s where things get more interesting. When the browser places two block
elements on top of each other, it collapses their shared margins together. The height
of the collapsed margin is the height of the largest margin.

When the browser
places two block
elements on top
of each other, it
collapses their
margins.

margin

Their shared margin is
the size of the larger
of the two margins.
Say the top element’s
bottom margin is 10
pixels, and the bottom
element’s top margin
is 20 pixels. Then the
collapsed margin will be
20 pixels.

494 Chapter 12

Q: So if I have a block element with a
zero margin, and a block element below
it with a top margin of 20, the margin
between them would end up being 20?

A: Right. If one of the margins is bigger,
then the margin becomes the larger of the
two, even if one margin is zero. But if the
margins are the same, say, 10 pixels, then
they just get collapsed together to 10 pixels
total.

Q: Can inline elements really have
margins?

A: They sure can, although you won’t
find that you set the margins of inline
elements often. The one exception is
images. It is very common to not only set
margins but also borders and padding on
images. And while we aren’t going to be
setting any inline element margins in this
chapter, we will be setting the border on one
a little later.

Q: What if I have one element nested
inside another and they both have
margins? Can they collapse?

A: Yes, that can happen. Here’s how
to figure out when they will: whenever you
have two vertical margins touching, they
will collapse, even if one element is nested
inside the other. Notice that if the outer

element has a border, the margins will
never touch, so they won’t collapse. But
if you remove the border, they will. This is
sometimes puzzling when you first see it
happen, so put it in the back of your mind for
when it occurs.

Q: So how exactly does text work as
an inline element since its content is not
an element?

A: Even if text is content, the browser
needs to flow it onto the page, right? So the
browser figures out how much text fits on a
given line, and then treats that line of text
as if it were an inline element. The browser
even creates a little box around it. As you’ve
seen, if you resize the page, then all those
blocks may change as the text is refit within
the content area.

there are no
Dumb Questions

We’ve been through seven
pages of “flow.” When are you going to
explain that one little property we put

into our CSS file? You know, the

float: right;

It might be one little property, but the way it works is closely tied
to how the browser flows elements and content onto the page.
But hey, you know that now, so we can explain float.

Here’s the short answer: the float property first takes an element
and floats it as far left or right as it can (based on the value of
float). It then flows all the content below it around the element.
Of course there’s a few more details, so let’s take a look...

To understand float, you have
to understand flow.

questioning margins

layout and positioning

you are here � 495

How to float an element
Let’s step through an example of how you get
an element to float, and then we’ll look at what
it does to the flow of the page when you do.

h2

p

h1

h2

p

p

span em span em

img img img img

text

text

text

text

text

text
text

p id=“amazing”

Now give it a width
A requirement for any floating element is that it
have a width. We’ll make this paragraph 200 pixels
wide. Here’s the rule:

#amazing {
 width: 200px;
}

h2

p

h1

h2

p

p

span em span em

img img img img

text

text

text

text

text
text

text
p id=“amazing”

text
text

Now the paragraph is 200 pixels
wide, and the inline content
contained in it has adjusted to that
width. Keep in mind, the paragraph
is a block element, so no elements are
going to move up beside it because all
block elements have linebreaks before
and after them.

First, give it an identity
Let’s take one of these paragraphs and give
it an id. We’d like to call it the “amazing
floating paragraph”, but we’ll just call it

“amazing” for short.

496 Chapter 12

Now let’s add the float property. The float
property can be set to either left or right. Let’s
stick with right:

#amazing {
 width: 200px;
 float: right;
}

h2

h1 text

text

(1) First the browser flows the
elements on the page as usual,
starting at the top of the file and
moving towards the bottom.

p

h2

p

p

span em
spanem

img img img img

text
text
text

h2

h1 text

text

text

text
p id=“amazing”

text

text

text
text

Now that we’ve floated the “amazing” paragraph,
let’s step through how the browser flows it and
everything else on the page.

(2) When the browser encounters
the floated element, it places it all
the way to the right. It also removes
the paragraph from the flow, like
it’s floating on the page.

(3) Because the floated paragraph
has been removed from the normal
flow, the block elements are filled in,
like the paragraph isn’t even there.

(4) But when the inline elements
are positioned, they respect the
boundaries of the floated element.
So they are flowed around it.

Notice that the
block elements are
positioned under
the floated element.
That’s because the
floated element is no
longer part of the
normal flow.

However, when the
inline elements are
flowed within the
block elements, they
flow around the
borders of the
floating element.

Now float it

how float works

p id=“amazing”

text

text

text

layout and positioning

you are here � 497

Behind the scenes at the lounge
Now you know all about flow and how floated elements
are placed on the page. Let’s look back at the lounge and
see how this all fits together.

Remember, in addition to setting the
elixirs <div> to float right, we also
moved the <div> up just below the
logo at the top of the page.

Moving the <div> allowed us to float it to the
right and then have the entire page flow around
it. If we had left the elixirs <div> below the music
recommendations, then the elixirs would have been
floated right after most of the page had been placed.

All these elements follow the
elixirs in the XHTML, so
they are flowed around it.

Also notice that the text wraps
around the bottom of the elixirs,
because the text is contained in a
block element that is the width of
the page. If yours doesn’t wrap, try
narrowing your browser window until
the text wraps underneath the elixirs.

Remember that the elixirs <div> is floating
on top of the page. All the other elements
are underneath it, but the inline content
respects the elixirs’ boundaries when they
are flowing into the page.

498 Chapter 12

Move the elixirs <div> back to its original place below the music
recommendations, then save and reload the page. Where does the
element float now? Check your answer in the back and then put your elixirs
<div> back underneath the header.

Nice stuff. Do you
think I’m going to watch

these fantastic lounge designs and
not want you to improve Starbuzz?

You’ve got a blank check... take
Starbuzz to the next level.

It looks like you’ve got a new assignment. Starbuzz
really could use some improvement. Sure, you’ve
done a great job of creating the typical top to
bottom page, but now that you know flow, you
should be able to give Starbuzz Coffee a slick new
look that is more user-friendly than the last design.

We do have a little secret though... we’ve been
working on this one a bit already. We’ve created
an updated version of the site. Your job is going
to be to provide all the layout. Don’t worry, we’ll
bring you up to speed on everything we’ve done so
far – it’s nothing you haven’t seen before.

Exercise

a new assignment: starbuzz

layout and positioning

you are here � 499

The new Starbuzz
Let’s take a quick look at what we’ve got so
far, starting with the page as it looks now.
Then we’ll take a peek at the markup and
the CSS that’s styling it. We’ve got a header now with a new spiffy Starbuzz logo and the

company mission statement. This is actually just a GIF image.

We’ve got four sections: the header,
a main content section, a section
advertising something new called the
“Bean Machine,” and a footer.

Each section is a <div> that can
be styled independently.

It looks like we’ve got one
background color for the
page as a whole, and then
each <div> is using an image
as a background.

Here’s the “Bean Machine” area. This links to
a new area of Starbuzz Coffee where you can
order your coffee beans online. This link doesn’t
work just yet because you’re going to build the
Bean Machine in an upcoming chapter.

Here’s the footer. It doesn’t
use a background image, just a
background color.

Notice that we’ve styled the
links in an interesting way,
with dotted underlines...

500 Chapter 12

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en” xml:lang=“en” >
<head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <title>Starbuzz Coffee</title>
 <link type=“text/css” rel=“stylesheet” href=“starbuzz.css” />
</head>
<body>

 <div id=“header”>

 </div>

 <div id=”main”>
 <h1>QUALITY COFFEE, QUALITY CAFFEINE</h1>
 <p>
 At Starbuzz Coffee, we are dedicated to filling all your caffeine needs through our
 quality coffees and teas. Sure, we want you to have a great cup of coffee and a great
 coffee experience as well, but we’re the only company that actively monitors and
 optimizes caffeine levels. So stop by and fill your cup, or order online with our new Bean
 Machine online order form, and get that quality Starbuzz coffee that you know will meet
 your caffeine standards.
 </p>
 <p>
 And, did we mention caffeine? We’ve just started funding the guys doing all
 the wonderful research at the <a href=“http://buzz.headfirstlabs.com”
 title=“Read all about caffeine on the Buzz”>Caffeine Buzz.
 If you want the latest on coffee and other caffeine products,
 stop by and pay them a visit.
 </p>
 <h1>OUR STORY</h1>
 <p>
 “A man, a plan, a coffee bean”. Okay, that doesn’t make a palindrome, but it resulted
 in a damn good cup of coffee. Starbuzz’s CEO is that man, and you already know his
 plan: a Starbuzz on every corner.
 </p>
 <p>
 In only a few years he’s executed that plan and today
 you can enjoy Starbuzz just about anywhere. And, of course, the big news this year
 is that Starbuzz teamed up with Head First readers to create Starbuzz’s Web presence,
 which is growing rapidly and helping to meet the caffeine needs of a whole new set of
 customers.
 </p>
 <h1>STARBUZZ COFFEE BEVERAGES</h1>
		 <p>
			 We’ve got a variety of caffeinated beverages to choose

A look at the markup
Now let’s take a look at the new Starbuzz markup. We’ve taken each of the logical sections and
placed it into a <div>, each with its own id. Beyond the <div>s and s, there’s really
nothing here that you hadn’t already seen by about Chapter 5. So, take a quick look and get
familiar with the structure, and then turn the page to check out the CSS style.

Here’s all the usual
XHTML administravia.

Followed by a <div> for
the header and a <div>
for the main content area.

looking over the markup

layout and positioning

you are here � 501

			 from at Starbuzz, including our
			 House Blend,
			 Mocha Cafe Latte,
			 Cappuccino,
			 and a favorite of our customers,
			 Chai Tea.
		 </p>
		 <p>
			 We also offer a variety of coffee beans, whole or ground, for you to
			 take home with you. Order your coffee today using our online
			 Bean Machine,
 and take the Starbuzz Coffee experience home.
		 </p>

 </div>

 <div id=“sidebar”>
 <p class=“beanheading”>

 ORDER ONLINE
 with the
 BEAN MACHINE

 FAST

 FRESH

 TO YOUR DOOR

 </p>
 <p>
 Why wait? You can order all our fine coffees right from the Internet with our new,
	 	 automated Bean Machine. How does it work? Just click on the Bean Machine link,
		 enter your order, and behind the scenes, your coffee is roasted, ground
		 (if you want), packaged, and shipped to your door.
 </p>
 </div>

 <div id=“footer”>
 © 2005, Starbuzz Coffee

 All trademarks and registered trademarks appearing on
 this site are the property of their respective owners.
 </div>

</body>
</html>

This is more of the main content
area continued over here.

Here’s the <div> for the Bean Machine.
We’ve given it an id of “sidebar”. Hmm,
wonder what that could mean?

And finally, we have the <div> that
makes up the footer of the page.

502 Chapter 12

body {
 background-color: #b5a789;
 font-family: Georgia, “Times New Roman”, Times, serif;
 font-size: small;
 margin: 0px;
}

#header {
 background-color: #675c47;
 margin: 10px;
 height: 108px;
}

#main {
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
}

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
}

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 font-size: 90%;
}

h1 {
 font-size: 120%;
 color: #954b4b;
}

.slogan { color: #954b4b;}

.beanheading {
 text-align: center;
 line-height: 1.8em;
}

And a look at the style
Let’s get a good look at the CSS that styles the new Starbuzz page. Step through
the CSS rules carefully. While the new Starbuzz page may look a little advanced,
you’ll see it’s all just simple CSS that you already know.

First we just set up some
basics in the body: a
background color, fonts,
and we also set the
margin of the body to 0.
This makes sure there’s no
extra room around the
edges of the page.

Next we have a rule for
each logical section. In
each, we’re tweaking the
font size, adding padding
and margins and also - in
the case of main and the
sidebar - specifying a
background image.

Next we set up the fonts and
colors on the headings.

And then some colors on the class
called slogan, which is used in the
sidebar <div>. And likewise with
the beanheading class, which is
used there as well.

beginning starbuzz style

layout and positioning

you are here � 503

a:link {
 color: #b76666;
 text-decoration: none;
 border-bottom: thin dotted #b76666;
}
a:visited {
 color: #675c47;
 text-decoration: none;
 border-bottom: thin dotted #675c47;
}

And for the last two rules in the Starbuzz CSS we use
the a:link and a:visited pseudo-classes to style the links.

Notice that we’re getting a nice dotted underline effect on the links by using a dotted bottom border instead of an underline. This is a great example of using the border property on an inline element.We’re setting the border-bottom as a shortcut.

Let’s take Starbuzz to the next level
Here’s the goal: to turn Starbuzz Coffee into the site on
the right. To do that, we need to move the Bean Machine
sidebar over to the right so we’ve got a nice two-column
page. Well, you’ve done this once already with the lounge,
right? So, based on that, here’s what you need to do:

1

4

Give the element you’re going to float a unique
name using an id. That’s already done.

2

Set a width on the element. 3

Make sure the element’s XHTML is just below
the element you want it to float under; in this
case, the Starbuzz header.

Float the element to the left or the right. It looks
like you want to float it right.

Let’s get started. In a few simple steps, we should have the
Starbuzz CEO sending a few Chai Teas over on the house.

We’ve got a nice two-column look
here, with discrete columns.

504 Chapter 12

Move the sidebar just below
the header
It’s a fact of life that when you float an element, you
need to move the XHTML for the element directly
below the element that you want it to float below. In this
case, the sidebar needs to come under the header. So,
go ahead and locate the sidebar <div> in your editor
and move the entire <div> to just below the header
<div>. You’ll find the XHTML in the file “index.html”
in the “chapter12/starbuzz” folder. After you’ve done
that and saved, reload the page.

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 280px;
 float: right;
}

Now the sidebar should be on
top of the main content area.

Set the width of the sidebar
and float it
Let’s set the width of the sidebar to 280 pixels. And to float
the sidebar, add a float property, like this:

We’re using an id selector to select the
element with the id “sidebar”, which we
know is the <div> for the sidebar.

We’re setting the width of the
content area to 280 pixels.

And then we’re floating the sidebar to the right. Remember, this moves the sidebar as far right as possible below the header, and it also removes the sidebar from the normal flow. Everything else below the sidebar in the XHTML is going to move up and wrap around it.

moving the sidebar

layout and positioning

you are here � 505

On paper this looks like a great idea. What
we do is set a width on the main content
<div> and float it to the left, and then let
the rest of the page flow around it. That
way we get to keep the ordering of the
page and we also get two columns.

The only problem is, this doesn’t result in a
very nice page. Here’s why: remember, you
have to set a width on the element that you
are going to float, and if you set a width
on the content area, then its width is going
to remain fixed while the rest of the page
resizes along with the width of the browser.
Typically, sidebars are designed to be
narrower than the main content area, and
often look terrible when they expand. So,
in most designs, you want the main content
area to expand, not the sidebar.

But we are going to look at a way to use
this idea that works great. So hang on to
this idea. We’ll also talk a little more about
why you’d even care what order your
sections are in.

That’s actually a great idea, but
there are a couple of issues.

I have an idea. In the
future, why don’t we float the main
content to the left, rather than the
sidebar to the right. Since the main
content is already at the top, we

wouldn’t have to move things around,
and we get the same effect.

506 Chapter 12

Test driving Starbuzz
Make sure you add the new sidebar properties to the

“starbuzz.css” file in the “chapter12/starbuzz” folder, and
then reload the Starbuzz page. Let’s see what we’ve got...

Hmm, this looks pretty good, but if you flip back three
pages you’ll see we’re not quite where we want to be.

The main content and the
sidebar are on the left
and the right, but they
don’t really look like two
columns yet.

Look at how the
background images of
the two sections just
run together. There’s
no separation between
the columns.

And the text wraps around and under the sidebar, which doesn’t make this
look like two columns either. Hmm, that is actually how the lounge worked
too - maybe we should have expected that.

testing the float

layout and positioning

you are here � 507

Fixing the two-column problem
Are you sitting there waiting for us to come riding in on a white horse with
the magic property that solves all this? Well, that’s not going to happen.
This is the point in CSS where page layout becomes more an art – or at
least a set of techniques – than a set of properties that can solve every
problem. So, what we’re going to do is solve this using a common technique
that is widely used. It’s not perfect, as you’ll see, but in most cases it gives
you good results. And after this, you’re going to see a few other ways to
approach the same two-column problem. What’s important here is that you
understand the techniques, and why they work, so you can apply them to
your own problems, and even adapt them where necessary.

The first thing to
remember is that the
sidebar is floating on
the page. The main
content area extends
all the way under it.

So, what if we give the main
content area a right margin
that is at least as big as the
sidebar? Then its content will
extend almost to the sidebar,
but not all the way.

Then we’ll have separation between
the two, and since margins are
transparent and don’t show the
background image, the background
color of the page itself should show
through. And that’s what we’re
looking for (flip back a few pages
and you’ll see). Let’s make the margin as

wide as the sidebar.

508 Chapter 12

What we want to do is set a right margin on the main content section so that it’s
the same width as the sidebar. But how big is the sidebar? Well, we hope you
aren’t already rusty since the last chapter. Here’s all the information you need to
compute the width of the sidebar. Check your answer in the back of the chapter.

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 280px;
 float: right;
} You’ll find everything you

need to compute the width
of the sidebar in this rule.

#main {
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 10px;
 margin: 0px 330px 10px 10px;
}

Setting the margin on the main section
The width of the sidebar is 330 pixels, and that includes 10 pixels of left margin on
the sidebar, which will provide the separation we need between the two columns
(what the publishing world calls a “gutter”). Add the 330 pixel right margin to the
#main rule in your “starbuzz.css” file, like we’ve done below:

We’re changing the right margin to 330 pixels
to match the size of the sidebar.

Sharpen your pencil

using margins for two columns

layout and positioning

you are here � 509

Test drive
As usual, save your “starbuzz.css” file and then
reload “index.html”. You should now see a
nice gutter between the two columns. Let’s
think through how this is working one more
time. The sidebar is floating right, so it’s been
moved as far to the right as possible, and the
whole <div> has been removed from the
normal flow and is floating on top of the page.
Now the main content <div> is still taking
up the width of the browser (because that’s
what block elements do), but we’ve given it a
margin as wide as the sidebar to reduce the
width of the content area. The result is a nice
two column look. You know the box of the
main <div> still goes under the sidebar, but
we won’t tell anyone if you don’t.

Uh oh, we have
another problem
As you were test driving the
page you might have noticed
a little problem. If you
resize the browser to a wide
position, the footer comes up
underneath the sidebar. Why?
Well, remember, the sidebar
is not in the flow, so the footer
pretty much ignores it, and
when the content area is too
short, the footer moves right up.
We could use the same margin
trick on the footer, but then the
footer would only be under the
content area, not the whole
page. So, what now?

By expanding the margin
of the main <div>, we’re
creating the illusion of a two
column layout, complete with
a gutter in between.

We’ve got a problem. When you resize your browser to a
wide position, the footer and the sidebar start to overlap.

510 Chapter 12

Wait a sec. Before you
get way into solving that

problem, I have to ask, why did we
have to go to all this trouble of using

a margin? Why don’t we just set the
width of the main area? Wouldn’t

that do the same thing?

The problem with setting a width on both the
content area and the sidebar is that this doesn’t
allow the page to expand and contract correctly
because both have fixed widths. Check the screen-
shots below that show how it works (or rather,
doesn’t work).

But this is good. You’re thinking in the right ways,
and a little later in the chapter we’re going to come
back to this idea when we talk about “liquid versus
fixed” layouts. There are ways to make your idea
work if we lock a few other things down first.

This is another solution that
sounds good... until you try it.

And when the browser window is made
small, the two start to overlap.

When the browser is wide,
the two totally separate.

a margin alternative

layout and positioning

you are here � 511

Back to clearing up the overlap problem
Guess what, this time we are going to ride in on a
white horse with a solution, but don’t get used to it.
The solution is called the clear property, and here’s
how it works... div id=“main”

div id=“header”

div id=“footer”

text

div id=“sidebar”

div id=“main”

div id=“header”

div id=“footer”

text

div id=“sidebar”
Don’t even think
about putting a

floating element to the
right of me.

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 font-size: 90%;
 clear: right;
}

Here’s what we’ve got now. The
“main” <div> is short enough that the
footer <div> is coming right up and
overlapping with the sidebar <div>.

This happens because the sidebar has been pulled out of the flow.
So, the browser just lays out the main and footer <div>s like it
normally would, ignoring the sidebar (although remember that when
the browser flows inline elements, it will respect the borders of
the sidebar and wrap inline elements around it).

We can solve this problem with the CSS clear property. You can set this property on an
element to request that as the element is being flowed onto the page, no floating content
is allowed to be on the left, right, or both sides of the element. Let’s give it a try...

Here we’re adding a property to
the footer rule, which says that
no floating content is allowed on
the right of the footer.

Now when the browser places the
elements on the page, it looks to see if
there is a floating element to the right
side of the footer, and if there is, it
moves the footer down until there is
nothing on its right. Now, no matter
how wide you open the browser, the
footer will always be below the sidebar.

Now the footer is placed below
the sidebar so that there are no
floating elements to its right.

512 Chapter 12

Test drive

Q: So why isn’t there just a two-
column property in CSS? Why is it so
hard to get this stuff to work correctly?

A: Yes, we have a winner! You’ve
asked the $64,000 question. But, more
seriously, while it seems like CSS should
have some way of specifying “give me two
columns, dammit!”, you have to keep in mind
the whole purpose of XHTML and CSS.
Remember, XHTML is meant to be a

format for structure and content that can
be styled by CSS but should be viewable
on any device, even if the CSS isn’t used.
So, it’s really no surprise that CSS isn’t the
end-all-be-all of document presentation, and,
if that’s what we wanted, we’d probably all
just be using Microsoft Word. But CSS does
give you some nice tools to create layouts
that are attractive and usable, and does a
good job of gracefully degrading in less than
optimal viewing conditions.

Q: Can I float to the center?

A: No, CSS only allows you to float an
element to the left or right. But if you think
about it, if you were to float to the center,
then the inline content under the floated
element would have to be flowed around
both sides of your element. While that might
be doable, it probably wouldn’t be very
readable or attractive.

there are no
Dumb Questions

Now our footer problems are
solved. The footer will always
be below the sidebar, no matter
how narrow or wide the browser.

Go ahead and add the clear property to your
“starbuzz.css” file in the footer rule, and then
reload “index.html”. You’ll see that when the
screen is wide, the footer now stays below the
sidebar.

There are other improvements we could think
about making to this page, like having each
column come down to meet the footer. As
it is now, there is a gap either between the
main content and the footer (if the browser
window is set wide), or the sidebar and the
footer (if the browser is set to a normal width).
Unfortunately, it’s not easy to fix this, and
we’re not going to try to do that in this chapter.
Layout in CSS is an art, and no layout solution
is perfect. When done right, layout with CSS
gives you a better look for your Web page,
while still allowing the page to look reasonably
good in browsers that don’t have as much (or
any) support for CSS.

We will take a look at a few more ways to
layout your pages using CSS beyond using float.
There are many ways to do things in CSS, each
with their own strengths and weaknesses.

more about columns and floats

layout and positioning

you are here � 513

The only thing I don’t
like about this design is
that when I view the web page
on my PDA, it puts the sidebar

content above the main content,
so I have to scroll through it.

This is one of the disadvantages of the way we’ve
designed this page – because we need the sidebar to
be located just under the header and before the main
content, anyone using a browser with limited capabilities
(PDAs, mobile phones, screen readers, and so on) will
see the page in the order it is written, with the sidebar
first. However, most people would rather see your main
content before any kind of sidebar or navigation.

So, let’s look at another way of doing this, which goes
back to your idea of using float “left” on the main
content. While we’re exploring that, we’ll talk about
liquid versus frozen designs as well.

Right. That happens because of
the way we ordered the <div>s.

Q: Do margins collapse on floated
elements?

A: No, they don’t, and it’s pretty easy to
see why. Unlike block elements that are flowed
on the page, floated elements are just, well,
floating. In other words, the margins of floated
elements aren’t actually touching the margins
of the elements in the normal flow, so they
can’t be collapsed.

But this raises a good point, and identifies a
common error in layouts. If you have a main
content area and a sidebar, it is common to
set a top margin on each. Then, if you float
the sidebar, it still has a margin, and that

margin won’t be collapsed with whatever is
above it anymore. So you can easily end up
having different margins on the sidebar and on
the main content if you don’t remember that
floated elements don’t collapse margins.

Q: Can I float an inline element?

A: Yes, you sure can. The best example
– and a common one – is to float images.
Give it a try – float an image left or right in a
paragraph and you’ll see your text flow around
it. Don’t forget to add padding to give the
image a little room, and possibly a border. You
can also float any other inline element you
like, but it’s not commonly done.

Q: Is it correct to think about floated
elements as elements that are ignored by
block elements, while inline elements know
they are there?

A: Yes, that’s a good way of thinking
about it. Inline content nested inside a block
element always flows around a floated
element, observing the boundaries of the
floated element, while block elements are
flowed onto the page as normal. The
exception is when you set the clear property
on a block element, which causes a block
element to move down until there are no
floating elements next to it on the right, left or
both sides, depending on the value of clear.

514 Chapter 12

Want to know how your pages are going to look to your users
under bad conditions (like on a browser that doesn’t support
CSS)? Then open your “index.html” file and remove the <link>
from the <head>, save, and reload the page in your browser.
Now you can see the real order things will be seen in (or
heard from a screen reader). Go ahead and give it a try. Just
make sure you put it back when you’re done (after all, this is a
chapter on CSS).

Righty tighty, lefty loosey
Let’s get the Starbuzz page switched over so that the main content is floating left. We’ll
check out how that works, and then move on to make it really work. You’re going to see
the mnemonic righty tighty, lefty loosey holds true in the CSS world too... well, for our
sidebar, anyway. Here’s how we convert the page over... just a few simple steps.

Here’s the Starbuzz page without
CSS. For the most part we’re in
good shape. It is still very readable,
although the Bean Machine does
come before the main content,
which probably isn’t what we want.

Look Ma, no CSS!
Exercise

the no css test

layout and positioning

you are here � 515

#main {
 background: #efe5d0 url(images/background.gif) top left;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 420px;
 float: left;
}

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px;
 font-size: 90%;
 clear: left;
}

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 470px;
 width: 280px;
 float: right;
}

Step One: start with the sidebar
We’re basically swapping the roles of the sidebar and the main content area. The
content area is going to have a fixed width and float, while the sidebar is going to wrap
around the content. We’re also going to use the same margin technique to keep the two
visually separate. But before we start changing CSS, go to your “index.html” file and
move the “sidebar” <div> down below the “main” <div>. After you’ve done that,
here are the changes you need to make to the sidebar CSS rule:

We’re setting a fixed width on the main
content <div>, so delete the sidebar width
property along with the float.

Because the sidebar is now going to flow
under the main content, we need to move the
large margin to the sidebar. The total width
of the main content area is 470 pixels. (Go
ahead and compute that yourself in all that
free time you have. Compute it in the same
way as you did for the sidebar. You should
know that we’re going to set the width of
the main content area to 420 pixels.)

Step Two: take care of the main content
Now we need to float the main <div>. Here’s how to do it:

We’re changing the right margin from
330 pixels back to 10 pixels.

We need to set an explicit width because we’re going to
float this element. Let’s use 420 pixels.

Step Three: take care of the footer
Now, we just need to adjust the footer to clear everything to the left, rather than the right.

Change the clear property to have
a value of left, rather than right.
That way the footer will stay clear
of the main content area.

We’re going to float the main <div> to the left.

516 Chapter 12

A quick test drive
We’ve already said there might be a few
problems with this method of floating
the content to the left. Do a quick test
drive before you move on just to see how
this is all working. Go ahead and make
the changes to your “starbuzz.css” file
and then reload “index.html” in your
browser. Get a good feel for how the page
performs when it is resized to narrow,
normal, and wide.

Actually, this looks pretty good, and we
have the <div>s in the right order now. But
it’s not great that the sidebar expands;
it looks a lot better fixed. Sidebars are
often used for navigation and they don’t
look very good when expanded.

When we float the sidebar <div> right,
then the design stays nice and tight,
allowing the content to expand, but if we
float the main content to the left, the
design feels too loose, allowing the sidebar
to expand.

brain
power?
Design-wise, the first design worked better, while information-wise, the second works
better (because of the placement of the <div>s). Is there a way we can have the best of
both worlds: have the sidebar at a fixed width, but the main <div> still first in the XHTML?
What design tradeoffs could we make to get there?

contemplating a better solution

layout and positioning

you are here � 517

Liquid and Frozen Designs
All the designs we’ve been playing with so far are called liquid layouts
because they expand to fill whatever width we resize the browser
to. These layouts are useful because, by expanding, they fill the
space available and allow users to make good use of their screen
space. Sometimes, however, it is more important to have your layout
locked down so that when a user resizes the screen, your design still
looks as it should. There are a couple of layouts that work like this,
but let’s start with frozen layouts. Frozen layouts lock the elements
down, frozen to the page, so they can’t move at all, and so we avoid
a lot of issues that are caused by the window expanding. Let’s give a
frozen layout a try.

Going from your current page to a frozen page only requires one
addition to your XHTML, and one new rule in your CSS.

#allcontent {
 width: 800px;
 padding-top: 5px;
 padding-bottom: 5px;
 background-color: #675c47;
}

We’re going to set the width of “allcontent” to

800 pixels. This will have the effect of constrainin
g

everything in it to fit within 800 pixels.

The outer “allcontent” <div> is always 800 pixels, even when the browser is resized, so we’ve
effectively frozen the <div> to the page, along with everything inside it.

While we’re at it, since this is the first time
we’re styling this <div>, let’s add some padding
and give it its own background color. You’ll see
this helps to tie the whole page together.

XHTML Changes

CSS Changes

In your XHTML you’re going to add a new <div> element with the id
“allcontent”. Like its name suggests, this <div> is going to go around all the
content in your page. So place the opening <div> tag before the header
<div> and the closing tag below the footer <div>.

<body>
 <div id=”allcontent”>
 <div id=”header”>
 ... rest of the XHTML goes here ...
 </div>
 </div>
</body>

This <div> closes the footer <div>.

Add a new <div> with the id of “allcontent”
around all the other elements in the <body>.

Now we’re going to use this <div> to constrain the size of
all the elements and content in the “allcontent” <div> to
a fixed width of 800 pixels. Here’s the CSS rule to do that:

518 Chapter 12

What’s the state between liquid
and frozen? Jello, of course!

The frozen layout has some benefits, but it also just plain
looks bad when you widen the browser. But we’ve got a fix,

and it’s a common design you’ll see on the Web. This design
is between frozen and liquid, and it has a name to match:

Jello. Jello layouts lock down the width of the content area in
the page, but center it in the browser. It’s actually easier to
change the layout to a jello layout and let you play with it,
than to explain how it behaves, so let’s just do it:

#allcontent {
 width: 800px;
 padding-top: 5px;
 padding-bottom: 5px;
 background-color: #675c47;
 margin-left: auto;
 margin-right: auto;
}

Rather than having fixed left and right
margins on the “allcontent” <div>, we’re
setting the margins to “auto”.

If you remember, when we talked about giving a content area a width of “auto”, the
browser expanded the content area as much as it needed to. With “auto” margins,
the browser figures out what the correct margins are, but also makes sure the left
and right margins are the same, so that the content is centered.

Go ahead and add this rule to the bottom of
“starbuzz.css”, and then reload “index.html”. Now
you can see why we call it a frozen layout. It doesn’t
move when the browser is resized.

This certainly solves the problem of the sidebar
expanding and it looks pretty nice. It is a little
strange when the browser is very wide, though,
because of all the empty space on the right side.

But, we’re not done yet; we’ve got a
little room for improvement.

A frozen test drive

Now the “allcontent” <div> is 800 pixels in width, no matter
how you resize the browser. And, because all the other <div>s
are inside “allcontent”, they will also fit into the 800 pixel
space as well. So, the page is basically frozen to 800 pixels.

frozen layouts

layout and positioning

you are here � 519

With CSS, there are typically lots of ways to approach a layout, each with their
own strengths and weaknesses. Actually, we’re just about to look at another
common technique for creating a two-column layout that keeps the content in
the correct order, and avoids some of the problems of the liquid layouts. But,
as you’ll see, there are some tradeoffs.

With this new technique we’re not going to float elements at all. Instead we’re
going to use a feature of CSS that allows you to precisely position elements on
the page. It’s called absolute positioning. You can also use absolute positioning
for some nice effects beyond just multi-column layouts, and we’ll look at an
example of that, too.

To do all this, we’re going to step back to the original XHTML and CSS we
started with in the beginning of this chapter. You can find a fresh copy of these
files in the “chapter12/absolute” folder. Be sure and take another look at these
files so you remember what they originally looked like. Recall that we’ve got
a bunch of <div>s: one for the header, one for main, one for the footer, and
also a sidebar. Also remember that in the original XHTML, the sidebar <div>
is below the main content area, where we’d optimally like to have it.

Test driving with a tank of jello
Add the two margin properties to your “starbuzz.css” file, and then reload
the page. Now play with the size of the browser. Pretty nice, huh?

Narrow.

Wide.

So if we want our content
in the correct order, we either
have to live with an expanding

sidebar or we have to use a jello
layout? Is there any other way to

do this?

520 Chapter 12

How absolute positioning works

div id=“main”

div id=“header”

div id=“footer”

div id=“sidebar”

Let’s start by getting an idea of what absolute
positioning does, and how it works. Here’s a little
CSS to position the sidebar <div> with absolute
positioning. Don’t type this in just yet; right now we
just want you to get a feel for how this works:

#sidebar {
 position: absolute;
 top: 100px;
 right: 200px;
 width: 280px;
}

The first thing we do is use the
position property to specify that the
element will be positioned absolutely.

Next we set top and
right properties.

And we also give
the <div> a width.

Because sidebar is now
absolutely positioned, it
is removed from the flow
and positioned according
to any top, left, right,
or bottom properties
that are specified.

Now let’s look at what this CSS does. When an
element is absolutely positioned, the first thing the
browser does is remove it completely from the flow.
The browser then places the element in the position
indicated by the top and right properties (you
can use bottom and left as well). In this case, the
sidebar is going to be 100 pixels from the top of the
page, and 200 pixels from the right side of the page.
We’re also setting a width on the <div>, just like we
did when it was floated.

What the CSS does

The sidebar is
positioned 200
pixels from the
right of the page.

Because the sidebar is out of
the flow, the other elements
don’t even know it is there,
and they ignore it totally.

Elements that are in the flow don’t even wrap their
inline content around an absolutely positioned element.
They are totally oblivious to it being on the page.

And, the sidebar
is positioned 100
pixels from the
top of the page.

using absolute positioning

layout and positioning

you are here � 521

#annoyingad {
 position: absolute;
 top: 150px;
 left: 100px;
 width: 400px;
}

Another example of absolute positioning
Let’s look at another example. Say we have another <div>
with the id “annoyingad”. We could position it like this:

The annoying ad is being positioned 100
pixels from the left, and 150 pixels
from the top. It’s also a bit wider than
the sidebar, at 400 pixels.

div id=”main”

div id=“header”

div id=“footer”

div id=“sidebar”
div id=“annoyingad”

Now we have a second <div>, positioned absolutely, about 100 pixels from the left and 150 pixels from the top.

Just like with the sidebar, we’ve placed the annoying
ad <div> at a precise position on the page. Any
elements underneath that are in the normal flow
of the page don’t have a clue about the absolutely
positioned elements layered overhead. This is a little
different from floating an element, because elements
that were in the flow adjusted their inline content
to respect the boundaries of the floated element.
But absolutely positioned elements have no effect
whatsoever on the other elements.

Another interesting thing about absolutely
positioned elements is that you can layer them
on top of each other. But if you’ve got a few
absolutely positioned elements at the same
position in a page, how do you know the
layering? In other words, who’s on top?

Each positioned element has a property called a
z-index that specifies its placement. You’ll see
how to specify a z-index in just a few pages.

Who’s on top?

div id=”main”div id=“annoyingad”
div id=“sidebar”div id=“header”

div id=“footer”
The header, main, and
footer <div>s are all
in the flow, and flat
on the page.

The sidebar and annoyingad <div>s
are layered on the page, with the
annoyingad having a greater z-index
than the sidebar, so it’s on top.

Notice the annoyingad <div> is
on top of the sidebar <div>.

522 Chapter 12

Q: What is the position property
set to by default?

A: The default value for positioning
is “static”. With static positioning
the element is placed in the normal
document flow and isn’t positioned by
you – the browser decides where it
goes. You can use the float property to
take an element out of the flow, and you
can say it should float left or right, but
the browser is still ultimately deciding
where it goes. Compare this to the
“absolute” value for the position property.
With absolute positioning, you’re telling
the browser exactly where to position
elements.

Q: Can I only position <div>s?

A: You can absolutely position any
element, block or inline. Just remember
that when an element is absolutely
positioned, it is removed from the normal
flow of the page.

Q: So, I can position an inline
element?

A: Yes, you sure can. For instance,
it’s common to position the
element. You can position s,
s, and so on as well, but it isn’t
common to do so.

Q: Are there position property
values other than static and
absolute?

A: There are actually four: static,
absolute, fixed, and relative. You’ve
already heard about static and absolute.
Fixed positioning places an element in
a location that is relative to the browser
window (rather than the page), so fixed
elements never move. You’ll see an
example of fixed positioning in a few
pages. Relative positioning takes an
element and flows it on the page just
like normal, but then offsets it before
displaying it on the page. Relative
positioning is commonly used for more
advanced positioning and special
effects. You’re going to see an example
of that too.

Q: Do I have to specify a width
for an absolutely positioned element
just like the floated elements?

A: No, you don’t have to specify a
width for absolutely positioned elements.
But if you don’t, by default, the block
element will take up the entire width
of the browser, minus any offset you
specify from the left or right. This might
be exactly what you want, or it might not.
So set the value of the width property if
you want to change this default behavior.

Q: Do I have to use pixels for
positioning?

A: No – another common way to
position elements is using percentages.
If you use percentages, the positions of
your elements may appear to change as
you change the width of your browser.
So, for example, if your browser is 800
pixels wide, and your element’s left
position is set to 10%, then your element
will be 80 pixels from the left of the
browser window. But if your browser
is resized to 400 pixels wide, then the
width will be reduced to 10% of 400
pixels, or 40 pixels from the left of the
browser window.
Another common use for percentages is
in specifying widths. If you don’t need
specific widths for your elements or
margins, then you can use percentages
to make both your main content area
and your sidebars flexible in size. You’ll
see this done a lot in two- and three-
column layouts.

Q: Do I have to know how
to use z-indexes to use absolute
positioning?

A: No, z-indexes tend to be used
most often for various advanced uses
of CSS, especially when Web page
scripting is involved, so they’re a
little beyond the scope of this book.
But they are a part of how absolute
positioning works, so it’s good to know
about z-index (and in fact, you’ll see a
case where knowing about z-index is
important in just a bit).

there are no
Dumb Questions

more about the position property

layout and positioning

you are here � 523

Using absolute positioning

We’re now going to create a two column Starbuzz page using techniques similar to
those we used with the float version of the page; however, this time we’ll use absolute
positioning. Here’s what we’re going to do:

1 First we’re going to make the sidebar <div> absolutely
positioned. In fact, we’re going to position it in exactly the same
place that we floated it to before.

2 Next, we’re going to give the main content another big margin so
that the sidebar can sit on top of the margin space.

3 Finally, we’re going to give this a good testing and see how it
compares to the float version.

Changing the Starbuzz CSS

Our XHTML is all ready to go, and the sidebar <div> is right
where we want it (below the important main content). All we need
to do is make a few CSS changes and we’ll have a sidebar that is
absolutely positioned. Open your “starbuzz.css” file and let’s make
a few changes to the sidebar:

#sidebar {

 background: #efe5d0 url(images/background.gif) bottom right;

 font-size: 105%;

 padding: 15px;

 margin: 0px 10px 10px 10px;

 position: absolute;

 top: 128px;

 right: 0px;

 width: 280px;

}

Okay, now we’re going to specify that the sidebar is absolutely
positioned 128 pixels from the top, and 0 pixels from the right
of the page. We also want the sidebar to have a width, so let’s
make it the same as the float version: 280 pixels.

You’ll see where the “128”
came from in a sec...

Remember, we are going back

to the original versions of
 the

files, which you can find in the

“chapter12/absolute” folder.

0 pixels from the right
will make sure that the
sidebar sticks to the right
side of the browser.

You can work out of the “absolute”
folder, or copy the files “index.html”
and “starbuzz.css” into the “starbuzz”
folder and work from there, like we did.

524 Chapter 12

Now we just need to rework the main <div>

#main {

 background: #efe5d0 url(images/background.gif) top left;

 font-size: 105%;

 padding: 15px;

 margin: 0px 330px 10px 10px;

}

Actually, there’s not much reworking to be done. We’re just adding a
margin like we did with the float version. So, change the right margin
of the main <div> to be 330 pixels, like you did last time.

We’re going to give the sidebar some space to be positioned over by giving the main <div> a
big margin. This is really the same technique we used with the float. The only difference is
the way the sidebar <div> is being placed over the margin.

Okay, all you need to do is make that change to your margin, and then
save. But, before we take this for a test drive, let’s think about how this is
going to work with the absolutely positioned sidebar.

div id=“main”

div id=“header”

div id=“footer”

text

div id=“sidebar”

108 pixels for the header. You can
see this height set in the CSS.

10 pixel bottom margin.

10 pixel top margin.

The sidebar needs to be
128 pixels from the top
because that’s exactly
how much room the
header takes up, including
margins.

We’re positioning the sidebar to be 128 pixels from
the top, and up against the right side of the page.
Keep in mind, the sidebar has 10 pixels of margin
on the right, so the background color will show
through that like before.

The main <div> is flowed
just below the header,
so it will align with the
top of the sidebar. Also,
it has a right margin
that is the same size
as the sidebar, so all
its inline content will
be to the left of the
sidebar. Remember that
the flowed elements
don’t know about the
absolutely positioned
elements at all, so
the inline content in
the flowed elements
doesn’t wrap around the
absolutely positioned
elements.

You might want to think about what happens to the
footer. Because flowed elements don’t know about
absolute elements, we can’t use “clear” anymore.

using margins with positioning

layout and positioning

you are here � 525

Time for the absolute test drive
Make sure you’ve saved the new CSS and then reload

“index.html” in your browser. Let’s check out the results:

Wow, this looks amazingly
like the float version;
however, you know that
the sidebar is being
positioned absolutely.

As you resize the
browser, the sidebar
always sits 128 pixels
from the top, and sticks
to the right of the page.

The main content area has
a margin that is exactly
the width of the sidebar,
and the sidebar sits on top
of that space.

And the sidebar has a 10
pixel right margin, so it
has spacing between it and
the edge of the page.

And we’ve still got a
nice gutter between
the two columns.

But we are now back to having a problem with the
footer. When the browser gets wide enough, the
absolutely positioned sidebar comes down over the top
of the footer. Unfortunately, we can’t fall back on the
clear property this time, because flowed elements
ignore the presence of absolutely positioned elements.

When the browser is wide, the
vertical space of the main
content area is reduced, and
the sidebar can come down over
the footer.

526 Chapter 12

What can we do? Or, can’t you just tell me how
to do a two-column layout that doesn’t break?
Okay, you know that one of the big motivations behind CSS was to separate structure from
style. Right? And CSS does a great job of allowing you to create XHTML documents that
can be used in a lot of different browsers (even screen readers or text-only browsers) without
having unnecessary style embedded into the XHTML. But this also means that CSS is not
meant to be a full-blown page layout language. Rather, it gives you some interesting tools
that you can use to arrange and position elements in XHTML documents. Depending on
the environment the page is viewed in, your mileage may vary in terms of what the end
result is. If you resize your browser to be ultra wide, well, then the layout may break.

So where does this leave you? In this chapter we’ve looked at several techniques for creating
two-column layouts. None of them were perfect and, in fact, they all had various tradeoffs.
Let’s quickly review the various examples.

The Floating Layout
Ahh, how cute, remember your first two-column Starbuzz page? You used a float property
along with a clear on the footer and life was good. The only problem is that this solution
often results in putting your content in an order your users might not appreciate if they are
using another kind of browser, like a screen reader that reads the content aloud to the user.

The Jello Layout
First we created a frozen layout by wrapping a fixed size <div> around all the content
in the page, and then we made it jello by allowing the margins to expand with the “auto”
property value. This makes for a great looking layout, and lots of pages on the Web use this
design. This also solved the problem of our content ordering. The disadvantage here is that
the content doesn’t expand to fill the entire browser window (which many people don’t find
to be a disadvantage at all).

The Absolute Layout
Finally, we were on a mission to have a liquid layout and yet have the content ordered like
we wanted. So, we used absolute positioning and actually achieved our goal. But, there was a
downside: since you can’t use the clear property with absolute elements, the footer creeps
up under the sidebar when the browser is wide.

So are we done yet? Maybe. If one of these designs meets your needs, great, go with it. For
instance, lots of people are very happy with jello layouts. But there is always more tweaking
you can do to perfect your particular layout. For instance, take the absolute design. Can
we fix the footer? Not really, but we can make a tradeoff. Your design might be fine if the
footer only showed under the main content area. If that’s the case, then we can fix the footer
problem. Let’s give that a quick try.

overview of two column techiques

layout and positioning

you are here � 527

This solution trades having the footer
under just the main content for having a
footer under the entire page, to keep it
from creeping up under the sidebar.

One tradeoff you can make to fix the footer
To try this solution, just give the footer the same right margin size
as the main content area, like this:

#footer {
 background-color: #675c47;
 color: #efe5d0;
 text-align: center;
 padding: 15px;
 margin: 10px 330px 10px 10px;
 font-size: 90%;
}

If you save this and reload your page, you’ll see that the footer is
now under the main content area only, and never creeps up under
the sidebar. Is this optimal? No, but it’s also not bad. And, as we’ve
said, doing CSS layout is a bit of an art. To do layout, you need
to experiment, explore, and keep an eye on the layouts others are
creating with CSS (you’ll find some references for good CSS hang-
outs at the end of the chapter).

In terms of whether you want your layout to be liquid or frozen or
jello, that really is a matter of deciding what works best for your
pages. For some pages, a fixed content area size with expandable
margins works great, and in fact can be more readable on wide
browsers. For other uses, you might want to use as much of the
browser as you can. So, decide what works best for you.

Once you’ve decided, you still need to figure out which method
you’re going to use to create your pages (float? absolute? some
combination?). You’ve already learned the basics, so now it is
time to start exploring, as there are many other approaches out
there, and new ones being created every day. The techniques
you’ve learned in this chapter are often used as the basis for more
sophisticated designs.

You should know that, in general, using float is considered the
most flexible solution for multi-column layouts. Just keep in
mind, you may have to be careful in the order of your content,
depending on the design.

So this is all great,
but what am I supposed
to do? Use a liquid or jello

design? Use float or absolute
positioning?

528 Chapter 12

Holy beans! Starbuzz just won
the Roaster of the Year Award.

This is huge. Can we get it on the
page front and center? All our

customers need to see this. Top
priority, make it happen!

<div id=”award”>
 <img src=”images/award.gif”
 alt=”Roaster of the Year award” />
</div>

The award.

Well, we could just throw this as an image into any old
paragraph on the page, but the CEO really wants this to be
noticeable on the page. What if we could place the award
on the page like this?

Not only does that look great,
but it’s exactly what the
CEO wants. But how? Well,
you know all about absolute
positioning now, so why not
position the image on the
page using that? After all, by
using absolute positioning
you can place it anywhere on
the page you want, and since
it isn’t in the flow it won’t
affect any other element on
the page. Seems like an easy
addition to make to the page
without disrupting what’s
already there.

Let’s give it a try. Start by
adding a new <div>, just
below the header (the CEO
thinks this is pretty important, so it should be up high in the
order of content). Here’s the <div>

The <div>
contains the
image of the
award.

more absolute positioning

layout and positioning

you are here � 529

Positioning the award

#award {
 position: absolute;
 top: 30px;
 left: 365px;
}

We want the award to sit just about in the middle of the page
when the browser’s open to 800 pixels (the width of the image
in the header, and a typical size for browser widths) and just
overlapping the main content <div>.

So we’re going to use the top and left properties to position the
award 30 pixels from the top, and 365 pixels from the left.

We’re using an absolute position for the
award <div> that is 30 pixels from the
top and 365 pixels from the left.

Add this CSS to your “starbuzz.css” file, save, and reload the Web page.
You’ll see the award image appear like magic, right where we want it.
Make sure you resize the browser to see how the award displays.

A small glitch
Did you notice a small glitch when you were resizing the
browser? Depending on your browser, you may have seen the
sidebar <div> overlap the awards image. What on earth is
going on? Remember how each absolutely positioned element
has a z-index that describes the stacking behavior of the
elements? Some browsers will give the award element a lower
z-index than the sidebar <div> by default. All you need to do
to fix that is to specify the z-index for the award, and give it a
number higher than the sidebar.

On some browsers the sidebar will overlap and
occlude the awards image. Oh dear.

#award {
 position: absolute;
 top: 30px;
 left: 365px;
 z-index: 99;
}

Let’s give the award <div>
a really high number to make
sure it is always on top.

Go ahead and add the z-index property to your “starbuzz.css” file.
When you save and reload, you’ll see that now the award <div>
is on top of the sidebar, and the overlap glitch is gone.

530 Chapter 12

Tonight’s talk: Float and Absolute discuss
who’s more appropriate for layout.

Float Absolute

Absolute, have you noticed lots of people are
going with me to do their layouts?

Are you sure? I’m used on a lot of pages too,
you know.

Well, everyone knows I’m better for CSS layout.
I’m so much easier to use. Didn’t you see? All
you have to do is add one little float property to
your CSS in the right place, and bam! You’ve got
two columns.

Hmm, I seem to remember a width property
and a margin property to get things just right...

Details, details. My point is that, with me,
you don’t have to go around counting pixels
to figure out where your content’s going to
go – you can just float it and leave the rest
to me.

Now, wait a sec. We had to move the entire
sidebar to a different location in the XHTML
to get the float to work the first time. I don’t
call that “leaving the rest to you.” That’s a lot
of work. At least with me, it doesn’t matter
what order the content comes in; I’ll always do
the right thing.

Well, what about that footer issue? You’re always
going to overlap things in weird ways, aren’t
you? If readers aren’t careful, they’ll have big
chunks of their Web pages sitting right on top of
other content. At least I respect that handy clear
property.

Hey, you sit on top of elements too.

discussing float and absolute positioning

layout and positioning

you are here � 531

But the important part, the inline content,
flows around me, just like it should. Sometimes people want to position elements

right on top of other elements, you know. And
with me, you can position elements anywhere
you want. None of this right and left crap like
with you. You don’t give people that many
options, really, if you think about it.

You’re missing the point. I’m more flexible and
I give people a great way to lay out their pages.
I’m sure I can do any layout you can.

Really? There’s no way you could have done
that cool thing with the award.

Hmmm...

Admit it! You’re actually not as flexible as I am.

Well, maybe I can’t do everything you can do,
but I think I’m a lot easier for people doing
basic layouts, which is mostly what people
want. I dunno, I heard you’re kind of buggy in older

browsers. That would be frustrating for new
Web developers.

I used to have that reputation, but most
modern browsers are just fine with me now.
And, now that Web developers are figuring that
out, they’re going with me, like I said at the
beginning. I don’t think you’ve seen the end of me; I’ve

got a lot of uses on Web pages.

I never said you didn’t. But check out all the
designs out there that use float.

Well, that’s not really the point, is it? Anyway,
I’ve got a float to clear, gotta run.

Float Absolute

Hey, don’t start thinking you’re perfect. You
might be good for Web layouts, but you’re not
exactly the state of art in graphic design.

Clear this, Float.

532 Chapter 12

Here’s a new <div> nested
inside the sidebar.

One more thing you should know about
absolute positioning

div id=“main”

div id=“header”

div id=“footer”

div id=“sidebar”

div
id=“tv”

10
0

pix
els

100
pixels

So far, when you’ve used the left, right, top, and bottom properties to specify
the position, these numbers have always been with respect to the edge of the page,
right? Well, we need to refine that just a bit.

When you position an element, you’re specifying the position relative to the closest
ancestor element that is also positioned. So, you’re probably saying, “What? I haven’t
positioned anything except for the sidebar. How could there be an ancestor in my
XHTML that is already positioned?” Believe it or not there is – the <html> element,
which the browser positions for you when it creates the page.

But, let’s take this one step further. Say you wanted to absolutely position another
<div> inside the sidebar.

<div id=”sidebar”>

 <div id=”tv”>

 </div>

 <p class=”beanheading”>
 ... more XHTML here ...
 </p>
 ...
</div>

#tv {
 position: absolute;
 top: 100px;
 left: 100px;
 width: 100px;
}

If we absolutely position the “tv” <div>, its closest
positioned ancestor is the sidebar <div>. And so,
the positioning will be relative to the edges of the
sidebar, not the page.

Another thing to know... if you get caught in a
conversation about “closest ancestors that are
positioned” at your next cocktail party, just say
the “nearest containing block that is positioned.”
That’s the terminology the experts use.

The “tv” <div> is
positioned relative
to the sidebar <div>,
not to the page.

If you’re positioning with respect to the <html>

element, then the bottom property may not

do what you’d expect. You’d think the “bottom”

would be the very bottom of the Web page

itself, but the <html> element actually defines

this as the bottom of the browser window. So,

if you want to absolutely position an element

from the bottom of the page, rather than the browser

window, you need to place your element inside an element

that extends to the bottom of your page, and is positioned.

One way to do this is to put your element into a relatively

positioned element at the bottom of the page. We’ll look at

relative positioning later in the chapter.

an absolute gotcha

layout and positioning

you are here � 533

_______________ {
 margin-top: 140px;
 margin-left: 20px;
 width: 500px;
}

_______________ {
 position: absolute;
 top: 20px;
 left: 550px;
 width: 200px;
}

_______________ {
 float: left;
}

_______________ {
 position: absolute;
 top: 20px;
 left: 20px;
 width: 500px;
 height: 100px;
}

div id=“main”

pimg id=“photo”

div id=“header” div id=“navigation”

Time to put all this knowledge about floating and positioning to a test!
Take a look at the Web page below. There are four elements with
an id. Your job is to correctly match each of these elements with the
CSS rules on the right, and fill in the correct id selector for each one.
Check your answers at the end of the chapter.

Fill in the selectors to
complete the CSS.

Sharpen your pencil

534 Chapter 12

Hey, can we get a coupon on
the site and put it right in

customers’ faces so they can’t
miss it? I’d like to offer one free
coffee to everyone who clicks on

the coupon, for a limited time,
of course.

Why? Because it’s going to give us the
opportunity to try a little fixed positioning.
What we’re going to do is put a coupon on
the page that always stays on the screen, even
if you scroll. Is this a great technique to make
your users happy? Probably not, but work
with us here... it is going to be a fun way to
play with fixed positioning.

Just the words we’ve been
waiting for: “right in the
customer’s face”

we need fixed positioning

layout and positioning

you are here � 535

How does fixed positioning work?

#coupon {

 position: fixed;

 top: 300px;

 left: 100px;

}

Compared to absolute positioning, fixed positioning is pretty
straightforward. With fixed positioning, you specify the position of an
element just like you do with absolute positioning, but the position is
an offset from the edge of the browser’s window rather than the page.
The interesting effect this has is that once you’ve placed content with
fixed positioning, it stays right where you put it, and doesn’t move,
even if you scroll the page.

So, say you have a <div> with an id of “coupon”. You can position
the <div> fixed to a spot 300 pixels from the top of the viewport,
and 100 pixels from the left side, like this:

Impress friends and coworkers by
referring to the browser window as
the viewport. Try it, it works, and
the W3C will nod approvingly.

div id=“coupon”

30
0

pix
els

100
pixels

Here’s the id selector
for the coupon <div>. We’re using fixed

positioning.

Position the coupon 300 pixels
from the top, and 100 pixels
from the left. You can also use
right and bottom, just like with
absolute positioning.

Once you’ve got an element positioned, then comes the fun: scroll
around... it doesn’t move. Resize the window... it doesn’t move. Pick
up your monitor and shake it... it doesn’t move. Okay, just kidding
on the last one. But, the point is, fixed position elements don’t move;
they are there for good as long as the page is displayed.

Now, we’re sure you’re already thinking of fun things to do with
fixed positioning, but you’ve got a job to do. So let’s get that coupon
on the Starbuzz page.

Here’s where the element gets
positioned within the viewport.

Unfortunately, Internet Explorer
version 6 (and earlier) doesn’t
support fixed positioning. So if
you’re using Internet Explorer
you won’t be able to see the
coupon properly placed on the

Starbuzz Coffee Web page.

536 Chapter 12

Putting the coupon on the page

#coupon {
 position: fixed;
 top: 300px;
 left: 0px;
}

#coupon img {
 border: none;
}

#coupon a:link {
 border: none;
}
#coupon a:visited {
 border: none;
}

 <div id=”coupon”>

 </div>

Now we’re going to get the Free Coffee Coupon on the page.
Let’s start by creating a <div> for the coupon to go into:

Here’s the <div> with an id of “coupon”.
Inside we’ve got an image of the coupon, which you’ll
find in the “chapter12/starbuzz/images” folder.

And we’ve wrapped the image in an <a> element so that users can click
on the image to be taken to a page with a coupon they can print.

Go ahead and add this <div> at the bottom of your “index.html” file, just
below the footer. Because we’re going to position it, the placement in the
XHTML will only matter to browsers that don’t support positioning, and
the coupon isn’t important enough to have at the top.

Now let’s write the CSS to position the coupon:

We’re going to set the coupon to fixed positioning, 300
pixels from the top of the viewport, and let’s put the
left side right up against the edge of the viewport. So
we need to specify 0 pixels from the left.

We need to style the image and the links, too; otherwise,
we may have borders popping up on the image because it
is clickable. So, let’s set the border on the image to none,
and do the same on both links and visited links.

Remember that we have a rule in the CSS that says to turn off text-
decoration, and use a border to underline links, instead. Here, we’re
overriding that rule for the link in the coupon <div> and saying we
don’t want any border on the link. Go back and look at the original CSS
if you need to remind yourself of the other rules for the links.

adding a new div

layout and positioning

you are here � 537

Putting the coupon on the page
Add the new coupon rules to your “starbuzz.css” file,
save, and then reload the page. You may need to make
the browser smaller to be able to see that the coupon
stays put even when you scroll. Clicking on the coupon
should take you to the “freecoffee.html” page.

You know, this looks great, but it might just be even more
snazzy if the coupon was offset to the left, so it looks like
it’s coming out of the side of the viewport. Now, we could
get into our photo editing software and cut off the left
hand side of the image to create that effect. Or, we could
just use a negative offset so that the left side of the image
is positioned to the left of the edge of the viewport.
That’s right, you can do that.

#coupon {
 position: fixed;
 top: 300px;
 left: -90px;
}

By specifying -90 pixels,
we’re telling the browser to
position the image 90 pixels
to the left of the edge of
the viewport.

div id=“coupon”

30
0

pix
els

-90
pixels

Using a negative left property value
Specify a negative property value just like you do a positive one:
just put a minus sign in front. Like this:

The browser will gladly position the
image to the left of the viewport
for you, and only the part of the
image that is still on the screen
will be viewable.

538 Chapter 12

A rather positive,
negative test drive
Make sure you’ve put in the negative left property
value, save, and reload the page. Doesn’t that look
slick? Congrats, you’ve just achieved your first CSS
special effect. Watch out George Lucas!

Can you believe how good this
site looks? I mean, look at where

it started compared to now. Okay,
but we’ve still got our work cut

out for us. We still need to build
the Bean Machine, so see you in a

couple of chapters.

WOW! What a difference!

Just remember, using fixed
positioning to cover up your

content is not the most
user-friendly thing to do,
but it is FUN.

test drive and comparison

layout and positioning

you are here � 539

Getting relative
This is it, the last type of positioning: relative positioning. Truth
be told, it’s also the loneliest of the positions because you
just won’t find a lot of people using it in their designs. But,
new designs come along every day, so when you see relative
positioning, you’ll want to know how it works and what it does.

Unlike absolute and fixed positioning, an element that is
relatively positioned is still part of the flow of the page, but
at the last moment, just before the element is displayed, the
browser offsets its position. Let’s see how this works on the
coffee bag in the Starbuzz Page. We’re going to take the coffee
bag and offset it to the side, so those coffee beans that spilled
out of the bag look like they’re spilling out of the page, too.

Now we could absolutely position the coffee bag, but if we did,
we’d have to find a way for the space it’s taking up on the page
to get reserved, since absolute positioning takes the document
completely out of the flow.

That’s where relative positioning comes in. We can keep the
element in the flow, have its space reserved, and then offset
where it actually gets displayed. Let’s try it.

.beanheading img {
 position: relative;
 left: 120px;
}

We want to take the Starbuzz
Coffee bag and move it about
100 pixels to the right.

With absolute positioning, the
coffee bag moves, but since it is no
longer in the flow, the rest of the
page moves up underneath.

Here’s a new rule that selects the
image. We’re using a descendant
selector here to select only images
inside the beanheading.

Then we specify a position of relative,
and whatever offsets we want on the
image. The offset is from the position
where it is placed in the flow.

So here we’re specifying that the
image should be displayed 120
pixels from the left of where it
sits in the flow of the document.
You can use right, top, and bottom
as well, when specifying offsets.

Notice that images are
inline elements, but that’s
okay. You can use any of
the positioning techniques,
or even a float, on inline
elements too.

Add this rule to your CSS and then save and reload.

540 Chapter 12

The test drive
After reloading the Starbuzz page, you should see the
coffee bag over to the right part of the sidebar. What
is interesting is that part of the image is actually
extending beyond the sidebar into the margin and off
the edge of the page. How does that work? Well, as
you’ve seen, the browser first flows a relative element
onto the page, and only then does it offset where it
is displayed. So the element still takes up the same
spot on the page, it’s just drawn in a different location.
Relative is a little like static positioning, but with a
dash of absolute thrown in. But, unlike absolute,
relative positioning is specified just as an offset from
the element’s real location, not in absolute coordinates
from the nearest containing block.

So, does this improve the page? We’re not sure, but
it was fun. (You might want to remove the relative
positioning before you show it to the CEO.)

Couldn’t we have done this
with padding or margins

somehow?

No matter how you tweaked the padding
and margins you still can’t get an image
to be positioned outside of the box it’s
in. And why try to do it the hard way?
We achieved a better effect with two lines
of CSS. You can use relative positioning
to display an element well beyond the
element’s box in the flow, which you just
can’t do with padding or margins.

Not really.

playing with relative positioning

layout and positioning

you are here � 541

To three-columns and beyond...
While we’ve spent this chapter looking at two-column layouts, the real goal was to learn
about the float and clear properties, along with the various forms of positioning that
CSS offers. Now that you’ve got the basics down, you’re in a good position to think about
three-column layouts, or any other layout you might desire. So, that’s it, the chapter’s over.

But, wait! Before we finish it off, let’s just think through how a three-column layout might
work (and if you want to give it a try, just look in the “chapter12/threecolumn” folder).

This <div> is
floated left.

And this <div> is
floated right.

The content area
now has left and
right margins that
sit under the two
floated <div>s.

And the footer has
its clear property
set to “both”.

This design is built using techniques that you already understand. To explore
beyond what you’ve done here, it really does help to see how others have used
CSS to create interesting designs, and we encourage you to get out there and look
around. Check out some of our favorite online resources for CSS design at:

http://headfirstlabs.com/books/hfhtml/chapter12/cssdesign.html

542 Chapter 12

Browsers place elements in a page using flow.nn

Block nn elements flow from the top down, with a
linebreak between elements. By default, each
block element takes up the entire width of the
browser window.
Inline nn elements flow inside a block element
from the top left to the bottom right. If more
than one line is needed, the browser creates
a new line, and expands the containing
block element vertically to contain the inline
elements.
The top and bottom adjacent margins of nn
two block elements in the normal page flow
collapse to the size of the larger margin, or to
the size of one margin if they are the same
size.

nn Floated elements are taken out of the normal
flow and placed to the left or right.
Floated elements sit on top of block elements nn
and don’t affect their flow. However, the inline
content respects the boundaries of a floated
element and flows around it.
The nn clear property is used to specify that no
floated elements can be on the left or right (or
both) of a block element. A block element with
clear set will move down until it is free of the
block element on its side.
A floated element must have a specific width nn
set to a value other than auto.
A nn liquid layout is one in which the content of
the page expands to fit the page when you
expand the browser window.

nn A frozen layout is one in which the width of
the content is fixed and it doesn’t expand
or shrink with the browser window. This has
the advantage of providing more control over
your design, but at the cost of not using the
browser width as efficiently.

nn A jello layout is one in which the content
width is fixed, but the margins expand and
shrink with the browser window. A jello layout
usually places the content in the center of the

page. This has the same advantages as the
frozen layout, but is often more attractive.
There are four values the position property nn
can be set to: static, absolute, fixed, and
relative.

nn Static positioning is the default, and places an
element in the normal flow of the page.
Absolute positioning lets you place elements nn
anywhere in the page. By default, absolutely
positioned elements are placed relative to the
sides of the page.
If an absolutely positioned element is nested nn
within another positioned element, then its
position is relative to the containing element
that is positioned.
The properties top, right, bottom, and left are nn
used to position elements for absolute, fixed,
and relative positioning.
Absolutely nn positioned elements can be layered
on top of one another using the z-index
property. A larger z-index value indicates it
is higher in the stack (closer to you on the
screen).
Fixed position elements are always positioned nn
relative to the browser window and do not
move when the page is scrolled. Other
content in the page scrolls underneath these
elements.
Relatively nn positioned elements are first flowed
into the page as normal, and then offset by
the specified amount, leaving empty the space
where they would normally sit.
When using relative positioning, left, right, top, nn
and bottom refer to the amount of offset from
the element’s position in the normal flow.
The same design can often be achieved using nn
floating elements or absolutely positioned
elements.
Float provides a flexible solution for multi-nn
column layouts and allows elements to clear
floated elements from their sides, something
that can’t be done with absolute positioning.

 BULLET POINTS

review of float and positioning

layout and positioning

you are here � 543

This has been a turbo-charged chapter, with lots to learn. Help it all sink
in by doing this crossword. All the answers come from the chapter.

XHTMLcross

1 2 3 4

5 6

7 8

9 10 11

12 13

14

15

16

17

18

Across

5. State between liquid and frozen.
6. Type of positioning that is relative to the
viewport.
7. When you place two inline elements next to each
other, their margins don't ________.
12. In general _____ is a better technique for
column layouts because you can use clear.
13. Inline elements are flowed from the top
______.
15. Special inline elements that get grouped
together into boxes as the page is laid out.
16. Absolute positioning is relative to the
positioned _____ block.
17. This kind of margin was used on the coupon for
a special effect.
18. Usually used to identify an element that is
going to be positioned.

Down

1. Another name for the browser window.
2. Method browser uses to position static elements
on the page.
3. Property that describes the layering behavior of
positioned elements.
4. Property used to fix footer overlap problems.
8. With this positioning, you specify the position
relative to the edges of the containing block.
9. Block elements are flowed top to ______.
10. A positioning type that keeps elements in the
flow.
11. When boxes are placed on top of each other,
these collapse.
12. Removes element from the flow, and sets it to
one side.
14. Inline content flows around ______ elements.

544 Chapter 12

Open your “lounge.html”
file and locate all the
block elements. Flow
each one on to the page
below. Just concentrate
on the block elements
nested directly inside the
body element. You can
also ignore the “float”
property in your CSS

because you still don’t know what

BE the
h1

p

p

p

p

p

p

h2

p

ul

div

div

Each block element
in your “lounge.
html” file is flowed
from top to bottom,
with a linebreak in
between.

These three elements
have nested block
elements in them.

We didn’t ask you
to, but if you
went the extra
mile, here’s how
they get flowed.

div

p

p

p

h3

p

p

h3

p

p

h3

h2

Exercise
Solutions

exercise solutions

layout and positioning

you are here � 545

Move the elixirs <div> back to its original place below the music
recommendations, then save and reload the page. Where does the
element get floated now? You should have seen the elixirs below the music
recommendations.

The <div> is floated
to the right, just
below the music
recommendations, and
the remainder of the
XHTML is floated
around it (which is just
the footer).

#sidebar {
 background: #efe5d0 url(images/background.gif) bottom right;
 font-size: 105%;
 padding: 15px;
 margin: 0px 10px 10px 10px;
 width: 280px;
 float: right;
}

15 + 15 + 280 + 0 + 0 + 10 + 10 = 330

lef
t p

ad
din

g

rig
ht

 pa
dd

ing

con
te

nt
 ar

ea

lef
t b

ord
er

rig
ht

 bo
rd

er

rig
ht

 m
arg

in

lef
t m

arg
in

What we want to do is set a right margin on the main content section so that it’s
the same width as the sidebar. But how big is the sidebar? Well, we hope you
aren’t already rusty since the last chapter. Here’s all the information you need to
compute the width of the sidebar. And here’s the solution.

Sharpen your pencil

Exercise
Solutions

Solution

546 Chapter 12

Sharpen your pencil

_______________ {
 margin-top: 140px;
 margin-left: 20px;
 width: 500px;
}

_______________ {
 position: absolute;
 top: 20px;
 left: 550px;
 width: 200px;
}

_______________ {
 float: left;
}

_______________ {
 position: absolute;
 top: 20px;
 left: 20px;
 width: 500px;
 height: 100px;
}

div id=“main”

pimg id=“photo”

div id=“header” div id=“navigation”

#header

#navigation

#main

#photo

Time to put all this knowledge about floating and positioning to a test!
Take a look at the Web page below. There are four elements with
an id. Your job is to correctly match each of those elements with the
CSS rules on the right, and fill in the correct id selector for each one.
Here’s the solution. Did you get them all correct?

Fill in the selectors to
complete the CSS.

Solution

exercise solutions

layout and positioning

you are here � 547

V
1

F
2

Z
3

C
4

I L - L

J
5

E L L O F
6

I X E D

W W N A

P D R

C
7

O L L A
8

P S E

B
9

R B X R
10

M
11

F
12

L O A T S L
13

E F T A

L T O F
14

L R

O T
15

E X T L L A G

A O U C
16

O N T A I N I N G

T M T A I N

N
17

E G A T I V E S

E E

I
18

D

Across

5. State between liquid and frozen. [jello]
6. Type of positioning that is relative to the
viewport. [fixed]
7. When you place two inline elements next to each
other, their margins don't ________. [collapse]
12. In general _____ is a better technique for
column layouts because you can use clear. [float]
13. Inline elements are flowed from the top
______. [left]
15. Special inline elements that get grouped
together into boxes as the page is laid out. [text]
16. Absolute positioning is relative to the
positioned _____ block. [containing]
17. This kind of margin was used on the coupon for
a special effect. [negative]
18. Usually used to identify an element that is
going to be positioned. [id]

Down

1. Another name for the browser window.
[viewport]
2. Method browser uses to position static elements
on the page. [flow]
3. Property that describes the layering behavior of
positioned elements. [z-index]
4. Property used to fix footer overlap problems.
[clear]
8. With this positioning, you specify the position
relative to the edges of the containing block.
[absolute]
9. Block elements are flowed top to ______.
[bottom]
10. A positioning type that keeps elements in the
flow. [relative]
11. When boxes are placed on top of each other,
these collapse. [margins]
12. Removes element from the flow, and sets it to
one side. [float]
14. Inline content flows around ______ elements.
[floated]

Solution

this is a new chapter 549

Getting Tabular
13 tables and more lists

If it walks like a table and talks like a table... There comes a

time in life when we have to deal with the dreaded tabular data. Whether you need to

create a page representing your company’s inventory over the last year or a catalog

of your Beanie Babies collection (don’t worry, we won’t tell), you know you need to

do it in XHTML; but how? Well, have we got a deal for you: order now and in a single

chapter we’ll reveal the secrets that will allow you to put your very own data right

inside XHTML tables. But there’s more: with every order we’ll throw in our exclusive

guide to styling XHTML tables. And, if you act now, as a special bonus, we’ll throw in

our guide to styling XHTML lists. Don’t hesitate, call now!

550 Chapter 13

Hey guys, I just created this
little table of the cities in my journal.

I was going to put it on the Web site, but
I couldn’t find a good way to do it with
headings or blockquotes or paragraphs.

Can you help?

City		 Date	 Temperature Altitude Population 	 Diner Rating

Walla Walla, WA	 June 15 75 1,204 ft 29, 686	 4/5

Magic City, ID June 25 74 5,312 ft 50 3/5

Bountiful, UT July 10 91 4,226 ft 41, 173 4/5

Last Chance, CO July 23 102 4,780 ft	 265 3/5

Consequences, NM August 9 93 4,242 ft 7, 289 5/5

Why, AZ August 18 104 860 ft 480 3/5

Truth or

something new from tony

tables and more lists

you are here � 551

How do you make tables with XHTML?
Tony’s right; you really haven’t seen a good way of using XHTML to represent
his table, at least not yet. While you might think there’s a way to use CSS and
<div>s to create tables, XHTML has a <table> element to take care of all
your tabular needs. Before we dive into the <table> element, let’s first get an
idea of what goes into a table:

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,.226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93º 4,242 ft 7,289 5/5

Why, AZ August 18th 104º 860 ft 480 3/5

We have columns...

And we
have rows...

And this row
has headings.

We call each piece of data a cell,
or sometimes just table data.

If they put you in charge of XHTML, how would you design one or more elements
that could be used to specify a table, including headings, rows, columns, and the
actual table data?

brain
power?

552 Chapter 13

How to create a table using XHTML
Before we pull out Tony’s site and start making changes, let’s get the table
working like we want it in a separate XHTML file. We’ve started the table and
already entered the headings and the first two rows of the table into an XHTML
file called “table.html” in the “chapter13/journal/” folder. Check it out:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
 <style type=“text/css”>
 td, th {border: 1px solid black;}
 </style>
 <title>Testing Tony’s Travels</title>
</head>
<body>
 <table>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td>June 15th</td>
 <td>75</td>
 <td>1,204 ft</td>
 <td>29,686</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td>June 25th</td>
 <td>74</td>
 <td>5,312 ft</td>
 <td>50</td>
 <td>3/5</td>
 </tr>
 </table>
</body>
</html>

We use a <table> tag to start the table.

Each <tr>
element forms
a table row.

Each <th> element is a table heading for a column.

Notice that the table headings are listed one
after each other. While these look like they
might make up a column in the HTML, we are
actually defining the entire table headings row.
Look back at Tony’s list to see how his headings
map to these.

Here’s the first row, which we start with a <tr>.

Each <td> element holds one cell of the
table, and each cell makes a separate column.

And here’s the third
row. Again, the <td>
elements each hold one
piece of table data.

Just a small bit of CSS so we
can see the structure of the
table in the browser. Don’t
worry about this for now.

Here’s the start of the second row, which is
for the city Walla Walla.

All these <td>s make up one row.

an xhtml table

tables and more lists

you are here � 553

What the browser creates
Let’s take a look at how the browser displays this XHTML table. We’ll warn you
now: this isn’t going to be the best-looking table, but it will look like a table. We’ll
worry about how it looks shortly; for now let’s make sure you’ve got the basics down.

Here’s how the browser
displays the table XHTML.

First type in the “Testing Tony’s Travels” XHTML from the previous page. Typing
this in, while tedious, will help get the structure of the <table>, <tr>, <th>, and
<td> tags in your head. When you finish, give it a quick test, and then add the
remaining items from Tony’s table. Test that too.

We’ve got three rows total,
including the headings.

And six columns, just
what we expected.

Each <td> is in
its own cell.

And each <th> is in a cell
as well. It looks like the
browser displays headings
in bold by default.

Exercise

554 Chapter 13

Tables dissected
You’ve seen four elements used to create
a single table: <table>, <tr>, <th> and <td>.
Let’s take a closer look at each one to see
exactly what role it plays in the table.

The <table> tag is the tag that
starts the whole thing off. When
you want a table, start here.

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th 93º 4,242 ft 7,289 5/5

Why, AZ August 18th 104º 860 ft 480 3/5

<table>

</table>

<tr> </tr>

<th>Date</th>

<td>August 9th</td>

<tr> </tr>
<tr> </tr>
<tr> </tr>
<tr> </tr>
<tr> </tr>

<tr> </tr>

Each <tr> element
specifies a table row.
So, all the table
data that goes in a
row is nested inside
the <tr> element.

The </tr> tag ends
a row of the table.

The </table> tag
ends the table.

The <td> element contains one data cell in
your table. It must be inside a table row.

The <th> element contains one cell in the heading
of your table. It must be inside a table row.

tables up close

tables and more lists

you are here � 555

Q: Why isn’t there a table
column element? That seems pretty
important.

A: The designers of XHTML
decided to let you specify tables by
row, rather than by column. But notice
that by specifying each row’s <td>
elements, you are implicitly specifying
each column anyway.

Q: What happens if I have
a row that doesn’t have enough
elements? In other words, I’ve got
less things than the number of
columns in the table?

A: The easiest way to deal with
that is to just leave the content of the
data cell empty; in other words, you
write <td></td>. If you leave out the
data cell, then the table won’t line up
properly, so all the data cells have to
be there, even if they are empty.

Q: What if I want my table
headings to be down the left side of
the table, instead of across the top;
can I do that?

A: Yes, you certainly can. You
just need to put your table heading
elements in each row instead of all
in the first row. If your <th> element
is the first item in each row, then the
first column will consist of all table
headings.

Q: My friend showed me a
cool trick where he did all his page
layout right within a table. He didn’t
even have to use CSS!

A: Go straight to CSS jail. Do
not pass go; do not collect $200.
Using tables for layout was commonly
done in the HTML era before CSS,
when, frankly, there was no better way
to do complex layouts. However, it is
a poor way to do your layouts today.
Using tables for layout is notoriously
hard to get right and difficult to
maintain. Tell your friend that his
technique is old school, and he needs
to get up to speed with the right way
to do layout: CSS with XHTML.

Q: Isn’t a table all about
presentation? What happened to
presentation versus structure?

A: Not really. With tables you are
specifying the relationships between
truly tabular data. We’ll use CSS to
alter the presentation of the table.

there are noDumb Questions
Tables give you a way to
specify tabular data in
your HTML.

Tables consist of data
cells within rows.
Columns are implicitly
defined within the rows.

The number of columns
in your table will be the
number of data cells you
have in a row.

In general, tables are
not meant to be used for
presentation; that’s the
job of CSS.

556 Chapter 13

On the left, you’ll find the XHTML
for a table. Your job is to play
like you’re the browser displaying
the table. After you’ve done the

exercise, look at the end of
the chapter to see if
you got it right.

BE the Browser

<table><tr><th>Artist</th>
<th>Album</th></tr><tr>
<td>Enigma</td><td>Le Roi Est Mort,
Vive Le Roi!</td></tr> <tr><td>LTJ
Bukem</td>
<td>Progression Sessions 6</td>
</tr><tr>
<td>Timo Maas</td>
<td>Pictures</td></tr></table> Here’s just the

table XHTML..

Draw the table here.

Argh! Someone needs to learn
how to format their XHTML.

testing you on tables

tables and more lists

you are here � 557

Adding a caption and a summary
There are a couple of things you can do right off the bat to improve your
tables, like adding a caption and a summary.

 <table summary=”This table holds data about the
cities I visited on my travels. I’ve included the date
I was in each city, the temperature when I was there,
and altitude and population of each city. I’ve also
included a rating of the diners where I had lunch, on a
scale from 1 to 5.”>
 <caption>
 The cities I visited on my
 Segway’n USA travels
 </caption>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td>June 15th</td>
 <td>75</td>
 <td>1,204 ft</td>
 <td>29,686</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td>June 25th</td>
 <td>74</td>
 <td>5,312 ft</td>
 <td>50</td>
 <td>3/5</td>
 </tr>
 .
 .
 .
 </table>

The rest of the table
rows go here.

The summary doesn’t
appear in the Web page
display. This is purely
for accessibility, and
acts as a bit of text
a screen reader may
read aloud to a user to
describe the table.

The caption, on the other hand, is displayed
in the browser. By default, most browsers
display this above the table.

If you don’t like the default location
of the caption, you can use CSS to
reposition it (we’ll give that a try in a
sec), although some browsers don’t fully
support repositioning the caption yet.

558 Chapter 13

Test drive... and start thinking about style

The caption is at the top of the table. It’ll probably look better on the bottom.

You won’t see the summary; it’s primarily

for screen readers to read
 aloud to the

visually impaired to help provide more

information about the table data
.

We really need to add some padding
to the table data cells, to make
them easier to read.

And a splash of orange to
match Tony’s site could really
pull the whole thing together.

Add the summary and caption to your table. Save and reload.

And the border lines are really “heavy” visually.
We could use much “lighter” borders in the
table cells, although it would be nice to have a
dark border around the whole table.

checking out the unstyled table

tables and more lists

you are here � 559

Before we start styling, let’s get the table
into Tony’s page
Before we start adding style to Tony’s new table, we should really get the table
into his main page. Remember that Tony’s main page already has set a font-
family, font-size, and a lot of other styles that our table is going to inherit. So
without putting the table into his page we won’t really know what the table
looks like.

Start by opening the “journal.html” in the “chapter13/journal” folder, locate
the August 20th entry, and make the following changes. When you’ve finished,
move on to the next page before reloading.

<h2>August 20, 2005</h2>
<p>

</p>

<p>
Well, I made it 1200 miles already, and I passed through some interesting
places on the way:
</p>

 Walla Walla, WA
 Magic City, ID
 Bountiful, UT
 Last Chance, CO
 Truth or Consequences, NM
 Why, AZ

<table summary=”This table holds data about the cities I visited on my travels. I’ve included
 the date I was in each city, the temperature when I was there, and altitude and population
 of each city. I’ve also included a rating of the diners where I had lunch, on a
 scale from 1 to 5.”>
 <caption>The cities I visited on my Segway’n USA travels</caption>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 .
 .
 .
</table>

This is the old list of
cities. Delete this
because we’re replacing
it with the table.

The new table goes here. Copying and pasting it from the
previous file is the easiest way to get it here.

560 Chapter 13

body {
 font-family: Verdana, Geneva, Arial, sans-serif;
 font-size: small;
}
h1, h2 {
 font-weight: normal;
 color: #cc6600;
 border-bottom: thin dotted #888888;
}
h1 {
 font-size: 170%;
}
h2 {
 font-size: 130%;
}
blockquote {
 font-style: italic;
}

table {
 margin-left: 20px;
 margin-right: 20px;
 border: thin solid black;
 caption-side: bottom;
}

td, th {
 border: thin dotted gray;
 padding: 5px;
}

caption {
 font-style: italic;
 padding-top: 8px;
}

This is all the style that’s

currently in Tony’s Web page.

We added all this in Chapter 9.

We’re going to add the new
 style

for the tables below it.

This rule styles the caption. We’re changing the
font-style to italic and adding some top padding.

First, we’ll style the table. We’re going to add a margin on
the left and right, and a thin, black border to the table.

Let’s also change the border on the table data cells to be a
much lighter, dotted border in gray.

And let’s add some padding to the data cells so there’s some
space between the data content and the border.

Now let’s style the table
Now we need to copy the table styles into “journal.css”. But, since we’re going
to change them anyway, let’s just add new style instead. Add the new styles
highlighted below at the bottom of the style sheet file.

And, we’re going to move that caption
to the bottom of the table.

tables and style

tables and more lists

you are here � 561

Taking the styled tables for a test drive
That’s a lot of changes at once. Make sure you save them, and you should
validate as well. Then load “journal.html” into your browser.

The table looks quite
different now that you’ve
styled it. We’re also
inheriting a few styles that
were already in Tony’s journal.

All the fonts are now sans-serif
and a smaller size. We picked
that up from the previous styles
already in the file.

Now we’ve got a dark border
and dotted lines.

And we’ve got some margin on
the table and some padding in
each table cell.

Those dotted lines are looking
really busy and distracting
though. It doesn’t help that they
are duplicated between each pair
of table cells.

Remember, in browsers that don’t support the caption-side
property, the caption will still be at the top of the table.

562 Chapter 13

Table cells look like they
just use the box model too...

they’ve got padding and a border.
Do they also have a margin?

The box model is a good way to think about table cells, but they do
differ when it comes to margins. Let’s take a look at one of the cells
in Tony’s table:

Table cells do have padding and a border – just
like you’ve seen in the box model – but they
are a little different when it comes to margins.

Here’s the content.

And here’s
the padding.

And here’s the border.

We call the space in between
the cells border-spacing.

So instead of a margin, we have a border-spacing property,
which is defined over the entire table. In other words, you can’t set
the “margin” of an individual table cell; rather, you set a common
spacing around all cells.

cells and the box model

tables and more lists

you are here � 563

Q: So border spacing is defined for
the entire table, while a margin can be
set for an individual element?

A: Right. Table cells don’t have
margins; what they have is spacing around
their borders, and this spacing is set for the
entire table. You can’t control the border
spacing of each table cell separately.

Q: Well, is there any way to have
different border spacing on the vertical
than I have on the horizontal? That
seems useful.

A: You sure can. You can specify your
border spacing like this:
 border-spacing: 10px 30px;
That sets ten pixels of horizontal border
space and thirty pixels of vertical border
space.

Q: The border-spacing doesn’t seem
to work in my browser.

A: Are you using Internet Explorer?
We’re sorry to report that IE version 6
doesn’t support border-spacing. And, we’re
sorry we didn’t tell you sooner. But, hey,
you’re not going to forget that now, are you?

The double dotted lines are giving Tony’s table a busy and distracting
look. It would be much better, and wouldn’t detract from the table, if
we could just have one border around each table cell. Can you think of
a way to do that with styling given what you’ve just learned? Give it a
try and check your answer in the back of the chapter.

Sharpen your pencil

564 Chapter 13

Getting those borders to collaspe

table {
 margin-left: 20px;
 margin-right: 20px;
 border: thin solid black;
 caption-side: bottom;
 border-collapse: collapse;
}

There is another way to solve the border dilemma, besides the
border-spacing property. You can use a CSS property called
border-collapse to collapse the borders so that there is no
border spacing at all. When you do this, your browser will ignore
any border spacing you have set on the table. It will also combine
two borders that are right next to each other into one border. This

“collapses” two borders into one.

Here’s how you can set the border-collapse property. Follow
along and make this change in your “journal.css” file:

Add a border-collapse property
and set its value to “collapse”.

Save the file and reload; then check out the
changes in the border.

Now you just have one single border
around all the table cells. Just what
we wanted, and don’t you agree the
table looks much cleaner now?

dealing with table borders

tables and more lists

you are here � 565

You’re becoming quite the pro at XHTML and CSS, so we don’t mind
giving you a little more to play with in these exercises. How about this:
we’d like to spruce this table up even a little more, starting with some text
alignment issues. Let’s say we want the date, temperature, and diner rating
to be center-aligned. And how about right alignment on the altitude and
population? How would you do that?
Here’s a hint: create two classes, one for center-aligned and one for right-
aligned. Then just use the text-align property in each. Finally, add the
appropriate class to the correct <td> elements.
This may sound tough, but take it step by step; you already know everything
you need to finish this one. And, of course, you can find the answer in the
back of the chapter, but give yourself the time to solve it before you peek.

These are all centered.

And these are right aligned.

Sharpen your pencil

566 Chapter 13

How about some color?

th {
 background-color: #cc6600;
}

.cellcolor {
 background-color: #fcba7a;
}

You know Tony loves his signature color and there’s no
reason not to add some color to his table; not only will it look
great, but we can actually improve the readability of the
table by adding some color. Just like for any other element,
all you need to do is set the background-color property
on a table cell to change its color (notice how everything
you’ve learned about XHTML and CSS is starting to come
together!). Here’s how you do that:

Add this new rule to your “journal.css” file and reload.
Here’s what you’ll see:

How about some color in the
table rows?
So far the color is looking pretty nice. So let’s take it to the
next level. A common way to color tables is to give rows an
alternating color, which allows you to more easily see each
row without getting confused about which column goes
with which row. Check it out:

Difficult to do in CSS? Nope. Here’s how you can
do this. First define a new class; let’s call it “cellcolor”:

Now all you need to do is add this class attribute to each
row you’d like to color. So in this case, you find the <tr>
opening tags for Magic City, Last Chance, and Why, and
add class=”cellcolor” to each one.

coloring cells

tables and more lists

you are here � 567

Your turn. Add the class “cellcolor” to your CSS in “journal.css”,
and then, in your XHTML, add class=”cellcolor” to each of the <tr>
opening tags needed to make the rows alternating colors. Check
your answers before moving on.

Did we mention that Tony made an
interesting discovery in Truth or
Consequences, New Mexico?

Tess

It’s fair to say Tony found something interesting
about Truth or Consequences, New Mexico; in
fact, he found her so interesting that after going to
Arizona, he turned around and came right back.

We’re glad for Tony, but he’s really given us a
conundrum with the table. While we could just
add a new row for Truth or Consequences, we’d
really like to do it in a more elegant way. What are
we talking about? Turn the page to find out.

Exercise

568 Chapter 13

Another look at Tony’s table
Based on his return trip to New Mexico, Tony’s added a new entry for August 27th,
just below the original Truth or Consequences entry. He’s also reused a couple of
cells where the information didn’t change (a great technique for reducing the amount
of information in a table). You can see that when he added the new row, all he
needed to do was list the things that were different the second time around (the date,
the temperature, and that he revisited the diner).

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th

August 27th

93º

98º

4,242 ft 7,289 5/5

4/5

Why, AZ August 18th 104º 860 ft 480 3/5

Here are both
Tony’s visits
to Truth or
Consequences.

City		 Date	 Temperature Altitude Population 	 Diner Rating

Walla Walla, WA	 June 15 75 1,204 ft 29, 686	 4/5

Magic City, ID June 25 74 5,312 ft 50 3/5

Bountiful, UT July 10 91 4,226 ft 41, 173 4/5

Last Chance, CO July 23 102 4,780 ft	 265 3/5
	 August 9 93 		 5/5

		 August 27	 98				 4/5

Why, AZ August 18 104 860 ft 480 3/5

Truth or 4,242 ft 7, 289Consequences, NM

But where does this leave you with XHTML? It seems like you’d have to add a
entirely new row and just duplicate the city, altitude and population, right? Well, not
so fast. We have the technology... using XHTML tables, you can have cells span
more than one row (or more than one column). Let’s see how this works...

These table data cells
span TWO rows now.

using table spans

tables and more lists

you are here � 569

How to tell cells to span more than one row
What does it mean for a cell to span more than one row? Let’s look at the entries
for Truth or Consequences, NM in Tony’s table again. The data cells for city,
altitude, and population span two rows, not one, while the date, temp, and diner
rating span one row, which is the normal, default behavior for data cells.

 <tr>
 <td rowspan=”2”>Truth or Consequences, NM</td>
 <td class=”center”>August 9th</td>
 <td class=”center”>93</td>
 <td rowspan=”2” class=”right”>4,242 ft</td>
 <td rowspan=”2” class=”right”>7,289</td>
 <td class=”center”>5/5</td>
 </tr>
 <tr>

 <td class=”center”>August 27th</td>
 <td class=”center”>98</td>

 <td class=”center”>4/5</td>
 </tr>

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th

August 27th

93º

98º

4,242 ft 7,289 5/5

4/5

Why, AZ August 18th 104º 860 ft 480 3/5

These cells span two rows.
While the date, temp,
and diner rating cells
take up just one.

So, how do you do that in XHTML? It’s easier than you might think: you use the
rowspan attribute to specify how many rows a table data cell should take up, and
then remove the corresponding table data elements from the other rows that the cell
spans over. Have a look – it’s easier to see than describe:

Here are the two table
rows that have the New
Mexico data.

For the data cells that don’t
change on the second visit (city,
altitude, and population) we add
a rowspan attribute indicating
the table data spans two rows.

Then in the second row we
specify just the columns we need
(date, temp, and a new rating).

The city is not
needed because
of the rowspan.

Same with
altitude and
population.

570 Chapter 13

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th

August 27th

93º

98º

4,242 ft 7,289 5/5

4/5

Why, AZ August 18th 104º 860 ft 480 3/5

Just to make sure you’ve got this down, draw an arrow
from each <td> element to its corresponding cell in the
table. Check your answers before moving on.

 <tr>
 <td rowspan=”2”>Truth or Consequences, NM</td>
 <td class=”center”>August 9th</td>
 <td class=”center”>93</td>
 <td rowspan=”2” class=”right”>4,242 ft</td>
 <td rowspan=”2” class=”right”>7,289</td>
 <td class=”center”>5/5</td>
 </tr>
 <tr>

 <td class=”center”>August 27th</td>
 <td class=”center”>98</td>

 <td class=”center”>4/5</td>
 </tr>

testing your table knowledge

tables and more lists

you are here � 571

The new and improved table
Make the changes to the table
in “journal.html” and give it a test
run. Take a look at the table. Think
about exactly what you’re doing to
the table: you’re using XHTML to
specify that certain cells should take
up more than one row, and to do
that, you’re removing the <td>s
they’re displacing.

Now we’ve got a great-looking
table that doesn’t have any
redundant information in it.

Q: You said you can have table data
span columns too?

A: You sure can. Just add a colspan
attribute to your <td> element and specify
the number of columns. Unlike the rowspan,
when you span columns, you remove table
data elements that are in the same row
(since you are spanning columns, not rows).

Q: Can I have a colspan and
rowspan in the same <td>?

A: You sure can. Just make sure
you adjust the other <td>s in the table to
account for both the row and column spans.
In other words, you’ll need to remove the
corresponding number of <td>s from the
same row, and from the column.

Q: Do you really think these
rowspans look better?

A: Well they certainly reduce the
amount of information in the table, which is
usually a good thing. And, if you look at a
few tables out there in the real world you’ll
find that rowspans and colspans are quite
common, so it’s great to be able to do them
in XHTML. But if you liked the table better
before, feel free to change your XHTML and
go back to the previous version.

572 Chapter 13

Four out of five
stars? I know my diners
and that was a solid five
star rating! You better
change that in the table.

It looks like we’ve got a disagreement on the diner rating for August
27th, and while we could ask Tony and Tess to come to a consensus, why
should we? We’ve got tables and we should be able to get another rating
in there. But how? We don’t really want to add yet another entry just for
Tess’ review. Hmmm... why don’t we do it like this?

Trouble in paradise?

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th

August 27th

93º

98º

4,242 ft 7,289 5/5

Why, AZ August 18th 104º 860 ft 480 3/5

Tess 5/5

Tony 4/5

Why not put both their ratings
in the table? That way we get
more accurate information.

we need a nested table

tables and more lists

you are here � 573

 <tr>
 <td rowspan=”2”>Truth or Consequences, NM</td>
 <td class=”center”>August 9th</td>
 <td class=”center”>93</td>
 <td rowspan=”2” class=”right”>4,242 ft</td>
 <td rowspan=”2” class=”right”>7,289</td>
 <td class=”center”>5/5</td>
 </tr>
 <tr>
 <td class=”center”>August 27th</td>
 <td class=”center”>98</td>
 <td>
 4/5
 <table>
 <tr>
 <th>Tess</th>
 <td>5/5</td>
 </tr>
 <tr>
 <th>Tony</th>
 <td>4/5</td>
 </tr>
 </table>
 </td>
 </tr>

... and put a table in its place. This table
holds two diner ratings: one for Tess and
one for Tony. We’re using table headings for
their names, and data cells for their ratings.

That’s because it is. But, nested tables in
XHTML are straightforward. All you need
to do is put another <table> element
inside a <td>. How do you do that? You
create a simple table to represent both
Tony’s and Tess’ ratings together, and when
you have that working, put it inside the
table cell that now holds Tony’s 4/5 rating.
Let’s give it a try...

Hold on... that looks like
a table within a table.

First delete the old rating
that represented Tony’s rating...

574 Chapter 13

Test driving the nested table
Go ahead and type in the new table. Tables are easy to mistype,
so make sure you validate and then reload your page. You
should see the new, nested table.

Wow, looking nice.
Only that background
really is a bit much
for a nested table.
Let’s keep the names
bold, but take off
the background color.

testing and improvements

tables and more lists

you are here � 575

brain
Barbell

 {
 background-color: white;
}

We want to change the background color of
the nested table headers to white.

Determine the
selector to select
only the nested
table heading
elements.

It’s time to fall back on all that training you’ve done. What you need to do is
change the table heading background color for just Tony and Tess, and do
it without changing the background of the main table headings. How? You
need to find a selector that selects only the nested table headings.

Stop! Don’t turn
the page until you

do this exercise.

576 Chapter 13

Overriding the CSS for the nested
table headings

table table th {
 background-color: white;
}

You can target just the <th> elements in the nested table using
a descendant selector. Add a new rule to your CSS that uses
the “table table th” selector to change the background color of
the nested table headers to white:

Now save the changes to your “journal.css” file and reload.

Now the <th> in the
nested table has a
white background.

But notice it still has the bold
font weight since we didn’t
override that property.

You want Tony and Tess to
have different background
colors on their table rows;
say, blue and pink. Can
you think of several ways
to do that?

brain
power?

Q: I used a class to solve the
Brain Barbell. I created a class called

“nestedtable” and assigned each table
heading to it. Then I created a rule like
this:

.nestedtable {
 background-color: white;
}

Is that an okay solution too?

A: There are lots of different ways to
solve problems using CSS, and certainly
your solution is an effective and perfectly
valid way to use CSS. We’ll just point out
that by using the descendant selector
instead, we didn’t have to make any
changes to our XHTML. What if Tony and
Tess keep adding reviews for diners?
Then for every review, you’d have to
make sure and add the class to each <th>.
With our solution, the styling happens
automatically.

how to override nested styles

tables and more lists

you are here � 577

Giving Tony’s site the final polish
Tony’s page is really looking nice, but there’s one more area we haven’t spent
any time styling yet: the list that contains the set of items he was preparing for
his trip. You’ll find this list in his June 2nd entry; check it out below:

 .
 .
 .
 <h2>June 2, 2005</h2>

 <p>
 <img src=”images/segway1.jpg”
 alt=”The first day of the trip” />
 </p>

 <p>
 My first day of the trip! I can’t
 believe I finally got everything
 packed and ready to go. Because
 I’m on a Segway, I wasn’t able
 to bring a whole lot with me:
 </p>

 cellphone
 iPod
 digital camera
 a protein bar

 <p>
 Just the essentials. As Lao Tzu
 would have said, <q>A journey of
 a thousand miles begins with
 one Segway.</q>
 </p>
</body>
</html>

Here’s the bottom of Tony’s journal,
“journal.html”. Remember his packing
list in his first journal entry?

We’re looking at just the XHTML
snippet from the June 2nd entry.

Here’s what the list looks like now.

578 Chapter 13

Giving the list some style
You’re probably figuring out that once you know the basic CSS font, text,
color, and other properties, you can style just about anything. The same
is true for lists; in fact, there are only a couple of properties that are
specific to lists. The main list property is called list-style-type
and it allows you to control the bullets (or “markers”, as they are called)
used in your lists. Here are a few ways you can do that:

li {
 list-style-type: disc;
}

Disc is the default
marker type.

li {
 list-style-type: none;
}

li {
 list-style-type: square;
}

li {
 list-style-type: circle;
}

The circle property value gives
you a simple circle marker.

A value of none
removes the marker
altogether.

And square gives you a
square marker.

Here we’re setting the style on the element. You can also set it
on the element, and it will be inherited by the elements.

back to styling lists

tables and more lists

you are here � 579

What if you want a custom marker?
Do you really think Tony would want anything less than his
own custom marker? Well, luckily CSS has a property called
list-style-image that lets you set an image to be the
marker for a list. Let’s give it a try on Tony’s list:

And, the final test drive...
This is it: your last change to Tony’s
site. Add the rule for the list item to your
CSS and then reload.

The image “backpack.gif” is a
small version of this backpack.
Seems fitting doesn’t it? And
in Tony’s signature color, too.

li {
 list-style-image: url(images/backpack.gif);
 padding-top: 5px;
 margin-left: 20px;
} We’re adding some margin to add

space on the left of the list items,
and also a little top padding to give
each list item a bit of headroom.

Here’s the list-style-image property,
which we’re setting to a URL.

Here’s the list with the marker replaced with an image and some extra margin and padding spacing.

580 Chapter 13

Q: What about ordered lists? What
can I do to change their style?

A: You style ordered and unordered
lists in the same way. Of course, an ordered
list has a sequence of numbers or letters
for markers, not bullets. Using CSS you can
control whether an ordered lists’ markers
are decimal numbers, roman numerals,
or alphabetic letters (like a, b, c) with the
list-style-type property. Common values are
decimal, upper-alpha, lower-alpha, upper-
roman, and lower-roman. Consult a CSS
reference for more options (there are many).

Q: How can I control the text wrap on
lists? In other words, how can I control
whether text wraps underneath the
marker or just underneath the text?

A: There’s a property called list-style-
position. If you set this property to “inside”
then your text will wrap under the marker.
If you set it to “outside” then it will wrap just
under the text above it.

Q: Are you sure that’s right? That
seems backwards.

A: Yes, and here’s what inside and
outside really mean: if you set your line-
style-position to “inside” then the marker is
inside your list item and so text will wrap
under it. If you set it to “outside”, then the
marker is outside your list item and so text
will just wrap under itself. And, by “inside
your item” we mean inside the border of the
list item’s box.

there are noDumb Questions

Wow, who would have
known we could take my site

this far when we started?

We’re going to get Tess a Segway of
her own so she can go with me on the

rest of my Segway’n USA trip. See
ya somewhere... and we’ll BOTH be

updating the Web page. Thanks
for everything!

some finer points about styling lists

tables and more lists

you are here � 581

XHTML tables are used nn to structure tabular
data.
Use the HTML table elements, <table>, <tr>, nn
<th>, and <td> together to create a table.
The <table> element defines and surrounds nn
the entire table.
Tables are defined in rows, using the <tr> nn
element.
Each row contains one or more data cells, nn
defined with the <td> element.
Use the <th> element for data cells that are nn
row or column headings.
Tables are laid out in a grid. Each row nn
corresponds to a <tr>...</tr> row in your
HTML, and each column corresponds to the
<td>...</td> content within the rows.
You can provide additional information about nn
your tables with the table summary attribute,
and the <caption> element.
Table data cells can have padding, borders, nn
and border spacing, which is the space
between cells.
Just like you can control the padding, borders, nn
and margins of elements, you can control the
padding, borders, and border spacing of table
cells with CSS.
The border-collapse property is a special CSS nn
property for tables that allows you to combine
cell borders into one border for a cleaner look.

You can change the alignment of the data in nn
your table cells with the text-align and vertical-
align CSS properties.
You can add color to your tables with the nn
background-color property. Background color
can be added to the entire table, to each row,
or to a single data cell.
If you have no data for a data cell, put no nn
content into the <td> element. You need to
use a <td>...</td> element to maintain the
alignment of the table, however.
If your data cell needs to span multiple rows or nn
columns, you can use the rowspan or colspan
attributes of the <td> element.
You can nest tables within tables by placing nn
the <table> element and all its content inside
a data cell.
Tables should be used for tabular data, not for nn
laying out your pages. Use CSS positioning
to create multi-column page layouts as we
described in Chapter 12.
Lists can be styled with CSS just like nn
any other element. There are a few CSS
properties specific to lists, such as list-style-
type and list-style-image.
list-style-type allows you to change the type of nn
the marker used in your list.
list-style-image allows you to specify an image nn
for your list marker.

 BULLET POINTS

582 Chapter 13

XHTMLcross
That crossword looks a bit like a table, doesn’t it? Give your left brain a workout and
solve this crossword. All the words are from this chapter.

some left brain action

tables and more lists

you are here � 583

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <meta http-equiv=“Content-Type” content=”text/html; charset=ISO-8859-1” />
 <style type=”text/css”>
 td, th {border: 1px solid black;}
 </style>
 <title>Testing Tony’s Table</title>
</head>
<body>
 <table>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td>June 15th</td>
 <td>75</td>
 <td>1,204 ft</td>
 <td>29,686</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td>June 25th</td>
 <td>74</td>
 <td>5,312 ft</td>
 <td>50</td>
 <td>3/5</td>
 </tr>
 <tr>
 <td>Bountiful, UT</td>
 <td>July 10th</td>
 <td>91</td>
 <td>4,226 ft</td>
 <td>41,173</td>
 <td>4/5</td>
 </tr>
 <tr>
 <td>Last Chance, CO</td>
 <td>July 23rd</td>
 <td>102</td>
 <td>4,780 ft</td>
 <td>265</td>
 <td>3/5</td>
 </tr>
 <tr>
 <td>Truth or Consequences, NM</td>
 <td>August 9th</td>

First type in the
“Testing Tony’s Table”
XHTML. Typing this
in, while tedious,
will help get the
structure of the
<table>, <tr>, <th>,
and <td> elements in
your head. When you
finish, give it a quick
test, and then add
the remaining items
from Tony’s table.
Test that too.

Exercise
Solutions

584 Chapter 13

 <td>93</td>
 <td>4,242 ft</td>
 <td>7,289</td>
 <td>5/5</td>
 </tr>
 <tr>
 <td>Why, AZ</td>
 <td>August 18th</td>
 <td>104</td>
 <td>860 ft</td>
 <td>480</td>
 <td>3/5</td>
 </tr>
 </table>
</body>
</html>

Exercise
Solutions

exercise solutions

tables and more lists

you are here � 585

 <td>93</td>
 <td>4,242 ft</td>
 <td>7,289</td>
 <td>5/5</td>
 </tr>
 <tr>
 <td>Why, AZ</td>
 <td>August 18th</td>
 <td>104</td>
 <td>860 ft</td>
 <td>480</td>
 <td>3/5</td>
 </tr>
 </table>
</body>
</html>

On the left, you’ll find the
XHTML for a table. Your
job is to play like you’re
the browser displaying the
table. Here’s the solution.

BE the Browser

<table>
 <tr>
 <th>Artist</th>
 <th>Album</th>
 </tr>
 <tr>
 <td>Enigma</td>
 <td>Le Roi Est Mort, Vive Le Roi!</td>
 </tr>
 <tr>
 <td>LTJ Bukem</td>
 <td>Progression Sessions 6</td>
 </tr>
 <tr>
 <td>Timo Maas</td>
 <td>Pictures</td>
 </tr>
</table>

586 Chapter 13

The double dotted lines are giving Tony’s table a busy and distracting look.
It would be much better, and wouldn’t detract from the table, if we could
just have one border around each table cell. Can you think of a way to do
that with styling given that you’ve just learned? You can set the border-
spacing property to 0 to remove the space between the borders.

table {
 margin-left: 20px;
 margin-right: 20px;
 border: thin solid black;
 caption-side: bottom;
 border-spacing: 0px;
}

Better, but we have still two lines and

they’re right up against each other, so we

have a double thick dotted border. We’d

rather it just be ONE border between the

cells. Wouldn’t we?

We could use border-spacing to set spacing to 0; then the two lines
would be right next to each other.

Sharpen your pencil
Solution

exercise solutions

tables and more lists

you are here � 587

.center {
 text-align: center;
}
.right {
 text-align: right;
}

 <table summary=”This table holds data about the cities I visited on my
travels. I’ve included the date I was in each city, the temperature when
I was there, and altitude and population of each city. I’ve also included
a rating of the diners where I had lunch, on a scale from 1 to 5.”>
 <caption>The cities I visited on my Segway’n USA travels</caption>
 <tr>
 <th>City</th>
 <th>Date</th>
 <th>Temperature</th>
 <th>Altitude</th>
 <th>Population</th>
 <th>Diner Rating</th>
 </tr>
 <tr>
 <td>Walla Walla, WA</td>
 <td class=”center”>June 15th</td>
 <td class=”center”>75</td>
 <td class=”right”>1,204 ft</td>
 <td class=”right”>29,686</td>
 <td class=”center”>4/5</td>
 </tr>
 <tr>
 <td>Magic City, ID</td>
 <td class=”center”>June 25th</td>
 <td class=”center”>74</td>
 <td class=”right”>5,312 ft</td>
 <td class=”right”>50</td>
 <td class=”center”>3/5</td>
 </tr>
 .
 .
 .
 </table>

Here are the two classes,
one for center and one
for right alignment.

And here you just add
each <td> to the
appropriate class!

Sharpen your pencil
Solution

To create alternating colors in the Magic City, Last Chance, and
Why table rows, you just add the class=”cellcolor” attribute to the
<tr> opening tag in these rows, like this:

Exercise
Solution

<tr class=”cellcolor”>
 <td>Magic City, ID</td>
 ...
</tr>

588 Chapter 13

City Date Temp Altitude Population
Diner
Rating

Walla Walla, WA June 15th 75º 1,204 ft 29,686 4/5

Magic City, ID June 25th 74º 5,312 ft 50 3/5

Bountiful, UT July 10th 91º 4,226 ft 41,173 4/5

Last Chance, CO July 23rd 102º 4,780 ft 265 3/5

Truth or
Consequences,
NM

August 9th

August 27th

93º

98º

4,242 ft 7,289 5/5

4/5

Why, AZ August 18th 104º 860 ft 480 3/5

Just to make sure you’ve got this down, draw an arrow
from each <td> element to its corresponding cell in the
table. Here are the answers.

 <tr>
 <td rowspan=”2”>Truth or Consequences, NM</td>
 <td class=”center”>August 9th</td>
 <td class=”center”>93</td>
 <td rowspan=”2” class=”right”>4,242 ft</td>
 <td rowspan=”2” class=”right”>7,289</td>
 <td class=”center”>5/5</td>
 </tr>
 <tr>

 <td class=”center”>August 27th</td>
 <td class=”center”>98</td>

 <td class=”center”>4/5</td>
 </tr>

Exercise
Solutions

exercise solutions

tables and more lists

you are here � 589

brain
Barbell

It’s time to fall back on all that training you’ve done. What you need to do is
change the table heading background color just for Tony and Tess, and do it
without changing the background of the main table headings. How? You need
to find a selector that selects only the nested table headings.

 {
 background-color: white;
}

We can use a
descendant selector to
select just the nested
table header. Here’s
how you can do that:

(1) Start by selecting
the outer table...

(2) Then select the
inner table...

(3) Then select the
table heading.

table table th
(1) (2) (3)

Exercise
Solutions

590 Chapter 13

S
1

U M M A R Y

P

A H
2

L
3

M
4

B
5

N
6

E S T E D I C
7

A O

S A S A R W
8

R

D T P G R D

L
9

I S T - S T Y L E - I M A G E

N S I N P R

G T O S P -

S Y N I S

L N P

R
10

E L
11

G A

B
12

O R D E R - C O L L A P S E C

W T Y I

L
13

I S T - S T Y L E - P O S I T
14

I O N

P U O G

M
15

A R K E R D
16

A T A P

Across

1. Provides a longer description used for screen
readers. [summary]
6. One table inside another is called _________.
[nested]
9. Use this property to use an image instead of a
built-in marker in your lists. [list-style-image]
12. Used to merge borders. [border-collapse]
13. Used to control whether the marker is inside or
outside the list items border. [list-style-position]
15. We call bullets a type of list _____. [marker]
16. <td> is for these. [data]

Down

1. What a data cell does when it uses more than one
row or column. [spans]
2. <th> is for these. [headings]
3. Use this property to change your list marker.
[list-style-type]
4. Table cells have padding and borders, but no
_____. [margins]
5. Area between borders. [border-spacing]
7. Adds a short description that is displayed with
the table. [caption]
8. list-item-position can be used to control the
behavior of text ____. [wrapping]
10. You specify HTML tables by ____, not columns.
[rows]
11. Don't use tables for this. [layout]
14. Default position of the caption. [top]

Exercise
Solutions

exercise solutions

this is a new chapter 591

Getting Interactive
14 xhtml forms

So far all your Web communication has been one way:
from your page to your visitors. Golly, wouldn’t it be nice if your visitors

could talk back? That’s where XHTML forms come in: once you enable your pages

with forms (along with a little help from a Web server), your pages are going to be

able to gather customer feedback, take an online order, get the next move in an

online game, or collect the votes in a “hot or not” contest. In this chapter you’re going

to meet a whole team of XHTML elements that work together to create Web forms.

You’ll also learn a bit about what goes on behind the scenes in the server to support

forms, and we’ll even talk about keeping those forms stylish (a controversial topic;

read on and see why).

Yeah, just got your form.
We’re checking it with the
server now, and then we’ll
get a response right back

to you.

592 Chapter 14

How forms work
If you use the Web at all, then you know what a form is. But you might not have
really thought about what they have to do with XHTML. A form is basically a Web
page with input fields that allows you to enter information. When the form is submitted,
that information is packaged up and sent off to a Web server to be processed by a
Web application. When the processing is done, what do you get? Another Web page,
of course, as a response. Let’s take a closer look at how this works:

Web Server

The browser packages up all the
data in the form and sends it
over to the Web server.

firstname=buck
lastname=bonz
item=java
number=2

Web
Application

Web Server

You visit a Web page with
an XHTML form, fill out
the form, and submit it.

The Web server receives the form data, and then passes it off to a Web application to be processed.

The Web application processes the data in the
form and creates a brand new XHTML page as a
response, which it hands back to the Web server.

The Web server sends the

Web application’s respo
nse

back to the browser.

<html>
 <head>
 <title>
 Your Order has
 Processed
 </title>
 <head>
 <body>
<p>Thanks for your
it will be shipping
soon!
 </p>
</body>
</head>

Web
Application

Browser

Browser

And the browser gets the
response and displays it.

The response is an
XHTML Web page.

1

2

browsers and forms

xhtml forms

you are here � 593

How forms work
in the browser
To a browser, a form is just a bit of XHTML in a
page. You’ll see that you can easily create forms in
your pages by adding a few new elements. Here’s how
a form works from the browser’s perspective:

The browser loads the XHTML for a page
like it always does, and when it encounters
form elements, it creates controls on the page
that allow you to input various kinds of data. A
control is just something like a button or a text
input box or a drop down menu – basically
something that allows you to input data.

The browser loads the page

You use the controls to enter data. Depending
on the type of control, this happens in
different ways. You can type a single line of
text into a text control, or you might click one
option of many in a checkbox control. We’ll
look at the different kinds of controls shortly.

You enter data

You submit the form by clicking on a submit
button control. That’s the browser’s cue that it
needs to package up all the data and send that
data off to the server.

You submit the form

Once the server has the form data, it passes
it off to the appropriate Web application
for processing. This processing results in a
brand new XHTML page that is returned to
the browser, and since it’s just XHTML, the
browser displays it for you.

The server responds

594 Chapter 14

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

 <head>

 <meta http-equiv=“Content-Type”

 content=“text/html; charset=ISO-8859-1” />

 <title>Enter the Contest</title>

 </head>

 <body>

 <form action=“http://www.headfirstlabs.com/contest.php” method=“POST”>

 <p>Just type in your name (and click Submit) to

 enter the contest:

 First name: <input type=“text” name=“firstname” value=“” />

 Last name: <input type=“text” name=“lastname” value=“” />

 <input type=“submit” />

 </p>

 </form>

 </body>

</html>

A

B

C

D

What you write in XHTML
There’s no deep mystery to creating forms with XHTML. In fact, in this
chapter you’re going to meet a whole new set of XHTML elements that all work
together to create forms. The best way to get a feel for forms is to look at a little
XHTML and then to give it a try. Check out this form:

This stuff is all old
hat for you now.

Here’s the form.

Relax
For now just take a good look at the form and what’s in it; we’ll be
going into all the details throughout the chapter.

We’ve got the <form>
element itself.

And a bunch of elements
nested inside it.

how to write a form

xhtml forms

you are here � 595

What the browser creates
Big surprise; to create a form you use a <form> element. Now, just about any block
level element can go inside the <form> element, but there’s a whole new set of
elements that are made especially for forms. Each of these form elements provides a
different way for you to enter information: text boxes, checkboxes, menus of options,
and more. We’ll examine all these elements, but first take another look back at the
XHTML on the previous page and see how the elements and content inside the
<form> element are displayed in the page below:

You’ll find the contest form in your “chapter14/contest” folder. Open it, take another
look around, then load it in your browser and enter the contest.

A
B
C
D

Here’s just normal
paragraph text in a form.

And here are two text
controls for entering a
first and last name. In
XHTML you use the <input>
element to create these.

And here’s the
submit button.
(Your button might
say “Submit Query”
instead.)

Exercise

596 Chapter 14

contest.php

How the form element works

<form action=”http://www.headfirstlabs.com/contest.php” method=”POST”>

</form>

Everything inside your form goes here.

Let’s take a closer look at the <form> element – not only does it hold
all the elements that make up the form, but it also tells the browser
where to send your form data when you submit the form (and the
method the browser should use to send it).

Here’s the opening tag.
Everything in the form
goes inside.

The action attribute
holds the URL of the
Web server...

And the closing tag
ends the form.

...and the name of
the Web application
that will process the
form data.

The method attribute
determines how the form
data will be sent to the
server. We’re going to
use the most common
one: POST. Later in the
chapter we’ll talk about
other ways to send data,
and why you might or
might not use POST.

www.headfirstlabs.comBrowser

Bring it on.
We’re ready!

Hey “www.headfirstlabs.com”,
my user just clicked a button

to submit a form. I’ve got some
form data I’m sending you via
POST. It’s addressed to the

“contest.php” application.

the form element

xhtml forms

you are here � 597

Okay, so I have an
XHTML form - that seems
like the easy part. But where

do I get a Web application, or
how do I make one?

Good question. Creating Web
applications is a whole topic unto itself
and far beyond what we cover in this book.
Well, we tried to cover them, but the book
ended up weighing more than you do (not
good). So, anyway...

To create Web applications you need
to know a scripting or programming
language, and one that is supported by
your hosting company. Most hosting
companies support languages like PHP,
Perl, Python, and Java, and if you’re
interested, you’ll definitely want to pick
up a book specifically for creating Web
applications. Also, check with your hosting
company; they sometimes provide simple
scripts to their customers, which takes the
work out of developing Web applications
yourself.

As for this chapter, we’ve already
developed all the Web applications you’ll
need. All you’ll need to do is put the URL
of these applications in the action
attribute of your <form> element.

598 Chapter 14

What can go in a form?
You can put just about any block element into a form, but that’s not what
we really care about right now; we’re interested in the form elements that create
controls in the browser. Here’s a quick rundown of all the commonly used form
elements. We’re going to start with the <input> form element, which plays a
lot of roles in the form’s world.

text input
The text <input> element is
for entering one line of text.
Optional attributes let you set a
maximum number of characters
and the width of this control.

<input type=“text” name=“fullname” />

The <input>
element is an
empty element,
so you end it
with a “ />”

Most form elements require a name
that is used by the Web application.
We’ll see how this works in a bit.

An <input> element with a type
attribute of “text” creates a one line
control in the browser page.

submit input
The submit <input> element creates
a button that allows you to submit a
form. When you click this button, the
browser sends the form to the Web
application for processing.

For a submit button, specify “submit”
as the <input> element’s type.

The button is labelled
“Submit” (or “Submit
Query”) by default,
although you can
change that (we’ll
show you how later).

<input type=“submit” />

Notice that
both of these
use the same
XHTML
element, but
with different
values in their
type attribute.

Use the type attribute to
indicate you want a “text” input.

overview of form elements

xhtml forms

you are here � 599

<input type=“radio” name=“hotornot” value=“hot” />
<input type=“radio” name=“hotornot” value=“not” />

radio input
The radio <input> element creates a
single control with several buttons,
only one of which can be selected
at any time. These are like old time
car radio buttons; you “push” one in,
and the rest “pop out”.

The radio control
allows only one of a set
of choices.

Use a radio <input>
for each choice.

All the radio buttons
associated with a given
set of choices must
have the same name...

...but each choice has a different value.

<input type=“checkbox” name=“spice” value=“salt” />
<input type=“checkbox” name=“spice” value=“pepper” />
<input type=“checkbox” name=“spice” value=“garlic” />

checkbox input
A checkbox <input> element
creates a checkbox control that can
be either checked or unchecked.
You can use multiple checkboxes
together, and if you do, you can
check as many or few as you like.

Unlike radio buttons, a
checkbox allows zero or
more of a set of choices.

Like radio,
you use one
checkbox
<input> element
for each choice.

Related checkboxes also share
a common name. Each checkbox has a

different value.

Same here,
we’re still using
the <input>
element, just
with different
type values.

600 Chapter 14

<textarea name=“comments” rows=“10” cols=“48”></textarea>

textarea
The <textarea> element
creates a multi-line text area
that you can type into. If you
type more text than will fit
into the text area, then a scroll
bar appears on the right side.

The <textarea>
element is not an
empty element,
so it has both
opening and
closing tags.

The cols attribute tell
s the

browser how many characters

wide to make the text area.

The rows attribute tells the browser how many characters tall to make the text area.
Any text that goes between the
opening and closing tags becomes
the initial text in the browser’s
text area control.

Use the name attribute to
give the element a unique name.

cols

rows

What can go in a form? (Part II)
Okay, not every form element is an <input> element. There are a few others, like
<select> for menus and <textarea> for typing in more than one line of text.
So, why don’t you get familiar with these as well before moving on? Oh, and by
the way, once you do that, you’ll know 90% of the form elements (and 99% of the
form elements that are commonly used).

more form elements

xhtml forms

you are here � 601

option
The <option> element works with
the <select> element to create a
menu. Use an <option> element for
each menu item.

<select name=“characters”>
 <option value=“Buckaroo”>Buckaroo Banzai</option>
 <option value=“Tommy”>Perfect Tommy</option>
 <option value=“Penny”>Penny Priddy</option>
 <option value=“Jersey”>New Jersey</option>
 <option value=“John”>John Parker</option>
</select>

The content of the
<option> element is used
for the menu items’
description. Each menu
option also includes a
value representing the
menu item.

After clicking on the
menu, the menu items
drop down.

<select name=“characters”>
 <option value=“Buckaroo”>Buckaroo Banzai</option>
 <option value=“Tommy”>Perfect Tommy</option>
 <option value=“Penny”>Penny Priddy</option>
 <option value=“Jersey”>New Jersey</option>
 <option value=“John”>John Parker</option>
</select>

select
The <select> element creates a menu
control in the Web page. The menu
provides a way to choose between a set
of choices. The <select> element works in
combination with the <option> element
below to create a menu.

The <select> element goes around all the menu options to group them into one menu.
Just like the other form elements,

give the select element a unique

name using the name attribute.

The select element creates
a menu that looks like
this (although the look
will vary depending on the
browser you’re using).

602 Chapter 14

The Starbuzz Coffee Web
site is kicking butt. We’ve got
a new concept called the “Bean

Machine”, which is an online
form to order our coffees. Can

you make it happen?

Starbuzz Coffee Star
bu

zz

Here’s
what
the form
should
look like.

House Blend
Shade Grown Bolivia Supremo
Organic Guatemala
Kenya

A drop-down menu
of coffees.

A choice
of whole
or ground
coffee (you
can choose
only one).

Gift wrap
or include
a catalog
(choose
zero, one,
or both).

Ship to
address
consisting
of five
text boxes.

A box for
customer
comments.

And a
submit
button.Order Now

the bean machine

xhtml forms

you are here � 603

House Blend
Shade Grown Bolivia Supremo
Organic Guatemala
Kenya

Markup Magnets
Your job is to take the form element magnets and lay them on top
of the corresponding controls in the sketch. You won’t need all the
magnets below to complete the job; some will be left over. Check
your answer in the back of the chapter before moving on.

<input type="
text" ... />

<input type="radio" ... />

<textarea>...</textarea>

<select>...</select>

<input type="submit" ... />

<input type="submit" ... />

<select>...</select>
<select>...</select>

<textarea>...</textarea>

<input type="radio" ... /><input type="radio" ... />

<input type="checkbox" ... /><input type="checkbox" ... /><input type="checkbox" ... />

<input type="te
xt" ... />

<input type="text" .
.. />

<input type="text" .
.. />

<input type="text" ... /><input type="text" ... />

<option>...</option>
<option>...</option><option>...</option><option>...</option>

Order Now

604 Chapter 14

Getting ready to build the Bean Machine form
Before we start building that form, take a look inside the “chapter14/starbuzz”
folder and you’ll find the file “form.html”. Open it and have a look around. All
this file has in it are the XHTML basics:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en” xml:lang=“en” >
 <head >
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <title>The Starbuzz Bean Machine</title>
 </head>
 <body>

 <h1>The Starbuzz Bean Machine</h1>
 <h2>Fill out the form below and click submit to order</h2>

 </body>
</html>

Figuring out what goes in the form element
It’s time to add your very first <form> element. The first thing you have to know
when creating a <form> element is the URL of the Web application that is going
to process your form data. We’ve already taken care of that for you; you’ll find the
Web application that processes Starbuzz orders here:

http://www.starbuzzcoffee.com/processorder.php

This URL points to the starbuzzcoffee Web site...

All we’ve got so far is a
heading identifying the page,
along with instructions.

...and to the processorder.php Web
application that’s on the server
there. This application already
knows how to take orders from the
form we’re going to build.

The form is
going to go here.

For now, we’re going to build these
forms without all the style we’ve been
using on the Starbuzz site. That
way we can concentrate on the form
XHTML. We’ll add the style in later.

creating the form

xhtml forms

you are here � 605

Adding the form element
Once you know the URL of the Web application that will process your form, all you
need to do is plug it into the action attribute of your <form> element, like this
(follow along and type the changes into your XHTML):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en” xml:lang=“en” >
 <head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=ISO-8859-1” />
 <title>The Starbuzz Bean Machine</title>
 </head>
 <body>

 <h1>The Starbuzz Bean Machine</h1>
 <h2>Fill out the form below and click submit to order</h2>

 <form action=”http://www.starbuzzcoffee.com/processorder.php” method=”POST”>

 </form>
 </body>
</html>

Here’s the
form element. The action attribute contains the

URL of the Web application.
And remember we’re using the
“POST” method to deliver
the form data to the server.
More on this later.Go ahead and add the

form closing tag too.

So far so good, but an empty <form> element isn’t going to get you very far.
Looking back at the sketch of the form, there’s a lot there to add, but we’re going
to start simple and get the “Ship to:” part of the form done first, which consists of
a bunch of text inputs. You already know a little about text inputs, but let’s take a
closer look. Here’s what the text inputs for the Starbuzz form look like:

<input type=”text” name=”name” />

<input type=”text” name=”address” />

<input type=”text” name=”city” />

<input type=”text” name=”state” />

<input type=”text” name=”zip” />

We’ve got one
text input for
each input area in
the form: Name,
Address, City,
State, and Zip.

We use the <input>
element for a few
different controls.
The type attribute
determines what kind
of control it is.

Here the type is “text” because this
is going to be a text input control.

The name attribute acts as an identifier for the
data the user types in. Notice how each one is set to
a different value. Let’s see how this works...

606 Chapter 14

How form element names work
Here’s the thing to know about the name attribute: it acts as the glue between
your form and the Web application that processes it. Here’s how this works:

<input type=”text” name=”name” />

<input type=”text” name=”address” />

<input type=”text” name=”city” />

<input type=”text” name=”state” />

<input type=”text” name=”zip” />

processorder.php

www.starbuzzcoffee.com

When you type the elements for a form into your
XHTML file, you give them unique names. You saw this
with the text inputs:

Each input control in your form has a
name attribute

Each <input> element
gets its own name.

Say you type your name, address, city, state, and zip
into the form and click submit. The browser takes
each of these pieces of data and labels them with your
unique name attribute values. The browser then sends
the names and values to the server. Like this:

When you submit a form, the browser
packages up all the data using the
unique names:

name = Buckaroo Banzai

address = Banzai Institute

city = Los Angeles

state = CA

zip = 90050

What you enter into
the form.

What the browser packages
up for the server.

The unique
names for each
form element.

The Web application needs the form data to
be labelled so it can tell what is what.

form element names

Notice here we’ve got an element whose

name is “name” (which is perfectly fine).

Each unique
name gets a
value from the
data you type
into the form.

xhtml forms

you are here � 607

there are noDumb Questions
Q: What’s the difference between a
text <input> and a <textarea>?

A: You want to use a text <input> for
entering text that is just a single line, like
a name or zip code, and a <textarea> for
longer, multi-line text.

Q: Can I make the submit button say
something other than “Submit”?

A: Yes, just put a value attribute in the
element and give it a value like “Order Now”.
You can also use the value attribute of text
input to give that input some default text.

Q: Is there a limit to how much
text I can type into a text <input> or a
<textarea>?

A: Browsers do place a limit on the
amount of text you can type into either a
text <input> or a <textarea>; however, it’s
usually way more than you’d ever need to
type. If you’d like to limit how much your
users can type into a text <input>, you can
use the maxlength attribute and set it to a
specific number of characters. For example,
maxlength=”100” would limit users to typing
at most 100 characters. However, for a
<textarea>, there is no way with XHTML to
limit how much your users can type.

Q: I still don’t get how the names get
matched up with the form data.

A: Okay, you know each form element
has a unique name, and you also know
that the element has a corresponding value.
When you click the submit button the

browser takes all the names along with
their values and sends them to the server.
For instance, when you type the zip code

“90050” into a text <input> element with the
name “zip”, the browser sends “zip = 90050”
to the server when the form is submitted.

Q: How does the Web application
know the names I’m going to use in my
form? In other words, how do I pick the
names for my form elements?

A: Good question. It really works
the other way around: you have to know
what form names your Web application
is expecting and write your form to match
it. If you’re using a Web application that
someone else wrote, they’ll have to tell
you what names to use, or provide that
information in the documentation for the
application. A good place to start is to ask
your hosting company for help.

Q: Why doesn’t the <option>
element have a name attribute? Every
other form element does.

A: Good catch. All <option> elements
are actually part of the menu that is created
by the <select> element. So, we only really
need one name for the entire menu, and
that is already specified in the <select>
element. In other words, <option> elements
don’t need a name attribute because the
<select> has already specified the name for
the entire menu. Keep in mind that when
the form is submitted, only the value of the
currently selected option is sent along with
this name to the server.

Q: Didn’t you say that the name for
each form element needs to be unique?
But the radio <input> elements all have
the same name.

A: Right. Radio buttons come as a set.
Think about it: if you push one button in, the
rest pop out. So, for the browser to know
the radio buttons belong together, you use
the same name. Say you have a set of radio
buttons named “color” with values of “red”,

“green”, and “blue”. They’re all colors, and
only one color can be selected at a time, so
a single name for the set makes sense.

Q: What about checkboxes? Do they
work like radio buttons?

A: Yes; the only difference is that you
are allowed to select more than one choice
with a checkbox.
When the browser sends the form data to
the server, it combines all the checkbox
values into one value and sends them
along with the checkbox name. So, say
you had “spice” checkboxes for “salt”,

“pepper”, and “garlic”, and you checked them
all; then the server would send “spice =
salt&pepper&garlic” to the server.

Q: Geez, do I really need to know
all this stuff about how data gets to the
server?

A: All you need to know is the names
and types of the form elements your Web
application is expecting. Beyond that,
knowing how it all works sometimes helps,
but, no, you don’t need to know all the gory-
behind-the-scenes details of what is being
sent to the server.

608 Chapter 14

 <form action=”http://www.starbuzzcoffee.com/processorder.php” method=”POST”>

 <p>Ship to:

 Name: <input type=”text” name=”name” />

 Address: <input type=”text” name=”address” />

 City: <input type=”text” name=”city” />

 State: <input type=”text” name=”state” />

 Zip: <input type=”text” name=”zip” />

 </p>
 <p>

 <input type=”submit” value=”Order Now” />

 </p>

 </form>

Back to getting those <input> elements into your XHTML
Now we’ve got to get those <input> elements inside the form.
Check out the additions below, and then make the changes in
your “form.html”. Here’s JUST the form

snippet from “form.html”.
Hey, we’ve got to save a
few trees here!

We’re going to
start by putting
everything inside
a <p> element.

You can only nest block elements
directly inside a form.

Here are all
the <input>
elements: one
for each text
input in the
“Ship to” section
of the form.

We’ve added a label for each
input so the user knows what
goes in the text input.

And you should also know that <input> is an
inline element, so if you want some linebreaks
between the <input> elements, you have to
add
s. That’s also why you need to
nest them all inside a paragraph.

Finally, don’t forget that users need a submit button to
submit the form. So add a submit button by inserting an
<input> at the bottom with a type of “submit”. Also add
a value of “Order Now”, which will change the text of the
button from “Submit” to “Order Now”.

After you’ve made all these changes, save your “form.html” file
and let’s give this a whirl. Don’t forget to validate your

XHTML. Forms elements need
validation too!

adding input elements

xhtml forms

you are here � 609

A form-al test drive

Here’s the Web application’s
response. It looks like the
application got what we
submitted, but we haven’t given
it everything it needs.

Reload the page, fill in the text inputs, and submit the form.
When you do that, the browser will package up the data
and send it to the URL in the action attribute, which is at
www.starbuzzcoffee.com.

You don’t think we’d give you a toy example
that doesn’t really work, do you? Seriously,
starbuzzcoffee.com is all ready to take your
form submission. Go for it!

Adding some more input elements to your form
It looks like the Web application isn’t going to let us get very far without telling it
the beans we want, as well as the bean type (ground or whole). Let’s add the bean
selection first by adding a <select> element to the form. Remember that the
<select> element contains a list of options, each of which becomes a choice in
a drop-down menu. Also, associated with each choice is a value; when the form is
submitted, the value of the chosen menu option is sent to the server. Turn the page
and let’s add the <select> element.

Here’s the form.

And here’s the response
after submitting the form.

Notice the change in the
URL of your address bar
after you submit the form
(you’ll see the URL in the
action attribute in the
address bar).

610 Chapter 14

Adding the <select> element

 <form action=”http://www.starbuzzcoffee.com/processorder.php” method=”POST”>
 <p> Choose your beans:

		 <select name=”beans”>

 <option value=”House Blend”>House Blend</option>

 <option value=”Bolivia”>Shade Grown Bolivia Supremo</option>

 <option value=”Guatemala”>Organic Guatemala</option>

 <option value=”Kenya”>Kenya</option>

		 </select>

 </p>

 <p>Ship to:

 Name: <input type=”text” name=”name” />

 Address: <input type=”text” name=”address” />

 City: <input type=”text” name=”city” />

 State: <input type=”text” name=”state” />

 Zip: <input type=”text” name=”zip” />

 </p>
 <p>
 <input type=”submit” value=”Order Now” />
 </p>
 </form>

Here’s our brand new
<select> element. It gets a
unique name too.

Inside we put each <option> element, one per choice of coffee.

<option value=”House Blend”>House Blend</option>

Each option has a value.

When the browser packages up
the names and values of the form
elements, it uses the name of the
<select> element along with the value
of the chosen option.

In this case, the browser would send the server
beans = “House Blend”.

The content of the
element is used as the label
in the drop down menu.

HTML Up Close
Let’s take a closer look at the <option> element.

using a select

xhtml forms

you are here � 611

Test driving the <select> element
Let’s give the <select> element a spin now. Reload your page
and you should have a nice new menu waiting on you. Choose your
favorite coffee, fill in the rest of the form, and submit your order.

We still haven’t given the
Web application everything
it needs, but it’s getting
everything in the form so far.

Here’s the result of
the <select> choice.

Here are all the
text inputs.

Here’s the form, complete
with a <select>. Notice all
the options are there.

612 Chapter 14

Change the <select> element name attribute to “thembeans”. Reload the form and resubmit
your order. How does this affect the results you get back from the Web application?

brain
power?

Give the customer a choice of whole or ground beans
The customer needs to be able to choose whole or ground beans
for their order. For those, we’re going to use radio buttons. Radio
buttons are like the buttons on old car radios – you can push only
one in at a time. The way they work in XHTML is that you create
one <input> of type “radio” for each button; so, in this case you
need two buttons: one for whole beans and one for ground. Here’s
what that looks like:

<p>Type:

		
 <input type=”radio” name=”beantype” value=”whole” /> Whole bean

 <input type=”radio” name=”beantype” value=”ground” /> Ground

</p>

There are two
radio buttons here:
one for whole beans,
and one for ground.

We’re using the <input>
element for this, with its
type set to “radio”.

Here’s the unique name.
All radio buttons in the
same group share the
same name.

And here’s the value that will be
sent to the Web application. Only
one of these will be sent (the
one that is selected when the
form is submitted).

Notice that we
often label radio
buttons on the
right-hand side of
the element.

Make sure you change the name back to “beans” when you’re done with this exercise.

providing choices

xhtml forms

you are here � 613

Punching the radio buttons
Take the radio button XHTML on the previous page and insert it into
your XHTML just below the paragraph containing the <select>
element. Make sure you reload the page, and then submit it again.

Depending on your browser,
you may have noticed that
no radio button was pressed
when you reloaded the page.

Wow! Starbuzz took our order, and
we’re not even done with it yet. We’ve still got to add the gift options and
an area for customer comments.

How could the order work without all
the elements being in the form? Well, it
all depends on how the Web application is
programmed. In this case, it is programmed
to process the order even if the gift
wrap and catalog options and the customer
comments are not submitted with the rest
of the form data. The only way you can
know if a Web application requires certain
form elements is to talk to the person who
developed it, or to read the documentation.

614 Chapter 14

Hey, 80% of our customers
order “ground” beans. Can you

make it so the ground bean type
is already selected when the

user loads the page?

If you add an attribute called checked with a value of “checked”
into your radio input element, then that element will be selected by
default when the form is displayed by the browser. Add the checked
attribute to the ground” radio <input> element and give the page a
test. You’ll find the solution in the back of this chapter.

Starbuzz Coffee Star
bu

zz

House Blend
Shade Grown Bolivia
Supremo
Organic Guatemala
Kenya

Order Now

Completing the form
You’re almost there. You’ve just got two sections
to add to the form: the “Extras” section with
the two checkboxes and the customer comment
section. Since you’re getting the hang of forms,
we’re going to speed up a bit and add them both
at the same time.

The extras section consists of two
checkboxes, one for gift wrap and
another to include a catalog.

It looks like the “include catalog”
option should be checked by default.

The customer comment
section is just a
<textarea>.

Exercise

adding checkboxes

xhtml forms

you are here � 615

 <form action=”http://www.starbuzzcoffee.com/processorder.php” method=”POST”>
 <p> Choose your beans:

		 <select name=”beans”>

 <option value=”House Blend”>House Blend</option>

 <option value=”Bolivia”>Shade Grown Bolivia Supremo</option>

 <option value=”Guatemala”>Organic Guatemala</option>

 <option value=”Kenya”>Kenya</option>

		 </select>

 </p>

 <p>Type:

		
 <input type=”radio” name=”beantype” value=”whole” /> Whole bean

 <input type=”radio” name=”beantype” value=”ground” checked=”checked” /> Ground

 </p>

 <p>Extras:

		 <input type=”checkbox” name=”extras[]” value=”giftwrap” /> Gift wrap

		 <input type=”checkbox” name=”extras[]” value=”catalog” checked=”checked” /> Include
 	 catalog with order
 </p>

 <p>Ship to:

 Name: <input type=”text” name=”name” />

 Address: <input type=”text” name=”address” />

 City: <input type=”text” name=”city” />

 State: <input type=”text” name=”state” />

 Zip: <input type=”text” name=”zip” />

 <p>Customer Comments:

		 <textarea name=”comments” rows=”10” cols=”48”></textarea>
	 </p>

 <p>
 <input type=”submit” value=”Order Now” />
 </p>

 </form>

Adding the checkboxes and text area

Here we’ve added a checkbox for each
option. Notice that these share the
same name, “extras[]”...

...but have
different values.

Like the radio
buttons, we’ve
put these
labels to the
right of the
checkboxes.

We’re using the checked
attribute to specify that
the catalog option should
be checked by default.
You can add a checked
attribute to more than
one checkbox.

Here’s the
text area.

We’ve specified that we want it to be 10
characters high and 48 characters wide.

You know the drill: look over the new XHTML and add
it to your “form.html”.

616 Chapter 14

The final test drive
Save your changes, reload, and check out the new form.
Don’t you think it’s looking quite nice?

Here’s our brand new
checkboxes, with the catalog
checkbox already checked.

And a nice new
text aera as well.

Here’s what you get when you
submit. The Web application has
received all the form data on
the page and has incorporated it
into the response page. See if you
can locate all the form data you
submitted.

Be sure and try out all
the various combinations of
sending this form (with gift
wrap, without, with a catalog,
without, different coffees, and
so on) and see how it all works.

successful submission

xhtml forms

you are here � 617

Stop right there. Do you
think I didn’t see the way you

slipped in that element name of
“extras[]”? What’s with those
square brackets! You have to

explain that.

But even if it’s valid, it doesn’t exactly look
normal, does it? Here’s the deal: from the
perspective of XHTML, this is a normal
form element name; it doesn’t have any effect
on the browser at all if it has square brackets
in the name.

So why did we use them? It turns out that the
scripting language that the processorder.php
Web application is written in likes a little hint
that a form variable may have multiple values
in it. The way you give it this hint is to add

“[]” on the end of the name.

So, from the perspective of learning XHTML,
you can pretty much forget about all this, but
you might just tuck this into the back of your
mind in case you ever write a form that uses a
PHP Web application in the future.

Believe it or not, “extras[]”
is a perfectly valid name
for a form element.

618 Chapter 14

<form action=”http://www.chooseyourmini.com/choice.php” method=”POST”>
 <p>Your information:

 Name: <input type=”text” name=”name” />

 Zip: <input type=”text” name=”zip” />

 </p>
 <p>Which model do you want?

 <select name=”model”>
 <option value=”cooper”>Mini Cooper</option>
 <option value=”cooperS”>Mini Cooper S</option>
 <option value=”convertible”>Mini Cooper Convertible</option>
 </select>
 </p>
 <p>Which color do you want?

 <input type=”radio” name=”color” value=”chilired” /> Chili Red

 <input type=”radio” name=”color” value=”hyperblue” /> Hyper Blue
 </p>
 <p>Which options do you want?

 <input type=”checkbox” name=”caroptions[]” value=”stripes” /> Racing Stripes

 <input type=”checkbox” name=”caroptions[]” value=”sportseats” /> Sport Seats
 </p>

 <p>
 <input type=”submit” value=”Order Now” />
 </p>

</form>

Below, you’ll find an XHTML form, and on the right the data a
user entered into the form. Your job is to play like you’re the

browser and match each form element name with the values
the user entered. After you’ve done the exercise, look at
the end of the chapter to see if you matched up the form
names with the values correctly.

BE the Browser

Here’s the form.

match the form names

xhtml forms

you are here � 619

name = __________________

zip = ___________________

model = _________________

color = _________________

caroptions[] = __________

And here’s the form filled out.

Match each piece of form data with its form name and put your answers here.

“Buckaroo Banzai”

Extra credit...

620 Chapter 14

Now that we’ve got the form
finished, can we talk about the method

the browser uses to send this data to the
server? We’ve been using “POST”, but
you said there are other methods, too.

POST and GET accomplish the same thing – getting
your form data from the browser to a server – but
in two different ways. POST packages up your form
variables and sends them behind the scenes to your
server, while GET also packages up your form variables,
but appends them on the end of the URL before it
sends a request to the server.

There are two primary methods
the browser uses: POST and GET.

With POST all the form data is sent as part of
the request and is invisible to the user.

firstname=buck
lastname=bonz
item=java
number=2

Web
Application

Web
Application

POST

GET

http://www.headfirstlabs.com/contest.php

http://www.headfirstlabs.com/contest.php?firstname=buckaroo&lastname=banzai

With GET, the form data is added to the URL
itself, so the user sees the form data.

The user just
sees the Web
application’s URL
in her browser
address bar.

The request doesn’t
have any of the form
data in it. Notice the form

data added on
to the end of
the URL. This
is what the
user sees in the
address bar.

form methods: get and post

xhtml forms

you are here � 621

http://www.headfirstlabs.com/contest.php?firstname=buckaroo&lastname=banzai

there are noDumb Questions

Q: Why is it called “GET” if we’re
sending something to the server?

A: Good question. What’s the main
job of a browser? To get Web pages from a
server. And, when you are using GET, the
browser is just going about getting a Web
page in the normal way it always does,
except that, in the case of a form, it has
appended some more data to the end of the
URL. Other than that, the browser just acts
like it’s a normal request.
With POST, on the other hand, the browser
actually creates a little data package and
sends it to the server.

Q: So why would I use POST over
GET, or vice versa?

A: There’s a couple of big differences
that really matter. If you want users to be
able to bookmark pages that are the result
of submitting a form, then you have to use
GET, because there is no way to bookmark
a page that has been returned as a result of
a POST. When would you want to do that?
Say you have a Web application that returns
a list of search results; you might want users
to be able to bookmark those results so they
can see them again without having to fill out
a form.

On the other hand, if you have a Web
application that processes orders, then you
wouldn’t want users to be able to bookmark
the page. (Otherwise, every time they
returned to the bookmark, the order would
be resubmitted.)
A situation when you’d never want to use
a GET is when the data in your form is
private, like a credit card or a password.
Because the URL is in plain view, the private
information is easily found by others if they
look through your browser history or if the
GET somehow gets bookmarked.
Finally, if you use a <textarea>, you should
use POST, because you’re probably sending
a lot of data. GET requests have a limit of
256 characters; POST has no limit on the
size of the data package you send.

Watching GET in action
There’s no better way to understand GET than to see it in action.
Open up your “form.html” file and make the following small change:

<form action=”http://www.starbuzzcoffee.com/processorder.php” method=”GET”>

Just change the method
from “POST” to “GET”.

Save and reload the page; then fill out the form and submit it. You
should see something like this:

http://www.starbuzzcoffee.com/processorder.php?beans=Kenya&beantype=gro
 und&extras%5B%5D=catalog&name=Buckaroo+Banzai&address=Banzai+Instit
 ute&city=Los+Angeles&state=CA&zip=90050&comments=Great+coffee

You’ll see this URL
in your browser.

Now you can see every
form element name
and their values right
here in the URL.

Notice that the browser encodes
various characters, like spaces. The
Web application will automatically
decode these when it receives them.

622 Chapter 14

For each description, circle either GET or POST
depending on which method would be more
appropriate. If you think it could be either, circle
both. But be prepared to defend your answers...

GET or POST

GET POST	 A form for typing in a username and password.

GET POST	 A form for ordering CDs.

GET POST	 A form for looking up current events.

GET POST	 A form to post book reviews.

GET POST	 A form for retrieving benefits by your government ID number.

GET POST	 A form to send customer feedback.

Sharpen your pencil

test yourself, get and post

xhtml forms

you are here � 623

I’ve been meaning to say, great
job on the Bean Machine! This is really
going to boost our coffee bean sales. All

you need to do is give this a little style
and we’re ready to launch it for our

customers.

Given everything you
know about XHTML
and CSS, how would
you approach styling
this form?

brain
power?

624 Chapter 14

Tonight’s talk: Table and CSS spar
over how to lay out forms.

Table CSS

Hey CSS, what’s happening?

What on earth are you doing in this chapter,
Table?

What do you mean? I dropped by to help get
these forms in shape. They’re looking a bit... well,
ragged, if you ask me. I agree the forms need some fixing up in the

looks department, but that’s my job. You’re for
tabular data, remember?

Yes, and some people consider form
elements to be tabular data, you know.
Besides, I’m much better at making forms
look good than you are.

Says who?

Says me. I get forms looking nice and neat, with
the labels and form elements all aligned properly.

I can position things too, you know. These
readers have read the chapter on positioning;
they know how to get things “all aligned
properly” using CSS. Anyway, even if you
can align the form elements properly, you
certainly can’t do things like add color and
padding and change the font family.

Well, I agree I can’t add those little extra touches
like you can, but that stuff doesn’t really matter
anyway. That’s just the icing on the cake. The real
trick to making forms user-friendly is getting the
labels and elements presented in a way that makes
sense, so there’s no confusion about what goes with
what. Users don’t really care about all that other
stuff.

tabular versus presentation

xhtml forms

you are here � 625

Table CSS

Dude, you have no idea what you’re talking
about. Forms should match the look and
feel of the rest of the Web site. Users will be
confused if they go to fill out a form and it
doesn’t look like part of the site.

I guess. But when it comes to laying out a table
properly, I’m the way to go. The last time I saw
someone trying to lay out a form using CSS, there
were <div>s and s all over the place; it was
a mess. And all that positioning and messing with
margins to get the widths just right... it gave me a
headache just looking at it all.

Well, what about all your <tr>s and <td>s
littering up the XHTML? That’s no different.

At least with my table rows and data cells, it’s easier
to figure out what’s going to end up where; with
your positioning tricks, I never know where stuff is
going to end up.

You obviously haven’t read Chapter 12. And
I just don’t buy that form elements are tabular
data... they’re XHTML elements, not data.

But the users are entering data into the form
controls, aren’t they? A form is used for gathering
data from the person using the form. How is that
not tabular data?

Hmm... I suppose I can sort of see that... but it
just seems so wrong to use a table to do layout.
Layout is presentation, and presentation is my job.

Well, I say if I can do a job better than you, then,
hey, use me to do it. I’m happy to oblige.

Better than me? Whoa now, that’s going too
far...

Tell you what, why don’t we just let the readers
decide?

626 Chapter 14

To Table or Not to Table? That’s the question...
You’re going to find people on both sides of this issue. Should you use
CSS to layout your forms? Or tables? The harsh reality is that laying out
forms with CSS is difficult. And, if you’d like to bend space and time to lay
out your forms with CSS, we’ll gladly get out of your way and look on in
admiration. However, many forms are tabular in their layout, so why not use
tables to do the layout of your forms and let CSS do the styling? That way,
we get the best of both worlds.

Let’s start with the layout...
We’ll start by getting the form into a table. Check out the sketch below
and you’ll see the form fits pretty nicely in a table, and even better, it looks
like a form rather than a ragged collection of input elements. Also notice
that we’ve used a nested table in the “Ship to:” section.

Here’s the sketch of the table.
It’s a simple table, with two
columns and six rows - one row
for each main section of the form.

We’ve thrown all the input
elements into the right-hand
column.

The Ship to: section has five text <input> elements, so we’ve grouped them into a nested table. The nested table has the same basic layout as the main table: two columns and five rows, with one row for each label / element pair.

The labels for
each form
element go
in the left
column.

The cell on
the left of
the submit
button is
empty. There’s
no label to
put here.

Notice that we’ve grouped each set of checkboxes and radio buttons into one table data cell.

deciding how to style forms

xhtml forms

you are here � 627

<form action=”http://www.starbuzzcoffee.com/processorder.php” method=”POST”>

<table>
 <tr>
 <th>Choose your beans:</th>
 <td>
 <select name=”beans”>
 <option value=”House Blend”>House Blend</option>
 <option value=”Bolivia”>Shade Grown Bolivia Supremo</option>
 <option value=”Guatemala”>Organic Guatemala</option>
 <option value=”Kenya”>Kenya</option>
 </select>
 </td>
 </tr>

 <tr>
 <th>Type:</th>
 <td>
 <input type=”radio” name=”beantype” value=”whole” />
 Whole bean

 <input type=”radio” name=”beantype” value=”ground” checked=”checked” />
 Ground
 </td>
 </tr>

 <tr>
 <th>Extras:</th>
 <td>
 <input type=”checkbox” name=”extras[]” value=”giftwrap” />
 Gift wrap

 <input type=”checkbox” name=”extras[]” value=”catalog” checked=”checked” />
 Include catalog with order
 </td>
 </tr>

Ready Bake
XHTML

Getting the form elements
into a table
Now that you know how to organize the form elements in a table, you need to put
your XHTML table writing skills to the test. So get typing!

Just kidding. We wouldn’t make you type all this... after all, this chapter is really about
forms, not tables. We already typed this in for you; it’s in the file “styledform.html”
in the “chapter14/starbuzz” folder. Even though it looks complicated, it’s really not
that bad. We’ve added a few annotations below to point out the main parts.

Here’s the <form> element;
we don’t need to put this
part into the table.

Here’s where the table begins. Each of the main table
rows has two data cells: a
<th> for the label, and a
<td> for the form element.

Each section of the form goes into a separate row.

For the bean selection menu, the “beantype” radio
buttons, and the “extras” checkbox, we put all the
form elements for each menu in one data cell.

628 Chapter 14

 <tr>
 <th>Ship to:</th>
 <td>
 <table>
 <tr>
 <td>Name:</td>
 <td>
 <input type=”text” name=”name” value=”” />
 </td>
 </tr>
 <tr>
 <td>Address:</td>
 <td>
 <input type=”text” name=”address” value=”” />
 </td>
 </tr>
 <tr>
 <td>City:</td>
 <td>
 <input type=”text” name=”city” value=”” />
 </td>
 </tr>
 <tr>
 <td>State:</td>
 <td>
 <input type=”text” name=”state” value=”” />
 </td>
 </tr>
 <tr>
 <td>Zip:</td>
 <td>
 <input type=”text” name=”zip” value=”” />
 </td>
 </tr>
 </table>
 </td>
 </tr>

 <tr>
 <th>Customer Comments:</th>
 <td>
 <textarea name=”comments” rows=”10” cols=”48”></textarea>
 </td>
 </tr>

 <tr>
 <th></th>
 <td><input type=”submit” value=”Order Now” /></td>
 </tr>
</table>
</form>

But for the shipping data, we are creating a nested table - a

table in a data cell. We did this so we could align the labels on

each text <input> in the “Ship to” part of the for
m properly.

Here’s the end of the nested
table for the shipping data.

And here are the rows in the
main table with the <textarea>
and submit <input> elements.

the xhtml, continued

xhtml forms

you are here � 629

Test driving a very tabular form
Open “styledform.html” in your browser and take a look at the Starbuzz
Bean Machine form in table format. It looks better, doesn’t it? All the labels
and form elements are aligned, and it looks more professional.

Now, we can use CSS to make it look even better, by tweaking some things
here and there. Let’s take a look at what you might want to change.

We’ll do some basic styling that you’re well

familiar with by now, like changing the
font, and adding a background colo

r.

Notice how
the rows are a
little too close
together? We
can add space
between the cells
in the rows so
the form is easier
to read.

A border around the
table would look nice.

We can align all these
labels to the right
so they line up nicely
against the form
elements.

We can also align the
labels and the form
elements vertically
so they both align
to the top of the
data cells.

Finally, we’ll add just
a bit of space on the
left side of the body.

630 Chapter 14

Styling the form and the table with CSS

body {
 background: #efe5d0 url(images/background.gif) top left;
 font-family: Verdana, Helvetica, Arial, sans-serif;
 margin: 20px;
}

table {
 border: thin dotted #7e7e7e;
 padding: 10px;
}

th {
 text-align: right;
 vertical-align: top;
 padding-right: 10px;
 padding-top: 2px;
}

td {
 vertical-align: top;
 padding-bottom: 15px;
}

table table {
 border: none;
 padding: 0px;
}

table table td {
 text-align: right;
 padding-bottom: 0px;
}

We just need to add a few styling rules to the XHTML, and we’ll be done.
Because this form is part of the Starbuzz site, we’re going to reuse the style in the

“starbuzz.css” style sheet, and create a new style sheet, “styledform.css”, to add
new style rules for the Bean Machine form. All of this CSS should be familiar to
you now. We’re not using any rules unique to tables or forms; it’s all just the same
stuff you’ve been using in the last few chapters.

You’ll find this CSS in the file “styledform.css” in the folder “chapter14/starbuzz”.

We’re going to rely on the Starbuzz CSS for some of our style,
but we’re changing the body font to a sans-serif font, adding the
Starbuzz background image, and adding a margin to the body.

These font properties
will be inherited by all
the elements on the page,
including the text in the
table and the form.

We’re adding a border around the table,
and some padding between the table
content and the border.

The form labels are in the table headings. We want to align

these to the top and right so they align nicely
 with the

form elements in the right column. We’re also adding a bit

of padding to give them a little bit more space.

The content of the data cells is already aligned to the left by default, which is what we want, but we have to align them vertically too, to match the table headings. We’re adding a bit of padding here too, to add space between the rows.

These two rules override some of the other properties we set
in the rules for table and td above. Why? Because we don’t
want the nested table to have a border, and we want the
spacing to be tighter, so we’re removing the padding. We also
need to align the form labels in the nested data cells to the
right (those aren’t in table headings, like the others are, so
they’re not aligned with the th rule above).

Ready Bake
CSS

styling the form

xhtml forms

you are here � 631

The final test drive
You’re going to add two <link> elements to the <head> of
your XHTML in “styledform.html”, linking in the Starbuzz style
sheet from Chapter 12, “starbuzz.css”, and your new style sheet,

“styledform.css”. Make sure you get the order correct: link the
“starbuzz.css” file first, then the “styledform.css”. Once you’ve got the
two style sheets linked, save and reload your page. You should see the
snazzy, styled version of the Starbuzz Bean Machine in your browser.

Wow, what a difference a little style makes!

The labels are
aligned with the
top of the form
elements, and
they’re aligned
to the right as
well. This alignment
makes it easier to
see which labels
belong with which
controls.

The space between
the rows makes a
big difference and
makes the form
much easier to read.

The bean machine form now matches
the rest of the Starbuzz site.

Notice that the
nested table
doesn’t have a
border, and the
spacing is tighter;
that’s because
of those rules
that override the
properties set for
the main table.

If you want to stretch your
XHTML and CSS skills a bit, see if
you can add the Starbuzz header
and footer to the Bean Machine
page and make the Bean Machine
look really nice with those elements.

632 Chapter 14

What more could possibly go into a form?
We’ve covered just about everything you’ll regularly use in your
forms, but there’s a few more elements you might want to consider
adding to your form répertoire; so, we’re including them here just in
case you want to take your own form studies even further.

When your forms start getting large, it can be helpful to visually group
elements together. While you might use <div>s and CSS to do this,
XHTML also provides a <fieldset> element that can be used to
group together common elements. <fieldset> makes use of a second
element, called <legend>. Here’s how they work together:

Fieldsets and legends

So far you’ve been labeling your form elements with simple text, but
XHTML also provides a <label> element. This element provides
further information about the structure of your page, allows you to
style your labels using CSS more easily, and can even help screen
readers for the visually impaired correctly identify form elements.

Labels

Here’s how the fieldset
and legend look in one
browser. You’ll find
that browsers display
them differently.

<input type=”radio” name=”hotornot” value=”hot” id=”hot” />
<label for=”hot”>hot</label>

<input type=”radio” name=”hotornot” value=”not” id=”not” />
<label for=”not”>not</label>

<fieldset>
 <legend>Condiments</legend>
 <input type=”checkbox” name=”spice” value=”salt” />
 Salt

 <input type=”checkbox” name=”spice” value=”pepper” />
 Pepper

 <input type=”checkbox” name=”spice” value=”garlic” />
 Garlic
</fieldset>

The <fieldset> element surrounds a
set of input elements.

The <legend> provides a
label for the group.

Labels don’t look
different from just
plain text, by default.
However, they can make
a big difference when it
comes to accessibility.

To use a <label> element, first add an
id attribute to your form element.

Then add a <label> and set its “for”
attribute to the corresponding id.

You can use a <label>
element with any
form element.

other form elements

xhtml forms

you are here � 633

Here’s a whole new input element we haven’t talked about. If
you need to send an entire file to a Web application, you’ll once
again use the <input> element, but this time set its type to

“file”. When you do that, the <input> element creates a control
that allows you to select a file and – when the form is submitted

– the contents of the file are sent with the rest of your form data
to the server. Remember, your Web application will need to
be expecting a file upload, and also note that you must use the
POST method to use this element.

File input

The password <input> element works just like the text
<input> element, except that the text you type is masked. This
is useful for forms that require you to type in a password, a secret
code, or other sensitive information that you may not want other
people to see as you type. Keep in mind, however, that the
form data is not sent from the browser to the Web application
in a secure way, unless you make it secure. For more on security,
contact your hosting company.

Passwords

This isn’t a new element, but a new way to use an element you
already know. If you add the attribute multiple with a value
of “multiple” to your <select> element, you turn your single
choice menu into a multiple choice menu. Instead of a pop-
down menu, you’ll get a multiple choice menu that shows all
the options on the screen (with a scrollbar if there are a lot of
them); you can choose more than one by holding down the Ctrl
(Windows) or Command (Mac) key as you select.

Multiple selection

<input type=”password” name=”secret” />

<select name=”characters” multiple=”multiple”>
 <option value=”Buckaroo”>Buckaroo Banzai</option>
 <option value=”Tommy”>Perfect Tommy</option>
 <option value=”Penny Priddy”>Penny</option>
 <option value=”New Jersey”>Jersey</option>
 <option value=”John Parker”>John</option>
</select>

<input type=”file” name=”doc” />

The password <input> element works
exactly like the text <input> element,
except the text you type is masked.

Here’s what the file input element looks like in a couple of different browsers.

To create a file input element, just set the
type of the <input> element to “file”.

Just add the attribute
multiple with a value of
“multiple” to turn a single
selection menu into a multiple
selection menu.

With multiple
selection, you
can choose more
than one option
at a time.

634 Chapter 14

The <form> element nn defines the form, and all
form input elements are nested inside it.
The action attribute contains the URL of the nn
Web Application.
The method attribute contains the method of nn
sending the form data: either POST or GET.
A POST packages form data and sends it as nn
part of the request.
A GET packages form data and appends it to nn
the URL.
Use POST when the form data should be nn
private, or when it is large, such as when a
<textarea> or file <input> element is used.
Use GET for requests that might be nn
bookmarked.
The <input> element can act as many different nn
input controls on the Web page, depending on
the value of its “type” attribute.
A type of “text” creates a single line text input.nn

A type of “submit” creates a submit button.nn

A type of “radio” creates one radio button. All nn
radio buttons with the same name make up a
group of mutually exclusive buttons.
A type of “checkbox” creates one checkbox nn
control. You can create a set of choices by
giving multiple checkboxes the same name.

A <textarea> element creates a multi-line text nn
input area.
A <select> element creates a menu, which nn
contains one or more <option> elements.
<option> elements define the items in the
menu.
If you put text into the content of a <textarea> nn
element, it will become the default text in a
text area control on the Web page.
The value attribute in the text <input> element nn
can be used to give a single-line text input an
initial value.
Setting the value attribute on a submit button nn
changes the text of the button.
When a Web form is submitted, the form data nn
values are paired with their corresponding
names, and all names and values are sent to
the server.
Tables are often used to layout forms, given nn
that forms have a tabular structure. Once laid
out, CSS should be used to style forms to
provide the presentation, including color, font
styles, etc.
XHTML allows form elements to be organized nn
with the <fieldset> element.
The <label> element can be used to attach nn
labels to form elements in a way that aids
accessibility.

 BULLET POINTS

review of forms

xhtml forms

you are here � 635

House Blend
Shade Grown Bolivia Supremo
Organic Guatemala
Kenya

Submit

Markup Magnets Solution
Your job is to take the form element magnets and lay them
on top of the corresponding controls in the sketch. You won’t
need all the magnets below to complete the job; some will
be left over. Here’s the solution.

<input type="
text" ... />

<input type="radio" ... />

<textarea>...</textarea>

<select>...</select>

<input type="submit" ... />

<input type="submit" ... />

<select>...</select>

<select>...</select>

<textarea>...</textarea>

<input type="radio" ... />

<input type="radio" ... />

<input type="checkbox" ... /><input type="checkbox" ... />

<input type="checkbox" ... />

<input type="te
xt" ... />

<input type="text" .
.. />

<input type="text" ... />

<option>...</option>

<option>...</option>

<option>...</option>

<input type="checkbox" ... />

<input type="text" ... />

<input type="text" ... />

<input type="text" ... />

<input type="text" ... />

<option>...</option>

We didn’t
need these.

636 Chapter 14

name = __________________

zip = ___________________

model = _________________

color = _________________

caroptions[] = __________

“90050”

“convertible”

“chilired”

“stripes”

“Buckaroo Banzai”

For each description, circle either GET or POST
depending on which method would be more
appropriate. If you think it could be either circle
both. But be prepard to defend your answers...

GET or POST

GET POST	 A form for typing in a username and password.

GET POST	 A form for ordering CDs.

GET POST	 A form for looking up current events.

GET POST	 A form to post book reviews.

GET POST	 A form for retrieving benefits by your government ID number.

GET POST	 A form to send customer feedback.

Sharpen your pencil

Exercise
Solutions

Solution

exercise solutions

xhtml forms

you are here � 637

 <form action=”http://www.starbuzzcoffee.com/processorder.php” method=”POST”>
 <p> Choose your beans:

		 <select name=”beans”>

 <option value=”House Blend”>House Blend</option>

 <option value=”Bolivia”>Shade Grown Bolivia Supremo</option>

 <option value=”Guatemala”>Organic Guatemala</option>

 <option value=”Kenya”>Kenya</option>

		 </select>

 </p>

 <p>Type:

		
 <input type=”radio” name=”beantype” value=”whole” /> Whole bean

 <input type=”radio” name=”beantype” value=”ground” checked=”checked” /> Ground

 </p>
 <p>Ship to:

 Name: <input type=”text” name=”name” />

 Address: <input type=”text” name=”address” />

 City: <input type=”text” name=”city” />

 State: <input type=”text” name=”state” />

 Zip: <input type=”text” name=”zip” />

 <input type=”submit” value=”Order Now” />
 </p>
 </form>

Here’s just the form
section of “form.html”.

And here’s the new attribute
that selects the “Ground”
radio button.

If you add an attribute checked with a value of “checked” into
your radio input element, then that element will be selected by
default when the form is displayed by the browser. Add the checked
attribute to the “ground” radio input element and give the page a
test. Here’s the solution.

Hey, 80% of our customers
order “ground” beans. Can you

make it so the ground bean type
is already selected when the

user loads the page?

Exercise
Solutions

638 Chapter 14

Wouldn’t it be dreamy if
this were the end of the book?
If there were no bullet points

or puzzles or XHTML listings or
anything else? But that’s probably

just a fantasy...

Congratulations!
You made it to the end.

Of course, there’s still an appendix.

And the index.

And the colophon.

And then there’s the Web site...

There’s no escape, really.

the end

this is a new chapter 639

We covered a lot of ground, and you’re almost finished
with this book. We’ll miss you, but before we let you go, we wouldn’t feel

right about sending you out into the world without a little more preparation. We

can’t possibly fit everything you’ll need to know into this relatively small chapter.

Actually, we did originally include everything you need to know about XHTML and

CSS (not already covered by the other chapters), by reducing the type point size

to .00004. It all fit, but nobody could read it. So, we threw most of it away, and

kept the best bits for this Top Ten appendix.

This really is the end of the book. Except for the index, of course (a must-read!).

Appendix: leftovers

The Top Ten Topics
 (we didn’t cover)

640 Appendix

#1 More Selectors

While you’ve already learned the most common selectors, here are a few
more you might want to know about...

p:first-letter {
	 font-size: 3em;
}

p:first-line {
	 font-style: italic;
}

Pseudo-elements use the same syntax as pseudo-classes.

Pseudo-elements
You know all about pseudo-classes, and pseudo-elements are similar. Pseudo-
elements can be used to select parts of an element that you can’t conveniently
wrap in a <div> or a or select in other ways. For example, the
first-letter pseudo-element can be used to select the first letter of the
text in a block element, allowing you to create effects like initial caps and
drop caps. There’s one other pseudo-element called first-line, which
you can use to select the first line of a paragraph. Here’s how you’d use
both to select the first letter and line of a <p> element:

Here we’re making the first
letter of the paragraph large,
and the first line italics.

img[width] { border: black thin solid; }

img[height=”300”] { border: red thin solid; }

image[alt~=”flowers”] { border: #ccc thin solid; }

Attribute selectors
Attribute selectors are not currently well supported in current
browsers; however, they could be more widely supported in the
future. Attribute selectors are exactly what they sound like: selectors
that allow you to select elements based on attribute values. You use
them like this: This selector selects all

images that have a width
attribute in their XHTML.

This selector selects all images that have a height attribute with a value of 300.
This selector selects all images
that have an alt attribute that
includes the word “flowers”.

specialized selectors

leftovers

you are here � 641

Selecting by Siblings
You can also select elements based on their preceding sibling. For example, say you want to
select only paragraphs that have an <h1> element preceding them, then you’d use this selector:

h1+p {
 font-style: italic;
}

This selector selects all paragraphs that
come immediately after an <h1> element.

Combining Selectors
You’ve already seen examples of how selectors can be combined in this book. For instance, you
can take a class selector and use it as part of a descendant selector, like this:

.blueberry p { color: purple; } Here we’re selecting all paragraphs
that are descendants of an element
in the blueberry class.

There’s a pattern here that you can use to construct quite complex selectors. Let’s step through
how this pattern works:

(1) Start by defining the context for the element you want to select, like this:

 div#greentea > blockquote

(2) Then supply the element you want to select:

 div#greentea > blockquote p

(3) Then specify any pseudo-classes or pseudo-elements:

 div#greentea > blockquote p:first-line { font-style: italic; }

Here we’re using a descendant selector
where a <div> with an id “greentea” must
be the parent of the <blockquote>.

Next we add the <p> element as the element
we want to select in the context of the
<blockquote>. The <p> element must be a
descendant of <blockquote>, which must be a
child of a <div> with an id of “greentea”.

Then we add a pseudo-element, first-line, to

select only the first line of the
 paragraph.

That’s a quite complex selector! Feel
free to construct your own selectors
using this same method.

Write the preceding element, a “+”
sign, and then the sibling element.

context

ele
me

nt

context
elem

ent

642 Appendix

#2 Frames

HTML allows you to divide a Web page into a set of frames, where each frame is capable
of displaying one embedded Web page. You may have noticed pages with frames that allow
you to visit a third party page while leaving the header and navigation of the original site
intact. These days frames are, for the most part, considered “old school” because they cause
navigation and usability problems, and they are not recommended by the W3C. However, you
will still find them in use in some situations.

To create a set of frames in a page, use the <frameset> and <frame> elements:

<frameset rows=”30%, *, 20%”>
 <frame name=”header” src=”header.html” />
 <frame name=”content” src=”content.html” />
 <frame name=”footer” src=”footer.html” />
</frameset>

Creates a set of frames as three rows, where the first frame takes up 30% of the browser, the last part takes up 20%, and the middle part takes up the remaining space.

For each frame we use a
<frame> element. Each frame
specifies a name for the
frame and the source HTML
file that goes in the frame.

You can also target individual names with your <a> elements by specifying the frame’s name in
the target of the link, like this:

 new content.

There is also a related element called an <iframe> that is widely supported in newer browsers.
The inline element <iframe> allows you to place a frame anywhere within a page. Here’s how
you use <iframe>:

<iframe name=”inlinecontent” src=”newcontent.html” 	
 width=”500” height=”200” />

Creates an inline
frame for the page
“newcontent.html”.

Finally, you should know that to use frames you’ll need to use a DOCTYPE in the page that
contains the frameset. The frameset DOCTYPEs are considered to be transitional, so you can’t
have frames and be strict. For HTML 4.01 use:

and for XHTML 1.0 use:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN”
 “http://www.w3.org/TR/html4/frameset.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

You can also specify framesets as columns
of frames, or as rows and columns.

splitting your pages

leftovers

you are here � 643

#3 Multimedia & Flash
Browsers can play sounds and display videos or even interactive content like Flash applications in
a Web page. HTML supports these types of media through an element called <object> that is
responsible for embedding external content into your Web page (your page will also need the help
of a plugin viewer that knows how to display the content).

We should mention the <object> element and a close cousin – the <embed> element – have
never fully recovered from the browser wars, so using them is somewhat more complicated than
it should be. If you’d like to include multimedia in your own pages, we encourage you to visit the
Web site of the author of your media type and make sure you use their recommended settings.
While embedding multimedia is more complicated than it needs to be, don’t let that scare you off
– given how much you know about HTML, it won’t take you long to get your sounds, animations,
and movies into your pages.

Here’s a simple example of embedding a Quicktime movie using an <object> element:

<object classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”
 codebase=”http://www.apple.com/qtactivex/qtplugin.cab”
 height=”200”
 width=”300”>
 <param name=”src” value=”buckaroo.mov”>
 <param name=”autoplay” value=”true”>
 <param name=”controller” value=”true”>
 <embed height=”200”
 width=”300”
 src=”buckaroo.mov”
 pluginspage=”http://www.apple.com/quicktime/download/”
 type=”video/quicktime”
 controller=”true”
 autoplay=”true”>Sorry your browser does not support this movie type</embed>
</object>

Here’s the object opening tag. As you can see, it requires
a lot of specialized tags and attributes to specify the
correct viewer to embed in the page.

You can nest object elements to
provide a set of choices. If the
browser can’t support the outer
<object>, it tries the <embed>.

The legacy <embed>
element is nested for
support of old browsers.

Embedding multimedia content into your pages can help to create a compelling and more
immersive experience for your users, but specifying <object> elements can be a tricky
business, so make sure you consult the viewer manufacturer’s documentation on how to
embed their viewers into your pages.

644 Appendix

#4 Tools for Creating Web Pages

Now that you know XHTML and CSS you’re in a good position to decide if tools like
Dreamweaver, GoLive, and FrontPage are for you. All these applications attempt to provide
what-you-see-is-what-you-get (WYSIWYG) tools for creating Web pages. We’re sure you know
enough about XHTML and browser support to know that this goal, while worthwhile, also
comes up short from time to time. But, that said, these tools also provide some very handy
features, even if you’re writing a lot of the XHTML yourself:

A “code” window for entering XHTML and CSS with syntax nn

checking to catch common mistakes and suggest common names
and attributes as you type.

A preview and publish functionality that allows you to test pages nn

before making them “live” on the Web.

A site manager that allows you to organize your site, and also nn

keeps your local changes in synch with your Web site on the server.
Note that this usually takes care of all the FTP work for you.

These tools are also not without their downsides:

Often these tools lag behind standards in terms of support, nn

so to keep your XHTML and CSS current – you’ll need to
write the XHTML yourself.

Often these tools don’t enforce strict standards, and may nn

allow you to get sloppy with your XHTML and CSS, so
don’t forget to validate (some tools help you validate as well).

Keep in mind you can use a combination of simple editors along with these more
sophisticated tools; one solution doesn’t have to fit all your needs. So use a page
creation tool when it makes sense.

Some tools to consider:

Macromedia Dreamweavernn

Adobe GoLivenn

Microsoft FrontPagenn

nn GNU Emacs (open source)

 <script type=”text/javascript”>
 function validBid(form) {
 if (form.bid.value > 0) return true;
 else return false;
 }
 </script>

web tools

leftovers

you are here � 645

#5 Client-side Scripting

HTML pages don’t have to be passive documents; they can also have content that is executable.
Executable content gives your pages behavior. You create executable content by writing
programs or scripts using a scripting language. While there are a quite a few scripting
languages that work with browsers, JavaScript is the reigning king. Here’s a little taste of what it
means to put executable content into your pages.

 <script type=”text/javascript”>
 function validBid(form) {
 if (form.bid.value > 0) return true;
 else return false;
 }
 </script>

Here’s a new HTML element,
<script>, which allows you to write
code right inside of HTML. Notice
we’ve set the type to JavaScript.

And here’s a bit of JavaScript script that checks a user’s bid to make sure it’s not zero dollars or less.

Then in XHTML, you can create a form that uses this script to check the bid before the
form is submitted. If the bid is more than zero, the form gets submitted.

 <form onsubmit=”return validBid(this);” method=”post” action=”contest.php”>

Here’s a new attribute in the form called onsubmit that invokes a script when the submit button is pressed.

What else can scripting do?
As you see above, form input validation is a common and useful task that is often done with
JavaScript (and the types of validation you can do go far beyond this example). But that’s just
the beginning of what you can do with JavaScript. JavaScript actually has access to the entire
document tree of elements (the same element tree you worked with in Chapter 3) and can
programatically change values and elements in the tree. What does that mean? It means you
can have a script change various aspects of your Web page based on a user’s actions. Here
are a few things you might do with JavaScript:

Create an interactive game, like a crossword puzzle.nn

Dynamically change images as the user passes their nn

mouse over the image.

Set local information in the user’s browser so you can nn

remember them next time they visit.

Let users choose between different stylings of a page.nn

Display a random quote from a set of quotes.nn

Display the number of shopping days before Christmas.nn

646 Appendix

#6 Server-side Scripting
Many Web pages aren’t created by hand, but are generated by Web applications running on
a server. For example, think about an online order system where a server is generating pages
as you step through the order process. Or, an online forum, where there’s a server generating
pages based on forum messages that are stored in a database somewhere. We used a Web
application to process the form you created in Chapter 14 for the Starbuzz Bean Machine.

Many hosting companies will let you create your own Web applications by writing server-side
scripts and programs. Here’s a few things server-side scripting will allow you to do:

Build an online store complete with products, a shopping cart, and an order system.nn

Personalize your pages for each user based on their preferences.nn

Deliver up to date news, events, and information.nn

Allow users to search your site directly.nn

Allow your users to help build the content of your site.nn

To create Web applications, you’ll need to know a server-side scripting or programming
language. There are a lot of competing languages for Web development and you’re likely to get
differing opinions on which language is best depending on who you ask. In fact, Web languages
are a little like automobiles: you can drive anything from a Yugo to a Hummer, and each has its
own strengths and weaknesses (cost, ease of use, size, economy, and so on).

Web languages are constantly evolving; PHP, Python, Perl, Ruby on Rails, and JavaServer
Pages (JSPs) are all commonly used. If you’re new to programming, PHP may be the
easiest language to start with, and there are millions of PHP-driven Web pages, so you’d
be in good company. If you have some programming experience, you may want to try
JSPs. If you’re more aligned with the Microsoft technologies, then you’ll want to look at
VB.NET and ASP.NET as a server-side solution.

Here are a few books that can get you started:

Lynn Beighley & Michael Morrison

A Brain-Friendly Guide

Head First

PHP & MySQL
Load all the key
syntax directly
into your brain

Avoid
embarrassing
mishaps with

web forms

Flex your scripting
knowledge with dozens

of exercises

Discover the secrets
behind dynamic,

database-driven sites

Hook up your
PHP and

MySQL code

A Brain-Friendly Guide

Bryan Basham, Kathy Sierra & Bert Bates

Updated to cover
the latest version of

the SCWCD exam
for J2EE 1.4

Fool around
 in the Custom

Tag Library

Use c:out to get your
message to the world

Head FirstServlets & JSPPassing the Sun Certified Web Component Developer Exam
TM

Learn how Ted improved his appeal with dynamic attributes

Avoid deadly
traps & gotchas
on the 1.4 exam

Test yourself
with more than

200 realistic
exam questions

2nd

Edition

New Mock Exam

Included

generating pages

http://oreilly.com/catalog/9780596520106/index.html
http://oreilly.com/catalog/9780596006303/index.html
http://oreilly.com/catalog/9780596516680/index.html

leftovers

you are here � 647

#7 Tuning for Search Engines

Many users will find your site through search engines (like Google and Yahoo!). In some cases you
may not want your site to be listed in the search engine rankings, and you can use XHTML to
request that they not be listed. But, in other cases, you’ll want to do everything you can to tune your
site so it appears high in the rankings when particular terms are searched for. Here are some general
tips for improving the search engine results for your pages. But keep in mind that every search
engine works differently and each considers different factors when deciding the order of its rankings.

Improving your rankings
Search engines use a combination of the words and phrases in your pages in their search rankings.
To improve your rankings and help search engines determine what your page is about, start with two
<meta> tags in your <head> element: one to list keywords and the other to provide a description
of your content. A keyword is a simple word or two that describes your site, like “coffee” or “travel
journal”.

<meta name=”description” content=”This would be your description of what
is on your page. Your most important keyword phrases should appear in this
description.” />

<meta name=”keywords” content=”keyword phrase 1, keyword phrase 2, keyword
phrase 3, etc.” />

Many search engines treat the words in your headings and the alt and title attributes with more
weight than the rest of your text, so be sure to write concise and meaningful text in these elements
and attributes.

Finally, many search engines factor in the number of links to your site from other sites; the more sites
that link to you, the more important your site must be. So, anything you can do to encourage others
to link to your site can improve your search engine rankings.

How do I keep my site from being listed?
You can request that search engines ignore your pages, but there is no guarantee that all of them will.
The only way to truly prevent others from finding your site is to make it private (discuss that with your
hosting company). But if you want to request that your site not be listed, which works with most of the
major search engines, just put a <meta> tag in the head of your XHTML, like this:

<meta name=”robots” content=”noindex,nofollow” />

This meta tag tells search engines
to ignore this page, and any other
pages on the same site that this
page happens to link to.

648 Appendix

#8 More about Style Sheets for Printing

As you saw in Chapter 10, you can use the media attribute of the <link> element
to specify an alternative media type. If you specify a value of “print” in the media
attribute of a style sheet, then that style sheet is used when your page is printed.
Here’s how you use the <link> element to do that:

<link rel=”stylesheet” type=”text/css” media=”print” href=”forprint.css” />

The media attribute on the link element tells the browser that it should use this style sheet when it prints the Web page.

Here’s the link to the print
stylesheet. This won’t be used
when your Web page is viewed on
a monitor; it will only be used
when you use the browser to
print your Web page.

Then, as you’ve already seen, when a user visits your page and selects the browser’s
print function, the browser applies the “forprint.css” style sheet before the page is
printed. This allows you to style your pages so they are more appropriate for the
printed page. Here are a few considerations to keep in mind when developing styles
for print:

Change your background color to white for areas of printed text to make the nn

text easier to read on the printed page.

You can specify font sizes in points rather than pixels, percentages, or ems nn

in your print style sheet. Points are designed specifically for printed text. A
typical point size for most fonts is 12pt.

While sans-serif fonts are easier to read on the screen, serif fonts are nn

considered easier to read on the printed page. You can use your print style
sheet to change the font-family too.

If you have navigation menus, sidebars, or other content around the main nn

content of the page, you can hide those elements for the printed version of the
page if they are not essential for understanding the main content. This can be
done by setting the display property on any element to “none”.

If you have positioned elements in your Web page, you may want to consider nn

removing the positioning properties so your page prints the content in a top-
down manner that makes the most sense when reading the content.

If you have set specific widths for elements in your Web page, you might have nn

to change those to flexible widths using margins or other methods. If your
Web page has a specific width, then it may not fit properly on the printed page.

The key to making good print style sheets is to look at the primary content of the page,
and make sure that this content prints clearly, fits on the printed page, and is easy to
read. The best way to know if your Web page will look good when it’s printed out is to
test your print style sheet by printing the page.

better printing with css

leftovers

you are here � 649

#9 Pages for Mobile Devices
Do you want your Web pages to be usable on mobile devices, like cell phones and personal
digital assistants (PDAs)? If you do, then you need to keep some things in mind when creating
your pages. While mobile devices are getting more sophisticated, their support for XHTML
and CSS still varies widely among the various devices. Some support CSS, some don’t; some
display XHTML really well, others make a mess of it. The best thing you can do is anticipate
potential problems and plan for the future when support will be better.

First, remember that you can write a “handheld” specific style sheet by using the media
attribute of the <link> element.

<link rel=”stylesheet” type=”text/css” media=”handheld” href=”formobile.css” />

And while support may currently be limited, if you get in the habit now of writing
alternative style sheets for the “handheld” media type, you’ll be well prepared for the
future when there’s more support for them.

Remember that many mobile services still charge by the amount of data nn

transmitted to the device. This is a good reason to write simple, correct
XHTML and use CSS to style your Web pages.

Keep navigation simple and obvious. That means you should use text links nn

and avoid special scripting effects that require a mouse and keyboard to use.

Scale down your page as much as you can. If you have a handheld style sheet, nn

use it to reduce your font sizes, margins and padding as much as possible.

Keep in mind that your multi-column layouts will often be ignored on small nn

devices, so pay careful attention to the ordering of elements in your XHTML.

Many mobile devices lack support for frames and pop-up windows, so avoid nn

these.

Finally, the best solution is always to test your Web pages on as many devices nn

as you can to know how they truly perform on small devices.

Unfortunately, support for the “handheld” style sheet media type is still limited, so
even if you’ve got a handheld style sheet link in your Web page, that doesn’t mean
the browser on your phone will actually use it. So, you need to keep some general
design techniques in mind so your Web page looks good on both computer
monitors and small devices:

To create a style
sheet for mobile
devices, use the media
attribute with a
value of “handheld”.

650 Appendix

#10 Blogs

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

<head>

 <title><$BlogPageTitle$></title>

 <$BlogMetaData$>

 <style type=”text/css”>
 body {
 margin: 0px;
 padding: 0px;
 text-align: center;
 color: #554;
 background: #689C54 url(http://www.blogblog.com/dots_dark/bg_minidots.gif) top center repeat;
 font-family: “Lucida Grande”, lucida, helvetica, sans-serif;
 font-size: small;
 }
 .
 .
 .
 </style>
</head>
<body>
 .
 .
 .
</body>
</html>

Weblogs – or “blogs” as they are commonly known – are like personal Web pages, except
they are written in journal style, like Tony’s Web journal. Many people who create blogs
use online services that take care of the details of managing the blog entries. These services
also provide pre-made templates that allow you to pick from a variety of looks for your blog.
They offer different background colors, font styles, and even background images you can use.
But they also allow you to customize your blog template and create your own unique look for
your blog, with, you guessed it – XHTML and CSS.

Here’s a snippet of XHTML and CSS from the blog template of a popular online blogging
service, Blogger.com. As you can see, they’re using all the same elements and properties
you’ve learned about in this book. And they’re even on top of the new standards: their
templates use XHTML 1.0 Strict, so it’s a good thing you’ve learned how to write strict
XHTML, right? Let’s take a closer look...

This blogging service uses XHTML 1.0
Strict, so here’s the DOCTYPE and
<html> attributes you’ve seen before.

These <$...$>s are template variables; they are filled in with
the name of your blog and other content when you create
your blog, and whenever you add a new post. You should
leave these variables like they are, as they’re needed to
correctly display your blog content.

Here’s the top of the style sheet that gives your blog its lo
ok.

This template is removing the margins and padding from the
body, giving the text a default color, putting an image in the
background of the page, and setting font properties.

There are lots more style rules here. Each style rule controls things like the font used for your blog entries, the headings, the colors,... in other words, all the same stuff you’re used to styling now.

The XHTML contains all the parts you need for
your blog: headings, entries, dates, etc. Each
content area will also have a <$...$> variable for
plugging in the content from your post.

better looking blogs

this is the index 651

Indexg
h

g

Symbols
!important 477
#d2b48c (color in hex code) 32
& entity 114, 272
& character 114, 272
> entity 114
< entity 114
.. (dot dot) notation 64, 65
/* and */ 315
:8000 port 147
<!-- and --> (see comments)
< character 114
> character 114
[] (square brackets) 617
{ } braces 331

A
absolute layout 526

versus floating layout 530–531
absolute paths 138–139

versus relative paths 139
absolute positioning 519–526, 532, 542
accessibility

alt attribute 176, 255
forms 632, 634
linking 149, 161
scaling fonts using pixels 355
table summaries 557

action attribute 596, 597
<a> element 47–49

destination anchors 151–155
frames 642
href attribute (see href attribute)

new window 157–159
rendering in browser 49–50
state 468–470
strict HTML 4.01 254
target attribute 158–159
title attribute 149
(see also linking)

alt attribute 176, 237
images 255

anchors 151–155
finding 153
name 154

anti-aliasing 213
ASP 646
attributes 51–52

Attributes Exposed 53
order 155
required 255
selectors 640
supported 52

Attributes Exposed 53

B
background-color property 289, 367–368, 399

tables 566
background-image property 404–408, 447
background-position property 406, 407
background-repeat property 406, 407, 447
background property 459
backups 127
backwards compatibility of XHTML with HTML 276
Behind the Scenes

browsers and images 167–168
default pages 141
HTML links 48–50

blink decoration 377

the index

652 index

block elements
flow 488–489, 493–494, 542
strict HTML 4.01 253–254
versus inline elements 94–97

<blockquote> element 89–92, 94
multiple paragraphs 92
nested 362
nesting <q> inside 92
strict HTML 4.01 254

Blogger.com 650
blogs 650
body 23, 32
<body> element 23, 82–83

font size 358
strict HTML 4.01 253

border-bottom-color property 411
border-bottom-style property 411
border-bottom-width property 411
border-bottom property 295, 296
border-collapse property 564
border-color property 399, 411, 412
border-left-color property 411
border-left-style property 411
border-left-width property 411
border-right-color property 411
border-right-style property 411
border-right-width property 411
border-spacing property 562–563

Internet Explorer 563
border-style property 399, 410, 412
border-top-color property 411
border-top-style property 411
border-top-width property 411
border-width property 399, 411
border property 459, 560
borders 391–396, 400–401, 410–412

default sizes for keywords thin, medium,
and thick 412

<div> element 440
boxes, flow 488–497
box model 391–396

borders (see borders)
content area (see content area)

margins (see margins)
padding (see padding)

 element 98–101, 145
XHTML 1.0 Strict 275

Browser Exposed 228
browsers

automatically resizing images 182
choices 16
default sizes for keywords thin, medium, and

thick 412
determining good design across various 358
directories versus files 140
display 6
<form> element 595
forms

GET 620–621
POST 620–621
text limitations 607

headings, default sizes 358
how forms work 593
images 166–168
 element 166–168
imperfect HTML 225
links (see <a> element)
opening HTML files 19
pixel dimensions 182
quick overview 2–3
resizing fonts 358
standards compliant code 229
tables 553
URLs 135–136

Bullet Points
<a> element 69
block elements 117
borders 424
content area 424
CSS properties 331
<div> element 482
fonts

color 379
families 379
size 379
style 379

forms 634
FTP 161

the index

you are here � 653

hex codes 379
HTML 4.01 261
 element 214
inline elements 117
JPEG versus GIF 214
layouts 542
linking 69, 161
lists 117, 581
margins 424
padding 424
positioning 542
pseudo-classes 482
relative paths 69
 element 482
style sheets 424
tables 581
tags 36
URLs 161
W3C validator 261

C
caption-side property 560
cascading style sheets (see CSS)
cd command (FTP) 132
cell phones 649
cells

border-collapse property 564
border-spacing property 562–563

characters (see special characters)
checkboxes 599, 607, 615
child elements 454
classes 317–321, 331

adding elements to 317
adding style 399–415
Class Exposed 414–415
creating 399
creating selectors for 318, 320
elements of multiple classes 321
pseudo-classes 468–471, 482

Class Exposed 414–415
.classname 331
clear property 511, 542
closing tag 25, 26

color 363–376
background-color property 367–368
hex codes 369–371

shorthand 373
online color chart 373
Photoshop Elements, Color Picker 372
selecting good font color 373
specifying 366–368

by hex value 369, 372
by name 367
by rgb values 368, 372

specifying in CSS 32
text 341
Web-safe colors 373
Web colors

finding 372–373
how they work 364–365

color property 292, 294, 343
colspan attribute 571
columns, spanning 568–571
comments 6

CSS comments 315
compliance 251
compliant HTML 229–230
conflicting properties 322–323
Content-Type 240
content area

<div> element, width 442–446
content attribute 240
content versus style 34–35
copyright symbol 114
CSS 285–340, 473–482

adding into XHTML 291
body 32
box model 391–396
classes 317–321, 331

.classname 331
color 32
comments 315
font families 347
how name came about 480
id attribute 417
laying out forms

tables versus CSS 624–625
precedence 479
properties (see properties (CSS))

the index

654 index

CSS (continued)
using with XHTML 289, 290
validating 328–329
versus HTML 32, 34–35
versus XHTML 324–325

.css file 303
lounge.css file

creating 304
linking 305

CSS Up Close
background-image property 406–407
background-position property 406
background-repeat property 406

Cursive font family 345
Cyberduck 134

D
data transfer 127
default font 388
default pages 140–141
descendants 452–454
design

determining good design across various
browsers 358

Tony’s Journal 79–83
destination anchors 151–155

finding 153
name 154

dir command (FTP) 133
directories versus files in browsers 140
<div> element 432–457, 482

borders 440
descendants 452–454
float property 504–505
heading color 455
height 446
id attribute 434
labelling 434
line-height property 456
logical sections 433
marking sections 434
nested 436
structure 436
style 435, 441, 447–449

text-align property 447–449
width 442–446

dividing pages into logical sections (see <div> element)
DOCTYPE 231, 240

moving from transitional to strict 243–251
Transitional HTML 4.01 235–237

tentatively valid HTML 4.01 Transitional 238
Transitional XHTML 272
XHTML 1.0 Strict 268

domain name
hosting 127
obtaining 128
registration services 129
versus Web site name 129
why it’s called 129

dot dot (..) notation 64, 65
double quotes 86
Dreamweaver 16, 644

E
elements 25, 36

adding to classes 317
attributes 29
block (see block elements)
capitalization 251
empty 101

strict HTML 4.01 254
floated 542
inline 117

strict HTML 4.01 253–254
members of multiple classes 321
multiple selectors matching element 322
nesting 109–111
pseudo-elements 640
state 468–470

em, font size scaling factor 353
versus percentage (%) 358

Emacs 644
<embed> element 643
 element 315
empty elements 101

 element 175
strict HTML 4.01 254
XHTML 1.0 Strict 275

example files xxxiii

the index

you are here � 655

F
Fantasy font family 345
Fetch 134
<fieldset> element 632
files

directories versus files in browsers 140
fixing broken images 66–67
loading through forms 633
organizing files and folders 56–65
separators 65
updating file locations 58–65

Firefox 16
handling imperfect HTML 225

Fireside Chats
absolute positioning versus float positioning 530–531
block elements versus inline elements 96
content versus style 34–35
CSS versus XHTML 324–325
HTML versus XHTML 280–281
JPEG versus GIF 170–171
laying out forms 624–625
transitional HTML 4.01 versus strict HTML 4.01 256–257

Five-Minute Mystery
The Case of Brute Force versus Style 302

Solved 308
The Case of Relatives and Absolutes 148

Solved 156
The Case of the Elements Separated at Birth 89

Solved 93
fixed positioning 535–540

Internet Explorer 535
Flash 643
floated elements 542
floating layout 526

versus absolute layout 530–531
float property 488, 495–497

center 512
inline elements 513
Starbuzz Coffee project, sidebar 504
(see also flow)

flow 488–497
block elements 488–489, 493–494, 542
boxes 492–494
inline elements 491–494, 542
(see also float property)

folders
organizing files and folders 56–57
parent 65, 67, 69
root 65

font-family property 294, 311–315, 342, 344–345, 350
CSS 347

font-size property 342
font-style property 361–362, 560
font-weight property 343, 359–360
font property 460
fonts (see text, fonts)
footer 501

clear property 511
fixing 527
overlap problem 509
style 502

foreign characters 114
<form> element 594–597

action attribute 596, 597
adding 605
browsers 595
<fieldset> element 632
how <form> element works 596
how form element names work 606
<input> element (see <input> element)
<label> element 632
<legend> element 632
<option> element 601, 610
<select> element (see <select> element)
<table> element 627–628
<textarea> element 600, 615
(see also forms)

forms 591–638
[] (square brackets) and PHP 617
accessibility 632, 634
browsers 595
checkboxes 599, 607, 615
checkbox input 599
code example 594
GET 620–621
how forms work 592

in browsers 593
laying out in tables 626

and CSS 624–625
code 627–628
styling with CSS 630–631

loading files 633
passwords 633

the index

656 index

forms (continued)
picking names for elements 607
POST 596, 620–621
radio buttons 599, 607, 612–613
submit button 607
submit input 598
submitting 606
text input 598
text limitations 607
what can go into 598–601
(see also <form> element)

<frame> element 642
frames 642

<a> element 642
<iframe> element 642

<frameset> element 642
FrontPage 16, 644
frozen layout 517, 542
FTP 132–134, 161

applications 134
cd command 132
connecting to server 132
dir command 133
get command 133
mkdir command 133
other protocols 147
put command 132
pwd command 133
SFTP 134

G
GET 620–621
get command (FTP) 133
GIF

JPEG photo versus GIF photo 175
transparent 206–208
versus JPEG 169–171, 214
(see also images)

GNU Emacs 644
GoLive 16, 644
Google 647
graphics (see images)

H
<h1> element 22

style 294–296
(see also headings)

<h2> element 22
style 294–296
(see also headings)

head 23
<head> element 82–83

strict HTML 4.01 253
header 500

style 502
Head First Lounge project

Behind the Scenes 48–50
directions.html 45
<div> element 430–457

borders 440
elixirs page 438–439
heading color 455
style 441, 447–449
width 442–446

elixir.html 45
fixing broken images 66–67
float property 497
images 46
lounge.html 46

editing 47
lounge folder 46
organizing files and folders 56–65
overview 44–45
source files 46

headings 6, 22
adding style 294–296
color 455
default sizes 358
levels 6

<head> tag 23, 36
height attribute 177
height property 446
hex codes 32, 369–371

shorthand 373
hosting 127–129

domain name 127
guide 127

the index

you are here � 657

providers 127
renaming root folder 131

href attribute 47–49
.. (dot dot) notation 64
Attributes Exposed 53
linking style sheet 305
relative paths 58–65
versus id attribute 155

HTML
attributes xxxii
backwards compatibility of XHTML 276
comments 6
converting to XHTML 272
DOCTYPE 231
elements xxxii

tag names xxxiii
first look at code and display 4–5
history 226–227
imperfect 225
indentation of code 6
standard 230
standards 52
tools for converting to XHTML 276
validators for HTML versus XHTML 277
versions 226–230
versus CSS 32, 34–35
versus proprietary document format 6
versus XHTML 280–282
W3C validator 234, 236, 261
Web pages 2

HTML 4.01 Strict, converting to XHTML
Strict 1.0 274–275

<html> element 82–83
strict HTML 4.01 253
XHTML 272, 274

HTML files 6
first HTML file 22
Mac 12–13
opening in browser 19
saving in Notepad (Windows) 18
viewing 16
Windows 14–15

.html or .htm files 6
<html> tag 23
HTML Up Close, <option> element 610
http-equiv attribute 240

HTTP protocol 137
other protocols 147

hypertext 43
links (see <a> element)
reference (see href attribute)

I
id attribute 416–419

CSS 417
<div> element 434
versus href attribute 155

<iframe> element 642
images 165–222

accessibility 255
adding multiple 193
alt attribute 255
broken image icon 218
browsers 166–168

and pixel dimensions 182
automatically resizing images 182

creating individual pages for each image 200
determining URL 175
fixing broken images 66–67
GIF (see GIF)
Head First Lounge project 46
 element (see element)
JPEG (see JPEG)
linking directly to 203
links 55
logo

adding to myPod Web page 211
creating 204–213
setting matte color 209–211

making links out of 201–203
PNG 165, 175
positioning 528–529
PSD 204–205
resizing 181–190

Photoshop Elements 184–190
width and height 177, 182

thumbnails 195–203
creating 196
creating folder for 195
placement 198
turning into links 199–203

transparent images 205–208
decisions 207

the index

658 index

images (continued)
users scrolling to see 182
which format to use 206

 element 26, 101, 173–177
adding multiple images 193
alt attribute 176, 237
browsers 166–168
fixing broken images 66–67
linking images 55
nesting HTML problems 251
src attribute 173–174
width and height 177, 190

imperfect HTML 225
indentation of code 6
index.html, as part of URL 141
index.html file 18, 24
inheritance 311–315, 322

identifying 315
overriding 314, 315
style 362

inline elements 117
float property 513
flow 491–494, 542
positioning 522
strict HTML 4.01 253–254
versus block elements 94–97

<input> element 598–599, 608
type=“checkbox” 599, 607, 615
type=“file” 633
type=“password” 633
type=“radio” 599, 607, 612–613
type=“submit” 598
type=“text” 598

versus <textarea> 607

Internet, quick overview 2
Internet Explorer 16

border-spacing property 563
double quotes 86
fixed positioning 535
imperfect HTML 225
scaling font size in pixels 355

ISO-8859-1 character encoding 240, 261
italics 361–362

J
JavaScript 645
JavaServer Pages (JSPs) 646
jello layout 518–519, 526, 542
JPEG

JPEG photo versus GIF photo 175
linking directly to 203
quality setting 190
resizing in Photoshop Elements 185–190
versus GIF 169–171, 214
(see also images)

L
<label> element 632
lang attribute 272, 274
layouts

absolute 526
versus floating 530–531

floating 526
versus absolute 530–531

frozen 542
jello 518–519, 526, 542
liquid 542
liquid and frozen 517
three-column 541
two-column 526

<legend> element 632
 element 104–108

strict HTML 4.01 254
(see also lists)

line-height property 389–390, 456, 460
linebreaks 95

 element 98–101
<link> element

linking to style sheet file 305
media attribute 422, 648

mobile devices 649
rel attribute 305
style sheets 388

linking
accessibility 149
adding titles 149

the index

you are here � 659

destination anchors 151–155
from html to style sheets 305
grouping links and text into paragraph 145
images 55
new window 157–159
other Web sites 144–147
relative paths 58–65
style sheets 388
(see also <a> element)

liquid layout 517, 542
list-style-image property 579
list-style-position property 580
list-style-type property 578
list items in strict HTML 4.01 254
lists 104–108, 117

items 105
list-style-image property 579
list-style-position property 580
list-style-type property 578
margin-left property 579
nested 108
ordered 105, 108

style 580
padding-top property 579
strict HTML 4.01 254
style 578–580
text wrap 580
unordered 105, 108

logo 204–213
adding to myPod page 211
setting matte color 209–211
text softened 213
transparent images 205–208

lounge.css file
creating 304
linking 305–306

M
Mac

creating HTML file 12–13
TextEdit 12–13

margin-left property 447, 560, 579
margin-right property 409, 560

margin property 402, 458–459
fixing two-column problem 508

margins 391–396, 402–403
collapsing 513
right-side only 409
versus padding 396

matching tags 25, 26
media attribute 422

mobile devices 649
printing 648

medium keyword 412
<meta> tags

and content descriptions 240
improving rankings 647
validators 241

method attribute 594
mkdir command (FTP) 133
mobile devices 2, 649

style sheets 422–423
Monospace font family 345
multimedia 643
myPod Fan Site project 178–213

adding multiple images 193
creating individual pages for each image 200
logo 204–213

adding to Web page 211
setting matte color 209–211
transparent images 205–208

making links out of images 201–203
resizing images 181–190

Photoshop Elements 184–190
thumbnails 195–203

creating 196
creating folder for 195
placement 198
reworking HTML 197
turning into links 199–203

N
nested lists 108
nested tables 572–576

overriding style 576
nesting elements 109–111
nesting HTML problems 251

the index

660 index

No Dumb Questions
!important 477
absolute path 139
absolute positioning 522
<a> element

linking text 55
anchors 155
attributes 52

order 155
blink decoration 377
block elements 494
<blockquote> element 92, 255
border-spacing property 563
borders 396

 element 101
browsers 16

automatically resizing images 182
display 6
pixel dimensions 182
resizing fonts 358

capitalization or elements 251
cascade 477
child elements 454
closing tags 26
collapsing margins 513
color

rgb values 368
Web-safe colors 373

compliance 251
compliant HTML 230
content area 396
converting HTML to XHTML 276
CSS

body 32
comments 315
validating 329

default pages 141
descendants 454
destination anchors 155
determining good design across various browsers 358
<div> element 437

width 446
DOCTYPE 240
domain name 129

versus Web site name 129
dot dot (..) notation 65
editing files on Web server 134
elements, attributes 29

element state 469
 element 315
empty elements 101, 175
file separators 65
floating center 512
float property, inline elements 513
font-family property 350
fonts, multiple words 350
font size

defining in <body> element 358
em versus percentage (%) 358
not defining 358
pixels (px) 358

forms 607
checkboxes 607
picking names for elements 607
radio buttons 607
submit button 607
text <input> versus <textarea> 607
text limitations 607

GET 621
headings 6

levels 6
hosting company renaming root folder 131
href attribute, versus id attribute 155
HTML

comments 6
files 6
indentation of code 6
standards 52
versus CSS 32
versus proprietary document format 6
viewing files 16

id attribute 416, 419
images

browsers and pixel dimensions 182
determining URL 175
linking directly to 203
links 55
resizing with width and height 182
users scrolling to see 182

 element 175
width and height 177, 190

inheritance
identifying 315
overriding 315

inline elements 494
positioning 522

ISO-8859-1 240
JPEG photo versus GIF photo 175

the index

you are here � 661

JPEG quality setting 190
launching new window 158
linebreaks 95
lists 108
list style 580
logo 213
margins 396
<meta> tag 240
nested lists 108
nesting HTML problems 251
number of style rules 297
<option> element 607
ordered lists 108
organizing files and folders 57
padding 396
parent folder 65
<p> element, style 290
PNG 175
ports 147
position property 522
POST 621
precedence 479
properties (CSS) 290
protocols 139, 147
<q> element 92
quotes 92
relative paths versus URLs 147
required attributes 255
root folder 65, 131
serif and sans-serif fonts 350
SFTP 134
shorthand properties 461
 element 466
special characters 115
specificity 477, 479
standard HTML 230
strict HTML 4.01 255
style sheets 421

links to 479
tables 555

border-spacing property 563
spanning columns 571

tags 6
matching 26
nested 26
not matching 26
shorthand notation 26

target attribute 158
text, selecting good font color 373
text editors 16
two-column property 512
unordered lists 108
URLs 139
using CSS with XHTML 290
validator messages 251
validators for HTML versus XHTML 277
Web sites 139
XHTML 276
xmlns attribute 276

Notepad (Windows) 14–15
saving HTML files 18

O
<object> element 643
 element 105, 108
onsubmit attribute 645
opening tag 25

attributes 36
Opera 16
<option> element 601, 607
ordered lists 105, 108

style 580
organizing files and folders 56–65
outlines, Tony’s Journal 79–83

P
padding 391–396, 401–402

left-side only 408
versus margins 396

padding-bottom property 447
padding-left property 408, 447
padding-right property 447
padding-top property 560, 579
padding property 401, 458, 560
pages, dividing into logical sections (see <div> element)
<p> and </p> tags 22
paragraphs, setting color 289, 292
parent folder 65, 67, 69

the index

662 index

passwords in forms 633
PDAs 2, 649
<p> element

setting color 289, 292
style 290

percentage (%) 352
versus em 358

Perl 646
photos (see images; JPEG)
Photoshop Elements 184–190

Color Picker 209, 372
setting matte color 209–211
transparent images 205–208

PHP 646
pictures (see images)
pixels (px) 352, 358

accessibility 355
PNG 175

(see also images)
positioning

absolute 519–526, 532, 542
fixed 535–540, 542
float versus absolute 530–531
negative property values 537
relative 539, 542
static 540, 542
(see also layouts)

position property 520–540
absolute 520–524, 542
fixed 535–540, 542
relative 539, 542
static 542

POST 596, 620–621
precedence 479
presentation 28–32, 87
printing, style sheets 648
properties (CSS) xxxii, 290

!important 477
{ } braces 331
background-color 367–368, 399

tables 566
background-color property 289
background-image 404–408, 447
background-position 407
background-repeat 407, 447

border 560
border-bottom 295, 296
border-bottom-color 411
border-bottom-style 411
border-bottom-width 411
border-collapse 564
border-color 399, 412
border-color property 411
border-left-color 411
border-left-style 411
border-left-width 411
border-right-color 411
border-right-style 411
border-right-width 411
border-spacing 562–563
border-style 399, 410, 412
border-top-color 411
border-top-style 411
border-top-width 411
border-width 399, 411
caption-side 560
clear 511, 542
color 292, 294, 343
conflicting 322–323
float (see float property)
font 460
font-family (see font-family property)
font-size 342
font-style 361–362, 560
font-weight 343, 359
height 446
line-height 389–390, 456, 460
list-style-image 579
list-style-position 580
list-style-type 578
margin 402
margin-left 447, 560, 579
margin-right 409, 560
negative values 537
padding 401, 560
padding-bottom 447
padding-left 408, 447
padding-right 447
padding-top

lists 579
tables 560

position (see position property)

the index

you are here � 663

shorthand 458–461
background 459
border 459
font 460
margin 458–459
padding 458

text-align 447–449
text-decoration 343, 375–378

removing 378
width, <div> element 442–446

proprietary document format 6
protocols 147
PSD 204–205

(see also images)
pseudo-classes 468–471, 482, 640–641
Pseudo-class Exposed 470
pseudo-elements 640
put command (FTP) 132
pwd command (FTP) 133
Python 646

Q
<q> element 86–87, 89, 92, 94

nesting inside <blockquote> 92
Quicktime movie, embedding 643
quotes 86–94

(see also <blockquote> element; <q> element)

R
radio buttons 599, 607, 612–613
rankings (search) 647
registration services for domain names 129
relative paths 60–65, 69, 145

.. (dot dot) notation 64, 65
fixing broken images 66–67
versus absolute paths 139
versus URLs 147

relative positioning 539, 542
rel attribute 305
relocating files 60–65
rgb values 368
root folder 65, 131

rows
color 566
spanning rows and columns 568–571

rowspan attribute 569
Ruby on Rails 646

S
Safari 16
sans-serif font family 344, 350
screen magnifiers 2
<script> element 645
scripting

client-side 645
server-side 646

search engine tuning 647
search rankings 647
<select> element 601, 609–611

multiple options 633
selectors 297–301, 640–641

attribute selectors 640
combining 641
creating for classes 318, 320
multiple matching element 322
pseudo-elements 640
siblings 641

serif font family 344, 350
SFTP (Secure File Transfer Protocol) 134
shorthand properties 458–461

background 459
border 459
font 460
margin 458–459
padding 458

siblings, selecting 641
sidebar 501

floating 504
margin property, fixing two-column problem 508
style 502
two-column problem 506–508

Smart FTP 134
 element 464–466, 482

setting properties 466
style 465
when to use 466

the index

664 index

spanning rows and columns 568–571
special characters 114–115

& entity 114
& character 114
> entity 114
< entity 114
< character 114
> character 114
copyright symbol 114

specificity and CSS 476–477, 479
speech browsers 2
square brackets 617
src attribute 173–174
standards (HTML) 52

adhering to 261
compliant code 229–230

Starbuzz Coffee project 9–42, 498–541
absolute positioning 519–526
adding CSS to 30–31
code before next changes 500–501
creating folder 18
default page 141
destination anchors 151–155
domain name 127
first HTML file 22
fixed positioning 535–540
floating main content left 514–516
footer 501

clear property 511
fixing 527
overlap problem 509
style 502

forms 604–606
<input> element 608–609
<select> element 609–611
checkboxes and textarea 615–616
radio buttons 612–613

header 500
style 502

hosting 127–129
guide 127

images, positioning 528–529
index.html file 18, 24
linking to other Web pages 144–147
main 500–501

style 502

moving files to web server 130–135
FTP 132–134
root folder 131

presentation 28–32
setting up Web site online 126–164
sidebar 501

floating 504
margin property 508
style 502
two-column problem 506–508

style 502–503
Web page overview 11

static positioning 540, 542
strict.dtd file 246
strict HTML 4.01

<a> element 254
block elements 253–254
<blockquote> element 254
empty elements 254
guide 253–254
<head> element 253
<html> element 253
inline elements 253–254
 element 254
list items 254
transitioning to 243–251
versus transitional HTML 4.01 256–257

structure 20, 23, 25
<div> element 436

<style> element 29, 36, 291
text/css type 29

styles
applying 322
inheritance 311–315, 322

overriding 314, 315
number of style rules 297
tagging items 87
versus content 34–35
(see also style sheets)

style sheets 349, 388, 420–424
creating style file 303
<link> element, media attribute 422
linking from html files 306
links to 479
lounge.css file

creating 304
linking 305–306

the index

you are here � 665

mobile devices 422–423
multiple 421
order 421
printing 648
tables 560

submit button 607
symbols 114

T
<table> element 551–559

captions and summaries 557–558
<form> element 627–628
nested 573
<td> element 552–555

colspan attribute 571
rowspan attribute 569

<th> element 552–555
<tr> element 552–555
(see also tables)

tables 551–576
accessibility 557
background-color property 566
border property 560
browsers 553
caption-side property 560
captions 557–558
captions and summaries

font-style property 560
padding-top property 560

cells 551
border-collapse property 564
border-spacing property 562–563

color 566
columns 551

spanning rows and columns 568–571
headings 551, 555
laying out forms 624–625

code 627–628
decisions 626
styling with CSS 630–631

margin-left property 560
margin-right property 560
nested 572–576

overriding style 576
padding property 560

rows 551
color 566
spanning rows and columns 568–571

style sheets 560
summaries 557–558
(see also <table> element)

tag names xxxiii
tags 6

closing 25, 26
how they work 25
matching 25, 26
nested 26
not matching 26
opening 25

attributes 36
shorthand notation 26
XHTML 272

target attribute 158–159
Target Attribute Exposed 159
<td> element 552–555

colspan attribute 571
rowspan attribute 569

tentatively valid HTML 4.01 Transitional 238
text 341–384

browsers, resizing fonts 358
color property 343
default font 388
font-family property 342, 344–345, 350
font-size property 342
font-style property 361–362
font-weight property 343, 359–360
font families 344–345

CSS 347
Cursive family 345
Fantasy family 345
Monospace family 345
sans-serif family 344
serif family 344

fonts
control over 351
customizing 342
multiple words 350
selecting good font color 373

font size 342, 352–358
default sizes of heading 358
defining in <body> element 358
determining good design across various browsers 358

the index

666 index

text, font size (continued)
em 353
em versus percentage (%) 358
keywords 354
not defining 358
percentage (%) 352
pixels (px) 352, 358
specifying 354–355
Tony’s Segway Journal 356–357

italics 361–362
line-height property 389–390
overview 342–343
scaling 355
slanted 361–362
style sheets 349
text-decoration property 343, 375–378

removing 378
text-align property 447–449
text-decoration property 343, 375–378

removing 378
<textarea> element 600, 615

versus text <input> 607
TextEdit (Mac) 12–13
text editors 16

Notepad (Windows) 14–15
TextEdit (Mac) 12–13

<th> element 552–555
thick keyword 412
thin keyword 412
three-column layouts 541
thumbnails 195–203

creating 196
creating folder for 195
creating individual pages for each image 200
making links out of images 201–203
placement 198
reworking HTML 197
turning into links 199–203

Tidy 276
title attribute 149
<title> element, strict HTML 4.01 253
Tony’s Segway Journal 79–124

font-weight property 360
font families 348–350
font size 356–357
orange and underlined headings 375–376
rough sketch 79–83

style sheets 349
tables and lists 559–581

(see also lists; tables)
text-decoration property 377

transitional HTML 4.01 235–237
tentatively valid HTML 4.01 Transitional 238
versus strict HTML 4.01 256–257

Transitional XHTML 272
Transmit 134
transparent images 205–208
<tr> element 552–555
two-column layouts 526

U
Unicode characters 114
unordered lists 105, 108
URLs 135–136, 161

:8000 port 147
absolute path 138–139
determining URL of image 175
directories versus files in browsers 140
HTTP protocol 137
index.html 141
versus relative paths 147

V
validators

CSS 328–329
HTML versus XHTML 277
messages 251
<meta> tags 241
W3C 234, 236, 261

VB.NET 646

W
W3C (World Wide Web Consortium) 233
W3C validator 234, 236, 261
Watch it!

default sizes for keywords thin, medium, and thick 412
image size in browser 181
Internet Explorer

fixed positioning 535
scaling font size in pixels 355

the index

you are here � 667

positioning 532
fixed 535

<q> element 86
text scaling 355
W3C validator 236

Web-safe colors 373
Web browsers (see browsers)
weblogs 650
Web pages

ignoring (search engines) 647
linking to other 144–147
quick overview 2
rankings 647
tools 644

Web servers 3
editing files on 134
moving files to web server 130–135

FTP 132–134
root folder 131

Web sites
absolute path 138–139
backups 127
data transfer 127
default pages 140–141
directories versus files in browsers 140
domain name 127

obtaining 128
registration services 129
versus Web site name 129
why it’s called 129

hosting 127–129
guide 127
providers 127

hosting company renaming root folder 131
HTTP protocol 137
linking to other 144–147
moving files to web server 130–135

FTP 132–134
root folder 131

URLs 135–136
Webville Guide to Strict HTML 4.01 253–254
width attribute 177
width property

<div> element 442–446
Windows

creating HTML files 14–15
Notepad 14–15

saving HTML files 18

windows, launching new 157–159
World Wide Web Consortium (W3C) 233
WS_FTP 134
WYSIWYG 644

X
XHTML

adding CSS 291
backwards compatibility with HTML 276
forms (see forms)
<style> element (see <style> element)
tools for converting HTML to XHTML 276
using with CSS 289, 290
validators for HTML versus XHTML 277
versus CSS 324–325
versus HTML 280–282
why bother using 279

XHTML 1.0 227, 266
& entity 272
<html> element 272
benefits 270–271
converting from HTML 272
overview 265–284
tags 272
XML 269

XHTML 1.0 Strict 268

 element 275
converting to 273

HTML 4.01 Strict 274–275
empty tags 275
<html> element 274

XHTML UP Close
<link> element 305

XML 267
using to recreate HTML 268
XHTML 269

xml:lang attribute 272, 274
xmlns attribute 272, 274, 276

Y
Yahoo! 647

	Table of Contents
	Intro: how to use this book
	Chapter 1: getting to know HTML
	Chapter 2: going further, with hypertext
	Chapter 3: building blocks
	Chapter 4: getting connected
	Chapter 5: adding images to your pages
	Chapter 6: standards, compliance, and all that jazz
	Chapter 7: moving to XHTML
	Chapter 8: getting started with CSS
	Chapter 9: styling with fonts and colors
	Chapter 10: the box model
	Chapter 11: divs and spans
	Chapter 12: layout and positioning
	Chapter 13: tables and more lists
	Chapter 14: xhtml forms
	Appendix: leftovers
	Index

