

Linda McKinnon
Al McKinnon

XML in 60 Minutes a Day

*422541 FM.qxd 6/19/03 10:08 AM Page i

*422541 FM.qxd 6/19/03 10:08 AM Page iv

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective
is to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies® – The fun and easy way™ to learn

• The Weekend Crash Course® – The fastest way to learn a new tool or technology

• Visual – For those who prefer to learn a new topic visually

• The Bible – The 100% comprehensive tutorial and reference

• The Wiley Professional list – Practical and reliable resources for IT professionals

The book you now hold is part of our new 60 Minutes a Day series which delivers what we think is the
closest experience to an actual hands-on seminar that is possible with a book. Our author team are
veterans of hundreds of hours of classroom teaching and they use that background to guide you past the
hurdles and pitfalls to confidence and mastery of XML in manageable units that can be read and put to
use in just an hour. If you have a broadband connection to the Web, you can see Linda and Al introduce
each topic — but this book will still be your best learning resource if you download only the audio files
or use it strictly as a printed resource. From fundamentals to security and Web Services, you’ll find this
self-paced training to be your best learning aid.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with
you to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks
to review our complete title list and explore the other resources we offer. If you have a comment,
suggestion, or any other inquiry, please locate the “contact us” link at www.wiley.com.

Finally, we encourage you to review the following page for a list of Wiley titles on related topics.
Thank you for your support and we look forward to hearing from you and serving your needs again
in the future.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

WILEY
advantage

The

more information
on related titles

**422541 RA.qxd 6/19/03 10:07 AM Page oi

0-471-42548-6

Available at your favorite bookseller or visit
www.wiley.com/compbooks

Wiley Going to the Next Level

0-471-42254-10-471-42314-9

0-471-43023-4

Wiley, For Dummies, The Fun and Easy Way, Weekend Crash Course, Visual and related trademarks, logos
and trade dress are trademarks or registered trademarks of Wiley. Java and J2EE are trademarks of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners.

60 Minutes a Day Books...
• Self-paced instructional text packed with real-world tips and

examples from real-world training instructors
• Skill-building exercises, lab sessions, and assessments
• Author-hosted streaming video presentations for each chapter

will pinpoint key concepts and reinforce lessons

Available from Wiley Publishing

**422541 RA.qxd 6/19/03 10:07 AM Page oii

Linda McKinnon
Al McKinnon

XML in 60 Minutes a Day

*422541 FM.qxd 6/19/03 10:08 AM Page i

Executive Publisher: Robert Ipsen
Vice-President and Publisher: Joseph B. Wikert
Senior Editor: Ben Ryan
Editorial Manager: Kathryn A. Malm
Developmental Editor: Jerry Olson
Production Editor: Vincent Kunkemueller
Media Development Specialist: Kit Malone
Text Design & Composition: Wiley Composition Services

Copyright  2003 by Linda McKinnon and Al McKinnon. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo and related trade dress are trademarks or registered
trademarks of Wiley in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-42254-1

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

*422541 FM.qxd 6/19/03 10:08 AM Page ii

A Note from the Consulting Editor

Instructor-led training has proven to be an effective and popular tool for train-
ing engineers and developers. To convey technical ideas and concepts, the
classroom experience has been shown to be superior when compared to other
delivery methods. As a technical trainer for more than 20 years, I have seen the
effectiveness of instructor-led training firsthand. 60 Minutes a Day combines
the best of the instructor-led training and book experience. Technical training
is typically divided into short and discrete modules, where each module
encapsulates a specific topic. Each module is then followed by “questions and
answers” and a review. 60 Minutes a Day titles follow the same model: each
chapter is short, discrete, and can be completed in 60 minutes a day. For these
books, I have enlisted premier technical trainers as authors. They provide the
voice of the trainer and demonstrate classroom experience in each book of the
series. You even get an opportunity to meet the actual trainer: As part of this
innovative approach, each chapter of a 60 Minutes a Day book is presented
online by the author. Readers are encouraged to view the online presentation
before reading the relevant chapter. Therefore, 60 Minutes a Day delivers the
complete classroom experience—even the trainer.

As an imprint of Wiley Publishing, Inc., Gearhead Press continues to bring
you, the reader, the level of quality that Wiley has delivered consistently for
nearly 200 years.

Thank you.

Donis Marshall
Founder, Gearhead Press
Consulting Editor, Wiley Technology Publishing Group

iii

*422541 FM.qxd 6/19/03 10:08 AM Page iii

*422541 FM.qxd 6/19/03 10:08 AM Page iv

Acknowledgments xvii

About the Authors xix

Introduction xxi

Chapter 1 XML Backgrounder 1
Why Do We Need a History Lesson Chapter? 2
Basics: From Documents to Markup and Metalanguages 3

What’s a Document? 3
What Is Markup? 4
XML Is a Markup Language and a Metalanguage 6

Markup Languages 6
Metalanguages 7

The Evolution of XML 7
The Advent of Generic Coding 7
GML Led the Way 8
Other Typesetting Developments 10
SGML: Parent of HTML and XML 12
HTML: The Older Sibling of XML 15

The Arrival of XML 17
XML-Related Applications 22
The World Wide Web Consortium and XML 25

Possible XML Issues: “Nobody’s Perfect (Yet)” 27
Lab Exercises: Instructions and Conventions 28
A Brief Introduction to Space Gems, Inc. 29
Chapter 1 Labs: Web Exploration 29
Summary 32

Contents

v

*422541 FM.qxd 6/19/03 10:08 AM Page v

Chapter 2 Setting Up Your XML Working Environment 39
Hardware Requirements 40
Web Servers 40
Web Browsers 43
XML Authoring Tools 45

Simple Text Editors 45
Graphical Editors 47

Use Only the Latest Versions of Microsoft Word
for HTML/XML Creation 49

Integrated Development Environments 52
Converting HTML Documents to XML 55
Chapter 2 Labs: Creating an XML Authoring Environment 56

Computer System Requirements 56
Operating System Requirements 56
Creating Your XML Environment: Overview 56

Summary 62

Chapter 3 Anatomy of an XML Document 67
What Are XML Documents? 67
XML Document Processing 68

Applications 68
XML Parsers 69
Document Errors 70

The Structure of XML Documents 70
The Logical Structure 71

The Prolog 71
The Data Instance 77

The Physical Structure: Entities 92
Entities Are Parsed or Unparsed 93
Entities Can Be Internal or External 93
General Entities versus Parameter Entities 94

Preserving Characters from Parser Misinterpretation 97
Predefined Entities 97
Numeric Character References 98
CDATA Sections 100

What Is a Well-Formed XML Document? 101
What Is a Valid XML Document? 104
Chapter 3 Labs: Anatomy of an XML File 105
Summary 112

Chapter 4 Document Type Definitions 117
What Are Document Type Definitions? 118
Why Use Document Type Definitions? 119
Creating DTDs—General 120
DTD Types and Locations 121

Internal DTD Subsets 122
External DTD Subsets 122

vi Contents

*422541 FM.qxd 6/19/03 10:08 AM Page vi

Private External DTDs 123
External DTD Subsets Located at Web Sites 124
Remote External DTDs with Public Access 125
Internal DTDs Combined with External DTDs 126

DTD Declarations: General 127
Element Type Declarations 128

The Content Model 129
Elements Containing Parsed Character Data 129
Element Types Containing Other Element Types 130
Element Types Containing Mixed Content 130
Empty Element Declarations 131
Elements with “Any” Content 132
Element Content Operators 132

Attribute List Declarations 134
Attribute Declarations to Preserve White Space 137
Language ID Attribute Declarations 138

Entity Declarations 139
General Entity Declarations 139
Parameter Entity Declarations 140

Notation Declarations 143
Non-XML Data Introduced with an Attribute 143
Non-XML Data Introduced as an Entity 145

Declaring Namespace Attributes in the DTD 146
Default Namespace Declarations 147
Prefix Namespace Declarations 148
Limitations of DTDs with Respect to

Namespace Declarations 149
Normalization 149

Chapter 4 Labs: Creating a DTD 149
Summary 155

Chapter 5 XML Schemas 161
What Are Schemas? 162
XML Schema 1.0: A Two-Part W3C XML

Schema Recommendation 163
The XML Schema Abstract Model 164
The Logical Structure of a Sample XML Schema 166

The Prolog 168
The <Schema> Element: Namespaces and Qualified or

Unqualified Locals 170
Namespace Declarations 170
Target Namespaces 171
The minedata.xsd Document as a Support Schema 172
Global and Local References: Qualified and

Unqualified Locals 173

Contents vii

*422541 FM.qxd 6/19/03 10:08 AM Page vii

Element Type Declarations 175
The <sg1:diamonds> Element Declaration:

Complex Data Types 176
The <sg1:gem> Element Declaration 178

Compositors 181
Empty Element Content 181

The <sg1:catalog> Element: Simple Data Types 182
Mixed Content Elements 183
Using Facets to Define Data More Precisely 184

Schema Document Structures 186
The Nesting Structure 186
The Flat Catalog Structure 188

Using Schemas and DTDs Together 190
Chapter 5 Labs: Creating Simple Schemas 191
Summary 200

Chapter 6 XHTML 205
HTML Review 206

A Brief History of HTML and XHTML 206
HTML Shortcomings 208

XHTML Definition and Background 209
Advantages of XHTML 211

XHTML Is Related to XML 211
XHTML Is Extensible 212
XHTML Is Modular 213
XHTML Is Portable 214

XHTML 1.0’s Three Variants, DTDs, and Schemas 214
The XHTML 1.0 Strict Variant 215
The XHTML 1.0 Transitional Variant 216
The XHTML 1.0 Frameset Variant 217

XHTML Syntax 218
The Logical Structure of an XHTML Document 218

The Prolog 219
The Data Instance 219

XHTML Follows XML’s Strict Syntax Rules 220
XHTML Element Types Must Be Properly Nested 220
All HTML-Related Tag Names Must Be Lowercase 221
All XHTML Elements Must Be Closed 221
Attribute Names Must Be Lowercase; Attribute Values

Must Be Quoted 223
Attribute Minimization Is Forbidden 223
The name Attribute Has Been Replaced by the id Attribute 224

Start Moving to XHTML Soon! 225
Converting Web Sites to XHTML 225
XHTML Utilities and Services Provided by W3C 226

W3C’s HTML Validation Service 226
Amaya, W3C’s Editor and Browser 227

viii Contents

*422541 FM.qxd 6/19/03 10:08 AM Page viii

Other XHTML Utilities and Services 229
HTML Tidy 229
HTML-Kit 229

Chapter 6 Labs: Creating XHTML Documents 230
Summary 234

Chapter 7 XML and Cascading Style Sheets 239
Overview of Cascading Style Sheets 240

CSS and the World Wide Web Consortium 240
Dave Raggett’s Adding a Touch of Style Web Site 241
W3C’s CSS Validation Service 241
Coping with CSS Issues 242

Specifying Styles for HTML and XML Documents 242
Inline Style Specifications 242
Internal Style Sheet Specifications 243

Internal Style Sheet Specifications for HTML and XHTML 243
Internal Style Sheet Specifications for Other XML-Related

Language Documents 244
Affiliating Documents with External Style Sheets 245

Affiliating HTML and XHTML Documents
with External Style Sheets 245

Affiliating Other Types of XML Documents
with External Style Sheets 246

CSS and the Parsing Process 247
Creating CSS Style Rules 249

Basic Style Rule Syntax 249
Selectors 249
Declarations 251
Displaying Inline versus Block Elements 251
Selectors with Pseudo-Elements 253
Grouping Selectors by Classes 256
Grouping Selectors by Pseudo-Classes 258
Combining Pseudo-Classes with Other CSS Classes 260
Grouping Selectors by the ID Attribute 263
Inserting Images as Backgrounds 264
Inserting Images as Discrete Elements 266
Drawing Borders around Elements 268
Text Alignment, Margins, and Indentations 269
Absolute and Relative Positioning 269

Example: Absolute Positioning 269
Example: Relative Positioning 271

The Cascading Nature of Cascading Style Sheets 272
Chapter 7 Labs: Applying CSS 273
Summary 278

Contents ix

*422541 FM.qxd 6/19/03 10:08 AM Page ix

Chapter 8 XLinks 283
XLink: The XML Linking Language 284

The W3C and XLink 284
XLink and XPointer Implementations 285
Basic XLink Concepts 285

Resources 285
Link Traversal, Arcs, and Link Direction 286

XLink Logical Structures 286
Declare an XLink Namespace 287
Naming XLink Links 287
XLink’s Global Attributes 287

A Linking Element Needs a type Attribute 289
Other Important Attributes: show and actuate 291
Combining XLink Type Elements and Attributes:

Two Restrictions 292
Example: Simple-Type XLink 294
Example: Extended-Type XLink 295

Combining XLink, XPath, and XPointer to
Access Subresources 300

The XML Path Language (XPath) 300
XPath Expressions, Location Paths, and Location Steps 301

XPath Expressions and Location Paths 301
Location Steps 303
Axes 304
Node Tests 306
Predicates 307
XPath Expressions Can Contain Functions 308

The XML Pointer Language Extends XPath 311
Pointers Address a Document’s Internal Structure 312
XPointer Basics: Points, Ranges, and Locations 313

XPointer Points 313
Node-points 313
Character-points 314
XPointer Ranges 314

Browser Display of XLink Links and Syntax 315
Chapter 8 Labs: Using XLink, XPath, and XPointer 316
Summary 325

Chapter 9 XML Transformations 331
Why Transform XML Data? 332
The W3C and Transformations 333

The Extensible Stylesheet Language (XSL) 333
XSL Parsers 334
The XSL Transformation Language (XSLT) 334
XML Path Language (XPath) 335

x Contents

*422541 FM.qxd 6/19/03 10:08 AM Page x

Sample XML Transformation: Tabulating a List of Diamonds 336
The XML Source Document 337
The XSLT Style Sheet 341

Node 5: Begin Transformation Using Query Contexts
and First Template Rule 346

Nodes 6 through 12: Creating Elements Using <xsl:element> 348
Node 13: Building an HTML Table with XSLT Element Types 348
Node 14: Processing Continues on the Source <gem> Node 349
Node 15: The Current Template Rule and a

Template Rule for <gem> 349
Node 16: Creating the First Row in the HTML Table 349
Node 17: More Template Patterns Fill Out the Table Row 350
Nodes 23 through 25: Filling Out the Individual Name

Table Cell 350
Nodes 18 through 22: Filling Out the Other Cells

in the Table Row 350
Filling In the Other Rows in the Table 351

Chapter 9 Labs: Using XML Transformation Software 351
Summary 368

Chapter 10 XML Data Binding 373
What Is Data Binding? 374
Performing Data Binding 376

Data Placeholders: Data Consumer Elements 376
The <div> Element 378
The Element 380
The <table> Element 380

Data Source/Data Fields: The datasrc and datafld Attributes 385
Data Nesting and the Two-Level Rule 387
Data Island Storage of XML Data 389

External Data Islands 389
Internal XML Data Islands 391

Data Binding and Table Repetition Agents 392
Data Source Objects (DSOs) 393

Navigating Recordsets 396
Chapter 10 Labs: Data Binding with XML 401
Summary 409

Chapter 11 VML 415
Basic Digital Imaging Technologies 416

Bitmap Graphics 416
Vector Graphics 418

VML Development 419
What Is VML? A Definition 420
Creating VML Documents 421

Logical Structure: A Prolog and an <html> Element 422
Namespace Declarations 422

Contents xi

*422541 FM.qxd 6/19/03 10:08 AM Page xi

Behavior Declarations 423
VML Elements in the <body> Element 424

The <shape> Element 425
Creating Graphic Objects Using the path Attribute or

<path> Element 426
VML’s Predefined Shapes 430
The <shapetype> Element for Frequently Used

Custom Figures 435
Figure Placement 435
Altering the Appearance of VML Figures 440

Grouping Shapes Together 444
Scalable Vector Graphics (SVG) 446
Chapter 11 Labs: Creating VML Documents 447
Summary 450

Chapter 12 SMIL 455
What Is Streaming Media? 455
What Is the Synchronized Multimedia Integrated Language? 456

The W3C and SMIL 457
SMIL 1.0 457
SMIL 2.0 458
XHTML+SMIL Profile 459
Viewing and Creating SMIL Documents 459

Creating SMIL Documents 459
The Prolog 460

The SMIL 1.0 DTD 460
The Root Element: <smil> 461
The <head> Element 462

The <layout> Element 462
The <root-layout> Element 463
The <region> Element 465
When Media Object Dimensions Don’t Match

Region Dimensions 466
The <meta> Element 469
The <switch> Element 469

The <body> Element: Content, Temporal,
and Linking Information 470

Synchronizing Media Objects with the <par> and
<seq> Elements 470

The SMIL Media Object Elements 472
The <switch> Element 477
SMIL’s Hyperlinking Elements 479

Chapter 12 Labs: Getting Started with SMIL 483
Summary 491

xii Contents

*422541 FM.qxd 6/19/03 10:08 AM Page xii

Chapter 13 RDF 497
Web Search and Publication Issues 498
Metadata Is the Key to the Solution 499

The W3C, PICS, and RDF 500
RDF Defined 502
The Semantic Web and Recent RDF Developments 504
RDF Implementations 506

RDF Concepts and Syntax 507
Statements 507
Resources 508
Properties 508
Values 509
RDF Graphs 509
The Logical Structure of an RDF Document 510

The Prolog 510
The <RDF> Root Element, Namespaces, and

Content Models 510
Resource Descriptions Are Nested within

<Description> Elements 512
Property Elements 513

Abbreviating RDF 515
Substituting Our Own XML Data into Others’ Data

Content Models 515
Using the resource Attribute 516

Chapter 13 Labs: Creating and Validating RDF 516
Summary 523

Chapter 14 CDF 529
Basic Communication Concepts 530

Basic Webcasting and Managed Webcasting 531
What Are Channels? 532

The User’s Side of CDF: Accessing Channels 534
Investigating Available Channels 534
Adding a Web Site Channel to Your Favorites List 536

Adding a Channel from a Web Site That Does Not
Provide a CDF Subscription 536

Adding a Channel from a Web Site That Offers
CDF Subscription 539

Channel Synchronization: Setup and Activation 542
Viewing a Channel Offline 543

Development of the CDF Specification 544
CDF Resources 544
Channel Definition Format: A Definition 545

The Publisher’s Side of CDF: Creating CDF Channels 546
Designing the Channel 547
Creating Logo Images 549

Contents xiii

*422541 FM.qxd 6/19/03 10:08 AM Page xiii

The Logical Structure of a CDF Document 549
The Prolog 549
The <channel> Element 550
Other CDF Elements 552
Special Characters and Character Encoding 563
Test Your Comprehension with a Sample CDF File 564

Posting the CDF File to the Web Server 564
Providing Access to the Channel 564

Chapter 14 Labs: Getting Started with CDF 567
Basic CDF File for Web Pages 568

Summary 574

Chapter 15 SOAP 579
What Are Web Services? 580
The UDDI : Organization, Project, Specification, and Registry 581
The Web Service Description Language (WSDL) 585

WSDL Development 585
A Real WSDL File at Work: The GetLocalTime Web Service 586
WSDL File Structure 588
A Sample WSDL Document File: GetLocalTime 588

The Prolog 589
The <definitions> Root Data Element 589
The <types> Element 589
The <message> Element 590
The <portType> Element 591
The <binding> Element 592
The <service> and <port> Elements 593
The Last Line 594
The Bottom Line 594

What Is SOAP? 594
Development of the SOAP Specification 595

Basic SOAP Message Construct 597
The SOAP Envelope 598
The SOAP Header 599

The role Attribute 600
The mustUnderstand Attribute 600
The encodingStyle Attribute 601
The SOAP Body 602
SOAP Request Example 602
SOAP Response Example 603
SOAP Faults 603
Values for the <Value> Element within the

<Code> Element 604
Example SOAP Fault Message 605

Chapter 15 Labs: Accessing Web Services with SOAP 605
Summary 609

xiv Contents

*422541 FM.qxd 6/19/03 10:08 AM Page xiv

Chapter 16 MathML 615
Mathematical Expression Issues 616
Early Visual Presentation Solutions 618
The W3C and MathML 619

The W3C Math Working Group 620
MathML Design Goals 620
MathML Implementations 621

What Is MathML? 622
The Logical Structure of a MathML Document 623

The Prolog 623
MathML DTDs or Schemas 623
MathML and Style Sheets 625

MathML Markup Specifications 625
The <math> Element 626
MathML and Namespaces 628
MathML Attributes 629
Bases, Scripts, Characters, and Symbols 629
Presentation Markup 630
Content Markup 633
Prefix Notation 636
Combining Presentation and Content Markup 637

Two Basic Math-Expression Creation
Techniques and Concepts 637

Abstract Expression Trees 638
Layout Boxes 638

Chapter 16 Labs: Getting Started with MathML 640
Summary 649

Appendix About the 60 Minutes Web Site 655

Index 659

Contents xv

*422541 FM.qxd 6/19/03 10:08 AM Page xv

*422541 FM.qxd 6/19/03 10:08 AM Page xvi

Acknowledgments

xvii

We teach several courses in several information technology curricula. This
book is dedicated to all those students who, no matter what their level of
expertise, spoke out in class or approached us on the side to ask us about basic
XML concepts. It is difficult, we know, to find time to become familiar with the
basic concepts of a new and unfamiliar technology like XML, especially when
our colleagues already seem to be “in the know.” We thank them for their
courage and dedication, and for pointing us in the right direction regarding
topics to present in this book.

There are many others to thank. A big thanks to Donis Marshall of Gearhead
Press for providing this opportunity, for providing support and direction, and
for being patient beyond measure. Thanks, too, to J.W. (Jerry) Olsen, our proj-
ect manager, who suffered with us the most, along with two editors he man-
aged, Sydney Jones and Joann Woy. This is a far better product because of their
efforts, flexibility, and adaptability. Thanks to Ben Ryan, Kathryn Malm, and
Vincent Kunkemueller at Wiley Publishing, Inc., for their support and
patience, too.

Finally, thanks to our friends and family. In the future (well, at least until the
next project), we promise not to be so preoccupied and to put in more “face
time” with them.

*422541 FM.qxd 6/19/03 10:08 AM Page xvii

*422541 FM.qxd 6/19/03 10:08 AM Page xviii

Linda McKinnon has a Mass Communications degree and has worked for
more than 20 years in computing science and information technology. She has
performed increasingly advanced work—design, development, implementa-
tion, database management, data control, and system security—on large cor-
porate computer systems across various platforms. At the same time, her
duties have also included user administration and assistance, and trou-
bleshooting both mainframe and personal computer systems and networks.

Since 1990, Ms. McKinnon has been president and senior consultant for
Skills in Motion Inc. In that capacity, she has been responsible for providing,
and occasionally developing, instruction on the installation, configuration, and
administration of various platforms, such as AIX, Linux, other Unix flavors,
Novell NetWare, and Windows NT/2000, 9x, and XP. She is also an expert at
TCP/IP addressing and configuration. More recently, Linda has been respon-
sible for the installation, implementation, and administration of many IBM
p-Series (RS/6000) SP2 systems. Because of her background in Java, JavaScript,
and XML programming, as well as Web services and other Web development,
she also teaches those curricula on IBM’s WebSphere Server Application
Development systems.

Al McKinnon is an engineer, technical author, and trainer who assists clients
throughout North America in the areas of network design, installation, and
auditing. He has been a contributing author to national standards and has
written manuals, specifications, provincial policies, procedures, regulations,
legislation, magazine articles, and editorials.

Al and Linda are headquartered in Calgary, Canada.

About the Authors

xix

*422541 FM.qxd 6/19/03 10:08 AM Page xix

*422541 FM.qxd 6/19/03 10:08 AM Page xx

Welcome to XML in 60 Minutes a Day! If you’re interested in learning about
XML, this is a good place to start. Or if you’re interested in building a simple
XML-based Web site, you can also start here.

We know there are several XML books available already: textbooks, hand-
books, pamphlets—you name it. If you are in a bookstore or library, you are
probably surrounded by them. You may even have one or more already at
your workstation or office, at home, or in your study carrel. Plus, there are also
plenty of Internet sites where you can learn almost everything about XML,
from a quick overview to an explanation of the finest syntactic or semantic
details.

So, why should you choose this book? In the next few sections, we hope to
tell you why, to convince you that this book is a good introductory textbook, a
good reference manual, and a good investment in your future. It may even
entertain you.

Overview of the Book and Technology

Development of XML and its related standards, specifications, and vocabular-
ies is proceeding at an almost explosive rate, with simultaneous progress on
many fronts and with ever-evolving objectives. Those who want or need to
learn about XML quickly need answers to questions like these: What is XML?
Where did it come from? How do I get started? What do I concentrate on?
What can I learn that’s useful to me now? How long is it going to take to be
productive with XML?

Introduction

xxi

*422541 FM.qxd 6/19/03 10:08 AM Page xxi

We can help to answer those questions. We wrote this book for several
reasons:

■■ It reflects what our colleagues and students have requested for years:
an easily read text that introduces and explains what they need to know
now to get up to speed with XML in a Windows environment. Mean-
while, the companion Web site, discussed in Appendix A, will help
those who work in a Linux environment.

■■ Although there are many XML books on the market, we wanted to cre-
ate one that would allow you to be up and running with XML in a
proper order and according to an optimal schedule.

■■ This book contains material comparable to what you would find in a
good introductory XML course. The price of this book is pretty attrac-
tive compared to what you would pay at any technical institute, col-
lege, or university for a comparable XML intro course.

■■ This book also makes a great companion for almost anyone’s introduc-
tory XML course. Its definitions, explanations, lab exercises, and review
questions supplement material in others’ courses. In fact, we take the
time to explain some concepts that, because of scheduling or prerequi-
site assumptions, instructors tend to gloss over or omit.

■■ If you follow the lab procedures in this book, you can actually build
your own XML-oriented Web site, quickly and inexpensively.

■■ This book will also help you if you are pursuing XML certification. We
want to help you get ahead. Our quiz questions are comparable to those
you will eventually find on an XML certification test. But please don’t
look for everything you will need to know for an XML certification test.
This is, after all, an introductory-level book.

■■ Finally, the book is written as an invitation to you to get involved with
XML development. You may already have knowledge, experience,
interest, or even the enthusiasm to help with the XML revolution. Or
you may be just around the corner from it. If there is a topic that you
find interesting or exciting, it’s never too late to volunteer. In almost
every chapter, you will see several opportunities to contact those who
are continually developing XML standards and vocabularies.

What a challenge it is to be as up-to-date as possible! XML-related standards
are constantly being updated. To help you keep pace, we provide Web site ref-
erences in every chapter so that you can check for the latest developments.
When you check the Web sites, you’ll see that the changes are overwhelmingly
for the better.

xxii Introduction

*422541 FM.qxd 6/19/03 10:08 AM Page xxii

How This Book Is Organized

From the outset, we knew that the outline for our book would be part rigid,
part flexible. What does that mean? Well, the first five chapters of this book
provide the most basic and fundamental XML information and open the door
to the topics in the rest of the book. The latter chapters address several related
XML standards and languages, and provide you with other real-world XML
information and capabilities. As an initial strategy, then, we suggest that you
start with Chapter 1 and proceed right through to Chapter 16. That way, you
will receive the information in what we consider to be an optimal and cumu-
lative order, and you will be able to construct your version of the example Web
site in the proper sequence.

Alternately, if you are not intending to perform the lab exercises and con-
struct a Web site, you might start with Chapter 2 and proceed to the end of
Chapter 5 to get the basics. Then, you could examine the other chapters as you
need to or your curiosity guides you. In that case, you can also go to the book’s
site at www.wiley.com/compbooks/60minutesaday and download various
source or solution files to examine their content and structure, or go to the
Space Gems, Inc. Web site and examine the source code of the documents you
find there.

You probably want to know what’s in our book. Like many introductory
courses and textbooks, this one begins with a discussion of the technology it
will introduce; that is, it explains the origins of XML and shows you where it
fits into the information technology world and into the development of the
World Wide Web.

In Chapter 1, we go right back to basics. We explain basic document and
markup concepts. After that, we define XML as a markup language and a
metalanguage. That is followed by a brief history of XML and its ancestor
technologies. The World Wide Web Consortium (the W3C) is essential to
XML development, so we discuss that organization, its principles, and its
objectives, too.

Chapter 2 explains how to create an XML working environment, since we
are anxious to get up and running quickly, so that we can begin creating our
sample Web site. It starts by specifying hardware requirements and then dis-
cusses Web server, Web browser, and XML authoring applications. The lab
exercises provide step-by-step instructions for installing, configuring, and
using the applications we will use for the remainder of the book.

In Chapter 3, we begin to discuss XML documents and their processing. We
talk about XML-related applications, XML processors (also called parsers),
and XML errors. Then we discuss the physical and logical structure of a
generic XML document. Chapter 3 continues with an introduction to the basic

Introduction xxiii

*422541 FM.qxd 6/19/03 10:08 AM Page xxiii

components of an XML document: element types, attributes, namespace dec-
larations, and entities. It concludes with definitions of two important concepts:
the well-formedness and validity of XML documents.

Chapters 4 and 5 discuss two methods for defining (the official XML term is
declaring) the components of XML-related documents for purposes of docu-
ment validation: the use of the more traditional document type definitions
(DTDs) and the newer-technology XML schemas. A knowledge of DTDs and
schemas is essential if you will eventually be creating your own specific XML
vocabularies.

In Chapter 6, we introduce the largest of the XML-derived languages devel-
oped so far, XHTML. XHTML resembles HTML Version 4 and is expected to
replace HTML eventually. We discuss the conversion of existing HTML docu-
ments to XHTML and the creation of XHTML documents from scratch. We also
list some free utilities that facilitate those activities.

We introduce the Cascading Style Sheet language (CSS) in Chapter 7. Not
only do cascading style sheets allow designers to control data semantics and
structure they facilitate the transformation of XML data into an appealing pre-
sentation as well.

Chapter 8 shows you how to create XML-related hyperlinks and even how
to integrate them with your existing Web page projects. We discuss three XML-
related standards that provide linking capability: the XML Linking language
(XLink), the XML Path language (XPath), and the XML Pointer language
(XPointer). Together, they overcome the inadequacies in classic HTML linking.

In Chapter 9, we discuss another method for transforming XML documents,
using the Extensible Stylesheet Language (XSL) family of XML-related stan-
dards. But unlike the display-oriented style sheets discussed in Chapter 7, the
Chapter 9 style sheets prepare XML data for further processing.

Chapter 10 presents XML as both data sources and as data retrieval docu-
ments. We discuss basic XML-related data binding concepts and the agent
applications that synchronize and retrieve data in an XML environment.

Chapters 11 and 12 are a little more fun than the transformation and data
binding chapters. Chapter 11 introduces the Vector Markup Language (VML),
the prevailing XML-related graphics language. Chapter 12 introduces SMIL
(the Synchronized Multimedia Integration Language), which is used for
adding multimedia to Web page documents.

In Chapter 13, we discuss the Resource Description Framework language
(RDF), which allows us to include appropriate meta data in our Web page doc-
uments to describe the information in those documents clearly and accurately.
RDF will eventually make our systems seem “smarter,” since it will make our
Web searches faster and provide the information we really want.

Chapter 14 explains the Channel Definition Format language, which allows
Web users and publishers to obtain or provide, respectively, regularly updated
Web site information. We bet you’ve already used CDF without knowing its
name or how valuable it can be.

xxiv Introduction

*422541 FM.qxd 6/19/03 10:08 AM Page xxiv

Chapter 15 introduces the Simple Object Access Protocol (SOAP), which has
become the most popular protocol for exchanging messages with and other-
wise accessing Web services. In this chapter, we discuss Web services in
general, the Universal Description, Discovery, and Integration service in par-
ticular, and the construction and use of SOAP messages.

Chapter 16 takes us back almost to the roots of XML. The Mathematical
Markup Language (MathML) has been developed to help us share mathemat-
ical and scientific expressions across the Web. MathML allows us to not only
display the various numbers and symbols in our equations, but also to trans-
mit their actual meaning.

The Appendix contains information about what you can expect to find on
the three XML in 60 Minutes a Day companion Web sites. One will provide
instructional audio and video presentations. The second will provide down-
loadable resource and solution files to help you complete the lab exercises
found in this book.

The third companion Web site is the Web site that belongs to the fictitious
Space Gems, Inc. company. When we began this book, we thought it would be
instructive and fun to help you the reader create your own real, operating Web
site. So we created an imaginary gemstone exploration and marketing com-
pany called Space Gems, Inc. When you perform the lab exercises, you can
perform tasks that the Space Gems Web site designer and administrator would
perform.

Who Should Read This Book

We wrote our book for several audiences, including:

■■ The experienced HTML Web site designer, developer, or Web site
administrator who faces a transition from HTML to XML

■■ The manager who faces updating or upgrading an Internet service

■■ The student who faces an introductory XML course or who has been
fast-tracked into an intermediate-level course and isn’t quite sure about
having the prerequisite knowledge and experience to keep up with the
instructor or other students

■■ The work-at-home or small business professional whose firm never
seems to have enough funds for training, yet who needs to stay current
with Web technology

You don’t need a lot of experience to understand and use this book. It is geared
toward the XML newcomer. Granted, it might be beneficial if you already have a
background in HTML or Web site publishing or administration, but that’s not
necessary. (An old “discount bin” HTML manual is usually sufficient.)

Introduction xxv

*422541 FM.qxd 6/19/03 10:08 AM Page xxv

Occasionally, we mention some advanced concepts, but we don’t dwell on
them. We mention them mostly to stimulate your curiosity.

Tools You Will Need

In Chapter 2, “Setting Up Your XML Working Environment,” and in the
Appendix, we describe the hardware you will need to perform the lab exer-
cises and to access and use the three companion Web sites to XML in 60 Min-
utes a Day. Thereafter, we suggest you install Windows XP Professional or
Windows 2000 Professional as a base operating system, with Internet Explorer
as your base Web browser application. In Chapter 2, we describe all the appli-
cations you will need to perform your lab exercises. If additional or different
applications are required for later exercises, we tell you where the applications
are located and how to install them. We have tried to find online sources that
are free or that provide trial periods that are long enough for you to complete
the relevant exercises.

As we mentioned in the earlier Overview of the Book and Technology section,
copies of our lab exercises that are oriented to the Linux operating system are
available at www.wiley.com/compbooks/60minutesaday. Although we used
the Red Hat distribution of Linux to create the exercises, any version of Linux
will suffice to perform them.

Please be aware that some of the Linux XML labs still require you to use
Internet Explorer to test the procedures. On those occasions, you will need
both a Windows system and a Linux system. To help you share files between
the two systems, we have provided additional technical solutions at our (the
authors’) Web site at www.skillsinmotion.com.

Summary

We hope you’ll enjoy this introduction to XML. Once you’ve worked your way
through the book, you’ll have enough background to begin creating many
XML documents and to contribute to almost any HTML or XML-related Web
site. Plus, you will have enough basic knowledge to tackle an intermediate-
level XML course or text.

Besides being a good introductory course, this book also is a good reference
manual and a good investment in your future. Good luck! And thanks for
selecting our book!

xxvi Introduction

*422541 FM.qxd 6/19/03 10:08 AM Page xxvi

1

The past five or six years have witnessed an explosive growth of Extensible
Markup Language (XML) as more individuals and organizations link their com-
puter systems together to exchange data and create usable information, and as
more vendors convert their electronic commerce Web sites to provide goods and
services. XML has matured quickly and now is capable of providing a standard
for the structure, transmission, and interchange of data, whether that data trav-
els within the same computer system, through a local network, or clear across
the globe, and whether the applications and operating systems processing the
data are identical or different. All of the major software companies—most
notably the Web browser developers such as Microsoft, Netscape, Mozilla,
Konqueror, and Opera—are enthusiastic about XML. Promoting the use of
XML standards is the next step in the evolution of the World Wide Web.

This book introduces you to XML and shows you why XML is becoming so
popular. It also introduces you to several XML-related languages and stan-
dards as we teach you to develop a simple e-commerce Web site. You will
build this Web site yourself over the course of several laboratory exercises.

In this first chapter, we provide an overview of some basic document pro-
cessing concepts and then discuss the context of XML’s development and the
development of its predecessors. We’ll define and discuss markup, markup

XML Backgrounder

C H A P T E R

1

422541 Ch01.qxd 6/19/03 10:08 AM Page 1

languages, and metalanguages, too. We’ll then discuss the need for standards,
the role of XML as a standard, and the role of the World Wide Web Consortium
(W3C) in the development of the World Wide Web, XML, and other Web-
related technologies.

By the end of this chapter, you should be familiar with basic markup con-
cepts and be able to participate in any general conversation about XML as a
metalanguage and a markup language.

Why Do We Need a History Lesson Chapter?

We swear that the exchange in the accompanying Classroom Q & A actually
took place just before we began this book. The question is verbatim, but we’ve
paraphrased our answer a little.

Classroom Q & A
Q: I was in the bookstore yesterday and I was looking at some XML

books. Why do so many XML books begin with some sort of his-
tory lesson? Why should we care about XML’s history? Why not just
get at it?

A: It’s true that this first chapter is a combination of concepts and his-
tory, but there are several reasons for chapters like this:

■■ XML’s development process is meaningful to your understand-
ing of its concepts and its open, independence-oriented culture.

■■ The XML story is interesting and even heroic. The fact that
you’re reading this means you are about to become a charac-
ter in the story, too. And many of its heroes are among us—
some of them you can actually contact with just a few mouse
clicks and keystrokes. They’re fighting the good fight, and
they’d be happy to have you assist them.

■■ XML didn’t just happen yesterday, and it didn’t happen all at
once. It’s not just another flavor of the month. It has evolved
from its predecessors over the past 40 years or more, and it’s
expanding and evolving constantly.

■■ We’ll show you how XML draws from its heritage, how it con-
stantly evolves to cope with ever-growing needs, and how it
pays dividends for the worlds of communication and commerce.

2 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 2

Meanwhile, to illustrate the evolving nature of XML, from the time we
began drafting this book until the time we finished it, we had to revise several
chapters to keep the information current. By the time you read this book, no
doubt even more changes will have occurred. That’s why we provide Web site
and other references so that you can get the latest XML information and
updates.

Several chapters introduce XML-derived and -related markup languages.
Because each language came along at a different time and because each has a
rather unique heritage and evolution, there will be a brief historical summary
in each of those chapters, too.

Let’s start our background and history chapter with a discussion of some
basic concepts that will appear several times throughout this book.

Basics: From Documents to
Markup and Metalanguages

This section examines some basic concepts and then uses those concepts to
build a definition of XML.

What’s a Document?
Outside the IT world, we encounter all sorts of hard-copy documents: letters,
forms, books, newspapers, magazines, invoices, maps, birthday cards, leaflets,
posters, sticky notes, and many others. The concept of the hard-copy docu-
ment evolved almost without notice. When we encounter new types of hard-
copy documents in our homes, offices, classrooms, libraries, stationery stores,
or local newsstands, we seem to accept them unconsciously. Meanwhile,
within the IT world, the concept of the electronic document has evolved, too.

Let’s start with a more basic definition first: the definition of text. Text is
generally considered to consist of words, sentences, lines, paragraphs, and
even pages. Typically, the term text also refers to electronic text stored as only
simple character codes (for example, American Standard Code for Information
Interchange, or ASCII, codes)—that is, without any formatting.

At one time, the electronic document was only considered to be a text file
created with applications called text editors or word processors. You could
almost use the terms text and document interchangeably. However, as devel-
opments occurred on many IT fronts, the concept of the electronic document
expanded to contain tables, graphics, charts, and other objects, in a manner
that parallels the evolution of hard-copy documents. Now, in the IT world,
documents are considered to be electronic files of any size for any media (for
example, text, audio, video, and graphics), created by any application. So now,
the definition of text is a subset of the definition of the document.

XML Backgrounder 3

422541 Ch01.qxd 6/19/03 10:08 AM Page 3

In their Extensible Markup Language 1.0 Recommendation, which is recog-
nized as the official XML standard, the W3C defines an XML document as a
“data object if it is well-formed, as defined in (Extensible Markup Language
Recommendation). . . . Each XML document has both a logical and a physical
structure.” (We discuss the W3C in more detail in The World Wide Web Consor-
tium and XML section later in this chapter.)

That definition might appear obscure at this point, but don’t worry. We dis-
cuss and expand on that definition in Chapter 3, “Anatomy of an XML Docu-
ment,” when we discuss XML documents in more detail. Actually, we discuss
some form of XML-related document or another in almost every chapter, but
Chapter 3 provides the most essential and basic discussion of document com-
ponents and structure.

Related to the discussion of documents is the term document processing,
which is the discipline that deals with creating applications that allow you to
deal with documents of all types. Document processing is split into creating or
manipulating those documents destined for human viewing and consumption
(people-oriented processing), as well as those that are destined for computer
consumption (machine-oriented processing). Documents of the former type
were comparatively long-lived (examples: specifications, drawings, proce-
dures, charts, and memos). Documents of the latter type tend to have shorter
lives because their data may be manipulated, transformed, or combined on the
fly to create or add to different documents.

As you’ll see, XML descends from a rich document-processing heritage.

What Is Markup?
The concept of markup is important. After all, it’s the M in XML. But what does
it mean? Basically, it’s a way to add information about data to the data itself.

You may not have had much experience with other markup languages, but
you have probably used markup in one form or another. For example, have
you ever:

■■ Underlined or highlighted words or passages on a hard-copy document
to indicate important information?

■■ Marked up a draft hard copy of a document with symbols indicating
“new paragraph here,” “bold this,” or “remove this”?

■■ Made marks on a map indicating where you want to turn, or where
specific features are located?

■■ Numbered bits of information, such as steps, in an otherwise unnum-
bered procedure?

Those and similar activities involve marking up data. All the symbols,
notes, numbers, designated actions, or highlights—all of which qualify as

4 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 4

some sort of markup—emphasize or convey something about the data: what it
means or what you are supposed to do with it.

A significant paper titled “Markup Systems and the Future of Scholarly Text
Processing,” by James H. Coombs and Allen H. Renear of Brown University
and Steven J. DeRose of Electronic Book Technologies, describes six types of
markup:

■■ Punctuational, which consists of the use of defined marks (examples:
spaces, periods, and commas) to provide primarily syntactic information
about written utterances. Punctuation has been around so long that we
take it for granted.

■■ Presentational, which we use to group our materials for order and
clarity. Examples include horizontal and vertical spacing, page breaks,
numbering, chapter and section breaks, justification, and lists.

■■ Procedural, which is a characteristic of whatever system will be used to
create presentations. Often grouped with what we call file formats, it
tells someone or something (such as a formatter with a set of installed
drivers) about the size and format of a document (examples: letter,
legal, and portrait and landscape views), fonts, and other production
information.

■■ Descriptive, which allows authors to identify certain elements of
their data as belonging to a specific family of text. The common word-
processing tag BT (for basal text) is an example: When a text formatter
encounters that code, it consults, and then follows, a predefined set of
rules that tell it what to do to display or print the characters associated
with that code. If changes become necessary, you only need to change
the rules, not each BT tag in the document.

■■ Referential, which refers to separate physical or electronic entities
(that is, located external to the document being processed) that will be
imported and placed in the proper sequence during document process-
ing. In Chapter 3 and elsewhere in this book, you will see how to incor-
porate audio, video, and other files into XML documents by using this
type of markup.

■■ Metamarkup, which provides the ability to control the definition and
interpretation of markup tags, and to extend the vocabulary of deriva-
tive markup languages. Metadata, the concept of information about
information, is related to this concept.

If you would like to read the Coombs, Renear, and DeRose paper that
the preceding definitions were taken from, you can find it online at
www.oasis-open.org/cover/coombs.html#Figure1.

XML Backgrounder 5

422541 Ch01.qxd 6/19/03 10:08 AM Page 5

Markup, in summary, is the inserting of characters or symbols into a docu-
ment to indicate the document’s physical and logical structure, to indicate
how the information in a document should appear, or to provide some other
form of instruction. The primary goal of markup is to separate the treatment
(for example, the appearance or structure) of a document from the actual data
in the document.

XML Is a Markup Language and a Metalanguage
There are over two dozen categories of computer languages; you are probably
familiar with some of them already. For example, machine languages consist
entirely of numbers and are only understood by computers; assembly lan-
guages are symbolic representations of the machine language of a specific
computer; programming languages such as COBOL, C++, Java, and Fortran
instruct computers to do specific tasks; and fourth-generation languages, whose
syntax is closer to human languages.

Some language categories are separate and discrete, dedicated to specific
functions; some languages are subsets of others; and some are hybrids of other
languages.

For a more comprehensive listing of computer languages and their
respective definitions, consult the The Language List Web site, maintained
by Bill Kinnersley of the Computer Science Department, University of
Kansas, at http://cui.unige.ch/OSG/info/Langlist/intro.html.

XML doesn’t fall into any of the categories previously listed, but it falls into
two other categories: It’s a markup language and a metalanguage.

Markup Languages

Extrapolating the definition of markup, markup languages are those that
allow us to create documents consisting of plaintext data and other entities,
plus markup codes that define the logical components and structure, as well as
describe the appearance or other aspects of the data. The markup codes, called
tags, are located adjacent to their respective data. In addition, the data and tags
are usually composed of common text characters, so they can remain indepen-
dent of platform and operating system.

Why use markup languages? These days, with the proliferation of computer
networks across the world, with their myriad of applications, operating sys-
tems, and proprietary network devices, the data transmitted over the wire,
through the air, and through space must include all the information necessary
for automated systems (such as computers, routers, firewalls, and hubs) to
transmit, receive, and otherwise deal with the data. The receiver needs the
markup tags to interpret the message: the format and content of database data,

6 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 6

multimedia graphic files or audio files, debit card transactions, credit card
authorizations, or any other various document types.

Metalanguages

In the What Is Markup? section, we provided a listing of markup types. One of
the types was called metamarkup, which provides the capability to control the
definition and interpretation of markup tags, and to extend the vocabulary of
derivative markup languages. That is consistent with the definition found at
Mr. Kinnersley’s Web site, where he defines a metalanguage as a “language
used for formal description of another language.” It is also consistent with
other definitions of metalanguages, which describe them as languages that
provide for conformance-proving mechanisms.

XML permits developers to create their own specialized derivative lan-
guages, but all of those languages have one thing in common: They meet XML
specifications. If languages and documents contravene the XML specifications,
the XML processors in their respective applications may or may not process
them. Even if they do, they will likely generate error messages.

The Evolution of XML

Until the late 1960s, it was accepted practice that electronic manuscript files
would contain macros or control codes (referred to as specific coding) to pre-
scribe how the manuscript documents should be rendered. Plus, the format of
the document files, and the applications that manipulated them, were often
proprietary to the publishers.

Also, document processing applications were of a black-box nature. Users
couldn’t get at all the coding to examine and possibly modify it; therefore, docu-
ment coding was not open source. It was also nonstandard: Tags and other
coding from one application were not identical or interchangeable with those
from another application. Documents created with one application were usu-
ally not compatible with other applications.

The Advent of Generic Coding
There are several good historical summaries of the state of document process-
ing prior to the development of generic coding, upon which XML and its pre-
decessors are based. This section paraphrases from several sources, especially,
from those found at Charles F. Goldfarb’s SGML Source home page at
www.sgmlsource.com, in his SGML History Niche at www.sgmlsource.com/
history/. (SGML stands for Standard Generalized Markup Language; we look
at SGML more closely later in this chapter.) Documents there are recom-
mended reading.

XML Backgrounder 7

422541 Ch01.qxd 6/19/03 10:08 AM Page 7

We have already mentioned the proprietary nature of early document
processing technologies. A number of movements began in the late 1960s
that would lead to a substantial change from that philosophy, including the
following:

■■ New York book designer Stanley Rice advocated the development and
adoption of standard style macros based on the structural elements of
publications (examples: parts and chapters).

■■ William Tunnicliffe of the Graphic Communication Association (GCA;
now known as the International Digital Enterprise Alliance) advocated
“the separation of information content of documents from their format.”
This was the concept of generic coding at its embryonic stage.

■■ In 1969, IBM began research on an integrated processing project: the
application of computers to the legal profession. The project involved
the integration of a text editing application with a database information
retrieval system and a document composition application.

There was intellectual cross-pollination among the initiatives, which bore
fruit for the GCA, IBM, and, eventually, for all of us.

For further information on IDEAlliance (formerly the GCA), consult
www.idealliance.org/.

GML Led the Way
As the IBM team worked on their integrated document project, they recognized
that their eventual product language would have to reflect three features:

■■ Markup in general would have to be the common language (the devel-
opers refer to it as the lingua franca) for data description, structure, and
communication, and it would have to be readable and writable by all
relevant computer applications.

■■ The markup would have to be extensible, not related to just one indus-
try, because an infinite variety of information types might eventually
be created. In other words, they saw that their technology might and
should be applied to all professions.

■■ The documents common to the information in each different area would
need some sort of description mechanism or rules, against which the
documents could be checked for conformity—that is, proofed.

The IBM team called the first version of the product they developed in
1969 the Text Description Language. Development continued and its name was

8 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 8

changed in 1971 to the Generalized Markup Language. The name was chosen
deliberately, so that its acronym, GML, could serve as a reminder of the GML’s
original creators: Charles Goldfarb, Ed Mosher, and Ray Lorie.

With GML, IBM removed specific formatting instructions from the content
of the document itself. GML’s markup was based only on the identification of
the different types of structural components in a document. With GML, an
author could assign descriptive tag names to the sections of data. After the var-
ious sections were thus identified, any application could be written to manip-
ulate the data as long as it contained the appropriate tag references.

GML was first released under its own name as part of Advanced Text Man-
agement System in 1973. It became an integral part of several IBM publishing
systems, most notably IBM Script.

Table 1.1 lists some basic GML codes.
The following is a sample of GML markup:

:h2.Definitions:

:ol.

li.1. noun, a gem variety of corundum in transparent or translucent

crystals of a color other than red; especially, a transparent

rich blue

:li.2. noun, a gem of such corundum

:li.3. noun, a deep purplish blue color

:li.4. adjective, made of or resembling a sapphire gem

:li.5. adjective, having the color of a blue sapphire

:eol.

Table 1.1 GML Tag Examples

TAG EXPLANATION

:title Document title

:h0-:h6 Zero level through sixth-level titles

:ul / :eul Begin and end unordered lists

:ol / :eol Begin and end ordered lists

:li Item that appears following a “begin list” tag

:hp1 / :hp2 / :hp3 Start highlight level 1, 2, or 3 (where 1=underscore,
2=bold, and 3=both)

:ehp1 / :ehp2 / :hp3 End highlight level 1, 2, or 3

:lq / :elq Begin and end a long quote (also called a block quote)

XML Backgrounder 9

422541 Ch01.qxd 6/19/03 10:08 AM Page 9

Let’s examine the sample coding. Notice that a GML tag begins at the left
margin (that’s why they’re called flush left) and that the tag name is preceded
by a colon. The colon is the GML delimiter, which instructs the application (pre-
sumably a text formatter) to begin processing a tag. Immediately following the
delimiter is the descriptive tag h2, which indicates that the content, when
encountered, is to be formatted according to the predefined rules for a second-
level title. The tag is followed by a content separator (the period), which tells the
processor to stop processing the tag and to, instead, process the text data that
follows according to the h2 rules. Finally, the data (that is, the word Definitions
followed by a colon) appears.

GML’s descriptive generic coding makes a document more portable because
the content can be printed or displayed in different ways according to an
application’s interpretation of the tag without making any changes to the orig-
inal document file. Plus, the author doesn’t have to supply the formatting
details. So, using one application, the h2-tagged definitions might be printed
in a Times font at 30-point size, while the list items (that is, the content on the
:li lines) might be printed in Times at 12 points. With another application, def-
initions might appear on-screen in a bolded sans serif font at 24 points, while
the list items appear in sans serif at 10 points.

GML development didn’t stop with its release in 1973. As the SGML history
documents indicate, Mr. Goldfarb “continued research on document struc-
tures . . . short references, link processes, and concurrent document types
By far the most important was the concept of a validating parser that could
read a document type definition and check the accuracy of markup without
actually processing a document.”

Document type definitions, which would fulfill the third required feature of
the three listed earlier in this section, had been in development since the begin-
ning of the work on GML.

In 1975 to 1978, IBM introduced their Document Composition Facility
(DCF), based on the IBM Script product of the 1960s but with upgrades like
GML support. With DCF, GML left the essentially research-only domain and
became commercially available.

Other Typesetting Developments
As we stated previously, until the late 1960s computer text processing applica-
tions were proprietary in nature. GML’s creators showed the document pro-
cessing world that there was merit in creating a portable, machine-independent
system of encoding.

The development of generic coding and other document processing tech-
nologies, however, did not cease with the appearance of GML. The GCA had
initiated their System X project, which would later be called GenCode. Work
on that project would continue through the 1970s.

10 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 10

Other automated typesetting technologies prevalent or being developed
simultaneously with (and even later than) GML and System X/GenCode, but
in different areas, include the following:

Mainframe publishing applications. Expensive, esoteric, and requiring
mainframe systems, these were still fairly powerful; however, most dealt
with data display and did not reflect the direction shown by GML.

Desktop publishing (DTP) applications (also called formatting markup
applications). As personal computers became more powerful and less
expensive, desktop publishing applications appeared more frequently.
They are used for producing newsletters, books, and other documents
that used to require professional typesetters.

DTP applications are advantageous for large, detailed reports. Often,
they’re freely available, powerful, and used throughout the world (an
example is the TeX family of DTP applications: TeX, LaTex, MikTeX, and
others). They’re often platform-independent and have powerful facilities
for mathematical and scientific equations and other expressions (better
than word processing applications, which we discuss in the next bullet
point), as well as section and chapter numbering. But they are primarily
display-oriented rather than data-oriented. Plus, there is no instant feed-
back or instant modification. In fact, additional applications are required
to translate a DTP rendition file to a presentation format that is human-
readable, including Device Independent (DVI), PostScript (PS), Portable
Document Format (PDF), and HyperText Markup Language (HTML).
After that, a specific viewer application (for example, a DVI viewer)
must be activated to view the final results. Only after the document file
is displayed can you finally print it.

Word processor applications. From a user interface perspective, word
processor applications are an improvement over desktop publishing
applications. These applications create renditions, but they provide a
nicer user interface to create and manipulate them. The interface is
designed to look similar to the presentation: the finished paper product
or screen layout. That’s why using these applications is called What You
See Is What You Get (WYSIWYG, pronounced “wizzywig”) publishing.
WYSIWYGs are becoming more sophisticated and more like desktop
publishing applications.

But WYSIWYG applications have their drawbacks, too: They still don’t
have all the sophistication of desktop publishing applications, especially
when it comes to rendering mathematical or scientific expressions. Also,
with most, their features are generally inserted into the document file
with nonstandard markup codes. Plus, the codes are only visible to the
application during processing, but not to the user during document

XML Backgrounder 11

422541 Ch01.qxd 6/19/03 10:08 AM Page 11

creation or editing. Thus, with most WYSIWYGs (there are exceptions),
all you see in the user interface (that is, on-screen) is the effect of the
codes that the applications have inserted, not the codes themselves.
However, some WYSIWYGs allow you to save a document in HTML
format, allowing those applications to compete with Web page design
applications. So the codes have become somewhat more standard and,
after a fashion, visible, but again, these applications emphasize data
display rather than data semantics, and not all of them are platform-
independent.

Simple text editors (also called plaintext applications). Simple text edi-
tors are scaled-down (compared to WYSIWYG) applications for creating
plaintext documents. That is, they create documents consisting of ordi-
nary text. After that, most do not allow you to apply even the simplest
typesetting features, including page breaks. But the applications are
small, use few resources, and come already installed on almost every
operating system.

SGML: Parent of HTML and XML
With all these developments in their respective arenas, two facts became
apparent:

■■ For markup languages to be truly portable and useful to the myriad of
eventual users in several environments on many networks around the
world, a standard would have to be developed to list all acceptable and
valid markup tags.

■■ Any eventual standard must clearly define the meaning and syntax of
the markup tags.

Further, any information intended for public use could not be proprietary.
That is, it couldn’t be restricted to one technology and certainly not to one
make, model, or manufacturer of such a technology.

In addition, public-oriented information should be in a form that could be
reused in many different ways to optimize time and effort. Proprietary data for-
mats, no matter how well documented or publicized, would be unacceptable.

To meet the challenge, the American National Standards Institute (ANSI), in
1978, established the Computer Languages for the Processing of Text commit-
tee, which began work on a standard text description language. That language
was to be based on GML. The GenCode committee of the GCA provided several

12 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 12

people (including the aforementioned Mr. Tunnicliffe; he would come to play a
vital role) dedicated to the task of developing the SGML standard. Mr. Goldfarb,
one of the three original GML creators, also participated.

The committee published its first working draft of the Standard Generalized
Markup Language standard in 1980. After several drafts, the United States
Internal Revenue Service and the United States Department of Defense
adopted SGML. Many national and international organizations, notably other
defense organizations in North America and elsewhere, subsequently adopted
SGML, too.

By 1984, the SGML project had also been authorized by the International
Organization for Standardization (ISO), which established its own SGML
development team; however, alignment between the ANSI and ISO teams was
maintained by Mr. Goldfarb, who served as project editor for both.

In 1986, the Standard Generalized Markup Language (ISO 8879:1986)—an
international standard describing markup for the structure and content of
different types of electronic, machine-readable documents—was approved.

SGML was not designed as a document encoder on its own. Its power comes
from its use as a standard by which other, more specific languages, tailored to
the specific requirements of any organization or industry, can be developed.
SGML became the overarching standard metalanguage and would be used to
facilitate the creation of many derivative markup languages—most notably,
HTML and XML.

The derivative languages and their respective documents may then be
processed, without changes or losses, for varying purposes and in different
forms by any appropriately written program that can process SGML. The docu-
ments might be transmitted or displayed on a PC, on laptop or handheld com-
puters, in print, or via projection without fear of information being lost or
misinterpreted.

SGML-related languages separate the three aspects of a typical document
(the data structure, content, and style) and deal mainly with the relationship
between structure and content. To that end, the concept of a separate but
related document called the document type definition (or DTD, the subject of
Chapter 4, “Document Type Definitions”), which had been born with GML,
was formalized with SGML.

SGML thus became an extremely powerful and extensible tool, and it led to
the cataloging and indexing of data in many important and complex indus-
tries (examples: defense, as mentioned, plus medical, financial, aerospace,
telecommunications, and entertainment). Table 1.2 lists several SGML-based
languages.

XML Backgrounder 13

422541 Ch01.qxd 6/19/03 10:08 AM Page 13

Table 1.2 Examples of SGML-Based Languages

LANGUAGE DESCRIPTION

HyperText Markup Language (HTML) Perhaps the most famous; used to create
hypertext documents. In use over the
World Wide Web since 1990.

Extensible Markup Language (XML) Used to create other industry-specific
or organization-specific languages; the
scaled-down, Internet-oriented version
of SGML.

Continuous Acquisition and Formerly called Computer-aided
Lifecycle Support (CALS) Acquisition and Logistics Support. More

recently called Commerce at Light Speed.
Used for documenting complex military
equipment.

Text Encoding Initiative (TEI) An international standard that allows
libraries, museums, publishers, scholars,
and others to represent texts for online
research and teaching.

The Standard Music Description Used to define timing and user-defined
Language (SMDL) functions for pitches, chords, and

instrumental and vocal sounds.

News Industry Text Format (NITF) For describing information for the News
Distribution Industry.

A longer list of SGML-related languages can be found at the Oasis Cover
Pages Web site at http://xml.coverpages.org/gen-apps.html.

The following is an example of SGML markup. Notice that start tags and
end tags (terms enclosed in angle brackets and located before the beginning
and after the end of the data, respectively) are used to identify elements (con-
trast that to GML’s left-flush tags). Everything from the start tag <sect_title> to
the end tag </sect_title>, including those tags, is part of the <sect_title> element.

<section>

<sect_title><No. 29 - Sapphire</sect_title>

<pronunciation>Pronounced: 'sa-"fIr</pronunciation>

<origin>Origin: Middle English <src_wd>safir</src_wd>, from Old

French via Latin <src_wd>sapphirus</src_wd>, via the Greek

<src_wd>sappheiros</src_wd>; may be of Semitic origin;

similar to Hebrew <src_wd>sappIr</src_wd>; dates back

to the 13th century AD

</origin>

<definitions>

<subhead1>Definitions</subhead1>

14 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 14

<defn_list>

<defn>1. noun, a gem variety of corundum in transparent or

translucent crystals of a color other than

red; especially, a transparent rich blue

<defn>2. noun, a gem of such corundum

<defn>3. noun, a deep purplish blue color

<defn>4. adjective, made of or resembling a sapphire gem

<defn>5. adjective, having the color of a blue sapphire

</defn_list>

</definitions>

</section>

Full SGML systems are applied to large, complex document situations (it’s
no wonder they’re used for the aerospace industry and military installations)
that can make use of the full standard, that likely won’t require frequent Web
access, and that can otherwise justify the expense of installing, configuring,
and maintaining the systems needed to process SGML-related documents.

Despite its advantages, however, there are also some disadvantages to
SGML. It’s a big and complex standard, and its page count numbers in the
hundreds. Fully SGML-compliant languages are generally big and resource-
intensive and are usually too cumbersome for Web browser-related functions.
Web browser manufacturers have stated that their products do not and will
not fully comply with SGML. Further, adding SGML capability to a word
processor application, to save documents to SGML specifications, doubles or
triples the application’s price.

HTML: The Older Sibling of XML
The HyperText Markup Language (HTML) was developed at the Conseil
Européen pour la Recherche Nucléaire (CERN, the European Organization for
Nuclear Research), which was the original home of the World Wide Web, in the
early 1990s. HTML’s original purpose was to provide a platform-independent
mechanism to hyperlink-related documents, whether those documents were
on the same local area network or situated across the world. The Internet was
already a mature technology, supported by government, academic institu-
tions, and large corporations, and HTML could help them by providing a
universal means to link and display basic business-style documents.

The HTML standard was first defined under the Internet Engineering Task
Force (IETF) Network Working Group’s Request for Comments (RFC) No.
1866, in November 1995. It was authored by Tim Berners-Lee of CERN. (He
would later move to the Laboratory for Computer Science at the Massachusetts
Institute of Technology. Mr. Berners-Lee was also the inventor and architect of
the World Wide Web.) As the Network Working Group approved RFC 1866,
the then newly formed World Wide Web Consortium also adopted it as their
HTML 2.0 Recommendation.

XML Backgrounder 15

422541 Ch01.qxd 6/19/03 10:08 AM Page 15

HTML was developed as a derivative language of SGML. Any fully confor-
mant SGML applications can read HTML documents. Commonly, however,
HTML source code is interpreted and displayed by a Web browser application.
We define Web browsers more fully in Chapter 2, “Setting Up Your XML
Working Environment,” but basically they are HTML processing applications
that conform to HTML standard display rules but are not robust enough to be
fully SGML-compliant. That doesn’t matter, though, because HTML is a much
simplified version of SGML with a fixed and limited set of predefined markup
components. HTML contains basic tags and attributes for headings, para-
graphs, lists, illustrations, hyperlinks, some multimedia, and some other
features.

Because it was free, simple, and widely supported, HTML quickly became
popular. It sparked a Web publishing phenomenon because it allowed ordi-
nary people to create a Web presence. The vast majority of Web pages are now
written in HTML.

One major complaint about HTML is that most Web page designers are con-
cerned only with how their documents look. This overwhelming concern for
display quality seemed to slow the progress toward extensibility, especially
with respect to data semantics.

Equally annoying was the limited and strictly predefined set of HTML com-
ponents such as its elements and attributes, which resulted in something of a
limited and restricted—that is, nonarbitrary from a developer’s standpoint—
set of document structure options. The same set of markups must be used in
all HTML documents, and their meanings cannot be altered. For example, the
 tag always specifies that an HTML application has to display an unnum-
bered list, but the tag doesn’t allow you to describe the items being listed. Sim-
ilarly, the tag instructs the HTML processing application to treat the
subsequent content as an item in the list. Again, no hint is given as to what the
item might actually be. Developers in various fields have to manipulate their
data to fit it into HTML document models. Often there is no fit, or the fit is
extremely difficult and clumsy.

The W3C has made attempts to incorporate some extensibility into HTML in
recent years. Revised versions of HTML have been released periodically since
1994, but the inconsistent implementation of the new features from Web
browser to Web browser has disappointed many designers. They’re unsure at
times whether their extensible HTML coding will be supported. Meanwhile,
individual browser manufacturers, most notably Microsoft, have supple-
mented HTML through proprietary extensions to their browsers. Although
important for execution and admittedly extensible and flexible, the supple-
mental code tends to violate the open source aspects that most developers
regard so highly in SGML-related languages.

16 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 16

The Arrival of XML

Most World Wide Web-related developers, especially those concerned with the
semantics and structure of data, knew that the fundamental components of
HTML—its tagging, simple hypertext linking, and hard-coded presentation—
would not scale up to meet future needs. They felt that nothing except an
SGML-based solution would work in the long run.

In 1996, the World Wide Web Consortium sponsored a team of SGML
experts whose goal was to develop a markup language with the power and
extensibility of SGML, but with the simplicity of HTML. These SGML experts
did not want to see the Web of the future as being prone to multiple confusing
data standards, to standards controlled by a single vendor or nation, or to pro-
prietary tools, utilities, and applications.

The work progressed quickly. The team was able to draw from the work of
its sponsors—the W3C, the United States Defense Advanced Research Projects
Agency (DARPA), and the European Union—and the work of other develop-
ers who were seeking to solve similar problems. They removed the nonessen-
tial, unused, cryptic parts of SGML to leave a smaller, more easily and simply
implemented, Web-friendly markup and metalanguage, which they named
the Extensible Markup Language (XML).

The Extensible Markup Language 1.0 specification, which we call XML 1.0
throughout this book, was endorsed by the W3C as a Recommendation (their
version of an international standard) on February 10, 1998. The XML specifica-
tion is only a couple of dozen pages long, compared to the much longer ISO
SGML standard at a couple of hundred pages. Here is the definition of XML
that appears in the Recommendation: “The Extensible Markup Language
(XML) is a subset of [the Standard Generalized Markup Language. . .whose]
goal is to enable generic SGML to be served, received, and processed on the
Web in the way that is now possible with HTML. XML has been designed for
ease of implementation and for interoperability with both SGML and HTML.”

Development of XML continues. XML 1.0 (Second Edition) was accepted as
a W3C Recommendation on October 6, 2000.

For further information regarding the nature of XML development activity,
look at the W3C Web site at www.w3.org, or turn to the discussion of the
W3C near the end of this chapter.

Many industries, such as academia, insurance, and aerospace, and even
individual organizations, are writing XML-based languages and standards
that everyone in their specific community can use, so that sharing their high
volumes of data over the Internet becomes easier and faster.

XML Backgrounder 17

422541 Ch01.qxd 6/19/03 10:08 AM Page 17

XML was designed, like HTML, to be a derivative language of SGML (that
is, to be an SGML application) for use on the World Wide Web or on intranets.
XML can provide the same functionality as SGML for print, hypertext, and con-
tent management, but it is simpler and easier to develop with, and it works in
conjunction with a number of related XML core standards, some of which we’ll
discuss later in this book.

Its SGML heritage gives XML several advantages:

■■ Similar to SGML, XML is categorized as both a markup specification
language and a metalanguage.

■■ As a metalanguage, it acts as a standard by which developers can create
specific customized subset languages (complete with their own unique
sets of tags, attributes, and entities that describe the structure and
semantics of the languages) and respective documents to benefit their
respective organization or industry. This ability to create arbitrary XML
components is augmented by the ability to develop specific document
type definitions or XML schemas that work with the XML languages
and their XML documents, to define components, and to proof the doc-
uments. These principles form the bases of XML’s extensible nature.
Programming languages, however, must still be used to create the
applications that will manipulate the subset languages and documents.

■■ Every valid XML document is also a valid SGML document. Any fully
conformant SGML system will also read XML documents.

■■ XML imposes no limits on a user wishing to define markup. Markup
needs only to be character-based and human-legible. SGML- and
XML-tagged data can be used to create, manage, and maintain large
collections of complex information.

■■ XML is platform- and software-independent, so the same document
files may be used with a wide variety of operating systems, as well
as in authoring and publishing environments.

■■ XML was developed as a public format, as an open standard. It is not
a proprietary development by any company or nation.

■■ XML’s ease of implementation has fostered inexpensive, occasionally
free XML processing tools; for example, parsers, validators, and docu-
ment format converters.

■■ As more XML subset languages are developed, and as these languages
tend more toward data processing than document publishing, the num-
ber of dynamically generated XML documents is increasing. These doc-
uments will be dynamic and short-lived because they will be created
by computer programs, used almost simultaneously by other computer

18 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 18

programs, and then destroyed. Humans won’t ever have to see many of
the generated documents. We may just get an inkling of their fleeting
existence from transaction summaries or logs.

So with XML a designer can concentrate on using tags and other compo-
nents to define a document’s contents and structure as accurately as possible.
Formatting the contents is secondary and, if at all, occurs later, likely through
the use of display or transformation style sheets (which are discussed in Chap-
ter 7, “XML and Cascading Style Sheets,” and Chapter 9, “XML Transforma-
tions,” respectively).

XML doesn’t seem to make much sense on its own. Its sensibility
becomes readily apparent when you create other standards, vocabularies,
and documents with it. Plus, an XML-related document cannot do
anything by itself; rather, one or more specific programs must be
developed to interact with it.

A major advantage of XML over SGML is that it does not require a system
that is capable of understanding full SGML. Nevertheless, XML is still SGML-
related, and XML files may still be parsed and validated (those concepts will
be discussed in Chapter 2) the same as any other SGML file. Think of XML as
being “SGML-minus,” not “HTML-plus.”

But XML is not expected or intended to replace SGML in every environ-
ment. Full SGML systems are still extremely valuable because they provide
solutions for large, complex problems that justify their development and
expense. Again, consider the complex nature of the defense or aerospace
industries, or the complex nature of government. SGML is at home there and
contributes immeasurably. XML lacks several features that make SGML a more
satisfactory solution for the creation and long-time storage of complex docu-
ments or for the use of high-end typesetting applications.

XML, on the other hand, is designed to deliver structured content over the
Web. Fortunately, SGML-related languages can be designed to be compatible
with XML, so their corporate or organizational environments need not be
mutually exclusive. In this way, occasionally the advantages of both can be pro-
vided. In many organizations, filtering SGML to XML (that is, using XML as an
output format for an SGML installation) would be the standard procedure for
Web-based delivery.

Because XML and HTML both were derived from SGML, some consider
them siblings. There are even similarities between them. For instance, they are
both text-based, and both use tags, elements, and attributes. So they appear
similar.

XML, however, was designed to describe data semantics and, so, to focus on
what the data actually is and how it is structured. HTML, as we’ve stated
before, was designed to display content and to focus on how the content looks.

XML Backgrounder 19

422541 Ch01.qxd 6/19/03 10:08 AM Page 19

So HTML processing reflects the people-oriented processing we discussed ear-
lier in this chapter, while XML reflects more machine-oriented processing.

There are only a fixed number of HTML tags, and their names and purposes
are predefined in the HTML standard. There can be no variation, so the arbi-
trary (in XML’s case, arbitrary takes on a positive slant because it means that
designers can assign whatever names and properties to an XML component that
they want) and customized meaning of the XML tag <fan.20cmblade.pt_no>, for
example, would not be interpreted by an HTML application.

Figures 1.1 and 1.2 illustrate a comparison of samples of HTML source
code and XML source code respectively. Notice how, in the HTML document in
Figure 1.1, the tags are in uppercase, a common practice with HTML. (HTML
isn’t case-sensitive.)

The XML document in Figure 1.2, with its descriptive tags, provides more
flexibility and reusability. It already looks more sophisticated than the HTML
document, simply because it has more descriptive elements. But this docu-
ment pales in comparison to what a more comprehensive XML document
might contain, with all the appropriate descriptive elements, attributes, and
entities.

Figure 1.1 An example of HTML coding.

20 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 20

Figure 1.2 An example of XML coding.

The arbitrariness and extensibility of XML data allow for more precise data
searches and, especially, better commerce transactions. It’s also more scalable
and provides a more robust infrastructure.

More, and more sophisticated, XML editing tools are constantly being
developed, but you can still do XML design and development with simple text
editors. Because XML tags describe data and so are used as part of business
transactions and research, XML syntax requires more precision and strict
adherence to its grammar rules (for example, XML is case-sensitive). XML
grammar can’t be dealt with loosely the way HTML grammar has relaxed over
the past few years. But observing XML’s stricter grammar rules will actually
benefit you in the long run, providing for well-formed, valid, and reliable lan-
guages and documents.

HTML pages usually constitute a static library. There are exceptions, of
course: At some sophisticated Web sites, the developers have written or
adapted powerful (read: expensive) Web servers whose subroutines can gen-
erate HTML pages on the fly. With XML, pages are more easily—and so, more

XML Backgrounder 21

422541 Ch01.qxd 6/19/03 10:08 AM Page 21

likely to be—generated dynamically from data found on a site’s Web servers,
on its enterprise databases, and on other Web sites. If it is structured according
to XML principles, then that information can be accessed, analyzed, extracted,
sorted, styled, and otherwise manipulated to create customized documents for
people or machines, with long or short lives. In this manner, XML data becomes
smarter, and Web pages actually become Web services. XML thus contributes to
the World Wide Web Consortium’s goal of the Semantic Web, where computer
dumbness is reduced somewhat as systems begin to emulate a kind of rudi-
mentary understanding of the data they share.

As the World Wide Web continues to develop, XML will increase its share of
data description-, structure-, and semantic-oriented languages and documents.
Meanwhile, HTML will likely continue to be used to format and display por-
tions of the same data. So XML would only replace HTML when HTML can’t
provide sufficient retrieval precision or data reusability; otherwise, XML and
HTML could—and already do, in many cases—coexist with and complement
one another. A contradiction to this peaceful coexistence arises, however, when
we read about the future of XHTML, which is the subject of Chapter 6,
“XHTML.” XHTML is an XML-related standard that, at first glance, resembles
HTML. It has been touted as a future replacement for HTML. Many XML
proponents say, “The sooner, the better.”

XML-Related Applications

XML applications are languages derived from the XML standard. Although
we use the terms XML derivative language or XML application interchange-
ably throughout this book, several more terms can be used to describe the
same concept: dialect, application profile, standard, vocabulary, abbreviated
version, restricted form, subset, distillation, protocol, instance, and extension.
Likely there are even more. In the XML world, these terms are considered to be
similar in meaning. In certain contexts, though, one may be more accurate than
another. Hypothetically, for example, if some people developed a ToyML (that
is, a toy markup and metalanguage) and they expected that, eventually, a
HulaHoopML might be derived from ToyML, then ToyML might be consid-
ered to be a vocabulary and a standard, while HulaHoopML might be just a
vocabulary. Whatever name they go by, though, XML applications are derived

22 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 22

and extended from XML, and conform to the XML 1.0 Recommendation. But
XML applications must not be confused with applications, which are pro-
grams developed with computer programming languages.

XML applications are being developed constantly, and hundreds of them are
now in use in many organizations and industries around the world. The XML-
related applications whose names appear in the spherical-looking circles in
Figure 1.3 are those that you will be introduced to during the course of this
book.

The upcoming XML-related vocabularies are listed in Table 1.3.
There are many other XML-related languages, most of which are relevant to

specific industries or organizations. The list of available languages will con-
tinue to grow as XML becomes more widely accepted as a Web technology,
and as more browsers support XML-based markup more comprehensively.

Figure 1.3 Relation of XML to its predecessors and to XML-related standards.

GML

SGML

HTML XMLDTDs CSS

XML
Schema

XHTML XLink XPath/
XPointer

XSL/XSLT VML/SVG SMIL CDF/RDF SOAP MathML Others

XML Backgrounder 23

422541 Ch01.qxd 6/19/03 10:08 AM Page 23

Table 1.3 Examples of XML-Related Languages

XML-RELATED
LANGUAGE DESCRIPTION

XML Schema Two-part standard that facilitates the development of better
XML data descriptions and the definition of XML vocabularies;
predicted to replace DTDs in the future.

XHTML HTML rewritten as an XML vocabulary; predicted to replace
HTML.

XLink Language for linking among XML documents (generally for
linking to a specific whole document).

XPointer Language for linking to specific locations within the same or
other documents.

XSL Extensible Stylesheet Language is the style standard for XML;
it specifies the presentation and appearance of an XML
document.

XSLT Extensible Stylesheet Language Transformation is used to
transform (that is, reformat) one type of XML document into
other types of XML documents.

VML The most widespread of the XML-related graphic languages;
used for encoding of vector information to describe how that
information may be displayed and edited; intended to help
developers address the problems and disadvantages of bitmap
graphics.

SVG W3C’s open-standard XML-related vector graphics standard;
has its own mature DTD; not yet widely implemented, but
gaining popularity; intended to make Web browsers
compatible with drawing tools like CorelDRAW, Adobe
Illustrator, and others.

SMIL Synchronized Multimedia Integration Language was designed
to integrate multimedia objects into a synchronized
presentation.

CDF Channel Definition Format; an open specification that permits
automatic delivery of updated Web information to compatible
receiver programs; has only achieved W3C Note status.

RDF The W3C Resource Description Framework Model and Syntax
Specification; provides a more general treatment of metadata
than CDF.

24 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 24

Table 1.3 (continued)

XML-RELATED
LANGUAGE DESCRIPTION

SOAP An XML-related network protocol specification for invoking
methods on servers, services, components, and objects; also
used for representing method parameters, return values, and
exceptions.

MathML Mathematical Markup Language; a language for depicting
mathematical expressions while maintaining the functionality
of the expressions; an early driving force behind XML
development.

For a more comprehensive list of XML vocabularies and to monitor W3C
activities, consult the W3C’s Web site at www.w3.org or the XML Road
Map at IDEAlliance’s Web site at www.idealliance.org/.

The World Wide Web Consortium and XML

We have already referred to the World Wide Web Consortium (W3C) several
times in this chapter. Here’s a short explanation of this important organization.

In October 1994, Tim Berners-Lee, inventor and architect of the W3C (also
mentioned previously as the author of the first HTML RFC), founded the W3C
at the Massachusetts Institute of Technology, Laboratory for Computer Science
in collaboration with funding from the United States Defense Advanced
Research Project Agency (DARPA) and the European Union. In their own
words, “The purpose of the W3C is to develop interoperable technologies
(specifications, guidelines, and applications) to promote the Web as a forum
for information, commerce, communication, and collective understanding.”

Membership in the W3C has grown to more than 500 organizations from
around the world, and the W3C is hosted by three organizations: Massachu-
setts Institute of Technology (MIT) in the United States, the French National
Institute for Research in Computer Science and Control (INRIA) in France, and
Keio University in Japan.

For more information about the W3C, check the About Us Web page at
www.w3.org/Consortium/. From there, you can link to other pages that
describe their membership, policies, activities, and processes.

XML Backgrounder 25

422541 Ch01.qxd 6/19/03 10:08 AM Page 25

If you aren’t aware of the W3C yet, note that they have indeed been a major
player in the development of World Wide Web technologies. In later chapters,
we’ll tell you how their teams have developed important XML-related vocab-
ularies and other standards, have succeeded in stopping or delaying otherwise
shortsighted (if not downright wrongheaded) initiatives, and have opened up
the development of what otherwise might have been proprietary standards
and applications. There should be no underestimating their influence and
achievements.

The first phase of the W3C’s XML Activity started in June 1996 and culmi-
nated in the February 1998 Recommendation titled Extensible Markup Lan-
guage (XML) 1.0. That Recommendation, which we’ll refer to many times in
this book as XML 1.0, was revised in October 2000.

Here are some XML-related goals and best practices as enunciated by the
W3C in the XML 1.0 Recommendation. (The specification contains more
detailed descriptions.)

1. It shall be straightforward to use XML over the Internet. End users must
be able to display XML documents and view the respective source cod-
ing as easily as they display and view HTML. XML shall also support a
wide variety of authoring, browsing, and analysis applications.

2. XML shall be compatible with SGML. XML was designed with the
World Wide Web in mind. It has to be compatible with existing stan-
dards, but it still must cope with the bandwidth and time constraints
of Web communication.

3. It shall be easy to write programs that process XML documents. The
W3C promotes a first-glance philosophy: They state that it should only
take about two weeks for a competent computer science graduate stu-
dent to build a program capable of processing XML documents.

4. The number of optional features in XML is to be kept to an absolute
minimum, ideally zero. Optional features can lead to compatibility
problems, confusion, and frustration.

5. XML documents should be human-legible and reasonably clear. Even
if you don’t have an XML browser or one of the sophisticated XML edi-
tors, you should still be able use a text editor to examine XML content.

6. XML design should be prepared quickly. With XML derivative lan-
guages and documents, the emphasis should be on quicker problem
solutions. The final product may be complex, but the design stage
should proceed with little delay.

7. The design of XML shall be formal and concise (that is, it should adhere
strictly to XML grammar and vocabulary).

26 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 26

8. XML documents shall be easy to create. Although there are several
sophisticated editors available to create XML documents, it still must be
possible to create XML documents with alternate methods, like simple
text editors, WYSIWYG text applications, or simple scripts.

9. Terseness in XML markup is of minimal importance. It’s true that sev-
eral SGML features were designed to minimize a developer’s typing,
but those features are not supported in XML. Emphasize human legibil-
ity and understanding.

The W3C provides a quick synopsis of XML for newcomers, managers, or
executives who find themselves thrust into XML-related decision making.
It is called “XML in 10 Points” and can be found at www.w3.org/XML/
1999/XML-in-10-points.

Meanwhile, there has been and continues to be a constant parade of Web-
related developments, resulting in the production of many W3C Recommenda-
tions and other documents. Several W3C Working Groups constantly conduct
XML-related development work in parallel. Almost every day, the W3C
announces progress on one XML front or another on their Web site at www
.w3c.org. IDEAlliance also lists XML applications at their Web site at www
.idealliance.org/standards_vocab.asp.

Possible XML Issues: “Nobody’s Perfect (Yet)”
In a book that promotes the use of XML and XML-related standards, it may
seem odd that we are listing two possible issues that may arise from the use of
XML over other possible solutions. However, these issues arise mostly from
XML’s fast-paced and leading edge development and, as you can readily see,
can be overcome with appropriate planning and implementation. At any rate,
here are two concerns that you should be aware of if you are contemplating the
adoption or adaptation of XML in your organization:

■■ XML is a rapidly growing technology with development going on in
several different areas at once (for example, graphics, multimedia, Web
protocols), and the development of applications (browsers included)
lags behind it. The latest versions of Microsoft Internet Explorer, Kon-
queror (a Unix KDE-based open source Web browser), Mozilla/Gecko,
and Netscape are XML 1.0-compatible, but may not be as consistently
compliant with the additional XML-related core standards (especially
when we note the speed at which new standards are developed and
existing standards are updated).

XML Backgrounder 27

422541 Ch01.qxd 6/19/03 10:08 AM Page 27

■■ Your specific needs may not be met by an XML application. Perhaps
because of the complexity of your data you might consider moving to
SGML (remember the examples presented previously: the air transport
industry, the telecommunications industry, and others). However, even
if you do not adopt XML as your organizational standard, you may still
be able to use an XML vocabulary for Web transactions or other output.

Lab Exercises: Instructions and Conventions

All of the examples, instructions, and other conventions contained in this book
use Microsoft Windows 2000 Professional as a base operating system; how-
ever, the lab exercises will also work if you are using Microsoft Windows XP
Professional and Linux.

Instructions for the Windows 2000 and XP environments are documented
in this book. The comparable instructions for Linux can be found on this
book’s Web site as noted in the book’s introduction.

The lab exercises are divided into logical sections, and each section has its
own title and short introduction. The step-by-step instructions for the lab exer-
cises are numbered consecutively for each logical section. For example, Steps 1
through 10 might compose the first logical section. In the next logical section,
the steps will begin, again, at Step 1.

While we were creating the steps, we made certain assumptions regarding
prerequisite experience and skill sets. We tried not to be too redundant when
describing mouse or window clicks. On the other hand, we were careful to add
what we thought would be helpful hints, tips, notes, and even cautions. If we
thought that further explanation was required, we added substeps or hints.

Here is an example of our approach to creating lab exercise steps:

1. This would be the basic step. We may include some text regarding what
you are attempting to do at this step, to maintain a conceptual flow. Sub-
steps for performing this instruction may be included as a., b., and
more.

a. If the step involves more than one activity or maneuver, we would
itemize them here as substeps.

b. Also, if we think it is necessary to bring something to your attention
or advise you to watch for a tricky issue, that advice might also be
included as one or more substeps.

In the foregoing example, there is just one basic step: Step 1. Assistance for
Step 1 was listed in Steps a and b.

28 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 28

At all times, read the entire basic Step 1, including all substeps, before
executing that step.

A Brief Introduction to Space Gems, Inc.

As you progress through the lab exercises in this book, you will be assuming
the role of the Web site developer for a fictitious company named Space Gems,
Inc., headquartered on Earth. In that capacity, you will help them to become an
enterprise on the World Wide Web. Space Gems’ business is gemstone explo-
ration and sales throughout that great final frontier, space. We’ll follow Space
Gems’ activities on Earth and Mars (in our own solar system, which we nick-
name Sol), as well as their frontier activities on other (again, fictitious) worlds
in other planetary systems near our galaxy. Those far-flung planets revolve
around the following stars, which, according to the United States’ National
Aeronautics and Space Agency, are already known to have planets:

■■ 70 Virginus in the constellation Virgo.

■■ 47 Ursae Majoris in the constellation Ursa Major (the Big Bear).
(Ursa Major is the larger overall constellation that contains the
smaller but more familiar Big Dipper.)

■■ 51 Pegasi, just outside the Great Square of the constellation Pegasus.

■■ 55 Cancri in the constellation Cancer.

■■ HD49674 in the constellation Auriga.

Chapter 1 Labs: Web Exploration

We haven’t really taught you too much about the mechanics of XML yet, so the
labs for this chapter are almost trivial. However, they are also instructive to
some extent.

Lab 1.1: Looking Locally for XML Files

In this lab, you’ll use Windows Explorer to look for XML files that were
installed with your operating system with your applications or that have
been downloaded to your system while you’ve explored the Internet.

XML Backgrounder 29

422541 Ch01.qxd 6/19/03 10:08 AM Page 29

To perform the lab exercises in this book, we are presuming you have
installed and configured Microsoft Windows 2000 Professional, Win-
dows XP Professional, or Linux as your base operating system. Chances
are, then, that this first lab exercise will be successful. If you also have
access to a computer system with an older operating system, it might be
enlightening, for comparison purposes, to perform a similar search of its
resources. We’ll bet that your search won’t be as successful.

1. On your Windows desktop, click Start, Programs, Accessories,
Windows Explorer.

2. When the Windows Explorer window opens, the My Documents
folder will be highlighted already. Click the plus sign (+) next to My
Computer; then highlight the C: drive (which may or may not have
a descriptive name).

3. Click Search on the toolbar.

4. When the Search pane appears, type the following into the Search
for files or folders named: dialog:

*.xml

5. Ensure that Local Hard Drives (C:) is selected in the Look in: dialog
box, and click the Search Now button.

A Search Results pane appears on the right side and displays a list of
XML files that Explorer encounters as it scans the C: drive. If you have
configured Microsoft Windows 2000 Professional, Windows XP Profes-
sional, or Linux as your base operating system, chances are you’ll see sev-
eral files listed. They may have been found in the following directories,
and maybe more:

■■ C:\Program Files\name of application\

■■ C:\TEMP\

■■ C:\WINDOWS\

■■ C:\WINNT\

You may not have found all of the XML-related files. Not all have .xml
as their filename extensions. Whether they do often depends on the
intentions of their creators.

Meanwhile, if you have performed the search on a computer system
with an older operating system, you may or may not have found any files
at all. If you did, they were probably in the \Program Files\name of appli-
cation or \TEMP\ directories, and not in any operating system-related
files.

30 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 30

Lab 1.2: Examining an XML File

Presuming that during Lab 1.1 you were successful searching for files
with .xml as their filename extensions, you will now examine the con-
tents of one of the files.

We presume that Windows Explorer found several XML files in the
C:\Windows\system32\icsxml folder on our system. Let’s take a quick
look at the contents of one of those files.

In this part of the exercise, ensure that you only look at the file. Do not
make any permanent changes to it. (In other words, if you make any
changes, even just to alter the structure in order to make the file easier
to read, do not click File, Save.)

1. With the Search Results window displayed, highlight the name of
the file you want to look at.

2. Right-click the filename, scroll down to Open with, and click
Notepad (this is one example where a simple text editor can make
file examination quick and convenient).

3. Try to determine what the function of the file might be. Look for
comment lines that begin with <!— and end with —>. Failing that,
the names within the markup tags, denoted by < and > brackets,
may provide a clue. You’ll find that, as you progress through XML
in 60 Minutes a Day, analyzing XML files becomes easier.

4. When you are finished examining the file, click File, Exit, or simply
click the Close (X) button in the top right corner.

Lab 1.3: Visit Some Web Sites
to See How Many Use XML

In this lab, you will check various Web sites to see if they use XML exten-
sively or whether they have incorporated just some XML.

1. We’ll first visit the W3C Web site, where, we can safely wager, we’ll
find Web pages containing XML coding.

a. From your Windows Desktop, click Start; then scroll up to
Programs, and click your Web browser application (it might be

XML Backgrounder 31

422541 Ch01.qxd 6/19/03 10:08 AM Page 31

Internet Explorer, Netscape Navigator, Mozilla, Opera, or any of
a number of available browsers). For this exercise, let’s presume
you are using Internet Explorer.

b. In the locator bar, type the following and then press Enter:

http://www.w3.org

2. When the home page for the World Wide Web Consortium’s Web
site appears, go up to the toolbar and press and hold View; then
scroll down to Source, and release the mouse button there. A new
window appears, which shows you the beginning of the code that
went into creating the W3C site. The first couple of lines will look
like this:
<?xml version=”1.0” encoding=”us-ascii” ?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

<html xmlhs= ... etc.

The W3C Web site does, indeed, contain code written to the specifi-
cations of XML Recommendation 1.0, as well as to the other core
standards—notably, the XHTML standard (which we discuss in
Chapter 6). Again, as you progress through XML in 60 Minutes a
Day, you will become more familiar with this type of coding.

3. If you have the time, check out other Web sites, such as those who
provide XML tutorials (to find them, try entering something like
“XML tutorials” in a Web search engine, and then follow the links).
You’ll probably find several right away that have incorporated at
least a little XML coding. When you view their source, you’ll see
that the first few lines will resemble those in Step 2.

Summary

Before you move on to Chapter 2, review these key concepts that we discussed
in Chapter 1:

■■ Documents are electronic files of any size for any media (text, audio,
video, graphics, and so on) created by any application. Document
processing is the discipline that deals with creating applications that
allow you to deal with documents of all types. It is split into creating
or manipulating those documents destined for human viewing and
consumption (people-oriented processing) and into creating and
manipulating documents destined for computer consumption (machine-
oriented processing).

32 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 32

■■ Markup, in summary, is the inserting of characters or symbols into a
document to indicate the document’s physical and logical structure, to
indicate how the information in a document should appear, or to pro-
vide some other form of instruction. The primary goal of markup is to
separate the treatment (such as the semantics, structure, or appearance)
of the document from the data in the document.

■■ Six types of markup have been defined: punctuational, presentational,
procedural, descriptive, referential, and metamarkup. XML mostly uses
descriptive, referential, and metamarkup.

■■ SGML was developed from 1978 to 1986. It has been a standard by
which other, more specific languages tailored to the specific require-
ments of any organization or industry can be created. SGML has
facilitated the cataloging and indexing of data in many important and
complex industries. XML and HTML are both offsprings of SGML, but
SGML-compliant languages are big and resource-intensive, usually too
cumbersome for Web browser-related functions. Brower manufacturers
admit that their products do not and will not fully comply with SGML.

■■ HTML, developed in the early 1990s, is a simplified version of SGML
with a fixed and limited set of predefined markup components. HTML
contains format-oriented markup only. Because it was free, simple, and
widely supported, HTML sparked a Web publishing phenomenon and
made the Web available to ordinary people. Its markup components are
fixed and do not lend themselves to describing what data is, only to
describing how it should be displayed.

■■ The Extensible Markup Language (XML) was developed from 1996 to
1998 as a derivative of SGML. Development continues today on XML
and many XML-related standards and vocabularies. XML is a markup
language, so it allows developers to create documents consisting of
plaintext data and other entities, and markup codes that define the logi-
cal components and structure, as well as describe the appearance or
other aspects of the data. XML is also a metalanguage, so it provides the
capability to control the definition and interpretation of markup tags,
and for extending the vocabulary of derivative markup languages.

■■ XML can provide similar print, hypertext, and content management
functionality as SGML, but is lightweight enough for use on the World
Wide Web or on intranets.

■■ XML’s arbitrary and extensible nature allows for more precise data
searches and better commerce transactions. It’s also more scalable and
provides a more robust data infrastructure.

XML Backgrounder 33

422541 Ch01.qxd 6/19/03 10:08 AM Page 33

■■ XML-related derivative languages are being developed constantly, and
hundreds of them are now in use in many organizations and industries
around the world. More and more XML development tools are appear-
ing, which is a testament to XML’s growing popularity.

■■ XML still has two minor issues. Because it is a rapidly growing technol-
ogy, the development of related applications (browsers included) lags
behind it. And XML may not meet the needs of large and complex data
sets as well as SGML. For those who still choose SGML languages as
their solutions, however, they may still be able to use an XML vocabu-
lary for Web-related data or other transactions.

■■ The World Wide Web Consortium is a major player in the development
of World Wide Web technologies. It is also at the hub of XML develop-
ment; new standards are being developed constantly. Its XML-related
goals and best practices are worth remembering.

34 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 34

Review Questions

1. True or false? Documents are considered to be electronic files of any size, for any
media, created by any application.

2. Which of the following is not a type of markup?

a. Punctuational

b. Descriptive

c. Referential

d. Extensible

e. Metamarkup

f. None of the above

3. What are two disadvantages of HTML compared to XML?

4. What type of computer language is XML?

a. Referential language

b. Extensible language

c. Metalanguage

d. Programming language

e. Markup language

f. All of the above

5. What is the name of the document mechanism that is used to prove conformance of a
language derived from SGML or XML?

6. If something is developed as a public format and is not proprietary in any way, what is
the term given to it?

a. Open source

b. World Wide

c. Extensible

d. Generalized

e. Standardized

f. None of the above

7. Place the following in order of date of development: HTML, XML, SGML, GML, and
GenCode.

8. What are two issues concerning XML?

XML Backgrounder 35

422541 Ch01.qxd 6/19/03 10:08 AM Page 35

9. True or false? One man is credited with architecting and inventing the World Wide
Web, and with inventing HTML.

10. Which of the following XML-derived languages is destined to replace HTML?

a. SVG

b. SMIL

c. RDF

d. ESPN

e. NPR

f. None of the above

36 Chapter 1

422541 Ch01.qxd 6/19/03 10:08 AM Page 36

Answers to Review Questions

1. True.

2. d. The six types of markup are listed and described in the What Is Markup? section.

3. Choose any two of the following:

a. It is only display-oriented.

b. It has a limited set of predefined markup components.

c. It can’t tell you about the data.

d. It does not lend itself well to machine-oriented, dynamic document creation,
although it can be done.

4. d. and e. Please refer to the XML Is a Markup Language and a Metalanguage section.

5. A document type definition (DTD). Schemas only apply to languages derived from
XML, not SGML.

6. a. For further information regarding open source, visit www.opensource.org.

7. From earliest to latest, they are: GML, GenCode, SGML, HTML, and XML.

8. Here are two disadvantages to XML:

a. XML development is going on so rapidly, on so many fronts, that commercial
applications are lagging behind.

b. XML is not as robust as SGML for large and complex data structures.

9. True. His name is Tim Berners-Lee. (Bravo!)

10. f. XHTML is the XML application that many expect to replace HTML eventually.

XML Backgrounder 37

422541 Ch01.qxd 6/19/03 10:08 AM Page 37

422541 Ch01.qxd 6/19/03 10:08 AM Page 38

39

Chapter 1, “XML Backgrounder,” discussed XML’s document processing her-
itage. Chapter 2 shows you how to prepare for the creation of XML documents
(or, if you prefer, XML instances). It has been developed in response to these
questions, voiced by our students while doing their lab exercises: How are
these systems configured? What do we need to install before we can create
XML documents?

In this chapter we discuss what constitutes a basic XML authoring environ-
ment, namely, computer hardware and the associated software: Web servers,
Web browsers, and XML authoring applications. We introduce the three fun-
damental categories of XML authoring tools and list several of the prominent
tools, including where to go to get your own copies. The lab exercise provides
detailed instructions for installing and configuring your own XML authoring
environment in a Microsoft Windows environment. (We’ll also tell you where
to get similar instructions for installing one in a Linux environment.)

By the end of this chapter, you will be set up and ready to begin creating and
viewing your own XML documents.

Setting Up Your XML
Working Environment

C H A P T E R

2

422541 Ch02.qxd 6/19/03 10:09 AM Page 39

Hardware Requirements

A large system is not required to perform the lab exercises at the end of
each chapter in this book. Here are the basic system requirements for the lab
exercises:

■■ A personal computer with at least 64 MB of RAM and a 500-MB hard
disk.

■■ An Internet connection.

■■ A copy of the Microsoft Windows 2000 or XP Professional operating
system on CD-ROM.

■■ A copy of Microsoft’s Internet Information Services (IIS) software for
the Microsoft Windows environment or Apache for the Linux (or sev-
eral other Unix variations) environment.

■■ A copy of a current Web browser application. At this writing, we sug-
gest Microsoft Internet Explorer Version 6 or higher, or Netscape 6 for
the Windows environment; or Netscape 6, Mozilla 1 or Konqueror 2 for
the Linux/Unix environment.

■■ A copy of your choice of XML authoring software. (We’ll also refer to
it as editing software and other equivalent terms.) We are suggesting
TIBCO Software Inc.’s Turbo XML editor for the lab exercises, but there
is a vast array of choices, from sophisticated integrated development
environments (IDEs) to the simplest text editors.

Meanwhile, for the purposes of this book, neither the Web server nor the
XML editor will use much CPU or RAM. (Full industrial-scale integrated
development environments would require far more, naturally.) Although the
physical system requirements for this book are conservative, you will still
require a fairly robust connection to the Internet to download software and
source files, as well as to participate in related online activities.

Web Servers

Web servers go by several similar names: Web server, HTTP server, and World
Wide Web server. There are two basic ways to define the term Web server. One
definition is the software installed on a server-class computer system that will
enable that system to transmit Web pages upon request from an end user’s
browser. The other definition refers to the computer system itself, after the
software has been installed and configured. You can make any computer sys-
tem a Web server by installing the appropriate software and then connecting
the system to the Internet. Every electronic commerce operation depends on
its Web servers.

40 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 40

Figure 2.1 Space Gems’ network schematic.

After it’s installed, Web server software is configured such that the com-
puter will have an IP address and, usually, a domain name. Figure 2.1 shows a
schematic for the Space Gems, Inc. computer network. It is fairly typical for a
small- to medium-sized enterprise.

Behind its firewall, Space Gems has three network segments. (In other
words, it has three zones.)

Space Gems’ Private Network. This consists of employee systems and
data servers, intended solely for Space Gems’ employees. This will be
given the highest security designation when one or more firewalls are
configured.

Demilitarized Zone 1 (DMZ1). A group of servers and systems on a
lower-security network segment, that provide Space Gems with the
capability to respond to requests from the Internet (the Internet servers
are referred to in Figure 2.1 as WWW), to send and receive email mes-
sages (referred to as SMTP), and maybe to provide other low-risk, low-
security services. Web servers are often located in DMZs like this to

Internet

No Security

Slightly Higher
SecurityHighest

Security

Firewall

Minimal
Security

"DMZ1" Servers
(WWW, SMTP,

others)
"DMZ 2" Servers
(Applications)Private

Network

Space Gems, Inc.

Setting Up Your XML Working Environment 41

422541 Ch02.qxd 6/19/03 10:09 AM Page 41

prevent hackers, who would try to access the network through the Web
server, from gaining access to the higher-security application servers or,
especially, to the private segment of an organization’s network. DMZs
are occasionally sacrificed to hackers, but at least the private networks
remain safe.

Demilitarized Zone 2 (DMZ2). A group of servers on an intermediate
security network segment, that provide applications and services
intended for Space Gems’ employees and their most trusted clients,
suppliers, and so on.

In this case, all of Space Gems’ DMZ1 and DMZ2 systems likely have Web
server software installed on them. There may also be Web server software
installed on some private network systems.

Now, if an end user somewhere on the Internet enters the www.spacegems
.com URL in his or her browser’s location bar, a request will be sent to the
server that has been configured with the domain name spacegems (that server
is probably in DMZ1 here). After the server receives the request, it responds by
transmitting a page document designated by Space Gems, to the requester’s
browser.

Several domain names may be mapped to the same physical computer. This
concept is called virtual hosting, and the computer is called a virtual server. Vir-
tual hosting allows you to provide several different Web sites, each with its
own domain name and even IP address, using the same Web server system.
Requests sent to these different sites will be routed by IP address, hostname, or
browser language setting to the correct virtual host (that is, to its own respec-
tive Web site). Virtual hosting is a technique that will be illustrated in the lab
exercises later in this chapter.

Individual virtual hosts have unique Web root directories (or folders), direc-
tory (or folder) hierarchies, default filenames, and error files and restricted
access files.

On the other hand, the different virtual host Web sites will likely share sys-
tem caching, plug-ins, security realms, and other features.

Many Web server software applications are available. The following are the
most prominent:

Public domain software. HTTPd is public domain software that can be
downloaded from the National Center for Supercomputing Applications
(NCSA, located at the University of Illinois at Urbana-Champaign,
Illinois). Their HTTPd Web site is http://hoohoo.ncsa.uiuc.edu/docs/
Overview.html.

Apache Web Server. Developed by the Apache Software Foundation,
a membership-based, not-for-profit corporation that provides various
kinds of support for Apache open source software projects. Information
and downloads are available from http://httpd.apache.org/.

42 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 42

Microsoft Internet Information Server (IIS). Usually included with
Windows server software; IIS is integrated at the Windows operating
system level. Check Microsoft’s IIS Web site at www.microsoft.com/
windows2000/server/evaluation/features/web.asp for features,
support, and downloads.

Sun ONE Web Server (formerly iPlanet Web Server, Enterprise Edition).
Developed by the Sun Microsystems, Inc.- Netscape Alliance. Under the
iPlanet brand name, the Sun-Netscape Alliance is producing new ver-
sions of Netscape products. Further information and a trial download
can be found at Sun’s Web site at wwws.sun.com/software/products/
web_srvr/home_web_srvr.html.

IBM HTTP Server. Part of IBM’s WebSphere line. Further information
and downloads are available at IBM’s Web site at www-3.ibm.com/
software/webservers/httpservers/.

Web Browsers

Web browsers (also called Internet browsers) are software applications that
locate, request, and display Web pages and navigate from one Web site or page
to another. They also contain email and chat clients. Almost all browsers are
graphical browsers (they can display text and graphics), although some text-
only browsers are still around. Also, most browsers present multimedia infor-
mation—sound and video are the most predominant—although they usually
require plug-in utilities for some multimedia formats. Basically, browsers act
as client applications to those server applications on remote Web server sys-
tems. They usually use the HTTP protocol but also use FTP and others.

To read XML, a browser application must contain another application called
an XML parser (also called an XML processor), which conducts a preliminary
check on XML documents. If the documents meet criteria for what are termed
well-formedness and validity, the XML parser restructures the data in the doc-
uments and then passes the restructured data to the application (that is, to the
browser) proper. More explanations regarding parsers, well-formedness and
validity can be found in Chapter 3, “Anatomy of an XML Document.”

Browsers are generally judged according to how they measure up to the fol-
lowing questions:

■■ Is the browser free or at least inexpensive? Are updates or upgrades
free or inexpensive?

■■ Is installation easy and trouble-free? How about configuration?

■■ Is the interface easy to look at and use?

Setting Up Your XML Working Environment 43

422541 Ch02.qxd 6/19/03 10:09 AM Page 43

■■ How does the browser perform? For example, does it load pages
quickly? Is it stable or does it crash occasionally—and why? Can you
see the same information on Web sites with one browser as you can
with another?

■■ What about its other features? For example, can you customize its
appearance? Can you customize its behavior? Does it have integrated
email and chat client programs? Does it support XML?

■■ Are service and support available? Are they free?

Here are the most prominent Web browsers:

Internet Explorer. The browser against which other browsers are usually
compared. IE 4.0 was the first Web browser to implement XML.
Microsoft provides two parsers: one nonvalidating and one validating.
Supports DHTML, CSS1, DOM1, SMIL, Microsoft XML 3.0, and a .NET
Web service behavior that allows XML/SOAP database queries. Further
information and downloads are available from the Microsoft Web site at
www.microsoft.com/windows/ie/default.asp.

Netscape. Supports XML, HTML 4, and Cascading Style Sheets. Available
for Windows, Linux, and Mac OS. More information and downloads are
available from the Netscape Web site at http://channels.netscape.com/
ns/browsers/default.jsp.

Konqueror. An open source KDE desktop environment-related (thus,
available for Linux and other Unix variations) Web browser that com-
plies with HTML 4 and supports Java applets, JavaScript, Cascading
Style Sheets Recommendation 1 and (partially) 2. It is also compatible
with Netscape plug-ins. It uses XML documents for configuration and
other functions. More information and downloads are available from the
Konqueror Web site at www.konqueror.org/.

Mozilla. Developed by the Mozilla Organization, a virtual organization
that makes their Mozilla browser a successful open source project and
product. Mozilla is fast and stable, and it allows you to disable many
pop-up ads. Mozilla supports XML, but its parser is nonvalidating.
More information and downloads are available from the Mozilla Web
site at www.mozilla.org/.

Opera. Developed by Opera Software. Available for Windows, Linux,
Macintosh, Symbian, QNX, and OS/2 operating systems. XML viewing
capability became available with the Version 4.0 beta. Further information
and downloads are available from the Opera Web site at www.opera.com/.

Other browsers are available. As time goes by, more will be developed, and
more will support XML.

44 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 44

XML Authoring Tools

If you become an XML developer, your authoring or editing applications will
probably become your most important XML software. We’ll refer to these
applications as XML authoring tools or XML editors. Because XML is an open
standard, it doesn’t restrict you to one editor or another (or one classification
or another), even after you get started. If you find an editor is too restrictive, or
you find yourself occasionally in a situation or location where you can’t use
your customary editor, you can often switch to another, and your documents
will still function. However, your options may be limited by software costs,
licensing, and other factors. Meanwhile, your choice of editor will probably
influence the look, structure, and interoperability of your XML documents, at
least during the initial creation stages. For example, some applications require
the creation of other components (such as DTDs or style sheets) prior to docu-
ment creation.

There are three basic XML authoring tool classifications, each with several
authoring applications. In order of complexity, starting with the least complex,
the three basic XML authoring tool classifications are as follows:

■■ Simple text editors

■■ Graphical editors

■■ Integrated development environments

We’ll discuss each classification in turn and then list a few representative
editing tools from each. Note that these classification boundaries are becoming
blurred as the tool developers add to or modify the features in their respective
applications. They do so by adopting or adapting features that were previ-
ously available in applications in the higher categories or by becoming more
interoperable with other types of applications (for example, graphics, audio,
or video applications) or other document editors.

As mentioned in Chapter 1, XML is being adopted by more and more Web
developers; therefore, we can expect other types of Web-based applications—
especially HTML editors, database software, and e-commerce software—to
incorporate XML support and, with it, some level of XML creation capability.
In the near future, these other application types will likely form their own cat-
egory of XML creation tools.

Simple Text Editors
Simple text (also called plaintext) applications are small and uncomplicated,
so they’re easy on computer system resources. Consequently, plaintext editors
have shipped and installed with personal computer operating systems since

Setting Up Your XML Working Environment 45

422541 Ch02.qxd 6/19/03 10:09 AM Page 45

the 1980s. With some Unix operating systems, they’ve been around since the
1970s. You can find one on virtually any computer you boot up.

Text editors have few features and are limited in their display capabilities.
Some use only one font; some only let you use a few different colors. You can’t
really change the look and feel of your text with these programs, but because
they allow you to write ASCII (but not usually Unicode) text, they are still
good enough to create modest XML documents—XML tags generally use the
symbols and characters found on a standard keyboard. They are not recom-
mended for creating complex documents in larger structures, but if you know
what you’re doing and you want to make only a few changes, they can still be
used to modify any existing XML document. Following are some examples:

Microsoft Notepad. Notepad installs with the Windows operating sys-
tem. It is not resource-intensive, typically using less than 1 MB of RAM
and just a few CPU cycles when activated. A few menu-driven options
are available in Notepad—just enough to accomplish simple text editing.

vi (found on virtually every Unix system, including Linux). Unix users
likely recognize vi, although they may know it by its other names, like
vim or other variations on the vi name. vi is the Unix equivalent to
Notepad: It is the ubiquitous text editor in the Unix world. It, too, is a
modest application, so it is likely to continue to be installed on almost
every Unix system. Several vi variants are customizable and can recog-
nize XML tags, so they can highlight those tags in different colors,
indent, and perform other functions to facilitate XML creation and
editing. A Unix version of vi is available from SourceForge.net’s
vimonline Web site at http://vim.sourceforge.net/. A version of vi
called WinVi (vi with a Windows wrapper interface) is available from
Raphael “Ramo” Molle at www.winvi.de/en/.

Microsoft WordPad. Another application that installs on almost every
Windows system, WordPad provides more features than Notepad such
as different fonts and font sizes, toolbars, and more sophisticated margin
and tab stop controls. WordPad provides a slightly better user interface
and more appealing-looking documents without the necessity of
Microsoft Word.

Emacs (found on more and more Unix systems). At one time, the
equivalent of WordPad in the Unix environment, but now somewhat
more sophisticated.

SimpleText. SimpleText ships with every Macintosh system. It limits
the size of a document that you can create, but you can use a drag-and-
drop feature, record sounds, and use QuickDraw (though with minimal
support).

46 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 46

As limited as they are, simple text editors are far from extinct. Their advan-
tages stem from their simplicity to learn and use, their capability to get the job
done, the few system resources they use, the convenience of finding them on
virtually every system, and the fact that you don’t have to install a separate
and much larger WYSIWYG application or an office suite of applications to
create simple text documents. Witness how easy it was to examine the sample
XML files found by Windows Explorer in the lab exercises for Chapter 1.

Consequently, simple text editors are still among the most popular text
manipulation tools, especially if the document being created or modified is not
large or complex. Some developers are capable of, and comfortable with, cre-
ating whole documents with simple text editors. Throughout this book, you
will see several examples of basic documents created with simple text editors.

Graphical Editors
Despite our glowing words for them, simple text editors can be slow when
producing XML and XML-related documents, such as style sheets, DTDs, and
schemas.

Many dedicated XML editors, complete with graphical user interfaces
(GUIs), are now available that behave similarly to word processor applications
with which we are familiar. In addition to simple text editing, the features of
graphical XML editors include, but may not be limited to, the following:

■■ tags that are color-highlighted

■■ capability to hide tags, combined with immediate application of style
sheets to provide a WYSIWYG document view

■■ menus of options

■■ drag-and-drop editing

■■ click-and-drag highlighting

■■ other special mechanisms for manipulating markup

■■ checking for well-formedness

■■ validity checking

■■ macro creation to save steps

■■ menus of only those elements that are declared and defined within
DTDs or schemas

The last feature, also referred to as structure checking, is popular. The editor
can resist the addition of any element that doesn’t belong. That way the editor
can prevent the author from making syntactic or structural mistakes. Keep in
mind, however, that structure checking can also hinder someone from experi-
menting with different element orderings by forcing the author to stop and
figure out why one or another of those maneuvers was rejected.

Setting Up Your XML Working Environment 47

422541 Ch02.qxd 6/19/03 10:09 AM Page 47

Unlike SGML editors, which by nature are more complex and expensive,
simpler and more affordable editors are being created for XML. Here are some
examples of graphical editors for XML. Some provide the features described
previously, while others are in transition from graphical text editing to more of
an integrated development environment discussed later in this chapter:

Microsoft XML Notepad. Its interface consists of a two-pane display:
elements, attributes, comments, and text are added to the XML document
via the tree structure in the left pane; values for those components are
entered in the corresponding text boxes in the right pane. For additional
information and to download a copy of XML Notepad, go to the Microsoft
Developer Network (MSDN) Web site (http://msdn.microsoft.com/
library/) and enter “xml notepad” in the search engine there.

XAE (XML Authoring Environment for Emacs). Developed by Paul
Kinnucan, XAE is add-on software that enables you to use Emacs (or
XEmacs) and your Unix system’s HTML browser to create, transform,
and display XML documents. For further information and to download
a copy, go to http://xae.sunsite.dk/.

Peter’s XML Editor. This is a modest, but effective, XML development
tool. For further information and to download a copy, go to the Web
site at www.iol.ie/~pxe/index.html.

Adobe FrameMaker. Enterprise-class authoring and publishing soft-
ware, FrameMaker is a WYSIWYG application that is evolving into an
IDE. For further information or for trial software, go to the Adobe Web
site at www.adobe.com/products/framemaker/main.html.

Conglomerate. This is a hybrid word processor-style editor that is mov-
ing toward becoming an IDE. Conglomerate is free-software licensed
under the GNU General Public License. It consists of a GUI and a server-
database combination that performs storage, searching, version control,
transformation, and publishing. The code base is apparently still unfin-
ished but reasonably stable, and it will be rewritten. Source code for
Unix and Windows is available. Further information and a download-
able copy are available through the Web site at www.conglomerate.org/.

Emilé. Developed by Media Design In-Progress for the Macintosh envi-
ronment, Emilé is a customizable XML editor that supports DTDs and
comes with a validating parser. Color highlighting allows you to see the
hierarchical structure and the content. It can be extended with other
plug-in components. For further information and to download a test
copy, see the Media Design In-Progress Web site at http://in-progress
.com/emile/.

48 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 48

Microsoft FrontPage 2002. FrontPage 2002 has an option called Apply
XML Formatting Rules to automatically reformat the HTML tags on an
HTML page to make them XML-compliant. For further information,
go to the Microsoft Office Assistance Center Web site at http://office
.microsoft.com/assistance/default.aspx and search for “frontpage xml”.

Microsoft Word. See the comments that follow in the next section.

Use Only the Latest Versions of Microsoft Word
for HTML/XML Creation

No doubt about it, Microsoft Word is one of the most well-known and well-
used word processing applications in modern publishing. If, however, you’re
going to use Word to eventually generate XML (such as by creating a Word
document, converting it to HTML, and converting that HTML document to
XML), you should be aware of the drawbacks of using older versions of
Word—in particular, any versions up to and including Word 97. Newer Word
versions have better compatibility with Web page formats.

Earlier versions of Microsoft Word add many extraneous tags and other
information into their documents. The extra information and tags risk confu-
sion with the tags and data you might create in your XML documents. Here’s
an example you can try:

1. If you have a system with, for example, Word 97, click Start, Programs,
Microsoft Word.

2. Click File, New and Blank Document, and OK.

3. When the new document window appears, type in a simple yet unique
word or phrase as shown in Figure 2.2.

Figure 2.2 A test document named sapphire_excerpt created with Word 97.

Setting Up Your XML Working Environment 49

422541 Ch02.qxd 6/19/03 10:09 AM Page 49

4. Click File, Save As, and in the Save As dialog box give the file an appro-
priate filename (in our example, you can see that the document has
been named sapphire_excerpt_Word97). In the Save as Type field, click
the down arrow to open the drop-down menu, click Rich Text Format
(*.rtf), and click Save. The simple Word document is now in RTF format.

5. Click the File menu button again, and click Save as HTML Document.
In the Save as HTML dialog box, give the file an appropriate filename.
In the Save as Type field, accept the default HTML document and then
click Save.

6. Open the Notepad application by clicking Start, Programs, Accessories,
Notepad.

7. When Notepad has started, click File and Open. In the Open dialog box,
browse through the Look In field’s directory structure until you find the
RTF file you saved in Step 4. You may have to click the down arrow in
the Files of Type field to open the drop-down menu and then select All
Files.

8. When your file is displayed, you will see that your actual text (in the
example, the sapphire description) begins near the end of the file.
Meanwhile, look at all the tags Word 97 has inserted. Take a look at
Figure 2.3 to see what happened with our sapphire excerpt example.

Figure 2.3 RTF results from the Word 97 version of sapphire_excerpt.

50 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 50

9. Open another Notepad instance. Again, use Start, Programs, Accessories,
Notepad.

10. When Notepad has started this time, click File and then Open. In the
Open dialog box, navigate the Look In field’s directory structure until
you find the HTML format file you saved in Step 5. Again, you may
have to click the down arrow to open the drop-down menu in the Files
of Type field and then select All Files.

11. When the HTML version of the file is displayed, you will see your text,
but the HTML tags have been altered and several extra tags have been
inserted by Word again. Figure 2.4 illustrates what happened with our
sapphire excerpt example. For a small and simple file such as this, the
conversion to HTML seems acceptable. For larger, complex documents,
it could cause headaches.

It should be clear from the results displayed in Figure 2.3 why old versions
of Microsoft Word, despite all its document production benefits in many other
contexts, is not as good a tool for XML document creation as other HTML-
specific applications.

Meanwhile, if you had used Notepad to view the file in DOC format, or
even in TXT format, you would have seen that additional information had
been added to the sapphire file, but the extra characters would have been
unreadable. At least in the RTF and HTML formats you can see what Word 97
was trying to convey. Do you understand now why the size of the HTML ver-
sion of the file is approximately 1 KB, while the RTF version is 3 KB? And Word
97’s DOC version is 19 KB!

Figure 2.4 The sapphire_excerpt document after being saved in HTML format looks like
this figure.

Setting Up Your XML Working Environment 51

422541 Ch02.qxd 6/19/03 10:09 AM Page 51

Integrated Development Environments
In general, any integrated development environment looks like a single appli-
cation, but it is much more than that. IDEs are a combination of text editors,
compilers, debuggers, GUI developers, version tracking and control, and even
document databases. They may be standalone applications, may be a base
application with plug-ins for extensibility, or may come already bundled as a
number of compatible applications. Some examples of IDEs that you may
already be familiar with and that provide a fairly user-friendly framework are
Microsoft’s Visual Basic and IBM’s Visual Age for Java for programming lan-
guages, and Macromedia, Inc.’s Dreamweaver or Microsoft’s FrontPage for
HTML development.

XML IDEs not only enable you to create and edit XML documents, they also
usually include the functions listed in the previous paragraphs plus all the
major aspects of XML design and editing, such as document authoring, edit-
ing, and validation; DTD or schema editing, and validation; and Extensible
Stylesheet Language editing and transformation (the latter topic is discussed
in detail in Chapter 9, “XML Transformations”).

A sophisticated IDE environment facilitates large project development and
coordination by teams of developers who may be side by side on the same net-
work or even around the world from each other. Some IDEs even provide
shared file repositories with check-in and check-out control, where two devel-
opers cannot modify the same file at the same time.

Some IDE tools provide version control where, at certain points in the devel-
opment cycle, the developer or team may decide to save the whole project in
its state at that time to create a particular intermediate version of the project.

Take a look at Figure 2.5, where several developers are working indepen-
dently on their respective documents and each developer’s workstation is
equipped with an instance (the developer’s own copy, perhaps, or a network
copy) of the IDE software.

The documents or other physical entities on which they are working are
likely located inside a repository structure on one or more servers inside—or
even outside—the company intranet. This is achieved by setting up directory
or filesystem shares, and by the IDE software keeping track of the locations of
the entities in a small database of its own.

According to a schedule, the developers will close and version their code;
then the network administrator (or Webmaster) will move their files into a
development or staging environment for testing. That testing environment is
modeled after the production environment but is usually smaller scale. After
the documents and other entities are tested and all necessary corrections are
made, the files are then promoted by the Webmaster on to the Web servers in a
DMZ—that is, into the production environment—where they can be accessed
by end users.

52 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 52

Figure 2.5 One possible IDE configuration.

Moving documents directly from a developer’s desktop directly into the
production environment is not a recommended practice.

Shared file
repository

Development/staging
environment

Production
environment

in DMZ

Internet

Developers'
workstations

Customers,
suppliers,

others

Firewall

Space Gems, Inc.

Setting Up Your XML Working Environment 53

422541 Ch02.qxd 6/19/03 10:09 AM Page 53

Classroom Q & A
Q: Occasionally, when our colleagues back at the office have used

IDEs, they’ve encountered the phrase “save the document to the
project” or something similar. Is that the same as the old familiar
“save the file”?

A: No, it means something quite different. Saving to a project means
creating an entry in the project database to show the IDE where a
document or other entity is located so that it might be properly
retrieved and rendered with the rest of the documents that pertain
to the project. It is not the same as saving a file, which must still be
done in addition to saving to a project. So it is a two-step opera-
tion: Save the document (in other words, create a permanent copy
in the repository); then save the document to the project (tell the
IDE where in the repository, the permanent copy of the document
can be found).

Several XML IDEs are available. Here are a few popular examples:

TurboXML. Developed by TIBCO Software Inc., TurboXML is an IDE
that supports DTDs and schemas for XML document creation and proj-
ect management. You can investigate TurboXML and other TIBCO
XML software as well as download a trial version of TurboXML at the
TIBCO Web site, www.tibco.com/solutions/products/extensibility/
turbo_xml.jsp. This Java-based Integrated Development Environment is
available for the following operating systems: Windows 95/98/2000 and
NT, Mac OS X, Linux x86, Solaris SPARC, Solaris x86, HP-UX 11.0 and
11i, and other Unix platforms.

Corel XMetaL. This is another application that has evolved from a
graphical editor to an IDE. It provides integration between the WYSIWYG
authoring tool, content repositories, databases, and other workflow
systems. It also provides the capability to convert documents from
other formats (including Microsoft Word and Excel) to XML. You can
download a trial version of XMetaL from the SoftQuad Web site at
www.xmetal.com/top_frame.sq.

Xeena. Xeena is a visual editor developed by IBM that is more “IDE-
minus” than “editor-plus.” Xeena takes an existing DTD or schema and
builds a context-sensitive palette of elements defined by those documents
to help ensure validity from the start. You can work on more than one
document at once. Xeena can be integrated with other document man-
agement systems, repositories, and versioning regimes. For further
information on Xeena, or to download a trial version, go to its Web site
at www.alphaworks.ibm.com/tech/xeena.

54 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 54

XML Spy. Developed by Altova GmbH (Austria)/Altova, Inc. (United
States) and first released in February 1999, Spy is a Windows application
that supports Unicode and all major character-set encodings, DTDs, and
XML schemas. Its editor provides five different document views. It can
import text files, Word documents, and data from Access, Oracle, and
SQL Server databases. For further information and to download a free
30-day evaluation version, go to Altova’s Web site at www.xmlspy.com.

Komodo. Developed by ActiveState Corporation, Komodo is a multilan-
guage IDE with an integrated debugger, leading-edge XSLT support,
and other significant IDE features. It is available for Windows and Linux
environments. For further information, or to download a trial version,
go to the ActiveState Web site at www.activestate.com/Products/
Komodo/pricing_and_licensing.plex.

Arbortext Epic. Designed by Arbortext, Inc. for creating XML and SGML
content, Epic supports DTDs, schemas, and other core XML standards.
Arbortext offers many additional and powerful “integrations” (their
term). It’s available for Windows and Sun Solaris Unix. For information
regarding Epic’s many features, visit Arbortext’s Web site at www
.arbortext.com/html/epic_editor_datasheet.html.

Converting HTML Documents to XML

For documents that are already in non-XML formats, such as Microsoft Word
or other word processing formats, HTML, and others, there are non-XML con-
version applications (also called N-converters) available to convert those files
to XML.

Several Web sites contain links to non-XML to XML and vice versa convert-
ers. Here are a few:

■■ HTML Tidy, a command-line program, found at www.w3.org/People/
Raggett/tidy/.

■■ TidyCOM, a Windows interface wrapper utility that allows you to use
Tidy in a Microsoft Windows environment, found at http://perso
.wanadoo.fr/ablavier/TidyCOM/.

■■ Lars Garshol’s Web site titled “XML tools by category: A part of Free
XML Tools” at www.garshol.priv.no/download/xmltools/cat_ix.html.

■■ Go to the XML software Web site at www.xmlsoftware.com/ and then
click Technical, Conversion tools. Navigate to a page that, at this writ-
ing, has an amazing 47 conversion applications of various descriptions.

Setting Up Your XML Working Environment 55

422541 Ch02.qxd 6/19/03 10:09 AM Page 55

Other conversion applications can be found through World Wide Web search
engines. Further, some of the graphical text and IDE applications also provide
conversion utilities.

Chapter 2 Labs: Creating an XML
Authoring Environment

As we mentioned in Chapter 1, most of the labs in this book revolve around
Space Gems, Inc., our fictitious intergalactic precious gem dealer. You will be
assuming the role of their Web developer. This section summarizes the hard-
ware and software requirements for the Chapter 2 labs and provides an
overview about creating your XML environment.

Computer System Requirements
As mentioned in the Hardware Requirements section earlier in this chapter, a
large computer system is not required to perform the labs contained in this
book. Neither the Web server nor the XML editor will use much CPU or RAM.
For a list of system requirements, please refer to that section.

Operating System Requirements
As mentioned briefly in Chapter 1, all of the instructions and conventions in
this book presume that you are using Microsoft Windows 2000 Professional as
a base operating system. These exercises will also work using Windows XP
Professional and Linux. Instructions for using both Windows 2000 and XP are
documented within this book.

If you have installed—or will be installing—Linux as your operating system,
you will find instructions for installing the Apache Web server and TurboXML
at the XML in 60 Minutes a Day Web site as noted in the book’s introduction.

Creating Your XML Environment: Overview
Once a version of the Windows operating system has been installed, there are
still two basic steps to complete before the XML environment is created. They
are as follows:

■■ Installing a Web server

■■ Installing an XML editor

In Lab 2.1, you will install Microsoft Internet Information Services (IIS) as
the Web server. Linux users, on the other hand, will have to install and config-
ure the Apache Web server software that comes with Linux. Again, all of the

56 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 56

necessary instructions for configuring Apache on Linux are available on the
XML in 60 Minutes a Day Web site.

In Lab 2.2, you’ll install TIBCO Software, Inc.’s TurboXML as the XML editor.
With little effort, this lab could also be performed with other XML editing tools,
such as Altova Inc./Altova GmbH’s XML Spy; however, we recommend that
you perform the steps using the TurboXML editor prior to adapting the steps
for any other editor. If you attempt to install another editor with the Lab 2.2
instructions, be prepared for conversions, substitutions, and troubleshooting.

Lab 2.1: Installing Microsoft’s IIS Web Server

In this first lab, you will install, configure, and test Microsoft’s IIS Web
server as the first component of your XML working environment.

There are four basic steps to installing and configuring a Microsoft IIS
Web server:

■■ Installing and starting the Microsoft Internet Information Services (IIS)

■■ Creating a Web server root directory

■■ Configuring IIS (that is, creating a virtual host and installing content
files in its Web server root directory)

■■ Testing IIS

Lab 2.1, therefore, has been split into four sections: one for each of those
Web server installation steps.

Installing Internet Information Services (IIS)
These instructions presume that you have installed Windows 2000 or XP
Professional. Before you proceed, ensure that you have tested your Inter-
net connection. An active connection to the Internet is required to down-
load some HTML Web server content that has already been generated for
you and is stored on the XML in 60 Minutes a Day Web site in a file called
SG_webcontent.zip. We did this to save you time and effort. You will be
working with and modifying these files throughout this book.

Also, ensure that you have your Windows 2000 or XP Professional
installation CD nearby. You’ll need it because during the configuration of
IIS, you will be prompted to insert the CD so it can copy some additional
dynamic link library (DLL) files into the operating system directories.

Windows 2000 or XP Professional versions come with either IIS or
Personal Web Services. Unfortunately, neither IIS nor Personal Web
Services is available for Windows XP Home.

Setting Up Your XML Working Environment 57

422541 Ch02.qxd 6/19/03 10:09 AM Page 57

As you install, configure, and test the IIS Web server, you will also cre-
ate a virtual host called SpaceGems. The Web server root is C:\WWW\
SpaceGems\. You will then be ready to install the XML editor.

To install IIS, perform these steps:

1. Log on as an Administrator.

2. Click Start, Settings, Control Panel.

3. Double-click Add/Remove Programs.

4. Click Add/Remove Windows Components.

5. Click the check box next to the Internet Information Services (IIS)
component, and then click Next.

6. Insert the Windows product CD-ROM when appropriate. You
should now have an IIS Admin Service running on the system.

7. Click Start, Settings, Control Panel, Services. Look for the IIS Admin
Service, and make sure that it is started.

Creating a Web Server Root Directory
Before configuring your IIS Web server, you first have to create a direc-
tory (folder) to hold the Web server content. Later, during the configura-
tion of the Web server, you have to provide the folder name and the path
to it to indicate where the Web content will reside. We encourage you to
use the same pathing convention so the links within the supplied content
files will function without editing.

To create a Web server root directory, perform these steps:

1. In the next section of Lab 2.1, you will create a virtual host called
SpaceGems. In preparation for that, create a folder called C:\WWW\
SpaceGems. This folder will be the Web root for the Web service.

You can use any appropriate drive letter to represent the hard disk drive
as long as you keep track of it and use it consistently. By default, this
book will use C: as the hard disk convention.

2. Download the SG_webcontent.exe file from the XML in 60 Minutes a
Day Web site, and expand the files into the C:\WWW\SpaceGems
folder so that the index.html file will reside in the SpaceGems folder.

Configuring Internet Information Services
Microsoft Internet Information Service’s default parameters are not quite
suitable for the environment that we are trying to create, so we will cre-
ate a new virtual host called SpaceGems with a separate Web root
defined as C:\WWW\SpaceGems.

58 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 58

1. On the Windows Desktop, right-click My Computer.

2. Click Manage.

3. Expand Services and Applications, Internet Information Services.

4. Right-click Default Web Site and then choose New, Virtual Directory
on the context menu. Click Next to continue.

5. Enter SpaceGems as the Alias, and click Next.

6. Browse to the C:\WWW\SpaceGems folder inside the Virtual
Directory Creation Wizard dialog box, and click Next.

7. Check all of the boxes to enable all functions inside the Access
Permissions Window; then click Next, Yes, and Finish.

The only reason we are enabling all features is because this is a
development environment. This would not be proper practice for
a production environment.

8. Right-click SpaceGems, and then choose Properties.

9. Click Documents, and click Add.

10. Enter index.html as the Default Document Name; then click OK.

11. Use the up arrow to move index.html document to the top of the
list, and then click OK.

12. Refresh the service for the new parameters to take effect. Right-click
Default Web Site again, and then choose Stop to stop the Web ser-
vice. After it has stopped, press Start to refresh the service.

You now have a functional Web service that will serve an index page for
http://localhost/spacegems. You have no doubt noticed that, at present,
the index page is very basic. We will be adding functionality to the index
page and the rest of the Web site as we develop the Space Gems scenario
throughout the book.

Testing Internet Information Services
To test your IIS installation, perform these steps:

1. Perform a ping test on http://localhost/spacegems.

a. On your desktop, click Start, Programs, Accessories, Command
Prompt to open a command window.

b. At the prompt, type the following command:

ping localhost

The response should be 127.0.0.1.

Setting Up Your XML Working Environment 59

422541 Ch02.qxd 6/19/03 10:09 AM Page 59

2. Open a browser and, in the location bar, enter the following URL:

http://localhost/spacegems

The displayed index page should look similar to the presentation in
Figure 2.6.

Figure 2.6 Space Gems’ index page, viewed in Internet Explorer.

You have now created your starting point for the Space Gems case
study. This modest Web site will be further developed as we move through
the lab exercises in this book.

This concludes the first part of the creation of your XML environment.
In the next lab, you will install the TurboXML editor.

Lab 2.2: Installing TurboXML

In Lab 2.2, you will install a 30-day evaluation version of TIBCO Soft-
ware, Inc.’s XML editor called TurboXML. This is the second of the two
major components in your XML working environment.

60 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 60

After the product is installed, you will require a 30-day trial code
to enable the editor. A trial code can be obtained by visiting either
TIBCO’s Web site at www.tibco.com/solutions/products/extensibility/
turbo_xml.jsp or this book’s Web site, as noted in its introduction, and
clicking the TurboXML link. As you access the download link for Tur-
boXML, you will be asked to register. After registering with TIBCO, you
will receive a complete link with a registration product code containing a
complete set of instructions on how to download the TIB_turboxml_
2.3.0_w32.exe by email. The system will only take a minute to generate
the email message for you.

After you have received the link and code by email from TIBCO,
perform these steps:

1. Download the TIB_turboxml_2.3.0_w32.exe file, and then double-
click the file to initiate the installation.

2. Accept all of the defaults by clicking Next for the installation.

3. Open the TurboXML editor, and fill out the TurboXML Registration
dialog box.

4. Enter the registration code that TIBCO sent you in the email, and
click Continue Trial. You will be presented with a small TurboXML
window like the one shown in Figure 2.7.

TurboXML will be used as the XML editor for all the lab exercises in
this book. Using a professional XML editor such as TurboXML will
allow us to introduce some advanced and sophisticated techniques
without having to subject you to too much coding.

5. Close the TurboXML window.

This concludes the installation of your XML editor. You have now
installed a typical XML development environment for a small Web site.
In future lab exercises, we’ll show you how to use these tools.

Figure 2.7 TurboXML introductory window.

Setting Up Your XML Working Environment 61

422541 Ch02.qxd 6/19/03 10:09 AM Page 61

Summary

Before you move on to Chapter 3, take a moment to review these key concepts
from Chapter 2. Some of the Chapter 2 information will serve you in other
Internet-related areas, too.

■■ A minimal XML working environment consists of a personal computer
with a current operating system (with the installation files nearby on
hard disk or CD-ROM), a robust Internet connection, a copy of current
Web server software, a copy of current Web browser software, and a
copy of XML authoring software.

■■ A Web server is a computer system with the appropriate software
installed to allow it to respond to Internet requests. The Web server is
generally located on a lower-security segment of an organization’s net-
work (the segment is often referred to as a demilitarized zone, or DMZ)
and connected through a firewall to the Internet.

■■ Virtual hosting allows you to create more than one Web site on one Web
server system. Each Web site, however, will still have its own domain
name and IP address.

■■ A Web browser is a client application that is used to locate, request, and
display Web pages and to navigate from one Web site or page to another.
It usually also contains email and chat clients. Almost all browsers are
graphical in nature. To read XML, though, a browser must also contain
an XML processor.

■■ There are three basic categories of XML authoring tools: simple text edi-
tors, graphical text editors, and integrated development environments
(IDEs).

■■ Because XML is an open standard, it doesn’t restrict you to a single
editor or even a single kind of editor. You can work on a document
with one type at first and then later switch to another.

■■ Simple text editors are small, uncomplicated, and easy on computer
system resources. That’s why they ship and install with the base operat-
ing systems. They don’t have many editing features, but they are still
widely used to examine and create XML documents.

■■ Graphical XML editors have several more features and provide a
GUI display. Many word processors and other business suite applica-
tions, as well as HTML editors, have been modified to provide XML
support.

62 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 62

■■ Integrated development environments often look like a single applica-
tion program with sophisticated features. However, they are often a
combination of two or more applications: editors, compilers, debug-
gers, repositories, and version control applications.

■■ Conversion applications are available, such as the command line-
oriented HTML Tidy or the Windows-oriented TidyCOM, which will
convert non-XML documents (such as Microsoft Word documents and
HTML documents) into XML documents. Some of the IDE tools also
provide conversion capability.

Setting Up Your XML Working Environment 63

422541 Ch02.qxd 6/19/03 10:09 AM Page 63

Review Questions

1. What are the four software components that compose an XML authoring environment?

2. Why would a Web server be located in a demilitarized zone segment of an organiza-
tion’s network?

3. Which of the following would be shared by all Web sites on a server in a virtual host-
ing environment?

a. Web root directories

b. Default filenames

c. Caching

d. File directory or folder hierarchies

e. Plug-ins

f. Error files and restricted access files

g. Security realms

4. To read XML, a browser application must contain an___________________ (also
called an ________________).

5. True or false? After you begin authoring an XML document, you must use the same
authoring tool to edit that document.

6. Why should you be wary of using earlier versions of Microsoft Word for creating XML
documents?

7. What are N-converters?

8. In your lab exercise, what were the four steps to installing the IIS Web server?

9. After you have configured the Microsoft Web server, what do you have to do to ensure
that the parameters become effective?

10. What two-step procedure did you use to test the Web server?

64 Chapter 2

422541 Ch02.qxd 6/19/03 10:09 AM Page 64

Answers to Review Questions

1. The four software components that compose an XML authoring environment are as
follows:

a. An operating system

b. A Web server

c. A Web browser

d. An XML authoring application

2. A Web server might be located in a demilitarized zone segment of an organization’s
network to keep outside hackers from accessing the higher-security private segment of
an organization’s network.

3. In a virtual hosting environment, the Web sites would share c., e., and g.

4. To read XML, a browser application must contain an XML parser (also called an XML
processor).

5. False. XML is an open standard. You can edit any XML document with nearly any edi-
tor. Restrictions might be applied if some tools can’t see a defining DTD or schema,
though. When in doubt, use a simple text editor, although it can be inconvenient for
large files or extensive edits.

6. Earlier versions of Microsoft Word add extraneous information and tags, which
introduce the risk of confusion with the descriptive tags you might have created
in the same documents.

7. N-converters are applications that assist you in converting non-XML format documents
to XML.

8. The four basic steps to installing a Microsoft IIS Web server are as follows:

a. Installing and starting the Microsoft Internet Information Services (IIS)

b. Creating a Web server root directory

c. Configuring IIS (that is, creating a virtual host and installing content files in its
Web server root directory)

d. Testing IIS

9. Refresh the Web service: Stop the Web service, and then, only after the system has
indicated that the Web service has indeed stopped, start the Web service.

10. To test the Web server, we first performed a ping test on http://localhost/Websitename
(in the lab exercise, the Web site name was spacegems) from a command window.
After that part was successful, we started our browser application and then went to
the http://localhost/Websitename URL.

Setting Up Your XML Working Environment 65

422541 Ch02.qxd 6/19/03 10:09 AM Page 65

422541 Ch02.qxd 6/19/03 10:09 AM Page 66

67

Many XML-related languages, applications, and Web sites have appeared since
XML development began in the mid-1990s. The pace of development is accel-
erating, too, but without properly constructed XML documents, none of them
can be effective.

In previous chapters, we explained where XML comes from and how to set
up an XML working environment. Now we’re ready to begin building some
XML documents. In this chapter, you will learn a little about applications,
XML parsers, an XML document’s logical and physical structure and its com-
ponents, and the principles of well-formedness and validity.

By the end of this chapter, you will know what an XML document is, how it
sends instructions to an application and parser, and how to create and struc-
ture an XML document.

What Are XML Documents?

In Chapter 1, “XML Backgrounder,” we discussed how documents have
evolved from files created by text applications to electronic files of any size for
any media (for example, text, audio, video, and graphics) created by any appli-
cation. As noted, the XML 1.0 Recommendation defines an XML document as a

Anatomy of an XML Document

C H A P T E R

3

422541 Ch03.qxd 6/19/03 10:09 AM Page 67

“data object if it is well-formed, as defined in (Extensible Markup Language
Recommendation). Each XML document has both a logical and a physical
structure.”

Expanding that definition, each XML document contains a unique instance
of logically structured data, plus additional instructions for the parser and the
application. The data instance portion contains data components with unique
values. All the components and their respective values must conform to defin-
itions in the language’s conformance-checking mechanisms—in other words,
a document type definition or schema. After being processed by an XML
parser, the data in a document is structured and then passed to the application.

But the W3C has drawn a bit of a boundary around XML documents when
they refer to them as data objects. They are not quite the same as, say, Java
objects, which can contain a combination of data and procedures to manipu-
late the data. With XML, manipulation is left to the parsers and applications.

As you progress through this chapter, you will begin to understand why
those who think XML documents are just text documents—mostly because, on
the surface, text is all they seem to contain—tend to underestimate XML’s
capability to structure and integrate data of all types.

XML Document Processing

XML documents can’t do anything on their own. Applications must be written
to process the data contained in them. Here is an overview of the process by
which applications call for and use XML documents.

Applications
Used alone, the term application means a program or group of programs
intended for end users and designed to access and manipulate data (in our case,
the data in XML documents). Don’t confuse this term with XML application,
which is one of several terms used to refer to a derivative markup language cre-
ated according to XML 1.0.

To clarify, consider the following comparison: A Web browser is an applica-
tion that can access and display the information from XML documents. But the
Synchronized Multimedia Integration Language (SMIL), discussed in Chapter
12, “SMIL,” is an XML application because it is its own language, developed
using XML 1.0 specifications.

It is not our intention to show you how to create applications; however, in
the lab exercises later in this chapter, you will use applications to help you cre-
ate an XML document or to display the results of your XML document creation
labors. Meanwhile, to process XML documents, the applications must have
XML parsers integrated within them.

68 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 68

Figure 3.1 An XML parser translates XML entities into a data structure.

XML Parsers
XML processors—more commonly called XML parsers—are reusable pieces of
code that are integrated with computer applications. Application developers
can write their own parsers, but they don’t need to; several are available—for
free, on the Internet—which they can include in their applications. Later when
an application calls for an XML document, the parser is activated, reads the
XML document, and screens it on behalf of the application. Screening means
the parser performs checks on the document, creates a data structure, and
passes the structured data to the application. Figure 3.1 illustrates the process.

XML parsers are of two general types: those that check only for well-
formedness and those that check for well-formedness and validity. The second
type, which consults DTDs or schemas to check the document for conformance
to the respective XML-related language, is called a validating parser.

Parsers generally contain four basic types of operators:

A content handler. Turns the document’s string of characters into a
sequence of events that are then translated into a treelike data structure
(illustrated in Figure 3.1), which it then provides to the application.

An error handler. Determines the nature of any errors in the XML docu-
ment and then acts accordingly. (Document errors are discussed in the
section that follows.)

A DTD and schema handler. Examines the DTD or schema and then
checks the XML document for conformity with the DTD or schema.
This operator only appears in validating parsers.

XML Parser

Application

XML
Document

Structured
Data

External Data EntitiesExternal Data Entities

External DTD, schema
or style sheets

External DTD, schema
or style sheets

Anatomy of an XML Document 69

422541 Ch03.qxd 6/19/03 10:09 AM Page 69

An entity resolver. Incorporates any data referenced within the XML
document’s referential markup that is located outside the XML docu-
ment entity itself or that is not intended to be parsed in a customary
manner.

Several parsers are available, including expat (at www.jclark.com/xml/
expat.html or http://sourceforge.net/projects/expat/), the Apache Software
Foundation’s Xerces (at http://xml.apache.org/), IBM’s XML Parser for Java
(at www.alphaworks.ibm.com/tech/xml4j), and Microsoft’s MSXML (at
http://support.microsoft.com/default.aspx?scid=fh;en-us;msxml).

Document Errors
Parsers occasionally encounter errors in XML documents. The W3C classifies
errors in two ways: nonfatal and fatal errors. A nonfatal error is a violation of
the rules of XML 1.0. For these errors, the W3C does not define specific penal-
ties. They leave that up to the respective parser and application developers.
They just say that “conforming software may detect and report an error and
may recover from it.”

Fatal errors are a different matter. The W3C stipulates that a conforming
XML parser must be able to detect fatal errors and must then report them to
the application, which can then produce its own error message. It is up to the
application developer to code that in. The W3C goes on to say if a parser
detects a fatal error, it may continue processing, but only to look for more
errors; it is not allowed to continue normal content processing.

In the section What Is a Well-Formed XML Document? later in this chapter, we
discuss XML 1.0’s well-formedness constraints. For now, we’ll state that viola-
tions of those constraints, among others, constitute fatal errors. (For a more
comprehensive explanation of errors and fatal errors, consult the XML 1.0
Recommendation.)

The Structure of XML Documents

XML 1.0 states that XML documents have two kinds of structure: a logical
structure and a physical structure. Although we will discuss the basic physical
structure of an XML document in this chapter, later chapters will tend to dis-
cuss logical structure predominantly. There are two reasons:

■■ It’s the easiest way to give you an idea of how the languages and their
respective documents are supposed to work—that is, to show you how
to create and structure components to achieve your objectives.

■■ The logical approach provides a good model for understanding, com-
paring, and even combining XML-related vocabularies and documents.

70 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 70

The physical structure of XML documents tends not to stray far from the
basics we’ll show you in this chapter. However, if important physical structure
or other concerns arise during the discussions of the other XML-related lan-
guages, we address them, too.

Before we begin discussing the logical structure, though, let’s fine-tune
three of our fundamental definitions. Here we’ve paraphrased the text,
markup, and character data definitions listed by the W3C in XML 1.0:

■■ Text consists of intermingled markup and character data.

■■ Markup consists of the following:

■■ In the prolog: XML declarations, processing instructions, document
type declarations, comments, and any white space.

■■ In the data instance (that is, within the scope of the root element):
start tags, end tags, empty element tags, attributes entity references,
character references, and CDATA section delimiters.

■■ Character data is all text that is not markup.

The Logical Structure
The basic logical structure of an XML document consists of the following:

■■ The prolog

■■ The data instance (that is, the root element and any elements contained
in the root element)

The Prolog

The prolog is a preface or introduction to the XML document. It is the first
major logical component of an XML document and, because of its content,
must be inserted prior to the next major logical component, the data instance.
The prolog provides initial advice to the application, the parser, and any human
reader about the document and, especially, prepares the parser to better han-
dle the data instance.

The prolog may contain up to five types of components:

■■ An XML declaration

■■ Processing instructions

■■ A document type declaration

■■ Comments

■■ White space

Anatomy of an XML Document 71

422541 Ch03.qxd 6/19/03 10:09 AM Page 71

Refer to the simple XML document gems_excerpt_02.xml in Figure 3.2. It
has a five-line prolog right at the beginning, consisting of an example of each
of the five components listed previously. In fact, there are two comments. The
use of white space may not be so obvious to you, but if there were no spaces or
end-of-line indicators in the prolog of this document, we would have trouble
recognizing the components easily and quickly; they would all run together.
Don’t worry about white space yet, though. We discuss it in more detail in the
White Space section later in this chapter.

The XML Declaration

The XML 1.0 Recommendation suggests that every XML document should
begin with an XML declaration that states, basically, that the document is
indeed an XML document. The declaration (also called the header) must be on
the document’s first line. XML 1.0 also states that all prolog components are
optional, but that a well-formed XML document should begin with an XML
declaration.

We strongly recommend that you include an XML declaration at the
beginning of every XML document to help ensure that it is well formed.

Figure 3.2 A simple XML document containing a five-line prolog.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds2.dtd">
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_02.xml -->
<diamonds>

<gem>
<name>Sparkler</name>
<carats>105</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Super Ideal</cut>
<cost>126000</cost>
<reserved />

</gem>
<gem>

<name>Merlin</name>
<carats>41</carats>
<color>D</color>
<clarity>FL</clarity>
<cut>Ideal</cut>
<cost>82000</cost>

</gem>
</diamonds>

72 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 72

Let’s examine the XML declaration statement from Figure 3.2. The basic tag
for an XML declaration statement is <?xml ... ?>. XML 1.0 specifies that xml
must be lowercase. The XML declaration is actually a kind of processing
instruction (discussed next); that is, it talks to the application, not to the parser.
What it says, in a way, is “activate the XML parser; this is an XML document”
and then provides additional information about the document for use by the
application and the parser. The information appears in three pseudo-attributes:
the XML version number (version=”1.0”), the document’s language encoding
designation (encoding=”UTF-8”), and the standalone pseudo-attribute specifi-
cation (standalone=”no”).

We discuss pseudo-attributes and attributes in detail later in this chapter.
They’re similar concepts, but not identical. In the meantime, remember to
enclose the value portion of all XML pseudo-attributes and attributes in
quotation marks (double quotes are normally used, but single quotes are
acceptable, too).

In the XML declaration, the XML version pseudo-attribute refers to the ver-
sion of the XML Recommendation whose specifications the document has
been written to. It is mandatory to state the version number. Currently, there is
only Version 1.0, corresponding to the W3C’s XML Recommendation 1.0, so
1.0 is the value that must be specified.

The encoding pseudo-attribute is optional. XML supports several character
sets listed on the Internet Assigned Numbers Authority’s Official Names for
Character Sets Web site at www.iana.org/assignments/character-sets. Several
values can be specified for the encoding pseudo-attribute. If you do not spec-
ify a value, the parser will use the UTF-8 default value. That value will suffice
for everything we do in this book.

The third part of the declaration, the standalone pseudo-attribute, is also
somewhat optional. If the document will be parsed by itself—that is, if there
will be no need to refer to any external entities like DTDs or schemas that con-
tain declarations for the components in the XML document—the standalone
value should be yes (which is the default value if the standalone pseudo-
attribute does not appear). If there are declarations in such external entities,
however, and they must be enlisted by the XML parser before it can process
the document, specify no.

Processing Instructions

The second line of Figure 3.2 is an example of a processing instruction (PI). PIs
are instructions passed by the XML processor to the application and, so, are
rather frowned on by XML purists. Processing instruction syntax looks similar
to the following:

<?piname pseudo-attributes?>

Anatomy of an XML Document 73

422541 Ch03.qxd 6/19/03 10:09 AM Page 73

Similar to the XML declaration statement, a single question mark appears at
the beginning and the end of a processing instruction. The piname, also called
the PI name or PI target, tells the application what type of PI it is. It is up to the
application developers to code in which PI targets will be recognized.

The second line of Figure 3.2 is a common PI that is recognized by browsers
like Internet Explorer and Netscape Navigator. The PI name is the fairly com-
mon xml-stylesheet; we’re telling the application that we are associating a
style sheet with this document. The type pseudo-attribute tells the application
to look for a text-type cascading style sheet that will instruct it how to display
the components found in the XML document. The style sheet uniform resource
identifier (URI) is simply diamonds2.css, meaning the name of the style sheet
document is diamonds2.css and is found locally on the system because the
URI contains no additional pathing information.

Later, in Chapter 9, “XML Transformations,” you will see a PI similar to the
following:

<?xml-stylesheet type=”text/xsl” href=”gems1.xsl”?>

This PI points the application to a different type of style sheet, one that will
help transform an XML document to an HTML document.

If you are coding any other type of PI, don’t use PI names beginning with
the characters “XML,” “xml,” or similar. They have been reserved by the
W3C for future XML standardization.

The Document Type Declaration

XML does not require the inclusion of the document type of declaration in all
circumstances. The document type declaration (also called a DOCTYPE defi-
nition) tells the parser what function the document’s author expects the
document to play: That is, it tells the parser what type of document it is, then
indicates to the parser how the document’s components will be defined and
related to one another. Let’s look at the declaration on the third line of Figure 3.2.

The opening keyword DOCTYPE tells the XML parser that this statement is
indeed a document type declaration. “Diamonds” indicates that the name of
the class that the document belongs to is diamonds; that the document is a dia-
monds type of document. The class name is arbitrarily specified by the docu-
ment developer and often coincides with the name of document element,
which we will discuss in the section titled The Data Instance later in this chap-
ter. For example, a developer who is writing a book might name the class of the
basic document book and then import other XML documents, whose class
names might be chapter, section, or whatever, into the book document.

Let’s deviate from the Figure 3.2 example for a moment. If a developer chooses
to provide the appropriate component declarations and then have the parser

74 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 74

validate the document as well as check the document for well-formedness, the
DOCTYPE definition statement is the place where the declarations would be
inserted. For the Figure 3.2 document components, the document type declara-
tion, complete with the inserted declarations, would resemble the following:

<!DOCTYPE diamonds [

<!ELEMENT diamonds (gem)*>

<!ELEMENT gem (name,carats,color,clarity,cut,cost,reserved?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT carats (#PCDATA)>

<!ELEMENT color (#PCDATA)>

<!ELEMENT clarity (#PCDATA)>

<!ELEMENT cut (#PCDATA)>

<!ELEMENT cost (#PCDATA)>

<!ELEMENT reserved (EMPTY)>

]>

Notice that if the DOCTYPE definition (to use the alternate name) lists these
declarations within its own confines, the developer must place the declarations
between an opening square bracket and a closing square bracket. Doing so cre-
ates an internal DTD. If such an internal DTD is constructed, the standalone
pseudo-attribute in the XML declaration would have to be standalone=”yes”.

Returning to the Figure 3.2 example, the keyword SYSTEM indicates to the
parser that the declarations for the document’s components will not be found
in the Figure 3.2 document, but within an external document. Further, the
parser should be ready to look for that external document on the local system
and then check the Figure 3.2 document for validity against the declarations in
the external document. But which external document and where is it? That is
specified next in the URI that appears in quotation marks. The parser is to look
for an external document named diamonds2.dtd.

If that external document is located even further remotely, the full path to the
document would have to be specified in the URI instead of just the filename.

Classroom Q & A
Q: So you’re saying that the declarations can be located in the XML

document or in that other external document, right?
A: Not quite. We realize that, at this point, we have left you with that

impression. However, declarations can exist in both places and
work together. Your XML document may contain extra compo-
nents in addition to those declared in the external document. Or
maybe, for this document, you want to alter one or more of the
component declarations from those in the external document. To
do so, you would declare the additional or updated components

Anatomy of an XML Document 75

422541 Ch03.qxd 6/19/03 10:09 AM Page 75

right there in the Figure 3.2 document—in what is termed an inter-
nal subset—and rely on the external document—that is, the external
subset—to provide the declarations for the rest of the components.
The combination of the internal subset and the external subset is
what you would correctly call the document type definition. In other
words, both portions would form the complete DTD. We discuss
this again in Chapter 4, “Document Type Definitions.”

Even though document type declarations are optional, one is required if
the developer intends the parser to validate the document by internal or
external markup declarations. As a best practice to avoid ambiguity, we
recommend always including a document type declaration in the prolog.

The various keywords, declarations, and the nature of internal and external
DTDs are explained in detail in Chapter 4.

Comments

The purpose of adding comment statements to an XML document is not to
provide instruction to the parser or to the application, because comments are
ignored by the parser. Here are three purposes for comments:

■■ To say something to anyone who will later examine the XML document

■■ Combined with white space, to break a document into sections

■■ To temporarily disable sections of the document

XML uses the same comment syntax as HTML. The following are two
examples:

<!-- Gems Version 1 - Space Gems, Inc. -->

<!-- filename: gems_excerpt_04.xml -->

Properly constructed, comments can be placed anywhere in a document;
however, it is considered bad form to place a comment before the XML decla-
ration statement.

After you have begun a comment, be careful not to use the literal string
“--” (that is, two hyphens in a row) anywhere in it except at the very end.
The XML parser will otherwise see the string and presume that the
comment has ended, then create errors based on any remaining characters
in the rest of the intended comment.

76 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 76

The Data Instance

The data instance portion of an XML document follows the prolog and consists
of one or more elements. Elements are an XML document’s data containers
and are the basic building blocks of XML data instances.

Element Types, Tags, and Names

Each element begins and ends with its element type (also referred to as an ele-
ment name), contained in a tag (some refer to tags as tag names, but purists
prefer tags). There are three kinds of tags. Start tags (also called opening tags),
appear at the beginning of an element, and end tags (or closing tags) appear at
the end of an element. Also, a sort of hybrid tag introduces declared-empty ele-
ments (elements that are not intended to contain any data). Here is an excerpt
from Figure 3.2, which illustrates all three kinds of tags:

<cost>126000</cost>

<reserved />

The <cost> tag is a start tag, the </cost> tag is an end tag, and <reserved />
is a declared-empty element tag. Notice that each tag is delimited by a left
angle bracket (<) at the beginning and a right angle bracket (>) at the end. The
end tag always has a slash immediately after the left angle bracket before its
name. The empty element tag also has a slash, but it appears immediately
before the ending angle bracket after the name. In the empty element tag, the
/> combination tells the parser not to expect a classic end tag for this particu-
lar element.

We’ll revisit declared empty elements later in this chapter when we discuss
element content. Meanwhile, here are some rules for naming element types:

■■ They can begin with a letter, a colon, or an underscore, but they can’t
begin with a number.

■■ Subsequent characters may include letters, numbers, underscores,
hyphens, colons, and periods, but they can’t contain certain XML-
specific symbols. Examples: the ampersand (&), the “at” symbol (@),
and the less-than symbol (<).

■■ The names can’t contain white space (a departure from SGML); they
must be one continuous string of characters. If white space appeared in
the name, the XML parser would treat the portion following the white
space as an improperly constructed attribute. This is one reason why
you occasionally see descriptive multiple word tags composed of a
mixture of upper- and lowercase characters such as <elementType>.

■■ Names can’t contain parenthetical statements to describe contents or
intentions.

Anatomy of an XML Document 77

422541 Ch03.qxd 6/19/03 10:09 AM Page 77

The element type is also called the element’s generic identifier (GI). It’s that
type that is actually being declared (defined) in the DTD or schema. Thus,
whenever an author inserts one or more elements with a given name, that
author creates one or more instances of that type of element.

We concur with those who recommend that when you are creating names
for element types, you should make them as descriptive of their contents
as possible. This best practice facilitates human legibility, and the unique-
ness of the name also facilitates the ability to search through a document
quickly using text strings.

The Extent of an Element

An element extends from the first left angle bracket in its start tag through the
start tag, through the element’s content, and then through the end tag to the
last right angle bracket. Here’s an example of a complete element:

<name>Sparkler</name>

The upcoming section of this chapter, Structuring Data with Nested Elements,
discusses how elements can be placed wholly (that is, nested) within other ele-
ments. That nesting increases the extent of the surrounding element. Here is an
example:

<gem>

<name>Sparkler</name>

<reserved />

</gem>

In this case, the <gem> element extends from the first left angle bracket in
the <gem> start tag, all the way through the complete <name> and <reserved
/> elements, to the last right angle bracket in the </gem> end tag.

Elements Can Have Different Kinds of Content

As shown in the previous example, it is possible to locate elements wholly
within other elements. In Figure 3.2, the <diamonds> element contains two
<gem> elements and they, in turn, contain other elements. The <diamonds>
element is the document element (also called the root element) because it contains
the document’s data instance. So <diamonds> serves two logical purposes: It
is the root element, and it is the direct parent element of two elements—the
two <gem> elements. And because <diamonds> contains two elements, but
apparently does not contain any character data, it has element content.

The two sibling <gem> elements are the direct child elements of <diamonds>.
Similar to <diamonds>, the <gem> elements also have element content because
each contains child elements of its own.

78 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 78

Notice, however, that the child elements of the <gem> elements do not have
element content. Because they contain character data strings (for example,
names, numbers, and descriptive acronyms) instead, we say they have data
content. The discussions of DTDs and XML schemas in their respective Chapters
4 and 5 expand upon these concepts.

It is also possible for elements to contain both elements and data, that is, to
have mixed content. For example, Space Gems might have a child element
called <saleDate> located inside a <gem> element, and its content might be
character data describing the date that a gem was sold. Or its content may tell
the parser to insert the contents of a <salePending> element and, consequently,
display a message that states “sale of this gem has not yet been finalized” or
something similar.

Additionally, an element can have content designated as any. That is, you
can declare that an element will be valid as long as it contains something. A
practice such as this, at first glance, probably seems imprecise, even risky. But
it can be handy if you are trying to retrofit a new DTD to existing documents.
This is discussed further in Chapter 4.

Empty Elements

In addition to containing several types of content, elements can also be empty.
There are two types of empty elements:

Declared-empty. Elements that are intended to remain empty and so are
defined that way in the document’s DTD or schema.

Elements with no content. Elements whose DTD or schema declarations
indicate that they may contain content. But, in certain cases, the start and
end tags may appear, with no data between them, or the tags may not
appear at all.

Declared-empty elements are often intended to function as a kind of marker,
to indicate a point where, during the course of the execution of the application,
something specific is supposed to happen. Or they may be used as document
search criteria. For example, you may write a script that searches for and then
somehow manipulates all documents, parent elements, or whatever, that con-
tain certain specified elements.

Here, again, is the now-familiar declared empty <reserved> element:

<reserved />

When the XML parser encounters a tag with that syntax, it will recognize it
and will not expect to encounter an end tag like </reserved>.

Here is the syntax for an element that has no content:

<cost></cost>

Anatomy of an XML Document 79

422541 Ch03.qxd 6/19/03 10:09 AM Page 79

Chapter 4 shows you how to insert the appropriate declarations for these
and declared empty elements in a DTD. Chapter 5, “XML Schemas,” shows
you similar syntax, but for a schema.

It is legal in XML to use empty element start tag and end tag syntax in a
document, such as <reserved></reserved>, for elements declared to be
empty, as well as for those elements that are eligible to contain data but
have no content at the time. We recommend, however, that the best
approach is still to use empty-element tag syntax (for example,
<reserved />) for declared empty elements.

Attributes

Elements may, but don’t necessarily have to, contain attributes, also known as
attribute specifications. Attributes are another type of descriptive metadata
(that is, data about data) that you can specify for your elements. Attributes
take the form of name:value pairs, and you add them to your start tags imme-
diately after the element name but separated from the name by at least a single
space. Applications can be coded to look for them in XML documents, and to
then manipulate the data in the elements that the attributes appear in.

Whether or not attributes are inserted, as well as their nature, is left to the
discretion of the document author. When might you use them? Table 3.1 con-
tains examples.

As you can see from Table 3.1, you can specify names for attributes and
insert more than one attribute in a start tag. Be advised, though, that some
applications are written to tolerate only a fixed few attributes.

Table 3.1 Examples of Attributes in Action

ELEMENT CONTAINING ATTRIBUTE TRANSLATION

<gem location=”Sol”> Gems that originate in the
Sol system.

<gem catPublish=”no”> Gems that will not appear in
the catalog.

<gem location=”Auriga” catPublish=”yes”> Gems from the Auriga
constellation that will
appear in the catalog.

<gem status=”loaned” return_exp=”04-30-2049”> Inventory gems that are
currently loaned to someone
and are effectively not for
sale at this time. Expect
return on April 30, 2049.

80 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 80

There are concerns about the necessity for attributes, especially when child
elements might work as well or better. The choice of whether and when to use
attributes versus elements is contextual and must be left to the developer and
the perceived needs at the time of development (for example, flexibility of the
needed structure, processor power available, and the ability of developers and
their applications to comprehend and manipulate the components in the struc-
ture). Here are some guidelines:

■■ Some applications may limit the number of attributes they will select.

■■ Attributes can’t contain elements; if you want the information to be
displayed or otherwise manipulated, it should appear in an element.

■■ Attributes can’t be nested (that is, they can’t contain other attributes), so
attribute information must be simple and limited in descriptiveness.

■■ From a system and network performance standpoint, remember that
smaller documents are processed more quickly by parsers. Using ele-
ments with attributes might enhance system performance.

■■ Similarly, performance might be enhanced if you avoid using default
attribute values, which would likely be specified in external DTDs or
schemas. With default values, the parser has to consult the external
documents more often.

■■ Attribute names follow the same rules as element names.

■■ For any element, its attribute names must be unique.

■■ Remember that XML is case-sensitive. So an attribute named location is
not the same as one named Location or LoCaTiOn.

■■ In XML, you must always assign values to your attributes; otherwise,
XML parsers will treat HTML-like standalone attributes as errors.

■■ All attribute values must be surrounded by quotation marks; single and
double are both acceptable.

The use of quotation marks can be complicated if the attribute value con-
tains quotation marks of its own. Consider the following:

<msg_logistix text=’From Logistics: “Asteroid activity causes shipment

delays at that time of year.”’/>

In this example, the use of single quotes around the whole value preserves
the value, which is double-quoted shipping advice from the Logistics group.
Without the single quotes, the parser would have cut the message off prema-
turely and issued an error message. On the other hand, if the Logistics message
had been in single quotes, the whole value could have remained in normal dou-
ble quotes, which is the usual technique.

Anatomy of an XML Document 81

422541 Ch03.qxd 6/19/03 10:09 AM Page 81

There are cases when an attribute value contains both single and double
quotes. Consider this example, which uses XML named entities (discussed later
in this chapter) to describe a display case that is 2 feet long, 6 inches wide, and
2-1⁄2 inches deep. The &apos is substituted in place of a single quote and "
is substituted twice in place of double quotes.

<display_case size=”2' long/6" wide

/2-½" deep”>

Thus, 2' long means 2’ long, while 6"wide means 6” wide,
and 2-½" deep means 2-1⁄2” deep.

For further details about attributes, consult XML 1.0 at the W3C’s Web site
at www.w3.org/TR/2000/REC-xml-20001006.

Classroom Q & A
Q: Earlier, with respect to the XML declaration, you mentioned “pseudo-

attributes.” Are they the same as or different from attributes?
A: Pseudo-attributes look similar to attributes, but they’re different.

Pseudo-attributes appear in prologs, not in the data instance. And
they describe an overall document (the XML document or a
related external entity document), not an element or the data in it.

White Space

Ordinarily, white space, such as spaces, tabs, carriage returns, and blank lines,
is used during document development to organize a document or to facilitate
human legibility. After the document is built, the developer may only care that
some basic white space is preserved—for example, single spaces between the
individual words that constitute the parsed character data. Beyond that, nor-
mal XML data documents don’t require additional white space preservation.

Meanwhile, when XML parsers examine documents and see all the extra
tabs, spaces, and carriage returns inserted by the developers for organization
and legibility, they don’t issue error messages. Their white space normaliza-
tion algorithms (for details regarding those algorithms, see XML 1.0) render
the documents so that the parsers and applications can live with them and the
data.

But there are some documents, such as those containing song lyrics, certain
types of technical specifications and procedures, performance scripts, meeting
minutes, poems, recipes, and similar documents, whose benefits depend on
more than basic normalized white space treatment. They need their original

82 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 82

customized character and “significant” white space structures, so their authors
do care about parser and application treatment. Consider the following:

<poem>

<title>Oh Diamond, Mine!</title>

<stanza number=”1”>You dazzle us, you’re brilliant!

Yet hard and so resilient

Symbol of love, loyalty and light

Sought after, day and night!

Oh diamond, mine!

</stanza>

<stanza number=”2”> ...

...

</poem>

The XML parser would normally process this poem document as if it were
one long string, such as the following:

<poem><title>Oh Diamond, Mine!</title><stanza number=”1”>You dazzle us,

you’re brilliant!Yet hard and so resilient Symbol of love, loyalty

and light Sought after, day and night!Oh diamond, mine!</stanza>

<stanza number=”2”> ... </poem>

How do we ensure that significant white space survives to the final output?
An attribute named xml:space can be used for elements containing significant
white space. There are only two value options for xml:space: default, which
means, roughly, “let the application do what it would normally do,” or preserve.

So the preceding poem’s white space would be treated by the parser in a
manner similar to the following:

<poem xml:space=”preserve”>

<title>Oh Diamond, Mine!</title>

<stanza number=”1”>You dazzle us, you’re brilliant!

Yet hard and so resilient

Symbol of love, loyalty and light

Sought after, day and night!

Oh diamond, mine!</stanza>

<stanza number=”2”> ...

</poem>

Of course, the ultimate appearance of the poem would depend on the dec-
larations in style sheets and other external documents, but the stanza would
remain intact—the way the poet designed it.

Structuring Data with Nested Elements

Recall the data instance from the gems_excerpt_02.xml file in Figure 3.2:

Anatomy of an XML Document 83

422541 Ch03.qxd 6/19/03 10:09 AM Page 83

<diamonds>

<gem>

<name>Sparkler</name>

<carats>105</carats>

<color>F</color>

<clarity>IF</clarity>

<cut>Super Ideal</cut>

<cost>126000</cost>

</gem>

<gem>

<name>Merlin</name>

<carats>41</carats>

<color>D</color>

<clarity>FL</clarity>

<cut>Ideal</cut>

<cost>82000</cost>

</gem>

</diamonds>

The root element is named <diamonds>. In the data instance portion of an
XML document, the root element is the parent element of all other elements,
because all the elements in the XML document have been placed in it. Typi-
cally, the root element is not considered to have a parent, though it will (almost)
always be a parent. Why almost? If it contained data only and no other ele-
ments, it would likely spark a semantic debate. One side says, “It contains all
the data, so it is still a parent element.” The other side counters, “If there are no
child elements, there can be no parent element.” Pick whatever side you like,
as long as you grasp the concept.

Conversely, as the root <diamonds> element is the parent of all the other
elements, all other elements are children of the root element, either directly or
indirectly.

The concept of placing one element within another is called nesting. Thus,
elements can be nested within other elements. In gems_excerpt_02.xml,
<diamonds> is the direct parent of two specific elements, both of which are
called <gem>. In other words, the two <gem> elements are nested within
<diamonds>.

Each of the two <gem> elements is a direct child element (also called a
subelement) of the parent <diamonds> element. The two <gem> elements are
also called sibling elements (some call them sister elements) to one another
because they are both contained within the same parent element. Siblings are
considered to be on the same level in the structure.

Meanwhile, each non-root element in the document can have only one par-
ent element. As illustrated in gems_excerpt_02.xml, each child element must
be wholly contained within the extent of its parent element and must not over-
lap with any sibling element. That constraint is vitally important with respect

84 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 84

to the concepts of well-formedness and validity, which are discussed later in
this chapter. To explain the statement by example, look at the <clarity> ele-
ment in either <gem> element. The <clarity> element is contained in its
respective <gem> only. No part of <clarity> appears outside of its own <gem>.

The two <gem> elements are also parent elements because they, in turn,
contain their own child elements. The children of the top <gem> element have
identical names to the child elements in the other <gem>; therefore, the child
elements found in the top <gem> element are siblings to one another. Simi-
larly, the child elements in the bottom <gem> are also siblings to one another;
however, the child elements in the top <gem> are not siblings to the children
of the bottom <gem> element. They do not have a common parent element.

Careful planning, as well as proper grammar and other proper construction
techniques, provide developers the ability to make the best of parent-child log-
ical structure concepts, no matter how small or large the XML documents
become.

Namespaces

As XML development expands, everyone is going to be free to create XML-
related languages and documents. The probability increases that many of us
are going to create element types and attributes with identical names. Many
applications are going to encounter name collisions as they try to sort out
exactly which collections of data they are supposed to draw their referenced
elements and attributes from, of the potentially millions out there.

Consider, for example, Figure 3.3, which depicts a document named
gem_desc_29.xml that lists several descriptive details about a diamond named
Smokey from the Ursae Majoris star system. Notice that there are four occur-
rences of name: twice as an element type name (providing the name of the gem-
stone and also the name of the mine where it was found), and twice as an
attribute specification (in the <diamonds> element, where it indicates that
Ursae Majoris is the value for the name of a star system, and in the <catalog>
element, where it indicates the name of a catalog).

Imagine that an application is supposed to access this document and acti-
vate the parser to structure data that, it has been told, has a name component.
How would it know which name it encounters is the appropriate one? In other
words, how would it know it found the name component in the correct data
set? Clearly, none of the occurrences of name in this document is truly unique,
and so data manipulation would be troublesome. A parser would be lost if it
didn’t get some sort of additional information.

One strategy that is growing in popularity in the XML world is the use of
XML namespace declarations. Take a look at the document named gem_desc_
30.xml, depicted in Figure 3.4.

Anatomy of an XML Document 85

422541 Ch03.qxd 6/19/03 10:09 AM Page 85

Figure 3.3 An XML document that is subject to name collisions.

Notice that, in Figure 3.4, the start tag for the root element type <sg1:dia-
monds ...> contains several different attributes, each resembling xmlns:sgx=
”http://www.SpaceGems.com/xxxxx/2047/.” Each of these attributes is called a
namespace declaration. Namespace declarations create uniqueness for their
respective element type names and attributes. Declaring them in the root ele-
ment means that they will all apply throughout the extent of the root element—
that is, throughout the data instance. Now, when the different instances of
name appear, each has a different sgx: prefix (for example, sg1:name in <sg1:
diamonds>). According to the declarations in the root element, each sgx: prefix
represents a different namespace. Consequently, each name will be unique
because each will have a different universal name. Here’s a dissection of one of
the namespace declarations:

xmlns This text string indicates to the parser that the attribute is an XML
namespace declaration and that the element types and attributes will
conform to the specifications in the W3C Recommendation titled Name-
spaces in XML, dated January 1999.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds3.dtd">
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gem_desc_29.xml -->
<diamonds name="Ursae Majoris" >

<gem>
<name>Smokey</name>
<carats>1003</carats>
<color>F</color>
<clarity> IF</clarity>
<cut>Ideal</cut>
<cost>2250000</cost>

</gem>
<mine>

<name>Ice Mountain 2 </name>
<region>Montis Glacialis </region>
<planet> Capitan </planet>

</mine>
<reserved />
<catalog name="SpaceGems Diamonds" publish="yes" />

</diamonds>

86 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 86

Figure 3.4 XML document containing prefix namespaces.

: A colon is used as a delimiter between the xmlns text string and the
prefix that follows. It indicates that a prefix will be used and that the text
string appearing between the colon and the subsequent equal sign (=) is
the prefix.

sg2 This text string is the prefix to be used in this example. It is an abbre-
viation that will be substituted for the whole namespace URI identifier
when the time comes to create qualified names (discussed later in this
chapter) for the element types and attributes. We will also discuss some
occasions when a namespace is declared, but no prefix is specified or
used in name creation (for example, when default namespaces or empty
string namespaces will be specified).

http://www.SpaceGems.com/gems/2047/ This is the namespace URI
identifier that qualifies the element type name or attribute name, and so
ensures that an element type name or attribute name will be unique. It is

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds4.dtd">
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gem_desc_30.xml -->
<sg1:diamonds

xmlns:sg1="http://www.SpaceGems.com/2047/"
xmlns:sg2="http://www.SpaceGems.com/gems/2047/"
xmlns:sg3="http://www.SpaceGems.com/mines/2047/"
xmlns:sg4="http://www.SpaceGems.com/catalogs/2047/"

sg1:name="Ursae Majoris" >
<sg2:gem >

<sg2:name>Smokey</sg2:name>
<sg2:carats>1003</sg2:carats>
<sg2:color>F</sg2:color>
<sg2:clarity> IF</sg2:clarity>
<sg2:cut>Ideal</sg2:cut>
<sg2:cost>2250000</sg2:cost>

</sg2:gem>
<sg3:mine >

<sg3:name>Ice Mountain 2</sg3:name>
<sg3:region>Montis Glacialis</sg3:region>
<sg3:planet>Capitan</sg3:planet>

</sg3:mine>
<sg1:reserved />
<sg4:catalog

sg4:name="SpaceGems Diamonds"sg4:publish="yes" />
</sg1:diamonds>

Anatomy of an XML Document 87

422541 Ch03.qxd 6/19/03 10:09 AM Page 87

also called the namespace name. It is the extra information that is pro-
vided to the parser to let the parser recognize the correct element type
or attribute. In most cases, the URI takes the form of a URL, such as this
one. Using URLs is recommended by the W3C Namespaces in XML
Recommendation: They will add the uniqueness that you need, and
they won’t be rejected by parsers or applications on the basis of syntax
because their syntax is well known. In the meantime, the parser will not
bother to access this URL, so you do not have to install any documents
at that location. In fact, the URL doesn’t really even have to physically
exist; the URL is only being used as a logical device to add uniqueness to
an element type or attribute name.

Although it is not necessary for the Web site designated by the namespace
URI identifier to exist, we do recommend creating one. It will allow you to
maintain control over the URL itself (that is, it would be very unlikely
anyone else would use the URL if you are the one who owns it). Also, as
you see in the example, the year has been incorporated into the URL, too,
to help ensure even more uniqueness.

In other words, in XML, a namespace is a logical device that represents a
unique collection of declarations for element types and attributes. A name-
space declaration is a signal to a parser that the component belongs to such a
unique collection. The XML definition varies from the typical computing sci-
ence definition of namespace, which is an actual physical collection of names
in a data set.

The namespace declaration, in effect, creates what is called a universal name
for an element type or attribute. In this case, the universal name tag for name
would look like <{http://www.SpaceGems.com/gems/2047/}name>. The universal
name is thus composed of {http://www.SpaceGems.com/gems/2047/}, which is
called the qualifying URI, and name, which is called the local part.

The reason we say the universal name is created in effect and not just created
is that the whole universal name isn’t really created at all as such. A complete
universal name, with the braces (that is, the curly brackets), dots, slashes, and
other odd characters that potentially could be used to create the URL found in
it, would cause trouble for the parser.

There are several kinds of namespace declarations:

■■ Prefix namespace declarations

■■ Default namespace declarations

■■ Empty string namespace declarations

88 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 88

Prefix Namespace Declarations

The examples shown in Figure 3.4 are prefix namespace declarations. We stated
that the sg2 text string is an abbreviation that is used instead of the whole name-
space URI identifier when creating qualified names for element types and
namespaces.

The start tag <sg2:gem> is an example of a qualified name, which consists of
the prefix sg2, the colon (:) delimiter, and the gem local part. The prefix performs
these functions:

■■ It identifies the name as being part of the declared namespace.

■■ It substitutes for the actual URI/URL, whose characters might other-
wise run afoul of the parser.

■■ It is an abbreviation and thus saves keystrokes.

In the gem_desc_30.xml document in Figure 3.4, four different prefix name-
space declarations, each with its own logical namespace, have been inserted in
the root element so that each name will be unique. As you can see, the qualified
names appear in the respective start tags, end tags, and declared empty tags.

Now let’s examine a different, but just as effective, approach to prefix name-
space declarations, as depicted in the document named gem_desc_31.xml in
Figure 3.5.

Figure 3.5 Alternative approach to prefix namespaces.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds4.dtd">
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gem_desc_31.xml -->
<sg1:diamonds xmlns:sg1="http://www.SpaceGems.com/2047/"

sg1:name="Ursae Majoris">
<sg1:gem xmlns:sg1="http://www.SpaceGems.com/gems/2047/">

<sg1:name>Smokey</sg1:name>
<sg1:carats>1003</sg1:carats>
<sg1:color> F</sg1:color>
<sg1:clarity> IF</sg1:clarity>
<sg1:cut> Ideal</sg1:cut>
<sg1:cost>2250000</sg1:cost>

</sg1:gem>
<sg1:mine xmlns:sg1="http://www.SpaceGems.com/mines/2047/">

<sg1:name> Ice Mountain 2</sg1:name>
<sg1:region>Montis Glacialis </sg1:region>
<sg1:planet>Capitan </sg1:planet>

</sg1:mine>
<sg1:reserved />
<sg1:catalog xmlns:sg1="http://www.SpaceGems.com/catalogs/2047/"

sg1:name="SpaceGems Diamonds" sg1:publish="yes" />
</sg1:diamonds>

Anatomy of an XML Document 89

422541 Ch03.qxd 6/19/03 10:09 AM Page 89

In this case, the author apparently did not want different prefixes simply to
show that as long as the namespace URI is different for each declaration, the
prefix can remain the same. In gem_desc_31.xml, therefore, the sg1: name-
space is defined first in the <sg1:diamonds> tag and then redefined in each of
the <sg1.gem>, <sg1:mine>, and <sg1:catalog> tags. The namespace declara-
tion for the <sg1:diamonds> element type would be inherited by all the child
elements unless it is redefined and overridden in one or another element. In
the gem_desc_31.xml document, the namespace declaration is redefined in all
the child elements under <sg1:diamonds>. Meanwhile, the namespace decla-
ration for <sg1:gem> would only be effective for <sg1:gem> and its child ele-
ments, if it had any, and would not apply to <sg1:gem>’s sibling elements (that
is, it would not apply to <sg1:mine>, <sg1:reserved>, or <sg1:catalog>.

Notice that because there is no explicit namespace declaration for the
<sg1:reserved> element, it will inherit the namespace declaration from its par-
ent element <sg1:diamonds>.

Remember that you cannot use prefixes that begin with xml, XML, xMl, or
any such combination. They are reserved for use by XML and XML-related
specifications.

Default Namespace Declarations

The principles discussed in the latter part of the preceding section apply to
default namespace declarations, too. The reasoning behind default namespace
declarations is simple: “If a namespace isn’t explicitly declared for a specific
section of a document, then, by default, the namespace will be. . . .”

There is usually one default namespace declaration per document or, at
most, a few, but there are no restrictions. Figure 3.6 illustrates the use of three
such declarations, as well as an empty string namespace declaration in the
<gems> element. Those declarations are discussed in the next section.

In the <diamonds>, <mine>, and <catalog> start tags, there are namespace
declarations similar to prefix namespace declarations, but they are missing the
colon and the prefix. In these cases, each declaration tells the parser:
“Throughout this element and any child elements, the namespace for any ele-
ment type names that do not start with a prefix will be http://www
.SpaceGems.com/2047/xxxx/, unless the declaration is overridden.” For exam-
ple, the element <name> within <mine> may not have a prefix, but it still has,
in effect, the two-part universal name {http://www.SpaceGems.com/2047/mines/
}name. So it is still unique.

You can see that the <diamonds> default namespace is overridden for the
<gem> element (we discuss that declaration in the next section), as well as for
the <mine> and <catalog> elements, but the declaration still holds for the
empty <reserved /> type element. Its universal name is the unique {http://
www.SpaceGems.com/2047/}reserved.

90 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 90

Figure 3.6 Document with default and empty string namespace declarations.

Meanwhile, for the <mine> element type, the default namespace (again,
there is no colon or prefix in the declaration) has been specified as http://
www.SpaceGems.com/2047/mines/. The <mine> element’s children (that is,
the <name>, <region>, and <planet> elements) will inherit the <mine> ele-
ment’s namespace because there is no namespace declaration in any of their
respective start tags that would override it.

Finally, a default namespace has also been declared for the empty <catalog>
element: Its declaration states that the default namespace will be http://
www.SpaceGems.com/2047/catalogs/. You can see that the ensuing attrib-
utes do not have prefixes; they are simply name=”SpaceGems Diamonds” and
publish=”yes”. But the default namespace would also appear in their respec-
tive universal names, too.

The advantages to default namespaces are the reduction of typing and the
resulting structure “cleanliness.”

Empty String Namespace Declarations

In the gem_desc_32.xml document in Figure 3.6, the namespace declaration
for the <gem> element type is xmlns=””. Because there are no characters
between the quotation marks, this is called an empty string namespace declara-
tion. Empty string namespace declarations basically “erase” any previously

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds5.dtd">
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gem_desc_32.xml -->

<diamonds xmlns="http://www.SpaceGems.com/ 2047/" name="Ursae Majoris" >
<gem xmlns="" >

<name>Smokey</name>
<carats>1003</carats>
<color> F</color>
<clarity> IF</clarity>
<cut> Ideal</cut>
<cost>2250000</cost>

</gem>
<mine xmlns="http://www.SpaceGems.com/mines/2047/">

<name>Ice Mountain 2</name>
<region> Montis Glacialis</region>
<planet> Capitan </planet>

</mine>
<reserved />
<catalog xmlns="http://www.SpaceGems.com/catalogs/2047/"

name="SpaceGems Diamonds" publish="yes" />
</diamonds>

Anatomy of an XML Document 91

422541 Ch03.qxd 6/19/03 10:09 AM Page 91

established namespace declarations, leaving a universal name with no univer-
sal qualifying URL. The local part gem is the only component of the name.

While <gem>’s parent, <diamonds>, uses its own namespace, <gem>’s
siblings, <mine> and <catalog>, also have their own respective namespaces.
Meanwhile, <gem>’s sibling, <reserved />, has inherited <diamonds>’ name-
space, but <gem> itself has no specified namespace. So its children (<name>,
<carats>, <color>, and the others) also have no declared namespace because
they inherit from <gem> and they have no namespace declarations of their
own. What names they have, then, are those shown in Figure 3.6. There is no
qualifying URI component to them.

In the Figure 3.6 case, all four names still have unique names. Three have
fully developed and unique two-part universal names, while the <name> type
element under <gem> has just a one-part universal name. Empty string
namespace declarations are a commonly used device for erasing previous
namespaces for particular element types.

The advantages to empty string declarations are similar to default name-
space declarations: a cleaner-looking structure and less typing. Without a
namespace, however, there is still a chance of name collisions.

Namespace Declarations and Inheritance

As illustrated in the previous sections, the scope of every namespace declara-
tion is restricted to the extent of the element in whose start tag it has been
declared. They can be declared in the root element and so be effective through-
out the entire data instance. Or they can be declared in elements that are chil-
dren of other elements and so be applicable throughout their own respective
extents and the extents of their own children unless and until one or more of
those children contains its own namespace declaration.

If a namespace is declared in an element, it can’t be inherited by a sibling
element (that is, by an element on the same level) or by a parent element (in
other words, by an element above them).

As shown previously, empty string declarations can be used to turn off an
inherited namespace declaration and prevent it from being inherited.

The Physical Structure: Entities
Physically, every XML document is composed of data storage units called enti-
ties. Entities reflect XML’s referential markup aspects, as defined in Chapter 1,
and are used for several reasons:

■■ To keep track of and provide, during the parsing process, the data that
makes up the XML document.

■■ To refer to often-repeated data (so that you don’t have to do as much
data entry keyboarding).

92 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 92

■■ To refer to data that changes occasionally. When certain data changes,
you don’t have to keep “breaking open” all the documents that contain
that data—just the source document (again, in a manner of speaking,
using entities will save keystrokes).

■■ To include data located in documents outside of the XML document
(that is, to break up otherwise very large documents).

Depending on the context, entities can be categorized in any of three ways.
Let’s discuss these various methods of categorization.

Entities Are Parsed or Unparsed

Entities are categorized a number of ways. One way is according to whether
they are parsed or unparsed data resources. (Although we will follow the XML
convention of parsed and unparsed, our students have found “parseable” and
“unparseable” to be more descriptive.) Each entity is one or the other.

Parsed entities contain XML format text characters that can represent
markup or content data and are intended to be processed by an XML parser.
Unparsed entities, on the other hand, are resources that are not intended to be
parsed by an XML parser. The entity is to be passed as is to an application. The
contents of an unparsed entity may or may not be text, and may or may not be
in an XML format. Examples of non-XML format entities are binary docu-
ments such as graphic, audio, and video files, or selections of program code in
other formats. During the parsing process, an XML parser will read the entity
reference and then substitute the actual data or data document into the XML
data structure instead of the entity reference.

Entities Can Be Internal or External

Another way to categorize entities is according to their location with respect to
the XML document that references them. Entities that are located within the
XML document are called internal entities. Internal entities range from individ-
ual well-formed XML-format text characters to strings of such characters.

Each XML document contains at least one internal entity: the root element
that contains the document entity. To quote the W3C, “[The document entity]
serves as the starting point for the XML processor and may contain the whole
document.”

An external entity is a data source located outside the XML document being
parsed. External entities may be non-XML format documents, so they would
be unparsed (for example, binary documents such as graphics, audio, and
video), or they may even be other XML documents. Outside documents are
included during the parsing process by the inclusion of specific entity refer-
ences in the XML document.

Anatomy of an XML Document 93

422541 Ch03.qxd 6/19/03 10:09 AM Page 93

Entities other than the document entity, whether internal or external, must
be given names by the developer so that references can be constructed to call
for the data in those entities.

The reference to the external entity usually includes a form of a URI that points
to its location. When the parser reads the reference, it will retrieve the entity
referred to, parse it if required to do so, and pass its data to the application.

General Entities versus Parameter Entities

Another way to categorize entities is as follows:

General entities. Declared in DTDs or schemas and used for constructing
related XML documents.

Parameter entities. Declared in DTDs or schemas, but used for construct-
ing the DTDs or schemas themselves.

We discuss general entities in the next section and discuss parameter entities
in Chapters 4 and 5.

General Entity References

All entities are given specific names by the developer. With the exception of
the document entity, all entities used in an XML document must first be
defined as entities in an internal or external DTD, or in a schema. The declara-
tion assigns the unique name to the entity and provides the data, or a reference
to the location of the entity that will eventually be substituted into the data
structure by the parser. Later, within the appropriate element in the logical
structure of the document, the entity is referenced by the name declared for it.

Notable exceptions to the “must declare rule” are XML’s five predefined
general entities. Even without being declared in DTDs or schemas, XML
parsers will automatically recognize them and treat them accordingly.
They are discussed in more detail later in this chapter.

Figure 3.7 illustrates the use of an internal entity named constellation,
whose value is Ursae Majoris and which is called from an element named
<location>. The general entity syntax follows. It’s important to ensure that
both the ampersand at the beginning of the reference and the semicolon at the
end of the reference are not omitted.

<elementname>&entityname;</elementname>

The entity declaration syntax takes the form:

<!ENTITY entityname entitydata>

94 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 94

Figure 3.7 This XML document contains an internal entity.

Consider the following external variation of this example. Suppose a parsed
file named constellation.xml contains the location where a gem was found.
Look at Figure 3.8 to see how it is accessed by the XML parser and combined
with the original XML document. Notice how the entity declaration has been
changed to include the keyword SYSTEM to indicate that an external entity,
located on the local system, is about to be declared.

If an unparsed entity were being referenced, the reference would be the
same except that that document’s filename (and path, if applicable) would
appear instead of the XML document named constellation.xml.

For further information about general entities, check the XML 1.0
Recommendation at the W3C’s Web site at www.w3.org/TR/
REC-xml#sec-intro.

Occasionally, users and authors mix the terms entity and entity reference.
Actually, the confusion arises when someone refers to an entity reference as
the entity. Just remember that entities are the actual physical storage units for

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds [
<!ELEMENT diamonds (location,gem)*>
<!ELEMENT location (#PCDATA)>
<!ELEMENT gem (name,carats,color,clarity,cut,cost)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT carats (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT clarity (#PCDATA)>
<!ELEMENT cut (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ENTITY constellation "Ursae Majoris">
]>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_04.xml -->
<diamonds>

<location>&constellation;</location>
<gem>

<name>Smokey</name>
<carats>1003.29</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Ideal</cut>
<cost>2250000</cost>

</gem>
</diamonds>

"constellation"
entity at work

"constellation"
entity declared

Anatomy of an XML Document 95

422541 Ch03.qxd 6/19/03 10:09 AM Page 95

data, and entity references are the method for referring to them. For an entity
to play a role in any XML document, an entity reference must appear in that
document.

Figure 3.8 Using another XML document as an external parsed entity.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!-- filename: constellation.xml -->
<location>

Ursae Majoris
</location>

<diamonds>
<location>

Ursae Majoris
</location>
<gem>

<name>Smokey</name>
<carats>1003.29</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Ideal</cut>
<cost>2250000</cost>

</gem>
</diamonds>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds [
<!ELEMENT diamonds (location,gem)*>
<!ELEMENT location (#PCDATA)>
<!ELEMENT gem (name,carats,color,clarity,cut,cost)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT carats (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT clarity (#PCDATA)>
<!ELEMENT cut (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ENTITY locationentity SYSTEM "constellation.xml">
]>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_05.xml -->
<diamonds>

&locationentity;
<gem>

<name>Smokey</name>
<carats>1003.29</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Ideal</cut>
<cost>2250000</cost>

</gem>
</diamonds>

External Parsed Entity
Named "constellation.xml"

Resulting Structured Data
Passed to Application

Original XML Document

"locationentity"
entity declared

"locationentity"
entity at work

Data supplied by
external parsed

entity

96 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 96

Preserving Characters from Parser Misinterpretation

Some characters have been reserved by XML for use with markup. When they
are encountered by the parser, the parser will always interpret them as intro-
ducing markup instructions (for example, tags, attribute values, and named
entities). The five reserved characters are as follows:

■■ The left angle bracket, or less-than symbol (<)

■■ The right angle bracket, or greater-than symbol (>)

■■ The quotation mark (“)

■■ The apostrophe (‘)

■■ The ampersand (&)

But there may be occasions when we want to pass such characters directly
to the application without parsing them or we may want to insert these char-
acters into an XML document as data. So we have to find a way to represent
them so that the XML parser won’t view them as markup indicators and,
thereafter, create errors.

To resolve this difficulty, XML provides three methods:

■■ Predefined entities

■■ Numeric character references

■■ CDATA sections

Predefined Entities
In Table 3.2, you can see the alternative coding that XML provides for the five
reserved characters. Each code is called a predefined (named) entity reference,
or simply a predefined entity.

Table 3.2 XML’s Predefined Entity References

RESERVED CHARACTER ENTITY REFERENCE DESCRIPTION

< < Left side angle bracket, or
less-than symbol

> > Right side angle bracket,
or greater-than symbol

“ " Quotation mark

‘ ' Apostrophe

& & Ampersand, or “and”
symbol

Anatomy of an XML Document 97

422541 Ch03.qxd 6/19/03 10:09 AM Page 97

Notice that their specific entity references are similar to their names. That’s
why entities that take this form are called named entities. Similar to all entities,
they begin with the ampersand (&) and end with a semicolon.

The predefined nature of these entity references makes them exceptions to
the “need to declare” rule: You don’t need to define them in your document or
in a DTD or schema, although that is still recommended. Later, when you sub-
stitute any of them in your data content, the originally intended characters will
be displayed or printed and you will not receive parser errors. For example,
the following tip would run afoul of the parser:

<tip>

Remember! When evaluating diamonds, look for the “5 C’s”:

Color, carats, cut, clarity, & cost!

</tip>

Normally, the XML parser would encounter the quotation marks, the apos-
trophe, and the ampersand (&), and then interpret them accordingly as
markup indicators. Subsequently, if the parser did not signal errors, the appli-
cation would probably create an unusual and incorrect rendering.

To preserve the quotation marks, the apostrophe, and the ampersand in
their intended form, you could alter the coding by inserting the corresponding
predefined entities. The tip would look similar to the following:

<tip>

Remember! When evaluating diamonds, look for the

"5 C's":

Color, carats, cut, clarity, & cost!

</tip>

It looks a little confusing to us, maybe, but it’s acceptable to the parser.

Numeric Character References
Commonly called character references, numeric character references are a special
kind of entity reference. They are used to insert foreign language or other
unusual characters—those that can’t be typed directly on your keyboard—into
an XML document. There are two formats for character references:

Decimal references. Take the form &#nnn; where nnn is the decimal
number assigned to the character.

Hexadecimal references. Take the form &#xhhh; where hhh is the appro-
priate hexadecimal number.

Table 3.3 lists several common character references that may come in handy
when you’re coding XML documents. Again, these are entities: They begin
with ampersands and end with semicolons.

98 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 98

Table 3.3 Common Decimal and Hexadecimal Character References

DECIMAL HEXADECIMAL NAMED
CHARACTER CODE CODE ENTITY DISPLAY

Currency—Euro sign € € € E

Currency—Pound
sterling sign £ £ £ £

Currency—Yen
(Yuan) sign ¥ ¥ ¥ ¥

Ampersand & & & &

Less than sign
(LH angle bracket) < < < <

Greater than sign
(RH angle bracket) > > > >

Quotation mark " " " “

Apostrophe ' ' ' ‘

Copyright symbol © © © ©

Registered
trademark symbol ® ® ® ®

En space (half as
wide as it is tall)       n/a

Em space (as wide
as it is tall)       n/a

Nonbreaking space n/a

Horizontal tab 	 	 &tab; n/a

Linefeed

 n/a n/a

Carriage return   n/a n/a

Although the semicolon can be omitted if the character reference is
followed by a white space, as a best practice, we recommend including
the semicolon at the end of the character references.

Although there is still more support for the decimal coding (it’s been around
since HTML appeared) in the common browsers, support is growing for the
Unicode Standard hexadecimal references. If checking the display, try to check
with at least two different browser applications.

Anatomy of an XML Document 99

422541 Ch03.qxd 6/19/03 10:09 AM Page 99

If you use your Windows calculator in scientific mode, you can easily
convert the decimal (Dec) format to hexadecimal (Hex) format or vice
versa.

For further information about the Unicode Standard and its hexadecimal
characters as well as an extensive set of character charts, visit the Unicode
Consortium Web site at www.unicode.org/charts/. For additional help with
decimal or hexadecimal coding, you can also visit the W3C’s HTML Web site
at www.w3.org/TR/REC-html40/charset.html or the Web Design Group’s
Web site at www.htmlhelp.com/reference/html40/entities/.

Here is what the tip would look like with numeric character references in
hexadecimal format:

<tip>

Remember! When evaluating diamonds, look for the

"5 C's":

Color, carats, cut, clarity, & cost!

</tip>

CDATA Sections
Predefined entity references provide an alternate coding solution for elements
that contain several reserved characters, but as we saw in the previous exam-
ple, the results, at first glance, can be a little confusing.

As an alternate method to the occasionally messy predefined entity refer-
ence solution, you could use a character data (CDATA) section. It would tell
the parser to ignore the markup aspect of the characters between the CDATA
section’s two special delimiters, and to pass those characters to the application
as text.

The special delimiters are the CDStart indicator <![cdata[and the CDEnd
indicator]]>. The preserved data is situated between them. All that data is
passed directly to the application as text characters and parsing goes into a sort
of “off” mode until the CDEnd indicator is encountered.

Here is the previous tip recoded with a CDATA section:

<tip>

<![cdata[

Remember! When evaluating diamonds, look for the “5 C’s”:

Color, carats, cut, clarity, & cost!

]]>

</tip>

100 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 100

Following are a few things to remember about CDATA sections:

■■ Any white space you insert between the delimiters will remain intact.

■■ Don’t nest CDATA sections. After the parser finds the first CDEnd indi-
cator, it considers the CDATA section ended and will return to normal
parsing mode. Errors would occur for CDATA code that followed.

■■ Be careful if you are including a string of text (especially program code)
that coincidentally contains a string that resembles a CDEnd indicator.
That text string would trigger the parser to return to normal parsing
mode, too.

■■ If you intend to include any markup indicators between the CDATA
delimiters (in other words, if you want to include tags, comments, or
other components), those markups will not be properly interpreted by
the parser because it has been instructed to turn off normal parsing for
the duration of the CDATA section.

What Is a Well-Formed XML Document?

So far in this book, numerous references have been made to well-formed XML
documents. Well-formed documents conform to the well-formedness con-
straints of XML 1.0. Now that we’ve introduced the basic XML document com-
ponents, it will be easier to discuss and illustrate those constraints and,
therefore, to define well-formed documents.

Here are the grammatical, logical, and structural rules that compose XML
1.0’s well-formedness constraints:

■■ The document must contain at least one element.

■■ Each parsed entity (for example, the style sheet document or schema)
that is referenced directly or indirectly within an XML document must
also be well formed.

■■ An XML document can have only one root element—or, if you prefer,
the document element—and all other elements must be nested in it.
No part of the root element may appear within the content of any other
element in the document.

■■ For all the other non-root elements, if their start tag appears in the
content of one element, then the corresponding end tag must also be
in the content of the same element. In other words, the elements must
nest properly within each other and cannot “overlap”; and any one
element cannot have more than one parent element.

Anatomy of an XML Document 101

422541 Ch03.qxd 6/19/03 10:09 AM Page 101

■■ Every start tag must have a corresponding end tag.

■■ Element names must obey XML naming conventions (listed earlier in
this chapter).

You have seen several well-formed documents already in this chapter. Fig-
ure 3.9 illustrates a simple well-formed document.

Notice how the root element is called <diamonds> and how proper nesting
occurs within <diamonds> and within the two <gem> elements. Now look at
Figure 3.10, which is the same document as that shown in Figure 3.9, except
that some (incorrect) changes have been deliberately made to it, for illustration
purposes, to make the document not well formed.

In gems_excerpt_03.xml, within both <gem> elements, there are other ele-
ments that violate one or more of the well-formedness constraints listed earlier:

■■ An overlap in the <color> and <clarity> elements: The start tag of the
<clarity> element is encountered before the end tag of the <color> element.

■■ In both <gem> elements, it appears that the <cost> element content has,
in effect, two parents (<gem> and <cut>).

■■ In the first <gem> element, the <cut> element has no end tag.

■■ In the second <gem> element, the <cut> element has an end tag, but it
is misspelled as </cult>, which looks like the name of another element
entirely.

Figure 3.9 A well-formed XML document.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_01.xml -->
<diamonds>

<gem>
<name>Sparkler</name>
<carats>105</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Super Ideal</cut>
<cost>126000</cost>

</gem>
<gem>

<name>Merlin</name>
<carats>41</carats>
<color>D</color>
<clarity>FL</clarity>
<cut>Ideal</cut>
<cost>82000</cost>

</gem>
</diamonds>

102 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 102

Figure 3.10 An XML document that is not well-formed.

These violations reflect what was at one time called “freeform XML.”
Freeform practices such as this have been tolerated in HTML (allowing for
them is one reason that HTML applications such as browsers have become
bloated with otherwise unnecessary logic), but HTML is concerned primarily
with document appearance, while XML is overwhelmingly concerned with
the description and structure of data.

In the past, such freeform practices in XML may have just been considered
bad practice, but they were not considered fatal errors. However, there is more
at stake in the XML world of databases and commercial transactions, so more
XML processors are being developed that conform strictly to the W3C well-
formedness constraints. Consequently, freeform XML has become grounds for
fatal error in accordance with the W3C’s intent. We recommend strongly that
freeform XML not appear in any of your documents.

Classroom Q & A
Q: In the file gems_excerpt_03.xml, one line had two elements on it,

but you didn’t mention it as an error. Is that OK?
A: Yes, with XML it is acceptable to place more than one element on

a line. XML parsers, unless specifically programmed to do so, are
not concerned with this kind of white space manipulation or lack
thereof.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_03.xml -->
<diamonds>

<gem>
<name>Sparkler</name><carats>105</carats>
<color>F<clarity></color>IF</clarity>
<cut>Super Ideal<cost>126000</cost>

</gem>
<gem>

<name>Merlin</name><carats>41</carats>
<color>D<clarity></color>FL</clarity>
<cut>Ideal<cost>82000</cost></cult>

</gem>
</diamonds>

Anatomy of an XML Document 103

422541 Ch03.qxd 6/19/03 10:09 AM Page 103

What Is a Valid XML Document?

A valid XML document is a well-formed XML document that also conforms to
the declarations, structures, and other rules defined in the document’s respec-
tive DTD or schema. Consider the examples in Figure 3.11.

The file on the left, gems_excerpt_01.xml, is a well-formed XML document.
On the right is another well-formed version of the same file, namely
gems_excerpt_02.xml, which contains the same information but also contains
a document type declaration (bolded just for illustrative purposes) that speci-
fies an external DTD document called diamonds2.dtd. In this case, we can
safely presume that gems_excerpt_03 conforms to diamonds2.dtd. That is, a
validating parser has been activated by its application and, then, has:

■■ Imported an instance of the DTD file and examined the declarations
therein

■■ Compared the elements in the data instance of gems_excerpt_03.xml to
those declarations

■■ Found that the elements conform to their respective declarations

So, gems_excerpt_03.xml is a valid XML document, too.

Figure 3.11 Comparison of a well-formed document and a valid document.

Well-Formed and Valid XML DocumentWell-Formed XML Document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>

<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_01.xml -->
<diamonds>

<gem>
<name>Sparkler</name>
<carats>105</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Super Ideal</cut>
<cost>126000</cost>
<reserved />

</gem>
<gem>

<name>Merlin</name>
<carats>41</carats>
<color>D</color>
<clarity>FL</clarity>
<cut>Ideal</cut>
<cost>82000</cost>

</gem>
</diamonds>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds2.dtd">
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_02.xml -->
<diamonds>

<gem>
<name>Sparkler</name>
<carats>105</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Super Ideal</cut>
<cost>126000</cost>
<reserved />

</gem>
<gem>

<name>Merlin</name>
<carats>41</carats>
<color>D</color>
<clarity>FL</clarity>
<cut>Ideal</cut>
<cost>82000</cost>

</gem>
</diamonds>

104 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 104

Chapter 3 Labs: Anatomy of an XML File

As mentioned in Chapter 2, “Setting Up Your XML Working Environment,”
you can use a simple text editor to create an XML document. For a small XML
document, that may be totally satisfactory, but when the requirements for
XML files become more complex, working with a simple text editor can be too
cumbersome and you could deviate from the correct XML standard require-
ments and create syntax typographical errors. The labs that follow in this
chapter have three goals:

■■ To familiarize you with the TurboXML editor’s behavior by creating a
simple XML document.

■■ To illustrate the importance of good planning. We show you how to
“accidentally” code yourself into a corner. At that point, we will revisit
the design and fix it.

■■ After you have created an XML data instance, to have you work with
the document using a regular text editor (which will probably give you
a real appreciation for tools such as TurboXML; it will be a sort of “XML
editor appreciation moment”).

We won’t introduce a DTD or a schema at this time. We will work with them
in the next two chapters. For this lab, the editor will indicate an error when it
says it cannot find the document’s schema. This is an advisory error only. For
now, just ignore any error messages related to not being able to locate the DTD
or schema; however, be advised that some editors in the industry would not be
so forgiving. They won’t even open or create an instance without the prior
existence of a schema or DTD of some description.

Lab 3.1: Create a Simple XML
Data Instance with Elements

The best way to describe a diamond’s qualities is to describe what’s
known as its five C’s. The five C’s are carat, color, clarity, cut, and cost.
Space Gems specializes in large, expensive diamonds and doesn’t stock
many smaller ones. Table 3.4 lists all the diamonds that are for sale. We
will design a simple XML instance to itemize all these diamonds and
their characteristics. The document we create in Lab 3.1 will contain ele-
ments only to describe the data. Lab 3.2 presents an alternate design that
uses both elements and attributes.

Anatomy of an XML Document 105

422541 Ch03.qxd 6/19/03 10:09 AM Page 105

Table 3.4 List of Space Gems’ Premium Diamonds

WEIGHT COST
NAME (CARATS) COLOR CLARITY CUT (USD)

Sparkler 105 F IF (Internally Super Ideal 126000
Flawless)

Merlin 41 D FL (Flawless) Ideal 82000

Cullinan 3106 H VS1, VS2 Rough 2174200
(Very Slightly
Imperfect)

Dark 500 J SL1, SL2 Rough 450000
(Slightly
Imperfect)

1. Open the TurboXML editor. Click Continue Trial, if necessary.

2. Click Instance.

3. The Untitled–XML Instance dialog box appears with a <root> ele-
ment called root. This window also indicates that there is an error.
The error makes it look as though we are off to a bad start, but this
is OK. The editor is just advising us that there is no governing
schema for this instance, which is correct at this time. We are going
to ignore all related messages at this time.

4. Rename the <root> element to <diamonds>. Place the cursor over
the <root> element and then right-click. Choose Rename, and enter
“diamonds”.

5. Add six additional elements called <name>, <carat>, <color>,
<clarity>, <cut>, and <cost>.

a. Click Insert on the bottom toolbar, which is also called the factory
toolbar (alternatively, click the blue diamond icon located to the
immediate right of Insert on the same bottom bar). A new empty
element space appears, waiting input. Type the first element
called <name>, and then press Enter.

b. Another new empty element space appears, waiting for input.

c. Click the Position as Child button (Hint: It’s the button with the
yellow arrow, third from the left on the toolbar that appears when
you click Insert. The arrow points to the right and then hooks
downward. When you place the mouse pointer over it, its name
appears) to create <carat> as a child element to <name>.

d. Type the second element called <carat> and press Enter. Another
new empty element space appears, waiting for input.

106 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 106

e. Type the third element called <color> and press Enter.

f. Repeat the instructions for <clarity>, <cut>, and <cost>.

If your element is not positioned properly, you can drag and drop it by
placing the cursor over the blue icon next to the element name inside the
tag area on the left. Using the left mouse button, drag it. A little black line
will appear indicating the target area.

6. The final view should look like Figure 3.12. You can see the seven
new elements arrayed on the left-hand side.

Figure 3.12 GUI view of the new XML instance during development.

7. Click View on the top menu bar, and then click Source.

8. Click View on the top menu bar, and then click Content.

9. Enter the data values from Table 3.4 into the XML data instance
called diamonds.

a. Try to click the space to the right of the <carat> element. You
should be able to enter a value. Enter the data value “105”.

b. Now click the space to the right of the <name> element. Problem!
You should not be able to enter a value or, if you examine the
source, the data value may be misplaced. The reason is that, by
default, the <name> element is only allowed to contain other
elements.

10. To remedy this situation, rename this parent element called <name>
to <gem>; then create a new child element within this <gem> element
called <name>.

11. Click View on the top menu bar, and then click Source. The solution
should look like Figure 3.13. Notice the eight new elements.

Anatomy of an XML Document 107

422541 Ch03.qxd 6/19/03 10:09 AM Page 107

Figure 3.13 Source view of the new XML document.

12. Now enter all of the data values from Table 3.4.

a. Click View on the top menu bar, and click Content.

b. Click the space to the right of the <name> element, and enter
“Sparkler”.

c. Click the space to the right of the <carat> element, and enter
“105”.

d. Click the space to the right of the <color> element, and enter “F”.

e. Click the space to the right of the <clarity> element, and enter “IF”.

f. Click the space to the right of the <cut> element, and enter
“Super Ideal”.

g. Click the space to the right of the <cost> element, and enter
“126000”.

13. To enter the second diamond, use the copy feature. Highlight the
<gem> element and then click Edit, Copy.

14. Highlight the <diamond> element, and click Edit, Paste on the
top menu bar. Make sure that you have copied the entire <gem>
element, including the </gem> end tag.

15. Proceed to replace the data values for the next three diamonds.
Work at the file until it looks like the following code:
Solution gems1.xml file.

<?xml version = “1.0” encoding = “UTF-8”?>

<!--Gems Version 1-->

<diamonds>

<gem>

<name>Sparkler</name>

<carat>105</carat>

<color>F</color>

108 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 108

<clarity>IF</clarity>

<cut>Super Ideal</cut>

<cost>126000</cost>

</gem>

<gem>

<name>Merlin</name>

<carat>41</carat>

<color>D</color>

<clarity>FL</clarity>

<cut>Ideal</cut>

<cost>82000</cost>

</gem>

<gem>

<name>Cullinan</name>

<carat>3106</carat>

<color>H</color>

<clarity>VS1,VS2</clarity>

<cut>Rough</cut>

<cost>2174200</cost>

</gem>

<gem>

<name>Dark</name>

<carat>500</carat>

<color>J</color>

<clarity>SI1,SI2</clarity>

<cut>Rough</cut>

<cost>450000</cost>

</gem>

</diamonds>

If you are having difficulty editing the Lab 3.1 file with TurboXML, save the
file and use Microsoft Notepad. The XML editor has no schema definitions
to rely on, so it may be stubborn. This will go away.

16. Insert a comment at the top of the instance that identifies this as
gemsA.xml.

a. Highlight the <diamond> element.

b. Click the Insert New Comment icon on the bottom menu bar.

c. Drag the comment to the top of the file. Place the cursor over the
blue icon next to the comment. Using the left mouse button, drag
it to the top of the file. If you cannot get it right to the top, place it
under the root element.

17. Save the file as gemsA.xml to the C:\WWW\SpaceGems folder.

Anatomy of an XML Document 109

422541 Ch03.qxd 6/19/03 10:09 AM Page 109

Lab 3.2: Creating an XML Instance
Using Elements and Attributes

This lab uses the same diamond data as the previous example but also
uses attributes in the instance to describe some of the data. We will show
you how to develop the new instance using the same information to illus-
trate that two XML developers may not necessarily come up with the
same design.

1. Open the TurboXML editor. Click Continue Trial, if necessary.

2. Click Instance.

3. Rename the root element to <diamonds>.

4. Create a new element called <gem>.

5. Create a new attribute for <gem> called <name>. Click the blue dot,
not the diamond to create an attribute.

6. Create five more new attributes for <gem> called <carat>, <color>,
<clarity>, <cut>, and <cost>.

7. Both the Content and Source views of the new file should look like
Figures 3.14 and 3.15. Notice how each view depicts the two new
elements and six new attributes.

8. Make three more copies of the <gem> element for the data values.

a. Using the Shift key, select the <gem> element as well as all the
attributes.

b. On the main application toolbar, click Edit Copy and then Edit
Paste. As if by magic, the application will insert another <gem>
element under the highlighted <gem> element. If you did not
highlight all of the items, the </gem> end tag will be omitted.

Figure 3.14 GUI view of the new XML instance: elements and attributes.

110 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 110

Figure 3.15 Source view of the new XML elements and attributes.

9. Enter the data from Table 3.4 into the XML instance called diamonds.

10. Work with the file until it looks like the following code. Ignore the
line breaks between the attributes, which are inserted here to make
it printable.
Solution gemsB.xml file.

<?xml version = “1.0” encoding = “UTF-8”?>

<diamonds>

<gem name = “Sparkler” carat = “105”

color = “F” clarity = “IF”

cut = “Super Ideal” cost = “126000”/>

<gem name = “Merlin” carat = “41”

color = “D” clarity = “FL”

cut = “Ideal” cost = “82000”/>

<gem name = “Cullinan” carat = “3106”

color = “H” clarity = “VS1,VS2”

cut = “Rough” cost = “2174200”/>

<gem name = “Dark” carat = “500”

color = “J” clarity = “SL1,SL2”

cut = “Rough” cost = “450000”/>

</diamonds>

11. Insert a comment at the top of the instance that identifies this file as
gemsB.xml.

12. Save the file as gemsB.xml to the C:\WWW\SpaceGems folder.

Lab 3.3: Design Your Own XML Instance

Given the information in Table 3.5, design a new instance on your own.
When it’s finished, save the instance file as gemsC.xml in the C:\WWW\
SpaceGems folder.

One possible solution for this challenge can be found at this book’s
Web site, as noted in its introduction.

Anatomy of an XML Document 111

422541 Ch03.qxd 6/19/03 10:09 AM Page 111

Table 3.5 Space Gems’ Largest Rough, Uncut Diamonds

WEIGHT DISCOVERY
NAME (CARATS) DATE (YEAR) LOCATION

Great Mogul 787.50 1650 Sol–Earth (India)

Excelsior 995.20 1893 Sol–Earth (South Africa)

Reitz (aka Jubilee) 650.80 1895 Sol–Earth (South Africa)

Cullinan 3,106.75 1905 Sol–Earth (South Africa)

Jonker 726.00 1934 Sol–Earth (South Africa)

El Presidente Vargas 726.60 1938 Sol–Earth (Brazil)

Woyie River 770.00 1945 Sol–Earth (Sierra
Leone)

Star of Sierra Leone 968.80 1972 Sol–Earth (Sierra
Leone)

Zale 890.00 1984 Sol–Earth (uncertain;
Sierra Leone?)

Inukshuk 952.37 2009 Sol–Earth (Canada)

Ares 620.14 2024 Sol–Mars (Tharsis
Montes)

Smokey 1003.29 2035 Ursae Majoris–Capitan
(Montis Glacialis)

The Dancer 1841.16 2043 Pegasi–Patella Regina
(Profundum Atrum)

Summary

We have discussed a lot of important concepts in this chapter—concepts to be
remembered no matter which of the subsequent chapters you read. Before you
move on, ensure that you have a grasp of the following basic key concepts.

■■ The W3C defines an XML document as a “data object if it is well formed,
as defined in (Extensible Markup Language Recommendation). . . .
Each XML document has both a logical and a physical structure.” This
chapter expanded on that definition.

■■ An application is a program or a group of programs designed to access
and manipulate XML documents. The term should not be confused
with the term XML application.

112 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 112

■■ XML parsers are reusable pieces of code that developers can obtain and
then include in their applications. When an application calls for an XML
document, the parser is activated and screens the XML document on
behalf of the application, then passes structured data to the application.

■■ The W3C says that a conforming XML parser must be able to detect
fatal errors and must then report them to the application.

■■ The prolog begins with an XML declaration (or header) and can also
contain processing instructions, a document type declaration (also
called a DOCTYPE definition), comments, and white space.

■■ Element names reflect the element type (also called the element’s
generic identifier or GI). Element names have strict rules.

■■ Elements can contain data, other elements, both data and other ele-
ments, or nothing. There are two types of empty elements: declared
empty elements and elements with no content.

■■ Attributes are another type of descriptive metadata that you can
specify for your elements. If performance is an issue, consider using
attributes instead of simple subelements.

■■ In the data instance portion of an XML document, the root element is
the parent element of all other elements. Placing one element within
another is called nesting. Nesting relationships form the structure of
the data instance.

■■ Namespace declarations are the mechanisms by which namespace
collisions are prevented in XML documents. There are three kinds: the
prefix namespace declaration, the default namespace declaration, and
the empty string namespace declaration.

■■ The physical structure of an XML document consists of entities, which
may be parsed or unparsed and internal or external, and they may
range in size from single text characters to whole documents. General
entities deal with constructing XML documents. Parameter entities deal
with constructing DTDs or schemas.

■■ You can use three techniques to prevent a parser from misinterpreting
characters: predefined entities, character references, and CDATA sections.

■■ To be well formed, an XML document must meet six grammatical,
logical, and structural constraints imposed by the W3C XML 1.0
Recommendation.

■■ A valid XML document is a well-formed XML document that also
conforms to the declarations, structures, and other rules defined in
the document’s respective DTD or schema.

Anatomy of an XML Document 113

422541 Ch03.qxd 6/19/03 10:09 AM Page 113

Review Questions

1. What is the difference between an application and an XML application?

2. What are the names of the four basic operators in a validating parser?

3. What are the two most fundamental components of an XML document?

4. Match the following:

a. Comments i. Speak to the application

b. Processing instructions ii. Speak to the parser

c. Document type declarations iii. Speak to human beings

5. What are the two types of empty elements?

6. What is the difference between attributes and pseudo-attributes?

7. What are the components of a qualified name resulting from a prefix namespace
declaration?

8. Which namespace declaration “turns off” previous namespace declarations?

a. Prefix

b. Empty string

c. Default

d. None of the above

9. General entity references deal with entities used for constructing
_______________________, while parameter entity references deal with entities
used for constructing __________________________.

10. What are the five characters reserved for markup characters in XML, and what are
their corresponding predefined entities?

11. What are the six W3C well-formedness constraints?

12. What is the definition of a valid XML document?

114 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 114

Answers to Review Questions

1. Used alone, the term application means a program or group of programs intended for
end users and designed to access and manipulate XML documents. An XML applica-
tion is one of several terms used to refer to a derivative markup language created
according to XML 1.0.

2. The four basic operators in a validating parser are a content handler, an error handler,
a DTD and schema handler, and an entity resolver.

3. The two most fundamental components of an XML document are the prolog and the
data instance.

4. a. and iii.; b. and i.; c. and ii.

5. Those that are termed declared empty and those that are termed elements with no
content.

6. Attributes appear in the data instance component within the start tags of elements.
They provide additional description of an element or its data. Pseudo-attributes look
similar to attributes but appear in declarations or instructions in the prolog component.
Their descriptions pertain to a whole document.

7. The components are the prefix, the colon delimiter, and the local part of the name.

8. b. There are two considerations here. As discussed in the text, the latest namespace
declaration overrides previous namespace declarations. Also, when an empty string is
specified as a prefix, the subsequent relevant names only need the local part to qualify
as universal names; they don’t need qualifying URLs. The effect is to “shut off” name-
space declarations for the extent that the empty string namespace is in effect.

9. General entity references deal with entities used for constructing XML documents,
while parameter entity references deal with entities used for constructing DTDs or
schemas.

10. The five reserved characters and their predefined entities are as follows:

a. The left angle bracket, or less-than symbol (<); its entity is <

b. The right angle bracket, or greater-than symbol (>); its entity is >

c. The quotation mark (“); its entity is "

d. The apostrophe (‘); its entity is '

e. The ampersand (&); its entity is &

Anatomy of an XML Document 115

422541 Ch03.qxd 6/19/03 10:09 AM Page 115

11. The six well-formedness constraints are as follows:

a. An XML document must contain at least one element.

b. Each parsed entity referenced directly or indirectly within an XML document
must also be well-formed.

c. An XML document can have only one root element and all other elements
must be nested within it.

d. Non-root elements must nest properly within each other and cannot “overlap.”

e. Every start tag must have a corresponding end tag. The declared empty start
tag is not a classic XML start tag, so it is an exception.

f. Element names must obey XML naming conventions.

12. A valid XML document is a well-formed XML document that also conforms to the
declarations, structures, and other rules defined in the document’s respective DTD
or schema.

116 Chapter 3

422541 Ch03.qxd 6/19/03 10:09 AM Page 116

117

Chapter 1, “XML Backgrounder,” explains that XML is derived from SGML and
that many markup and metalanguages have been derived, in turn, from XML.

New XML-based markup languages are created by developers who can’t
find an existing XML language to meet their industry or organizational needs.
They want to create one or more specific types of documents, with specific
components related to one another and combined in specific ways. Thus, they
have two basic requirements: a way to define the structure and content of their
new markup language, and a way to link the relevant documents they will
eventually create back to that markup language for validation purposes.

The second requirement—creating and linking relevant documents—will
probably turn out to be the easier task. But that first one—defining the new
markup language—can be a long and involved process. Whole books have
been written on that topic. Nevertheless, after you have developed a robust,
comprehensive, and extensible document type definition, and when you see
that the well-formed and valid documents based on it are properly processed
by your applications, you will conclude that those rewards are worth the effort.

Presently, XML provides two methods for defining new markup languages:
the document type definition (DTD) and the schema. In this chapter, we intro-
duce you to basic DTD concepts and syntax. In the next chapter, we introduce
you to XML schemas, which are becoming increasingly popular, but which dif-
fer significantly from DTDs in a number of areas.

Document Type Definitions

C H A P T E R

4

422541 Ch04.qxd 6/19/03 10:09 AM Page 117

By the end of this chapter, you will know how to create small, simple DTDs
and how to create simple, relevant documents based on those DTDs. You will
also see how the guided editing capability of the XML editor used in your lab
exercises really comes in handy.

What Are Document Type Definitions?

Each XML-related language is a unique markup solution that meets the spe-
cific needs of an organization, industry, group, or even individual. So each
language varies from all the others in scope and intent. That is, the names of
their document types, element types, and other components are unique and
different. But they all have several aspects in common. Each is written accord-
ing to the XML 1.0 specifications, which makes all of them members of the
same extended markup family. Each is readable by any XML-compliant
browser. Each language must be built according to a consistent set of rules,
structures, and semantics. After that consistent set has been developed, related
XML documents can be created.

Document type definitions have historically been the most common method
for defining an XML-related language and, thereafter, for developing the
related documents. They are a form of metamarkup, which we defined in
Chapter 1, that was born during the development of GML in the late 1960s
and, later, made part of the ISO’s SGML standard (ISO 8879:1986). XML inher-
ited the DTD, with its distinctly non-XML vocabulary, grammar, and syntax,
from SGML.

DTDs define (the W3C’s term is declare, which is the term we’ll use most
often) all of the components that an XML language or document is allowed to
contain, as well as the structural relationships among those components. Thus,
each unique XML vocabulary, along with its related XML documents, will be
created according to the content and structure rules declared within its respec-
tive DTD or schema. (Each language can have only one of those documents,
and that one document must be either a DTD or a schema.) DTDs are com-
posed of the following:

■■ An internal subset of declarations located within an XML document

■■ An actual separate, external document that contains such declarations

■■ A combination of both

If there is only one set of declarations and it is found within the XML docu-
ment, the declarations are called an internal DTD. If the declarations are in a
separate document, they are called an external DTD. If there is a combination
of internal and external declarations, each is called a subset and, together, they
are considered to be the DTD.

118 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 118

To define document types, a DTD must contain several kinds of information
(each is discussed in detail in this chapter):

Element type declarations. You can’t create just any element types in
your XML documents. All element types have to be declared in the DTD,
too, and so become part of the DTD’s set of allowed element types (that
is, part of the language’s vocabulary).

Attribute declarations. Similarly, a DTD declares the set of attributes that
can be included in the start tag for each element. Each attribute declara-
tion defines the name, default values, and behavior of the attribute.

Entity declarations. DTDs contain the specified name and definitions for
general and parameter entities. Often, entities are declared in the inter-
nal subsets (which we’ll define soon) as well as in the external subsets.

Notation declarations. Notation declarations are labels that specify vari-
ous types of nonparsed binary data (and text data, too, occasionally).

Other information. This type of information consists of the XML declara-
tion at the beginning of the document, as well as comments and white
space that help to structure the document and communicate other rele-
vant information.

These declarations are discussed in detail later in this chapter. We’ll see how
their syntax defines the relationships among the components they define.
These relationships form the content model—that is, the nesting aspects, order,
number, frequency, and required or optional nature of the components—and,
thus, the XML-related language’s grammar. They are so important that a large
portion of the W3C XML Recommendation is dedicated to defining the vari-
ous declarations that are allowed in DTDs.

Why Use Document Type Definitions?

We’ve discussed already how XML is powerful, because with it you can create
your own unique element types with meaningful tags. Furthermore, it is
possible—but not recommended—to write XML in a freeform style, where
elements can occur in a fairly arbitrary order and where elements can be prop-
erly nested or overlap. However, the vast majority of XML-related applications
are not able to process your documents if the elements occur in an arbitrary
order or if they overlap. To ensure that an XML document always communi-
cates what the author intends, there should be some structure and content rules
(also called constraints). Those rules are manifested in DTDs and schemas.

Document Type Definitions 119

422541 Ch04.qxd 6/19/03 10:09 AM Page 119

Classroom Q & A
Q: So, when would you use a DTD or schema?
A: On several occasions you would consider using DTDs. Here are

some examples: when you want to specify default values for
attributes or when you want to use style sheets or transformation
style sheets. Also, the use of DTDs and schemas would lead to the
development of smaller-size XML-related browsers, unlike those
HTML browsers that have to carry extra logic in order to “guess”
the meaning of bad HTML coding. Or when you want to conduct
commerce transactions, it would be important for all parties to
use applications and documents that recognize common compo-
nents. Or when you are a member of a user community (that is,
within an organization or an industry) that shares data.

The declarations within a DTD communicate meta information about the
DTD and its related documents to an XML parser. That meta information
includes the type, frequency, sequencing, and nesting of elements; attribute
information; various types of entities; the names and types of external files that
may be referenced; and the formats of some external (non-XML) data that also
may be referenced.

Creating DTDs—General

In this chapter, we show you how to create the declarations found in a basic
DTD. But we won’t be discussing DTD design in detail. Detailed design—that
is, the best content model; the number and semantics of element types, attrib-
utes, and other components; the jurisdiction over DTDs; and many other
aspects—depends on the specific challenge and context facing the developer.
However, we will make a few general comments.

XML DTDs must be designed to comply with the XML well-formedness and
validity constraints. The job of the DTD is to ensure validity, so it must be well
formed and valid itself. However, a DTD must not contain any SGML features
that are not allowed in XML.

The design and implementation of DTDs—at least, those used by an organi-
zation, industry, society, or other data-sharing group—can be a complex
process, rivaling the management of any complex project. So, like project man-
agement, the process usually involves several stages: planning and design;
creation and testing (some call it validating or verification); deployment and
commissioning; and finally, documentation. Please recognize that there may
eventually be an extension phase—that is, a revisit to the definition of the lan-
guage to add components—based on experience gained during the initial use

120 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 120

of the XML-related language and its documents. So it is important to design a
DTD for extensibility.

We recommend that, during the documentation stage, DTD developers pro-
vide complete and detailed documentation with every DTD suite (XML docu-
ments, relevant DTDs, and other referenced entities). The documentation
should be designed for use by XML novices and experts, and it should detail
the syntax, proper use, and client-specific definition for each element in a
DTD. Additional relevant information about each element, such as probable
audio/visual presentation, should also be included as comments. You should
also produce documentation for all other XML documents (including all of
their relevant DTDs and other documents) that will interoperate with the sub-
ject XML document and DTD suite. An XML application isn’t considered com-
plete or stable until it is fully documented.

If you are working on the development of an XML application or on the
development of individual DTDs or schemas, consult one or more of the
several books dedicated to DTD design on the market. This chapter can
only provide an introduction and overview to the syntax, components,
and processes.

For any mature XML application, its DTDs are usually referenced by more
than one document. So DTDs should be designed to be flexible, reusable, and
practical. The more detailed the DTD, the more detailed the related docu-
ments’ structures, element types, and attributes will be. Consequently, there is
a greater likelihood that, when the related applications access XML docu-
ments, they will obtain the data they need from them. But remember that the
development of each DTD and document component costs time and money.

DTD Types and Locations

As we learned in Chapter 3, “Anatomy of an XML Document,” a valid XML
document is a well-formed XML document with a document type declaration
that contains or refers to a DTD or schema and that conforms to the declara-
tions found in that DTD or schema. The respective W3C Recommendations for
XML and XML schemas identify all of the criteria in detail.

In Chapter 3, we also discussed how the structure of a conforming XML doc-
ument consists of two major parts: the prolog and the data instance (which
contains the root element and other components). A document type declara-
tion statement (also called a DOCTYPE definition) should always be included
in the prolog. That declaration states what class or type the document is and
may also refer to internal and external DTD declarations to which the docu-
ment must adhere to be valid.

Document Type Definitions 121

422541 Ch04.qxd 6/19/03 10:09 AM Page 121

As we stated earlier, then, within its document type declaration statement,
there may be an internal set of declarations (an internal DTD or internal sub-
set), the name and location of an external document containing declarations
(an external DTD or an external subset), or both. In other words, there may be
a standalone internal DTD, an external DTD, or a combination of an internal
DTD plus a reference to an external DTD.

To determine whether a document is valid, the XML processor must read
the entire document type definition, including internal and external subsets.
For some applications, however, validity may not be required, and it may be
sufficient for the processor to read only the internal subset.

Internal DTD Subsets
Figure 4.1 is an example of an XML document that contains an internal DTD
subset. In Figure 4.1, the standalone pseudo-attribute states standalone=”yes”,
so we can say that the document contains only an internal DTD. The value “yes”
indicates that the components in the document need to be validated against the
internal declarations only; no external DTD subset needs to be consulted.

Because the standalone specification is “yes”, the parser looks for an internal
DTD in the document type declaration statement, between the opening and
closing square brackets ([and]).

Internal DTDs are handy during early development stages. An author can
check validity and save time and resources without installing applications or
altering server or directory systems. A validating parser, which merely has to
check a document against the document’s own internal declarations, is all that
is needed.

A developer is not restricted to using either an internal DTD or an external
DTD. Developers can combine internal declaration subsets with external DTD
subsets. In combination cases, the value of standalone is set to “no”. The parser
would then consult the declarations in the internal subset and in the external
subset.

External DTD Subsets
DTD declarations can be stored in an external document, which is referred to
in the DOCTYPE definition of one or more XML documents. There are three
types of external DTDs:

■■ Private external DTDs

■■ External DTDs located at Web sites

■■ External DTDs with public access

122 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 122

Figure 4.1 A simple XML document with an internal DTD subset.

Private External DTDs

Figure 4.2 illustrates another XML document, whose standalone pseudo-
attribute has been set to “no” in the XML declaration statement. In the DOC-
TYPE definition statement, the parser is told that an external DTD subset must
be consulted. In this case, the external subset can be called the external DTD,
because it alone contains the declarations. In the figure, the name of the exter-
nal DTD document is diamonds2.dtd. The XML document must follow the
syntax and structure rules found in diamonds2.dtd.

There is an indication that the physical location of the diamonds2.dtd docu-
ment is on the local system, because the keyword SYSTEM has been inserted
after the class specification diamonds. In fact, the diamonds2.dtd document
appears to be in the same directory as the XML document itself, because
there are no additional paths (that is, folders or directories) specified with
diamonds2.dtd.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds [
<!ELEMENT diamonds (location,gem)*>
<!ELEMENT location (#PCDATA)>
<!ELEMENT gem (name,carats,color,clarity,cut,cost,reserved)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT carats (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT clarity (#PCDATA)>
<!ELEMENT cut (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ELEMENT reserved EMPTY>
]>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_04.xml -->
<diamonds>

<location>Ursae Majoris</location>
<gem>

<name>Smokey</name>
<carats>1003.29</carats>
<color>F</color>
<clarity>IF</clarity>
<cut>Ideal</cut>
<cost>2250000</cost>
<reserved />

</gem>
</diamonds>

Document Type Definitions 123

422541 Ch04.qxd 6/19/03 10:09 AM Page 123

Figure 4.2 A simple XML document with a reference to a private external DTD subset.

It is not necessary for the external DTD subset document name to have a
.dtd file extension. It is convenient, though, even if it just indicates the nature
of the document’s contents to others.

The diamonds2.dtd DTD is termed private, because it is available only to the
user of the system or to those who are able to access the system over a local
network, not to those outside the network. The benefit of a private DTD
derives from the fact that the developer has control over its content declara-
tions. The document itself is found in the developer’s network and so can be
modified or extended in-house. The significance of such privacy will become
evident as you read about public DTD documents later.

External DTD Subsets Located at Web Sites

Figure 4.3 shows another example of an XML document with an external DTD.
Again, the standalone pseudo-attribute has been set to “no”, and, in the DOC-
TYPE definition statement the parser is told that an external DTD subset must
be consulted. However, this time the DTD document, although the word SYS-
TEM still appears, is located in the part of the developer’s network that hosts
the developer’s Web site. The Web site is identified by its URL, and an addi-
tional path, indicating a specific directory where the DTD is located, is
appended to the URL. When the XML parser reads the document type decla-
ration statement, it sends a request in the form of the URL plus the relative
path address, to the specified Web site to access the external DTD subset. At
the Web site, the Web server software takes the relative path portion and adds
it to the address of the Web site’s document directory, which it knows because
that directory is already configured in its software. The Web server software
knows exactly where to go in its own directory structure to retrieve the DTD
and returns a copy of the DTD to the requester (that is, to the parser in the
application that accessed the XML document), even though the requester only
knew the Web site address and the relative path.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds2.dtd">
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_05.xml -->
<diamonds>

<location>Ursae Majoris</location>
<gem>

<name>Smokey</name>
...

124 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 124

Figure 4.3 A simple XML document containing a reference to an external DTD at a URI
or URL.

After the parser receives a copy of the DTD, it validates the document
against the declarations in the DTD. If the document is valid, the parser passes
the data in the document to the application.

The diamonds2.dtd DTD is termed public, because it is available to users who
are outside the organization’s local network. However, the developer and orga-
nization still have control over the DTD’s content, because the DTD is still
found in the developer’s network and so can be modified or extended in-house.

Remote External DTDs with Public Access

So far we have seen how to access an organization’s private network DTD and
a DTD that is located at a Web site belonging to a private organization. But if a
DTD is considered a standard for an XML language and is intended for public
use by all those individuals, organizations, or societies that want to share
common data, there is a different method for referring to it. Figure 4.4 shows
an example of this type of reference. The document now refers to a DTD
named gemstones3.dtd located at a Web site belonging to the Galactic Jewelry
and Gemstone Association.

Figure 4.4 A simple XML document containing a reference to a public external DTD.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds PUBLIC "-//GJGA//gemstones.dtd Version 3.0//EN"

"http://www.GJGA.com/dtds/gemstones3.dtd" >
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_07.xml -->
<diamonds>

<location>Ursae Majoris</location>
<gem>

<name>Smokey</name>
...

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds SYSTEM

"http://www.SpaceGems.com/dtds/diamonds3.dtd" >
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_06.xml -->
<diamonds>

<location>Ursae Majoris</location>
<gem>

<name>Smokey</name>
...

Document Type Definitions 125

422541 Ch04.qxd 6/19/03 10:09 AM Page 125

Notice that, in the document type declaration statement in the document in
Figure 4.4, the reference has been changed to resemble the following basic
syntax:

<!DOCTYPE documenttype PUBLIC fpi URL>

The keyword PUBLIC replaces the keyword SYSTEM that we saw in previ-
ous external DTD references. In Figure 4.4, the coding immediately following
the PUBLIC keyword (that is, “-//GJGA//gemstones.dtd Version 3.0//EN”)
is called the Formal Public Identifier, or FPI.

The “-” in the first field of the FPI indicates that the DTD is defined by a pri-
vate individual or organization, not one approved by a nonstandards body (in
which case, you would use a “+”) or by an official standard (in which case, you
would reference the relevant standard itself, for example, ISO/IEC 10646). In
the second field, you see the text “GJGA”, which is a unique name that indicates
the owner and maintainer of the DTD. The third field contains the text “gem-
stones.dtd Version 3.0”, which describes the type of DTD document and pro-
vides a unique identifier. This is a gemstones type of DTD document and is the
third version of this external DTD to be created. The two-letter specification
“EN” in the fourth field indicates that the DTD document is written in English.

The DOCTYPE definition continues, providing the URL for the Web site at
which the DTD is found, along with a relative directory path to pass to the Web
server at that Web site so that the DTD document can be found. Thus, when an
XML parser encounters this information in the XML document, it consults the
PUBLIC DTD at that Web site as it processes the XML document.

The external DTD in this case is within the jurisdiction of the Galactic Jew-
elry & Gemstones Association (GJGA). It is not within the SpaceGems net-
work. Thus, changes to the DTD can only be made through the cooperation of
the GJGA and its other member organizations. We see this type of external
DTD at work when we discuss XHTML in Chapter 6.

Internal DTDs Combined with External DTDs

If a document refers to an external DTD subset, most of the declarations will
appear inside that external subset document. However, if a document requires
the definition of additional components (usually entities representing graph-
ics or other nonparsed documents) and it is not possible to add them to the
external DTD document, it is possible to add them to the specific XML docu-
ment. Figure 4.5 displays an example of an XML document that provides a
small internal DTD subset, but that also refers to an external DTD subset. As
shown in Figure 4.5, standalone has been set to “no” in the XML declaration
statement.

126 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 126

Figure 4.5 This simple XML document contains an internal subset plus a reference to a
public, external DTD.

Combination DTDs are used when a document author wants to introduce a
special component and perhaps show its relationship to the other components
(like the entity shown in Figure 4.5; presumably, the definitions of all the ele-
ment types appear in the external DTD subset). The declarations in the inter-
nal subset of the DTD are added to the declarations in the external subset DTD.
Collectively, then, they compose the DTD.

It is not recommended to override an existing declaration in the external
subset by making a contradictory declaration in the internal subset. (The inter-
nal declarations are parsed before those in the external subset, so the more
appropriate term is preempted.) More than likely, if there are such contradic-
tory declarations in the internal subset, processing stops—although it is
impossible to predict how every application will react—and an error message
may be issued.

Some manuals state that the internal declarations will prevail over the exter-
nal declarations, because of precedence, but that is not necessarily the case.
Occasionally, some commercial applications allow the internal declaration to
override the one in the external subset. If you are creating your own applica-
tions or parsers, that may not be a problem. If you aren’t, your testing stage
should include relevant checks.

DTD Declarations: General

Earlier, in the What Are Document Type Definitions? section, we listed the four
kinds of declarations found in DTDs. We discuss them in more detail in this
section. Before we proceed, however, remember when composing DTDs to
pay attention to the ordering of the declarations. If you include the same dec-
laration more than once, the first one preempts the ones that follow.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE diamonds PUBLIC "-//GJGA//gemstones.dtd Version 3.0//EN"
 "http://www.GJGA.com/dtds/gemstones3.dtd" [
 <!ENTITY constellation "Ursae Majoris">

]>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_08.xml -->
<diamonds>

<location>&constellation;</location>
<gem>

<name>Smokey</name>
...

Document Type Definitions 127

422541 Ch04.qxd 6/19/03 10:09 AM Page 127

Also, any names used in DTD declarations—for element types, attribute
lists, entities, or notations—must adhere to XML naming conventions:

■■ An element type name can begin with a letter, a colon, or an under-
score, but not with a number.

■■ Subsequent characters in the name may be alphanumeric, underscores,
hyphens, colons, and periods.

■■ The name can’t contain certain XML-specific symbols, such as the
ampersand (&), the at symbol (@), or the less than symbol (<).

■■ The name can’t contain white space.

■■ The name can’t contain parenthetic statements, such as words enclosed
in parentheses or brackets.

Element Type Declarations
Element type declarations specify the names of the element types that appear
in related documents and describe the content of those element types. Every
element type you intend to use must be declared in the DTD. If it is not
declared in the DTD, a validation error will eventually occur. Each declaration
statement defines only one element type. Thus, the DTD must contain as many
element type declarations as there are intended element types.

Here is a sample element type declaration:

<!ELEMENT diamonds (location,gem)*>

The declaration begins with a left angle bracket, called a start indicator. It is
followed by an uppercase keyword (in this case, ELEMENT), which identifies
the type of declaration. The combination of the start indicator and the key-
word is called a declaration identifier. No white space is allowed between the
start indicator and the keyword. The keyword is reserved, meaning that there
are only so many of them and you must use them as they are intended. So, to
declare an element type, you must use the keyword ELEMENT.

If you are developing an XML language or XML documents, it is a best prac-
tice for the developers to agree on a style convention for component names
and then to conform to that convention throughout document or language
creation. Some developers prefer lowercase. This is the convention we use in
this book, although we acknowledge that it can occasionally create confusion
with attributes (attributes are discussed later in this chapter). That’s why, in
the text of this book, we surround element type names with angle brackets (for
example, <color>). Occasionally, though, we’ll use generic names (that is, ele-
mentname, documenttype, or similar) when we discuss basic syntax.

128 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 128

Element type names are case-sensitive. If an element name is specified in the
DTD as being in title case (initial capital characters), it must also be specified
in title case in related documents and applications. Otherwise, the document
will not pass a parser’s validity check.

The Content Model

In any element type declaration, the information that follows the element type
name is called the content model (or content specification). In its simplest appli-
cation, the content model defines which child element types a single parent
element type may contain. Those child element types are listed in parentheses.

Meanwhile, the content model in total is more than just a list of contents in
any one element type. The combination of element types and their contents
describes the whole structure of the XML-related language for which the DTD
is being designed.

The following sections describe how various element types are declared
in DTDs.

Elements Containing Parsed Character Data

If you are creating a declaration for an element type that is intended to contain
parsed character data, you insert the reserved uppercase keyword #PCDATA
in the content model position, similar to the following example:

<!ELEMENT location (#PCDATA)>

Instances of this element type contain character data, and that data is
intended to be checked by the XML parser. The term character data refers to
plaintext characters but does not include XML’s predefined entity reference
symbols (the left-hand bracket, the ampersand, the semicolon, or quotation
marks). However, the term character data is general: It does not indicate
whether the content is alphabetic or numeric, for example. By contrast, XML
schemas, which will be discussed in more detail in the next chapter, provide
for additional, more precise specifications, such as integers, date format, and
floating-point decimals.

If an entity reference appears in the element, the parser retrieves the refer-
enced data and replaces the reference with the actual entity values. However,
the entities must not contain elements of their own.

Purists consider this element type to be an example of a mixed content
element type. It’s true, but for the beginner, the concepts should be discussed
separately, because they are a little easier to grasp a step at a time.

Document Type Definitions 129

422541 Ch04.qxd 6/19/03 10:09 AM Page 129

Element Types Containing Other Element Types

As stated in Chapter 3, “Anatomy of an XML Document,” element types that
contain other elements have what is called element content. The declaration
resembles the following general syntax:

<!ELEMENT elementname (childelement1, ... childelementn)>

This is the most basic syntax for element content declarations. We show you
how it can be modified as we progress. However, in this basic syntax, the
names of any child elements are inserted between parentheses following the
name of the parent element type. If there is more than one child element type,
all the element type names are sequenced within the one set of parentheses
and each name is separated from the others by a comma.

Meanwhile, a separate element declaration must also appear in the DTD for
each child element listed in the content model of a parent element type. The
content models of those declarations describe the content of the respective
child elements.

We suggest declaring the child elements in the DTD in the same order as
they appear in the parent element declaration, although XML 1.0 does not
mandate that. Such a strategy makes it easier and more orderly for the DTD
author and for any other analysts or troubleshooters who examine the DTD in
the future.

Developers who build a content model with more than one element type
and want to specify the exact cardinality (that is, the order, sequence, and fre-
quency of the appearance) of the element types in the related documents can
use specific operator symbols, which are discussed later in this chapter.

Element Types Containing Mixed Content

Element types that contain character data and child elements are said to con-
tain mixed content. A mixed content element type declaration has the follow-
ing basic syntax:

<!ELEMENT parentelement (#PCDATA | childelement1 | childelementn)*>

If a developer intends for an element type to contain mixed content, then
within parentheses in the appropriate declaration, the developer specifies the
following:

■■ The keyword #PCDATA, indicating that the element type can contain
parsed data.

■■ The names of the relevant child elements, separated by vertical lines
(also called pipes).

130 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 130

When using a mixed content declaration, you cannot use element operator
symbols (discussed later in this chapter) inside the parentheses. They can be
used only inside the parentheses when you create declarations for element
types that contain element content only. You are also not allowed to specify the
frequency or the order of appearance of the child element types. Thus, avoid
mixed content declarations if you can. Although they’re used to translate sim-
ple documents into XML, there isn’t much use for them otherwise.

Here is a simple example of a mixed content element declaration:

<!ELEMENT invStatus (#PCDATA | orderMsg)*>

This declares an inventory status element type, which might contain the
number of items in stock or might, alternately, provide a message that indi-
cates order status. Notice two things:

■■ There must be white space on either side of the vertical bar.

■■ There must be an asterisk (*) on the outside of the last parenthesis to
show that either data or a child element type must occur within the par-
ent <invStatus> element type.

Empty Element Declarations

In Chapter 3, “Anatomy of an XML Document,” we introduced the concept of
declared empty elements. They are different from element types whose DTD
declarations indicate that they may contain content but for various reasons
occasionally do not. The latter element types are simply called elements with
no content. Here is an example of the declaration syntax for declared empty
element types:

<!ELEMENT reserved EMPTY>

This example is taken from Figure 4.1, where it forms part of the internal
DTD subset, and from the other figures, too, where it is presumed to be part of
the external subset. With this type of declaration, the only requirement is to
add the reserved uppercase keyword EMPTY after the name of the element
type which, in this case, is <reserved>.

These declared empty element types are often used as markers to indicate
that some action can or will take place during execution by the application. For
example, the application may initiate a search for documents or parent ele-
ments containing the empty element type and then may execute additional
prescribed steps with or on the other related element types.

In Figures 4.1 through 4.5, for example, the Smokey diamond seems to be
“reserved,” whatever that means (perhaps no purchase will be allowed or
someone already has bid on it or purchased it or whatever). So maybe an

Document Type Definitions 131

422541 Ch04.qxd 6/19/03 10:09 AM Page 131

application will or will not display Smokey in a catalog, or will not add
Smokey’s value to the other Space Gems assets. Meanwhile, the <reserved> ele-
ment type could not be inserted properly, and the XML document would not be
valid, unless the declared empty <reserved> declaration appears in the DTD.

Although these elements will not be permitted to contain data, their tags can
be assigned attributes, as we discuss later in this chapter.

Elements with “Any” Content

As we discussed briefly in Chapter 3, “Anatomy of an XML Document,” ele-
ment types can be declared to contain a kind of content called any content. In
the DTD, the declaration says, basically, that the element is valid as long as it
contains any kind of data. Thus, there are no content restrictions on the ele-
ment types or their instances. This declaration indicates to an XML validating
parser that it doesn’t have to perform a check on the specified element type’s
content. Here is the basic syntax:

<!ELEMENT elementname ANY>

All you need to do is insert the reserved uppercase keyword ANY after the
name of the element type. Although such a no-restrictions approach to ele-
ment types seems imprecise at best and risky at worst, an ANY declaration can
be beneficial if you are creating a DTD to retrofit to existing documents or if it
is used during document conversion. Time and processor resources can be
saved when content doesn’t need to be validated all the time. An ANY specifi-
cation should eventually be changed to something more precise and descrip-
tive to provide better control over structure and content.

Element Content Operators

A content model that contains more than one element name usually uses spe-
cific operator symbols to indicate the cardinality (that is, the order and fre-
quency of appearance) of element types. These operators include the following:

■■ The comma (,)

■■ The vertical line, or pipe (|)

■■ The question mark (?)

■■ The plus sign (+)

■■ The asterisk (*)

These symbols can be used singly or in combination. If you want to specify
that element types can be used in combination, nest their element type names
in parentheses. With parentheses, element types can be nested to whatever
depth you require.

132 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 132

The Comma

The comma allows you to specify a required sequence of child elements. It also
serves as an AND operator. The use of a comma in an element content decla-
ration is shown in the following example:

<!ELEMENT gem (name,carats,color,clarity,cut,cost)>

This declaration tells the parser that there is an element type named <gem>
that contains one of each of the following child element types: <name>,
<carats>, <color>, <clarity>, <cut>, and <cost>, in that order.

The Vertical Line

The vertical line, or pipe, allows you to specify a list of candidate child element
types, only one of which can occur in an instance of the parent element type.
So the pipe serves as an OR operator. Here is an example:

<!ELEMENT price (msrPrice | discPrice)>

This declaration says that there is an element type named <price> that con-
tains one of two possible element types: either the manufacturer’s suggested
retail price <msrPrice> or the discounted price <discPrice>. As mentioned pre-
viously, the vertical line must have white space on both sides of it.

The Question Mark

The question mark allows you to specify that the child element is optional;
whether it is included is decided by the XML document author. A question
mark is used in the following example:

<!ELEMENT gem (name,carats,color,clarity,cut,cost,reserved?)>

This declaration is actually more accurate in its definition of the <gem> ele-
ment type compared to the previous comma example. It says that there is an
element type named <gem> that will contain one of each of the following child
element types: <name>, <carats>, <color>, <clarity>, <cut>, and <cost>, in that
order, and they may or may not be followed by a <reserved /> element type
(in our examples, we are using <reserved /> as a declared empty element type).

The Plus Sign

The plus sign operator specifies that at least one instance of the child element
types will appear in an instance of the parent element type, but there is no
restriction on the number of times that any of the specified child element types
can appear. There is also no restriction on the order of their appearance. Here
is an example:

<!ELEMENT saleGems (diamond | ruby | sapphire | emerald)+>

Document Type Definitions 133

422541 Ch04.qxd 6/19/03 10:09 AM Page 133

This declaration says that there is an element type named <saleGems> that
contains at least one instance of a child element type and that the instance can
be either a <diamond>, <ruby>, <sapphire>, or <emerald> element type.
Thus, child elements within <saleGems> could be:

■■ Just one <sapphire>

■■ A collection, such as <emerald> <diamond> <diamond> <emerald>
<ruby> <sapphire>

■■ Two <diamond>s

■■ Some other combination of child elements

The Asterisk

The asterisk operator specifies that zero or more of the child element types
may appear in an instance of the parent element type. There is no maximum or
minimum number of instances of each child element type that may appear.
Here is an example:

<!ELEMENT saleCatalog (#PCDATA | diamond | emerald | ruby | sapphire)*>

This example illustrates a mixed content element type declaration that we
discussed earlier in this chapter.

We also mentioned earlier that the “character data only” element type dec-
laration is actually an example of the mixed content element type declaration.
This example declaration states that there is an element type named <saleCat-
alog> that may contain one or more child element types. If it does, the child
element type can be parsed character data or parsed character data inter-
spersed with one or more <diamond>, <emerald>, <ruby>, or <sapphire>
child element types. Thus, there may not be any child elements, there may be
any combination of the listed child element types, or there may be character
data with or without child element types.

Attribute List Declarations
As we discussed in Chapter 3, attributes provide you with the capability to
provide additional information about your element types. They appear as
name:value pairs inside start tags immediately after the name of the element
type.

Here is a quick reminder of the basic syntax for an attribute in an XML docu-
ment (not in a DTD):

<gem location=”Sol”>

134 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 134

This example is re-created from Table 3.1. The attribute name is location,
and its value is specified to be “Sol”. We’ll revisit this example when we dis-
cuss declarations.

Meanwhile, as we stated in Chapter 3, you can freely add attributes to your
XML documents, but those documents cannot be valid unless the attributes
also have been declared in the document’s DTD. Attributes are declared in
DTDs by the use of attribute list declarations. The following is the basic syntax
for an attribute list declaration:

<!ATTLIST elementtypename attributename1 attType defaultvalue1

. . .

attributenamen attType defaultvaluen>

Each declaration starts with the uppercase keyword ATTLIST and then pro-
vides the name of the element type to which the declared attribute applies.
Then the name of the attribute itself is provided. After that, there is a keyword
(represented by our generic term attType in the preceding syntax) description
of the attribute’s type—that is, the nature of the data that will eventually be
specified as the value for the attribute in the XML attributes for that element.
Finally, a default value for the attribute is specified for those occasions when
none is specified by the DTD author.

As you can see from this syntax, you can insert more than one attribute dec-
laration in a single ATTLIST. You can also create more than one ATTLIST per
element type. However, you cannot mix attributes from more than one ele-
ment type in a single ATTLIST.

Here is a simple example of an attribute list declaration:

<!ATTLIST gem location CDATA #REQUIRED>

In this example, the element is named <gem>, the name of its attribute is
location, the type of values that may be specified for the attributes is CDATA
(character data string), and the default value for the attribute is #REQUIRED.
#REQUIRED indicates that no default value exists. Eventually, the XML parser
reads the DTD as it validates the XML document and passes the attribute spec-
ification data to the application.

CDATA is one of XML’s 10 possible attribute types. Table 4.1 lists all the
attribute types available.

Document Type Definitions 135

422541 Ch04.qxd 6/19/03 10:09 AM Page 135

Table 4.1 Attribute Types

ATTRIBUTE TYPE VALUE SPECIFICATION

CDATA Value is a character string. Any text is allowed except XML’s
reserved characters (for them, use predefined entity
references).

ENTITY Value is the name of a single entity. The entity must also
be declared in the DTD.

ENTITIES Value may be multiple entity names, separated by white
space.

ID Value is a proper, unique XML name (that is, a unique
identifier). Each ID value in a document must be different.
Each instance of an element type can have only one ID
attribute.

IDREF Value is the value of a single ID attribute on some
element instance in the document (usually an element to
which the current element is related).

IDREFS Value contains multiple IDREF values, separated by white
space.

List of names This attribute type is also called enumerated. Value must
be taken from a list of names that appears in the
declaration. The possible values are explicitly enumerated
in the declaration.

NMTOKEN This is a restricted form of string attribute (they begin with
a letter). The value consists of a single word or string with
no white space.

NMTOKENS Value may contain multiple NMTOKEN values, separated
by white space.

NOTATION Value consists of a sequence of name tokens, but matches
one or more notation types (instructions for processing
formatted or non-XML data).

In the example attribute declaration, the specification for the nature of any
default value specified for the <gem> location is #REQUIRED. Then in our
example XML documents, the specified value for the location attribute in the
<gem> tag was “Sol”. You may ask how they are related. Table 4.2 explains the
four possible default values that you can specify for attributes in their respec-
tive declarations.

136 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 136

Table 4.2 Attribute Default Values

DEFAULT VALUE INTERPRETATION

#REQUIRED The XML document author must specify a value for the
attribute for every occurrence of the element type in the
document.

#IMPLIED The document author does not have to specify a value and
no default value is provided. However, the author may
specify a value. If a value is not specified, the XML parser
must proceed without error.

“value” In the declaration, any legal value can be specified as the
attribute’s default. However, in related documents, the
document author may override the default value but is not
required to do so. Note, though, that if a value is not
specified by the document author, then the default value
found in the declaration will be used.

#FIXED “value” There is a fixed, nonvarying default value in the declaration.
In this case, document authors are not required to insert
the attribute in the related element types, but if they do, the
attribute must have that specified default value anyway. If it
is not present, the element type will be treated as though it
has that attribute and its value is the default value specified
in the DTD declaration.

Based on Table 4.2, whenever the element <gem> appears, a value for the
location must be specified by the document author. That’s why, in our docu-
ment example, the location attribute in <gem> was given the value “Sol”.

Attribute Declarations to Preserve White Space

As we discussed in Chapter 3, during XML document and DTD development,
white space is added so that the developer can visualize the document’s struc-
ture and functions. Maintenance of that white space during subsequent pro-
cessing by the parser and the application program isn’t usually a concern.
Sometimes, though, depending on the task facing the document author, the
creation or maintenance of white space may be significant. White space is also
a consideration in mixed content element types (that is, the interspersing of
text with elements). In those cases, the developer must be aware of the content
model of the elements in question.

White-space maintenance requires two steps: inserting the xml:space
attribute in the relevant element start tags, and the corresponding declaration
of the attribute in the DTD. Both of these are needed to advise the parser to
maintain white space.

Document Type Definitions 137

422541 Ch04.qxd 6/19/03 10:09 AM Page 137

Remember that the only legal values for XML:space are preserve and default.
The value default indicates that the author does not mind whatever processing
the application will apply to the element. On the other hand, for any element
whose start tag includes the attribute specification xml:space=”preserve”, all
white space in that element (and within child elements that do not explicitly
reset XML:space) is considered significant and is maintained.

Here is the example that you first saw in Chapter 3:

<poem xml:space=”preserve”>

<title>Oh Diamond, Mine!</title>

<stanza number=”1”>You dazzle us, you’re brilliant!

Yet hard and so resilient

Symbol of love, loyalty and light

Sought after, day and night!

Oh diamond, mine!</stanza>

<stanza number=”2”>

......

</poem>

Now, all we need is the syntax for the xml:space attribute declaration. Here
is an example, based on the preceding poem stanza:

<!ATTLIST poem xml:space (default | preserve) default>

As you can see, in a DTD the XML:space attribute must be declared as an
item list type (also called an enumerated type) with only the two values as
choices, followed by whatever default value the author prefers (in the current
example, the default value chosen by the author is default).

Language ID Attribute Declarations

In Chapter 3, we mentioned how some applications benefit from information
about the original language in which a document is written. The attribute
XML:lang is used to specify the language.

Here again are the examples from Chapter 3:

<cost xml:lang=”en-us”>25000 dollars</cost>

and

<cost xml:lang=”x-cancri-au”>*%+|||</cost>

For them to be effective, declarations for xml:lang must appear in the DTD.
Respectively, the declarations for the two examples might look like:

<!ATTLIST cost xml:lang NMTOKEN ‘en-us’>

138 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 138

and

<!ATTLIST cost xml:lang NMTOKEN ‘x-cancri-au’>

In each case, the names are character strings that begin with a letter. In each
case, too, there is a default value specified between quotation marks.

Entity Declarations
We learned in Chapter 3 that entities are the physical storage units for the
parsed and unparsed data that compose every XML document. They are refer-
ences that are passed along to the application by the XML parser, at which time
the parser expands them (that is, accesses the entities, structures data, and
passes the data to the application). Because of what they represent, entities are
powerful content management devices. But, like element types and attributes,
for entities to be effective and for the documents containing them to be valid,
there must be matching declarations for them in their respective internal or
external DTD subsets. Basically, those declarations specify names for the enti-
ties and then define what the entities represent.

In Chapter 3, the discussion of entities centered on general entities, which
are used for developing element types in XML documents. Discussion of the
other type, parameter entities, was delayed until this chapter, because they are
relevant to the development of the declarations in DTD subsets.

General Entity Declarations

As we saw in Chapter 3, general entities are found in XML documents. They
are of two types:

Internal. The entity is found in the same document where the entity ref-
erence appears.

External. The entity is found in a separate document from the one in
which the entity reference appears.

Because they are slightly different, their syntax is different. The following
example is a general internal entity representing a specific date. First, here is
an example of an entity reference that appears in the XML document:

<discoveryDate>&date;</discoveryDate>

We know it is an entity reference by the presence of the ampersand at the
beginning and the semicolon at the end of the entity name. Now, here is
the corresponding entity declaration that appears in the DOCTYPE definition
statement in the prolog of the same XML document between the opening

Document Type Definitions 139

422541 Ch04.qxd 6/19/03 10:09 AM Page 139

square bracket and the closing square bracket (for further details, please
consult Chapter 3):

<!ENTITY date “May 16, 2047”>

The declaration is fairly straightforward: an uppercase keyword ENTITY
followed by the name of the entity and then the value for the entity in quota-
tion marks.

The next example is a general external entity representing a document
containing a photograph or some other type of graphic. Here is the entity ref-
erence that appears in the XML document:

<gemLogo>&xhrylliteSmall;</gemLogo>

The syntax for the external general entity reference is the same as for the
internal general entity reference. The difference is in where the entity declara-
tion is located.

Now, here is the entity declaration that appears in the respective DTD
document that would be referenced in the DOCTYPE definition of the XML
document:

<!ENTITY xhrylliteSmall SYSTEM “\logos\xhrylliteSm_04.jpg”>

Again, we see the uppercase keyword ENTITY followed by the entity name.
Then we are told that the entity document is on the local system at the end of
the relative path.

Parameter Entity Declarations

Parameter entities are different from general entities. Where general entities
are used for building XML document components, parameter entities are used
for building declarations in DTD subsets. Parameter entities, however, may
also appear in XML documents, because they can be used in internal DTD sub-
sets. The parameter entity references are expanded as the XML parser reviews
the DTD. In this way, the data contained in the entity is brought into the
process as the XML document or language is being validated rather than later
when the XML processor passes the document data to the application (as is the
case with general entities).

Parameter entities are also of two types:

Internal. The entity and entity reference are found in the internal DTD
subset of an XML document.

External. The entity and entity reference are found in the external DTD
subset document.

140 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 140

Parameter entity declaration syntax is similar to that for general entity
declarations, but also resembles the syntax for attribute specifications, dis-
cussed earlier in this chapter. To use the parameter entity reference, insert the
name of the entity, surrounded by a percent sign (%) and a semi-colon, into an
element declaration, as you see in the following generic syntax:

<!ELEMENT %entityname;>

Internal Parameter Entities

An application of an internal parameter entity is shown in Figure 4.6. Note how,
in the figure’s “before” scenario, the <gem> element type is composed of <dia-
mond>, <emerald>, <ruby>, and <sapphire> element types. In turn, each of
those four child element types is composed of <name>, <carats>, <color>,
<clarity>, <cut>, <cost>, and perhaps <reserved/> element types. Thus, the
element type declarations for <diamond>, <emerald>, <ruby>, and <sapphire>
are identical. A parameter entity reference would be handy for this situation.

In the “after” scenario, we see a declaration for a parameter entity named
gemInfo. That parameter entity is composed of references to the <name>,
<carats>, <color>, <cut>, <cost>, and <reserved /> element types. Addition-
ally, in the internal DTD subset, the declarations for the <diamond>, <emer-
ald>, <ruby>, and <sapphire> include the reference to the parameter entity
gemInfo.

You can see that this is a two-step operation, too. First, you create the entity
declaration, which looks like:

<!ENTITY % entityname “entitydefinition”>

Notice the extra percent symbol (%) inserted before the entity name, which
indicates to the parser that this is a parameter entity.

Then you insert the parameter entity references into the element type decla-
rations, which now resemble:

<!ELEMENT elementname %entityname;>

Notice that the parameter entity reference starts with the percent symbol,
not the ampersand as you saw with other entity references.

One advantage to the parameter entity reference is the savings of keystrokes
without jeopardizing any accuracy. The second advantage, perhaps not so
apparent at first, is this: If you create several parameter entities and want to
change the references in them, you only need to modify the parameter entities
or create new ones. There is no need to change all the element type declarations.

Document Type Definitions 141

422541 Ch04.qxd 6/19/03 10:09 AM Page 141

Figure 4.6 Example of an internal parameter entity.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE inventory [

<!ELEMENT gem (diamond,emerald,ruby,sapphire)*>
<!ELEMENT diamond (name,carats,color,clarity,cut,cost,reserved?)>
<!ELEMENT emerald (name,carats,color,clarity,cut,cost,reserved?)>
<!ELEMENT ruby (name,carats,color,clarity,cut,cost,reserved?)>
<!ELEMENT sapphire (name,carats,color,clarity,cut,cost,reserved?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT carats (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT clarity (#PCDATA)>
<!ELEMENT cut (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ELEMENT reserved EMPTY>
]>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_10.xml -->
<gem>

<diamond>
<name>Smokey</name>

...

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/css" href="diamonds1.css"?>
<!DOCTYPE inventory [
<!ENTITY % gemInfo "(name,carats,color,clarity,cut,cost,reserved?)">
<!ELEMENT gem (diamond,emerald,ruby,sapphire)*>
<!ELEMENT diamond %gemInfo;>
<!ELEMENT emerald %gemInfo;>
<!ELEMENT ruby %gemInfo;>
<!ELEMENT sapphire %gemInfo;>
<!ELEMENT name (#PCDATA)>
<!ELEMENT carats (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT clarity (#PCDATA)>
<!ELEMENT cut (#PCDATA)>
<!ELEMENT cost (#PCDATA)>
<!ELEMENT reserved EMPTY>
]>
<!-- Gems Version 1 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_11.xml -->
<gem>

<diamond>
<name>Smokey</name>

...

BEFORE

AFTER

142 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 142

External Parameter Entities

Parameter entities can be added to external DTD subsets in a manner similar
to the way the internal parameter entity example appears in Figure 4.6. Param-
eter entity advantages are multiplied if you add them to external DTDs, espe-
cially if each of several DTDs are accessed by several XML documents.

Notation Declarations
We’ve mentioned that XML documents can contain parsed text data and
unparsed data (for example, audio, video, and other document files). In Chap-
ter 3, “Anatomy of an XML Document,” we showed you how to incorporate
XML data. Now we show you how to incorporate non-XML data.

There are two basic methods for incorporating non-XML data into XML docu-
ments: providing references to the specific non-XML documents through a
series of attributes in a start tag, and providing entity-type attributes (often in
their own dedicated element types). However, for the non-XML data refer-
ences to be validated, we must include appropriate notation and other decla-
rations in the respective DTD. The following sections discuss each method.

Non-XML Data Introduced with an Attribute

To illustrate this method, let’s use an example. Presume we want to add an
existing Graphics Interchange Format (GIF) logo, called diamond.gif, to an
XML document so that when the XML document is called by its application
the graphic image displays. Let’s say that we also want to install the reference
to the graphic document as an attribute in the start tag for the <diamond> ele-
ment type in Figure 4.6. For our first attempt, we would probably assume
(incorrectly) that all we have to do is add a simple attribute to the <diamond>
element start tag in the XML document, like this:

<diamond logo=”diamond.gif” >

<gem> Smokey</gem>

Unfortunately, the addition of that simple attribute is insufficient. With
XML, more information is required, because the parser and application won’t
recognize the GIF format automatically. The start tag actually has to be some-
thing like this:

<diamond logo=”diamond.gif” logo_type=”gif” >

<gem> Smokey</gem>

That seems simple enough. (We are presuming that the document diamond.gif
is located in the same directory as the XML document; if it is located elsewhere,

Document Type Definitions 143

422541 Ch04.qxd 6/19/03 10:09 AM Page 143

more path information would be required.) And it is simple as far as the XML
document is concerned. But by itself it doesn’t solve the binary format recogni-
tion issue. We now have to turn our attention to the DTD (the internal or exter-
nal subset, wherever you want to place the appropriate declarations), because
of the attributes and values we have introduced. First, we have to advise the
parser what the logo_type=”gif” attribute really means because, after all, we
have arbitrarily chosen the attribute name and value. Let’s start with the gif
value. It requires a notation declaration in the DTD subset, like this:

<!NOTATION gif SYSTEM “image/gif” >

As you can see, notation declarations apply labels, such as gif in this exam-
ple, to specific types of nonparsed binary data. The generic syntax is:

<!NOTATION notationLabel SYSTEM “identifier” >

The declaration begins with the upperclass keyword NOTATION followed
by the arbitrary label name (author’s choice). Then the keyword SYSTEM com-
monly appears, followed by a term that identifies a file, an application, a formal
specification, or other information source that provides the application with the
capability to display or otherwise manipulate the binary data document. When
the binary format is fairly common, such as the Multipurpose Internet Mail
Extension (MIME) types such as image/tif (image being the primary media
content type, whereas tif is the content subtype), image/jpg, or image/gif, the
keyword SYSTEM is sufficient. Following SYSTEM is the actual name of the
file, application, or other information. In this case, the combined content/sub-
content MIME binary media name is required as the external identifier.

For a complete list of MIME media types, check the University of Southern
California’s Information Sciences Institute Web site at www.isi.edu/in-
notes/iana/assignments/media-types/media-types. There you will see a
list of individual MIME types along with references to the IETF Requests
for Comments that define those types.

We may also want the capability to add graphics with other common
graphic formats (for example, Joint Photographic Experts Group [JPEG] and
tagged image file format [TIFF]) to our XML document. So let’s also provide
notation declarations for them in the DTD. As you can see, their external iden-
tifiers indicate that they, too, are MIME media types:

<!NOTATION jpg SYSTEM “image/jpg” >

<!NOTATION tif SYSTEM “image/tif” >

144 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 144

If you want to use other public binary formats besides the most common
ones, such as MIME types, you may have to use the keyword PUBLIC instead
of SYSTEM in the declaration and provide a Formal Public Identifier (FPI) ref-
erence to the location of the other application or information that is required to
manipulate the unparsed data document.

After the labels are declared, attribute declarations must be included in the
DTD. By now, the following should be familiar:

<!ATTLIST diamond

logo NMTOKEN #IMPLIED

logo_type NOTATION (gif | jpg | tif) #IMPLIED>

The necessary DTD declarations are now in place. Previously, we included the
attributes in the start tag of the <diamond> element type. Now, for everything to
work, the application developers have to create the code for manipulating the
data. Typically, we rely on browser applications, which contain such code.

Non-XML Data Introduced as an Entity

We’ll use an example to illustrate this second method. This time, presume that
we want to add an existing JPEG format logo, called diamond.jpg, to an XML
document. In this case, though, when the XML document is called by its appli-
cation, the graphic image will be treated as an entity even though, on the sur-
face, it still looks like an attribute in the start tag of a declared empty
<diamond_logo /> element type. Here’s what the attribute specification in the
XML document might look like:

<diamond>

<diamond_logo logo=”diamond_pix01” />

<gem>Smokey</gem>

As you can see, the attribute syntax is simpler than the earlier example,
because only one attribute specification is needed. We are using a declared
empty element type, although the attribute could appear in any element type;
it doesn’t have to be empty.

Now we need to focus on the respective DTD. First, ensure that there is a
declaration for our empty element:

<!ELEMENT diamond_logo EMPTY>

Second, insert a declaration for the attribute specification:

<!ATTLIST diamond_logo logo ENTITY #IMPLIED>

Document Type Definitions 145

422541 Ch04.qxd 6/19/03 10:09 AM Page 145

See how the attribute name, logo, is tied to the element type name, dia-
mond_logo. The declaration tells the parser that the attribute type is a single
entity and that the XML document author can supply a specification if desired;
none is compulsory and there is no default value.

Now it is time to define or declare the entity itself. So the following must
also be added:

<!ENTITY diamond_pix01 SYSTEM “diamond.jpg” NDATA jpg >

This tells the parser that, when it sees the value diamond_pix01 specified for
an entity type attribute, it should access the document named diamond.jpg on
the local system. Furthermore, the diamond.jpg document is unparsed data
(indicated by the NDATA) of jpg format.

The parser at this point still doesn’t know what jpg format means, so a nota-
tion declaration is still necessary. Here it is:

<!NOTATION jpg SYSTEM “image/jpg” >

The parser learns that jpg is a MIME media type whose primary content is
an image and whose subcontent type is JPEG. If you want, you could add dec-
larations for TIFF, GIF, or other formats here, too.

Now the XML document and its respective DTD subsets are ready. The
parser checks the document, accesses and reads the declarations in its DTD
subsets, accesses the graphic document, structures all the data, and passes it to
the application. It’s up to the application to know what to do next.

Our examples focused on nontext unparsed data. But notation declarations
can also play a role with text data. You can use them to label text data that
has specific formats (for example, date formats such as ISO’s mm/dd/yy or
European dd/mm/yy).

Table 4.3 lists some examples of identifiers for such text data. (The last one
is fictitious but indicates the format you might use for a customized data for-
mat.) However, since no one has developed a universally accepted standard
identifier scheme, the list in Table 4.3 may be of limited utility.

Declaring Namespace Attributes in the DTD
In Chapter 3, we learned how namespace declarations are a specialized form
of attribute specifications. Thus, for their documents to be valid, declarations
for namespaces must also appear in DTDs and schemas. A declaration must
appear for each namespace. But just as default namespaces differ from prefix
namespaces, their declarations also differ. The next sections describe the spe-
cific approaches to declaring the types of namespaces in DTDs.

146 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 146

Table 4.3 Examples of External Identifiers Used with Notation Declaration

EXTERNAL IDENTIFIERS DESCRIPTION

SYSTEM “ISO 4217:1995” ISO standard for world currencies.

SYSTEM “ISO 8601:1998” ISO Standard for date formats.

SYSTEM “..\winnt\system32\ Microsoft Notepad can be used to manipulate or
notepad.exe” display the data.

PUBLIC “-//SpaceGems// This is an FPI for the Space Gems online graphic
notations graficRez//EN” document resource that is needed to manipulate
“http://SpaceGems.com/ the data.
graphics/gifPix.htm”

Default Namespace Declarations

Creating the appropriate declarations for a default namespace attribute is fairly
straightforward. Consider the following example:

<diamonds xmlns=”http://www.SpaceGems.com/2047/” name=”Ursae Majoris” >

<gem>

<name>Smokey</name>

<carats>1003</carats>

<color>F</color>

<clarity>IF</clarity>

<cut>Ideal</cut>

<cost>2250000</cost>

</gem>

</diamonds>

The <diamonds> element type contains the child element <gem>. So the
respective DTD document would contain an element type declaration for each
of <diamonds> and <gem>.

After the <diamonds> element type declaration is created, what would the
declaration for the default namespace in its start tag look like? We would be
correct if we created the following attribute declaration:

<!ATTLIST diamonds xmlns CDATA #FIXED “http://www.SpaceGems.com/2047/” >

The declaration states that in the extent of any instance of the <diamonds>
element type, an attribute named xmlns appears, whose value contains
parseable character data. The value does not change; it is fixed at http://www
.SpaceGems.com/2047/.

Document Type Definitions 147

422541 Ch04.qxd 6/19/03 10:09 AM Page 147

Prefix Namespace Declarations

As we saw in the previous section, creating a default namespace declaration in
a DTD can be fairly straightforward. Creating declarations for prefix name-
spaces, on the other hand, is a little more complex. Consider the following
example, which is just the previous example modified to include a prefix
namespace instead of a default namespace:

<sg:diamonds xmlns:sg=”http://www.SpaceGems.com/2047/”

sg:name=”Ursae Majoris” >

<sg:gem>

<sg:name>Smokey</sg:name>

<sg:carats>1003</sg:carats>

<sg:color>F</sg:color>

<sg:clarity>IF</sg:clarity>

<sg:cut>Ideal</sg:cut>

<sg:cost>2250000</sg:cost>

</sg:gem>

</sg:diamonds>

Here, the <sg:diamonds> element contains the child element <sg:gem>. But
now in the DTD the declaration for the <sg:diamonds> element has not
changed from what it was for the default namespace example:

<!ELEMENT diamonds (gem)* >

This time, a different declaration must be created for the xmlns attribute in
the <sg:diamonds> start tag. That declaration will look like:

<!ATTLIST sg:diamonds xmlns:sg CDATA #FIXED

“http://www.SpaceGems.com/2047/” >

This declaration states that, within the extent of an element type named
<sg:diamonds>, there is a prefix namespace attribute named xmlns:sg. Fur-
thermore, the value for that attribute contains parseable character data. Its
value is fixed at http://www.SpaceGems.com/2047/. In element type names
in the extent of <diamonds>, the value for the namespace is represented by the
namespace prefix sg:. All element types that begin with the sg: prefix are
treated as though the value of the attribute was appended to the beginning of
the local part of their name. (For example, the unique universal name for
sg:color would effectively be <{http://www.SpaceGems.com/2047/}color>.)

148 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 148

If you will be inserting more than one prefix namespace into an XML docu-
ment, ensure for validity that you also install a separate attribute declaration
for the additional namespaces into the respective DTD.

Limitations of DTDs with Respect to Namespace Declarations

Because the concept of DTDs predates the development of the W3C name-
spaces in the XML Recommendation, among other reasons, DTDs do not pro-
vide the same level of support for namespaces that XML schemas do. Schema
specifications were developed at approximately the same time as the W3C
namespace specifications, so they are more flexible and comprehensive, as you
will see in the next chapter.

Normalization
At the appropriate time during processing, the XML parser also performs a
process called attribute normalization. That is, just before the validation stage,
the parser uses an algorithm specified in section 3.3.3 of the W3C’s XML 1.0
(Second Edition) Recommendation to replace attribute references and entity
references with actual data and to resolve white space. If you would like more
information on normalization, refer to the XML 1.0 Recommendation.

Chapter 4 Labs: Creating a DTD

In the Chapter 3 lab exercises, you created an XML document whose data
instance consisted of a structure of several elements containing the names and
relevant characteristics of several diamonds. That document was created to
introduce you to the nature of XML data structuring and formatting. In prac-
tice, though, a DTD is created first and then is used as a template to create
XML documents (TurboxXML calls them instances). So the labs in this chapter
represent a restart. In the first lab, you construct a DTD that declares the prop-
erties of several diamond-related components. In the second, you create an
XML data instance from that DTD. That instance is identical to the lab exercise
data instance, using the same data that was given to you in the Chapter 3 lab
exercises.

Document Type Definitions 149

422541 Ch04.qxd 6/19/03 10:09 AM Page 149

Lab 4.1: Creating a Simple External DTD

The file you create describes the same series of precious diamonds that
was introduced in Chapter 3. For the design of this first DTD, we’ll pur-
sue these basic goals:

■■ To allow more than one <gem> to be listed. This is achieved by
ensuring that the <gem> element is repeatable.

■■ To ensure that all of the five C’s are present for all diamonds. Later
in the lab, you improve upon some of the logic inside the DTD and
retest your work by creating a new XML instance from it.

The difference between wanting the <gem> element to be repeatable
by using an asterisk (meaning “zero to many times”) in the declaration,
or the plus sign (meaning “one to many times”) is subtle. In this specific
case, a data instance without at least one <gem> element would not make
sense. So we use the plus sign. But in a case where there were several ele-
ments besides <gem> to choose from, it would make better sense to use
an asterisk, because another element might be able to replace <gem>.
Another point we want you to remember for this example is that the five
C’s have to be entered in a specific order. Trying to reorder any of the five
C’s should result in an error when the XML document is validated.

In this lab, we start to work with a graphical user interface. We chose
the GUI to emphasize the terminology used, rather than the syntax. But
the syntax is still important. If you want to check the syntax, you can
change the TurboXML view from elements to source and back again at any
time during the lab. Now let’s get started.

1. Open the TurboXML editor. Click Continue Trial if necessary.

2. Click Instance.

3. Click File, New, DTD. A new window appears with a new root ele-
ment; at this time, it is called unnamed. Using the edit bar at the top
of the bottom frame, rename this <diamonds>.

4. Now, for the newly named <diamonds> element type, click the cell
called Content.

5. From the drop-down list, change the Content Type to Elements. This
specifies that the new root element called <diamonds> will contain
more elements (that is, it will have element content and be a parent
element). An example of this step is demonstrated in Figure 4.7.

150 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 150

Figure 4.7 TurboXML editor indicating candidate content types.

6. Click the cell under the <diamonds> element, and create a new ele-
ment called <gem>.

7. Click the <gem> element’s Content cell.

8. From the Content Type drop-down list, specify Elements for the
<gem> element. The <gem> element will be able to contain ele-
ments of its own now, making it a parent element as well.

9. Go back to the <diamonds> element and click its Content Model
cell.

10. Place the cursor inside the parentheses ().

11. Select <gem> from the drop-down list.

12. Click Repeatable. An example of this step is demonstrated in Figure
4.8. You can see how the TurboXML editor can be used to build the
correct syntax and nesting structure. However, you still have to
check the Source view to ensure that the expected syntax appears.

Figure 4.8 TurboXML editor facilitates content model construction.

13. If you place the cursor on <diamonds>, the view should resemble
Figure 4.8. The view will vary depending on where the cursor was
last clicked. The Figure 4.9 view resulted from clicking on <dia-
monds> and the Content Model column heading.

Document Type Definitions 151

422541 Ch04.qxd 6/19/03 10:09 AM Page 151

Figure 4.9 Adding element types.

14. Add six new element types called <name>, <carat>, <color>,
<clarity>, <cut>, and <cost>. To do so:

a. Click the next empty cell under the Element column, and type
“name”.

b. Click the Content cell beside the element type, and choose Text
from the drop-down list.

c. Repeat a. and b. to add declarations for the carat, color, clarity,
cut, and cost element types.

15. Go back to the <gem> element type and click its Content Model cell.
Then click Insert, and add name, carat, color, clarity, cut, and cost.

16. If you place the cursor on <diamonds>, the view should now look
like Figure 4.10.

At any time you can alternate the views between the GUI and Source.
Click View on the top menu bar, and choose Elements/Types for the GUI.
Choose View, Source to see the code.

17. Click the Errors item on the top menu bar. Address any errors. If
there are errors, feel free to fix them with either the GUI or the
Source view.

18. Save the file as diamonds1.dtd to the C:\WWW\SpaceGems folder.

a. Change the Save as Type to DTD(*.dtd).

b. Enter the filename as diamonds1, and click Save.

152 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 152

Figure 4.10 GUI view of the DTD under development.

Lab 4.2: Creating a New Instance
from the DTD

Now we’ll have you create a new XML document (again, TurboXML calls
XML documents instances) using the DTD you just built. By the end of
this exercise, you will see how handy this technique is.

1. Open the TurboXML editor.

2. Click Instance.

3. Click File, Set Schema. Then choose diamonds1.dtd, and click Open.

4. A dialog box asks you, “What element type should serve as the root
for the document?” Choose diamonds and click OK.

2. Click here to expand the list of elements.

1. Click here to position the view in the top frame.

3. Click here to sort the elements by Content Model.

Document Type Definitions 153

422541 Ch04.qxd 6/19/03 10:09 AM Page 153

5. Enter the data from Table 4.4 into the XML instance. If you need to
add another <gem> element, click Insert on the bottom menu bar
and click gem. This inserts another <gem> element with all of its
child elements. (Although it is always important to check your
work, to ensure that you are getting the desired effects, don’t worry
too much about getting 100 percent accuracy with the Table 4.4 val-
ues. If, for example, you want to enter “IF”, instead of “IF – Internally
Flawless”, for clarity, it will not impact the functionality of the labs
at this time.

6. When you’re done entering the Table 4.4 data, click the Errors item
on the top menu bar to check the validity of the new document.
Address any errors.

Table 4.4 List of Top Diamonds for Galaxy Gems

NAME CARAT COLOR CLARITY CUT COST

Sparkler 105 F IF-Internally Super Ideal 126000
Flawless

Merlin 41 D FL-Flawless Ideal 82000

Cullinan 3106 H VS1, VS2 – Rough 2174200
Very Slightly
Imperfect

Dark 500 J SL1, SL2 – Rough 450000
Slightly
Imperfect

7. Save the file as gems1.xml in the C:\WWW\SpaceGems folder.

Additional Labs

For additional lab exercises, visit the XML in 60 Minutes a Day Web site
that is described in this book’s introduction. There you’ll find these addi-
tional labs:

■■ Refining the DTD

■■ Creating a New XML Instance from diamonds2.dtd

■■ Using Attributes and Entities

■■ Creating a New XML Document from diamonds3.dtd

154 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 154

■■ Calling the External DTD: URL vs. Local File

■■ Combining Internal and External DTDs

■■ Using Namespaces in DTDs

If your objective is to complete the Space Gems Web site, then you’ll
find these additional labs to be essential.

Summary

We can’t overemphasize the importance of DTDs to the creation of XML lan-
guages and documents. Before you move on to Chapter 5, “XML Schemas,”
ensure that you have a grasp of the following concepts. They’ll serve you well
as you learn about schemas and as you learn about the other XML-related lan-
guages we discuss in subsequent chapters of this book.

■■ Document type definitions (DTDs) are a form of metamarkup. They
were first developed with GML in the late 1960s and later made part of
the ISO’s SGML standard. They have historically been the most com-
mon method for defining XML-related languages. But the vocabulary,
grammar, and syntax of a DTD are not like XML.

■■ DTDs contain several kinds of information: element type declarations,
attribute declarations, entity declarations, notation declarations, and
other information.

■■ DTDs are included or referred to in an XML document’s document type
declaration statement. To be valid, the document must adhere to its
DTD declarations.

■■ DTD declarations can be located in several locations: in the XML docu-
ment, on the local system or network, or on Web servers anywhere on
the Internet.

■■ In a DTD, element type declarations provide the basis for the content
model of an XML language and its related documents.

■■ If a content model contains more than one element name, it will proba-
bly use specific operator symbols (that is, a comma, vertical line, ques-
tion mark, plus sign, or asterisk) to indicate the order and frequency of
appearance of element types.

■■ In Chapter 3, we learned that general entities are used for developing
element types in XML documents. In this chapter, we learned that
parameter entities are used to develop DTD declarations.

Document Type Definitions 155

422541 Ch04.qxd 6/19/03 10:09 AM Page 155

156 Chapter 4

■■ There are two basic methods for introducing non-XML data into XML
documents: through a series of attributes and through single entity-type
attributes (often in their own dedicated element types). Neither method
is really straightforward, and both involve combinations of declarations
in a DTD.

■■ DTDs support namespaces, which are a specialized form of attribute.
For their documents to be valid, declarations for namespaces must also
appear in DTDs and schemas. Because DTD concepts predated XML,
DTDs do not provide the same flexibility and comprehensiveness for
namespaces that XML schemas do.

422541 Ch04.qxd 6/19/03 10:09 AM Page 156

Review Questions

1. What are the four types of declarations found in DTDs?

2. True or false? As long as a DTD contains SGML features and meets SGML specifica-
tions, its declarations can be used in an XML environment.

3. DTD subsets can be located:

a. Externally at publicly accessed Web sites

b. Internally in an XML document

c. On a private computer network

d. On a company’s own Web site

e. All of the above

4. A complete DTD consists of declarations found in _____________ or in
_________________ , if there is one.

5. True or false? Element type names can begin with letters, numbers, colons, or
underscores.

6. Match the content operator symbols to their meanings.

a. Comma i. Choose one from a list

b. Vertical line ii. At least one

c. Question mark iii. Zero or more

d. Plus sign iv. Required sequence

e. Asterisk v. Optional

7. Which of the following is not an attribute type?

a. CDATA

b. ENTITY

c. NDATA

d. IDREFS

e. “list of names”

f. None of the above

8. Which of the following are legal values for the XML:space attribute? (Be careful: there
may be more than one correct answer.)

a. Include

b. Preserve

c. Maintain

Document Type Definitions 157

422541 Ch04.qxd 6/19/03 10:09 AM Page 157

d. Ignore

e. Default

9. General entities are used for building ________________________ and parameter
entities are used for building _______________________ .

10. Provide the syntax for the following declaration: In the event of any instance of the
<diamonds> element type, an attribute named xmlns will appear, whose value will
contain parseable character data. The value will not change; it is fixed at
www.SpaceGems.com/2047/.

158 Chapter 4

422541 Ch04.qxd 6/19/03 10:09 AM Page 158

Answers to Review Questions

1. The four types of declarations found in DTDs are as follows:

a. Element type declarations

b. Attribute declarations

c. Entity declarations

d. Notation declarations

2. False. Not all SGML features are used by XML.

3. e. As discussed in the text, a document’s DTD can be located at any of those four
locations. Check the text for the appropriate syntax.

4. A complete DTD consists of declarations found in an internal subset and/or in an
external subset, if there is one.

5. False. Numbers are not allowed.

6. a. and iv.; b. and i.; c. and v.; d. and ii.; e. and iii.

7. c. You can find the others listed in Table 4.1 of the text. NDATA is just a made-up
acronym that may look familiar but doesn’t really exist in the XML world.

8. b. and e. These answers are readily found in the Attribute Declarations to Preserve
White Space section of the text.

9. General entities are used for building XML document components, and parameter
entities are used for building declarations in DTD subsets. Developing a declaration is
covered in the section titled Declaring Namespace Attributes in the DTD.

10. Answer:

<!ATTLIST diamonds xmlns CDATA #FIXED

“http://www.SpaceGems.com/2047/” >

Document Type Definitions 159

422541 Ch04.qxd 6/19/03 10:09 AM Page 159

422541 Ch04.qxd 6/19/03 10:09 AM Page 160

161

The purpose of any XML document model is to provide a means to validate an
XML document at machine speed. The earlier, faster, and more easily you
transact business, the better your business will be. In a large-scale environ-
ment, where vast amounts of information are received from many and varied
sources and sent to many and varied destinations, the ability to check docu-
ment validity at high speed is an important business consideration. No one
wants to process content if it is prone to errors. So no one wants to process doc-
uments that do not adhere to their prescribed models or aren’t valid.

In Chapter 4, “Document Type Definitions,” we showed you how DTDs
provide a mechanism for describing the content and structure—the model—of
XML-related languages and documents. However, since DTDs predated XML,
several DTD shortcomings were already known by the time XML 1.0 became a
W3C Recommendation in February 1998.

Several XML-related modeling languages, most notably XML Schema, were
developed to overcome the limitations of DTDs. In this chapter, we briefly
introduce the W3C Schema Recommendation, which is the standard by which
XML schemas will be composed in the future. Then, we review several basic
schema components, along with some options and alternative methods.

XML Schemas

C H A P T E R

5

422541 Ch05.qxd 6/19/03 10:10 AM Page 161

By the end of this chapter, you will also be acquainted with how to make
simple XML schema documents, how to create XML documents from a
schema, how to tell an XML parser to consult with a schema document, and
even how to create a new schema from an existing schema.

We will only scratch the surface of XML schema functionality. If you need to
use schemas, we recommend consulting the W3C Web site. Several excellent
online tutorials and printed texts are available, dedicated to XML Schema
theory and practice.

What Are Schemas?

The term schema is borrowed from database technology. There, a schema
determines the structure and relationships among data in relational database
tables. In the XML world, schemas in general define the various models for an
XML-related language (one schema exists for each class of documents that
make up the language). The models prescribe the arrangement of element
types, attributes, and other data in a valid document.

Using this broad definition, we can see that DTDs qualify as schemas, too.
The DTD concept was developed to model the content of languages and docu-
ments derived from GML and SGML. DTDs became the official schema mech-
anism for SGML, and XML inherited DTD concepts and constructs from SGML.

Although DTDs are currently the most widely used tool for defining docu-
ment types, they have several shortcomings, among which are the following:

■■ They have their own syntax, which differs from XML. It would be more
efficient, and it would make learning easier, if the tools used to process
XML documents could also process the document models with little or
no alteration.

■■ DTDs have a limited ability to describe the data in elements and attrib-
utes. For example, it is difficult or impossible to indicate the nature of
some character data (numbers, date formats, currencies).

■■ DTDs are not flexible or extensible enough to take full advantage of
namespaces (they can’t define or restrict the content of elements based
on context sensitivity, which is illustrated later in this chapter).

DTDs have other shortcomings, but discussion of those shortcomings is
beyond the introductory nature of this book. Meanwhile, the DTD modeling
language could be revised or extended, but not without impacting many, if not
all, existing SGML-related languages, their respective descendants, and all the
related documents. Thus, several alternative modeling languages were devel-
oped to overcome some shortcomings of DTDs: XML Schema, Document Con-
tent Description (DCD), Regular Language description for XML (RELAX),
BizTalk, Schema for Object-oriented XML (Schematron), and others.

162 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 162

It is predicted that XML Schema models will eventually replace DTDs. But
they have some catching up to do first, since DTDs have been around officially
since the 1986 SGML standard and enjoy advantages like existing tool support
(all SGML-related tools and many XML-related tools can already process
DTDs), extensive deployment (many document types are already defined with
DTDs), and the widespread existing expertise and applications.

XML Schema 1.0: A Two-Part W3C XML
Schema Recommendation

The shortcomings of DTDs were well known even when the W3C endorsed
the first edition of the Extensible Markup Language (XML) 1.0 Recommenda-
tion in February 1998. In fact, in 1998, as part of the W3C’s XML activity, it
formed the XML Schema Working Group, charged with developing a new
XML Schema Definition language (XSD), which they envisioned becoming the
most powerful, flexible, and extensible type of schema available. By May 2001,
the Working Group developed the two-part XML Schema Recommendation
1.0. Part 1 of the Recommendation is dedicated to schema structures; Part 2 to
pertinent data types.

If you are interested, you can find Part 1 of the Schema Recommendation
at www.w3.org/TR/xmlschema-1/. Part 2 can be found at www.w3.org/
TR/xmlschema-2/. Part 0, which is a primer for using XML schemas, is
worth examining, too. It’s located at www.w3.org/TR/xmlschema-0

The two-part XML Schema Recommendation was developed as a content
modeling language and application of XML, not as an application of SGML. It
is a large, complex standard that lets you specify almost any kind of XML rela-
tionship, but it requires a lot of familiarity and practice to implement compre-
hensively. In this book, we usually refer to it as XML Schema 1.0 (some also call
it XSchema). From this point, we refer to individual schema document models
developed according to XML Schema as schemas, schema documents, or
schema models.

As of this writing, a notice is posted on the W3C’s XML Schema Web site
that states: “The XML Schema WG is currently working to develop a set of
requirements for XML Schema 1.1, which is intended to be mostly
compatible with XML Schema 1.0 and to have approximately the same
scope, but also to fix bugs and make whatever improvements we can,
consistent with the constraints on scope and compatibility.” The notice
invites participation in the project from the Web community.

XML Schemas 163

422541 Ch05.qxd 6/19/03 10:10 AM Page 163

XML schemas were developed to overcome the shortcomings of, and even-
tually replace, DTDs. Since XML Schema pertains only to XML and XML-
related languages, it follows then that XML schemas pertain to XML-related
languages and documents.

Classroom Q & A
Q: Wait! Sorry to interrupt, but I’m a little confused. Are they capital S

Schemas or noncapital s schemas?
A: Don’t worry, it’s an issue that arises for many XML schema new-

comers. When we refer to the W3C XML Schema Recommenda-
tions, we use the capital S reference. For example, in the
paragraph preceding your question, we say that “Since XML
Schema pertains . . . ”; this is a reference to the W3C Recommen-
dation. By contrast, the individual documents that are created by
developers according to XML Schema 1.0 or 1.1 rules are called
schemas or XML schemas. In the same paragraph, the first sen-
tence begins “XML schemas were developed to . . . ” This is a ref-
erence to schemas in general.

The XML Schema Abstract Model

The W3C states that all XML schemas can be described in terms of one basic
abstract data model. That model serves to create schemas that specify the struc-
ture and content of data to be provided to a conforming XML parser. But, as we
see later, the XML Schema abstract model is conceptual only. It does not dictate
any specific structure or style for subsequent schemas or documents. It just
provides a vast selection of components to choose from when building schemas
and prescribes how the components should be combined. The W3C defines 13
kinds of schema components, in three major groups. They are listed in Table 5.1.

In this chapter, we discuss all primary components and some secondary
components. We will especially create and manipulate element declarations.
Table 5.2 lists the XML Schema predefined elements in the two-part Schema
1.0 Recommendation. These elements are commonly used to construct ele-
ment declarations in schema models (schema documents whose filenames
contain the .xsd extension).

164 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 164

Table 5.1 XML Schema Major Component Groups

NAME OF COMPONENT GROUP COMPONENTS IN GROUP

Primary components Simple type definitions
Complex type definitions
Attribute declarations
Element declarations

Secondary components Attribute group definitions
Identity-constraint definitions
Model group definitions
Notation declarations

“Helper” components Annotations
Model groups
Particles
Wildcards
Attribute Uses

For example, to declare an element, we use <xs:element>. Similarly, to
declare attributes, we use <xs:attribute>. Elements that contain child elements,
attributes, or both are said to be complex content types (also called complex
data types or just complex types), whereas elements that contain numbers or
other character strings but do not contain child elements are called simple con-
tent types. Attributes, meanwhile, are always simple types. New complex
types are defined using a combination of <xs:element> and <xs:complex-
Type>, whose definitions typically contain element declarations, element ref-
erences, and attribute declarations. New simple types are defined by
<xs:element> or <xs:attribute> in combination with <xs:simpleType>.

Table 5.2 XML Schema Elements Used to Construct Schema Models

ELEMENT NAME ELEMENT NAME ELEMENT NAME

xs:schema xs:complexType xs:complexContent

xs:simpleContent xs:extension xs:element

xs:group xs:all xs:choice

xs:sequence xs:any xs:anyAttribute

xs:attribute xs:attributeGroup xs:unique

xs:key xs:keyref xs:selector

xs:field xs:include xs:import

xs:redefine xs:notation

XML Schemas 165

422541 Ch05.qxd 6/19/03 10:10 AM Page 165

From another perspective, new XML schema models are defined in terms of
constraints. A constraint defines what can appear in a given language or doc-
ument. The two kinds of constraints are as follows:

Content model constraints. Define element types that can appear in a
document. They establish the vocabulary for an XML language and its
documents. They also describe the pattern of appearance—the number
and type of components, the order they appear in, and whether they are
required or optional. In that capacity, they also determine the grammar
of the language and documents.

Data type constraints. Describe the appearance and numbers of data types
that the schema will accept as valid—such as minOccurs, maxOccurs, use,
fixed, and default, which, when used with elements and attributes, govern
the frequency of appearance and data associated with the respective
components.

The development of XML Schema 1.0 brought no change to the definition of
well-formedness and only a slight change to the definition of validity. With
XML schemas, a valid document is any well-formed document that conforms
to its schema’s constraints.

The Logical Structure of a Sample XML Schema

Figure 5.1 shows a simple XML document, named gems_excerpt_62.xml,
alongside its respective DTD document. The content and structure of both
should be familiar. We’ve included the DTD here because it helps us to see the
types of components that the schema documents are modeling and to interpret
the schema declarations.

From the DTD document, you can see that its respective conforming or valid
XML documents will each have a root element type named <sg1:diamonds>
and that the root element, as a parent element, will contain at least one
sequence of child element types named <sg1:gem>, <sg2:mine>, and <sg1:cat-
alog>, indicated by the plus sign outside the parentheses containing those ele-
ment type names in the <sg1:diamonds> declaration. The <sg1:diamonds>
declaration also contains a list of attributes: two are namespace attributes—
xmlns:sg1 and xmlns:sg2—and the third is sg1:catPublish, which indicates
whether the <sg1:diamonds> data will be published in a catalog (the default is
apparently Y for yes).

166 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 166

Figure 5.1 A sample DTD and its conforming document.

DTD Document

<?xml version = "1.0" encoding="UTF-8"?>
<!-- filename: diamonds05.dtd - ->
<!ELEMENT sg1:diamonds (sg1:gem,sg2:mine,sg1:catalog)+>
<!ATTLIST sg1:diamonds

xmlns:sg1 CDATA #FIXED "http://www.SpaceGems.com/2047/gemdata"
xmlns:sg2 CDATA #FIXED "http://www.SpaceGems.com/2047/minedata">

<!ELEMENT sg1:gem (sg1:name,sg1:cost?,sg1:reserved?)+>
<!ELEMENT sg1:name (#PCDATA)>
<!ELEMENT sg1:cost (#PCDATA)>
<!ATTLIST sg1:cost

catPublish (Y | N) #IMPLIED "Y" >
<!ELEMENT sg1:reserved EMPTY >
<!ELEMENT sg2:mine (sg2:name,sg2:system,sg2:planet)+>
<!ELEMENT sg2:name (#PCDATA)>
<!ELEMENT sg2:system (#PCDATA)>
<!ELEMENT sg2:planet (#PCDATA)>
<!ELEMENT sg1:catalog (#PCDATA)>

Corresponding XML Document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds SYSTEM "diamonds05.dtd" >
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_62.xml -->
<sg1:diamonds xmlns:sg1="http://www.SpaceGems.com/gemdata"

xmlns:sg2="http://www.SpaceGems.com/minedata">
<sg1:gem>

<sg1:name>Smokey</sg1:name>
<sg1:cost sg1:catPublish="N">2,250,000</sg1:cost>
<sg1:reserved />

</sg1:gem>
<sg2:mine>

<sg2:name>Capitan Uno</sg2:name>
<sg2:region>Ursae Majoris 47</sg2:region>
<sg2:planet>UMa 47 F</sg2:planet>

</sg2:mine>
<sg1:catalog>Annual 2047</sg1:catalog>

</sg1:diamonds>

XML Schemas 167

422541 Ch05.qxd 6/19/03 10:10 AM Page 167

The <sg1:gem> element types will contain and be a parent element to
<sg1:name>, <sg1:cost>, and <sg1:reserved />. Thus, every time an <sg1:gem>
element occurs, it will contain one <sg1:name> element type and perhaps,
because the question marks after their names indicate that they are op-
tional, <sg1:cost> and <sg1:reserved /> element types, too. The <sg1:name>
and <sg1:cost> element types will contain parsed character data, whereas the
<sg1:reserved /> element type is declared empty.

The <sg2:mine> element type will contain a sequence of element types, too:
its own version of a <name> element called <sg2:name>, plus <sg2:system>
and <sg2:planet> element types. All these child element types will contain
parsed character data. The <sg1:catalog> element will simply contain parsed
character data.

We can see by the respective prefixes in the element tags that these various
element types belong to two namespaces. The existence of two namespaces
allows both the <sg1:gem> and <sg2:mine> element types to contain their own
respective versions of a <name> element.

The XML document in Figure 5.1 adheres to its DTD specifications. Figure
5.2 illustrates the result of converting the Figure 5.1 DTD to two simple XML
schema documents. It could easily have been converted to a single schema
document (and a simpler one to boot), but we want to show you how two
schema documents can work together. Note the .xsd extension at the end of the
documents’ respective filenames. The extension indicates that these files are
XML schema documents.

Let’s examine these documents in some detail.

The Prolog
The first two lines of each schema document are their respective prologs. By
now, you recognize the first lines as XML declarations. In a schema document,
the XML declaration is the only required prolog component. As with most
XML application documents, it should be the first line at the top of the docu-
ment; nothing should precede it. If you need to refresh your memory regard-
ing the XML declaration, please refer to Chapter 3, “Anatomy of an XML
Document.”

The second line in each document is a comment line. Although not essential,
each has probably been inserted by its author to indicate to a reader what
the respective schema documents are named (that is, gemdata.xsd and
minedata.xsd).

168 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 168

Fi
gu

re
 5

.2
An

 X
M

L
do

cu
m

en
t a

nd
 it

s
tw

o
co

rr
es

po
nd

in
g

sc
he

m
a

do
cu

m
en

ts
.

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
ge

m
da

ta
.x

sd
 -

->
<x

s:
sc

he
m

a
xm

ln
s:

xs
="

ht
tp

:/
/w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a"

xm
ln

s:
sg

1=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xm
ln

s:
sg

2=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
m

in
ed

at
a"

xm
ln

s:
xs

i=
"h

tt
p

:/
/w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a-

in
st

an
ce

"
xs

:t
ar

ge
tN

am
es

p
ac

e=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xs
:e

le
m

en
tF

or
m

D
ef

au
lt=

"q
ua

lif
ie

d"
 x

s:
at

tr
ib

ut
eF

or
m

D
ef

au
lt=

"q
ua

lif
ie

d"
 >

<x
s:

in
cl

ud
e

xs
i:s

ch
em

aL
oc

at
io

n=
"m

in
ed

at
a.

xs
d"

 /
>

<x
s:

el
em

en
t

na
m

e=
"s

g1
:d

ia
m

on
ds

">

<x
s:

co
m

p
le

xT
yp

e>

<x

s:
se

q
ue

nc
e

m
ax

O
cc

ur
s=

"u
nb

ou
nd

ed
">

<x

s:
el

em
en

t
re

f=
"s

g1
:g

em
"

/>

<x
s:

el
em

en
t

re
f=

"s
g2

:m
in

e"
 /

>

<x
s:

el
em

en
t

re
f=

"s
g1

:c
at

al
og

"
/>

</
xs

:s
eq

ue
nc

e>

<x

s:
at

tr
ib

ut
e

re
f=

"x
m

ln
s:

sg
1"

 fi
xe

d=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

/>

<x

s:
at

tr
ib

ut
e

re
f=

"x
m

ln
s:

sg
2"

 fi
xe

d=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
m

in
ed

at
a"

 /
>

<x
s:

at
tr

ib
ut

e
re

f=
"x

m
ln

s:
xs

i"
 fi

xe
d=

"h
tt

p
:/

/w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a-
in

st
an

ce
"

/>

</
xs

:c
om

p
le

xT
yp

e>
</

xs
:e

le
m

en
t>

<x
s:

el
em

en
t

na
m

e=
"s

g1
:g

em
">

<x

s:
co

m
p

le
xT

yp
e>

<x
s:

se
q

ue
nc

e
m

ax
O

cc
ur

s=
"u

nb
ou

nd
ed

">

<x
s:

el
em

en
t

na
m

e=
"s

g1
:n

am
e"

 t
yp

e=
"x

s:
st

rin
g"

 /
>

<x

s:
el

em
en

t
na

m
e=

"s
g1

:c
os

t"
 >

<x
s:

co
m

p
le

xT
yp

e
>

<x

s:
si

m
p

le
C

on
te

nt
 >

<x
s:

ex
te

ns
io

n
ba

se
="

xs
:s

tr
in

g"
 >

<x

s:
at

tr
ib

ut
e

na
m

e=
"c

at
Pu

bl
is

h"
 d

ef
au

lt=
"Y

"
>

<x
s:

si
m

p
le

Ty
p

e
>

<x

s:
re

st
ric

tio
n

ba
se

="
xs

:s
tr

in
g"

 >

<x

s:
en

um
er

at
io

n
va

lu
e=

"Y
"

>

<x

s:
en

um
er

at
io

n
va

lu
e=

"N
"

>

</
xs

:r
es

tr
ic

tio
n

>

</

xs
:s

im
p

le
Ty

p
e

>

</
xs

:a
tt

rib
ut

e
>

</
xs

:e
xt

en
si

on
 >

</

xs
:s

im
p

le
C

on
te

nt
 >

</
xs

:c
om

p
le

xT
yp

e
>

</

xs
:e

le
m

en
t

>

<x
s:

el
em

en
t

na
m

e=
"s

g1
:r

es
er

ve
d"

 m
in

O
cc

ur
s=

"0
"

 >

<x

s:
co

m
p

le
xT

yp
e

/>

</
xs

:e
le

m
en

t>

</

xs
:s

eq
ue

nc
e>

</

xs
:c

om
p

le
xT

yp
e>

</
xs

:e
le

m
en

t>
<x

s:
el

em
en

t
na

m
e=

"s
g1

:c
at

al
og

"
ty

p
e=

"x
s:

st
rin

g"
 /

>
</

xs
:s

ch
em

a>

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
m

in
ed

at
a.

xs
d

--
>

<x
s:

sc
he

m
a

xm
ln

s:
xs

="
ht

tp
:/

/w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a"
xm

ln
s:

sg
2=

"h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

m
in

ed
at

a"
xs

:e
le

m
en

tF
or

m
D

ef
au

lt=
"q

ua
lif

ie
d"

 x
s:

at
tr

ib
ut

eF
or

m
D

ef
au

lt=
"q

ua
lif

ie
d"

 >

<x
s:

el
em

en
t

na
m

e=
"s

g2
:m

in
e"

>

<x

s:
co

m
p

le
xT

yp
e>

<x

s:
se

q
ue

nc
e

m
ax

O
cc

ur
s=

"u
nb

ou
nd

ed
">

<x
s:

el
em

en
t

na
m

e=
"s

g2
:n

am
e"

ty
p

e=
"x

s:
st

rin
g"

 /
>

<x
s:

el
em

en
t

na
m

e=
"s

g2
:s

ys
te

m
"

ty
p

e=
"x

s:
st

rin
g"

 /
>

<x
s:

el
em

en
t

na
m

e=
"s

g2
:p

la
ne

t"
ty

p
e=

"x
s:

st
rin

g"
 /

>

</
xs

:s
eq

ue
nc

e>

</

xs
:c

om
p

le
xT

yp
e>

</

xs
:e

le
m

en
t>

</
xs

:s
ch

em
a>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

<?
xm

l v
er

si
on

="
1.

0"
 e

nc
od

in
g=

"U
TF

-8
"

st
an

da
lo

ne
="

no
"?

>
<?

xm
l-s

ty
le

sh
ee

t
ty

p
e=

"t
ex

t/
cs

s"
 h

re
f=

"d
ia

m
on

ds
2.

cs
s"

?>
<!

D
O

C
TY

PE
 d

ia
m

on
ds

 >
<!

--
 G

em
s

Ve
rs

io
n

2
-

Sp
ac

e
G

em
s,

 In
c.

 -
->

<!
--

 fi
le

na
m

e:
 g

em
s_

ex
ce

rp
t_

72
.x

m
l -

->
<s

g1
:d

ia
m

on
ds

 x
m

ln
s:

sg
1=

"h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

ge
m

da
ta

"

 x
m

ln
s:

sg
2=

"h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

m
in

ed
at

a"

 x
m

ln
s:

xs
i=

"h
tt

p
:/

/w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a-
in

st
an

ce
"

 x

si
:s

ch
em

aL
oc

at
io

n=
ht

tp
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

ge
m

da
ta

"

 h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

sc
he

m
as

/g
em

da
ta

.x
sd

">
<s

g1
:g

em
> <s

g1
:n

am
e>

Sm
ok

ey
</

sg
1:

na
m

e>
<s

g1
:c

os
t

ca
tP

ub
lis

h=
"N

">
2,

25
0,

00
0<

/s
g1

:c
os

t>
<s

g1
:r

es
er

ve
d

/>
</

sg
1:

ge
m

>
<s

g2
:m

in
e> <s

g2
:n

am
e>

C
ap

ita
n

U
no

</
sg

2:
na

m
e>

<s
g2

:r
eg

io
n>

U
rs

ae
 M

aj
or

is
 4

7<
/s

g2
:r

eg
io

n>
<s

g2
:p

la
ne

t>
U

M
a

47
 F

</
sg

2:
p

la
ne

t>
</

sg
2:

m
in

e>
<s

g1
:c

at
al

og
>A

nn
ua

l 2
04

7<
/s

g1
:c

at
al

og
>

</
sg

1:
di

am
on

ds
>

In
cl

u
d

ed
 X

M
L

Sc
h

em
a

D
o

cu
m

en
t

X
M

L
D

o
cu

m
en

t

M
ai

n
 X

M
L

Sc
h

em
a

D
o

cu
m

en
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

XML Schemas 169

422541 Ch05.qxd 6/19/03 10:10 AM Page 169

The <Schema> Element: Namespaces and
Qualified or Unqualified Locals
The third line of each schema, beginning with “<xs:schema...”, is the start tag
for the <schema> element, which is the first element of the schema data model
and is equivalent to the root element of an XML document. The <schema> ele-
ment is the parent element of all other elements in the schema document.

In the case of the gemdata.xsd schema, the <xs:schema ... > start tag also
includes several attribute specifications for the namespaces and the qualified
or unqualified local elements.

Namespace Declarations

In the <xs:schema...> start tag, the first namespace declaration is xmlns:
xs=”http://www.w3.org/2001/XMLSchema”. This tells the parser that, when
it encounters data types preceded by the prefix xs:, the meaning of those data
types will be identical to the definition found for them in the W3C Schema 1.0
Recommendation. Thus, they have standard definitions and so require no fur-
ther definition in this schema document before they are processed.

As a reminder, do not be misled or confused by references to URLs used in
namespaces; although URLs are readily identified as Web addresses, they are
simply used to add uniqueness to the names used in the schema.

The first namespace in the schema document is used, and the xs: prefix is
subsequently added to the XML schema-defined components, to easily iden-
tify those Schema 1.0 components. This makes it easier to keep track of them
among all the other schema document components being defined by the
designer.

In other schema-related textbooks, Web sites, and documents, the prefix
used for this first type of namespace is xsd. We use xs: because it is
specified by default by several DTD-to-schema conversion software
applications, including two we used during the preparation of this book. If
you read other references and encounter <xsd:schema> or similar, don’t
worry. It means the same thing to the parser. In fact, you could assign any
prefix, or not use one at all, as long as your choice is consistent between
the namespace and the component names.

Two more namespace declarations, whose prefixes are sg1: and sg2:, follow
the xs: namespace declaration in the gemdata.xsd document. However, just
the sg2: namespace declaration appears in the minedata.xsd document. Those
namespace declarations appear because various element types that begin with
those prefixes will be declared in each schema.

170 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 170

Another namespace declaration, whose prefix is xsi:, appears in gemdata.xsd.
It is discussed in the next section.

Target Namespaces

By now, we are familiar with the XML validation process, whereby a parser
attempts to validate an XML data instance document against the declarations
in its schema documents. But how will the parser know which schema docu-
ments to consult? A method must exist that tells the parser which schema doc-
ument to access. The concept of target namespaces provides that method.

Look at lines 8 through 10 of the gems_excerpt_72.xml XML document in
Figure 5.2. We’ve already briefly mentioned the namespace declaration
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” in line 8. It
tells the parser that when it sees any component that begins with the xsi: pre-
fix, the associated component is defined in what is called the XML Schema
instance namespace and requires no extra declaration to define it.

On line 9, we see the beginning of the two-value attribute called xsi:schema-
Location. Here, we’re introducing a component from the XML Schema instance
namespace; in fact, it’s the only one introduced in gemdata.xsd. Its first value
is http://www.SpaceGems.com/2047/gemdata, which is a target namespace.
When the parser reads this value, it knows that when it eventually encounters
a schema document that contains an attribute named targetNamespace, whose
value is identical to this URL, it will have found the appropriate schema
document.

On line 10 of the XML document, a URI/URL is provided to tell the parser
exactly where to go to find the schema document it needs.

Let’s review the gemdata.xsd schema document. On line 7, within the
<schema> element start tag, a targetNamespace attribute appears:

targetNamespace=”http://www.SpaceGems.com/2047/gemdata”

Once the parser reads this attribute, it knows that it has found the schema
document referred to in the XML document. The parser can then examine the
XML document and compare its components against the declarations in this
schema document.

The targetNamespace attribute is usually placed within the root <schema>
element, as it is here. However, this is not a universal rule or practice. Depend-
ing on the intent of the schema designer, the attribute specification may be
placed within any element declaration.

To recap: During the parsing and validating process, the parser examines
the XML instance document, reads the URI/URLs in the schemaLocation
attribute specification, and looks for the schema document whose <schema>
start tag contains the identical URI/URL specified as the value for its target-
Namespace attribute. This targeting process gives the process its name.

XML Schemas 171

422541 Ch05.qxd 6/19/03 10:10 AM Page 171

As an alternative to the combination of the xsi:schemaLocation and target-
Namespace attributes, we could use the following attribute in the XML
document:

xsi:noNamespaceSchemaLocation=

“http://www.SpaceGems.com/2047/schemas/gemdata.xsd”

The difference here is that this attribute provides the parser with the
URI/URL location of the appropriate schema document, but also tells the
parser that that document does not contain a targetNamespace attribute.

The minedata.xsd Document as a Support Schema

Although the examples and projects presented in this book are simple, typical
schemas in an e-commerce environment may actually use element types and
attributes from multiple schemas accessed via different namespace-related
methods. That’s why we split our sample schema declarations between two
schema documents: to show how a schema designer or author can create sev-
eral schema documents, all of which share a common umbrella namespace.

The main schema document (the gemdata.xsd document) will be specified
in the XML document, and the targetNamespace attribute in the main schema
document will correspond to that specification. But the main schema docu-
ment contains an additional element type, either:

“<xs:include schemaLocation=”nameOfSupportSchemaDoc.xsd”/>”

or

“<xs:import namespace=”http://www.SpaceGems.com”

schemaLocation=”nameOfSupportSchemaDoc.xsd”/>”

On line 9 of the gemdata.xsd main schema document, we provide the sim-
pler of the two element types, the <xs:include ...> element that tells the parser
to include minedata.xsd as an additional schema document. When the parser
encounters the element type, it reads the value of the schemaLocation attribute,
accesses that schema document, and treats it as a support schema. The declara-
tions in the included schema documents are added to those in the main schema
document, and they are all regarded as a combined schema model.

These combinations of schema documents can provide great flexibility in
design, but you must be diligent with regard to element type declarations. If
you examine an otherwise schemalike document (a document containing dec-
larations and an .xsd filename extension) and you don’t see a targetName-
space attribute, you may be looking at a support schema (also called a support
namespace or a chameleon namespace).

172 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 172

Global and Local References: Qualified and Unqualified Locals

Figure 5.3 is almost identical to Figure 5.2, but here we have emphasized dif-
ferent features. On line 8 of gemdata.xsd and on line 5 of minedata.xsd, within
the respective <schema> element tags, two attributes occur: elementForm-
Default and attributeFormDefault, both of whose values are specified as quali-
fied. Before we can explain the impact of these attribute specifications, a couple
of other concepts must be explained.

Element types or attributes declared within the extent of the <schema>
element type are called globally declared, global references, archetypes, or
globals. In Figure 5.3, <sg1:diamonds> (line 10 in gemdata.xsd), <sg1:gem>
(line 23 in gemdata.xsd), <sg2:mine> (line 6 in minedata.xsd), and <sg1:cata-
log> (line 34 in gemdata.xsd) are globally declared, as are the namespace
attributes represented by the prefixes xs:, sg1:, sg2:, and xsi:. These have been
italicized for emphasis, as have their respective elements and attributes in the
XML document on the left of Figure 5.3.

By contrast, local or locally declared schema elements and attributes are
those declared within the extent of child elements of the <schema> element. In
Figure 5.3, we have boldfaced the declarations for <sg1:name> (line 25 in gem-
data.xsd), <sg1:cost> (line 26 in gemdata.xsd), <sg1:reserved /> (lines 31 to 33
in gemdata.xsd), <sg2:name> (line 9 in minedata.xsd), <sg2:system> (line 10 in
minedata.xsd), and <sg2:planet> (line 11 in minedata.xsd), as well as the
sg1:catPublish attribute (line 28 in gemdata.xsd). Corresponding elements and
attributes in the XML document appear in bold on the left of Figure 5.3.

During the schema and document design phases, for various reasons, the
schema and document designers must decide whether they want the name-
space prefixes to be displayed (or exposed) in the tags of locally declared ele-
ments tags in their XML documents. Choosing to have the prefixes appear in
the tags qualifies the locally declared elements. When prefixes appear, these
tags have “exposed the identity” of the namespaces pertaining to those local
element types.

Whatever their decision, the designers then incorporate the element-
FormDefault and attributeFormDefault attributes into their schema docu-
ments, as a sort of binary on/off switch to illustrate their choice. Only two
options are available for either attribute: qualified or unqualified. If the value
is specified as qualified, the prefixes appear in the tags of the local elements in
the XML documents (the global elements are unaffected). The value for both
has been specified as qualified in line 8 of gemdata.xsd and in line 5 of mine-
data.xsd (the values don’t have to be identical in multiple schema documents,
incidentally). So, in the XML document in Figure 5.3, we see that the prefixes
appear in the tags for the locally declared elements (those elements have been
bolded for emphasis).

XML Schemas 173

422541 Ch05.qxd 6/19/03 10:10 AM Page 173

Fi
gu

re
 5

.3
G

lo
ba

lly
 a

nd
 lo

ca
lly

 d
ec

la
re

d
co

m
po

ne
nt

s.

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
ge

m
da

ta
.x

sd
 -

->
<x

s:
sc

he
m

a
xm

ln
s:

xs
="

ht
tp

:/
/w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a"

xm
ln

s:
sg

1=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xm
ln

s:
sg

2=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
m

in
ed

at
a"

xm
ln

s:
xs

i=
"h

tt
p

:/
/w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a-

in
st

an
ce

"
xs

:t
ar

ge
tN

am
es

p
ac

e=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xs
:e

le
m

en
tF

or
m

D
ef

au
lt=

"q
ua

lif
ie

d"
 x

s:
at

tr
ib

ut
eF

or
m

D
ef

au
lt=

"q
ua

lif
ie

d"
 >

<x
s:

in
cl

ud
e

xs
i:s

ch
em

aL
oc

at
io

n=
"m

in
ed

at
a.

xs
d"

 /
>

<
xs

:e
le

m
en

t
na

m
e=

"s
g1

:d
ia

m
on

ds
">

<

xs
:c

om
pl

ex
Ty

pe
>

<
xs

:s
eq

ue
nc

e
m

ax
O

cc
ur

s=
"u

nb
ou

nd
ed

">

<
xs

:e
le

m
en

t
re

f=
"s

g1
:g

em
"

/>

<
xs

:e
le

m
en

t
re

f=
"s

g2
:m

in
e"

 /
>

<

xs
:e

le
m

en
t

re
f=

"s
g1

:c
at

al
og

"
/>

<
/x

s:
se

qu
en

ce
>

<
xs

:a
tt

rib
ut

e
re

f=
"x

m
ln

s:
sg

1"
 fi

xe
d=

"h
tt

p:
//

w
w

w
.S

pa
ce

G
em

s.
co

m
/2

04
7/

ge
m

da
ta

"
/>

<
xs

:a
tt

rib
ut

e
re

f=
"x

m
ln

s:
sg

2"
 fi

xe
d=

"h
tt

p:
//

w
w

w
.S

pa
ce

G
em

s.
co

m
/2

04
7/

m
in

ed
at

a"
 /

>

<

xs
:a

tt
rib

ut
e

re
f=

"x
m

ln
s:

xs
i"

fix
ed

=
"h

tt
p:

//
w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a-

in
st

an
ce

"
/>

<

/x
s:

co
m

pl
ex

Ty
pe

>
<

/x
s:

el
em

en
t>

<
xs

:e
le

m
en

t
na

m
e=

"s
g1

:g
em

">

<
xs

:c
om

pl
ex

Ty
pe

>

<

xs
:s

eq
ue

nc
e

m
ax

O
cc

ur
s=

"u
nb

ou
nd

ed
">

 <

x
s:

el
em

en
t

n
am

e=
"s

g
1
:n

am
e"

 t
yp

e=
"x

s:
st

ri
n

g
"

/>

 <

x
s:

el
em

en
t

n
am

e=
"s

g
1
:c

o
st

"
>

<
x
s:

co
m

p
le

x
Ty

p
e

>

 <

x
s:

si
m

p
le

C
o

n
te

n
t

>

<
x
s:

ex
te

n
si

o
n

 b
as

e=
"x

s:
st

ri
n

g
"

>

 <

x
s:

at
tr

ib
u

te
 n

am
e=

"c
at

P
u

b
li

sh
"

d
ef

au
lt

=
"Y

"
>

<
x
s:

si
m

p
le

Ty
p

e
>

 <

x
s:

re
st

ri
ct

io
n

 b
as

e=
"x

s:
st

ri
n

g
"

>

<
x
s:

en
u

m
er

at
io

n
 v

al
u

e=
"Y

"
>

<
x
s:

en
u

m
er

at
io

n
 v

al
u

e=
"N

"
>

 <

/x
s:

re
st

ri
ct

io
n

 >

<
/x

s:
si

m
p

le
Ty

p
e

>

 <

/x
s:

at
tr

ib
u

te
 >

<
/x

s:
ex

te
n

si
o

n
 >

 <

/x
s:

si
m

p
le

C
o

n
te

n
t

>

<
/x

s:
co

m
p

le
x
Ty

p
e

>

 <

/x
s:

el
em

en
t

>

 <

x
s:

el
em

en
t

n
am

e=
"s

g
1
:r

es
er

ve
d

"
m

in
O

cc
u

rs
=
"0

"
 >

<
x
s:

co
m

p
le

x
Ty

p
e

/>

 <

/x
s:

el
em

en
t>

<
/x

s:
se

qu
en

ce
>

<

/x
s:

co
m

pl
ex

Ty
pe

>
<

/x
s:

el
em

en
t>

<
xs

:e
le

m
en

t
na

m
e=

"s
g1

:c
at

al
og

"
ty

pe
=

"x
s:

st
rin

g"
 /

>
<

/x
s:

sc
he

m
a>

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
m

in
ed

at
a.

xs
d

--
>

<x
s:

sc
he

m
a

xm
ln

s:
xs

="
ht

tp
:/

/w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a"
xm

ln
s:

sg
2=

"h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

m
in

ed
at

a"
xs

:e
le

m
en

tF
or

m
D

ef
au

lt=
"q

ua
lif

ie
d"

 x
s:

at
tr

ib
ut

eF
or

m
D

ef
au

lt=
"q

ua
lif

ie
d"

 >

<
xs

:e
le

m
en

t
na

m
e=

"s
g2

:m
in

e"
>

<
xs

:c
om

pl
ex

Ty
pe

>

<
xs

:s
eq

ue
nc

e
m

ax
O

cc
ur

s=
"u

nb
ou

nd
ed

">

<
x
s:

el
em

en
t

n
am

e=
"s

g
2
:n

am
e"

ty
p

e=
"x

s:
st

ri
n

g
"

/>

<
x
s:

el
em

en
t

n
am

e=
"s

g
2
:s

ys
te

m
"

ty
p

e=
"x

s:
st

ri
n

g
"

/>

<
x
s:

el
em

en
t

n
am

e=
"s

g
2
:p

la
n

et
"

ty
p

e=
"x

s:
st

ri
n

g
"

/>

<
/x

s:
se

qu
en

ce
>

<
/x

s:
co

m
pl

ex
Ty

pe
>

<

/x
s:

el
em

en
t>

<
/x

s:
sc

he
m

a>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

<?
xm

l v
er

si
on

="
1.

0"
 e

nc
od

in
g=

"U
TF

-8
"

st
an

da
lo

ne
="

no
"?

>
<?

xm
l-s

ty
le

sh
ee

t
ty

p
e=

"t
ex

t/
cs

s"
 h

re
f=

"d
ia

m
on

ds
2.

cs
s"

?>
<!

D
O

C
TY

PE
 d

ia
m

on
ds

 >
<!

--
 G

em
s

Ve
rs

io
n

2
-

Sp
ac

e
G

em
s,

 In
c.

 -
->

<!
--

 fi
le

na
m

e:
 g

em
s_

ex
ce

rp
t_

72
.x

m
l -

->
<

sg
1:

di
am

on
ds

 x
m

ln
s:

sg
1=

"h
tt

p:
//

w
w

w
.S

pa
ce

G
em

s.
co

m
/2

04
7/

ge
m

da
ta

"

 x
m

ln
s:

sg
2=

"h
tt

p:
//

w
w

w
.S

pa
ce

G
em

s.
co

m
/2

04
7/

m
in

ed
at

a"

 x
m

ln
s:

xs
i=

"h
tt

p:
//

w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a-
in

st
an

ce
"

 x

si
:s

ch
em

aL
oc

at
io

n=
ht

tp
:/

/w
w

w
.S

pa
ce

G
em

s.
co

m
/2

04
7/

ge
m

da
ta

"

 h
tt

p:
//

w
w

w
.S

pa
ce

G
em

s.
co

m
/2

04
7/

sc
he

m
as

/g
em

da
ta

.x
sd

">
<

sg
1:

ge
m

> <
sg

1
:n

am
e>

Sm
o

k
ey

<
/s

g
1
:n

am
e>

<
sg

1
:c

o
st

 s
g

1
:c

at
P

u
b

li
sh

=
"N

">
2
,2

5
0
,0

0
0
<
/s

g
1
:c

o
st

>
<
sg

1
:r

es
er

ve
d

 /
>

<
/s

g1
:g

em
>

<
sg

2:
m

in
e> <

sg
2
:n

am
e>

C
ap

it
an

 U
n

o
<
/s

g
2
:n

am
e>

<
sg

2
:r

eg
io

n
>
U

rs
ae

 M
aj

o
ri

s
4
7
<
/s

g
2
:r

eg
io

n
>

<
sg

2
:p

la
n

et
>
U

M
a

4
7
 F

<
/s

g
2
:p

la
n

et
>

<
/s

g2
:m

in
e>

<
sg

1:
ca

ta
lo

g>
An

nu
al

 2
04

7<
/s

g1
:c

at
al

og
>

<
/s

g1
:d

ia
m

on
ds

>

In
cl

u
d

ed
 X

M
L

Sc
h

em
a

D
o

cu
m

en
t

X
M

L
D

o
cu

m
en

t

M
ai

n
 X

M
L

Sc
h

em
a

D
o

cu
m

en
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

174 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 174

Figure 5.4 Unqualified locals.

If the values of the elementFormDefault and attributeFormDefault attrib-
utes are unqualified, the XML document may resemble Figure 5.4. There, the
sg1: and sg2: prefixes do not appear. The document is cleaner looking and
requires fewer keystrokes to create. Figure 5.4 illustrates how, using schemas,
you can create identical context-sensitive tags. For example, <name> looks iden-
tical in the both the <gem> and <mine> element types in the same document,
but the difference appears in the respective declarations in the schema model
documents. However, the globally declared element types remain unaffected.

Element Type Declarations

The discussion in this section revolves around Figure 5.5, which depicts the
XML document named gems_excerpt_72.xml (referred to as “the XML docu-
ment”), the top portion of the corresponding schema document named gem-
data.xsd, and the corresponding DTD document named diamonds05.dtd. The

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="diamonds2.css"?>
<!DOCTYPE diamonds >
<!-- Gems Version 2 - Space Gems, Inc. -->
<!-- filename: gems_excerpt_82.xml -->
<sg1:diamonds xmlns:sg1="http://www.SpaceGems.com/2047/gemdata"
 xmlns:sg2="http://www.SpaceGems.com/2047/minedata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=http://www.SpaceGems.com/2047/gemdata"
 http://www.SpaceGems.com/2047/schemas/gemdata.xsd" >

<sg1:gem>
<name>Smokey</name>
<cost catPublish="N"> 2,250,000</cost>
<reserved />

</sg1:gem>
<sg2:mine>

<name>Capitan Uno</name>
<region>Ursae Majoris 47</region>
<planet>UMa 47 F</planet>

</sg2:mine>
<sg1:catalog> Annual 2047</sg1:catalog>

</sg1:diamonds>

XML Schemas 175

422541 Ch05.qxd 6/19/03 10:10 AM Page 175

DTD will not be used as the document model for the XML document, but is pre-
sented here because it is useful for illustrating, by comparison, some schema
concepts we’ll discuss. Meanwhile, lines 6 through 15 in the XML document
illustrate several different types of elements.

The <sg1:diamonds> Element Declaration:
Complex Data Types
The first element type, <sg1:diamonds> is the XML document’s root element,
the parent element for the document’s actual data instance. Figure 5.5 illus-
trates <sg1:diamonds> in its XML document, as well as in its corresponding
DTD and schema. Lines 10 through 24 of the gemdata.xsd schema document
provide the model for <sg1:diamonds>. Line 10 provides its name. Often, ele-
ment types only require a single-line declaration. However, since <sg1:dia-
monds> contains other element types, it is called a complex data type (or
complex content type), and it requires an <xs:complexType> element to com-
plete the element type declaration.

To repeat what we said earlier, complex data types are element types that
contain other element types, attributes, or both. Simple data types contain no
attributes or child elements, just character data. Attribute specifications are
typically simple types.

The <xs:complexType> element in Line 11 indicates the beginning of the
definition for the <sg1:diamonds> complex data type.

In line 3 of the DTD document, we see that <sg1:diamonds> must be com-
posed of a sequence of three other element types: <sg1:gem>, <sg2:mine>, and
<sg1:catalog>, and because of the plus sign in the names of those elements,
every <sg1:diamonds> element type must contain that sequence, in that order.
The plus sign indicates the cardinality of the sequence—the number of times
the sequence may occur in the related XML documents. It indicates that the
sequence must occur at least once, but that there is no limit to the number of
times it may occur.

Line 12 in the gemdata.xsd schema document starts the sequence declaration.
The <xs:sequence ...> element is called a compositor (discussed later in the
Compositor section). It tells the parser that the complex data type <sg1:diamonds>
contains a sequence of element types. As we create a plus-sign equivalent
instruction in the schema, we would normally substitute the appropriate
schema attributes to indicate the cardinality of the sequence: minOccurs (the
minimum number of occurrences) and maxOccurs (the maximum number of
occurrences). A specification for maxOccurs is present, but minOccurs has not
been specified because there is no need for it here. The plus sign in the DTD
indicated “at least once” and minOccurs’ default value is once.

176 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 176

Fi
gu

re
 5

.5
Th

e
<

sg
1:

di
am

on
ds

>
 e

le
m

en
t d

ec
la

ra
tio

n.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
ge

m
da

ta
.x

sd
 -

->
<x

s:
sc

he
m

a
xm

ln
s:

xs
="

ht
tp

:/
/w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a"

xm
ln

s:
sg

1=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xm
ln

s:
sg

2=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
m

in
ed

at
a"

xm
ln

s:
xs

i=
"h

tt
p

:/
/w

w
w

.w
3.

or
g/

20
01

/X
M

LS
ch

em
a-

in
st

an
ce

"
xs

:t
ar

ge
tN

am
es

p
ac

e=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xs
:e

le
m

en
tF

or
m

D
ef

au
lt=

"q
ua

lif
ie

d"
 x

s:
at

tr
ib

ut
eF

or
m

D
ef

au
lt=

"q
ua

lif
ie

d"
 >

<x
s:

in
cl

ud
e

xs
i:s

ch
em

aL
oc

at
io

n=
"m

in
ed

at
a.

xs
d"

 /
>

<
x
s:

el
em

en
t

n
am

e=
"s

g
1
:d

ia
m

o
n

d
s"

>

 <

x
s:

co
m

p
le

x
Ty

p
e>

<
x
s:

se
q

u
en

ce
 m

ax
O

cc
u

rs
=
"u

n
b

o
u

n
d

ed
">

 <

x
s:

el
em

en
t

re
f=

"s
g

1
:g

em
"

/>

 <

x
s:

el
em

en
t

re
f=

"s
g

2
:m

in
e"

 /
>

 <

x
s:

el
em

en
t

re
f=

"s
g

1
:c

at
al

o
g

"
/>

<
/x

s:
se

q
u

en
ce

>

<
x
s:

at
tr

ib
u

te
 r

ef
=
"x

m
ln

s:
sg

1
"

fi
x
ed

=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/g

em
d

at
a"

 /
>

<
x
s:

at
tr

ib
u

te
 r

ef
=
"x

m
ln

s:
sg

2
"

fi
x
ed

=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/m

in
ed

at
a"

 /
>

<
x
s:

at
tr

ib
u

te
 r

ef
=
"x

m
ln

s:
x
si

"
fi

x
ed

=
"h

tt
p

:/
/w

w
w

.w
3
.o

rg
/2

0
0
1
/X

M
LS

ch
em

a-
in

st
an

ce
"

/>

 <

/x
s:

co
m

p
le

x
Ty

p
e>

<
/x

s:
el

em
en

t>
<x

s:
el

em
en

t
na

m
e=

"s
g1

:g
em

">

<x
s:

co
m

p
le

xT
yp

e>

<x

s:
se

q
ue

nc
e

m
ax

O
cc

ur
s=

"u
nb

ou
nd

ed
">

.
.
.

<?
xm

l v
er

si
on

="
1.

0"
 e

nc
od

in
g=

"U
TF

-8
"

st
an

da
lo

ne
="

no
"?

>
<?

xm
l-s

ty
le

sh
ee

t
ty

p
e=

"t
ex

t/
cs

s"
 h

re
f=

"d
ia

m
on

ds
2.

cs
s"

?>
<!

D
O

C
TY

PE
 d

ia
m

on
ds

 >
<!

--
 G

em
s

Ve
rs

io
n

2
-

Sp
ac

e
G

em
s,

 In
c.

 -
->

<!
--

 fi
le

na
m

e:
 g

em
s_

ex
ce

rp
t_

72
.x

m
l -

->
<
sg

1
:d

ia
m

o
n

d
s

x
m

ln
s:

sg
1
=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/g

em
d

at
a"

 x

m
ln

s:
sg

2
=
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/m

in
ed

at
a"

 x

m
ln

s:
x
si

=
"h

tt
p

:/
/w

w
w

.w
3
.o

rg
/2

0
0
1
/X

M
LS

ch
em

a-
in

st
an

ce
"

 x

si
:s

ch
em

aL
o

ca
ti

o
n

=
h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/g

em
d

at
a"

h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/s

ch
em

as
/g

em
d

at
a.

x
sd

">
<
sg

1
:g

em
> <

sg
1
:n

am
e>

Sm
o

k
ey

<
/s

g
1
:n

am
e>

<
sg

1
:c

o
st

 c
at

P
u

b
li

sh
=
"N

">
2
,2

5
0
,0

0
0
<
/s

g
1
:c

o
st

>
<
sg

1
:r

es
er

ve
d

 /
>

<
/s

g
1
:g

em
>

<
sg

2
:m

in
e> <

sg
2
:n

am
e>

C
ap

it
an

 U
n

o
<
/s

g
2
:n

am
e>

<
sg

2
:r

eg
io

n
>
U

rs
ae

 M
aj

o
ri

s
4
7
<
/s

g
2
:r

eg
io

n
>

<
sg

2
:p

la
n

et
>
U

M
a

4
7
 F

<
/s

g
2
:p

la
n

et
>

<
/s

g
2
:m

in
e>

<
sg

1
:c

at
al

o
g

>
A

n
n

u
al

 2
0
4
7
<
/s

g
1
:c

at
al

o
g

>
<
/s

g
1
:d

ia
m

o
n

d
s>

X
M

L
D

o
cu

m
en

t

M
ai

n
 X

M
L

Sc
h

em
a

D
o

cu
m

en
t

D
T

D
 D

o
cu

m
en

t

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
 d

ia
m

on
ds

05
.d

td
 -

 -
>

<
!E

LE
M

EN
T

 s
g

1
:d

ia
m

o
n

d
s

 (

sg
1
:g

em
,s

g
2
:m

in
e,

sg
1
:c

at
al

o
g

)+
>

<
!A

T
T

LI
ST

 s
g

1
:d

ia
m

o
n

d
s

x
m

ln
s:

sg
1
 C

D
A

TA
 #

FI
X

ED
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
0
4
7
/g

em
d

at
a"

x
m

ln
s:

sg
2
 C

D
A

TA
 #

FI
X

ED
 "

h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

0
4
7
/m

in
ed

at
a"

>
<!

EL
EM

EN
T

sg
1:

ge
m

(s
g1

:n
am

e,
sg

1:
co

st
?,

sg
1:

re
se

rv
ed

?)
+>

<!
EL

EM
EN

T
sg

1:
na

m
e

(#
PC

D
AT

A
)>

<!
EL

EM
EN

T
sg

1:
co

st
(#

PC
D

AT
A

)>
<!

AT
TL

IS
T

sg
1:

co
st

ca
tP

ub
lis

h
 (

 Y
 |

N
)

 #
IM

PL
IE

D
 "

Y"
 >

<!
EL

EM
EN

T
sg

1:
re

se
rv

ed

 E
M

PT
Y

 >
<!

EL
EM

EN
T

sg
2:

m
in

e
(s

g2
:n

am
e,

sg
2:

sy
st

em
,s

g2
:p

la
ne

t)
+>

<!
EL

EM
EN

T
sg

2:
na

m
e

(#
PC

D
AT

A
)>

<!
EL

EM
EN

T
sg

2:
sy

st
em

(#
PC

D
AT

A
)>

<!
EL

EM
EN

T
sg

2:
p

la
ne

t
(#

PC
D

AT
A

)>
<!

EL
EM

EN
T

sg
1:

ca
ta

lo
g

(#
PC

D
AT

A
)>

XML Schemas 177

422541 Ch05.qxd 6/19/03 10:10 AM Page 177

The default value for maxOccurs is also once, but since the sequence is spec-
ified to occur at least once, the default value would be insufficient. So the value
of maxOccurs has been specified as “unbounded” for its maximum occurrence
value (otherwise, the value for maxOccurs’ specifications could be any posi-
tive integer). Unbounded indicates the schema designer’s intent that the
sequence can occur as many times as the document author wants.

Lines 13 through 15 tell the parser which three element types compose the
<sg1:diamonds> sequence. In this case, all three element types are globally
declared, so the <xs:element ...> declarations contain the reference attribute
ref=”elementtypename”, which tells the parser to look for globally declared
definitions within the extent of the <xs:schema> element, where their defini-
tions are actually declared, and not here.

At points like this, the designer always has a choice of whether to provide
local declarations here, or to create global declarations under the <xs:schema ...>
element and then provide references to them here. We chose the latter strategy.

The elements <sg1:gem>, <sg1:mine>, and <sg1:catalog> will only occur
once for each time an <sg1:diamonds> element appears. Their default
minOccurs=”1” and maxOccurs=”1” values are sufficient. Although you
could specify values for minOccurs and maxOccurs for those element
types, it is not necessary to do so.

Line 16 signals the end of the definition of the sequence of element types.
Lines 17 through 19 define the three namespace attributes. Here, the “ref=”
indicates that these definitions are also globally declared. In this case, they are
found within the <xs:schema ...> start tag. This is the customary approach to
declaring namespaces. Line 20 signals the end of the complex data type defi-
nition; line 21, the end of the <sg1:diamonds> element type definition.

The <sg1:gem> Element Declaration
Lines 22 through 47 define and declare the various components within the
<sg1:gem> element type. These lines are depicted in the XML schema docu-
ment in Figure 5.6.

Like <sg1:diamonds>, <sg1:gem> is a complex data type. As you can see
from line 9 of the DTD document, any <sg1:gem> element type must also con-
tain a sequence of its own: a mandatory <sg1:name> element and two optional
elements, <sg1:cost> and <sg1:reserved>. Lines 10 through 13 of the DTD doc-
ument tell you that: <sg1:name> and <sg1:cost> are element types that will
contain parsed character data. In addition to data, <sg1:cost> will contain the
catPublish attribute, for which an author may (the use of catPublish is not
required) specify a “Y” or “N” value; otherwise, the parser will presume the
default value “Y”. Line 14 declares that the <sg1:reserved /> element type
is empty.

178 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 178

Fi
gu

re
 5

.6
Th

e
<

sg
1:

ge
m

>
 e

le
m

en
t d

ec
la

ra
tio

n.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

<?
xm

l v
er

si
on

="
1.

0"
 e

nc
od

in
g=

"U
TF

-8
"

st
an

da
lo

ne
="

no
"?

>
<?

xm
l-s

ty
le

sh
ee

t
ty

p
e=

"t
ex

t/
cs

s"
 h

re
f=

"d
ia

m
on

ds
2.

cs
s"

?>
<!

D
O

C
TY

PE
 d

ia
m

on
ds

 >
<!

--
 G

em
s

Ve
rs

io
n

2
-

Sp
ac

e
G

em
s,

 In
c.

 -
->

<!
--

 fi
le

na
m

e:
 g

em
s_

ex
ce

rp
t_

72
.x

m
l -

->
<s

g1
:d

ia
m

on
ds

 x
m

ln
s:

sg
1=

"h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

ge
m

da
ta

"

 x
m

ln
s:

sg
2=

"h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

m
in

ed
at

a"

 x
m

ln
s:

xs
i=

"h
tt

p
:/

/w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a-
in

st
an

ce
"

 x

si
:s

ch
em

aL
oc

at
io

n=
ht

tp
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

ge
m

da
ta

"

 h
tt

p
:/

/w
w

w
.S

p
ac

eG
em

s.
co

m
/2

04
7/

sc
he

m
as

/g
em

da
ta

.x
sd

">
<
sg

1
:g

em
> <

sg
1
:n

am
e>

Sm
o

k
ey

<
/s

g
1
:n

am
e>

<
sg

1
:c

o
st

 c
at

P
u

b
li

sh
=
"N

">
2
,2

5
0
,0

0
0
<
/s

g
1
:c

o
st

>
<
sg

1
:r

es
er

ve
d

 /
>

<
/s

g
1
:g

em
>

<s
g2

:m
in

e>
<s

g2
:n

am
e>

C
ap

ita
n

U
no

</
sg

2:
na

m
e>

<s
g2

:r
eg

io
n>

U
rs

ae
 M

aj
or

is
 4

7<
/s

g2
:r

eg
io

n>
<s

g2
:p

la
ne

t>
U

M
a

47
 F

</
sg

2:
p

la
ne

t>
</

sg
2:

m
in

e>
<s

g1
:c

at
al

og
>A

nn
ua

l 2
04

7<
/s

g1
:c

at
al

og
>

</
sg

1:
di

am
on

ds
>

X
M

L
D

o
cu

m
en

t

M
ai

n
 X

M
L

Sc
h

em
a

D
o

cu
m

en
t

"g
em

d
at

a.
x
sd

"

D
T

D
 D

o
cu

m
en

t

<?
xm

l v
er

si
on

 =
 "

1.
0"

 e
nc

od
in

g=
"U

TF
-8

"?
>

<!
--

 fi
le

na
m

e:
 d

ia
m

on
ds

05
.d

td
 -

 -
>

<!
EL

EM
EN

T
sg

1:
di

am
on

ds

(s

g1
:g

em
,s

g2
:m

in
e,

sg
1:

ca
ta

lo
g)

+>
<!

AT
TL

IS
T

sg
1:

di
am

on
ds

xm
ln

s:
sg

1
C

D
AT

A
 #

FI
X

ED
"h

tt
p

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
ge

m
da

ta
"

xm
ln

s:
sg

2
C

D
AT

A
 #

FI
X

ED
 "

ht
tp

:/
/w

w
w

.S
p

ac
eG

em
s.

co
m

/2
04

7/
m

in
ed

at
a"

>
<
!E

LE
M

EN
T

 s
g

1
:g

em
(s

g
1
:n

am
e,

sg
1
:c

o
st

?,
sg

1
:r

es
er

ve
d

?)
+
>

<
!E

LE
M

EN
T

 s
g

1
:n

am
e

(#
P

C
D

A
TA

)>
<
!E

LE
M

EN
T

 s
g

1
:c

o
st

(#
P

C
D

A
TA

)>
<
!A

T
T

LI
ST

 s
g

1
:c

o
st

ca
tP

u
b

li
sh

 (

 Y
 |

 N
)

#
IM

P
LI

ED
 "

Y
"

>
<
!E

LE
M

EN
T

 s
g

1
:r

es
er

ve
d

EM

P
T

Y

>

<!
EL

EM
EN

T
sg

2:
m

in
e

(s
g2

:n
am

e,
sg

2:
sy

st
em

,s
g2

:p
la

ne
t)

+>
<!

EL
EM

EN
T

sg
2:

na
m

e
(#

PC
D

AT
A

)>
<!

EL
EM

EN
T

sg
2:

sy
st

em
(#

PC
D

AT
A

)>
<!

EL
EM

EN
T

sg
2:

p
la

ne
t

(#
PC

D
AT

A
)>

<!
EL

EM
EN

T
sg

1:
ca

ta
lo

g
(#

PC
D

AT
A

)>

... <
x
s:

el
em

en
t

n
am

e=
"s

g
1
:g

em
">

 <

x
s:

co
m

p
le

x
Ty

p
e>

<
x
s:

se
q

u
en

ce
 m

ax
O

cc
u

rs
=
"u

n
b

o
u

n
d

ed
">

 <

x
s:

el
em

en
t

n
am

e=
"s

g
1
:n

am
e"

 t
yp

e=
"x

s:
st

ri
n

g
"

/>

 <

x
s:

el
em

en
t

n
am

e=
"s

g
1
:c

o
st

"
>

<
x
s:

co
m

p
le

x
Ty

p
e

>

 <

x
s:

si
m

p
le

C
o

n
te

n
t

>

<
x
s:

ex
te

n
si

o
n

 b
as

e=
"x

s:
st

ri
n

g
"

>

 <

x
s:

at
tr

ib
u

te
 n

am
e=

"c
at

P
u

b
li

sh
"

d
ef

au
lt

=
"Y

"
>

<
x
s:

si
m

p
le

Ty
p

e
>

 <

x
s:

re
st

ri
ct

io
n

 b
as

e=
"x

s:
st

ri
n

g
"

>

<
x
s:

en
u

m
er

at
io

n
 v

al
u

e=
"Y

"
>

<
x
s:

en
u

m
er

at
io

n
 v

al
u

e=
"N

"
>

 <

/x
s:

re
st

ri
ct

io
n

 >

<
/x

s:
si

m
p

le
Ty

p
e

>

 <

/x
s:

at
tr

ib
u

te
 >

<
/x

s:
ex

te
n

si
o

n
 >

 <

/x
s:

si
m

p
le

C
o

n
te

n
t

>

<
/x

s:
co

m
p

le
x
Ty

p
e

>

 <

/x
s:

el
em

en
t

>

 <

x
s:

el
em

en
t

n
am

e=
"s

g
1
:r

es
er

ve
d

"
m

in
O

cc
u

rs
=
"0

"
 >

<
x
s:

co
m

p
le

x
Ty

p
e

/>

 <

/x
s:

el
em

en
t>

<
/x

s:
se

q
u

en
ce

>

 <

/x
s:

co
m

p
le

x
Ty

p
e>

<
/x

s:
el

em
en

t>
<x

s:
el

em
en

t
na

m
e=

"s
g1

:c
at

al
og

"
ty

p
e=

"x
s:

st
rin

g"
 /

>
</

xs
:s

ch
em

a>

XML Schemas 179

422541 Ch05.qxd 6/19/03 10:10 AM Page 179

In the gemdata.xsd schema document, line 22 identifies the beginning of the
<sg1:gem> element type and line 23 marks the beginning of the definition of
<sg1:gem> as a complex data type. Line 24 indicates the beginning of the
sequence of components to be included in <sg1:gem>. Similar to the sequence
in <sg1:diamonds>, no limit is set on the number of sequences that can be
included in an <sg1:gem> element type.

The designer has chosen to provide a single-line local declaration here for
the <sg1:name> element type. You can tell it is locally declared by the presence
of the name=”sg1:name” attribute specification (a global component would
contain a “ref=” attribute). The type=”xs:string” attribute indicates to the
parser that the content of the element type will be a string of text characters, as
defined in the Schema 1.0 Recommendation.

The <sg1:cost> element type is a complex data type, too. Although it will not
contain any child element types, it will contain an attribute specification.
However, line 28 labels <sg1:cost> as a simple content element, since, as an
element type, it will contain no child elements, only character data.

To add an attribute to a simple content element, the schema designer must
create an extension to the element. Line 29 advises the parser that an extension
will be created but doesn’t yet state the nature of the extension. That instruction
comes in line 30, where the parser is advised that an attribute named catPublish
is to be included. The value of this attribute may be specified by the document
author, but if it isn’t specified, then the “Y” default value will prevail. Since the
attribute’s name, catPublish, does not have an xs: prefix, it is not defined in the
XML Schema Recommendation. Thus, a definition must be provided.

By line 13, the DTD seems to be more complete in its definition. Here the
DTD explicitly states that catPublish is #IMPLIED, meaning a document
author may, but doesn’t necessarily have to, provide a value for the attribute.
The schema document, however, doesn’t explicitly state that. That’s how it
works: If it doesn’t say use=”required” in the schema’s attribute declaration,
then providing a value is left to the document author. If it does say
use=”required”, this is the schema equivalent of the DTD’s #REQUIRED
specification.

The values we can specify for the use= attribute are as follows:

Required. A value for the attribute must be specified in a valid XML doc-
ument.

Optional. The attribute does not have to appear; whether it does, and
any specification for its value, is left to the XML document author.

Fixed. The attribute’s value is fixed; when use=”fixed” appears in the
schema document, another attribute named value=”xxx” must follow it
and the schema designer must substitute the fixed value for the xxx.

Because the catPublish attribute is going to be slightly customized, it must
be defined for the parser. Line 31 indicates that <sg1:cost>’s catPublish

180 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 180

attribute will be a simple data type as expected. But because the designer
wants to restrict the choices that the document author will have with respect to
the attribute values, a restriction is imposed on the normal character string in
line 32.

The restriction is defined in lines 33 and 34: The <xs:enumeration ...> decla-
rations say that the allowed text strings will be restricted to either a Y (from
line 33) or an N (from line 34).

From the <xs:enumeration> tag, we recognize that the term is defined in the
XML Schema Recommendation. The enumeration is a data type called a facet
(discussed in more detail later). It is used here to specify the values from which
we can choose whether to publish information in a merchandise catalog.

It’s worth mentioning that the <xs:extension ...> and <xs:restriction ...> decla-
rations both indicate a certain amount of inheritance in data types, originating
from their XML Schema 1.0 properties. Approach it this way: If you are going to
customize a typical data type declaration by adding or reducing features, then
you have to think in terms of <xs:extension ...> and <xs:restriction ...> elements,
respectively.

Lines 35 to 41 signal an end to the restricted list of candidate text strings, the
attribute’s simple content definition, the attribute definition, and the extension
to the <sg1:cost> element’s simple content and complex data definitions.

Compositors

The <xs:sequence ...> element tells the parser that declarations for a specific
sequence of element types will follow immediately. The <xs:sequence ...> is
called the sequence compositor. Compositors are specialized XML Schema ele-
ments that define groups of elements and attributes within a schema. Three
types of compositors exist: sequence compositors, of which we have already
seen two examples; <xs:choice ...> compositors, which indicate one or more
choices of element types for a document author; and <xs:all ... > compositors,
which indicate that one or more of the ensuing elements can appear in the
XML document in any order.

Empty Element Content

Schemas also allow a designer to declare empty element types. These are
declared by using the <xs:complexType> element type, but deliberately omit-
ting the definition of any child elements within the complex data type. Several
methods can be used to declare an empty element type. This first one is iden-
tical to that found in lines 42 through 44 in gemdata.xsd:

<xs:element name=”sg1:reserved”>

<xs:complexType />

</xs:element>

XML Schemas 181

422541 Ch05.qxd 6/19/03 10:10 AM Page 181

This method actually uses an empty <xs:complexType /> element in the
<sg1:reserved> element declaration. The only difference between this example
and that shown in Figure 5.6 is that the Figure 5.6 <sg1:reserved> element is
constrained by the minOccurs=”0” attribute, which indicates that the element
type is optional and thus does not have to appear within the extent of the
<sg1:gem> element type. The next method declares an empty element type:

<xs:element name=”sg1:reserved”>

<xs:complexType>

</xs:complexType>

</xs:element>

Instead of using an empty element, this method uses <xs:complexType>
start and end tags, with nothing declared between them.

The <sg1:catalog> Element: Simple Data Types
The declaration for <sg1:catalog>, the last child element type under <sg1:-
diamonds>, is found on line 48 of gemdata.xsd. The declaration indicates that
this element type must contain parsed character data only, with no subele-
ments and no attributes. Therefore, <sg1:catalog> is a simple data type and the
length of its declarations should be a single line.

In lines 30 through 37, we declared another simple data type: the catPublish
attribute, whose value choices are Y or N. Like <sg1:catalog>, the base data
type for catPublish was a text string. We chose the text string here because they
are the most common simple data types and we wanted to show how to create
extensions and restrictions based on them. However, Table 5.3 lists other sim-
ple types defined in XML Schema 1.0 (for a comprehensive listing, please refer
to the XML Schema 1.0 Recommendation itself). Note that, when you refer to
a simple type found in XML Schema 1.0, the name of the type is usually pre-
ceded by a namespace prefix, such as the xs: we use in this book. The docu-
ment designer can assign whatever prefix he or she chooses to the namespace
or can avoid using a prefix through the use a default namespace declaration.

Table 5.3 Simple Types Defined in W3C XML Schema Recommendation

SIMPLE TYPE DEFINITION

binary Contains binary values (e.g., 1001, 11101).

boolean Contains values like True or False, 1, or 0.

date Contains a date in YYYY-MM-DD format.

decimal Contains a decimal value, positive or negative.

ENTITY, ENTITIES Contains an ENTITY or ENTITIES attribute type, as described
in the W3C XML Recommendation.

182 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 182

Table 5.3 (continued)

SIMPLE TYPE DEFINITION

ID Contains an ID attribute type, as described in the W3C XML
Recommendation.

int, integer Contains an integer.

language Contains a language identifier (e.g., en-US, de, fr).

Qname Contains an XML qualified name (i.e., contains a
namespace reference plus a local name, separated by a
colon).

string Contains a string of text characters.

time Contains a time reference (e.g., 08:13:47.639).

anyURI Contains a Uniform Resource Identifier reference; the value
can be absolute or relative.

Mixed Content Elements
Although neither the gemdata.xsd nor minedata.xsd documents contain
examples of mixed content element types, these are still important to a schema
designer. Where DTDs cannot exert control over the order of the child ele-
ments or over the number of times they appear, schemas can, because they
have more complete syntax. For example, following is a portion of a schema
that contains a mixed content element: a request letter to Space Gems Inc. mine
managers advising them that they can obtain new equipment as long as a spe-
cific form is sent in by a given deadline. Naturally, because the element will
contain other elements as well as text, the element will be a complex type. An
attribute named mixed is included in the complexType element start tag; its
value is specified as true.

<xs:element name=”eqptRequest” >

<xs:complexType mixed=”true” >

<xs:sequence >

<xs:element name=”mineMgr” type=”xs:string” />

<xs:element name=”gemTestEqpt” type=”xs:string” />

<xs:element name=”system” type=xs:string” />

<xs:element name=”formNo” >

<simpleType >

<restriction base=’xs:string’>

<xs:pattern value= “[A-Z]{3} \s [1-9]{4}-[0-9]{2}”/>

</restriction>

</simpleType>

</xs:element>

XML Schemas 183

422541 Ch05.qxd 6/19/03 10:10 AM Page 183

<xs:element name=”deadlineDays” >

<xs:simpleType base=”xs:integer” >

<xs:maxInclusive value=”30” />

<xs:/simpleType>

</xs:element>

<xs:element name=”budgetSupvr” type=”xs:string” />

</xs:sequence >

</xs:complexType>

</xs:element>

Here is what the data instance of a conforming XML document might look
like:

<eqptRequest>

To <mineMgr>Stu D. Duque</mineMgr>:

Our records show that, in the past, your staff have

requested a/an <gemTestEqpt>polariscope</gemTestEqpt>

for your facility. The 2047 Q3 budget for the

<system>Auriga</system> system has been approved and we

are pleased to inform you that the requested equipment

can now be purchased but, first, you must verify the

request by submitting an updated

<formNo>GTR 2040-29</formNo> form within

<deadlineDays>15</deadlineDays> Sol-Earth days.

Thank you in advance for your cooperation.

<budgetSupvr>Lotta Cash</budgetSupvr>

Using Facets to Define Data More Precisely
In Figures 5.5 and 5.6, the gemdata.xsd schema document used inheritance
(<xs:restriction> or <xs:extension> elements) to describe attribute values more
precisely. It also illustrated how the facet <xs:enumeration> could be used to
limit the text string values available for the catPublish attribute to Y or N.
Facets provide a means for more precise definition of data contained within a
simple type element or attribute. Their generic syntax is fairly simple:

<facetname value=”facetvalue”/>

In the Mixed Content Elements section, another facet (xs:maxInclusive) was
used to limit the time during which an Auriga mine manager could submit a
particular form to Space Gems’ headquarters. A facet named <xs:pattern> pre-
scribed the syntax for the company form to be submitted.

Facets like <xs:maxInclusive>, <xs:minInclusive>, <xs:enumeration>, and
<xs:pattern> are popular and valuable to a schema designer. In fact, <xs:pat-
tern> is used for the designation of Universal Product Codes (UPCs), Interna-
tional Standard Book Numbers (ISBNs), stock keeping units (SKUs), and other
inventory-control numbers.

184 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 184

More facets available with XML Schema 1.0 are described briefly in Table
5.4. For a comprehensive listing of all XML Schema 1.0 facets, please refer to
XML Schema Part 2: Datatypes.

Table 5.4 XML Schema 1.0 Facet Examples

FACET NAME DESCRIPTION

Length Specifies the length of a value. Limited to the value
2147483647. Items larger than this limit will not be validated
correctly.

minLength Specifies the minimum length of a value.

maxLength Specifies the maximum length of a value. Also limited to
2147483647. Items larger than that limit will not be validated
correctly.

maxExclusive Defines a maximum exclusive upper bounds of a data type
value. Example: “less than 3” would require a maxExclusive
value of 3 or a maxInclusive of 2.

minExclusive Defines the exclusive lower bounds of a data type value.
Example: “at least seven” would require a minExclusive value of 7.

duration Specifies a time period. The value is a six-dimensional space
designating a Gregorian year, month, day, hour, minute, and
second. The number of seconds can include decimal digits. An
optional preceding minus sign (-) can indicate a negative
duration. If the sign is omitted, a positive duration is presumed.
Example: To indicate a duration of 3 years, 6 months, 9 days,
12 hours, and 15 minutes, state P3Y6M9DT12H15M. Minus 24
hours, by comparison, this looks like -P24H.

totalDigits Defines the maximum number of digits in the value of a given
data type. The value specified for totalDigits must be a positive
integer.

fractionDigits Specifies the maximum number of digits in the fractional part
of a value of a given data type. The value of fractionDigits must
be a non-negative integer.

whiteSpace Value must be one of preserve, replace, or collapse, depending
on data type. When “xs:string” is specified, white space is
usually “preserved” by default.

Be careful when specifying facets with simple data types. Not all facets
apply to all data types. Check the XML Schema 1.0 Recommendation to
see which facets go with which simple data types.

XML Schemas 185

422541 Ch05.qxd 6/19/03 10:10 AM Page 185

Schema Document Structures

There are almost as many ways to create a logical structure for a schema
document as there are schema documents. But they are all variations or com-
binations of two basic approaches: the nesting approach or the flat catalog
approach.

The Nesting Structure
The nesting structure is based on a predominance of locally declared data
types (Figure 5.7 uses element type declarations as examples). Figure 5.7 illus-
trates the element type hierarchy of a nesting approach.

A full element declaration is inserted every time an element type is needed.
Notice that in Figure 5.7, there are no ref=”elementxx” declarations. Figure 5.8
depicts the schema document that reflects the hierarchy presented in Figure 5.7.

In the generic schema document depicted in Figure 5.8, the element type
named <element6> appears within four other element types (<element2>,
<element4>, <element5>, and <element7>). It is fully declared within each
one, and in each case, the declaration is identical. Many programmers call this
structure the nesting doll or Russian doll structure, since the element declara-
tions are cloaked one within another, reminiscent of those festive hollow dolls
that act as containers for identical but smaller dolls.

Among the advantages to the nesting structure are the ease with which you
can create context-sensitive element tags. However, compared to the flat cata-
log (discussed in the next section), the XML parser uses more resources when
processing this type of schema. Further, if a designer wants to make changes
to, for example, the <element6> declaration in Figure 5.7, then those changes
must be made to the <element6> declarations in all four locations. This takes
time and may introduce the risk of mistakes in one or more of the <element6>
declarations. That may not be a big issue for a small schema, but it could be
problematic for larger schemas.

Figure 5.7 Nesting hierarchy.

<name="element1">

<name="element 2">

<name="element 5">

<name="element 3"> <name="element 4">

<name="element 6">

<name="element 8"> <name="element 6">

<name="element 6"> <name="element 7">

<name="element 6"> <name="element 9">

<xs:schema>

186 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 186

Fi
gu

re
 5

.8
N

es
tin

g
st

ru
ct

ur
e

w
ith

in
 th

e
sc

he
m

a
do

cu
m

en
t.

<?
xm

l v
er

si
on

="
1.

0"
 ?

>
<s

ch
em

a
...

>

<e
le

m
en

t
na

m
e=

"e
le

m
en

t1
">

<c
om

p
le

xT
yp

e>

<e
le

m
en

t
na

m
e=

"e
le

m
en

t2
">

<c
om

p
le

xT
yp

e>

<e
le

m
en

t
na

m
e=

"e
le

m
en

t5
">

<c
om

p
le

xT
yp

e>

 <

el
em

en
t

n
am

e=
"e

le
m

en
t8

"
ty

p
e=

"x
s:

st
ri

n
g

"
/>

<
el

em
en

t
n

am
e=

"e
le

m
en

t6
"

ty
p

e=
"x

s:
st

ri
n

g
"

/>

</

co
m

p
le

xT
yp

e>

</
el

em
en

t>
<

el
em

en
t

n
am

e=
"e

le
m

en
t6

"
ty

p
e=

"x
s:

st
ri

n
g

"
/>

</
co

m
p

le
xT

yp
e>

</

el
em

en
t>

<
el

em
en

t
n

am
e=

"e
le

m
en

t3
"

ty
p

e=
"x

s:
st

ri
n

g
"

/>

<e
le

m
en

t
na

m
e=

"e
le

m
en

t4
">

<c
om

p
le

xT
yp

e>
<

el
em

en
t

n
am

e=
"e

le
m

en
t6

"
ty

p
e=

"x
s:

st
ri

n
g

"
/>

<e
le

m
en

t
na

m
e=

"e
le

m
en

t7
"

/>

<c

om
p

le
xT

yp
e>

<
el

em
en

t
n

am
e=

"e
le

m
en

t6
"

ty
p

e=
"x

s:
st

ri
n

g
"

/>
<

el
em

en
t

n
am

e=
"e

le
m

en
t9

"
ty

p
e=

"x
s:

st
ri

n
g

"
/>

</
co

m
p

le
xT

yp
e>

</

el
em

en
t>

</
co

m
p

le
xT

yp
e>

</

el
em

en
t>

</
co

m
p

le
xT

yp
e>

</

el
em

en
t>

</
sc

he
m

a>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

<S
ch

em
a>

el
em

en
t

el
em

en
t7

el
em

en
t5

el
em

en
t2

el
em

en
t4

el
em

en
t1

XML Schemas 187

422541 Ch05.qxd 6/19/03 10:10 AM Page 187

The Flat Catalog Structure
Figure 5.9 illustrates a flat catalog approach to the same schema shown in Fig-
ures 5.7 and 5.8. The flat catalog provides declarations within the <schema>
element and then employs global references to those declarations elsewhere in
the document. The flat catalog creates a flatter schema structure. In Figure 5.9,
the ref=”element6” element type declarations within the declarations of <ele-
ment2>, <element5>, <element4>, and <element7> all point to the name=”ele-
ment6” declaration within <schema>. The parser reads the “ref=” declarations,
looking for definitions in the corresponding “name=” declaration.

In the flat catalog structure, the full <element6> element type declaration
needs to appear only once. Then, in any relevant child element types, the sim-
pler “ref=” syntax is used to refer to the <element6> declaration. The advan-
tages to the flat catalog approach include the following:

■■ Keystrokes are usually saved, especially if the full declaration is com-
plex in nature (the simple examples in this text don’t really show that
advantage, but they are readily seen in larger schema documents).

■■ Less likelihood exists for typographical or syntactic errors.

■■ A programmer can group all the common simpleType elements
together in one location, immediately within the <schema> element.

■■ The schema’s hierarchy is inherently flatter and, thus, easier to code
and interpret.

■■ Programmer and processor resources are saved.

■■ If a change must be made to one common element, then it need only be
made in one location, thus reducing the risk of nonuniform changes to
elements. The references inherit the changes automatically.

At this point, you may be curious about the structure of the gemdata.xsd
and minedata.xsd example schema documents used. Figure 5.10 illustrates
that gemdata.xsd is a combination of both nesting and flat catalog structures,
but that minedata.xsd has a simple nesting structure.

The gemdata.xsd schema could easily be changed to a flat catalog structure,
but then certain advantages might be lost (for example, the context-sensitive
element naming, as well as our ability to demonstrate more types of schema
coding for you). Most DTD-to-schema conversion applications prefer the flat
catalog structure for those schema documents they facilitate.

188 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 188

Fi
gu

re
 5

.9
Fl

at
 c

at
al

og
 h

ie
ra

rc
hy

.

<n
am

e=
"e

le
m

en
t

2"
>

<n
am

e=
"e

le
m

en
t

3"
>

<n
am

e=
"e

le
m

en
t

4"
>

<n
am

e=
"e

le
m

en
t

5"
>

<n
am

e=
"e

le
m

en
t

7"
>

<x
s:

sc
he

m
a>

<n
am

e=
"e

le
m

en
t

1"
>

<n
am

e=
"e

le
m

en
t

6"
>

<n
am

e=
"e

le
m

en
t

8"
>

<n
am

e=
"e

le
m

en
t

9"
>

<r
ef

="
el

em
en

t
5"

>
<r

ef
="

el
em

en
t

6"
>

<r
ef

="
el

em
en

t
8"

>
<r

ef
="

el
em

en
t

6"
>

<r
ef

="
el

em
en

t
5"

>
<r

ef
="

el
em

en
t

6"
>

<r
ef

="
el

em
en

t
8"

>
<r

ef
="

el
em

en
t

6"
>

XML Schemas 189

422541 Ch05.qxd 6/19/03 10:10 AM Page 189

Figure 5.10 Structures of example schema documents.

Using Schemas and DTDs Together

One of the shortcomings of schemas is that they don’t easily support character
reference entities (discussed in Chapter 3, “Anatomy of an XML Document”).
If you normally want to use XML Schema validation but will also use charac-
ter reference entities in your XML documents (the classic example is the Euro
currency sign, €, the character entity for which is €), then you might con-
sider combining DTD validation and XML Schema validation.

The strategy is two-fold: First, refer to the DTD in the DOCTYPE definition
in the prolog, and second, “call” the appropriate schema in the root element of
the XML document. (We get a little ahead of ourselves here, by using as our
example the development of an XHTML document; XHTML is the subject of
the next chapter.) Trouble arises when you want to include the xsi:schemaLo-
cation attribute, which is not defined in any of the three XHTML DTDs. So, if
you want to use both DTD and XML Schema validation, then the attribute
must be included by declaring it in the internal DTD subset of your document.
The document type declaration in the document must resemble this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”[

<!ATTLIST html

xmlns:xsi CDATA #FIXED

“http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation CDATA #IMPLIED >

]>

This example presumes that you will be using the Strict variant of XHTML.
As you will see in Chapter 6, XHTML allows the option of using one of three
variants: Strict, Transitional, and Frameset. The choice is reflected at two points
in the document type declaration. These concepts are covered in Chapter 6.

Once the internal DTD declaration has been inserted into the document type
declaration, we can adjust the start tag for the XHTML root <html> element:

<html xmlns=”http://www.w3.org/1999/xhtml”

lang=”en” xml:lang=”en”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

<xs:schema>

<sg1:diamonds>

<sg1:catalog>

<sg1:name>

<sg1:gem>

<sg1:cost> <sg1:reserved />

<sg2:mine>

<sg1:gem> <sg1:catalog> <sg2:mine>

<xs:schema>

<sg2:name> <sg2:system> <sg2:planet>

gemdata.xsd minedata.xsd

190 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 190

xsi:schemaLocation=”http://www.w3.org/1999/xhtml

http://www.w3.org/2002/08/xhtml/xhtml1-strict.xsd”>

...

</html>

The combination of the modified DOCTYPE definition in the prolog, plus
the modified root <html> element start tag, allows us to combine DTD and
Schema validation.

Chapter 5 Labs: Creating Simple Schemas

In the lab exercises for Chapter 4, “Document Type Definitions,” we created
some basic DTDs. Here we create basic XML schemas using the same content
model that we used in Chapter 4. The first procedure instructs you on how to
create a simple schema. The ensuing procedures help you to add more sophis-
ticated constraints to create data instance documents from your schema and
then introduce more complex data element types. If you are interested, and we
hope you are, two more schema exercises are included at this book’s Web site,
at the URL provided in the book’s introduction.

Lab 5.1: Create a Basic Schema

The file you create in this first exercise will describe the same series of
diamonds that were introduced in the last chapter. The design of this first
schema is based on the previous DTD, which had only two goals in mind.
The first goal was to allow more than one <gem> to be listed. This was
achieved by ensuring that the <gem> element type was repeatable or
unbounded. The second goal was to ensure that all of the five C’s (carats,
color, clarity, cut, and cost) are present for all diamonds.

In this lab, as in the Chapter 4 labs, we work with our software’s GUI
view, and so we will tend to emphasize schema terminology rather than
syntax. However, syntax is still important. So, to become familiar with
schema syntax, please change the TurboXML view from the GUI element
view to the source code and back periodically throughout the lab.

1. Open the Turbo XML editor. Click Continue Trial, if necessary.

2. Click Schema.

3. Click Overview/Properties to change the view inside the editor.

4. Rename the unnamed element to diamonds.

5. Change the Content of <diamonds> to Elements.

XML Schemas 191

422541 Ch05.qxd 6/19/03 10:10 AM Page 191

6. Place the cursor inside the parentheses () for the Content Model for
<diamonds>, and type “gem” and click Repeatable. Exit the cell
using the Tab key.

7. Click the button for Globally defined inside the Auto Create dialog
box. Click Create.

8. Change the Content of <gem> to Elements.

9. Place the cursor inside the parentheses () for the Content Model for
<diamonds> and type “name,carat,color,clarity,cut,cost” (include
the commas, but with no spaces between the element type names).
Exit the cell using the Tab key.

10. Click the button for Globally defined inside the Auto Create dialog
box. Click Create.

11. Check for errors.

12. Save the file as diamonds1.xsd. Your view should resemble
Figure 5.11.

Figure 5.11 Schema layout for diamonds1.xsd.

Lab 5.2: Add Constraints to the Basic Schema

The diamonds1.xsd does not take advantage of the many constraints that
are available to refine the schema. In this exercise, you will add some
specific constraints to the schema that allow us to progress to a more

192 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 192

complex model. In fact, these constraints provide more sophistication
than we could have achieved with the DTDs in Chapter 4.

1. Open the TurboXML editor.

2. Click diamonds1.xsd to open.

3. Click the Data Type for the <carat> element, click Constraints, click
Insert, and choose More, positiveInteger.

4. Click the Data Type for the <color> element. Choose String. You can
refer to Figure 5.12 for help with the following steps.

5. Click the Data Types item on the top menu bar. Type “color.type” in
the Name cell and “string” in the BaseType cell. Tab over to the
Options cell.

6. Move to the new Element Type: color.type pane on the left side of
the frame. Click the enumeration menu tab, and create the enumera-
tion list by adding the values shown in Figure 5.12.

Figure 5.12 Creating the color.type data type for the <color> element.

7. Return to the Element/Types view by clicking Element/Types on
the top menu bar.

8. Click the Data Type cell for the <color> element, choose Insert user-
defined type, and choose color.type. The view should resemble
Figure 5.13.

Step 3. Type color
type for name.

Step 4. Set Basic Type to string.

Step 1. Click here first.

Step 5. Tab over to Options Cell.

Step 6. Add these values to the
color type enumeration list.

Step 2. Click here first.

XML Schemas 193

422541 Ch05.qxd 6/19/03 10:10 AM Page 193

Figure 5.13 Changing the data type of the <color> element.

9. Using the same process, create a user-defined data type called
clarity.type for the <clarity> element:

a. Click Data Types on the top menu bar.

b. Enter clarity.type for Name.

c. Enter string for Base Type.

d. Tab over to Options.

e. Click the Enumeration menu tab on the pane on the left side of
the frame.

f. Create the enumeration list by adding the values shown in
Figure 5.14.

Figure 5.14 List of enumeration values for clarity.type.

g. Return to the Element/Types view by clicking Element/Types on
the top menu bar.

h. Click the Data Type cell for the <clarity> element, choose Insert
user-defined type, and choose clarity.type.

10. Click the Data Type cell for the <cost> element. Then choose More,
Decimal.

11. Check for Errors.

194 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 194

12. Save the file as diamonds2.xsd.

13. Click Source to examine and study the code line by line. You could
have entered this all by hand if you wanted. Ah, the power of a
good XML schema editor!

Lab 5.3: Create a New Instance
from diamonds2.xsd

The improved schema should make data documents easier to create and
manipulate, and provide more sophistication and precision than the
Chapter 4 DTDs. In this third exercise, you will create a new XML
instance document from your schema document.

While you are performing the next few steps, feel free to test the
schema and the software by (1) trying to enter numbers inside an element
defined as string and (2) trying to enter alpha characters in an element
defined as positiveInteger.

1. Open the Turbo XML editor.

2. Click Instance.

3. Click File, Set Schema. Then choose diamonds2.xsd and choose dia-
monds as a root element. Click OK.

4. Create four <gem> elements, and enter the data shown in Table 5.5
into the instance.

5. Check for errors.

6. Save the file as gems3.xml.

Table 5.5 List of Top Diamonds for Galaxy Gems

NAME CARATS COLOR CLARITY CUT COST, $

Sparkler 105 Near colorless IF Internally Full-cut 126000
Flawless brilliant

Merlin 41 Colorless FL Flawless Point cut 82000

Cullinan 3106 Faint yellow VS1, VS2 Rough 2174200
Very Slightly
Imperfect

Dark 500 Near colorless SI1, SI2 Rough 450000
Slightly
Imperfect

XML Schemas 195

422541 Ch05.qxd 6/19/03 10:10 AM Page 195

Lab 5.4: Use Complex Types in Schemas

This procedure allows you to create a slightly more complex schema, one
that concentrates on a design issue that we wrestled with at the end of the
DTD lab in Chapter 4. In this case, we illustrate how you can reuse ele-
ments. This lab starts by separating some gem data common to both dia-
monds and other precious gems. Then only those elements that are
unique to either diamonds or precious gems will be added when the
common elements are extended from the generic gem data. There are
many ways this model could have been made. After working through
this lab once, you may want to try and create a model based on different
assumptions and approaches. Meanwhile, we start by creating the gem-
data element type and adding a namespace to the schema to separate it
from any other schema that may be out there.

1. Open the TurboXML editor.

2. Click Schema.

3. Change the view by clicking Overview/Properties.

4. Add a namespace to differentiate the schema.

a. Highlight the xsd object at the top left-hand pane in the frame.

b. Click File, Schema Properties from the top menu bar.

c. Type gemdata in the Prefix area on the Schema Properties dialog
box.

d. Type http://www.spacegems.com/stones in the Target Namespace
area on the Schema Properties dialog box.

e. Click OK.

5. Create the complex type <gemdata> element.

a. Enter gemdata as the element name in the element cell.

b. Click the first field called D of the second row, below the
unnamed element, and set the Decl Type to Complex Type.

c. Change the Content of the <gemdata> element to Elements.

d. Place the cursor inside the parentheses () of the <gemdata> Con-
tent Model and type name, image, origin, clarity, shape, and cost.
Exit the cell using the Tab key.

e. Click the button for Globally defined inside the Auto Create dia-
log box. Click Create.

196 Chapter 5

422541 Ch05.qxd 6/19/03 10:10 AM Page 196

If you find you have an element named unnamed, please delete it.

6. Create two Data Types called shape.types and clarity.scale.

a. Click Data Types on the top menu bar.

b. Type “shape.types” inside the Name area.

c. Type “string” in the Base Type area.

d. Tab over to the Options area.

e. Move to the new Element Type: shape.types pane on the left side
of the frame. Click the enumeration menu tab, and create the enu-
meration list by adding the following values:

■■ Round

■■ Emerald

■■ Heart

■■ Marquise

■■ Oval

■■ Pear

■■ Princess

f. Move back to the Data Types pane on the right side of the frame.

g. Type “clarity.scale” inside the Name area.

h. Type “string” inside the Base Type area.

i. Tab to the Options area.

j. Move to the new Element Type: clarity.scale pane on the left side
of the frame. Click the enumeration menu tab and create the enu-
meration list by adding the following values:

■■ Flawless-Internally Flawless

■■ Very Very Slightly Imperfect

■■ Very Slightly Imperfect

■■ Slightly Imperfect

■■ Imperfect

7. Modify the Content Model values for the following listed elements.

a. Click Element/Types on the top menu bar.

b. Change the Data Type for the <clarity> element to clarity.scale.

c. Change the Data Type for the <cost> element to positiveInteger.

XML Schemas 197

422541 Ch05.qxd 6/19/03 10:10 AM Page 197

d. Change the Data Type for the <shape> element to shape.types.

e. Leave the Data Type for the <name>, 
 <origin>Earth</origin>
 <shape>Baguette</shape>
 <cost>300000.00</cost>
 <clarity>VS1</clarity>
 <carat>67.50</carat>
 <color>Black</color>
 <cut>Full-cut brilliant</cut>
 </catalog>
 <catalog>
 <name>Blue Magic</name>
 
 <origin>Earth</origin>
 <shape>Pear</shape>
 <cost>6000000.00</cost>
 <clarity>VVS2</clarity>
 <carat>12.02</carat>
 <color>Blue</color>
 <cut>Brilliant</cut>
 </catalog>
...

XML Data Binding 399

422541 Ch10.qxd 6/19/03 10:12 AM Page 399

Fi
gu

re
 1

0.
14

N
av

ig
at

in
g

th
e

di
am

on
ds

 in
 c

at
al

og
.x

m
l.

..
.

<i
np

ut
 t

yp
e=

"b
ut

to
n"

 s
ty

le
="

w
id

th
:7

0p
x"

 v
al

ue
="

|<
"

on
C

lic
k=

"f
irs

t(
)"

>

</

in
p

ut
>

<i
np

ut
 t

yp
e=

"b
ut

to
n"

 s
ty

le
="

w
id

th
:7

0p
x"

 v
al

ue
="

<"
 o

nC
lic

k=
"p

re
vi

ou
s(

)"
>

</
in

p
ut

>

<i

np
ut

 t
yp

e=
"b

ut
to

n"
 s

ty
le

="
w

id
th

:7
0p

x"
 v

al
ue

="
>"

 o
nC

lic
k=

"n
ex

t(
)"

>

</

in
p

ut
>

<i
np

ut
 t

yp
e=

"b
ut

to
n"

 s
ty

le
="

w
id

th
:7

0p
x"

 v
al

ue
="

>|
"

on
C

lic
k=

"l
as

t(
)"

>

</

in
p

ut
>

..
.e

tc
.

B
u

tt
o

n
 C

o
d

e
fr

o
m

 c
at

al
o

g
.h

tm
..

.
<s

cr
ip

t
la

ng
ua

ge
="

Ja
va

Sc
rip

t"
>

 f

un
ct

io
n

fir
st

()
{d

at
a.

re
co

rd
se

t.
m

ov
eF

irs
t(

);
}

 f

un
ct

io
n

p
re

vi
ou

s(
){

 if
(d

at
a.

re
co

rd
se

t.
ab

so
lu

te
p

os
iti

on
>1

)

 d
at

a.
re

co
rd

se
t.

m
ov

eP
re

vi
ou

s(
);

}

 f
un

ct
io

n
ne

xt
()

{
if(

da
ta

.r
ec

or
ds

et
.a

bs
ol

ut
ep

os
iti

on

 <

da
ta

.r
ec

or
ds

et
.r

ec
or

dc
ou

nt
)

da

ta
.r

ec
or

ds
et

.m
ov

eN
ex

t(
);

}

 f
un

ct
io

n
la

st
()

{
da

ta
.r

ec
or

ds
et

.m
ov

eL
as

t(
);

}

</
sc

rip
t>

..
.

et
c. Ja

va
Sc

ri
p

t
C

o
d

e
fr

o
m

 c
at

al
o

g
.h

tm

D
SO

 R
ec

o
rd

se
t

Bl
ac

k
O

rlo
v

Bl
ue

 M
ag

ic
..

.
A

ng
el

D
ia

sp
or

e

Ea
rt

h
Ea

rt
h

..
.

M
er

cu
ry

M
er

cu
ry

67
.5

0
12

.0
2

Ba
gu

et
te

Pe
ar

..
.

Em
er

al
d

Em
er

al
d

30
00

00
.0

0
60

00
00

0.
00

..
.

49
9.

00
99

9.
00

im
ag

es
/o

rlo
v.

jp
g

im
ag

es
/b

lu
em

ag
ic

.jp
g

..
.

im
ag

es
/a

ng
le

si
te

.jp
g

im
ag

es
/d

ia
sp

or
e.

jp
g

EO
F

B
O

F

400 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 400

The JavaScript and XHTML code features work together to allow an end
user to navigate through the recordset as follows:

■■ When a user clicks the moveFirst (<<) button, the moveFirst() function
backs the user up to the very first record in the recordset and the
XHTML code retrieves information for that record—the information
for the Black Orlov diamond—and displays it.

■■ When a user click the Back (<) button, the movePrevious() function
points to the previous record unless it is already at the top (the BOF
position). If it is at BOF, the moveLast() function is executed and points
to the last record in the recordset (the user is “fast-forwarded” to the
last record).

■■ When a user clicks the Next (>) button, the moveNext() function points
to the next record unless it is already at the bottom (EOF position). If it
is at EOF, the moveFirst() function is executed and points to the first
record in the recordset.

■■ When a user clicks the moveLast (>>) button, the moveLast() function
points to the last record in the recordset.

Chapter 10 Labs: Data Binding with XML

In practice (and, certainly, with practice), XML data binding with XHTML or
HTML is fairly easy to accomplish. We need only to remember a few rules and
there aren’t too many tough decisions to make. The main idea is to separate the
maintenance of data from the display or rendering of the data.

The first two lab exercises are fairly basic. In the first, you will learn how to
work with an XHTML document file that contains its own internal data island.
The second exercise teaches you how to modify the XHTML document to refer
to an external data island, which we’ll provide. The third lab exercise is a little
more advanced. In it, you will perform four basic steps as you create a catalog
data island, bind its data fields, insert your own JavaScript data navigation
mechanism on a Web page, and then test your new navigation functionality.

Lab 10.1: XHTML File Containing a
Simple Internal XML Data Island

The best way to discover how an internal data island is used is to work
with one. In this lab, we supply you with an XHTML display file con-
taining an internal XML data island, and we explain how it works. This

XML Data Binding 401

422541 Ch10.qxd 6/19/03 10:12 AM Page 401

exercise is simple and fast, and you won’t have to do a lot of typing. Once
you see how it works and that it works, you will actually own a func-
tioning example of this kind of data file. You can copy and modify this
file to create more of them.

1. Download the file called gemsB_IDI.htm from the Chapter 10 page
of the XML in 60 Minutes a Day Web site, as described in this book’s
introduction, and put the file in the C:\WWW\SpaceGems directory.
The _IDI has been inserted into the filename to remind you that it
contains an internal XML data island.

2. Test the gemsB_IDI.htm file in the browser to make sure that it
works. There is no link to this particular file yet, so you must enter
the filename as part of the URL (don’t forget the underscore between
the B and the IDI). In the browser’s locator bar, type:

http://localhost/spacegems/gemsB_IDI.htm

3. When the file is displayed, it should look like Figure 10.15.

4. Using HTML-Kit, open the gemsB_IDI.htm file.

5. Using the following steps as a guide, examine the content of the
gemsB_IDI.xml file:

a. Note that the actual XML data instance is situated between the
HTML <head> tags.

b. Look closely at the <xml id=”gemdata”> opening and </xml>
closing tags. This element type can only be named <xml>. It indi-
cates to the browser’s parser that the information between the
start and end tags is the data island. If you were to change the
element name from <xml> to <xmla>, for example, it would not
work.

c. The id attribute defined inside the <xml id=”gemdata”> start tag
is also mandatory. The value gemdata provides the subsequent
data island with a data source reference that will be used later
in the file.

d. Now examine the HTML <table> element start tag in the following:
<table border=”1” width=”100%”

summary=”Space Gems Quick List of Details”

datasrc=”#gemdata”>

e. The datasrc=”#gemdata” attribute binds the data source (speci-
fied by the id attribute mentioned in Step c.) to the HTML table.
This attribute therefore designates the HTML table as a data
consumer.

402 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 402

Figure 10.15 Displaying the gemsB_IDI.htm file.

f. You must include a pound sign (#) as the first character of the
value specified for the datasrc attribute.

g. Every table must have table data <td> tags that define the
individual cells where data is to be displayed.

h. You must define the <div> tag. Refer to the chapter notes for
alternatives. The datafld=”name” attribute inside the <div
datafld=”name” /> element tag (which is nested within the <td
align=”left” > </td> tags) binds the value of name= attribute to
that table cell.

i. The rest of the code is similar and binds more table cells to respec-
tive <gem> elements and the values of their attributes. Beyond
that, several regular HTML tags specify display formats for the
various elements.

Lab 10.2: XHTML File Containing a
Reference to an External Data Island

With two quick changes, you can morph the internal data island in the first
example data file into a reference to an external data source or external data

XML Data Binding 403

422541 Ch10.qxd 6/19/03 10:12 AM Page 403

island. After you make the changes to your XHTML file, we’ll provide an
already created data file named gemsB.xml as the data source.

In a situation where you have a small Web site without a lot of data,
you may not need a sophisticated database. Keeping your data inside
external XML files like gemsB.xml is sufficient. (Incidentally, it is no coin-
cidence that the data in that file is identical to the data found in the inter-
nal data island example.)

1. If you do not already have a fully functional gemsB.xml data file,
you can download a new copy from the Chapter 10 page of the
XML in 60 Minutes a Day Web site.

2. Using HTML-Kit, open the gemsB_IDI.htm file.

3. Before you begin modifying this file, save it as gemsB_EDI.htm to
the C:\WWW\SpaceGems directory. The EDI in the filename is
intended to remind you that this document will contain the refer-
ence to the external data island.

4. Delete all the code nested within the <xml id=”gemdata”> and
</xml> tags, including the <xml id=”gemdata”> and </xml> tags
themselves.

5. Replace the deleted code with the following new <xml> tag, which
contains the reference to the external data island file named
gemsB.xml:

<xml id=”gemdata” src=”gemsB.xml” />

6. Check to make sure that this new <xml> tag is situated between the
<head> and <title> elements.

7. Replace the word Internal with External inside the <title> tag.

8. Save the modified file.

9. Test the gemsB_EDI.htm file in the browser to make sure that it
works. Because there is no link to this particular file yet, you must
enter the filename as part of the URL in the browser’s locator bar.
(Don’t forget to include the underscore between the B and the EDI
in the filename.)
http://localhost/SpaceGems/gemsB_EDI.htm

When displayed, the file should once again look like Figure 10.15.

10. So that you won’t have to keep entering the filename as part of the
URL, modify the existing Quick List of Diamonds hyperlink on the
index.html file. To do this:

a. Using HTML-Kit, open the index.html file.

b. Change the code for the link from.

404 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 404

Quick List of Diamonds

to

Quick List of Diamonds.

11. Save the file back as index.html.

12. Test the link on the index.html file in the browser to make sure that
it works. Type the following into the browser’s locator bar:

http://localhost/SpaceGems/

13. When the index/home page appears, click the Quick List of
Diamonds hyperlink. The successful display should look like
Figure 10.15.

Lab 10.3: JavaScript Using Internet Explorer’s
DSO Binding Technology

This is a slightly more advanced lab, but we won’t let it get too far
beyond you. Whether or not you understand and use JavaScript regu-
larly, this lab should interest you and perhaps stimulate your creativity.
In it, we show you how to create and bind data, then how to navigate it
on your local system, without having to enlist the original Web server to
recast and retransmit the data. In a situation where you have a small Web
site with little data, you may not need a database at all. Keeping your
data inside an external XML file is just fine. This data may even be
exported from a larger database, in which the XML file is just a temporary
store.

Four basic steps make up this JavaScript lab exercise:

■■ Creating the data island

■■ Binding the data fields

■■ Creating a JavaScript navigation mechanism

■■ Testing the catalog.htm Web page

Please note that this lab is a Microsoft-specific solution.

1. Download both the catalog.xml and catalogempty.htm files from the
Chapter 10 page of the XML in 60 Minutes a Day Web site into the
C:\WWW\SpaceGems directory.

XML Data Binding 405

422541 Ch10.qxd 6/19/03 10:12 AM Page 405

2. Open the catalogempty.htm file using HTML-Kit. You should see a
partial HTML file solution with comments inside it, similar to this
code:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >

<head>

<title>Space Gems Catalog</title>

<!-- JavaScript start -->

<!-- JavaScript end -->

</head>

<body text=”#9999cc”>

<!-- Data island start -->

<!-- Data island end -->

<h2 font-family:Verdana,sans-serif”>

Space Gems Catalog

</h2>

<!-- HTML table start -->

<!-- HTML table end -->

<!-- Navigation buttons start-->

<!-- Navigation buttons end -->

</body>

</html>

3. Rename the file catalog.htm and save it.

4. Open the catalog.xml file using HTML-Kit. This is the data source
for this exercise. Review the document but do not make any changes
to it. When you are familiar with the file’s structure and contents,
you can close it.

5. Open the catalog.htm file again and create a reference to an external
data island inside it by adding the appropriate code between the data
island comment lines. When done, the lines should look like this:
<!-- Insert the XML data island -->

<xml id=”data” src=”catalog.xml”></xml>

<!-- Insert the HTML table code after this line -->

6. Note that the value specified for the id attribute—the data source
id—is data.

7. Add the following HTML table code to the catalog.htm Web page
between the appropriate comment lines:
<!-- HTML table start -->

<table border=”0” style=”font: 10pt Verdana,sans-serif;”

cellpadding=”5”>

<tr>

<td>

</td>

</tr>

406 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 406

</table>

<table border=”0” style=”font: 10pt Verdana,sans-serif;”

cellpadding=”5”>

<tr>

<td>Name</td>

<td>

<span style=”background: white;

width:150; border: inset;

border-width:1” dataSrc=”#data”

dataFld=”name”>

</td>

<td>Carat</td>

<td>

<span style=”background: white;

width:150; border: inset;

border-width:1” dataSrc=”#data”

dataFld=”carat”>

</td>

</tr>

<tr>

<td>Origin </td>

<td>

<span style=”background: white;

width:150; border: inset;

border-width:1” dataSrc=”#data”

dataFld=”origin”>

</td>

<td>Shape </td>

<td>

<span style=”background: white;

width:150; border: inset;

border-width:1” dataSrc=”#data”

dataFld=”shape”>

</td>

</tr>

<tr>

<td>Cost $</td>

<td>

<span style=”background: white;

width:150; border: inset;

border-width:1” dataSrc=”#data”

dataFld=”cost”>

</td>

</tr>

</table>

<!-- HTML table end -->

XML Data Binding 407

422541 Ch10.qxd 6/19/03 10:12 AM Page 407

8. Anytime you want to see the progress, click the Preview tab within
HTML-Kit. Feel free to change the HTML look and feel if you think
this file is too ugly for words.

9. Add the following JavaScript code to the catalog.htm Web page
between the appropriate comment lines, as indicated:
<!-- JavaScript start -->

<script language=”JavaScript”>

function first(){

data.recordset.moveFirst();

}

function previous(){

if(data.recordset.absoluteposition>1)

data.recordset.movePrevious();

}

function next(){

if(data.recordset.absoluteposition <

data.recordset.recordcount)

data.recordset.moveNext();

}

function last(){

data.recordset.moveLast();

}

</script>

<!-- JavaScript end -->

10. This code uses some standard predefined JavaScript functions that
will navigate the recordset. Here the recordset is defined as the data
island, which in our case is everything inside the catalog.xml file.

11. Create the navigation buttons that will invoke the functions defined
previously. Add the following code to the catalog.htm file between
the appropriate comment lines:
<!-- Navigation buttons start-->

<hr />

<input type=”button” style=”width:70px”

value=”|<” onClick=”first()”>

</input>

<input type=”button” style=”width:70px”

value=”<” onClick=”previous()”>

</input>

<input type=”button” style=”width:70px”

value=”>” onClick=”next()”>

</input>

<input type=”button” style=”width:70px”

value=”>|” onClick=”last()”>

</input>

<!-- Navigation buttons end -->

408 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 408

12. View the file inside HTML-Kit Preview, and save the file.

13. Using Internet Explorer, enter http://localhost/SpaceGems/
catalog.htm into the locator bar. If successful, the display should
resemble Figure 10.16. Check the functionality by clicking the
navigation buttons.

14. For optional practice, you can add another link to the index.html
page, one that will give you instant access to this page. The code is as
follows. Just follow the procedure indicated in the earlier exercises.

Space Gems Catalog

15. When you are done, don’t forget to test the new link.

Figure 10.16 Space Gems Catalog including JavaScript navigation functions.

Summary

Several concepts discussed in this chapter serve us well with respect to native
XML data and to discussions of other database technologies, especially when
they are applied in the Internet world:

XML Data Binding 409

422541 Ch10.qxd 6/19/03 10:12 AM Page 409

■■ More and more individuals and organizations are adopting XML tech-
nologies and standards, and native XML databases are expected to play
a larger role in the future. However, they are not expected to unseat
relational database technology. The challenge will be to increase their
interchangeability.

■■ Data binding is the process of mapping and synchronizing data in a
data source to designated (usually local) data placeholders. In this
chapter, data consumer elements, also called bindable elements, are the
placeholders. Data binding also involves moving and synchronizing
data from a remote server to a local system and manipulating it on the
local system.

■■ The advantages to data binding are reduced network traffic, lighter
loading on servers, and more efficient use of local resources.

■■ Data consumer elements bind two types of data: single-valued and
tabular. Inserting more than one value at once is called data set binding.

■■ HTML extended attributes, such as datasrc and datafld, allow us
to point to data sources and to the data fields within those sources,
respectively.

■■ XML data is stored in internal or external data islands. Internal data
islands are located within the Web page documents that display and
manipulate the data. External data islands are located in separate
documents that are referred to by the Web page documents.

■■ XML data retrieval and synchronization are performed by the XML
data source object plus the data binding agent or the table repetition
agent. XML DSO activation is easier and more automatic since the
release of Internet Explorer 5.

■■ The DSO is activated by the data binding agent or the table repetition
agent. The DSO retrieves data and assembles it in recordsets in the local
browser.

■■ Basic XML recordset navigation can be facilitated quite easily with
JavaScript coding in the Web page documents themselves.

410 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 410

Review Questions

1. Which of the following is not an aspect of data binding?

a. Mapping and synchronizing data

b. Interchangeability with relational databases

c. Transmitting data from sources to data placeholders

d. Local data manipulation

e. None of the above

2. Which of the following are data bindable elements? (There may be more than one
correct answer.)

a. <div>

b. <table>

c.

d. <td>

e. All of the above

3. True or false? The <div> element is a grouping element, but the element is
only an inline element.

4. True or false? Single valued elements can be used to build tablelike structures.

5. To display data from a data source without worrying about the format of the data,
which of the following attributes would you use?

a. datasrc=”$text”

b. datafld=”$text”

c. datasrc=”$table”

d. datafld=”table”

e. None of the above

6. Which of the following attributes points to an external XML data island?

a. datasrc

b. datafld

c. src

d. id

e. None of the above

XML Data Binding 411

422541 Ch10.qxd 6/19/03 10:12 AM Page 411

7. The standard syntax for specifying data located below the second nesting level resem-
bles which of the following?

a. cost.retail

b. cost/retail

c. cost;retail

d. cost:retail

e. cost_retail

8. Which of the following is the proper syntax for an external data island?

a. <xml id=”gemdata” src=”gems.xml” />

b. <xml id=”gemdata” datasrc=”gems.xml” />

c. <xml id=”gemdata” src=”gems.xml” >

d. <xml datasrc=”gemdata” datafld=”data” />

e. None of the above

9. True or false? The DSO searches a Web page document for bindable elements, then
activates the data binding agent or the table repetition agent.

10. Which of the following atttributes could tie navigation buttons to JavaScript functions?

a. input=”value”

b. function=”value”

c. recordset=”value”

d. onClick=”value”

e. None of the above

412 Chapter 10

422541 Ch10.qxd 6/19/03 10:12 AM Page 412

Answers to Review Questions

1. b. The interchangeability of native XML data and relational databases is an objective of
developers and vendors of both technologies. But interchangeability is not an aspect
of XML data binding.

2. a., b., and c. The <td> element can only be used if a <div> element is nested within it.

3. False. In fact, the statement is a little nonsensical. Both the <div> and elements
are grouping elements. However, <div> is block level while is inline level.

4. True. In fact, two examples are provided in the text, in the section titled The <table>
Element.

5. b. This is discussed in the Single-Valued Elements Avoid Overrestrictive Data section.

6. c. This is discussed in the External Data Island section.

7. a. Remember, the first term is the name affiliated with the second level. The delimiter
is a period.

8. a. The <xml /> element has to be declared an empty element type, and the two
relevant attributes are id and src.

9. False. Actually, the reverse is true: The data binding and table repetition agents search
a Web page document for bindable elements; if they find any, they activate the appro-
priate DSO.

10. d. This is discussed in the Navigating Recordsets section.

XML Data Binding 413

422541 Ch10.qxd 6/19/03 10:12 AM Page 413

422541 Ch10.qxd 6/19/03 10:12 AM Page 414

415

Even though it has only been about 10 years, the World Wide Web seems to
have moved worlds away from its initial “text-only” days. During the past
decade, graphics have become so important that—let’s face it—a Web site
without graphics isn’t even considered a proper Web site. Research demands
graphics, e-commerce demands graphics, and those who just want to have fun
really demand graphics. In light of these ever-increasing demands, it is impera-
tive to deliver graphic images (diagrams, still pictures, movies) while simulta-
neously optimizing the consumption of system and network resources.

In this chapter, we introduce the Vector Markup Language (VML), presently
the most widespread of the XML-related graphic languages. We start by review-
ing some basic graphic technology concepts, then provide a quick definition
and background for VML itself. Finally, we show you how to create VML doc-
uments and figures. By the end of the chapter, you will be able to create your
own VML objects, manipulate them, and display them in your browser.

A word of caution, though: As a graphics standard, Scalable Vector Graphics
(SVG) is gaining acceptance in the IT world. Within the next few years, it may
eclipse VML.

VML

C H A P T E R

11

422541 Ch11.qxd 6/19/03 10:12 AM Page 415

Basic Digital Imaging Technologies

Two basic digital imaging technologies exist: those using bitmap graphics and
those using vector graphics. Although VML involves vector graphics, each is
discussed in turn.

Bitmap Graphics
A bitmap graphic file (also known as a raster graphic file) is one in which each
bit of data in the file corresponds to a specific location on a raster—which is the
viewing area of a terminal screen—or to a specific ink dot on a printed page.
Actually, the converse of that statement may be easier to understand: The data
value for each picture element (usually called a pixel) is stored in a data file.
Pixels are easily seen on terminal screens (and television screens) by looking at
the screen through a magnifying glass. They are similar in nature to the com-
binations of black and white or colored ink dots that are still used to create
newspaper and magazine photographs. The resolution (Windows calls it the
screen image) that you specify for your terminal is measured in pixels. For
example, 800 by 600 (also indicated by 800x600) means that there are 800
columns and 600 rows of pixels in your viewing area. The higher the numbers,
the sharper the image that can be displayed. However, if you have higher
numbers in your resolution setting, you will generally need larger data files to
store the image data.

A bitmap is also characterized by its color density, which is the number of
data bits required to display each pixel. The bits per pixel may vary from four
to 32, depending on the number of shades of gray, or the combination of red,
green, and blue colors per pixel. For example:

■■ If we want 16 colors, each pixel requires four bits of data.

■■ If we want 256 colors, each pixel requires eight bits.

■■ If we want 65,536 colors (high color), each pixel requires 16 bits.

■■ If we want 16.78 million colors (true color), each pixel requires 24 bits.

We can readily see that if we want a higher color density in an image, we
need a larger data file.

Classroom Q & A
Q: What’s with all those bitmap formats: GIFs, TIFFs, JPEGs, and the

others? What’s the difference?
A: Bitmap files do indeed occur in various formats, depending on the

features of the various algorithms used to compress the data
within them. If the files weren’t compressed, they would take up

416 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 416

much more storage space and take much longer to transmit and
display. These formats are referred to by their acronyms (BMP,
TIFF, GIF, PNG, or JPEG) and are also reflected in the extensions
added to the respective data filenames. The various formats allow
graphic files to be exchanged between several different platforms
and applications.

The header of a bitmap file specifies the file format, the dimensions of the
display in pixels, and information about color density. Following the header are
the data bytes that create the image. Output devices, such as printers and mon-
itors, contain rasterizers, which are combinations of hardware and software
that translate all graphic objects into bitmaps. Thus, with some output devices,
all graphic objects (including vector graphic objects, which are discussed in the
next section) must be translated into bitmaps before being produced.

The advantages to bitmap graphics include the following:

■■ Because the composition of each individual display pixel or printed dot
is controlled, bitmapped images do not need on-time calculation, which
lessens their consumption of CPU cycles.

■■ Bitmaps are found just about everywhere on the Web and on private
networks.

■■ Bitmaps allow us to enhance image details; we can literally modify each
pixel in an image using applications that are commonly called paint
programs or photo suites.

But bitmap graphics have several disadvantages, too. Among them:

■■ They may require a larger amount of RAM on motherboards, video
adapter cards, or within printers.

■■ Bitmap images still require fast processors, since video terminals
may require a wholesale image change (also called a refresh) between
50 and 200 times per second, depending on monitor characteristics.

■■ The generally larger file sizes cause them to download slowly
(especially frustrating when subject to slow Web connections).

■■ The files are usually stored externally with respect to the rest of the Web
page or other containing documents, which causes processors to work
harder, makes the images more difficult to distribute, and causes extra
system administration issues.

■■ They do not provide real overall flexibility: Once the image has been
created, significant changes cannot be easily made. Even minor changes
cannot be made without using the appropriate paint or photo software
(which likely includes software to uncompress and then recompress the

VML 417

422541 Ch11.qxd 6/19/03 10:12 AM Page 417

files) on a system that must meet certain minimum requirements. Thus,
you cannot access a bitmap, make quick (and, especially, significant)
changes, and redraw it quickly.

■■ Bitmap graphic images become jagged looking beyond a certain magni-
fication level.

Vector Graphics
Vector graphic images are objects created by drawing a series of lines, poly-
gons, and text, while providing only the starting positions and directions for
each line. Vector graphic images are also called object-oriented graphics, but
they are not related to object-oriented programming.

The drawing activity is actually the activation of mathematical expressions
and descriptions in an application, which, in turn, will use attributes provided
in the respective Web document to create representations of the vector images.
Vector graphics always use one or more algorithms in real time to create a
shape and then draw that image on the screen or send it to a printer. Vector
graphic files create bitstreams that describe their images as display lists that
contain a mathematical description of every object in a shape (imagine a jewel
being composed of triangles, octagons, and other individual objects grouped
together), including their respective locations and dimensions, as well as other
attributes like fill colors, line stroke widths, and layers.

Vector graphics are widely used in word processing, graphics editing, pub-
lishing, and presentation applications. Almost all sophisticated graphics sys-
tems, including computer-aided design and drafting (CADD or CAD) systems
and animation software, use vector graphics. Applications used to create and
manipulate vector graphics are generally called drawing programs (as opposed
to the paint programs used to manipulate bitmap graphics). In everyday word
processing, fonts are often created using vectors. These are called vector fonts,
scalable fonts, object-oriented fonts, and outline fonts. Some vector graphic-
enabled output devices contain built-in interpreters that execute the instruc-
tions (as opposed to rasterizing into bitmaps).

Vector graphics have several advantages:

■■ Vector graphics files use smaller amounts of memory to represent a
respective object no matter what the intended actual size. If the graphics
files are altered to create bigger or smaller images, almost no difference
occurs in the size of their already smaller definition files, thus saving
RAM and hard disk drive storage.

■■ The smaller files also transmit (download) faster.

418 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 418

■■ Vector graphics are more scalable. Their representations can potentially
be output on any device, with any resolution, and at any size, with no
loss of clarity and no distortion. In fact, they look better when dis-
played at higher resolutions and at higher magnifications. By contrast,
bitmapped images become jagged at higher magnification and look no
better on higher-resolution devices than on lower-resolution devices.

■■ Overlapping shapes can be manipulated independently without using
different layers for each.

■■ Once vector graphic files are created, the objects within them can
be selected, resized, moved, and reordered at any time; significant
changes can be made, more quickly than the “pixel detailing” of
bitmap manipulation.

■■ Vector graphic files are searchable for data and attributes.

■■ Users can interact easily with the created image files using a simple
computer system and text editor. Vector files are actually text files.

The disadvantages of vector graphics are as follows:

■■ As vector graphics become more sophisticated (possibly containing
scores, hundreds, or even thousands of mathematical expressions that
define many finer details), more powerful processors may be needed to
handle them. It may take significant time to redraw or output (that is,
recalculate, pass the information to a rasterizer, store the data in RAM,
and quickly transfer and refresh it to a screen) all the objects, not only
all at once, but at perhaps hundreds of times a second as a monitor
screen refreshes. This may result in flicker as you move an image to a
new location on a page.

■■ The very fine image details might be better handled by bitmaps.

As a workaround for these bottlenecks and to save processing time, some
programmers develop software that includes strategically placed bitmapped
fonts or other images in otherwise vector graphic files. They still allow the use
of vector fonts and images to produce fine results in hard copy.

VML Development

VML was designed to help developers address the problems and disadvan-
tages of bitmap technology and to provide a textual method for prescribing
vector graphics. Those prescriptions can be easily transferred to a wide variety
of authoring tools, from the simple to the sophisticated, by simple cut-and-
paste methods. Further, VML is written so that it can be integrated into exist-
ing HTML 4.0 Web-related documents.

VML 419

422541 Ch11.qxd 6/19/03 10:12 AM Page 419

The initial VML draft specification was authored jointly by Autodesk Inc.,
Hewlett-Packard Company, Macromedia Inc., Visio Corporation, and Microsoft
Corporation, and it was submitted to the W3C in May 1998. The VML specifi-
cation never attained W3C Recommendation status, despite the support of
Microsoft and other developers. This support included the incorporation of
VML graphic-rendering functionality into recent versions (since Version 5.0)
of Microsoft’s Internet Explorer browser. The VML specification document
survives as a W3C Note. (As mentioned in Chapter 6, a W3C Note is a dated,
public record of an idea, comment, or document. Publication as a Note does
not represent any commitment by the W3C to pursue work related to it.
Neither does its Note status indicate any endorsement of its content, nor any
present or future allocation of resources to the issues addressed by it.)

Thus, no further VML development is likely to take place. In fact, both the
VML Note and the (rival) Precision Graphics Markup Language Note (also
submitted in 1998) were overtaken and passed by the development of the Scal-
able Vector Graphics specification, which became a W3C Recommendation in
mid-2001. We discuss these documents in the last sections of this chapter.

What Is VML? A Definition

The W3C (at www.w3.org/TR/NOTE-VML) describes VML as follows: “VML
is an application of the Extensible Markup Language (XML) 1.0, which defines
a format for the encoding of vector information together with additional
markup to describe how that information may be displayed and edited.”

VML is fully compliant with other W3C standards such as Cascading Style
Sheets, HTML, XHTML, and others. For example, all top-level VML elements
support the <style> element and its related attributes, in the same manner that
all HTML elements support it. Further, since VML also supports CSS, shapes
can be styled and positioned as required by a Web document developer.

True to its vector graphics heritage, VML uses mathematical descriptions to
prescribe its shapes. VML’s vector graphics definitions can be included within
XHTML-/HTML-compliant documents (integrated with the Web page coding).
Unlike bitmaps, VML definitions are not relegated to external files. True to its
Microsoft heritage, VML also contains a few MS Office-related features that allow
it to cooperate with VML generated by Microsoft 2000 and XP technologies.

Images can be generated using nothing but VML. However, bitmap data is
still considered important to VML and can be combined with vector data by
including appropriate references. Furthermore, VML provides (admittedly
limited) transformation attributes (such as chromakey, gamma, picture, and
black level adjustments) that can be applied to the bitmap data from within the
VML/Web document.

420 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 420

Some of VML’s advantages stem from its vector graphics heritage; some
from its Microsoft Internet Explorer affiliation:

■■ VML’s vector graphic files are generally smaller, so they transmit faster
than bitmap images.

■■ VML documents are easily and quickly created, updated, and pub-
lished to servers. Editing activities can be done using text editors or
other office environment applications. The files can be republished
directly and quickly after that.

■■ VML is both open and standards-based. It is compliant with other
W3C standards such as HTML, XHTML, and others, including, as
mentioned previously, Cascading Style Sheets.

■■ Because it is a text-based encoding system, developers are able to
search, cut, and paste vector graphics from one document to another,
and scale VML graphics to interact with other page elements and
objects. When a page is displayed in a browser window, the source
code can also be viewed.

■■ VML has become the most widespread graphics-related XML applica-
tion (although the Scalable Vector Graphics Recommendation is closing
the gap) and comes incorporated with recent versions of Microsoft’s
Internet Explorer browser. Thus, it is accessible to a wide audience and
requires no additional downloads or plug-ins to be functional.

■■ VML does not always require the implementation of a rasterizer.
Existing operating system facilities can be used, such as those found in
the Win32 Graphical Device Interface (GDI, the Windows standard for
representing graphical objects and transmitting them to output devices)
or Macintosh QuickDraw (the underlying graphics display system for
Apple Macintosh computers).

■■ Although images can be generated using nothing but VML, bitmap data
can also be combined with vector graphics data. VML also provides
some bitmap transformation attributes.

These advantages all contribute to faster Web site design and have allowed
VML to contribute to geographic information system technologies, where
VML’s map-making and drawing strengths can be quickly and easily employed
alongside XML-related spatial databases.

Creating VML Documents

Now that we know something about VML’s background and basic vector
graphic technology, it’s time to introduce its structure and other features.

VML 421

422541 Ch11.qxd 6/19/03 10:12 AM Page 421

Because VML is an application of XML, if it is used in an XML/XHTML envi-
ronment, its syntax must be strictly adhered to. If VML is used in an HTML
environment, however, not all XML-like features need be included.

Logical Structure: A Prolog and an <html> Element
VML document structures are very similar to XHTML/HTML documents. A
VML document consists of two main parts: a prolog and an <html> element.

The prolog resembles other XHTML-related documents. It consists of an
XML declaration and a DOCTYPE declaration indicating the DTD variant.
However, a prolog is not necessary when VML is used with HTML.

The <html> element consists of the <head> element and the <body> ele-
ment. In a VML/XHTML document, the <head> element contains a <title>
element followed by a <style> element. The <style> element also contains a
behavior declaration, which is discussed later.

Namespace Declarations
For VML to render properly, we must pay attention to the namespace declara-
tions. Two namespace declarations are necessary: a VML namespace and a
default namespace for the HTML or XHTML tags. Both declarations must
appear in the <html> element’s start tag.

Here is the VML namespace declaration that should appear in the <html>
start tag:

<html xmlns:v=”urn:schemas-microsoft-com:vml”>

When we are declaring a VML namespace, convention prescribes the prefix
v:. Later in the document, needless to say, the v: prefix precedes each VML-
related element tag.

If we omit the VML declaration, the VML figures will not be displayed. If
you ever have trouble producing VML output, start debugging by looking
for this declaration in your documents.

The default namespace is inserted next, in the same <html> element start
tag. If our document is XHTML-compliant, the default declaration must reflect
that. In that case, add the following as the default namespace declaration to the
<html> start tag:

xmlns=”http://www.w3.org/1999/xhtml”>

422 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 422

If our document is not XHTML-compliant (that is, if it is only HTML-
compliant), then we have to add the following default namespace declaration
to the <html> start tag, instead of the previous declaration:

xmlns=”http://www.w3.org/TR/REC-html40”>

The code used tells Internet Explorer that all tags without prefixes are part
of the XHTML or HTML namespaces, respectively.

Because of VML’s Microsoft heritage, it is supported by Microsoft Office
2000/XP applications: Microsoft Word, PowerPoint, and Excel. We can use
those applications to draw VML objects, but you must add a third namespace
declaration to the <html> start tag, since those applications will add the prefix
o: to their VML elements. The third declaration follows:

xmlns:o=”urn:schemas-microsoft-com:office:office”

Please remember that if we are not creating VML objects with Microsoft
Office applications, we can omit that third namespace declaration.

Behavior Declarations
VML is supported as a default behavior in Microsoft Internet Explorer Version
5.0 and later. Introduced in Microsoft IE 5, behaviors are complete and encap-
sulated subroutines that, when called, extend MS IE browser functionality. If
the IE browser does not include a VML behavior, we may need to add it as an
option. Look for the VGX.DLL in the C:\Program Files\Common Files\
Microsoft Shared\VGX folder on the Windows system.

Since they are complete in themselves, we can declare behaviors at the
beginning of an XHTML/HTML document and then apply (or “call”) them to
any element in our document. Thus, behaviors provide the ability to reuse
blocks of code and to keep our content separated from that actual code.

To activate IE’s VML behavior, insert the following code into the <style>
element within the <head> element:

<style>

v\:* { behavior: url(#default#VML); }

</style>

This instructs the browser to pass all tags beginning with v: to its VML ren-
dering subroutine.

Like the VML namespace declaration, if you omit the behavior, your VML
images will not be displayed. So, if you have trouble producing VML output,
consider looking for this code once you have examined your namespace
declarations.

VML 423

422541 Ch11.qxd 6/19/03 10:12 AM Page 423

Once again, because VML is supported in several recent Microsoft Office
applications, if we create VML objects with those programs, we must add this
behavior declaration to the <style> element:

o\:* {behavior:url(#default#VML);}

Later, you will learn how to create primitive graphic objects (objects created
by setting a path for a virtual pen to traverse). When adding such objects to
a VML document, we must add a shape behavior declaration to the <style>
element:

.shape {behavior:url(#default#VML);}

The .shape referred to here is like an object-oriented programming class
name. In embedded-style behaviors like this, the class name is used as a selec-
tor and begins with the period (.). This causes every element assigned the class
name of shape to be rendered according to the specifications in this IE behavior.

VML Elements in the <body> Element
The VML elements that we use to create shapes will appear within the <body>
element of the XHTML/HTML Web page document. Those elements are cate-
gorized according to their function within a VML-related hierarchy of cate-
gories. Some elements are members of more than one category. The main
categories, along with examples from each, are listed in Table 11.1. (Several of
the elements listed in Table 11.1 are discussed in this chapter; for details on
these and other elements, please refer to the W3C VML Note at www.w3.org/
TR/NOTE-VML.)

VML applies to each element a default template consisting of the full set of
attributes that may apply to that particular element. In the following section,
for example, we discuss the <shape> element and Table 11.2 lists the default
VML template for that element. However, when we specify a particular ele-
ment type, we can override the default values for any of its attributes by spec-
ifying the attribute name and a new value.

Table 11.1 VML Element Categories

CATEGORY MEMBERSHIP (EXAMPLES)

Top-level <group>, <shape>, <shapetype>, and <background>

Primary <group>, <shape>

Subelements Several. Examples include <fill>, <formulas>,
<strokeweight>, <handles>, <image>, <imagedata>

Predefined Several. Examples include <rect>, <roundrect>, <line>,
<oval>, <polyline>, <curve>, <arc>

424 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 424

The <shape> Element

Creating a <shape> element is the first step toward defining our own vector
graphic figure. But <shape> really only defines the containing box for the
actual figure we want to create. When this block-level box is created, we use the
<shape> element’s coordsize and coordorigin attributes to define a local coor-
dinate system for any subelement figures that may be created within the box.
Thus, any subsequent positioning information specified for subelement fig-
ures is expressed in terms of the box’s local coordinate space. As a result, posi-
tion attributes like left, top, width, height, and others are not expressed in
commonly recognized measures like inches, millimeters, or the like; they are
expressed as coordinate divisions, as you have defined them, within the box.

To clarify, the coordsize attribute defines how many divisions exist along the
base of the containing box, across its width. The coordorigin attribute specifies
the coordinates of the top left corner of the containing box. This strategy
allows the vectors defining a figure inside the block-level box to be specified
with respect to its local coordinate system. Later, if the dimensions of the con-
taining box are changed, the outline of the figure will be automatically scaled
to the new dimensions.

To create a figure inside the block-level box, specify a path within <shape>.
The path may take the form of a path attribute or a <path> element. Both are
discussed in the next section.

Table 11.2 lists the attributes, complete with their default values, that make
up the <shape> element’s default VML template. Notice that some values use
quotes, while others do not. Those with quotes are standalone attributes; those
without, appear within a style=”...” attribute. To override any of <shape>’s
default attribute values, insert the attribute name and specify a new value in
the <shape> element’s start tag.

Table 11.2 Default Template for the <shape> Element

ATTRIBUTE=VALUE ATTRIBUTE=VALUE

flip=null chromakey=null

height=100 coordorigin=”0, 0”

left=0, margin-left=0, center-x=0, etc. strokecolor=”black”

position=”static” opacity=”100%”

rotation=0 fillcolor=”white”

top=0, margin-top=0, center-y=0, etc. coordsize=”1000, 1000”

style=’visibility=visible’ strokeweight= “0.75pt”

(continued)

VML 425

422541 Ch11.qxd 6/19/03 10:12 AM Page 425

Table 11.2 (continued)

ATTRIBUTE=VALUE ATTRIBUTE=VALUE

width=100 type=null

z-index=0 adj=null

stroke=true path=null

wrapcoords=null alt=null

href=null id=null

title=null class=null

v=null print=true

fill=true target=null

As a simple example of <shape> element usage, the following code is just
about the minimum needed to produce a shape. Don’t worry about the path
attribute yet; after reading the next few sections, you will be able to interpret it
easily.

<shape fillcolor=”gray”

style=”position:relative;top:1;left:1;width:400;height:300”

path=”m 1,1 l 1,300, 400,300, 400,1 x e”>

</shape>

From the example, you can see that we must define, at a minimum, a
<shape>’s position, top, left, width, height, and path attributes. The fillcolor
attribute was included because the path is an attribute. If instead we had used
a <path> element, the fill color would have been specified within the <path>
element’s start tag.

Although the most basic of VML’s graphic elements, <shape> is not used as
frequently as we would expect. Most developers prefer to use predefined
shapes like <rect>, <oval>, <line>, and others. These are discussed later, in the
section titled VML’s Predefined Shapes.

Creating Graphic Objects Using the
path Attribute or <path> Element

To define what are called primitive graphic objects (which we refer to as shapes
or figures) within the <shape> element, we either use a nested <path> element
within the <shape> element, or specify a path attribute within the start tag of
the <shape> element.

426 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 426

As stated earlier, if we are going to add primitive graphic objects to our
VML documents using a path attribute or a <path> element, then we have
to add a shape behavior declaration to the <style> element. For details,
refer back to the Behavior Declarations section.

The path Attribute

Within the <shape> element, we can specify the figure we wish to draw by
using the attribute named path and specifying, as a value for that attribute, an
expression that includes a string of x,y coordinates plus one or more virtual
pen commands. The path attribute thus defines the outline of a shape by pre-
scribing a path consisting of a sequence of straight lines, Bézier curves, or both
(technically, these represent a list of vector-based drawing operations).

Classroom Q & A
Q: Sorry to interrupt again, but what kind of curves?
A: Bézier curves (pronounced “bez-ee-ay” and named after the French

mathematician Pierre Bézier) are curved lines defined by at least
three specified points. Mathematical formulas are used to plot the
rest of the points (see the c command in Table 11.3).

Once prescribed, the outline of the shape may then be stroked, filled, or
otherwise modified according to the values you specify for other attributes.
The basic syntax for a path attribute within a shape element is as follows:

<shape path=”expression” ... >

Nineteen pen commands are available: m, l (the letter “ell”), c, x, e, t, r, v, nf,
ns, ae, al, ar, at, wa, wr, qx, qy, and qb. The most commonly used commands
are described briefly in Table 11.3.

Table 11.3 Path Attribute Pen Commands

COMMAND FULL NAME INSTRUCTION

m moveto Start a new subpath at the given (x,y)
coordinate.

l lineto Draw a line from the current point to the
given (x,y) coordinate, which becomes the
new current point. To form a polyline, specify
a number of coordinate pairs.

(continued)

VML 427

422541 Ch11.qxd 6/19/03 10:12 AM Page 427

Table 11.3 (continued)

COMMAND FULL NAME INSTRUCTION

c curveto Draw a Bézier curve from the current point
to the coordinate given by the final two
parameters (the control points are given by
the first four parameters following the c).

x close Close the current subpath by drawing a
straight line from the current point to the
original moveto point.

e end End the current set of subpaths.

t rmoveto Start a new subpath at the (relative)
coordinates specified.

r rlineto Draw a line from the current point to the
given relative coordinate.

v rcurveto Draw a Bézier curve from the current point,
using the given coordinate relative.

Here is an example that draws a simple diamond shape:

<shape id=”diamond01”

fillcolor=”gray” strokecolor=”blue”

coordorigin=”0 0” coordsize=”200 200”

style=”position:relative;top:1;left:1;width:20;height:20”

path=”m 0,100 l 100,200, 200,100, 100,0 x e”>

</shape>

The square is prescribed in the expression that serves as the value for the
path attribute. The starting point occurs at coordinates 0,100 (halfway along
the left-hand side of a 200-by-200 rectangle) as defined by the moveto com-
mand (m). Next, a line is drawn, using the lineto command (l), from the start-
ing point to the other three points, in the order listed (to 100,200; then to
200,100; and finally to 100,0). We close the figure—that is, we draw a line from
the last point specified back to the starting point—using the close (x) com-
mand. The path is ended with the end (e) command. Note that, according to
the style-position attribute, the given coordinates are in relative coordinate space
(the space is prescribed by the coordorigin and coordsize attributes); the true
size will be determined by the width and height specifications. The points
specified are just x,y values in the units of the coordsize attribute of the shape
element.

Spaces, as well as commas, may be used as delimiters when specifying
point coordinates. For example, path=”m 0 100 l 100 200 200 100 100 0 x
e” is equivalent to path=”m 0,100 l 100,200, 200,100, 100,0 x e.”

428 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 428

Furthermore, if we are using zeros in our path description while using
commas as delimiters, we should consider leaving the zeros out. Thus,
path=”m 0,100 l 100,200,200,100,100,0 x e” is equivalent to path=”m ,100
l 100,200,200,100,100, x e.”

The <path> Element

As an alternative to the path attribute, a <path> element can be nested within
a <shape> element—or even within a <shapetype> element, which we discuss
later in a section titled The <shapetype> Element for Frequently Used Custom Fig-
ures, to prescribe an outline for a figure.

Within the <path> element (notice that it is a declared empty element), pre-
scribe your figure by inserting the attribute named v and specifying as values
for that attribute an expression that includes a string of x,y coordinates plus
one or more virtual pen commands. Thus, the procedure is similar to that of
the path attribute within <shape>.

Although the activation syntax differs, ultimately the pen commands are the
same as those listed for the path attribute: m, l (the letter “ell”), c, x, e, t, r, v, nf,
ns, ae, al, ar, at, wa, wr, qx, qy, and qb. The most common of those commands
are described in Table 11.3.

Using the simple diamond example again, the <shape> syntax, including
the nested <path> element with its v attribute, is as follows:

<shape strokecolor=”black” fillcolor=”gray” coordorigin=”0 0”

coordsize=”200 200” style=”top:1;left:1;width:20;height:20” >

<path v=”m 0,100 l 100,200, 200,100, 100,0 x e” />

</shape>

Besides the v attribute, other attributes we can use with the <path> element
include id, limo, fillok, strokeok, shadowok, arrowok, gradientshapeok,
textpathok, and textboxrect. Using these attributes gives us more control and
more features than if we had just used the path attribute in the <shape> ele-
ment to draw our figure. For example, although the limo attribute is not dis-
cussed in detail in this introductory-level text, it and the <formulas> element
provide greater control of figure scaling.

Classroom Q & A
Q: What if a <shape> element contains both a path attribute and a

<path> element with a v attribute, and the paths contradict?
Which will prevail?

A: If that happens, the specifications within the <path> element will
prevail over any values specified for the path attribute in the
<shape> element.

VML 429

422541 Ch11.qxd 6/19/03 10:12 AM Page 429

Q: So, which should we use? A <shape> element containing a path
attribute? Or a <path> element?

A: If we are not prescribing a complex shape, we are more likely to
conserve resources by using the path attribute strategy. Otherwise,
for more sophisticated shapes, it would be better to use the
<path> element and its attributes.

The same use of spaces as delimiters and the omission of zeros when
commas are used as delimiters also apply to the use of the <path>
element.

VML’s Predefined Shapes

If we create graphic figures with <shape> and <path> elements, we could be
faced with a lot of work. To save a great deal of effort, especially with respect
to common shapes that are used frequently, VML provides several predefined
shape elements.

Table 11.4 lists VML’s predefined shapes and provides an example of each.
The examples are illustrated in Figure 11.1. As you look at Figure 11.1, note
that, in VML graphics, positive numbers are arrayed to the right of the left
margin and downward from the top margin.

Table 11.4 VML’s Predefined Shapes

ELEMENT NAME EXPLANATION

<arc> Creates an arc. Example:

<arc style=’width:200pt;height:200pt’
startangle=”0”
endangle=”-90” coordorigin=”200 500”
strokecolor=”black” strokeweight=”2pt”/>

<curve> Draws a curved line. Example:

<curve from=”300pt,350pt”
control1=”400pt,350pt”
control2=”600pt,500pt” to=”670pt,600pt”
strokecolor=”black” strokeweight=”2pt”/>

430 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 430

Table 11.4 (continued)

ELEMENT NAME EXPLANATION

<image> Inserts a specified image into a shape. An implied
rectangle is created that is the same size as the image.
Example:

<image style=”width:300pt;height:200pt”
coordorigin=”300pt, 550pt”
src=”c:\SpaceGems\images\diamond.gif” />

<line> Creates a straight line. Horizontal line example:

<line from=”700pt,100pt” to=”950pt,100pt”
strokecolor=”black” strokeweight=”4pt”>

Vertical line example:

<line from=”150pt,50pt” to=”150pt,250pt”
strokecolor=”black” strokeweight=”4pt”>

<oval> Creates an oval (or a circle, depending on the width and
height property values). Oval example:

<oval style=’width:100pt;height:200pt’
fillcolor=”gray”
coordorigin= “850pt, 500pt”
strokecolor=”black” strokeweight=”1pt”/>

Circle example:

<oval style=’width:100pt;height:100pt’
fillcolor=”white”
coordorigin=”650, 350” strokecolor=”black”
strokeweight=”4pt”/>

<polyline> Creates any number of lines specified, connected to one
another “head-to-toe.” Example:

<polyline
points=”550pt,200pt,650pt,200pt,750pt,
300pt,850pt, 300pt,950pt,400pt,950pt, 500pt”
strokecolor=”black” strokeweight=”3pt”/>

<rect> Creates a rectangle. Example:

<rect style=’width:150pt;height:100pt’
fillcolor=”gray”
coordorigin=”400, 50” strokecolor=”black”
strokeweight=”1pt”/>

(continued)

VML 431

422541 Ch11.qxd 6/19/03 10:12 AM Page 431

Table 11.4 (continued)

ELEMENT NAME EXPLANATION

<roundrect> Creates a rectangle with rounded corners. Note the
addition of the arcsize attribute, which accepts values
between 0 (square corners) and 1.0 (semicircular).
Example:

<roundrect style=’width:250pt;height:100pt’
arcsize=”0.25”
fillcolor=”white” strokecolor=”black”
strokeweight=”2pt”/>

Predefined shapes provide a method for quickly drawing frequently used
figures. The shapes are easily edited, since they have a more natural-sounding
syntax. For example, instead of drawing a rectangle using a combination of the
<shape> and <path> elements, we only have to use the <rect> element.

Table 11.5 lists the default templates for VML’s predefined shapes. Notice
that both common and specific attributes are listed for each element type.

Figure 11.1 Predefined shapes in VML.

700

600

500

400

300

200

100

0 1000600 700 900800500400300100 200

Control points for
curved line

Vertical line

Rectangle

Arc

Polyline

Curved line

Horizontal line

Image

Circle

Oval

Rounded rectangle

432 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 432

VML 433

Ta
b

le
 1

1.
5

D
ef

au
lt

Te
m

pl
at

es
 fo

r
VM

L’s
 P

re
de

fin
ed

 S
ha

pe
s

A
TT

R
I B

U
TE

D
E

FA
U

LT
 V

A
LU

ES

<
R

EC
T>

<
R

O
U

N
D

R
EC

T>
<

LI
N

E>
<

O
V

A
L>

<
P

O
LY

LI
N

E>
<

C
U

R
V

E>
<

A
R

C
>

id
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll

h
re

f
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll

ta
rg

et
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll

cl
as

s
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll

ti
tl

e
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll
nu

ll

al
t

nu
ll

nu
ll

nu
ll

nu
ll

nu
ll

nu
ll

nu
ll

st
yl

e
‘v

is
ib

ili
ty

:
‘v

is
ib

ili
ty

:
‘v

is
ib

ili
ty

:
‘v

is
ib

ili
ty

:
‘v

is
ib

ili
ty

:
‘v

is
ib

ili
ty

:
‘v

is
ib

ili
ty

:
vi

si
bl

e’
vi

si
bl

e’
vi

si
bl

e’
vi

si
bl

e’
vi

si
bl

e’
vi

si
bl

e’
vi

si
bl

e’

op
ac

it
y

“1
.0

”
“1

.0
”

“1
.0

”
“1

.0
”

“1
.0

”
“1

.0
”

“1
.0

”

ch
ro

m
ak

ey
“n

ul
l”

“n
ul

l”
“n

ul
l”

“n
ul

l”
“n

ul
l”

“n
ul

l”
“n

ul
l”

st
ro

ke
“t

ru
e”

“t
ru

e”
“t

ru
e”

“t
ru

e”
“t

ru
e”

“t
ru

e”
“t

ru
e”

st
ro

ke
co

lo
r

“b
la

ck
”

“b
la

ck
”

“b
la

ck
”

“b
la

ck
”

“b
la

ck
”

“b
la

ck
”

“b
la

ck
”

st
ro

ke
w

ei
gh

t
“1

”
“0

.7
5p

t”
“1

”
“0

.7
5p

t”
“1

”
“1

”
“0

.7
5p

t”

fi
ll

“t
ru

e”
“t

ru
e”

“t
ru

e”
“t

ru
e”

“t
ru

e”
“t

ru
e”

“t
ru

e”

fi
ll

co
lo

r
“w

hi
te

”
“w

hi
te

”
“w

hi
te

”
“w

hi
te

”
“w

hi
te

”
“w

hi
te

”
“w

hi
te

”

p
ri

n
t

“t
ru

e”
“t

ru
e”

“t
ru

e”
“t

ru
e”

“t
ru

e”
“t

ru
e”

“t
ru

e”

(c
on

tin
ue

d)

422541 Ch11.qxd 6/19/03 10:12 AM Page 433

434 Chapter 11

Ta
b

le
 1

1.
5

(c
on

tin
ue

d)

A
TT

R
I B

U
TE

D
E

FA
U

LT
 V

A
LU

ES

<
R

EC
T>

<
R

O
U

N
D

R
EC

T>
<

LI
N

E>
<

O
V

A
L>

<
P

O
LY

LI
N

E>
<

C
U

R
V

E>
<

A
R

C
>

co
or

d
si

ze
“1

00
0,

“1

00
0,

“1

00
0,

“1

00
0,

“1

00
0,

“1

00
0,

“1

00
0,

10

00
”

10
00

”
10

00
”

10
00

”
10

00
”

10
00

”
10

00
”

co
or

d
or

ig
in

“0
 0

”
“0

 0
”

“0
 0

”
“0

 0
”

“0
 0

”
“0

 0
”

“0
 0

”

ar
cs

iz
e

“0
.2

”

fr
om

“0
 0

”
“0

 0
”

to
“1

0
10

”
“1

0
10

”

p
os

it
io

n
“0

 0
”

si
ze

“1
00

 1
00

”

p
oi

n
ts

“0
 0

 1
0

10
 2

0
0”

co
n

tr
ol

1
“1

0
10

”

co
n

tr
ol

2
“2

0
0”

st
ar

ta
n

gl
e

“0
”

en
d

an
gl

e
“9

0”

422541 Ch11.qxd 6/19/03 10:12 AM Page 434

The <shapetype> Element for Frequently Used Custom Figures

Although predefined shapes are very handy for defining commonly used
shapes and are convenient alternatives to using <shape> elements with path
attributes or nested <path> elements, there are times when we want to create
a custom-designed figure and use it repeatedly. At these times, when prede-
fined shape elements can’t help us, the <shapetype> element can be used.

The <shapetype> element allows us to predefine a customized figure that
can be used repeatedly later. Thus, we can create a prototype shape, provide it
with a unique identifier, and refer to it when needed. The following example
of a customized <shapetype> element defines a simple envelope shape:

<shapetype id=”envelope” coordsize=”10 10” >

<path v=”m 1,1 1 1,5,4,8,7,5,1,5,7,1,7,5,7,1, x e”

textboxrect=”0,2,8,4” fillcolor=”red” strokecolor=”blue”.../>

</shapetype>

See the unique id attribute in the start tag? The value of the id attribute (in
this case, envelope) is the attribute name we can use later, in conjunction with
a <shape> element, to draw a copy of this figure wherever we want it. Note that
the <shapetype> element definition must appear before the figure is drawn.

When we want to insert the customized figure, we use syntax resembling
the following at each designated location:

<shape type=”envelope” fillcolor=”white” strokecolor=”black”...>

</shape>

Thus, the <shape> element references a specific <shapetype> element by
using a type attribute.

Please note that the <shapetype> element by itself does not cause the figure
to be inserted. It only contains the specifications for the figure. Only when we
insert the subsequent and corresponding <shape> elements will the figure be
drawn. Please note, too, that in the sample <shape> element syntax, the fill-
color and strokecolor attributes were specified as white and black, respec-
tively. Specifying different values in the <shape> element will override the
values originally specified in the <shapetype> element. We can also alter other
aspects of the figure by setting or changing other property attributes within
the <shape> element.

Figure Placement

A discussion of figure placement involves one or more of three aspects:

■■ Deliberate positioning

■■ Figure overlap (accidental or deliberate)

■■ Flipping or rotating

VML 435

422541 Ch11.qxd 6/19/03 10:12 AM Page 435

If a designer intends to control any or all three aspects, the VML style
attribute will play a major role. This section discusses all three aspects.

Static Positioning

VML’s default position style is static positioning, which instructs the parser to
place a figure at the current point in the text flow and to ignore any top or left
settings that might appear in the style attribute.

As a simple example, say that we want to place a blue circle immediately
after the text “This is our blue circle” but before the word “See?”.

<body>

This is our blue circle.

<v:oval style=’width:100pt;height:100pt’ fillcolor=”gray”

strokecolor=”blue” strokeweight=”2pt” />

See?

</body>

The circle will appear immediately after the first statement, just like an
inline image. Static positioning isn’t the usual design strategy, because design-
ers normally want to place their images in specific locations.

Absolute Positioning

If we insert the position property into the style attribute of a figure’s start tag
and then set the value of the position property to absolute, the application
looks for subsequent properties as a prescription for where to place the fig-
ure’s containing box. The subsequent properties specify the distance from the
top left corner (the base point) of its parent element (presumably, another posi-
tioned element that is intended to contain the figure).

To clarify, let’s look at an example. Note that in the static positioning exam-
ple, the blue circle is contained within the <body> element (that is, within the
entire Web page). Its base point, then, is the top left corner of the Web page.
Now we alter the code with the position:absolute property so that the circle’s
block-level display box is exactly 20 points to the right of and 10 points down
from the top left corner of the Web page:

<body>

There is our blue circle.

<oval style=’position:absolute;left:20pt;top:10pt;

width:100pt;height:100pt’ fillcolor=”gray” strokecolor=”blue”

strokeweight=”2pt” />

See?

</body>

Now that we have positioned the figure with the absolute designation, it
will not be considered part of the text flow and will not appear between the

436 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 436

two statements. That’s why we changed the first statement to “There is our
blue circle” from “Here is our blue circle.”

Relative Positioning

Relative positioning allows us to place (that is, offset) a figure’s block-level dis-
play box in a precise position relative to the current (or base) point in the text
flow. Relative positioning is activated by the use of the value relative for the
position property within the style attribute. The offset distance is prescribed
by the values specified for the top and left properties in the style attribute. The
containing box will once again, as in VML’s default static positioning, take up
space in the text flow.

Let’s create another blue circle example that places the blue circle 100 points
to the left and 25 points lower than the current point in the text flow:

<body>

There is our blue circle.

<oval style=’position:relative;left:100pt;top:25pt;width:100pt;

height:100pt’ fillcolor=”gray” strokecolor=”blue”

strokeweight=”2pt” />

See?

</body>

Overlapping Figures: The z-index

Occasionally, figures overlap, whether by accident or by design. VML’s default
behavior is to display the most recently prescribed figure on top of those pre-
scribed earlier. However, by specifying z-index properties in the style attribute
of the respective figures’ start tags, a designer can create a layering hierarchy.
The value of the z-index specification can be a negative integer (for example,
–2), zero, or a positive integer (like +3). The figure with the most positive
z-index value will be displayed on top of figures with less positive z-index val-
ues. Meanwhile, if two or more figures have the same z-index value, the layer-
ing reverts to default behavior. Z-indexes can also be applied to <shapetype>
and <group> elements.

In the following example of respective z-indexes, our blue circle with gray
fill will be displayed on top of another figure, a green rectangle:

<body>

<oval style=’position:relative;left:50pt;top:15pt;width:100pt;

height:100pt;z-index:3’ fillcolor=”gray” strokecolor=”blue”

strokeweight=”2pt” />

<rect style=’position:relative;left:50pt;top:15pt;width:100pt;

height:160pt; z-index:0’ fillcolor=”green” strokecolor=”green”

strokeweight=”1pt” />

</body>

VML 437

422541 Ch11.qxd 6/19/03 10:12 AM Page 437

Z-indexes can be used to insert a background graphic. If Space Gems wants
their diamond logo to appear as a backdrop on their Web page and make it
independent from the text flow, it requires a negative z-index value and
absolute positioning, like this:

<body>

<image style=’position:absolute;left:20pt;top:10pt;width:400pt;

height:400pt; z-index:-3’ src=”c:\SpaceGems\images\diamond.gif” />

</body>

Rotating Images

Sometimes, for design or other reasons, we may want to rotate an object or a
figure on a Web page. We can insert a property named rotation into the style
attribute and then specify a value for the rotation. The values specified for a
figure rotation are clockwise or counterclockwise degrees about the figure’s
center (that is, about the figure’s axis). The number specified indicates the
degrees and direction of rotation. If the number is positive, the rotation will be
clockwise; if negative, counterclockwise.

Suppose, for example, Space Gems wants to use an image of one of its trans-
port ships as a background graphic. Instead of the craft appearing horizontal,
however, they want to create the impression that it is gaining altitude from left
to right. The following code could achieve that:

<body>

Free Delivery in the Sol System!

<image style=’position:absolute;left:20pt;top:10pt; width:400pt;

height:400pt; z-index:-3;rotation:-45’

src=”c:\SpaceGems\images\sgi-37x.gif” />

</body>

Flipping Images

Occasionally, for design or esthetic reasons, an image may fit better with the
text or the posture of someone in a picture may look more dynamic if they are
oriented differently. At these times, you can use the flip property specification
within the style attribute. The value you specify for flip dictates whether the
figure rotates about its x-axis or its y-axis. The values are listed in Table 11.6.

Table 11.6 flip Property Values

VALUE DESCRIPTION

x Invert the figure’s x ordinates (that is, flip the figure about its y-axis)

y Invert the figure’s y ordinates (flip the figure about its x-axis)

438 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 438

Let’s say Space Gems wants use the SE-SGI-37X transport vehicle image
again, but they want to flip it around. Here’s its basic nonflipped descriptive
code (some details have intentionally been omitted):

<body>

<image style=’.....width:400pt;height:200pt; z-index:-3;

src=”c:\SpaceGems\images\sgi-37x.gif”/>

</body>

Here is the code used to perform a horizontal flip:

<body>

<image style=’.....width:400pt;height:200pt; z-index:-3; flip:x’

src=”c:\ SpaceGems\images\sgi-37x.gif “/>

</body>

And here is the code used to perform a vertical flip:

<body>

<image style=’.....width:400pt;height:200pt; z-index:-3; flip:y’

src=”c:\ SpaceGems\images\sgi-37x.gif “/>

</body>

Figure 11.2 illustrates these flip maneuvers.

We are not restricted to flipping horizontally or vertically. We can also
specify both x and y flips.

Figure 11.2 Flipping an image.

<body>
 <v:image style='.....flip:y' src="c:\SpaceGems\images\sgi-37x.gif" />
</body>

<body>
 <v:image style='.....flip:x' src="c:\SpaceGems\images\sgi-37x.gif" />
</body>

VML 439

422541 Ch11.qxd 6/19/03 10:12 AM Page 439

Altering the Appearance of VML Figures

Several approaches can be used to alter the appearance of figures drawn with
VML: adding color, changing fill aspects, and altering scale (increasing or
decreasing their size). To add color and alter scale, use the style attribute. To
change fill aspects, use a nested <fill> element.

Adding Color to Shapes

Colors are specified three ways in VML:

■■ Using predefined color names (VML observes HTML 4.0 predefined
color names)

■■ Specifying the hexadecimal value

■■ Specifying the RGB function

Table 11.7 lists HTML 4.0’s named colors along with their respective hexa-
decimal values and RGB functions.

Table 11.7 HTML 4.0 Named Colors

NO. NAME OF COLOR HEXADECIMAL VALUE RGB FUNCTION

1 Aqua #00FFFF 0 255 255

2 Black #000000 0 0 0

3 Blue #0000FF 0 0 255

4 Fuchsia #FF00FF 255 0 255

5 Gray #808080 128 128 128

6 Green #008000 0 128 0

7 Lime #00FF00 0 255 0

8 Maroon #800000 128 0 0

9 Navy #000080 0 0 128

10 Olive #808000 128 128 0

11 Purple #800080 128 0 128

12 Red #FF0000 255 0 0

13 Silver #C0C0C0 192 192 192

14 Teal #008080 0 128 128

15 White #FFFFFF 255 255 255

16 Yellow #FFFF00 255 255 0

440 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 440

Table 11.8 Example Color Specifications

METHOD EXAMPLE CIRCLE SYNTAX

Named color <oval style=’width:100pt;height:100pt’ fillcolor=”gray”
coordorigin=”-300 100” strokecolor=”blue”
strokeweight=”2pt” />

Hexadecimal value <oval style=’width:100pt;height:100pt’
fillcolor=”#808080”
coordorigin=”-300 100” strokecolor=”#0000FF”
strokeweight=”2pt” />

RGB function <oval style=’width:100pt;height:100pt’
fillcolor=”rgb(128,128,128)”
coordorigin=”-300 100” strokecolor=”rgb(0,0,255)”
strokeweight=”2pt” />

Table 11.8 lists examples of all three methods, using identical specifications for
a predefined circle (that is, an oval whose width and height are the same dimen-
sion). Note the variations in syntax, according to the specification approach.

Changing Fill Characteristics using the <fill> Element

We’ve seen how the fillcolor attribute can be used to specify the color of vari-
ous figures. But when we want to alter figure colors in other ways, and the fill-
color, strokecolor, strokeweight, and other attributes do not provide the
options we want, we can nest a separate element <fill> in the extent of the fig-
ure element. In these sections, we illustrate how <fill> can be used to create
three effects: gradient fills, pattern fills, and picture fills. The <fill> element has
19 attributes: alignshapes, angle, aspect, color, color2, colors, focus, focusposi-
tion, focussize, id, method, on, opacity, opacity2, origin, position, size, src, and
type. Table 11.9 describes 12 that are commonly used at an introductory level.

Table 11.9 Basic <fill> Attributes

ATTRIBUTE EXPLANATION

angle The angle along which a fill gradient is directed
(default value is “0”)

color, color2, colors color sets the fill color (default value is “white”);
color2 sets a secondary fill color, for patterns (default
value is “white”); colors sets intermediate colors in a
gradient (default value is null)

focusposition, focussize For radial gradients. focusposition sets the position
of the innermost rectangle (default value is “0,0”).
focussize sets the size of the innermost rectangle
(default value is “0,0”)

(continued)

VML 441

422541 Ch11.qxd 6/19/03 10:12 AM Page 441

Table 11.9 (continued)

ATTRIBUTE EXPLANATION

id Specifies a unique identifier for the figure (default
value is “null”)

method Sets the fill method. Options are “none”, “linear”,
“sigma”, or “any” (default value is “sigma”)

origin Specifies the origin, relative to the upper left of the
image (default value is “auto”, the center of the image)

size Specifies the size of the image (default value is “auto”)

src Provides the URI of an image to insert for image and
pattern fills (default value is null)

type Specifies the fill type. Options are “solid”, “gradient”,
“gradientradial”, “tile”, “pattern”, or “frame” (default
value is “solid”)

Creating a Gradient Fill

Gradient fills are a progression from one color to another across a figure. There
are two types of gradient fills: normal and radial. To create gradient-filled fig-
ures, we use a type attribute in the start tag of a <fill> element, which, in turn,
is nested within the element that prescribes the figure. We can also specify addi-
tional attributes like method, color2, focus, and angle. Consider this example:

<body>

<oval style=’position:relative;left:50pt;top:15pt;width:100pt;

height:100pt; z-index:0’ fillcolor=”gray” strokecolor=”blue”

strokeweight=”2pt” >

<fill type=”gradient” method=” linear sigma” angle=”30” />

</oval>

</body>

Here we’ve prescribed a blue circle with a gradient ranging from white (the
default color2) to blue (the circle’s fillcolor), moving across it at an angle of
30 degrees.

A radial gradient fill employs a figure that, at its outer regions, is one color
but also contains a small rectangle of another color. The gradient occurs as the
fill changes color, beginning at the small rectangle, out to the color of the outer
regions. In this next example, a small white rectangle will be placed in the cir-
cle, creating a highlight spot. The focusposition attribute specifies the center of
the small rectangle.

442 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 442

<body>

<oval style=’position:relative;left:50pt;top:15pt;width:100pt;

height:100pt;z-index:0’ fillcolor=”blue” strokecolor=”blue”

strokeweight=”1pt” >

<fill type=”gradientradial” method=”sigma” angle=”45”

focus=”100%” focusposition=”.25, .75” focussize=”0,0” />

</oval>

</body>

Filling a Shape with a Pattern

To create a pattern fill, we must first have created a pattern and stored it in an
image file. Then, in the <fill> element start tag, we insert a type attribute and
specify its value as “pattern”. Then we insert the source location attribute src
and, for its value, specify the URI that describes the location of the image file.

In this example, a circle is filled with a pattern:

<body>

<oval style=’position:relative;left:50pt;top:15pt;width:100pt;

height:100pt;z-index:0’ fillcolor=”gray” strokecolor=”blue”

strokeweight=”2pt” >

<fill type=”pattern” src=”c:\SpaceGems\images\diamonds.gif”/>

</oval>

</body>

When using pattern fills, we can also specify custom fill colors by specifying
a different value for the fillcolor or color2 attributes.

Filling a Shape with a Picture

If we want to fill a shape with a picture, we first store the picture in an image
file. Then, in the <fill> element, we specify a value of “frame” for the type
attribute. Like the pattern fill, we then insert an src attribute whose value spec-
ifies the URI location of the picture file.

Here, a picture is inserted into a circle:

<body>

<oval style=’position:relative;left:50pt;top:15pt;width:100pt;

height:100pt;z-index:0’ fillcolor=”gray” strokecolor=”blue”

strokeweight=”2pt” >

<fill type=”frame” src=”c:\SpaceGems\images\diamond04.gif”/>

</oval>

</body>

Altering the Size of a Shape

To alter the scale of a shape, we must respecify the size of the figure’s contain-
ing box. To do that, we change the values of the width and height in the style

VML 443

422541 Ch11.qxd 6/19/03 10:12 AM Page 443

attribute, within the figure’s element start tag. The figure can then be redrawn
within the newly specified containing box. For example, let’s change the size
of our blue circle with the gray fill. Its original specifications are similar to the
following:

<oval style=’width:100pt;height:100pt’ fillcolor=”gray”

coordorigin=”-300 75” strokecolor=”blue” strokeweight=”2pt”/>

To make the circle twice as big, we do some simple arithmetic and come up
with the appropriate multipliers. We then substitute them as follows:

<oval style=’width:141pt;height:141pt’ fillcolor=”gray”

coordorigin=”-300 75” strokecolor=”blue” strokeweight=”2pt”/>

Grouping Shapes Together
If we are manipulating several figures but want them to maintain their relative
sizes, shapes, and positions with respect to one another, it is tedious to respec-
ify their attributes individually. It is easier to just group them together and
then specify new attributes for the entire group at once. With most drawing
applications, this process is called grouping. We can group figures using VML.
VML allows us to use the top-level <group> element to group more than one
shape together so that they can all be manipulated as one image.

The <group> element supports the same attributes as the <shape> element,
with some exceptions. For example, <group> only works with four child ele-
ments: <group>, <shapetype>, <shape>, and <lock>.

We can create a <group> element by nesting any number of other <shape>
elements and <group> elements. There are no limits on the levels of nesting or
on the number of elements nested within a group.

When elements are grouped, they use the local coordinate space of the
group. The new group is then referenced by a single ID. These features allow
the figure elements within the group to be scaled and moved together. For
example, Figure 11.3 depicts the components of a two-level nested group
named miner, in which:

■■ The drill, pick, and shovel shapes are combined to form the tools group.

■■ The hardhat and body shapes are combined to form the worker group.

■■ The tools and worker groups, combined with the buggy shape, form
the miner group.

444 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 444

Figure 11.3 Grouping shapes.

The following code forms the basic structure of the miner group. We’ve left
out the details to save time and preserve the clarity of the structure.

<body>

<group id=”miner”...>

<group id=”worker”...>

<shape id=”hardhat” ...> </shape>

<shape id=”body” ...> </shape>

</group>

<group id=”tools”...>

<shape id=”drill” ... > </shape>

<shape id=”pick” ...> </shape>

<shape id=”shovel” ...> </shape>

</group>

group id="miner"

shape id="buggy"

group id="worker"

shape id="hardhat"
shape id="body"

shape id="drill"
shape id="pick"

shape id="shovel"

group id="tools"

VML 445

422541 Ch11.qxd 6/19/03 10:12 AM Page 445

<shape id=”buggy” ...> </shape>

</group>

</body>

Scalable Vector Graphics (SVG)

In addition to VML, three other vector graphic-related submissions were
received by the W3C in 1998:

■■ The Precision Graphics Markup Language (March 1998).

■■ Web Schematics on the World Wide Web, a proposal submitted by rep-
resentatives of the Council for the Central Laboratory of the Research
Councils in March 1998 (also given Note status by the W3C).

■■ The DrawML Specification, submitted by Håkan Lothigius of Excosoft
AB, a Swedish IT consulting company (December 1998). DrawML
resembles Web Schematics, but relies on Java functionality.

All proposals were submitted to initiate and facilitate discussion and con-
sultation. As a result of the proposals, in early 1999, the W3C created their Scal-
able Vector Graphics (SVG) Working Group. It consisted of representatives
from Adobe; Apple; Autodesk; BitFlash; Canon; CSIRO; Corel; Excosoft; HP;
IBM; ILOG; Intranet Solutions, Inc.; Kodak; Lexica; Macromedia; Microsoft;
Netscape; Opera Software; Oxford Brookes University; OASIS; Quark; RAL
(CCLRC); Sun; Visio; Xerox; and the W3C itself. Many other members of indus-
try, academia, chat and email groups, and the general public also contributed.

In September 2001, after almost three years of drafting, discussion, consul-
tation, and development, the SVG group’s proposal was endorsed by the W3C
as the Scalable Vector Graphics (SVG) 1.0 Specification. Since then, develop-
ment has continued. Two proposed W3C Recommendations were released in
late 2002: a Scalable Vector Graphics (SVG) 1.1 Specification and the combined
Mobile SVG Profiles, SVG Tiny and SVG Basic. A Working Draft proposal for
the XHTML +MathML +SVG Profile was released in August 2002.

Thus, SVG is a very stable XML-based standard that many companies have
worked to implement. If you check the SVG Web site at www.w3.org/Graphics/
SVG/overview.htm8 you can link to a page that lists dozens of new SVG
implementations for viewers, editors, conversion tools, and server-side appli-
cations. We expect that SVG will eventually replace VML as the prevailing
graphics-related XML application.

446 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 446

Chapter 11 Labs: Creating VML Documents

VML graphics can be very complex and impressive, but if they are complex,
they can also be resource-hungry. In these exercises, we show you how to spice
up the Space Gems Web page using a keep-it-simple approach. Then we show
you just how far you can take VML. Because the second example is complex,
and because deriving code of this nature requires a lot of practice, skill, and
time, we provide it for you.

Lab 11.1: A Simple but Impressive
VML Example

With just a few lines of code, you can create some pretty interesting effects.
Granted, we could have created another JPEG or GIF graphic here, but
we think you’ll agree that it is simpler and more convenient to create and
then play with the few lines of text in the Web page document presented
in this lab exercise.

1. Download the file called SPFeature.htm from the Chapter 11 page of
this book’s Web site as noted in the book’s introduction, and put the
file in the C:\WWW\SpaceGems directory.

2. Open the SPFeature.htm file using HTML-Kit.

3. Click the Preview tab to confirm that the existing HTML tags in the
file are correct. You should see something like Figure 11.4.

4. Click the Editor tab to return to the code view of the file.

Figure 11.4 Initial view of Special Feature page.

VML 447

422541 Ch11.qxd 6/19/03 10:12 AM Page 447

5. Add the v XML namespace to the <html> tag at the top of the file.
To do this, change the <html> tag from

<html xmlns=”http://www.w3c.org/TR/REC-html40”>

to
<html xmlns:v=”urn:schemas-microsoft-com:vml”

xmlns=”http://www.w3c.org/TR/REC-html40”>.

6. Now declare your intentions to use VML by inserting the following
code between a set of <style> tags. Insert the following code inside
the file under the appropriate comment tag. This sets up the envi-
ronment within the browser so that the browser can invoke and
interpret the VML type tags correctly.
<style>

v\:* {behavior:url(#default#VML);}

/style>

7. Now let’s have some fun. Place the next two lines of code inside the
file under the appropriate comment tag. These two lines of code will
display an image of a Citrine gem inside the file. Note the use of the
v namespace here inside the code.
<v:image style=”width:150;height:150” src=”images/citrine.gif”>

</v:image>

8. Click the Preview tab and confirm that the Citrine gem image is
displayed.

9. Click the Editor tab to return to the code.

10. Now draw a circle (or oval). Enter these two lines of code directly
underneath the <v:image> code.
<v:oval style=”width:350;height:150” fillcolor=”#ffcc66”

strokecolor=”#ffcc66”>

</v:oval>

11. Click the Preview tab and confirm that the oval shape is displayed.
If you prefer to create a circle, make the oval’s width equal to its
height. Both the fill color and stroke color have been set to the same
value so that a black line doesn’t appear in the oval.

12. Click the Editor tab to return to the code.

13. Next, to fancy up the fill inside the oval shape a bit, enter the follow-
ing line of code directly beneath the <v:oval> code.
<v:fill method=”linear” angle=”45” type=”gradient” />

14. Click the Preview tab and confirm that the fill inside the oval shape
has a gradient applied. Cool, huh?

448 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 448

15. Click Editor tab to return to the code.

16. Next, place some text inside the oval shape. To do this, declare a
textbox and place text inside it. Be careful where you place the fol-
lowing code. These lines of code must be placed inside the oval so
that it knows where to display the text. Modify your existing code to
look like the code shown here. The new code is highlighted.
<v:image style=”width:150;height:150” src=”images/citrine.gif”>

</v:image>

<v:oval style=”width:350;height:150” fillcolor=”#ffcc66”

strokecolor=”#ffcc66”>

<v:fill method=”linear” angle=”45” type=”gradient” />

<v:textbox style=”font-size:20pt;font-color:white;

text-align:center”>

<p>Feature of the Month

20% off

Expires: 2048</p>

</v:textbox>

</v:oval>

17. Click on the Preview tab. Your display should now look like
Figure 11.5.

18. Once you are satisfied that the page displays properly, test the view
inside the browser. Enter the following into the browser’s locator
bar:

http://localhost/SpaceGems/SPFeature.htm

19. Optionally, you can place a link to this page from the index page for
easy access:
Space Gems Special Features

Figure 11.5. Final view of Special Feature page.

VML 449

422541 Ch11.qxd 6/19/03 10:12 AM Page 449

Lab 11.2: A Truly Impressive VML Example

The following example is set up as a surprise. You don’t actually have to
do any work! Just download the file and take a look at the various roving
VML shapes. (To see other great examples of VML, go to www.p-richards
.demon.co.uk.)

1. Download the file called SPFeature_Starts.htm from this book’s Web
site, as discussed in the introduction, and put the file in the
C:\WWW\SpaceGems directory.

2. View the file inside your browser.

http://localhost/SpaceGems/SPFeature_Starts.htm

3. You should see many stars roving all over your new page. Cool!

4. Take the time to view the source for the roving VML objects. To do
this, right-click the page and select View Source. Not so trivial!

5. Before closing the browser, notice how many resources this process
uses. To do this, right-click the bottom Windows tool bar and bring
up the Task Manager. Click on the Performance tab and look at the
CPU Usage. Yikes! Did we say “hungry”?

Summary

Several concepts discussed in this chapter are shared with other XML-related
graphics applications, although the names of element types, attributes, and
properties, and the applicable values assigned to them, may vary from appli-
cation to application:

■■ The ever-increasing demand for graphics must be met while optimizing
the use of system and network resources.

■■ Two basic digital imaging technologies exist: bitmap graphics and
vector graphics. VML is an example of vector graphics technology.

■■ Over the past few years, VML rose to prominence as the premier
graphics-related XML application. It will likely be eclipsed by Scalable
Vector Graphics, but it remains prominent today because of support
provided by the Internet Explorer browser application.

■■ The VML specification reached W3C Note status but will not reach
Recommendation status. SVG has overtaken it.

450 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 450

■■ In VML documents, designers must insert up to three namespace
declarations and up to three behavior declarations in the <style>
element within the <head> element. Behaviors are subroutines that
extend Internet Explorer functionality.

■■ VML shape-related elements appear nested within the <body> element.
Primitive graphic objects are created with the <shape> or <shapetype>
elements. However, most VML objects are created with VML’s predefined
shapes.

■■ VML graphic objects are placed using static, absolute, or relative posi-
tioning. Overlap is controlled by assigning a z-index value to each
shape. VML shapes can also be flipped, rotated, filled, resized, colored,
and grouped. There is no limit to the number of shapes that can be
grouped together, nor to the levels of such grouping.

VML 451

422541 Ch11.qxd 6/19/03 10:12 AM Page 451

Review Questions

1. The differences between the various bitmap formats arises from:

a. Differing bits per pixel

b. Differing compression algorithms

c. Differing image creation hardware and software

d. Differing associations that promote each format specification

e. None of the above

2. True or false? A rasterizer is a combination of hardware and software that translates
graphic objects into bitmaps.

3. True or false? Vector graphic “drawings” result from mathematical expressions
and descriptions inside an application that utilize the attribute and property values
provided by the data documents.

4. True or false? Vector graphics are tougher on system RAM, and bitmap graphics are
tougher on CPU resources.

5. True or false? A W3C Note represents one stage along the way to the development of
a W3C Recommendation.

6. If your VML objects don’t display, what VML document statements should you check
first?

7. Which of the following is not a top-level VML element?

a. <image>

b. <group>

c. <shape>

d. <background>

e. None of the above

8. Which of the following pen commands closes the current subpath?

a. c

b. x

c. e

d. m

e. None of the above

9. True or false? There is no real difference between using a path attribute in the
<shape> element as opposed to a nested <path> element when creating customized
shapes.

452 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 452

10. To control the overlapping of VML shapes, which attribute should we use?

a. rotation

b. z-index

c. flip

d. position

e. None of the above

11. To alter the size of a VML shape, which style attribute property should we use?
(There may be more than one answer.)

a. dimension

b. width

c. size

d. height

e. Any of the above

12. True or false? There is no limit to the number of shapes that can be grouped in VML.

VML 453

422541 Ch11.qxd 6/19/03 10:12 AM Page 453

Answers to Review Questions

1. a. Several different compression algorithms exist, each with its own features.

2. True. Rasterizers were discussed in the Bitmap Graphics section.

3. True. This was discussed in the Vector Graphics section.

4. False. The reverse is true: Vector graphics are capable of using a lot of CPU resources,
whereas bitmap graphics can use up a lot of RAM and hard disk storage.

5. False. A W3C Note represents no commitment to further development. In fact, Notes
are often a dead-end street for proposals, in that no development will likely ever take
place.

6. Check to see if the correct namespace declarations have been included. If that fails
to correct the display problem, then check to see if the correct behavior declarations
have been inserted.

7. a. The answer can be verified by looking at Table 11.1.

8. b. x is the close command. This can be verified by looking at Table 11.3.

9. False. For simple shapes, there may be no, or very little, difference (some might argue,
however, that attributes are easier on resources). However, for more complex shapes,
it is better to use the flexibility of the <path> element and its attributes.

10. b. The answer can be found in the text.

11. b. and d. The answer for this can also be found in the text.

12. True. This was stated in the Grouping Shapes Together section.

454 Chapter 11

422541 Ch11.qxd 6/19/03 10:12 AM Page 454

455

In this chapter, we introduce the Synchronized Multimedia Integration
Language (SMIL), an XML application that developers can use to create multi-
media presentations. The multimedia includes text, still images, and streaming
audio and video. You’re already pretty familiar with text and graphics. But
because not all of you may be so familiar with streaming media, we’ll discuss it
first. The rest of the chapter delves into the W3C SMIL Recommendations, the
creation of SMIL documents (in other words, the creation of SMIL multimedia
presentations), and where to find SMIL implementations.

By the end of this chapter, you will be able to create a SMIL-related multi-
media presentation and incorporate it into the Space Gems Web site.

What Is Streaming Media?

Streaming media is a technology for transferring and displaying audio, video,
and other multimedia data in real time over the Internet or even over private
networks. Streaming media’s objective is to process and display the media
objects seamlessly, as a steady and continuous stream, when the Web page that
contains it is downloaded to a user’s system. However, that system must have
an appropriate player application (that is, a viewer or plug-in) installed on it to
display the media data objects.

SMIL

C H A P T E R

12

422541 Ch12.qxd 6/19/03 10:12 AM Page 455

Streaming results in little or no initial delay between the download action
and the display and no delay as additional data is downloaded. The recipient’s
viewer application actually displays the data before the file transmission is
completed.

Streaming is especially beneficial when users cannot download large multi-
media files quickly. Prior to streaming, users had to download one or more
files to their hard disk drives and then, after the files were completely down-
loaded, they could play them. With streaming, almost any user can enjoy a
Web page’s contents immediately after selecting it.

Here are the three common methods for delivering streaming media:

True streaming. This is the latest trend. It requires a separate server for
the streaming media and a media viewer application that is specific to
the format of the requested media.

HTTP streaming. Also called progressive download streaming, or
serverless streaming, HyperText Transfer Protocol streaming was the first
popular form. It uses a standard Web server—not a separate, dedicated
streaming server—but it also needs a specific media player application.

Clientless streaming. For this technology, the viewer application is
provided during the streaming process.

As streaming media has become almost commonplace, it has created a
demand for better media creation tools. Consequently, a number of competing
streaming technologies and standards have been developed.

What Is the Synchronized Multimedia
Integrated Language?

The Synchronized Multimedia Integration Language (SMIL, pronounced
“smile”) is an XML application that enables you to create multimedia data pre-
sentations and integrate them with the text and graphics on Web sites. It was
developed specifically to integrate multimedia presentations while optimizing
bandwidth.

SMIL provides several capabilities, including the following:

■■ The integration of text, image, audio, and video media.

■■ Control of visual media layout.

■■ Control of synchronization (also called the temporal behavior) of the
various media.

■■ The creation of hyperlinks to include additional media (for example, to
jump to another part of the presentation, initiate a new presentation, or
open another Web page).

456 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 456

■■ Local or remote storage of the media content.

■■ The ability to search SMIL files for component names or text strings.
SMIL files are really just text files.

■■ The division of multimedia content into separate streams for individual
transmission, without sacrificing the integrated display aspect.

■■ The ability to adapt media streams to match the recipient system
characteristics. For example, media objects can be created and stored
in multiple versions to facilitate transmission or display, or to accom-
modate different language soundtracks.

■■ Reuse of any or all media objects in multiple presentations, because
each object is accessed with a unique URI.

SMIL differs from Java, which, we acknowledge, has had multimedia capa-
bility for a long time. But SMIL’s human-legibility makes it easier for non-Java
programmers to use. Meanwhile, SMIL documents can still be assembled on
the fly by Java servlets or CGI scripts.

In this chapter, we focus on the W3C’s SMIL 1.0 Recommendation. Recently,
the W3C endorsed the more powerful, more sophisticated, and much larger
SMIL 2.0 Recommendation; but because this is an introductory level discus-
sion, SMIL 1.0’s principles are sufficient to provide a basic understanding of
the technology.

The W3C and SMIL
The W3C’s SMIL Recommendations have been prepared by the Synchronized
Multimedia Working Group (SYMM-WG), which over the years has included
representatives from the following organizations: Alcatel, Apple, CNET/DSM,
Canon, Compaq, CSELT, CWI, DAISY Consortium, DEC, Ericsson, France
Telecom, Gateway, Glocomm, GMD, Havas, IBM, INRIA, Intel, Lucent/Bell
Labs, Macromedia, Microsoft, Netscape/AOL, NIST, Nokia, Oratrix, Pana-
sonic, Philips, The Productivity Works, RealNetworks, WGBH, and the W3C.
The first Working Group was assembled in January 1997. It published a public
draft of SMIL 1.0 in November 1997. Development has continued since then.

SMIL 1.0

The full specification of SMIL 1.0, Synchronized Multimedia Integration Lan-
guage (SMIL) 1.0 Specification, was endorsed as a W3C Recommendation in
June 1998.

Microsoft contributed to SMIL 1.0 development up until the last draft, but it
did not embrace the SMIL 1.0 Recommendation. Microsoft said that SMIL 1.0
overlapped with several existing standards, for example, CSS2, HTML, and

SMIL 457

422541 Ch12.qxd 6/19/03 10:12 AM Page 457

the XML Document Object Model (DOM), and was unnecessary. Macromedia
did not embrace SMIL because it claimed that SMIL’s features were not sophis-
ticated enough. Macromedia also believed that SMIL overlapped and poten-
tially conflicted with existing standards, most notably the XML DOM.

SMIL 2.0

The SYMM Working Group also produced Synchronized Multimedia Integra-
tion Language (SMIL) 2.0, which was endorsed as a W3C Recommendation in
August 2001. It is approximately 10 times larger than SMIL 1.0 and, unlike
SMIL 1.0, consists of sets of markup modules. Each module defines the seman-
tics and syntax for nine types of SMIL functionality: animation, content control,
layout, linking, media objects, metainformation, structure, timing, and transi-
tion effects. Several of these functions are new, compared to SMIL 1.0, and were
provided in response to developer requests. The modules can be used alone or
in combination (for example, event-based interaction and transition effects can
be combined). As you can see in Figure 12.1, SMIL 2.0 has nine DTDs, one for
each module type, and/or 11 schemas that govern the same functionality. By
comparison, the older and less sophisticated SMIL 1.0 uses only one DTD. The
references to the appropriate validation documents (DTDs or schemas) are
specified in the DOCTYPE definitions of the respective documents.

Figure 12.1 SMIL 1.0 and SMIL 2.0 validation documents.

SMIL 1.0
June 1998

SMIL10.dtd

Nine DTDs/Eleven Schemas

SMIL 2.0
August 2001

SMIL-anim.mod
SMIL-control.mod
SMIL-layout.mod
SMIL-link.mod
SMIL-media.mod
SMIL-metainformation.mod
SMIL-struct.mod

SMIL-timing.mod
SMIL-transition.mod

/
/
/
/
/
/
/
/
/
/
/

smil20.xsd
smil20-animate.xsd
smil20-content.xsd
smil20-layout.xsd
smil20-linking.xsd
smil20-media.xsd
smil20-meta.xsd
smil20-struct.xsd
smil20-timemanip.xsd
smil20-timing.xsd
smil20-transitions.xsd

458 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 458

XHTML+SMIL Profile

This profile, published as a W3C Note, describes the SMIL modules that are
added to XHTML to add timing, animation, and multimedia functionality to
XHTML elements. The profile supports all of the modules defined in the April
2001 W3C Recommendation titled Modularization of XHTML.

The Note was produced by the SYMM Working Group and published by the
W3C in late January 2002. It is made available for discussion only, and its pub-
lication indicates no endorsement by W3C, the SYMM Working Group, or any
W3C members. Comments are welcome, but there is no guarantee of any
action stemming from the comments, or even a reply.

Meanwhile, as a specification, the Note revises a previous Working Draft of
the same title previously available in, but now removed from, SMIL 2.0. The
profile includes several XHTML modules and SMIL 2.0 modules governing
the following functionality: animation, content control, media objects, timing
and synchronization, time manipulation, and transition effects. It also inte-
grates these features with XHTML and CSS and describes how SMIL can be
used to manipulate XHTML and CSS features. It also explains why the SMIL 2.0
layout, linking, structure, and metainformation modules were not included.

SMIL 1.0 can be viewed at www.w3.org/TR/REC-smil/; SMIL 2.0 at
www.w3.org/TR/smil20/; and the XHTML+SMIL profile at www.w3.org/
TR/XHTMLplusSMIL/.

Viewing and Creating SMIL Documents

We suggest visiting the W3C’s Synchronized Multimedia Web site at www.w3
.org/AudioVideo/ for links to SMIL-related features, including the following:

■■ SMIL definitions and specifications

■■ Recent and past news articles

■■ Tutorials and other information sources

■■ Players, listed according to the two SMIL versions

■■ SMIL authoring tools

■■ Demonstrations

Creating SMIL Documents

As we create SMIL documents, we have to remember that we are creating a
SMIL presentation. So we should keep the following basic process in mind:

SMIL 459

422541 Ch12.qxd 6/19/03 10:12 AM Page 459

1. First, we create one or more display regions, into which we are going to
place media objects, within the viewer application’s display area.

2. Then we specify the media objects to be used and assign them to their
respective regions.

3. Finally, we determine the order in which to display the media objects.
They can be displayed consecutively (in sequence or one following
another), concurrently (in parallel or one alongside another), or in some
combination of those two.

The structure and syntax of SMIL documents will be familiar. They are simi-
lar to HTML/XHTML syntax. Like XML, SMIL is case-sensitive. Like XHTML,
component names and tags must be lowercase.

A SMIL document, like other XML-related documents, consists of two main
parts: the prolog and the <smil> element, which, in turn, consists of a <head>
element and a <body> element. We can give SMIL documents any name we
want, as long as we add an .smi extension to the name.

The Prolog
SMIL documents have prologs similar to all other XML-related documents.
That prolog consists of an XML declaration and a DOCTYPE definition indi-
cating the location of the SMIL DTD. After that, their prologs can contain any
other statements the developer wants to include. Often, comment statements
are included.

The SMIL 1.0 DTD

A SMIL 1.0 document usually contains a document type declaration, which
names the DTD in use for the document. For SMIL, the document type decla-
ration should look like the following:

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

As discussed in Chapter 4, this form of declaration facilitates accessing an
external DTD that is intended for public use. Furthermore, the declaration
indicates that the DTD is located at a different Web site from the one at which
the XML document is located.

In Chapter 4, we mentioned that you can add or update declarations
found in external DTDs by including them within an internal DOCTYPE
definition in the prolog of the data document. Do not use this technique
with SMIL, because many SMIL applications will not support it.

460 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 460

If you want to view the SMIL 1.0 DTD, go to www.w3.org/TR/
REC-smil/#smil-dtd. To view the SMIL 2.0 DTDs, go to www.w3.org/TR/
smil20/smil-DTD.html, and if you want to see the SMIL 2.0 schemas, visit
www.w3.org/ TR/smil20/smil-SCHEMA.html.

The Root Element: <smil>
The root data element in a SMIL document is named <smil>, as indicated by
the simplified SMIL document in Figure 12.2. The direct child elements of the
<smil> element are <head> and <body>.

The Synchronized Multimedia Working Group anticipated that SMIL 1.0
elements and attributes would be used in other XML-based documents
besides the SMIL documents. For those cases, the Recommendation states that
the following XML namespace declaration should be added to the root ele-
ment start tag of those other XML language-based documents, so that they
may include the SMIL 1.0 elements and attributes:

<rootelementname xmlns:t=”http://www.w3.org/TR/REC-smil” ... >

However, in the SMIL 1.0 documents, namespace declarations are not nec-
essary. Furthermore, things did not work out quite the way the W3C antici-
pated in the SMIL 1.0 Recommendation: SMIL 1.0 components are generally
not included in other XML-related documents in the classic namespace-related
way.

As you will see in the Chapter 12 labs, HTML or XHTML documents often
link to SMIL 1.0 documents. When those links are activated, SMIL 1.0 player
applications (for example, those manufactured by RealNetworks, Inc.) are
usually activated automatically. It is those applications that use the SMIL 1.0
documents.

Figure 12.2 Simplified SMIL 1.0 document.

<head> element
(layout info)

<body> element
(media object & synch

info)

<smil>
element

Prolog

XML Declaration
Document Type Declaration

(refers to public external

DTD)
Comment

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
 "http://www.w3.org/TR/REC-smil/SMIL10.dtd">
<!-- filename: SpaceGems_show31/47.smi -->
<smil id="SpaceGems_show" >

<head id="SGI_act01">
<meta name="show_act01.smi" content="1st part of show" />
<layout type="text/smil-basic-layout">

<root-layout width="500" height="400" ... />
<region id="SGI_txtreg01" ... />
<region id="SGI_vidreg01" ... />

</layout>
</head>
<body>

<text> ... </text>
<audio> ... </audio>
<video> ... </video>

</body>
</smil>

SMIL 461

422541 Ch12.qxd 6/19/03 10:12 AM Page 461

So it is not necessary to include the namespace declaration in the XML docu-
ments in the browser in the classic manner. Microsoft Internet Explorer, for
example, uses HTML+TIME behaviors in its HTML or XHTML documents
to accommodate linking to SMIL 1.0 documents and invoking the SMIL 1.0
players.

In the meantime, the start tag of the <smil> element can, although it is not
required, contain the attribute ID to identify the element within the document,
so applications can find it. Not all applications are written so that they can
search for ID values, but it is possible to do so.

The <head> Element
As we mentioned earlier, the <smil> element contains a <head> element and a
<body>element. The <head> element has to contain a <layout> element or
a <switch> element and can also contain any number of <meta> elements, a
<title> element, and even a <style> element. The <head> element can also
have an id attribute.

As indicated in Figure 12.2, the <head> element contains the SMIL docu-
ment’s layout information. That is, the spatial relationships among the media
objects are defined within the <head> element, even though the media objects
and their timing and synchronization are defined elsewhere. Those aspects are
defined later in this chapter, in the section titled The <body> Element: Content,
Temporal, and Linking Information.

The <layout> Element

The spatial positioning of the media objects in the viewport—that is, in the
application’s viewing window, where the SMIL presentation is displayed—is
defined within the <layout> element, which must be properly nested within
the <head> element and nowhere else. Generally, you should follow a <lay-
out> element strategy similar to that shown in Figure 12.2: The root-layout
region size is specified and regions are defined for any text and video objects
that will appear. If you don’t specify a <layout>, the spacing is left up to the
application that is activated to present the media objects.

Two attributes can appear in a <layout> element start tag: id and type. As
with many element types, an id attribute can be used to assign a unique iden-
tifier to the <layout> element. The type attribute specifies which layout lan-
guage you are going to use in the layout element. The default value is text/
smil-basic-layout, which is the language we will discuss as the chapter pro-
ceeds. However, other values, such as text/css, can also be used. If another

462 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 462

value is used, the layout definitions within <layout> appear in that language,
using its semantics and syntax. However, if the player application does not
understand the language specified, it must skip all content it encounters up
until the </layout> end tag.

In this chapter, we will use the default SMIL basic layout language for all
our media object elements. To do so, we can either leave out the type attribute
or use the following syntax:

<layout type=”text/smil-basic-layout”> ... </layout>

The SMIL basic layout is consistent with the W3C’s Cascading Style Sheets,
Level 2 Specification Recommendation (CSS2). Now we have two choices:

■■ Leave the <layout> element empty, which activates the default CSS2
property values for the media objects (for example, all absolutely posi-
tioned elements will be contained within the single containing block
defined by the <smil> element) and otherwise rely on the player appli-
cation’s other defaults.

■■ Specify the layout, using the <layout> element and its appropriate child
elements. This is the approach we recommend using, because it provides
the developer with the most control over media object layout.

There are two child elements that may be used within the <layout> element:
<root-layout> and <region>.

The <root-layout> Element

You use the <root-layout> element to specify the size and other features of the
area within the player application’s viewport in which you want to display the
media objects. Occasionally, the viewport itself is referred to as the root-layout
region, but that is not always correct. The viewport is created by the player
application and automatically adjusted to accommodate the root-layout
region. However, if one or more of the viewport’s dimensions cannot be
expanded sufficiently, the player application begins to adjust (that is, reduce)
the SMIL document’s dimensions accordingly.

Figure 12.3 illustrates a typical SMIL 1.0 player display, indicating the view-
port, the root-layout region, and three sample regions. We have shown three
regions, but the number, size, and positioning of regions is left to each SMIL
document developer’s requirements. Meanwhile, most player applications
have more than one view; the user can generally select a view that shows the
player application portion with or without the browser portion.

SMIL 463

422541 Ch12.qxd 6/19/03 10:12 AM Page 463

Classroom Q & A
Q: So you’re saying that the root-layout region is not the same as the

viewport?
A: That’s right. With earlier player applications, certain views gave us

the impression that the viewport and the root layout regions were
synonymous. It’s not so. We have some control over the root-layout
region and the regions within it, but the application governs the
viewport.

A SMIL document cannot have more than one <root-layout> element. The
<root-layout> element is a declared empty element that can contain the fol-
lowing attributes: background-color, height, width, id, skip-content, and title.

The following example code creates a root-layout region 600 pixels wide
and 450 pixels high with a white background. The color can be specified using
the color name, a hexadecimal function, or the RGB function:

<root-layout width=”600” height=”450” background-color=”white” />

Figure 12.3 Player application display.

Status bar - name of file being displayed;
network bandwidth information; time information

Player
Application
Portion

Browser
Portion

<region id="SGI_reg01"...>

<region id="SGI_reg02"...>

<region id="SGI_reg03"...>

top

left

root-layout region
viewport

Progress bar - indicates relative time elapsed

464 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 464

If there is no <root-layout> specification, the player application’s default
value is used.

The <region> Element

By specifying positions, dimensions, and unique identifiers, we can divide the
root-layout region into smaller regions. Any region should be treated as a sort
of container in which we can display one or more visual media objects, such as
text, graphic images, or streaming video. Thus, each media object is associated
with a specific region through the use of a URI reference, and the regions are
identified, positioned, and sized according to the specifications found in their
respective <region> elements. As developers create SMIL documents, they can
use any region to host more than one visual media objects. Furthermore,
regions can be created, used in a limited fashion, and then discarded—that is,
overwritten—as different regions are created.

Each region’s identity, position, and dimensions are controlled by the values
specified for the id, left, right, width, height, and z-index attributes in the
respective <region> element start tag.

Here are two examples. We’ll use two <region> elements to define two
regions in the same display. Figure 12.3, which appears in the previous section
titled The <root-layout> Element, illustrates the two regions defined in the
examples.

<region id=”SGI_reg01” left=”40” top=”5” width=”95” height=”10”

z-index=”1” />

<region id=”SGI_reg02” left=”15” top=”20” width=”70” height=”20”

z-index=”0” />

In both examples, id attributes are specified for each region. We assign
unique IDs to each region so that later, when we define the image, text, or
streaming video in the <body> element, we can refer to the regions individu-
ally by the ID values.

The positioning and sizing (that is, left, top, width, and height) values
provided are expressed in pixels and indicate that we’re using an absolute
positioning technique. Although the width and height attributes seem straight-
forward, the left and top attributes may seem confusing. They are absolute
references from the top left corner of the region to the top left corner of the
<root-layout> region. Using SGI_reg01 as an example, left=”40” and top=”5”
specify that to get from the top left corner of the SGI_reg01 region to the top
left corner of the <root-layout> region, you move 40 pixels to the left and 5
pixels toward the top.

We can also specify the positions of regions relative to the <root-layout>
region’s dimensions. For example, if we want to display an image with its
right border at a point that is 25 percent of the distance from the <root-layout>
region’s left border to the right, and its top at a point that is 33 percent of the

SMIL 465

422541 Ch12.qxd 6/19/03 10:12 AM Page 465

distance down from the top of the <root-layout> region, we modify the previ-
ous example code to read like the following:

<region id=”SGI_reg04 left=”25%” top=”33%” width=”100” height=”30”

z-index=”1” />

Meanwhile, the height and width of the region are still specified in pixels.
In Figure 12.3, the SGI_reg02 and SGI_reg03 regions overlap. If we want to

prevent overlap, we have to be careful with the positions and dimensions we
specify. On the other hand, if we want multiple regions to overlap (for exam-
ple, to create a background pattern), we can use the z-index attribute with the
<region> element the same way you used it with VML: The region with the
most positive z-index will be rendered on top. If neither region has a z-index
specified or if their z-index values are identical, the most recent elements lay
over the earlier ones.

When Media Object Dimensions Don’t Match Region Dimensions

Developers generally strive to create <region> elements so that the respective
media objects will fill their container areas. And occasionally, they’re success-
ful, which isn’t very encouraging. Unfortunately, because of differences in
video settings or browser applications, visual media objects do not turn out to
be the same size as the regions originally defined for them. In this section, we
discuss four situations where they don’t and provide suggestions for mitigat-
ing them by doing the following:

■■ Stretching a small visual object to fit the region, with no care about any
resulting distortion

■■ Expanding a small visual object until its larger dimension matches a
region boundary

■■ Expanding a small visual object until its smaller dimension matches a
region boundary

■■ Displaying a larger visual object without reducing its dimensions

All the remedies involve adding a fit attribute with appropriate values to
the <region> start tag.

Fill the Region: Distortion Is Not an Issue

Look at Figure 12.4. On the left, the original object, when displayed, is smaller
than the defined sg_reg1 region. In this case, we want to expand the object to
completely fill the region, even if the image becomes distorted, as shown on
the right of the figure. Let’s presume that because of the nature of the image,
distortion in one direction or another will not be an issue.

466 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 466

Figure 12.4 Fill: Distortion.

To accomplish this expansion, we use syntax similar to the following:

<region id=”sg_reg1” left=”10” top=”10” width=”150” height=”100”

background-color=”black” fit=”fill” />

Expand the Object until There’s a First-Dimension Match:
No Distortion

Now look at Figure 12.5. As in the first example, the object, when displayed,
would be smaller than the sg_reg1 region. This time we want to expand the
object until the first of the object’s dimensions matches one of the region’s
dimensions. But we do not want any distortion.

Use syntax similar to the following to achieve this result:

<region id=”sg_reg1” left=”10” top=”10” width=”150” height=”100”

background-color=”black” fit=”meet” />

Figure 12.5 shows that the object expands until the bottom of the object
touches the bottom of the region. A gap, represented in the figure by a black
band (no such band would really appear; we’ve only included it here for
emphasis), still remains on the right side of the object, between the right edge
of the object and the right edge of the defined region, indicating the part of the
region that does not contain any of the image.

Figure 12.5 Meet: No distortion.

viewport

SGI_reg01

viewport

SGI_reg01

viewport

SGI_reg01

viewport

SGI_reg01

SMIL 467

422541 Ch12.qxd 6/19/03 10:12 AM Page 467

Expand the Object Until the Second Dimensions Match: No Distortion

This situation is depicted in Figure 12.6. Again, the original displayed object is
smaller than its designated region. This time, however, we want to expand the
object to fill the region, until the second of the object’s dimensions matches
the corresponding region dimension. Figure 12.6 shows that this creates the
impression that the region crops (or slices off) the bottom of the media object.
Let’s presume then that because of the nature of the image, we would rather
sacrifice some of the image than create distortion.

To accomplish this objective, we use syntax similar to the following:

<region id=”sg_reg1” left=”10” top=”10” width=”150” height=”100”

background-color=”black” fit=”slice” />

Don’t Alter the Media Object’s Dimensions: No Distortion

Now look at Figure 12.7, where the original object, when displayed, will be
larger than its region. This time we do not want to reduce the size of the object,
nor do we want any distortion. Instead, we prefer to let end users scroll if they
really want to see the entire image.

To do this, use syntax similar to the following:

<region id=”img_reg1” left=”10” top=”10” width=”150” height=”100”

background-color=”black” fit=”scroll” />

Figure 12.6 Fill: No distortion.

Figure 12.7 Scroll: No distortion.

viewport

SGI_reg01

viewport

SGI_reg01

viewport

SGI_reg01

viewport

SGI_reg01

468 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 468

Table 12.1 <meta> Element Attributes

ATTRIBUTE NAME EXPLANATION

content Required for <meta> elements. Specifies the value of
the property defined in the meta element.

id Uniquely identifies the element within the document,
in case it is being searched for by an application.

name Required for <meta> elements. Identifies the property
defined in the meta element.

skip-content Introduced in SMIL 1.0 for future extensibility. Possible
values are true (ignore the content of this element) or
false (parse the content of this element).

base The value of this property determines the base URI for
all relative URIs used in the document.

title The title of the presentation.

The <meta> Element

The declared empty <meta> element can be used to provide additional infor-
mation, for example, a unique identifier, the author’s name, keywords, and
base URIs from which to create relative location paths, about a SMIL docu-
ment. There is no restriction on the number of <meta> elements you can
include. However, the <meta> element can only be included in the <head>
element of a SMIL 1.0 document. Table 12.1 lists the attributes we can use with
the <meta> element.

To illustrate, here are two examples of some metainformation we could add
to our SMIL presentation:

<meta name=”title” content=”Space Gems Catalog, Fall/Winter 2047”/>

<meta name=”base” content=”http://www.SpaceGems.com/images/” />

The <switch> Element

With the <switch> element, SMIL provides the capability to adapt our presen-
tations according to the properties of our end users’ systems. The <switch>
element contains a number of child elements that, in turn, contain attributes
against which to conduct boolean true/false tests. The first child under
<switch>, whose attribute tests all prove to be true when tested against the
user’s system, prevails over the others and is executed. By default, any child
element that contains no test attributes is automatically considered to be true.

SMIL 469

422541 Ch12.qxd 6/19/03 10:12 AM Page 469

Using this strategy, then, different sets of elements, and thus, a different-
looking or -sounding Web presentation (for example, in a different language,
at a different video resolution, or with video instead of stills), might be acti-
vated automatically depending on the user’s system.

The <switch> element can be placed in the <head> or <body> element.
Because it is more likely to be placed in the <body> element to be used in con-
junction with the media object elements and the synchronization elements
nested there, we have placed a more detailed discussion of <switch> in its own
section under The <body> Element section, coming up next.

The <body> Element: Content, Temporal,
and Linking Information
You’ve seen how the <head> element of the SMIL document contains appear-
ance and layout information. The <body> element, by comparison, contains all
the actual media content and timing information. Some call the contents of the
<body> element the “content, temporal, and linking” behavior information.

The <body> element contains child elements that specify to the SMIL parser
and the application what to render in the regions defined within the <head>
element. In other words, the region’s visual characteristics are defined in the
<head> section, and the audio and visual contents are defined in the <body>
section.

The <body> element’s start tag can also contain an id attribute. The <body>
element can contain the following child elements: <a>, <animation>, <audio>,
, <par>, <ref>, <seq>, <switch>, <text>, <textstream>, and <video>.

Synchronizing Media Objects with
the <par> and <seq> Elements

Regions can have the same content all the way through a presentation or dif-
ferent contents at different times. The rendering of different components (that
is, different media objects) can occur either consecutively (sequentially) or con-
currently (in parallel). Sequential operations are governed by the use of <seq>
elements inserted as child elements within the <body> element; concurrent
operations by <par> elements. Because of their time-oriented functions, the
<seq> and <par> elements are called synchronization elements.

The <body> element itself is similar to a <seq> element. In fact, it is consid-
ered to be a special type of <seq> element, because its child elements are dis-
played one after another. However, <body> lacks the time attributes provided
with <par> and <seq>, and that, basically, is why <par> and <seq> are used.

The <seq> elements may contain one or more child elements, and the con-
tents referenced by those elements are displayed in sequence, one after another,
according to the order they appear in the SMIL document. That is, the children
of a <seq> element form a temporal sequence.

470 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 470

The <seq> element can contain these child elements: other <par> or <seq>
synchronization elements; hyperlink elements, such as <a>; media object ele-
ments, such as <animation>, <audio>, , <ref>, <text>, <textstream>,
and <video>; and other elements, such as <switch>.

The children of the <par> and <seq> elements have attributes used to define
the media object life cycle. Table 12.2 lists the attributes that you can use with
the <seq> element (with the <par> element, too, as you’ll soon see).

Table 12.2 <seq> and <par> Element Attributes

ATTRIBUTE NAME EXPLANATION

abstract Brief content description.

author Content author’s name.

begin The time for the explicit beginning of an element
(seconds). Two types, both clock-based: delay-
value; event-value.

copyright Content’s copyright notice.

dur The explicit duration of an element (seconds).

end The explicit end of an element (seconds).

endsync Attribute that influences the implicit duration of the
<par> element.

id Unique identifier.

region Specifies the abstract rendering surface defined
within the <layout> elements.

repeat Number of times the object should be repeated.
Value can be an integer (default value is 1), or the
text string “indefinite”.

system-bitrate Specifies the approximate bandwidth.

system-captions Determines whether closed captioning will be “on”
or “off”.

system-language Value is a comma-separated list of language names.
(Consult RFC 1766). Determines whether there is a
match between end-user system and objects.

system-overdub or caption Users prefer overdubbing or captioning when those
features are available.

system-required Specifies the name of an extension (for example,
namespaces).

(continued)

SMIL 471

422541 Ch12.qxd 6/19/03 10:12 AM Page 471

Table 12.2 (continued)

ATTRIBUTE NAME EXPLANATION

system-screen-size “True” if the player is capable of displaying a
resolution of the given size (“width × height”
in pixels).

system-screen-depth Specifies the depth of the screen color palette
in bits per pixel.

title The developer’s preferred title. All <seq> elements
should contain a title attribute with a meaningful
value.

The begin and end attributes are the most obvious of the life-cycle controls. The
begin attribute tells the SMIL player application when to begin displaying the ele-
ments contained in the <seq> element. The end attribute indicates when the
display should finish.

Figure 12.8 illustrates a simplified example of the use of the <seq> element.
In the example, three logo images, representing a diamond ring, necklace, and
bracelet, are presented in sequence. Each is displayed for five seconds with
one second in between. We suggest that if you are planning sequences, you
create a time line similar to the one shown in Figure 12.8, to maintain better
life-cycle control of your media objects.

Just as we use <seq> elements to govern consecutive operations, we can
indicate and govern concurrent (parallel) operations by using the <par> ele-
ment within the <body> element. The <par> elements also contain child ele-
ments. But in contrast to the sequential nature of the <seq> element children,
the contents of <par> children are displayed at the same time. However, the
children of a <par> element can still appear to overlap in time, or to be spaced
apart in time, by using specific life-cycle control attributes.

You can see these life-cycle controls at work in Figure 12.9, which presents a
simplified example of the use of the <par> element. Again, it is recommended
that a time line, such as that shown in Figure 12.9, be used during the planning
stages.

The <par> element can contain the same child elements as the <seq> ele-
ment. That attributes that are applicable to the <par> element are identical to
the <seq> attributes listed in Table 12.2.

The SMIL Media Object Elements

SMIL’s media object elements enable us to include media objects in a SMIL
presentation. There are several SMIL media object elements:

472 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 472

<animation> An animated graphic (example: AVI or QuickTime files).

<audio> An audio clip (examples: MP3, WAVE, or RealAudio files).

 A still image (examples: PNG, JPEG, GIF, or TIFF files).

<text> A text reference (examples: text or HTML files).

<textstream> Streaming text (example: ASP TextStream files).

<video> A video clip (examples: ASX, RealVideo, AVI, or MPEG files).

<ref> A generic media reference (suggested when a developer is in doubt
about the category that a media object belongs to).

Figure 12.8 The <seq> element.

<body>
 <seq>
 <img src="dia_ring_sm_logo.gif"
 alt="New Diamond Rings"
 region="SGI_reg01"
 dur="5s" />
 <img src="dia_neck_sm_logo.gif"
 alt="New Diamond Necklaces"
 region="SGI_reg01"
 dur="5s" begin="1s" />
 <img src="dia_brace_sm_logo.gif"
 alt="New Diamond Bracelets"
 region="SGI_reg01"
 dur="5s" begin="1s" />
 </seq>
</body>

Time, seconds

dia_ring_sm_logo.gif

dia_neck_sm_logo.gif

dia_brace_sm_logo.gif

50 10 15

M
ed

ia
 o

bj
ec

t
na

m
e

SMIL 473

422541 Ch12.qxd 6/19/03 10:12 AM Page 473

Figure 12.9 The <par> element.

The W3C groups media objects as follows:

■■ Those with an intrinsic (that is, built-in) duration; also called continu-
ous media. Examples are videos and audio files.

■■ Those without intrinsic duration; also called discrete media. Examples
are text files and still images.

Each visual media object, for example, a video image, is displayed by the
SMIL player in an individual region within the root-layout region, or the
viewport, if those two areas coincide. The regions are treated as containers.

<body>
 <par>
 <img src="SpaceGems_sm_logo.gif"
 alt="Space Gems, Inc."
 region="SGI_reg05"
 dur="20s" />
 <audio src="SpaceGemsTheme.wav"
 begin="2s" repeat="3"
 end="30s" />
 <text src="SG_sales.txt"
 alt="Welcome to Space Gems!"
 region="SGI_text_reg01"
 begin="1s" dur="10s" />
 </par>
</body>

Seconds

SpaceGems_sm_logo.gif

SpaceGemsTheme.wav 30s

SG_sales.txt

50 10 15 20

M
ed

ia
 o

bj
ec

t
N

am
e

474 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 474

The media objects are associated with them by URI references used as values
for the src attribute within the start tag for the media object element.

For example, if we want to insert an actual visual image (in this case, let’s
say it’s a GIF graphic image), we can insert an element within the
<body> element and use code similar to the following:

<img src=”dia_ring_sm_logo.gif” alt=”Space Gems Rings!”

region=”SGI_reg01” ... />

Notice that the value of the region attribute in the element start tag is
identical to the value given to the id attribute inside the start tag of the respec-
tive <region> element inside the <layout> element. Thus, the value is a pointer
to the respective region and links the two components together.

Try to ensure that the category into which a media object is placed is
appropriately reflected in the element name. This facilitates readability
and searchability of the SMIL document. For example, it would be
confusing to create a series of elements with image-related names if
some actually contained audio or animation references. If there is doubt
about how to categorize a media object (for example, some animation
objects are considered to be video), rely on the more generic element
name <ref>.

Table 12.3 lists the attributes that are applicable to all media object elements.
Most are probably familiar; they’ve been mentioned and defined in tables per-
taining to other elements.

Table 12.3 Media Object Elements Attributes

ATTRIBUTE NAME EXPLANATION

abstract Brief content description.

alt For viewers/players that cannot display a particular
object; specifies alternate message. Strongly
recommended for all object elements.

author Content author’s name.

begin The time for the explicit beginning of an element
(seconds). Two types: clock-based delay-value and
event-value.

clip-begin Specifies the beginning of a subclip of a
continuous object as offset from the object’s start.
Various formats, syntaxes.

(continued)

SMIL 475

422541 Ch12.qxd 6/19/03 10:12 AM Page 475

Table 12.3 (continued)

ATTRIBUTE NAME EXPLANATION

clip-end Specifies the end of a subclip of a continuous
object that should be played. Same syntax as
clip-begin.

copyright Content’s copyright notice.

dur The explicit duration of an element (seconds).

end The explicit end of an element (seconds).

fill Attribute that determines the effective end of the
child element and the parent.

id Unique identifier.

longdesc Specifies a URI link to a longer object description.
Should supplement the description provided
by alt.

region Specifies the abstract rendering surface defined
within the <layout> elements.

src URI of the media object.

system-bitrate Specifies the approximate bandwidth.

system-captions Determines whether closed captioning will be on
or off.

system-language Value is a comma-separated list of language
names (RFC 1766). Determines whether there is a
match between end-user system and objects.

system-overdub-or-caption Determines whether end users prefer overdubbing
or captioning when they are available.

system-required Specifies the name of an extension (for example,
namespaces).

system-screen-size True if the SMIL viewer is capable of displaying
a resolution of the given size (“width x height”
in pixels).

system-screen-depth Specifies the depth of the screen color palette in
bits per pixel.

title All <seq> elements should have a title attribute
with a meaningful description.

type Type of media object referenced by src.

476 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 476

It is important to consider including the alt attribute in the start tag for all
media objects. There is a two-fold reason for including alt:

■■ If the object fails to play or display, the author still has an opportunity
to send some message to the end user.

■■ If the alt message appears, it signals the author or end user that there
are malfunctions in the document, the browser, or other SMIL-related
applications.

Finally, anchors and links can be attached to visual media objects, too. One
way to do so is to include an <anchor> element within the extent of a media
object element.

The <switch> Element

The <switch> element was mentioned just prior to the <body> element sec-
tion, earlier in this chapter. As we discussed briefly there, we are listing it twice
because it can be nested within the <head> or <body> element.

The <switch> element provides SMIL with the ability to adapt a presenta-
tion according to the capabilities and other properties of the end user’s system.
The adaptability is provided through specific child elements, whose attributes
allow the execution of one or more boolean true/false tests against the system
settings. The first set of child elements whose attribute tests all prove to be true
is executed. Any child element that contains no test attributes is, by default,
automatically considered to be true.

The <switch> element syntax resembles the following code:

<switch>

<!-- Test 1 -->

<elementname test-attribute=”value” ... />

<!-- Test 2 -->

<elementname test-attribute=”value” ... />

...

</switch>

Here are the elements that are used as children of <switch>:

■■ The media object elements <animation>, <audio>, , <ref>,
<text>, <textstream>, and <video>

■■ The synchronization elements <par> and <seq>

■■ <a>, <anchor>, and <switch>

Table 12.4 lists the test attributes that can appear in those child elements.

SMIL 477

422541 Ch12.qxd 6/19/03 10:12 AM Page 477

Table 12.4 <switch> Test Attributes

TEST ATTRIBUTE NAME EXPLANATION

<elementname system language= End user’s system language. Values are a
“langcode” /> list of two character language codes

(examples: en, fr, es, de; see RFC 1766),
delimited by commas

<elementname system bitrate= Approximate bandwidth. Value is a single
“integer value” /> integer value (examples: 9600, 14400,

28800, 56000).

<elementname system screen size= Monitors screen resolution. Value is
“integerxinteger” /> composed of two integers indicating the

width and the height in pixels, in that
order, and separated by an x (example:
“800x600”).

<elementname system Color definition expressed in the number
screen depth= “integer” /> of bits per pixel. The value is an integer.

Choices are 4 (indicating 16 colors), 8 (256
colors), 16 (65,536 colors), or 24 (16.78
million colors, also called true color).

<elementname system-captions= True if closed captioning has been
“on | off” /> activated; false if closed captioning is

not activated.

<elementname system-overdub-or- Determines whether end users prefer
caption= “caption | overdub” /> overdubbing or captioning when the

option is available. Evaluates to true if the
end-user preference matches this attribute
value; to false if there is no match.

<elementname system-required= Specifies the name of an extension (for
“namespace | others” example, a namespace supporting

additional element types). Evaluates to
true if the extension is supported by the
implementation. Otherwise, evaluates to
false.

For example, what if you are aware that some of your end users prefer to
communicate in Spanish, or that others have monitors that are capable of
800x600-pixel resolution only? How do you code your SMIL document to
anticipate communicating with those users? Here is one possible solution:

<body>

<switch>

<!- - English Language - ->

<par system-language=”en”>

<text src=”SGI_english.doc” region=”SGI_reg_07” />

478 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 478

<switch>

<!- - English Language Screen Rez - ->

<text src=”800x600_SGI_eng.doc” region=”SGI_reg07”

system-screen-size=”800x600” />

<text src=”1024x768_SGI_eng.doc” region=”SGI_reg07”

system-screen-size=”1024x768” />

<text src=”other_SGI_eng.doc” region=”SGI_reg07” />

</switch>

</par>

<!- - Spanish Language - ->

<par system-language=”es”>

<text src=”SGI_espanol.doc” region=”SGI_reg07” />

<switch>

<!- - Spanish Language Screen Rez - ->

<text src=”800x600_SGI_esp.doc” region=”SGI_reg07”

system-screen-size=”800x600” />

<text src=”1024x768_SGI_esp.doc” region=”SGI_reg07”

system-screen-size=”1024x768” />

<text src=”other_SGI_esp.doc” region=”SGI_reg07” />

</switch>

</par>

</switch>

</body>

There are other solutions besides this one. If you have the time, we invite
you to create your own.

SMIL’s Hyperlinking Elements

Occasionally, you may want to link SMIL with other SMIL or non-SMIL appli-
cations or plug-ins:

■■ A SMIL browser may use an HTML plug-in to display an embedded
HTML page.

■■ An HTML browser may use a SMIL plug-in to display a SMIL document
embedded in an HTML page.

To create access points, you can use the SMIL link elements: <a> or <anchor>.
Both enable you to describe inline navigational links between objects.

The SMIL 1.0 Recommendation lists several linking rules. Meanwhile, here
are a few worth remembering:

■■ SMIL provides for unidirectional, single-headed (that is, one
source/one destination) inline links only.

■■ SMIL supports the locators currently used in HTML, including name
fragment identifiers and the # connector. So, for example, SMIL parsers
should understand and use fragmented object locators, such as
http://SpaceGems.com/cat_files/catalog2047#diam_img29.

SMIL 479

422541 Ch12.qxd 6/19/03 10:12 AM Page 479

The fragment part is an ID value that identifies one of the elements within
the referenced SMIL document. If a link containing a fragment part is
followed, the presentation should start as though the end user had fast-
forwarded through a remote destination document to the beginning of the
element designated by the fragment.

■■ If the object addressed by the link has a repeat attribute with a value
of more than 1 or indefinite, all of the specified repetitions of the object
will be played. Furthermore, if the object addressed by the link is con-
tained within a parent element that contains its own repeat attribute,
those repetitions are played, too.

■■ It is forbidden to link to elements that are the content of <switch>
elements.

Although we present introductory lessons and simple examples of SMIL
links, we recommend that if you are going to use links in your SMIL docu-
ments, you study the SMIL Recommendation in detail (www.w3.org/TR/
REC-smil/; SMIL 2.0, at www.w3.org/TR/smil20/).

The <a> Element

The <a> element is used to link with a complete media object, as opposed
to the <anchor> element, which facilitates linking to parts of other media
objects. The <a> element can contain the following child elements: <animation>,
<audio>, , <par>, <ref >, <seq>, <switch>, <text>, <textstream>, and
<video>. The <a> element does not influence the synchronization (that is, the
ordering or timing) of its child elements. However, <a> elements may not be
nested within one another.

Table 12.5 lists the attributes that are applicable to the <a> element.
Although the functionality of the <a> element is similar to the functionality

of the <A> element in HTML, SMIL includes the show attribute in an <a>
element, which controls the temporal behavior of the source document after
the link on that document has been followed.

Here is an example of an <a> element link that starts up a new video pre-
sentation in a new window:

<a href=”http://www.SpaceGems.com/cat_2047_spring.smi”

title= “Sale Items – Spring 2047” show=”new” >

<video id=”import_sgi_vid47q2” region= “SGI_vidreg01” />

480 Chapter 12

422541 Ch12.qxd 6/19/03 10:12 AM Page 480

Table 12.5 <a> Element Attributes

ATTRIBUTE NAME EXPLANATION

href Specifies the URI of the link’s destination. This
attribute is required for <a> elements.

id Unique identifier.

show Controls the behavior of the source document
containing the link when the link is followed. Possible
values: replace (current presentation is paused and
replaced by the destination resource; default value);
new (presentation of the destination resource starts
in a new context, not affecting the source resource);
pause (source presentation is paused, and the
destination resource starts in a new context).

title All <anchor> elements should have a title attribute.
The value for title should include a meaningful
description of the linked media object.

The following is a link that activates a replacement presentation, instead of
the original presentation that contained the link. It allows a SMIL player to
spawn from an HTML browser:

Click here for 2047 exploration budget preparation guidelines.

Please submit your regional plans and estimates by 2047-02-28!

The <anchor> Element

As mentioned in the <a> element section, the <a> element enables you to cre-
ate a link with another complete media object. On other occasions, though, it
might be useful to create links to (just) spatial or temporal subparts of another
media object. SMIL’s <anchor> element enables you to do that. Using its id and
href attributes, you can identify the target media object. Then, using its coords
attribute, you can break the media object into spatial subparts. Alternatively,
using its begin and end attributes, you can break it into temporal subparts.

Table 12.6 lists all the attributes applicable to the <anchor> element. This
element, however, does not allow for child elements. The explanation of the
coords attribute contains a reference to Figure 12.10.

SMIL 481

422541 Ch12.qxd 6/19/03 10:12 AM Page 481

Table 12.6 <anchor> Element Attributes

ATTRIBUTE NAME EXPLANATION

begin The time for the explicit beginning of an element
(seconds). Two types: clock-based delay-value and an
event-value. The value is relative to the beginning of
the destination media object.

coords Specifies a rectangle within the display area of a
visual media object. Coordinates are relative to the
top-left corner of the visual media object (see Figure
12.10). Values are left-x,top-y,right-x,bottom-y (for
example, coords=”50,10,200,110”). If specified as
percentages (that is, coords= “10%,10%,55%,40%”),
the values are relative to the total width or height of
the media object display area.

end The explicit end of an element (seconds). Value is
relative to the beginning of the destination media
object.

href Contains the URI of the link’s destination.

id Unique identifier.

show Controls the behavior of the source document
containing the link when the link is followed. Possible
values: replace (current presentation is paused and
replaced by the destination resource; default value);
new (presentation of the destination resource starts
in a new context, not affecting the source resource);
pause (source presentation is paused, and the
destination resource starts in a new context).

skip-content Introduced for future extensibility. Possible values are
true (ignore the content of this element) or false
(process the content of this element).

title Like <a>, all <anchor> elements should have a title
attribute. The title should include a meaningful
description of the linked media object.

Following is a link that is associated with a video concerning Space Gems
exploration techniques on the Patella Regina planet in the 51 Pegasi system.
The <video> element automatically links to a portion of a tour presentation
made by the Patella Regina mine manager:

<video id= “pat_reg_mgr_tour29” region=”SGI_vid_reg08”>

<anchor show=”pause”

href=”http://www.SpaceGems.com/pat_reg_tour_2047.mpg”

begin=”20s” end=”81s” />

</video

482 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 482

Figure 12.10 <anchor> element; coords attribute schematic (see Table 12.6).

The following example shows how to navigate to Patella Regina. The
element automatically links to a specific portion of a star map graphic stored
locally:

<anchor show=”new”

href=”\exploration\maps\Pegasi51\route_direct03.jpg”

coords=”60,30,270,90” />

</img

Chapter 12 Labs: Getting Started with SMIL

In these labs, you work with some very basic SMIL 1.0 media objects. For this
lab to work properly, though, you have to install a RealPlayer display applica-
tion on your system. After that, you create a SMIL file and then add some
display (for example, image, text and video) information, plus some synchro-
nization code, to make the Space Gems site more interesting. You will recog-
nize how Internet Explorer displays an XHTML file and how that file calls
your SMIL file.

(0,0)

bottom-y

top-y

left-x

right-x

SMIL 483

422541 Ch12.qxd 6/19/03 10:13 AM Page 483

Lab 12.1: Install RealOne Media Player

A free RealOne Player is available from the RealNetworks, Inc. Web site
at www.real.com. If you already have a copy of RealOne Player, go to Lab
12.2: Internet Explorer’s Media Environment. Otherwise, follow these
steps:

1. Activate a browser and go to www.real.com.

2. Locate the small link to the Free RealOne Player software in the top
right corner of the home Web page.

We are not talking about the Free 14-Day Trial, or the 14-day trial
SuperPass. Those offers ask you for a credit card number. The Free
RealOne Player does not. For these labs, the basic RealOne Player is
sufficient.

3. Click the Free RealOne Player link.

4. Locate the link for the basic player, not Player Plus. Click the
Download the Free RealOne Player Only link.

5. Click Yes to allow it to update your browser and proceed to
download the code using the following options:

a. Choose Express Install, and click Next.

b. Click Accept.

c. Click the appropriate radio button to specify your Internet
connection speed.

d. If asked for Basic or Plus, choose Basic, and click Next.

e. Click Finish.

f. Reboot.

6. Start RealOne to test the installation. If the installation does not
automatically install a shortcut on your Desktop, click Start, All
Programs, Real, RealOnePlayer, RealOne Player. It should connect
to the http://home.real.com site and launch an ad campaign.

484 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 484

Lab 12.2: Internet Explorer’s
Media Environment

We felt that it was necessary to show you how Microsoft’s media envi-
ronment differs from SMIL. The file that you install or create in this lab
exploits Internet Explorer’s media behavior. This environment is not
SMIL-compliant yet, and neither is Windows Media Player. So we
decided to create an Internet Explorer file that has similar timing, syn-
chronization, and display features as a SMIL file. In Lab 12.3, you launch
a real SMIL file using the RealOne Player that you just installed.

1. Download the following files from the Chapter 12 page of the XML
in 60 Minutes a Day Web site, described in the book’s introduction,
and save them to the \WWW\SpaceGems\images directory:
emerald.jpg, ruby.jpg, and diamond.jpg.

2. Download the promo1.html file from the same Web site and save
it to the C:\WWW\SpaceGems directory.

3. View the file inside your browser. Type the following in the
locator bar:

http://localhost/SpaceGems/promo1.html

You should see a page that says “Space Gems Out of this World
Sale!”

4. At this time, take a look at some of the Internet Explorer specific
code that sets up the timing and synchronization of the file:
<smil>

<body>

<h1 class=”slide”>SpaceGems Out of this World Sale!</h1>

<XML:NAMESPACE PREFIX=”t” />

<style>

/* This is still IE 5 specific! */

.time { behavior: url(#DEFAULT#TIME); }

t\:seq { behavior: url(#DEFAULT#TIME); }

</style>

<t:par>

<h2 class=”time” id=”h11” t:timeaction=”display”

t:dur=”2”>

Something for everybody.

</h2>

SMIL 485

422541 Ch12.qxd 6/19/03 10:13 AM Page 485

<h2 class=”time” t:beginevent=”h11.onend”

t:timaction=”display”>

Participating locations.....

</h2>

<li style=”color:red;font-size:12pt” CLASS=”time”

t:BEGIN=”4”>

Sol – Earth

<li style=”color:blue;font-size:20pt” CLASS=”time”

t:BEGIN=”6”>

Pegasi

<li style=”color:yellow;font-size:24pt” CLASS=”time”

t:BEGIN=”7”>

Sol - Mars

<li style=”color:lime;font-size:20pt” CLASS=”time”

t:BEGIN=”8”>

Auriga.

<h2 CLASS=”time” t:BEGIN=”11” t:TIMEACTION=”display”>

Each gem is different!

</h2>

<!-- sequence of logos -->

<t:SEQ t:BEGIN=”12” t:TIMEACTION=”display”>

<img CLASS=”time” alt=”1st example map” ID=”img1”

t:TIMEACTION=”display” SRC=”images/emerald.jpg”

t:DUR=”4” />

<img CLASS=”time” alt=”2nd example map” ID=”img2”

t:TIMEACTION=”display” SRC=”images/ruby.jpg”

t:DUR=”4” />

<img CLASS=”time” alt=”3rd example map” ID=”img3”

t:TIMEACTION=”display” SRC=”images/diamond.jpg”

t:DUR=”indefinite” />

</t:SEQ>

</t:par>

</body>

</smil>

Lab 12.3: SMIL’s Media Environment

You are now going to code the equivalent functionality using SMIL 1.0
tags. For this lab, we have supplied the content only, and you have to
code the file. When you are finished, you can observe and compare the
differences in how the timing and synchronization are handled.

486 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 486

1. Download the following files from this book’s Web site at the URL
provided in the introduction and save them to the C:\WWW\
SpaceGems\images directory: directions.avi and directions.jpg.

2. Open HTML-Kit (from the Windows desktop, click Start and then
click, in turn, Programs, HTML-Kit, HTML-Kit).

3. Open promo1.html and add a link to an XML file called
directions.smi under the comment line that says Create Link
to Directions.

Click here for flying directions!

4. Click the Preview button at the bottom of the window to view the
rendered version of the file.

5. If the rendering of the document is acceptable, save the file to the
C:\WWW\SpaceGems folder.

6. Close HTML-Kit.

7. From the Windows desktop, open the Turbo XML editor by clicking
Start, Programs, Turbo XML 2.3.1, Turbo XML Version 2.3.1.

8. With Turbo XML activated, start a new XML file by clicking File on
the menu bar and then clicking, in turn, New, New (XML Document).
In the new XML Instance window that appears, type in the follow-
ing code:
<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

9. Call the new file directions.smi. To do this, click File, Save As, and
when the Save as dialog box appears, save the file as C:\WWW\
SpaceGems\directions.smi.

10. Add a set of <smil> tags:
<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>

</smil>

11. Add a set of <head> and <body> tags:
<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>

<head>

</head>

SMIL 487

422541 Ch12.qxd 6/19/03 10:13 AM Page 487

<body>

</body>

</smil

12. Add the highlighted lines from the following code to create a root-
layout window in which to display the media objects. We calculated
the width and height required, based on the size of window required
to simultaneously display the contents of the two large objects, whose
contents are defined in the documents named directions.jpg and
directions.avi:
<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>

<head>

<layout>

<root-layout width = “400” height = “450”/>

</layout>

</head>

<body>

</body>

</smil>

13. Create two regions inside the root-layout window called image and
video. Again, we calculated the size required for each region. The
directions.jpg file is 399x281 and the video requires a size of 50x50.
Therefore, if you position the large JPEG on top, you can’t start the
video region until at least 300:

Failure to calculate the regions in Step 13 of the accompanying procedure
correctly causes the media player to display errors.

<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>

<head>

<layout>

<root-layout width = “400” height = “450”/>

<region id = “image” top = “0” left = “0”/>

<region id = “video” top = “300” left = “120”/>

</layout>

</head>

<body>

</body>

</smil>

488 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 488

14. Add a set of <par> and <seq> tags to the <body> element. This
declares intentions to display these files in parallel, and you are
going to define a specific timing sequence:
<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>

<head>

<layout>

<root-layout width = “400” height = “450”/>

<region id = “image” top = “0” left = “0”/>

<region id = “video” top = “300” left = “120”/>

</layout>

</head>

<body>

<par>

<seq>

</seq>

</par>

</body>

</smil>

15. Now you add the actual content to display the timing mechanisms.
The following code instructs the application to display the contents
of the directions.jpg file inside the previously defined region called
image for two seconds, and then remove (that is, make it disappear)
the last static image in the region. The directions.avi file displays
inside the previously defined file called video.
<?xml version = “1.0” encoding = “UTF-8”?>

<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”

“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>

<head>

<layout>

<root-layout width = “400” height = “450”/>

<region id = “image” top = “0” left = “0”/>

<region id = “video” top = “300” left = “120”/>

</layout>

</head>

<body>

<par>

<seq>

<img region = “image” src = “images/directions.jpg”

dur = “2s” fill = “freeze”/>

<video region = “video” src =

“images/directions.avi”/>

SMIL 489

422541 Ch12.qxd 6/19/03 10:13 AM Page 489

</seq>

</par>

</body>

</smil>

16. Save the directions.smi file to the C:\WWW\SpageGems directory.

17. Test the file inside the browser. Type the following into the locator bar:

http://localhost/SpaceGems/promo1.html

Then click the Click Here for Flying Directions! link.

18. Optionally, you can add a link to the SPFeature.htm page for this file
from magicgems.xml to promo1.html. To do so, modify the code
until it looks like the following:
<html xmlns:v=”urn:schemas-microsoft-com:vml”

xmlns=”http://www.w3c.org/TR/REC-html40”>

<head>

<title>Space Gems Special Feature</title>

<link rel=”stylesheet” type=”text/css” href=”master.css” />

<style>

v\:* {behavior:url(#default#VML);}

</style>

</head>

<body>

<center>

<h1>Space Gems Special Feature</h1>

<h2>Citrine</h2>

<!-- Click here to find out more.

 -->

Click here to find out more.

<v:image style=”width:150;height:150”

src=”images/citrine.gif”>

</v:image>

<v:oval style=”width:350;height:150” fillcolor=”#ffcc66”

strokecolor=”#ffcc66”>

<v:fill method=”linear” angle=”45” type=”gradient” />

<v:textbox style=”font-size:20pt;font-color:white;

text-align:center”>

<p>Feature of the Month

$20% off

Expires: 2010

</p>

</v:textbox>

</v:oval>

</center>

</body>

</html>

490 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 490

Summary

SMIL media objects are often the most attention grabbing of the XML-related
features that you can incorporate into your Web documents. However, coding
them and synchronizing them can be a challenge. Here are some facts to
remember when you consider using SMIL-related media objects:

■■ Streaming media is a technology for transferring and displaying audio,
video, and other multimedia data in real time over a network (includ-
ing the Internet) and displaying the media objects as a steady and con-
tinuous stream. However, an appropriate player is needed on the user’s
system.

■■ There are three types of streaming media: HTTP streaming (the earliest),
clientless streaming, and true streaming (the latest).

■■ SMIL provides several media-related capabilities, the most notable of
which are integration of text, graphics, video, and audio; control of
visual layout; and control of synchronization.

■■ Development of SMIL specifications continues at a rapid pace. SMIL 2.0
is modular in nature and over 10 times larger than SMIL 1.0. SMIL 2.0
uses up to 11 schemas and 9 DTDs; SMIL 1.0 used only one DTD.

■■ The basic process of creating SMIL presentations is to create and specify
characteristics of the display regions, specify the media objects and
assign them to their respective regions, determine the order of presenta-
tion, and create the synchronization components.

■■ The SMIL document’s root data element is named <smil>. Its child
<head> element contains all the layout information, the <body>
element, the media object, and synchronization information.

■■ In this chapter, we discussed the features of the SMIL Basic Layout
Language. It dictates that in the <head> element, the <layout>,
<root-layout>, and <region> elements are most important. Although
a document can have several <regions> defined, it can have only one
<root-layout> region. The application’s viewport is, on occasion, con-
fused with the root-layout region, but the viewport is usually larger.
The <region> elements must have id attributes with unique values, so
that the media objects can be specifically assigned to their respective
display regions.

■■ The fit attribute, with its fill, meet, slice, and scroll values, is used to
make media objects fit their display regions. Meanwhile, <meta> ele-
ments are often used to provide additional information about the SMIL
document and its features.

SMIL 491

422541 Ch12.qxd 6/19/03 10:13 AM Page 491

■■ The <par> and <seq> elements found in the <body> element control
the operation of concurrent and consecutive media objects, respectively.

■■ The names of the elements that we associate media objects with should
reflect the type of media object. Otherwise, creation and searching oper-
ations can be hampered. If in doubt, place a media object in the <ref>
element.

■■ The <switch> element enables you to adapt, to a limited extent, a SMIL
presentation to the capabilities of your end users’ systems.

■■ The <a> element enables you to link to other whole media objects; the
<anchor> element to parts of media objects.

492 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 492

Review Questions

1. Which of the following is not a type of media streaming? (Choose all that apply.)

a. Seamless

b. Clientless

c. True

d. HTTP

e. TCP/IP

2. True or false? One of the drawbacks to SMIL is that its presentations can’t be adjusted
to match any capabilities of an end user’s system.

3. True or false? The basic SMIL presentation design is identify and assign media objects,
create display regions for them, and then provide synchronization controls.

4. The <head> element contains (choose all that apply):

a. Titles

b. Synchronization information

c. Layout information

d. Media object information

e. Metainformation

5. True or false? Another name for the root-layout region is the viewport.

6. True or false? For <region> elements, the id attribute is optional.

7. True or false? After a region is assigned to one media object, it can’t be used by any
other media object.

8. Which <region> attribute is used to adjust media object size?

a. fill

b. fit

c. layout

d. width

e. None of the above

SMIL 493

422541 Ch12.qxd 6/19/03 10:13 AM Page 493

9. True or false? The <seq> element is used to control consecutive operations, and the
<par> element is used to control concurrent operations.

10. True or false? The <seq> element and the <par> have the same attributes.

11. Which <anchor> attribute is used to extract a chunk out of a visual media object?

a. fill

b. begin, end

c. trace

d. coords

e. None of the above

494 Chapter 12

422541 Ch12.qxd 6/19/03 10:13 AM Page 494

Answers to Review Questions

1. a. and e. These are defined in the What Is Streaming Media? section.

2. False. The <switch> element helps build at least some potential adjustments into the
presentations.

3. False. The steps are correct but out of order. The answer is create the regions, identify
assign the media objects, then build the synchronization controls.

4. a., c., and e. These are listed in the section titled The <head> Element.

5. False. A common misconception. The viewport is governed by the application; the
root-layout region is governed by the SMIL developer. The viewport can be the same
size, but it is usually bigger than the root-layout region.

6. False. If we don’t insert id attributes, we can’t assign media objects to the display
regions.

7. False. Display regions can be used repeatedly. You need to control the synchronization
and z-index overlapping, though.

8. b. This is discussed in the subsections within the section titled When Media Object
Dimensions Don’t Match Region Dimensions.

9. True. These are discussed in the section titled Synchronizing Media Objects with the
<par> and <seq> Elements.

10. True. Attributes for both are listed in Table 12.2.

11. d. The coords attribute is defined in Table 12.6.

SMIL 495

422541 Ch12.qxd 6/19/03 10:13 AM Page 495

422541 Ch12.qxd 6/19/03 10:13 AM Page 496

497

In this chapter, we introduce the Resource Description Framework language
(RDF), an XML application that is still under development but allows us to use
metadata to provide descriptive information about the information we include
in our Web page documents. RDF grew out of the need to organize and search
through the billions of Web page documents available over the World Wide
Web. RDF resolves metadata ambiguity, thus creating what the W3C calls the
Semantic Web, a smarter Web in which systems themselves can learn about the
data they search for and store. Chapter 13 reviews some issues facing those
who have historically developed and categorized Web information, and those
who have to search for the information they need. Then we review some early
metadata developments that led to RDF development. After that, we have a
look at RDF document constructs: the elements, attributes, and other compo-
nents that facilitate information management. The lab exercises introduce sim-
ple RDF implementations to create and check our sample RDF documents.

By the end of this chapter, you should be aware of the major Web informa-
tion management and search issues, understand the development of the
Semantic Web and RDF, and be able to create RDF documents or introduce
RDF components into Web page documents. However, in this introductory-
level chapter, we can show you only the tip of the RDF iceberg. As it continues
to develop, it could very well revolutionize the way we publish to and access
information from the World Wide Web.

RDF

C H A P T E R

13

422541 Ch13.qxd 6/19/03 10:13 AM Page 497

Web Search and Publication Issues

Today’s Internet holds billions of Web pages of information. Some are useful,
some are not quite so useful, and some you will want to avoid for various rea-
sons. More information, good and bad, is added every day. And every day,
more of us become concerned with categorizing, accessing, and using the
information in a meaningful way.

The Web was originally built for human legibility and interpretation, and
although the information on it is machine-readable (we are able to access it with
our various computer systems, after all), it is not as machine-understandable
as we want or need it to be. Humans perform most access and management
functions more or less manually. Because of the sheer volume of information
out there to search through and the difficulty involved in building “smart”
search processes to determine the nature and quality of the information,
automating access and management activities is difficult.

The primary Web searching technology available today consists of simple
word- or phrase-matching provided by search services, such as Google,
AltaVista, Yahoo, HotBot, or others. The process hasn’t fundamentally changed:
We access the service, type some keywords, initiate the search activity, and
then sit back and wait for hundreds or even thousand of matches, which we
call hits, to be listed on our screens. Even then, we are faced with having to do
a lot of manual information screening. (Weeding is probably a better term.)
And if that isn’t daunting enough, if the keywords we used were not the most
appropriate, or they didn’t appear on the best Web page documents, or if some
Web page documents mislead us with respect to their content, we might never
find what we’re looking for. We might even face embarrassment or other sanc-
tions at home or in the workplace if our search words or phrases resemble
those used by less reputable Web-based industries.

By way of example, here is a true story. A couple of years ago, our visiting
nephew was eating some Washington State cherries and asked if we knew
how to germinate the pits, so that he might try starting his own trees. Not
knowing the answer but thinking that might be a good way to keep him out of
trouble, we suggested that he check the Internet for cherry-related information
and advice. He did that, and when we heard him murmur “who-o-o-a” under
his breath, we raced over to check his search result listing. Needless to say,
when he saw his initial “unprotected” search results, he was distracted from
his original search topic. After that, we vowed to monitor his Web surfing
activities. (We also made him promise not to tell his folks or his grandmother
about his first orchard-related Web search endeavor.)

Nephew X’s experiences lead us to another Web information issue: the lack
of a complete and standard way to describe Web site content. Even if we are
working for Space Gems and we initiate a search for diamonds, we might
encounter baseball rules or rules for card games; or a search for drills might

498 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 498

result in dentistry, hardware stores, and military exercise, along with (the
intended) mining exploration and production technology. And these are sim-
ple semantic problems. What if we were faced with linguistic or cultural vari-
ables? We might never find what we need.

On the flip side, if we are publishing information on the Web, we would
want to ensure that our information is available to those looking for jewelry
or gemstones, not to those searching with other terms that are potentially
ambiguous or offensive. (We are intentionally avoiding examples here, but the
aforementioned Nephew X/cherry tree episode ought to provide enough of a
word to the wise.) We do not want to risk confusing and perhaps even offend-
ing those whose business, information, or other cooperation we would other-
wise invite.

Another issue that arises is that there is no standard or uniform query capa-
bility for discovering Web-based resources. For example, nonuniform or non-
standard proprietary Webmaster or database systems exist. Further, we also
face varying rules for more sophisticated/advanced searches from the various
search engines. Each uses its own individual symbols or combinations.
Between plus signs, dashes, boolean terms such as AND or NOT, and other
tips and tricks, it’s difficult to keep track of all of them. The development of
standard search and retrieval tools, then, could give searchers and publishers
more information without the risk of dead-end streets on one hand, or infor-
mation overload on the other.

Metadata Is the Key to the Solution

The key to many of our searches, successful and unsuccessful, has been the
introduction of metadata into Web documents. Metadata is referred to by
many similar-sounding phrases: data about data, information about information,
or, specific to our current context, data describing Web resources. In addition to
all those descriptions, metadata should be understood as machine understand-
able information about Web resources.

In Chapter 1, “XML Backgrounder,” we mentioned the concept of meta-
markup, which, as one of the six basic types of markup, provides the ability to
control the definition and interpretation of markup tags and helps us extend
the vocabulary of markup languages. Metadata, the concept of information
about information (to use just one of the catchy phrases listed previously), is
related to metamarkup.

Metadata, when added to a Web document by its developers, describes how,
when, and by whom a particular set of data has been collected, and how the
data is formatted. Metadata has become essential for understanding informa-
tion stored in databases everywhere. It is not a new concept, not even to the
Web. In fact, from a Web standpoint, it has been around since the earliest ver-
sions of HTML. Witness the use of <meta> elements (also called meta tags),

RDF 499

422541 Ch13.qxd 6/19/03 10:13 AM Page 499

within the <head> element of Web documents. The data provided within the
<meta> elements is examined by search engines and thus becomes valuable
because it helps them understand the content found in Web page documents
so that they can find documents that match their search criteria. However,
<meta> elements are not the only indicators search engines use. Their auto-
mated crawlers also use other keyword-related algorithms as they attempt to
determine the nature and quality of the data.

Aside from our discussions of HTML and XHTML, the only significant
exposure we have had to metadata so far in this book has been through the use
of DTDs, beginning with Chapter 4, and schemas, beginning with Chapter 5.
We will discuss metadata in this chapter and again in our discussion of the
Channel Definition Format in Chapter 14, “CDF.”

As we’ll see throughout the rest of this chapter, metadata in a proper and
standard framework plays a major role in RDF and its related standards.

The W3C, PICS, and RDF
In 1995, several members of the Internet community began developing techni-
cal specifications that would enable Web users to find appropriate Web con-
tent easily, while avoiding inappropriate or unwanted Web content. They
understood the global nature of the Web and the fact that it serves communi-
ties with diverse values. But they also understood that there was appropriate
and inappropriate information on it too, and that national or international
laws restricting certain kinds of text-, audio-, or video-based expression would
probably not be desirable, let alone effective or enforceable for the Web. Their
specifications, called the Platform for Internet Content Selection (PICS), were
intended to facilitate the creation of compact, computer-readable metadata
labeling schemes, along with content-selection and filtering mechanisms
implemented by individuals or organizations. The specifications were not
intended to restrict only offensive content. The developers hoped that the PICS
would be used for other purposes, such as self-rating of content and third-
party ratings, and would be easy to implement and use.

The PICS specifications reached W3C Recommendation status in 1996.
Thereafter, they were incorporated into a number of products, and a variety of
PICS-based rating services have been developed for the Web. Several stand-
alone content-filtering tools are also available. PICS gives users a measure of
personal control over the content they receive without requiring the imposi-
tion of additional restrictions or sanctions on content providers.

In 1997, the W3C chartered the Metadata Activity to acknowledge that meta-
data development was common not only to PICS and Digital Signature Initia-
tive (Dsig) at W3C, but also to HTTP and WebDAV work at the Internet
Engineering Task Force (IETF), the Dublin Core, and other projects. The pri-
mary work of the W3C’s Metadata Activity was the development of the

500 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 500

Resource Description Framework (RDF), although it also worked on PICS, the
Digital Signature Initiative, which, along with RDF, will be instrumental to the
building of the “Web of Trust” for electronic commerce, collaboration, and
other applications, the Platform for Privacy Preferences (P3P) Project, and the
Composite Capability/Preference Profiles (CC/PP). Thus, the W3C Metadata
Activity would address the combined needs of several groups for a common
framework to describe information on the Web.

As a result of many communities coming together and agreeing on basic
principles of metadata representation and transport, RDF development was
influenced by several different sources. The main influences came from the
following:

■■ The Web standardization community, most notably, those who
developed HTML metadata and PICS.

■■ The library community.

■■ The structured document community, for example, SGML and XML
proponents.

■■ The knowledge representation (KR) community (object-oriented
programming and modeling languages).

■■ Recent submissions to the W3C by Microsoft (XML Web Collections),
Netscape (XML/MCF), and Microsoft XML-Data and Site Map. In addi-
tion, those involved with the W3C’s Metadata Activity knew of other
initiatives, such as the Dublin Core/Warwick Frameworks.

■■ The database community.

Classroom Q & A
Q: When you mention the knowledge representation community, are

you implying that artificial intelligence of some sort will be facili-
tated by RDF or similar specifications?

A: No. Although RDF draws from the KR community, RDF has no rea-
soning mechanism specifications. RDF is simply helping the W3C
pursue its goal of a “Semantic Web,” which we define and discuss
in the section titled The Semantic Web and Recent RDF Develop-
ments later in this chapter.

In early to mid-1997, the W3C also received several Internet-related push
technology proposals. Push technology involves the use of metadata to a lim-
ited extent, and the proposals are discussed in more detail in Chapter 14,
“CDF.” As a result of those proposals, metadata related to content distribution
was the theme of the W3C-sponsored September 1997 Workshop on Push

RDF 501

422541 Ch13.qxd 6/19/03 10:13 AM Page 501

Technology. None of the content distribution vocabularies outlined in the
proposals garnered enough support to warrant further W3C-sponsored devel-
opment. Meanwhile, the W3C continued its work on a generalized, vendor-
neutral, operating system-independent metadata infrastructure.

The RDF Working Group was one of the earliest components of the W3C’s
generalized metadata initiative. The collaborative design effort surrounding
RDF originated as an extension of the earlier PICS content-description technol-
ogy. RDF design was also influenced by XML components and requirements.

The W3C published the first public draft of the Resource Description Frame-
work (RDF) in October 1997. The W3C Recommendation, titled Resource
Description Framework (RDF) Model and Syntax Specification, was eventu-
ally endorsed in February 1999.

RDF Defined
RDF is a declarative language and provides a standard way for using XML to
represent metadata in the form of statements about properties and relation-
ships of any Web resource. Examples include the title, author, and modifica-
tion date of a Web page; copyright and licensing information about a Web
document; or other descriptive information.

RDF provides a model for representing metadata that is even more general
than the PICS metadata model, with more expressive power, and it uses XML
syntax. RDF does not specify a vocabulary (that is, it doesn’t impose element
types for every kind of data description) for describing resources. Rather, it
provides a metadata framework, within which the vocabulary authors can cre-
ate descriptions about their own specific resources. In other words, RDF
allows the developers within different application communities to define their
own specific metadata property sets—those that best serve their own individ-
ual needs or the needs of their application community.

Although RDF development was influenced by PICS experience, it deviated
from the narrower PICS model by providing a generalized model for describ-
ing resources. Plus, a goal of RDF was to permit the mechanical translation of
PICS metadata into RDF form.

RDF complements XML by layering on top of XML. It provides some relief
for Web information search problems and for the proliferation of automated
crawlers or agents that roam the Web searching for information. Given a mech-
anism that allows more precise descriptions of data or information, Web
documents rise from machine-readable to something more akin to machine-
understandable or, at least, machine-processible. So, with RDF, we attempt to
assign meaning to resources in such a way that a machine or, more properly, a
code engine can actually understand something about the nature of the data.
That way, RDF provides a measure of interoperability.

502 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 502

RDF can be used in a variety of application areas:

■■ Resource discovery, by providing better search engine capabilities.

■■ Cataloging, by allowing a developer to describe the content and content
relationships available at a particular Web site or digital library, so that
software agents can facilitate knowledge sharing and exchange.

■■ Content rating.

■■ The description of collections of pages such that they can represent a
single logical document.

■■ The description of intellectual property rights for Web pages.

■■ The expression of privacy preferences of a user and the privacy policies
of a Web site.

In RDF documents, Web and other resources are defined as anything that
can be designated by a URI. The URI can no longer be thought of as just an
address to provide access to someone’s Web page. The URI is going to be the
key to defining resources on the new RDF-oriented Web. Essentially, those
resources could be anything that can be identified on the Web, even when they
can’t be directly retrieved from the Web.

This new reliance on URIs implies that, because they will be used to identify
a resource, they should be properly constructed and should not change. As
URIs change—for example, as businesses change or go out of business—
information will become disassociated. Furthermore, changing file or direc-
tory/folder names or suffixes would have a similar and devastating effect.
Last year, for example, a file might have been called spacegems.com/
4cs/data.html. Perhaps, as a result of a filesystem or Web site makeover, the
filename and path designation later became spacegems.com/4cs/data.asp,
and, finally, spacegems.com/4cs/data.jsp.

Here is a possible solution. Remember that most tools and Web services can
be configured to display a URI or URL without file extensions. If this resource
had a URI of spacegems.com/4cs/data, it would not have suffered the loss of
association. File extensions are not necessary or mandatory, and leaving them
out breathes a longer life into a resource. For today’s search engines, this is not
a serious issue. An issue might arise, however, if someone somewhere has
already created links to our information. Those links will eventually have to be
modified.

The responsibility of maintaining stable URIs or changing references within
documents resides with the resource owner or administrator. Meanwhile, in
the future, more attention and thought is going to have to be given to creating
and maintaining URIs if this is going to work.

RDF 503

422541 Ch13.qxd 6/19/03 10:13 AM Page 503

If we can create documents that adhere to the RDF data model, a market-
place of more advanced services will eventually be developed to accommo-
date us. Here are some examples:

■■ Document viewers and editors.

■■ Data storage.

■■ Data query devices.

■■ Inferential services, such as type checking and inheritance.

■■ Compositors (in other words, applications that provide merged views of
multiple RDF graphs; RDF graphs are discussed later in this chapter).

■■ Serialization and transmission services that use RDF-XML format.

As the Web fills with richer RDF-based metadata, searching will become
easier, faster, and better focused because search engines will have more and
better search information available. Better and faster automated software
agents will roam the Web, looking for information or transacting business on
our behalf. Information could be accessed, analyzed, extracted, sorted, styled,
and otherwise manipulated to create customized documents for people or
machines. Thus, data publishing and searching will become “smarter.” Web
pages will become true Web services, and the Web itself will progress toward
being a truly Semantic Web, one of the W3C’s major goals. We’ll discuss the
nature of the Semantic Web next.

The Semantic Web and Recent RDF Developments
The W3C Metadata Activity was officially replaced with the W3C Semantic
Web Activity when that Semantic Activity was chartered in February 2001. The
establishment of Semantic Activity reflected a commitment by the W3C to pur-
sue their Semantic Web objective. Needless to say, Semantic Web Activity suc-
ceeded Metadata Activity. A single RDF Core Working Group was created.
Composed of 19 members from over a dozen organizations, plus 5 invited
experts, it inherited RDF development.

Semantic is defined as “of or relating to meaning in language,” or “of or
relating to semantics.” In turn, the term semantics is defined as “the study of
meanings.” The Semantic Web is a vision and a goal shared by the W3C and
many Web-oriented organizations. Its major objective is the defining and link-
ing of Web data so that it can be used by systems not just for display purposes,
but also for automation, integration, and reuse across various applications.

The Semantic Web is an abstract representation of data on the World Wide
Web that is based on the RDF standards and other future standards. Chapter 1,
“XML Backgrounder,” stated that the Semantic Web will be part of an exten-
sion of the current Web but will differ somewhat. Information on the Semantic

504 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 504

Web will be given well-defined descriptions within a standard framework to
enable computers and people to work cooperatively. Its developers expect that
a new generation of applications will soon be developed: applications that will
offer enhanced navigation and precise, accurate information retrieval. Thus,
the Semantic Web will achieve its goal of being what the W3C calls “. . . a soft-
ware environment that permits each user to make the best use of the resources
available on the Web.” Computer “ignorance” will be reduced as systems
begin to emulate a kind of rudimentary understanding of the data they share.

According to the W3C’s Semantic Activity statement, their work will
involve the following:

■■ Continuing the work of the existing RDF Interest Group—that is, coor-
dinating the implementation and deployment of RDF and providing
liaison with new work in the W3C and the wider community on mat-
ters relating to RDF.

■■ Undertaking revisions to the RDF Model and Syntax specification.

■■ Completing the RDF Schema Recommendation.

■■ Coordinating with the W3C and external activities focused on Semantic
Web technologies.

■■ Developing advanced XML and RDF technologies to increase the level
of automation of the W3C Web site and to develop open source RDF
infrastructure support modules.

As of this writing, the RDF Core Working Group has just released six Last
Call Working Drafts to facilitate the development and deployment of the
Semantic Web:

■■ RDF Primer

■■ RDF Test Cases

■■ RDF/XML Syntax Specification (Revised)

■■ RDF Vocabulary Description Language 1.0: RDF Schema

■■ RDF Semantics

■■ Resource Description Framework (RDF): Concepts and Abstract Syntax

Some of these are new standards, and some are updates of existing stan-
dards. The W3C has also just published a W3C Note titled LBase: Semantics
for Languages of the Semantic Web. It’s a framework for specifying Semantic
Web languages in a uniform and coherent way.

To link to these RDF-related documents and more, go to the W3C
Semantic Web News and Events Archive Web site at www.w3.org/2001/sw/
news#x20030124b.

RDF 505

422541 Ch13.qxd 6/19/03 10:13 AM Page 505

RDF Implementations
Here are four suggested RDF implementations. The first two, in fact, will be

used in the lab exercises at the end of this chapter:

■■ The W3C has an online RDF Validation Service that supports the Last
Call Working Draft specifications issued by the RDF Core Working
Group. It is located at www.w3.org/RDF/Validator/. However, the site
explains that deprecated elements and attributes of the standard RDF
Model and Syntax Specification are no longer supported. All we need to
do there is enter a URI or paste an RDF/XML document into a text
field, and a 3-tuple (triple) representation of the corresponding data
model, as well as a graphical visualization of the data model, will be
displayed. Other input and output options exist as well.

At one time, the W3C provided the Simple RDF Parser and Compiler
(SiRPAC). However, Janne Saarela, the original author of SiRPAC, no longer
works with the W3C. All the same, if you would like to participate in
further development and maintenance of SiRPAC, some SiRPAC links are
still available at the W3C RDF Validator Web site at www.w3.org/RDF/
Validator/.

■■ To help you test and write your RDF, you should check out RDFedt, a
piece of Windows freeware by Jan Winkler, available from www.jan-
winkler.de/dev/e_rdfe.htm.

■■ Mozilla.org uses RDF to develop applications with the intention of inte-
grating and aggregating Internet resources. RDF is used to support
Aurora—a single-user interface program for managing bookmarks, his-
tory, search results, filesystems, and other resources that can be reflected
in an RDF data model—and Mozilla’s SmartBrowsing metadata services.
For information regarding Mozilla and RDF, visit Mozilla’s Web site at
www.mozilla.org/rdf/doc/.

■■ Microsoft has an RDF Viewer available at http://msdn.microsoft.com/
downloads/samples/internet/default.asp?url=/downloads/samples/
internet/xml/xml_rdf_viewer/default.asp. If that link is out-of-date, go
to the Microsoft Developer Network at http://msdn.microsoft.com and
search “All of MSDN” for “RDF Viewer” with the MSDN search engine.
Be aware, though, that to use the RDF Viewer, you must have Internet
Explorer 5.0, Visual Basic 6.0, and Windows 98, Windows NT 4.0, or
Windows 2000 installed already.

506 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 506

For comprehensive listings of RDF implementations, applications, and
other RDF resources, check the W3C’s RDF home page at
www.w3.org/RDF/ or Dave Beckett’s Resource Description Framework
(RDF) Resource Guide at www.ilrt.bris.ac.uk/discovery/rdf/resources/.

RDF Concepts and Syntax

Like other XML-related applications we’ve seen, RDF has its own concepts
and terms. In the case of RDF, though, it has been our experience that its con-
cepts and terms (including the aliases for those terms) cause the concepts to
sound more complex than they really are. We discuss the concepts here and
within the framework of our customary logical structure approach. Between
the two approaches, we hope we can clarify the most basic concepts.

Following is a simple example of an RDF document. It refers to the 2047
Space Gems catalog and provides the name of the vendor. Again, because RDF
is advancing and expanding rapidly, we can only introduce you to basic RDF
concepts. We won’t go into any detail here, but we will use the following Space
Gems–oriented example, as we go along, to illustrate the first basic concepts.
Later, we’ll use the same example document to discuss the logical structure of
an RDF document.

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

</rdf:RDF>

Statements
As its name indicates, Resource Description Framework provides a frame-
work for describing a resource. It uses statements to provide the descriptions.
The statements are built similarly, but not identically, to the way statements in
English or any other language are built: They are considered to have subjects,
predicates, and objects. The difference is that, with RDF, other components fill
those roles. For example, documents of all sorts (electronic and even nonelec-
tronic), XML element types, attributes, and data are used, instead of the nouns,
pronouns, verbs, adjectives, and other components we would expect to find in
English grammar.

RDF 507

422541 Ch13.qxd 6/19/03 10:13 AM Page 507

RDF statements are also called RDF assertions and RDF triples. In fact, the
term triple is more or less the official term used for an RDF statement. They are
called triples because they contain and define the relationship between the
subject, its predicate, and its object.

Resources
If we are going to describe a resource, we must first decide which resource to
describe and then indicate the name of that resource in our statement.
Resources can be almost anything, such as Web pages, email accounts, graph-
ics, audio files, video clips, or other data sources in electronic or nonelectronic
formats, as long as they have Universal Resource Identifier as a form of iden-
tification. For example, a URI, such as www.spacegems.com/4cs/data, can be
a resource.

URIs are defined according to the IETF Network Working Group’s Request
for Comments (RFC) 2396 titled Uniform Resource Identifiers (URI):
Generic Syntax at www.isi.edu/in-notes/rfc2396.txt.

After we have chosen a specific resource to describe with our RDF statement,
the URI for that resource becomes the subject in our descriptive statement.

In our example, the <rdf:Description> element start tag contains the follow-
ing attribute code:

rdf:about=”http://www.spacegems.com/2047/catalog/”

The value of the attribute identifies the resource about which we will create
descriptive statements; namely, the Space Gems 2047 Catalog.

Properties
After we have chosen a resource to describe, we have to decide two things:

■■ Which resource characteristics we want to describe

■■ Which resource characteristics other people or systems might be
interested in

Those characteristics are called the resource’s properties. (They’re also called
named properties.)

In our simple example, the <sgs:vendor> element type is a property and
appears as follows:

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

508 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 508

Each property has its own name and is used to help distinguish or define a
specific characteristic among similar resources. Other properties that might be
used to describe the Space Gems catalog, for example, could be <publisher>,
<publication date>, and <no_of_pages>. Because of our URI naming conven-
tions, properties can become resources, too.

The property is considered to be the predicate in the descriptive statement.

Values
Now that we have chosen a resource to describe (the 2047 Space Gems catalog)
and the property of the resource we are going to describe (the vendor), we can
provide a value for the property. In our example, the data within the <sgs:ven-
dor> element type—Space Gems, Inc.—is that value.

The full descriptive statement says, “The subject is the Space Gems 2047 cat-
alog, which has a property named vendor and a value of Space Gems, Inc.” It’s
a simple statement with expected components. For example, a property value
other than Space Gems, Inc. would be unexpected.

The value of the property is called the object of the statement.

RDF Graphs
To help us design and translate RDF triples, RDF provides a standard graphical
data model. The basics are simple, although occasionally the diagrams and RDF
constructs can be complex. Take a look at the simple RDF graph in Figure 13.1.

The subjects and objects are shown within their respective nodes and are
connected by arcs, which is why RDF graphs are also called node-and-arc dia-
grams. By convention, subjects are within ovals and objects within rectangles.
The predicates are arrows that connect the two; their tails are always con-
nected to the subject and their heads to the object. The arc is always the equiva-
lent of a logical AND.

Later in this chapter, in the Property Elements section, we use a slightly more
complex node-and-arc diagram to help us design and illustrate a more com-
plex set of descriptive statements.

Figure 13.1 RDF graph (aka a node-and-arc diagram) showing a simple triple.

Subject ObjectPredicate

<sgs:vendor>
Space Gems, Inc.about="http://www.spacegems.com/2047/catalog/"

RDF 509

422541 Ch13.qxd 6/19/03 10:13 AM Page 509

In Figure 13.1, the predicate is indicated by its element type tag. We’ve
done this here for simplicity. Actually, the same element is given a URI,
which drills down to its element name. In the lab exercises, you will work
with the W3C RDF Validator. It creates similar diagrams automatically and
labels the predicate with its full URI.

The Logical Structure of an RDF Document
It is possible for an RDF document to be part of a larger overall XML docu-
ment. However, in this chapter, we construct and analyze RDF documents as
separate documents.

As with other XML-related languages, an RDF document consists of a pro-
log and a data instance. The following is a simple (separate) RDF document
example:

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

</rdf:RDF>

The Prolog

In an RDF document, the only mandatory prolog statement is the XML decla-
ration. The first line of our example RDF document is typical and looks like all
the others we’ve encountered so far in XML in 60 Minutes a Day.

In the next section, we briefly discuss several different RDF-related content
models. If we were to incorporate any of the elements from those models, we
would need to tell the parser to check DTDs or schemas. For our example,
however, we won’t include one.

The <RDF> Root Element, Namespaces, and Content Models

An RDF data instance consists of a root element and any elements contained
within the root element. The root element in an RDF data instance is named
<RDF>. Because the RDF namespace is generally used, the root element often
looks like <rdf:RDF>. Nested within the <RDF> element are other element
types that, in turn, contain the RDF document’s statements.

510 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 510

As in other XML-related languages, we can insert namespaces in the start
tag of the root element, which is usually most convenient, or in the start tags of
child elements, depending on our intentions. For our example document, we
have inserted the namespaces in the <RDF> element start tag, like so:

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

The namespace declaration, xmlns:rdf=”http://www.w3.org/1999/02/22-
rdf-syntax-ns#”, is the official one for RDF. The prefix rdf is RDF convention,
so we recommend that you always use it. The number sign on the end must be
included. After the namespace is declared, any element types with tags that
include the rdf prefix are those from the RDF element set.

Other namespace declarations are unique to the developer of the RDF doc-
ument or refer to other content models. In our example document, element
types that begin with sgs are not members of the RDF set but are unique to the
developer, Space Gems. The Dublin Core Metadata Initiative (DCMI, or the
Dublin Core), which is an organization dedicated to promoting the develop-
ment of specialized metadata vocabularies and the adoption of interoperable
metadata standards, has developed a content model. DCMI’s most notable ini-
tiative was the development of several elements pertaining to the description
of documents. The initiative has been adopted by government agencies,
libraries, educational institutions, museums, and other industries. DCMI has
also developed its own DTD and XML schema, which means if we use them,
we must remember to inform the parser appropriately. For further information
regarding the DCMI, visit its Web site at www.dublincore.org.

Other metadata initiatives are as follows:

Publishing Requirements for Industry Standard Metadata (PRISM).
Developed by the PRISM Working Group for the publishing industry.
See www.prismstandard.org for details.

XML Package Specification (XPackage). Metadata that provides a
framework for structured groupings of resources and their associations
that are, or may be, used as a unit. Developed by the Publication Struc-
ture Working Group of the Open eBook Forum. See www.xpackage
.org/specification/index.html for details.

RDF Site Summary (RSS). A lightweight, multipurpose, extensible
metadata description and syndication format. Developed by the RSS-
DEV Working Group. See http://web.resource.org/rss/1.0/for details.

CIM/XML. An RDF application that supports the electronic exchange
CIM models (common semantics for power system resources, attributes,
and relationships). Developed by the power industry. See www.langdale
.com.au/CIMXML/ for details.

RDF 511

422541 Ch13.qxd 6/19/03 10:13 AM Page 511

GO. This Gene Ontology project provides controlled yet dynamic vocab-
ularies for the description of the molecular function, biological process,
and cellular component of gene products. Developed by the Gene Ontol-
ogy Consortium. For details see www.geneontology.org/doc/GO.doc
.html.

Composite Capabilities/Preferences Profile Specification (CC/PP).
Defines a generic framework for describing delivery contexts for mobile
computing and communication devices. Developed by the W3C’s CC/PP
Working Group as part of the W3C Device Independence activity. For
details see www.w3.org/TR/2001/WD-CCPP-struct-vocab-20010315/.

To use any of the aforementioned models, consult the listed Web sites, espe-
cially with respect to incorporating their various namespaces, DTDs, and
schemas.

Resource Descriptions Are Nested within
<Description> Elements

Element types that contain the RDF document’s descriptive statements are
nested within the <RDF> element. Statements for any single subject resource
are usually contained within one element named <Description>. The start tag of
the <Description> element introduces the resource. Here is the <Description>
element from our simple example:

<rdf:Description rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

The attribute rdf:about=”...”, which has a URI value, indicates the resource
being described. Thus, it also indicates that the URI is the subject of this set of
statements. From our previous discussions of subjects, predicates, and objects,
we can tell that our example contains only the three basic parts. The <Descrip-
tion> element contains the subject, and the <sgs:vendor> element, called a
property element, identifies the property (vendor) and contains the value data
(Space Gems, Inc.).

If the resource does not yet exist (in other words, if the resource does not yet
have a resource identifier), the <Description> element’s start tag can actually
use an id=”value” attribute to supply an identifier. Here is our original exam-
ple, slightly reworked to include the id attribute:

512 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 512

<rdf:Description rdf:id=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

Table 13.1 contains descriptions of the <Description> element attributes.
Notice that the prefix rdf is included with their names. We suggest that the
RDF namespace and rdf prefix be included at all times. Otherwise, you may
find that only some RDF implementations will support the attributes without
the prefix; others will not.

Property Elements

Each property element contains the predicate (in its tags) and object (within its
data) pertaining to its respective subject. Although the basic RDF framework
elements and attributes are located within the RDF specification, it contains no
property elements. At this point, we as developers can create our own prop-
erty elements, with our own namespace declarations, and prefixes, or, if they
are suitable, we can incorporate property elements from the content models
we discussed in the previous section, The <RDF> Root Element, Namespaces, and
Content Models.

Table 13.1 <Description> Element Attributes

ATTRIBUTE NAME EXPLANATION

rdf:about The value would be the URI of the resource to be
described.

rdf:aboutEach To describe a child element. The value would be the
name of the element.

rdf:aboutEachPrefix To describe an RDF container item. The value would
specify the prefix of the container item.

rdf:bagID To describe a bag container. The value should specify the
id of the bag container.

rdf:id To provide a new resource description. The value will be
a URI and specify a name for the resource.

rdf:type The value is arbitrary and left to the developer to specify.
Will then indicate the type of description being provided.

RDF 513

422541 Ch13.qxd 6/19/03 10:13 AM Page 513

Each <Description> element usually contains the description statements for
a single resource. But it is not an error if more than one <Description> element
is used to describe one subject resource, as long as the descriptive statements
are not contradictory. Thus, the following is permitted:

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:publ_date>Spring 2047</sgs:publ_date>

</rdf:Description>

</rdf:RDF>

In addition to providing more than one <Description> element for a single
resource, we can combine statements within a single <Description> element,
like this:

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

<sgs:publ_date>Spring 2047</sgs:publ_date>

</rdf:Description>

</rdf:RDF>

This example is equivalent to the previous example: the one that contained
two <Description> elements. Its node-and-arc diagram looks like Figure 13.2.

Figure 13.2 RDF graph showing a more complex triple.

Subject ObjectsPredicates

about="http://www.spacegems.com/2047/catalog/"
<sgs:publ_date> Spring 2047

<sgs:vendor> Space Gems, Inc.

514 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 514

Abbreviating RDF
RDF provides the capability to abbreviate its syntax, by changing property

elements to <Description> element attributes. Here is an example:

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

<sgs:publ_date>Spring 2047</sgs:publ_date>

</rdf:Description>

</rdf:RDF>

We can abbreviate the preceding code to the following:

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description rdf:about=”http://www.spacegems.com/2047/catalog/”

sgs:vendor=”Space Gems, Inc.”

sgs:publ_date=”Spring 2047”>

</rdf:Description>

</rdf:RDF>

We’ve highlighted the corresponding text for clarity. Such abbreviation pro-
vides two benefits:

■■ It’s easier and faster to type.

■■ We can embed RDF into Web page documents more easily. There is less
risk that HTML, for example, will ignore element types that it doesn’t
understand. If we convert them to attributes, the data will be preserved.

Substituting Our Own XML Data into
Others’ Data Content Models
If we intend to use another party’s content model and elements, but we want
to treat their element types a little differently, we can use a substitution tech-
nique similar to the following RDF code example, which describes the creator
of the 2047 Space Gems catalog. Highlighting has been added for clarification.

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

xmlns:sgt=”http://www.spacegems.com/cutting/” >

RDF 515

422541 Ch13.qxd 6/19/03 10:13 AM Page 515

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/”>

<dc:creator rdf:parseType=”Literal” >

<sgt:author>Glitterlich, Carley</sgt:author>

<sgt:dept>Cutting and Polishing</sgt:dept>

<sgt:email>glitter@spacegems.com</sgt:email>
<sgt:publ_date>Spring 2047</sgt:publ_date>

</dc:creator>

</rdf:Description>

</rdf:RDF>

Instead of adding a name as the value for the property <Creator>, as the
Dublin Core model requires, we can add our own elements, which contain the
name and a little more information. However, earlier we had to add the appro-
priate namespace declaration.

Using the resource Attribute
In the previous section, we substituted our own information to identify the
creator/author of the Space Gems catalog. What if Carley has her own Web
page that contains all her information? We could provide a pointer to her Web
page as a resource, using the resource attribute. The following example illus-
trates this. Highlighting has been added for clarity.

<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

<rdf:Description rdf:about=”http://www.spacegems.com/2047/catalog/”

<dc:Creator

rdf:resource=”http://www.spacegems.com/tekstaff/glittec.html >

</dc:Creator>

</rdf:Description>

</rdf:RDF>

Chapter 13 Labs: Creating and Validating RDF

RDF is a rather new, but rapidly developing XML language, so there are not
many tools and utilities in the marketplace to use with it at this time. Mean-
while, RDF files are easy to code, but issues arise when we try to get an agent
or engine to use the information in them. However, this is often the case with
new technology and specifications, so it shouldn’t cause extraordinary wor-
ries. In this lab exercise, we will start by having you validate some existing
code. Later, you will re-create some code using an RDF editor.

516 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 516

Lab 13.1: Validating RDF Code

In this exercise, we show you where to go to find a validator and how to
validate your RDF code.

1. Go to the W3C’s online RDF Validation Service at
www.w3.org/RDF/Validator.

2. Enter the following example code in the text field of the validation
service.
<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

</rdf:RDF>

3. Click the gray Parse RDF button located under all the options, but
just above the Notes.

It is our experience that this validator provides good error messages, so
read them carefully. Also, if you choose to cut and paste the code rather
than type it, the quotes used in the first line of code may not be the
correct ones. You may have to change them and try again.

4. The completed results of the validation should provide the follow-
ing information:

a. The original RDF/XML document

b. Triples of the data model

c. Validation results

d. An RDF graph (also called a node-and-arc diagram) that
resembles Figure 13.3

e. Feedback

Figure 13.3 Resulting RDF graph showing logic of RDF/XML code.

Space Gems, Inc.http://www.spacegems.com/2047/catalog/
http://www.spacegems.com/sales/vendor

RDF 517

422541 Ch13.qxd 6/19/03 10:13 AM Page 517

5. You can now trust the logic and syntax of this piece of code for use
inside any XML document.

6. Now try adding some more information to the RDF file. Add
another element named <publ_date> and rerun the validator. To do
so, modify the existing RDF code to resemble the following code.
The new code is shown in highlight for clarity.
<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

</rdf:Description>

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:publ_date>Spring 2047</sgs:publ_date>

</rdf:Description>

</rdf:RDF>

7. Click the Parse RDF button again.

8. You should see a much different RDF graph of the data model; com-
pare your new results to Figure 13.4.

Figure 13.4 RDF graph showing multiple predicates and objects.

9. Now modify the information in the file, nesting the <vendor> and
<publ_date> property elements into the same <Description> ele-
ment. The new code is shown in the following. The main changes
are highlighted for clarity.
<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/” >

<sgs:vendor>Space Gems, Inc.</sgs:vendor>

<sgs:publ_date>Spring 2047</sgs:publ_date>

</rdf:Description>

</rdf:RDF>

10. Click the Parse RDF button again.

http://www.spacegems.com/2047/catalog/

Space Gems, Inc.

http://www.spacegems.com/sales/vendor

Spring 2047

http://www.spacegems.com/sales/publ_date

518 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 518

11. The results of the validation should still look identical to Figure 13.4.

12. Test one more final scenario. This time, convert the combined code
from Step 9 into abbreviated vendor and publ_date attributes within
<Description>, as shown in the following code. The main changes
are highlighted.
<?xml version=”1.0” encoding=”UTF-8” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:sgs=”http://www.spacegems.com/sales/” >

<rdf:Description

rdf:about=”http://www.spacegems.com/2047/catalog/”

sgs:vendor=”Space Gems, Inc.”

sgs:publ_date=”Spring 2047”>

</rdf:Description>

</rdf:RDF>

13. Click the Parse RDF button again. The results of the validation
should be identical to Figure 13.4.

Lab 13.2: Using RDFedt to
Create a Basic RDF File

In this exercise, we introduce you to a free RDF editor named RDFedt,
available from Jan Winkler at www.jan-winkler.de. This easy-to-use edi-
tor will help you write and test your own RDF/XML code.

1. Activate a browser and surf to Jan Winkler’s Web site at www
.jan-winkler.de/dev/e_rdfe.htm. Download the editor by clicking
the http://www.jan-winkler.de ...(1) hyperlink.

2. Double-click the resulting rdfedt_10.exe file to initiate the installa-
tion process.

3. Accept all defaults while installing the editor.

4. Double-click the RDFedt icon that was placed on the Windows
desktop to open the editor.

5. Expand the only element shown at the top of the work area to
expose the two namespace attributes. Both are required.

6. Note that you have access to the <rdf:Model&Syntax>,
<rdfs:Schema>, <dc:Dublin Core>, and <rss:RSS 1.0> elements from
the top menu bar. This is convenient, because the editor will guide
you and will not allow you to use any illegal elements that are not
recognized by the W3C’s RDF standards and specifications. These
are exactly the kinds of features we expect from an editor.

RDF 519

422541 Ch13.qxd 6/19/03 10:13 AM Page 519

7. Add two new namespace declaration attributes to the new file. To
do this, place the cursor directly on the <rdf:RDF> element at the
top of the workspace, click the right-mouse button to open the con-
text menu, and then click Add Attribute.

8. Place the cursor just to the right of the empty green box that repre-
sents the new attribute. Click the Edit tab on the right-hand side of
the editor.

9. Enter the following namespace information into the Name field
inside the Objects window:

xmlns:dc=”http://purl.org/dc/elements/1.1/”

Your editor view should look like Figure 13.5.

Figure 13.5 RDFedt editor showing the first user-created namespace attribute.

10. At any time, you can click on the Code tab on the right-hand side of
the editor to view the resulting code. However, you can’t edit the
code directly; you have to return to the Edit window to do code edits.

11. Add the second new namespace attributes to the new file. To do
this, place the cursor directly on the <rdf:RDF> element at the top of
the workspace, right-click to open the context menu, and click Add
Attribute.

12. Place the cursor to the right of the empty green box that represents
the new attribute. Click the Edit tab on the right side of the editor.

13. Enter the following namespace information into the Name field
inside the Objects window:

xmlns:sgt=”http://www.spacegems.com/cutting/”

Here, sgt is an abbreviation for Space Gems Technology. The Cutting
and Polishing group is found within that part of the company.

520 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 520

14. Next, add an <rdf:Description> element to the file. To do this, place
the cursor directly on the <rdf:RDF> element at the top of the work-
space, right-click to open the context menu, and click Add Element.

15. Place the cursor to the right of the empty yellow box that represents
the new element. Click the Edit tab on the right side of the editor.

16. Enter the following information all on one line in the Name field
inside the Objects window.

rdf:Description

Notice this is a user-defined element named <rdf:Description>,
which will have an rdf:about=”...” attribute inside of it.

17. Now add the rdf:about attribute to the <rdf:Description> element.
To do this, place the cursor directly on the <rdf:Description> ele-
ment, right-click to open the context menu, and click Add Attribute.

18. Place the cursor to the right of the empty green box that represents
the new attribute. Click the Edit tab on the right side of the editor.

19. Enter the following information, all on one line, into the Name field
inside the Objects window:

rdf:about=”http://www.spacegems.com/2047/catalog/”

20. Add a <dc:creator> element with an rdf:parseElement attribute
to handle literals. To do this, place the cursor directly on the
<rdf:Description> element at the top of the workspace, right-click
to open the context menu, and click Add Element.

21. Place the cursor to the right of the empty yellow box that represents
the new element. Click the Edit tab on the right side of the editor.

22. Enter the following namespace information, all on one line, into the
Name field inside the Objects window:

dc:creator

23. Add an rdf:parseElement attribute to handle literals. To do this,
place the cursor directly on the <dc:creator> element, right-click to
open the context menu, and click Add Attribute.

24. Place the cursor to the right of the empty green box that represents
the new attribute. Click the Edit tab on the right side of the editor.

25. Enter the following information into the Name field inside the
Objects window:

rdf:parseType=”Literal”

RDF 521

422541 Ch13.qxd 6/19/03 10:13 AM Page 521

26. Define four new user-defined elements named <sgt:author>,
<sgt:dept>, <sgt:email>, and <sgt:publ_date> to hold predicate and
object data. These new elements will belong to the sgt user-defined
namespace. To do this, place the cursor on the new <rdf:creator> ele-
ment, right-click to open the context menu, and click Add Element.

27. Place the cursor to the right of the empty yellow box that represents
the new element. Click the Edit tab on the right side of the editor.

28. Enter the following namespace:element information into the Name
field inside the Objects window:

sgt:author

29. Using the technique described in Steps 26 through 28, add the next
three namespace:elements information:
sgt:dept

sgt:email

sgt:publ_date

30. Add the literal string information to the four new elements. To do
this, place the cursor directly on the <sgt:author> element, right-
click to open the context menu, and click Add Content.

31. Place the cursor to the right of the empty red box that represents the
new content. Click the Edit tab on the right side of the editor.

32. Enter the following literal into the Name field inside the Objects
window:

Glitterlich, Carley

33. Using the technique described in Steps 30 through 32, add the next
three literals to their respective elements:

a. Enter “Cutting and Polishing” inside <sgt:dept>.

b. Enter “glittec@spacegems.com” inside <sgt:email>.

c. Enter “Spring 2047” inside <sgt:publ_date>.

34. Save the file. Click RDFedt on the top menu bar. Click Save as RDF
File. Type “sg_rdf,” and click Save. Compare your RDFedt file to
Figure 13.6.

522 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 522

Figure 13.6 RDFedt file with all elements and attributes added.

35. Click the Check Tree menu. Click Check All to check the RDF/XML
code. There should be 0 errors found in all categories. If there are
errors, fix them now.

36. If you would like to check this RDF file code, copy and paste this
information into the W3C’s online RDF Validation Service at www
.w3.org/RDF/Validator. The results should validate and show an
interesting RDF graph that points to all user-defined elements and
literal data.

Summary

RDF is a rapidly expanding technology. In this chapter, we introduced the
issues behind its development and indicated how it may help shape the Web
of the future. There are several key concepts to remember. Here are a few to
keep in mind:

■■ More information is added to the Internet and the World Wide Web
every day. More and more, we are faced with issues regarding access
and management of that information. The Web was originally devel-
oped for human legibility and interpretation, but if we could automate
our access and management activities, our interactions with the Web
would become and remain more meaningful.

RDF 523

422541 Ch13.qxd 6/19/03 10:13 AM Page 523

■■ Web searchers and publishers face ambiguity, content screening, infor-
mation overload, nonstandard technologies, and other issues listed in
this chapter. The introduction of standard metadata (machine under-
standable data about Web resources) to our Web documents would alle-
viate or, at least, mitigate some of the issues. Metadata is not a new
concept; it has been around for years. However, a standard framework
for using it would be beneficial.

■■ Predecessors to RDF were the metadata-related PICS specifications, the
first of which were approved in 1996. In 1997, the W3C chartered its
Metadata Activity after it recognized that metadata development was
common to PICS and other Web-related initiatives. The primary work
of the W3C’s Metadata Activity became the development of the RDF.

■■ RDF development was influenced by several events, such as PICS,
metadata and push technology proposals to the W3C and others, and
communities of Web-oriented individuals and organizations. A first
public draft of RDF appeared in October 1997. The W3C Recommenda-
tion was endorsed in February 1999.

■■ RDF is a declarative language that provides a standard method for
using XML-related components and syntax to represent metadata in the
form of statements that describe Web resources. RDF is more general-
ized than PICS, with more potential for developing expressions. As a
mechanism that allows precise descriptions of data or information,
RDF lets Web documents rise from machine-readable to machine-
processable, if not machine-understandable.

■■ RDF can be used in many application areas. As RDF continues to
develop, and as more Web-oriented organizations adopt it, they will
realize an expanded and more efficient information highway and
marketplace.

■■ RDF has caused many to rethink the role of URIs. They can no longer
be considered only Web page addresses. They will be a key to defining
resources on the Web, even when the resources may not be directly
retrieved on the Web. So URIs will need to be properly constructed and
should remain stable longer than they have in the past. The responsibil-
ity for creating and maintaining stable URIs falls to the resource owner
or administrator.

■■ As more Web proponents adopt the RDF metadata framework, the Web
will more closely resemble the Semantic Web envisioned by the W3C.
Data structures and Web search agents will become smarter as Web
pages evolve into Web services.

524 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 524

■■ RDF uses its statements (also called assertions and triples) to describe
resources. The statements are enclosed within <Description> elements,
which are nested within the root <RDF> data instance element. The
statements are called triples, because they contain and define relation-
ships among a resource’s subject, predicate, and object. The subject is
identified in the start tag of the <Description> element. The predicate
and object appear in each property element.

■■ RDF graphs (also called node-and-arc diagrams) are handy for RDF
document design, analysis, and troubleshooting. However, they have
strict syntax and conventions. There are several implementations that
can create them from RDF code.

■■ Several metadata initiatives can make RDF coding easier and help us to
create standard documents that can be accessed and understood by
search agents.

■■ In the latter part of the chapter, we introduced some shortcuts and
workarounds. More are located at the W3C RDF Recommendation Web
site at www.w3.org/TR/REC-rdf-syntax/.

RDF 525

422541 Ch13.qxd 6/19/03 10:13 AM Page 525

526 Chapter 13

Review Questions

1. Ultimately, we want Web data to be

a. Machine-accessible

b. Machine-processible

c. Machine-understandable

d. All of the above

e. None of the above

2. Which of the following are issues faced by Web publishers and Web searchers?

a. Ambiguity

b. Cultural semantic problems

c. Nonstandard query technologies

d. Nonstandard metadata

e. All of the above

3. True or false? RDF introduced metadata as the solution to the issues faced by Web
publishers and searchers.

4. Which of the following was a precursor to RDF?

a. CDF

b. PICS

c. DSig

d. P3P

e. PPCLI

f. None of the above

5. The <Description> element start tag identifies

a. Subject

b. Object

c. Predicate

d. Named property

e. Statement

422541 Ch13.qxd 6/19/03 10:13 AM Page 526

6. The predicate and object of a statement are found in which element?

a. <propertyelementname>

b. <RDF>

c. <Description>

d. <Object>

e. <Resource>

7. Which metadata initiative is used by the publishing industry?

a. XPackage

b. PRISM

c. Dublin Core

d. PICS

e. None of the above

8. Which <Description> attribute provides the identity of the subject resource?

a. rdf:aboutEach

b. rdf:RDF

c. rdf:type

d. rdf:resource

e. None of the above

9. True or false? All statements describing a resource do not have to be contained within
the same <Description> element.

10. To abbreviate RDF syntax, we change property elements into

a. <Description> elements

b. <Description> attributes

c. <RDF> attributes

d. <Resource> attributes

e. None of the above

RDF 527

422541 Ch13.qxd 6/19/03 10:13 AM Page 527

Answers to Review Questions

1. c. The others are lesser in status. Our Web search results are already machine-
accessible.

2. e. All of these are common issues.

3. False. RDF introduces a standard metadata framework.

4. b. PICS was also an influence on RDF development.

5. a. This is mentioned in the section titled Resource Descriptions Are Nested within
<Description> Elements.

6. a. The predicate is identified in the tags of the property elements, whose names are
arbitrarily chosen by the Web page document designer.

7. b. The metadata initiatives are described in the section titled The <RDF> Root
Element, Namespaces, and Content Models.

8. e. None of the above. The actual answer is rdf: about.

9. True. It is not an error to describe a resource with more than one <Description>
element. The number of such elements are left to the developer’s discretion.

10. b. This is discussed in the Abbreviating RDF section.

528 Chapter 13

422541 Ch13.qxd 6/19/03 10:13 AM Page 528

529

This chapter introduces the Channel Definition Format language (CDF). In its
March 1997 (specification) Submission request to the W3C, Microsoft defined
CDF as “an open specification that permits a Web publisher to offer frequently
updated collections of information. . .for automatic delivery to compatible
receiver programs on PCs or other information appliances.”

CDF gives a Web site owner the ability to provide information, usually
updated information, to end-user subscribers on a periodic basis. Web site
developers can create CDF documents that manipulate, combine, or condense
their information, and then deliver that information on request or, preferably,
on a regular schedule. The CDF documents are then affiliated with Web page
documents.

After introducing some basic broadcasting and webcasting concepts, this
chapter takes two approaches to CDF:

■■ It shows you the end user’s side of CDF services. You’ll see that chan-
nels of information function like TV or radio channels. After you tune
in and download information, you can read or manipulate it immedi-
ately in real time or even later, when you’re offline.

CDF

C H A P T E R

14

422541 Ch14.qxd 6/19/03 10:13 AM Page 529

■■ Then the chapter shows you the CDF/XML developer’s side of CDF the
same way other chapters introduce XML-related applications: by
explaining and demonstrating the use of its main components. You’ll
see how it’s similar and different from the other languages described so
far in this book.

By the end of this chapter, you’ll know the following:

■■ How, as a user, to determine which channels your browser was config-
ured, by default, to subscribe to.

■■ How to subscribe to new channels.

■■ How, as Web publishers, we can create CDF documents that allow
others to subscribe to our Web sites.

After CDF first appeared in 1997, it became popular quickly. However, its
popularity among Web publishers has tapered off. In fact, few Web sites pro-
vide CDF-related push subscriptions anymore. Yet the push capability is still
there, and the CDF-related user pull functions (we explain push and pull tech-
nologies in the next section) in the Internet Explorer browser are still available
and valuable, and have actually been imitated by other browsers.

Basic Communication Concepts

We start off by listing a few basic communication concepts, to show you the
context that channels and CDF work in and adjacent to.

We are surrounded by mass-communication media; most have become sec-
ond nature to us. So the applications of the following terms should be familiar
even if, at first, the terms themselves are not:

Push technology. Data and information are broadcast without particular
regard to whether anyone is connected to the medium, although the
broadcaster presumes that someone is. Push technology is the basis of
radio and television broadcasting. In the IT world, email is similar. Mes-
sages are sent to individuals whether or not they are online, with the
presumption that, at some point, the intended receivers will connect and
download their messages. But the sender still recognizes that the mes-
sage may not be received immediately, if at all.

Pull technology. A receiver sends a request for specific data or infor-
mation to a specific address. The classic example is a telephone call:
A code is sent, requesting a reply from the other end. The reply is likely
to include the requested information. In the IT world, Web surfing is
a common example of pull technology: An end user activates a Web
browser application and sends a request to a specific location by
inserting that location’s URI/URL.

530 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 530

Webcasting. This IT-related concept, developed in the mid-1990s, is an
example of push technology. Webcasting is an expansion of email con-
cepts. Web-oriented organizations can use push technology for mass
delivery of information, services, and advertising. Its enticement to end
users is that, with webcasting, they can avoid much of the effort
required to search for content. Users can subscribe to their favorite infor-
mation suppliers, who, in turn, distribute Web site content to them
directly and automatically on a regular schedule. The nature of the sub-
scriptions differs from supplier to supplier. Some Web sites provide their
products (that is, merchandise, services, or information) for free. Other
Web sites charge for them. Some Web sites do both: They provide some
products for free and charge for others.

Basic Webcasting and Managed Webcasting
Over the past few years, more and more end users and suppliers have come to
depend on Internet webcasting to receive or deliver information, respectively.
To them, webcasting has been a good development. If you have configured
your browser’s home page—the page that first displays when you start your
browser—to msn.com, yahoo.com, a stock ticker, your favorite sports or enter-
tainment Web site, a weather channel, or any of the millions of similar Web
sites available to you, to some extent, you are depending on webcasting, too.

Basic webcasting uses a sitecrawler, which is a configurable set of dynamic
link libraries that the browser accesses and then uses to:

■■ Examine information on Web pages to which the user subscribed

■■ Compare that information to similar information already stored on the
end user’s system for that Web site

■■ Decide whether to import the data from the Web site

Although this type of webcasting demonstrated progress compared to ser-
vices that had been available before—that is, searching and comparing by the
end users themselves—it still had several drawbacks:

■■ Configuration, although simple in concept, was complex and confusing
for the average user.

■■ Users could not specify the actual types of information they wanted;
the sitecrawler grabbed all the new and updated information. So, a lot
of extra information, sometimes all the Web site’s information, had to
be downloaded to ensure that the users got what they wanted. Down-
loading too much information wasted resources and bandwidth.

■■ The Web site owner had no way to offer organized groups of informa-
tion to users.

CDF 531

422541 Ch14.qxd 6/19/03 10:13 AM Page 531

■■ The Web site could not instruct the user’s system when to schedule
updates, so users always struggled to stay current and could never be
confident that they were current at any given time. To increase confi-
dence, update schedules were (rarely) advertised on the Web site, and
end users had to download manually at those times.

■■ Some Web sites disabled sitecrawling, because it caused excessive load-
ing on their Web servers.

■■ Web site owners had limited control over site subscriptions and updat-
ing, because the end users were subscribing and doing the scheduling.
Thus, the organizations had difficulty scheduling maintenance or opti-
mizing their own intranet performance.

To address these issues, in 1997 Microsoft introduced, with Internet
Explorer 4, concepts called Active Channels and the Active Desktop. The
objective was to refine its webcasting technology by creating managed web-
casting. To incorporate these concepts into IE 4, Microsoft developed the spec-
ification for the XML-related application and Channel Definition Format
(CDF). The new managed webcasting, using CDF configuration documents
that are affiliated with Web page documents, provides the following improve-
ments over basic webcasting:

■■ Web site owners can specify which documents on their Web site are
available for a user to subscribe to, which reduces network traffic. Plus,
because this specification process determines the number of pages
downloaded and stored on the subscriber’s system for offline viewing,
if the subscriber selects the offline viewing feature (discussed later in
this chapter, in the section titled Viewing a Channel Offline), it also mini-
mizes the hard disk space required at the subscriber’s end.

■■ The owner can also provide a structured view of its Web site content to
make navigation easier and faster.

■■ Subscriber update schedules can be restricted to coincide with Web site
content updates, or to take place during times of lower network loading.

■■ Web site owners can convert an existing Web site to managed webcast-
ing without having to overhaul the Web site completely. The only new
requirement is the addition of a CDF file.

What Are Channels?
To paraphrase the Microsoft definition, channels are prescribed collections of
information that Web publishers broadcast from their standard Web servers to
compatible receiving applications on end-user systems or other information-
processing appliances. Those information collections can contain anything

532 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 532

from individual pieces of data to the content of the whole Web site. Web
servers are defined in Chapter 2, “Setting Up Your XML Working Environ-
ment,” but a standard Web server is commonly defined as any Web server that
uses the HTTP 1.0 or later protocol to broadcast its messages.

Channels usually involve the automatic delivery of frequently updated col-
lections, according to a schedule prescribed by the end user or the Web site
publisher/administrator, after the end user has visited the Web site at least
once and, while there, has chosen to receive updates. Thereafter, the users
don’t need to return to the source Web sites and initiate update requests. In
other words, the end user chooses to become a subscriber to the Web site,
whether the subscription is provided free of charge or for a fee. As a subscriber,
the user automatically receives periodic updates of the Web site’s collections of
materials or other services.

In the case of CDF, a compatible program is any program that implements
processing and retrieving content as specified by the CDF specification.

Classroom Q & A
Q: In later versions of Internet Explorer, for example, Version 6, I don’t

see a reference to channels under Favorites in the menu bar. And
Netscape doesn’t mention channels. So are channels just another
word for favorites, or bookmarks?

A: Some users get confused with respect to channels versus favorites
or bookmarks, which are similar but not identical concepts. There
is a difference, even though IE appears to treat them similarly.
When you add a favorite or bookmark, you are simply adding an
Internet shortcut containing a Web page’s URL to a file accessed
by the browser, to save on user’s memories and keystrokes.
Favorites make it easy to access individual Web pages repeatedly.

When we add channels, however, we generally add a reference to more than
one page at the same Web site, because we are creating a reference to a collec-
tion of information. We can enable your system to display the information
while we are online, or we can download and store it so we can examine it
(including links) when our system is offline. With IE we can also create a sched-
ule for updating our copies of the Web site pages. Many channel definitions and
prescriptions are facilitated, controlled, or restricted by CDF-related options
configured by us or by Web site developers. Furthermore, we can configure
Internet Explorer to notify us if and when updates are available. So channels are
definitely different from the more ordinary favorites or bookmarks.

From a user’s standpoint, the benefits of managed webcasting through the
use of channels include the following:

CDF 533

422541 Ch14.qxd 6/19/03 10:13 AM Page 533

■■ The ability to keep better track of sites they subscribe to

■■ The ability to receive notification when their channels or favorites have
been updated

■■ The ability to review content on their systems on- or offline

At one time, Netscape offered only a primitive manual Web site/
bookmark checking utility. To be fair, it has recently begun to offer
automatic, scheduled update searches. However, the Netscape utilities
are still not as sophisticated as Microsoft channels.

The User’s Side of CDF: Accessing Channels

As a quick and practical introduction to channels, we will perform two simple
procedures: investigate which channels are currently available to us in
Microsoft Internet Explorer and add a channel to that list.

The procedures provided in this chapter are applicable to Microsoft
Internet Explorer Version 6 equipped with Service Pack 1. IE 5 referred to
channels as channels, but IE 6 , for administrative purposes, doesn’t.
Version 6.0 still supports channels and CDF, but groups channels in with
favorites, despite the differences between channels and favorites. With IE
6, administration and manipulation has been split between Favorites,
Organize Favorites on the main tool bar, and the Favorites button on the
toolbar beneath it. If you upgrade to IE 6, IE 6 will still respect any
channels you created with earlier versions of IE. In fact, IE 6 will actually
create a folder called Channels and install in that folder any channels
created with previous IE versions. To create and administer channels with
IE 6, use the procedures provided in this chapter. If you need further
assistance, consult the instructions displayed in IE 6’s Help, Contents and
Index directory; you can find instructions by searching the index with the
terms channel and offline Web browsing.

Investigating Available Channels
To see which channels are already available to you, you can use one of three
methods:

534 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 534

■■ Click the Favorites button on the Internet Explorer menu bar. As
demonstrated in the top of Figure 14.1, the drop-down menu displays
any favorites. (Those favorites will be a mix of references to channel-
related Web sites and bookmarklike Web sites.)

■■ Click the Favorites button on the button bar, which, as demonstrated in
the bottom of Figure 14.1, opens the Favorites menu on the left side of
the browser window. The Favorites menu is also called a Favorites bar
or a Favorites Explorer bar. (In previous versions of IE, the word Chan-
nel was used instead of Favorites in these names.)

■■ Click the View button, scroll to the Explorer bar, and click Favorites,
which results in the same view you see when you click the Favorites
button.

With either display, if you want to surf to any favorites, all you have to do
is scroll to the reference and click it. If at any time you don’t want to see
the Favorites bar in the browser window, click the Close button in its
upper right corner.

Figure 14.1 Investigating available channels.

Checking with the Favorites menuChecking with the Favorites button

CDF 535

422541 Ch14.qxd 6/19/03 10:13 AM Page 535

These displays are typical of an installation of the full version of Internet
Explorer 6. If you are using IE 4 or 5, or the upgrade version of IE 6, one of the
folders displayed might actually be named Channels. Versions 4 and 5 pro-
vided access to specifically identified channels that came with the software
and honored any existing channels that the user created with previous ver-
sions. The upgrade version of IE 6 also honors channels that were created with
previous versions. The full version of IE6 does not honor previously created
channels, although it allows you to create new ones. If you are using IE6 and
you want to keep your channels in a separate folder from your Favorites, you
can easily do so with the Organize Favorites function.

Remember that a channel, as displayed in Figure 14.1, can represent a single
page, multiple pages, or the content of a whole Web site.

Adding a Web Site Channel to Your Favorites List
There are two ways to add a channel to your Favorites list: the hard way and
the easy way. The hard way has to be used when a Web site publisher doesn’t
facilitate the process by creating the appropriate CDF documents. Use the easy
way when the CDF documents are in place and a proper channel creation but-
ton is provided. First, let’s look at the hard way.

Adding a Channel from a Web Site That
Does Not Provide a CDF Subscription

Adding a new channel to your Favorites list when the Web site publisher doesn’t
use CDF is a little more involved than when CDF is used. Suppose you want to
create a channel for the Space Gems Web site, which has no CDF installation.
First, you surf to the Space Gems site. Now, as illustrated in Figure 14.2, with the
Space Gems Web site displayed in the IE browser, follow these steps:

1. Click the Favorites button on the menu bar.

2. Scroll down, and click Add to Favorites.

3. When the Add Favorite dialog box opens, you can choose the following
options:

Make available offline. You select this check box because you want to
make the channel available offline—that is, when your system is not
connected to the Internet. This strategy can facilitate entertainment or
research and can reduce the amount of time and expense involved in
telephone line access, if applicable. The Web site synchronizes with

536 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 536

your system and downloads its pages to the system cache. (Synchro-
nizing is the process by which the latest version of the Web site’s
information is downloaded to your system, so that your information
remains current.)

Name. Here you accept the Web site publisher’s default name, Space
Gems Home Page, as the name for your channel.

Create in. Here you select the folder named Gems and Jewelry to
house your new Space Gems channel.

4. Click the Customize button to start the Offline Favorite Wizard.

5. The wizard prompts you to tell it whether you want to download Web
site content to your system and if so, how much. This step makes the
content available to you offline, and you can specify a schedule for syn-
chronizing those offline pages with the pages on the Web site. Figure
14.3 illustrates the next three steps of the process.

Figure 14.2 Adding a channel: The first two steps.

CDF 537

422541 Ch14.qxd 6/19/03 10:13 AM Page 537

Figure 14.3 Adding a channel: Using the Offline Wizard.

6. In the next dialog box, you specify that, if the home page links to other
pages, you want to download/synchronize them too. You specify that
you only want to go two links deep into the Web site. This setting
depends on the actual depth of the Web site, where the information
you’re interested in is located, and the size of your hard disk drive.
Click Next.

7. Indicate that you want to specify a synchronization schedule, and click
Next again. Then you state that that you want synchronization to occur
every day at 5:28 P.M. and that this schedule is to be named Space Gems
Synchronization Schedule.

8. Then click Next again. Figure 14.4 illustrates what happens next.

The last wizard dialog box asks whether you want to add some minimal
authentication requirements. It’s up to you, of course, but we selected the No
option for simplicity and then clicked Finish to complete this configuration
and return to the Add Favorite procedure. At this point, you verify where you
want the channel to be installed and click OK. Then the browser begins its first
synchronization procedure. (Watch closely; it usually happens quickly.) The
application provides a synchronization status box and a Synchronization
Complete notification. When everything is done, you are returned to your
browser view of the Web site.

If you want to delete the channel, highlight the name of the channel in the
Web browser’s Favorites bar, right-click, and select Delete.

If you have used or added channels with a previous version of Internet
Explorer on the same system, in the upgraded IE version, those channels
are still listed in a Channels folder in the Favorites bar and menu.

538 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 538

Figure 14.4 Adding a channel: Last steps.

Adding a Channel from a Web Site that Offers CDF Subscription

Adding a new channel when the Web site owner provides a CDF subscription
process is less complicated than when the owner does not provide one.

There are two basic ways to make a channel available:

■■ Convert the main or primary link to the Web page into a CDF subscrip-
tion file, so that the subscription is created automatically when a user
clicks the link simply to visit the Web site.

■■ The alternative strategy is preferable, because it is more transparent and
enables the end user to make a conscious choice: Place a Microsoft chan-
nel marker on the Web page so that the user can subscribe voluntarily.

Here’s an example: Suppose you want to create a channel after you travel to
the Space Gems Web site. Figure 14.5 illustrates the Space Gems home page
and the IE Favorites bar prior to creating a channel for Space Gems.

CDF 539

422541 Ch14.qxd 6/19/03 10:13 AM Page 539

Figure 14.5 Channel creation button on Space Gems home page.

The Add Active Channel channel subscription link appears at the bottom of
the page. On other sites, you may not see small logos. You might see a hyper-
link, such as Subscribe to Our Channel. Either way, the link is located in an
<A> tag in the Web page document that refers to the appropriate CDF file. Just
by clicking the link, you accomplish what it took several channel wizard boxes
to do in the previous section. Look at Figure 14.6, which illustrates what hap-
pens after the Add Active Channel button has been clicked. You are presented
with the Add Favorites dialog box. If you don’t select any options, the process
and results are simplified to exactly what is shown in Figure 14.6. Notice that
all the designated Space Gems Web pages have now been added to the
Favorites bar.

Button that indicates creation of a channel

540 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 540

Figure 14.6 Space Gems channel has been added to Favorites bar.

If you don’t want the Favorites bar to appear, click the Close button in its
upper right corner.

Besides the Space Gems Web site at www.spacegems.com, you can surf to
several other CDF-related Web sites that offer channel subscriptions:

■■ The Wired Channel at http://hotwired.lycos.com/livewired/
intro/index.html

■■ CNN Interactive at http://channels.cnn.com/intro/index.htm

■■ ZDNet, the Computing Channel at www1.zdnet.com/
datafeed/ie4/channels/zdnet/cached/index.htm

■■ National Geographic at www.nationalgeographic.com/
connection/cdrom/INDEX.HTM

■■ Epicurious Food and Travel at www.epicurious.com/
channels/intro/page/intro.htm

■■ MSNBC at www.msnbc.com/tools/channel/guide/intro.asp

To investigate the push aspects of these Web sites, we suggest you hurry.
Web publishers are altering them constantly. However, from a pull
standpoint, you can experiment with almost any Web site.

Add Favorites dialog box appears after Add Active Channel button is clicked

Favorites bar after creation of new channel

CDF 541

422541 Ch14.qxd 6/19/03 10:13 AM Page 541

Channel Synchronization: Setup and Activation
The previous sections discussed how to select and install channels on your
Favorites bar. You also learned about making your channels available for
offline viewing and specifying synchronization schedules. This section dis-
cusses setting up and activating manual synchronization and other forms of
automatic synchronization. If you intend to view channel material offline, it is
a best practice to synchronize the channel manually prior to actually going
offline. The synchronization procedure is depicted in Figure 14.7.

If you have already configured the synchronization setup, the synchroniza-
tion procedure is easy: Click Tools on the Internet Explorer browser’s menu
bar; then scroll down and click Synchronize. When the Items to Synchronize
dialog box appears, you need to check that your chosen channel is selected and
if it is, click Synchronize. You then see the Synchronization (status) and Syn-
chronization Complete boxes.

Figure 14.7 Making a channel available for offline viewing later.

542 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 542

If your synchronization has not yet been set up, the procedure is slightly
more involved. Click Tools on the menu bar, and then click Synchronize. The
Items to Synchronize dialog box appears. You select the Web channels you
want to synchronize and click the Setup button. You then see the Synchroniza-
tion Settings box, which contains three tabs:

Logon/Logoff. You can choose the channels on which network connections
and synchronization are to occur, and whether they should occur when
you log on to your system, log off from it, or both. You can also select
whether the application should prompt you before synchronization begins.

On Idle. Again, you can select which channels to synchronize and
whether synchronization should occur when the system is idle for any
length of time.

Scheduled. On this tab, you make adjustments (including deletions) to
the channels whose synchronization schedules you’ve already created,
or you can create new ones.

After you finish the setup, you are returned to the Items to Synchronize dia-
log box. Now, for example, you could select one or more channels to synchro-
nize, and then click Synchronize. You are then free to shut down the browser.
Later, you can activate the browser offline and still examine the version of the
channel to which you synchronized.

Viewing a Channel Offline
To read an offline version of one of your channels, start Internet Explorer, click
File, and scroll down and click Work Offline. None of the normal hyperlinks
will function. If you try them, you get a dialog box that states that the Web
page you requested is not available offline. To view this page, click Connect.
After the message, you can click Connect or Stay Offline.

To read the offline version of a channel, use one of the methods mentioned
earlier to list the favorites. Scroll to the name of the channel you want and click
it. The channel appears in the browser window just like it would if you were
surfing online, except that its content might be restricted depending on the
configuration you selected, or the configuration created by the Web site pub-
lisher, which would override your preferences. For example, you may have all
or just a little of the original linking functionality.

If you select the Work Offline feature in your browser, you remain offline
when you activate the browser until you click File, Work Offline to remove
the check mark next to that selection. If you don’t do so, the browser
keeps that setting. If you try to surf, you are confronted with the message
mentioned in this section that the site you are requesting is not available.

CDF 543

422541 Ch14.qxd 6/19/03 10:13 AM Page 543

Development of the CDF Specification

Earlier in this chapter, we listed several issues that led to the development of
new types of push webcasting technologies. Microsoft submitted its proposal
for the Channel Definition Format specification to the W3C in March 1997. The
CDF specification defined CDF as an XML-related push webcasting language
and then specified definitions for CDF’s elements and attributes, as well as DTD
declarations for those components. Its proponents believed that the CDF speci-
fication document would be reviewed, discussed, and further developed by
W3C members, and then it would become the Internet standard. However, in
the same year, the W3C received two other push technology proposals: the Open
Software Description Format (OSD) and the HTTP Distribution and Replication
Protocol (DRP). They shared several common themes: the use of channels, the
use of meta data, and multicasting over the IP protocol, among others. As a
result of the three proposals and a Push Technology Workshop the W3C con-
ducted in September 1997, all the proposals were given W3C Note status.

The W3C then stated that any subsequent W3C Metadata Activity would
focus on a common framework approach to address the combined needs of all
proponent groups and to create a single format that might enhance push tech-
nology. Ultimately, the W3C Metadata Activity produced the Resource
Description Framework Model and Syntax Specification (RDF), which pro-
vides a more general treatment of metadata and achieved W3C Recommenda-
tion status in February 1999. (An RDF schema specification became a W3C
Recommendation later, in March 2000.) These were discussed in Chapter 13.

Meanwhile, true to its policy regarding Notes, the W3C did not pursue fur-
ther development of the CDF or the other similar proposals. However,
Microsoft continued to develop CDF by adding more elements and attributes,
so that it would provide additional functionality and work with newer ver-
sions of the Internet Explorer browser.

CDF Resources
Among all the good CDF resources found on the World Wide Web, including
some good tutorials, we think the following provide the most comprehensive
information:

■■ The Microsoft Note submitted to the W3C, containing the CDF Specifi-
cation, at www.w3.org/TR/NOTE-CDFsubmit.html. This is the site
that also contains the DTD declarations for the significant elements and
attributes.

■■ The W3C site, www.w3.org/submission/1997/2/Overview.html, con-
tains a copy of the Microsoft submission of CDF to the W3C, as well as
its request that the submission be adopted as a W3C standard.

544 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 544

■■ CDF Version 0.4, which is Microsoft’s suggested revision to Channel
Definition Format (CDF), is located at http://msdn.microsoft.com/
library/default.asp?url=/workshop/delivery/cdf/reference/
channels.asp. This Web site has a comprehensive list of elements
for the various Microsoft CDF applications: Microsoft Active Channel,
Microsoft Active Desktop items, and Software Update Channels.

■■ A downloadable automatic CDF generator is available at http://
msdn.microsoft.com/downloads/samples/internet/default.asp?url=/
Downloads/samples/Internet/browsertools/cdfgen/default.asp. The
Microsoft CDF Generator is an easy-to-use tool for creating CDF files. It
has a graphical interface that does not require previous knowledge of
channels. It supports all CDF tags and UTF-8 encoding and can also be
used for testing, because it parses the CDF files and detects the errors.
Also, there is a tutorial and reference for the CDF generator at http://
msdn.microsoft.com/library/default.asp?url=/workshop/delivery/
cdf/reference/CDF.asp.

Channel Definition Format: A Definition
We have already discussed the end user’s experience with channels and the
development of the Channel Definition Format (CDF) as one solution to the
issues posed by early webcasting technology. In this section, we look a little
more closely at the specification itself and its functionality.

The Channel Definition Format (CDF) is an XML-related language that pro-
vides Web site publishers with the capability to deliver all or part of a Web
site’s information automatically to subscribing end users. The ability of a Web
publisher to provide specific collections of information regularly and auto-
matically in the form of channels reflects the smart-push aspect of managed
webcasting with CDF. The ability of an end user to subscribe to, synchronize,
and review the information online or offline reflects the smart-pull aspects.

A Web site publisher uses specialized CDF elements and attributes to define
information groupings into channels, subchannels, and other constituent
items. Other specialized elements enable subscribers to configure the schedul-
ing for updating/synchronizing the channels. A channel can be designed as a
single page, multiple pages, or the content of a whole Web site and can be dis-
tributed from any Web server that supports the HTTP protocol. In a way, chan-
nels are similar in nature to specialized TV or radio channels, or specialized
magazines and newspapers. After channels are created, we need only click a
link to subscribe to the owner’s Web site. We can then download the informa-
tion prescribed in the CDF file that defines the channel. We have only to select
and configure a channel once. After that, information is delivered, according to
the specified schedule without any more intervention, unless we choose to

CDF 545

422541 Ch14.qxd 6/19/03 10:13 AM Page 545

intervene, cancel, or otherwise modify the nature of the information to be
delivered or the delivery schedule.

CDF differs from most XML-related languages in two major ways:

■■ There is no universal DTD for it, so its documents need only be well
formed and not necessarily valid. However, individual Web publishers
can create their own validity documents to test against for validity.

■■ The CDF specification is presently (only) a W3C Note, with no realistic
prospect of ever becoming a W3C Recommendation. Nevertheless,
Microsoft continues to develop and refine CDF, just as it continues to
develop successive versions of IE.

Additionally, CDF enables automatic user notification when Web site con-
tent changes. It has what are called “other data operations” too: the ability to
search, index, profile, filter, and personalize content.

When downloaded to an end user’s browser, CDF channels resemble local
links to and indexes of remote resources. They are links that, if you are online (in
other words, if you are connected to the Web), can take you directly to the Web
site source. If you are not online but are using the offline browser options, you
can configure your channels to display their content whenever you want to,
even if you are not connected to the Web, as long as your system was given an
opportunity to go on online and download the information to your hard disk.

The Publisher’s Side of CDF: Creating CDF Channels

So far, we have examined channels from a user’s standpoint. Now let’s exam-
ine CDF from the Web publisher’s side to see how channels are created and
added to Web sites.

We stated earlier that a channel is a collection of information, commonly
considered to be specific Web pages within one Web site. We can put the spec-
ifications for any single channel in one CDF document, which is an XML-
related document, or we can create hierarchies of channels and subchannels
within one CDF document. In fact, you may have noticed that in your list of
example (surviving) Web sites that provide the opportunity to create channels
by using the Add Active Channel buttons, the CDF files are often the files that
appear in the Web site URL. The CDF document is separate from other Web
pages but is usually linked to one of the Web pages.

The CDF files also provide means for Web publishers to specify Web page
document titles, URLs, content, description, browser and desktop icons, user
traffic logging, the creation of a schedule for updating and synchronization, and

546 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 546

additional functionality. They also provide the capability for end users to sub-
scribe to a channel, as well as other features, such as authentication and other
personalization features, that are beyond the introductory level of this book.

If you intend to create channels, here is the general strategy:

1. Design the channel.

2. If you will be using customized logo images instead of the default
images, you have to create the logo images first.

3. Create the actual CDF file, reflecting your design.

4. Post the CDF file so that it will be publicly accessible when end users
choose to subscribe to the corresponding channel.

5. Create some means to make the channel available for subscription by
the user community.

In the next few sections, we discuss the steps in more detail.

Designing the Channel
Our first and arguably most important step is determining the structure of the
channel(s) and the hierarchy of subchannels, items, and other functions within
it. The design could, but doesn’t have to, reflect the structure of an existing
Web site. The design may even consist of just a sample of the Web site’s con-
tent and can also have a different hierarchy. Figure 14.8 illustrates the relation-
ship between a Web site, a channel definition document, and the view that
appears in the browser of an end user who subscribes to the channel.

The Web site structure is indicated in the diagram at the top. (The connect-
ing lines indicate various hyperlinks among the documents.) The correspond-
ing channel definition document, named gems.cdf, is shown on the lower left.
Its top-level channel calls for one document—in this case, the home page
document—and its seven subchannels call for various pages located at various
link levels in the Web site. The documents referenced in the gems.cdf channel
definition document are shaded for illustration. Notice that, after the relevant
documents have been specified in the CDF file, other documents that are not
referenced remain in the Web site. They are displayed when you surf to the
Web site online but do not form part of the channel definition. So they will not
appear if you download the channel and examine it offline. On the bottom
right side of the figure is a depiction of a browser window belonging to an end
user who has subscribed to the channel. In the browser’s Favorites bar, on the
left of the window, you can see how the channel and the items are referenced.

CDF 547

422541 Ch14.qxd 6/19/03 10:13 AM Page 547

Figure 14.8 Simplified channel development schematic.

The structure of the channel is created in the CDF file using one or more
<channel> elements that represent the major segments—that is, the top-level
channel and other subchannels, if you choose to use subchannels—and usu-
ally more <item> elements. All these components form the hierarchy within
the <channel>. When designing channels, observe the following best practices:

1st link level

2nd link level

3rd link level

4th link level
Home page Web Site Structure

gems.cdf

Channel Definition
Document

548 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 548

■■ Microsoft recommends that a channel should have no more than eight
total subitems in the first level. We agree. If you follow these sugges-
tions, you prevent subscribers from being overwhelmed with informa-
tion and images, provide a uniform look and feel among your channels,
and conserve bandwidth while minimizing download delays.

■■ You should create and use your own unique logo images with channels
and items. Early versions of IE didn’t provide any default logos, but
later versions do. But the default logos should be replaced by logos
more appropriate to your Web site and channels.

■■ Consider inserting a <schedule> element in the file, so that as the Web
site owner, you maintain control over updates and synchronization.

Creating Logo Images
Web publishers should create and use appropriate images for their channel
and item logos. However, Internet Explorer 4.0 and later provides default
images wherever necessary.

You can place various types and sizes of logo images in several locations in
a channel’s user interface, for example, in the Favorites bar in the browser, in
the Favorites menu, and on the Active Desktop. To do so, we recommend
observing Microsoft’s logo dimension and other requirements. These require-
ments are listed in the discussion of the <logo> element, later in this chapter.

The Logical Structure of a CDF Document
After we design our channel and create logo images, we can create the channel
definition document, which we’ll also refer to as the CDF document or CDF
file. Because CDF is an XML-related application, it is important to remember
that the CDF document must observe XML’s stringent vocabulary and struc-
tural rules as discussed throughout the earlier chapters of this book.

CDF files contain a prolog and a root element called <channel>. The other
elements that make up the CDF file are nested within the top-level <channel>
element. We discuss the logical structure requirements in the next few sections.

The Prolog

It is mandatory to include a prolog in a CDF document. The prolog could be as
simple as a one-line XML declaration, or it could contain the XML declaration,
a document type declaration, and one or more comments.

A document type declaration, if included, contains a reference to an XML
DTD that you develop on your own. There is no official publicly posted DTD

CDF 549

422541 Ch14.qxd 6/19/03 10:13 AM Page 549

or schema for CDF, as there is for other XML-related languages. Therefore,
integrated development environment applications and other editors are not
likely to be able to validate CDF files automatically without having been pro-
vided with DOCTYPE declarations and URIs that point to those validation
documents.

If you intend to create your own validation documents, you can get a head
start by examining the declarations for the early-version CDF elements and
attributes in the original specification submission to the W3C at www
.w3.org/TR/NOTE-CDFsubmit.html. You can adopt or adapt those declara-
tions into your own DTD (or schema, if you want to do the converting) file and
add declarations for your unique custom elements or attributes.

The <channel> Element

The <channel> element performs two functions:

■■ A <channel> element is used as the top-level (or root) element.

■■ Each channel or subchannel definition must be contained within its
own <channel> element. In other words, the full definition of the chan-
nel (its title, description, schedule information, and other associated
items) must fall between the corresponding <channel> tags.

A CDF document can contain one or more channel definitions. If it contains
more than one channel definition, each must be enclosed within its own
<channel> element. Channels can thus be nested within other channels. The
child channels are called subchannels and are subordinate to the parent chan-
nel in which they are nested. The top-level <channel> element in a document
has no parent element, but subchannel <channel> elements have a <channel>
element as a parent.

Table 14.1 lists the attributes we can use with the <channel> element.
Remember that all attribute values must be enclosed in quotation marks, even
if the value is a number.

If we use more than one mechanism (for example, BASE and HREF) to spec-
ify a URL for a channel and the URLs contradict one another, IE applies the fol-
lowing precedence:

1. The HREF attribute found in the start tag of the <channel> element.

2. The HREF attribute specified in the start tag of an <A> (anchor) ele-
ment that has been inserted as an immediate child of the <channel>
element, if one has been inserted.

Thus, CDF document developers must be aware of their options. They must
be precise in the selection of the location of the HREF attribute. If we want one
to appear in an <A> element, the HREF specification should not appear in any
parent <channel> element of the <A> element.

550 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 550

Table 14.1 <Channel> Element Attributes

ATTRIBUTE NAME EXPLANATION

BASE Optional. Specifies the base URL for the channel and is
used to resolve the relative URLs specified in <item> and
<channel> elements contained within the same channel or
subchannel. Inheritance is downward only, not across to
other sibling subchannels nor upward. BASE attributes in a
subchannel supersede those in parent channels from that
point downward. When specifying, ensure that it ends with
a trailing / to avoid confused pathing.

HREF Optional. Value is also a URL. Specifies which Web page will
be displayed in the browser when the channel is selected.
Optional because the same URL could also be specified in a
child <A> element. If a BASE attribute specification has
been specified in a parent element, BASE is inherited, and
then the HREF only has to be a relative path. If no BASE has
been specified, the HREF URL must be an absolute address.

LASTMOD Optional. Provides the date and time, in terms of Greenwich
Mean Time, when the page referenced by the HREF
attribute was last modified. Allows the channel’s end user
to determine whether the content has changed since the
last download. Updates are downloaded only if the date
associated with the cached information is older than the
LASTMOD value in the CDF file. The date format is yyyy-mm-
ddThh:mm. The capital T must appear between the date
and the time.

LEVEL Optional. Specifies the number of levels (or links, if you
prefer) deep that the client should site crawl and precaches
the Web page content from the URL specified in the HREF
attribute. Default is 0 (zero), meaning that the end user can
only precache the data found at the URL specified in the
<channel>, along with any images it uses. If the URL page
contains frames, all content inside the frames is retrieved.
The maximum number is three. Remember the structure of
the target Web site. If there are many links, even low numbers
can create excessive traffic and long download times.

PRECACHE Optional. Specifies whether content is downloaded. Values:
No (content will not be downloaded into the cache; value
of the LEVEL attribute is subsequently ignored); Yes (default
value; content will be downloaded only if the user has
specified that it should be); Default (whatever the end user
has specified is acceptable).

SELF Optional. Added to the top-level channel, to indicate the
location of the CDF file used for creating a channel
subscription. This attribute is unnecessary and is deprecated.
Only supported by newer versions for backward compatibility.

CDF 551

422541 Ch14.qxd 6/19/03 10:13 AM Page 551

Other CDF Elements

There are two basic varieties of child elements within <channel> elements:

■■ Those that can occur only once per <channel> element. Examples:
<A>, <abstract>, <log>, <login>, <logo>, <logtarget>, <schedule>,
and <title>.

■■ Those that can occur one or more times. Examples: <channel>, <item>,
and <softpkg>.

Figure 14.9 illustrates the hierarchical structure and syntax for a sample
CDF document.

This CDF document contains one top-level channel that contains three sub-
channels. The third subchannel contains three <item> elements.

Figure 14.10 demonstrates what we see in the Favorites bar inside an IE
browser window if we created a channel structured similar to the document
in Figure 14.9.

Figure 14.9 A simplified CDF document.

<?xml version="1.0"?>
<!DOCTYPE Channel SYSTEM "http://www.SpaceGems.com/dtds/cdf_sample.dtd" >
<!-- Comment - Example CDF Document - ->
<channel>
 <logo HREF=" ... " STYLE=" ... " />
 <schedule STARTDATE=" ... >
 <intervaltime ... />
 <earliesttime ... />
 <latesttime ... />
 </schedule>
 <channel HREF=" ... " BASE=" ... " >
 <title> ... </title>
 <abstract> ... </abstract>
 <logo HREF=" ... " STYLE=" ... " />
 </channel>
 <channel HREF=" ... " BASE=" ... " >
 <title> ... </title>
 <abstract> ... </abstract>
 <logo HREF=" ... " STYLE=" ... " />
 </channel>
 <channel HREF=" ... " BASE=" ... " >
 <title> ... </title>
 <abstract> ... </abstract>
 <logo HREF=" ... " STYLE=" ... " />
 <item HREF=" ... " >
 <logo HREF=" ... " STYLE=" ... " />
 <title> ... </title>
 <abstract> ... </abstract>
 </item>
 <item HREF=" ... " >
 <logo HREF=" ... " STYLE=" ... " />
 <title> ... </title>
 <abstract> ... </abstract>
 </item>
 <item HREF=" ... " >
 <logo HREF=" ... " STYLE=" ... " />
 <title> ... </title>
 <abstract> ... </abstract>
 </item>
 </channel>
</channel>

Subchannel

Subchannel

Top-Level
Channel

Subchannel

Item

Item

Item

552 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 552

Figure 14.10 Favorites bar version of channel defined in previous CDF file.

From Figure 14.10, we would presume that the top-level channel is called
Space Gems Home Page. The three subchannels would be called Space Gems
Diamonds, Space Gems Emeralds, and Other Space Gems. The three items that
would be displayed if you clicked the Other Space Gems subchannel, as
apparently someone has done in Figure 14.10, are called Secretariat (Ruby),
Ben Hur (Sapphire), and Canina (Rose Quartz).

Now we’ll discuss the other elements and attributes that are valuable to the
creation of CDF files. Depending on your ultimate intentions for your chan-
nels and the associated CDF files, you will include some and exclude others.
Some CDF files, for example, may be intended for Microsoft-related webcast-
ing, such as Active Desktop channels or software update channels, which we
will not discuss in this introductory-level chapter. The elements you use
depend on the values you specify for the <usage> element.

<A>

The <A> element defines a hyperlink. Its only attribute is the mandatory HREF,
whose value is the URL to be associated with the parent element, which can be

Items

Subchannels

Top-Level Channel

CDF 553

422541 Ch14.qxd 6/19/03 10:13 AM Page 553

a <channel> or <item> element. <A> has no child elements. We discuss other
<A> element implications in the section pertaining to the <item> element.

The <A> element is also important to the Web page document that contains
the CDF file. In the <body> element of the Web page document, the CDF file is
specified as the value of an HREF attribute in the document’s <A> element.

<abstract>

When a mouse pointer pauses over a <channel> or <item> title, Internet
Explorer displays the content specified within the <abstract> element in the
respective <channel> element. On-screen, in the browser window, the content
appears in a shaded box called a ToolTip (some call it a ScreenTip) that appears
briefly and then disappears. Figure 14.11 shows us an example of a ToolTip
that appears as the mouse pointer hovers over the Space Gems Main Informa-
tion Channel in the Favorites bar.

The <abstract> element can be used as a child element of the <channel>,
<implementation>, <item>, and <softpkg> elements. <abstract> has no child
elements of its own. At one time, <abstract> was an attribute of <channel>, but
it became its own element with CDF Version 0.4. The only attribute for
<abstract> is the optional XML-SPACE, whose value specifies how white
space is to be treated in the ToolTip. Possible values for XML-SPACE are
Default, which permits white space to be filtered out during file processing,
and Preserve, which ensures all white-space characters are retained.

Figure 14.11 ToolTip example.

554 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 554

<schedule>

The <schedule> element, with the help of other related elements, allows us to
define an update/synchronization schedule—that is, how often, and during
what time period, the channel should be updated. The parent element of
<schedule> is <channel>. Child elements of <schedule> are <start>, <end>,
<intervaltime>, <earliesttime>, and <latesttime>.

<schedule> has three optional attributes:

STARTDATE. The date on which the schedule is to take effect; specified
in yyyy-mm-dd.

STOPDATE. The date on which the schedule is no longer in effect; also
specified in yyyy-mm-dd.

TIMEZONE. Values are expressed as +/- zzzz, where the z’s specify a
time offset from GMT in hhmm. The plus or minus signs indicate
whether the time specified is ahead (+) or behind (-) GMT. Values for
TIMEZONE impact the child elements <earliesttime> and <latesttime>.

<intervaltime>

<intervaltime> specifies the length of time between channel updates. Its par-
ent element is <schedule> and it has no child elements, although it is com-
monly coordinated with the sibling elements <earliesttime> and <latesttime>.

Its attributes are all optional:

DAY. The value is a nonzero number specifying the days between
updates.

HOUR. Value is a nonzero number based on a 24-hour clock, specifying
the number of hours, in addition to the value of DAY, that you have to
wait before updating is allowed.

MIN. Value is a nonzero number specifying additional minutes that you
have to wait before updating is allowed.

As indicated by the attributes and their values, the interval effects of the
attributes are additive. Here is an example that specifies that the interval
between updates will be 7 days, 12 hours, and 15 minutes:

<INTERVALTIME DAY=“7” HOUR=“12” MIN=“15” />

<earliesttime>

The <earliesttime> element specifies the beginning of a valid range of
time within which channel updates are allowed. Its parent element is also
<schedule>, and it has no child elements. Its attributes are optional and
include the following:

CDF 555

422541 Ch14.qxd 6/19/03 10:13 AM Page 555

DAY. The value is a nonzero number specifying the day within the speci-
fied <intervaltime> that updates are allowed.

HOUR. The value is a nonzero number, based on the 24-hour clock,
specifying the first hour within the <intervaltime> that updates can
take place.

MIN. The value is a nonzero number specifying the first minute within
the <intervaltime> that updates can take place.

<latesttime>

<latesttime> is similar to <earliesttime>. It specifies the end of a valid range of
time during which channel updates are allowed. Its parent element is also
<schedule>, and it also has no child elements.

Its attributes are identical in name and definition to those listed for
<earliesttime>.

<item>

<item> defines a channel item, which is an additional, likely supplementary,
information Web page document within the channel or subchannel. <item>
elements enable you to build and fill a hierarchical structure of information
within a channel. By structuring <channel> elements with <item> elements, a
balance can be achieved between information provided and network traffic
generated.

Information channels and their items will be listed in the end users’ Favorites
bars and Favorites menus in order according to the Web site publisher’s
designed hierarchy.

<item> has only one parent element: <channel>. But it has the following
child elements: <A>, <abstract>, <channel>, <log>, <logo>, <title>, and
<usage>. However, in any single <item> element, each child element can
occur only once.

The <item> element has four attributes:

HREF. Specifies the URL—the Web page document—activated when the
user clicks the channel item. This attribute is mandatory, with the fol-
lowing exception: When a child <A> element is nested within the
<item> element, the <A> element will specify the URL. If traffic logging
is desired, the URL cannot contain more than 255 characters. If and
when this limitation threatens to cause a problem, consider adjusting the
<channel> element’s BASE attribute.

LASTMOD. This attribute is optional and, similar to its role with
<channel>, specifies the last date and time, in terms of GMT, that the
page specified by the HREF attribute was modified. The value for
LASTMOD affects whether the URL referenced by the HREF attribute
is downloaded. Again, the format for the LASTMOD specification is

556 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 556

yyyy-mm-ddThh-mm. Again, don’t forget the capital T between the date
and the time.

LEVEL. This attribute is optional and specifies the number of levels (or
links) deep within the channel URL that an end user’s browser should
site crawl to obtain and precache content. The default value is 0 (zero),
specifying that the client browser can precache only on the page speci-
fied by the URL and the images it references, but not linked documents.
However, if the URL contains frames, the client may also retrieve the
content in them.

PRECACHE. Another optional attribute, this one specifies whether con-
tent is downloaded. Like the <channel> element, the available values are
No (content will not be downloaded into the cache, and the value of the
LEVEL attribute is subsequently ignored); Yes (the default value, whereby
content will be downloaded only if the user has also specified that channel
content should be downloaded); and Default, which specifies that what-
ever the end user has specified is acceptable.

Items specified in the CDF document by the Web publisher supersede any
created by the end users with their Offline Favorite Wizard, which we dis-
cussed earlier in this chapter. Thus, the Web publisher can optimize and con-
trol synchronizations by limiting the selections to specific information
collections.

There are other aspects of items that the <usage> element can help with.
Refer to the discussion of that element for further details.

<title>

The <title> element specifies a text string that will eventually appear as the
title of the respective channels, subchannels, items, or within the <softpkg>
element. Use of <title> is fairly straightforward; the only cautions are those
against improper coding of special characters and the treatment of white
space, such as spaces, tabs, blank lines, or special characters, as discussed in
Chapter 3, “Anatomy of an XML Document.”

<title>’s parent elements are <channel>, <item>, and <softpkg>; it does not
have any child elements. It has one optional white-space-related attribute,
XML-SPACE, whose candidate values are Default, which specifies to the
parser that white space doesn’t matter, and Preserve, which specifies that the
white space should be preserved during processing and display.

When used as an attribute of any parent element, the value specified for the
XML-SPACE attribute applies to all child elements unless it is specifically
overridden with another XML-SPACE attribute in one of the child elements.

When applied to a top-level <channel> element, ensure that the <title>
element appears near the beginning, prior to any <item> elements or
nested <channel> elements.

CDF 557

422541 Ch14.qxd 6/19/03 10:13 AM Page 557

<logo>

The <logo> element specifies the image used to represent the respective
<channel>, <item>, and <softpkg> elements. Those are its parent elements; it
does not have child elements.

As we mentioned in the best practices listed in the previous section, Web
publishers should create and use appropriate images for their channel and
item logos. However, Internet Explorer 4.0 and later provides default images
wherever necessary.

You can place various types and sizes of logo images in several locations in
a channel’s user interface, for example, in the Favorites bar in the browser, in
the Favorites menu, and on the Active Desktop. To do so, we recommend
observing the Microsoft logo dimension and other requirements shown in the
following list.

The <logo> element has two required attributes:

HREF. The value specified for HREF is the URI/URL of the image file.

STYLE. There are three possible values for the STYLE attribute:

icon. When this value appears as a specification for the STYLE
attribute within a <channel> element, the image specified by the
HREF URL appears in the Favorites menus and is 16 pixels high by
16 pixels wide (16H x 16W).

image-wide. If this value is specified for the STYLE attribute, the
image appears in the Favorites bar in the link to the main channel
page and is 32 pixels high by 194 pixels wide (32H x 194W).

image. If this value is specified for the STYLE attribute, the image
appears on the Active Desktop and is 32 pixels high by 80 pixels wide
(32H x 80W).

See Figure 14.12, which demonstrates the syntax for the <logo> element and
the placement of the respective logo images. Don’t worry if the screen details
in Figure 14.12 are illegible. The important aspects of Figure 14.12 are the syn-
tax of the three different <logo> elements and the eventual on-screen location
of the logo images.

If you want to investigate all the requirements, refer to the article
“Creating Active Channel Logo Images” at http://msdn.microsoft.com/
workshop/delivery/channel/tutorials/images.asp.

GIF, JPEG, and other standard graphic image formats are supported for logo
images. Animated GIF documents are not supported with this element.

558 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 558

Figure 14.12 Icon image specifications.

As a best practice, the top-level <channel> element should include three
<logo> child elements, one for each type of style attribute, like this:

<CHANNEL HREF=”http://spacegems.com/mainpage.htm”>

<!-- For the Favorites Bar -->

<LOGO HREF=”SGI_lg_icon.gif” STYLE=”image-wide”/>

<!-- For the Active Desktop Bar -->

<LOGO HREF=”SGI_med_icon.gif” STYLE=”image”/>

<!-- For the Favorites Menus -->

<LOGO HREF=”SGI_sm_icon.gif” STYLE=”icon”/>

All other <channel> and <item> elements in the CDF file should include
only one <logo> element, and the value specified for their respective STYLE
attributes should be icon.

The Active Desktop is beyond the scope of this introductory-level CDF dis-
cussion, but it is instructional to see the effects of all three specifications. Plus,
we suggest including the STYLE=”icon” attribute in the top-level <channel>
element. If an Active Desktop is eventually installed, in some future configu-
ration, the channel appears on the desktop.

<log>

If we want to monitor Web page traffic, we can include a <log> element to log
the information about online and offline hits to an item within a channel. Each
time an end user views the URL of the <log> element’s parent <item>, that
URL is recorded in the Web page log file. If we want to monitor traffic to more

<logo HREF="SGI_lg_icon.gif" STYLE="image-wide"/>

<logo HREF="SGI_sm_icon.gif" STYLE="icon"/>

<logo HREF="SGI_med_icon.gif" STYLE="image"/>

CDF 559

422541 Ch14.qxd 6/19/03 10:13 AM Page 559

than one URL in the channel, we must insert a <log> element into each respec-
tive <item> element.

If, as a Web site publisher, we log this information, large log files can be cre-
ated quickly if the URL is popular. So we include <log> elements in only those
<item> elements for which we really want to measure traffic.

The <log> element’s only parent element is <item>, and it has no child ele-
ments. After you insert a <log> element, you must include a VALUE=”docu-
ment:view” attribute in its start tag.

<logtarget>

If we decide to log traffic to our URLs, we use the <logtarget> element to spec-
ify where we want the log information sent. <logtarget> specifies the URI of
the log file in which the information should be recorded. Be aware that this
activity can produce large log files quickly.

<logtarget>’s only parent is the <channel> element, but it can have two
child elements: <http-equiv> and <purgetime>. These child elements can
occur only once per channel. <logtarget> has three attributes:

HREF. The value for this mandatory option is a URI that specifies where
the log information is to be sent.

METHOD. The values for this mandatory attribute are POST or PUT, the
two HTTP-related methods of storing data. The value you choose
depends on the additional processing that you expect the data to
undergo. The usual value is POST. However, because this attribute
requires more extensive knowledge of network protocols and database
technology, further discussion is beyond the introductory level of this
chapter. If you would like further information regarding this attribute,
visit the Microsoft CDF Web site at http://msdn.microsoft.com/
workshop/delivery/cdf/reference/logtarget.asp.

SCOPE. The values for this optional attribute are offline, meaning that the
traffic to those pages that are downloaded to an end user’s system dur-
ing a synchronization is to be logged; online, which specifies offline
work traffic is to be ignored, but online work traffic is to be logged; or
all, which specifies that traffic during online and offline work is to be
logged.

The traffic log file is stored in the end user’s local cache in the %userpro-
file%\history\log folder. That file is cleared after it is successfully posted to
the HTTP server during the Channel Definition Format (CDF) update/syn-
chronization. That’s why offline logging is possible and the traffic data can
eventually be returned to the Web site. Again, the log information is in the
form of a record of URLs.

560 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 560

In the CDF file, the <logtarget> element must occur before any <item>
elements.

<http-equiv>

This element is fairly specialized; it supplies information to the parser using
HTTP response headers as the transmission medium. As logging information
is sent over the HTTP protocol according to the attributes in the <logtarget>
element, its child <http-equiv> indicates that an HTTP header parameter
should be added, based on the specifications in the <http-equiv> element’s
attributes.

<http-equiv>’s parent element is <logtarget>, and it has no child elements.
<http-equiv> has two mandatory attributes:

NAME. A string value that names the HTTP protocol header parameter
sent with the traffic log file.

VALUE. A string value of the corresponding parameter.

This is how the a Web publisher might specify the compression algorithm
for a log file that is to be sent back to the Space Gems Web site’s HTTP server:

<LOGTARGET HREF=”http://www.spacegems.com/logs/” METHOD=”POST”>

<HTTP-EQUIV NAME=”encoding-type” VALUE=”gzip” />

</LOGTARGET>

<purgetime>

This element specifies the maximum age of valid page hits when a traffic log
file is being uploaded to the Web publisher’s server(s). Like <http-equiv>,
<purgetime> is nested within a <logtarget> element. Thus, <purgetime> is a
child element of <logtarget> but has no child elements of its own. The only
attribute for <purgetime> is HOUR, with a value that must be a positive integer.

The log file is stored in the end user’s local cache in the %userprofile%\his-
tory\log folder. That file is cleared after its records are successfully posted to
the Web publisher’s HTTP server(s) during a CDF update/synchronization.

Here’s an example:

<PURGETIME HOUR = “36” />

This code says that as the traffic information is uploaded, discard any infor-
mation older than 36 hours.

<usage>

The <usage> element specifies how its parent elements, <item> or <softpkg>,
should be used. <usage> has no child elements. It has one mandatory
attribute, VALUE, which can have one of the following values:

CDF 561

422541 Ch14.qxd 6/19/03 10:13 AM Page 561

Channel. The item will appear in the browser’s Favorites bar. This is the
default behavior when no <usage> element appears under an <item>.

DesktopComponent. The item will be displayed in a frame located on
the Microsoft Active Desktop. Attributes assigned this value can only be
used in the context of an Active Desktop item.

Email. Instructs the parser that its parent element is an email message
that is sent when the channel content is updated. Only one of these can
be inserted per CDF document.

NONE. Indicates that the item will not appear in the Favorites bar.

ScreenSaver. Indicates the item will be displayed in the special Microsoft
Internet Explorer screen saver. Only one of these is allowed per CDF file.

SoftwareUpdate. Indicates that the CDF file is being used for an auto-
matic Software Update channel. This value is only valid when used in
the top-level channel.

The <usage> element deprecates an older attribute that used to appear in
the start tag of a parent <item> element: the SHOW attribute. That is to say,
some older implementations of CDF clients look for a SHOW attribute, instead
of a <usage> element nested within the <item> element.

Here is an example of a <usage> element:

<item HREF=”tlscrn01.htm”>

<usage VALUE=”ScreenSaver”></usage>

This code is a designation of an <item> element as a screen saver for an
Active Desktop. Further discussion of this topic is beyond the scope of this
introductory-level material. However, if you want more information, consult
the CDF Resources section earlier in this chapter.

If you want to prevent an item from appearing in a Favorites bar—for
example, when you just want the item to be downloaded and used as a
link from some other page in the channel—include a <usage> element as
a child element of the <item> element, and then insert a VALUE=”none”
attribute in the <usage> element’s start tag.

<login />

This declared empty element specifies that the channel requires authentication
before permission is given to subscribe to it. This element is found within the
top-level <channel> element, but it has no child elements nor any attributes.

A CDF file containing the <login /> element causes the end user to be
prompted for a name and password during the channel-subscription process.

562 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 562

Then the actual authentication input information is checked against a separate
third-party authentication, authorization, and accounting application.

Special Characters and Character Encoding

Although we’ve also discussed this topic in previous chapters, for example, in
Chapter 3, “Anatomy of an XML Document,” it is worth mentioning again
here. When inserting data content in an element, you must remember to use
specific codes, called predefined entity references, for certain reserved characters,
to prevent CDF parsing errors. Table 14.2 lists the five reserved characters,
along with their predefined entity references.

Here’s an example of the ampersand in action:

<channel HREF=”prods/othergems.htm” >

<title>Other Space Gems</title>

<item HREF=”prods/corundum.htm” >

<title>Rubies & Sapphires</title>

</item>

<item HREF=”prods/beryls.htm” >

<title>Emeralds & Beryls</title>

</item>

<item HREF=”prods/quartz.htm” >

<title>Rose, Peridot & Clear</title>

</item>

</channel>

The example demonstrates the coding we would use in three <title> ele-
ments so that the ampersands appear correctly and won’t be misinterpreted by
the parser.

For a complete list of other named character set entities, see Microsoft’s
HTML Character Set Web site (Charsets) and Named Entities at
http://msdn.microsoft.com/library/default.asp?url=/workshop/delivery/
cdf/reference/CDF.asp.

Table 14.2 Predefined Entity References for Reserved Characters

CHARACTER TO INSERT PREDEFINED ENTITY REFERENCE

< (less than) <

> (greater than) >

‘ (an apostrophe) '

“ (a double quotation mark) "

& (an ampersand, to mean “and”) &

CDF 563

422541 Ch14.qxd 6/19/03 10:13 AM Page 563

The CDF specification also supports encoding for any ASCII character,
which uses the format &#nnn. The ampersand characters in this example
could also be encoded with the ASCII decimal value of 38; thus, we would
encode the string & instead of & in a CDF document.

Test Your Comprehension with a Sample CDF File

Figure 14.13 illustrates a simple CDF document consisting of a top-level chan-
nel with two items and a subchannel with three items. To test your compre-
hension of the major CDF file creation concepts presented in this chapter and
to prepare for the lab exercises at the end of this chapter, have a look at this
sample file.

A description of the coding is posted on the Chapter 14 page of this book’s
Web site as noted in the book’s introduction.

To help you along, we are providing a rendering of the resultant Favorites
bar in Figure 14.14.

A related file directory diagram appears in Figure 14.15.

Posting the CDF File to the Web Server
After creating the CDF file, we handle it like any other Web entity and affiliate
it with the appropriate Web site pages. We then place it in the publicly avail-
able and predefined document root directory on the Web site’s HTTP server.
That way, a user who clicks a Subscribe Here link gains access to the CDF docu-
ment and, thus, the channel. If in doubt, consult your system and security
administrator.

Providing Access to the Channel
Finally, as Web site publishers, we should consider how to allow our users to
access the channel. For example, as you will see in a lab exercise at the end of
this chapter, we can initiate the channel subscription process by inserting an
HREF attribute that has the value of the URI of the CDF file in the start tag of
an <A> element, which, in turn, is nested within the <BODY> element of a
Web page document. Nesting the <A> element within the <BODY> element in
the HTML document is preferred, although some suggest putting it in the
<HEAD> element. Here’s an example of such an <A> element:

Subscribe to Space Gems 2047 Catalog!

564 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 564

Figure 14.13 A simple CDF document. (continued)

<?XML version="1.0" ?>
<!DOCTYPE Channels SYSTEM "http://www.spacegems.com/dtds/SGI_cdf.dtd" >
<!-- Top-level channel - Corporate Info - ->
<channel HREF="http://www.spacegems.com/channels/index.htm"
 BASE="http://www.spacegems.com/channels/"
 LASTMOD="2047-06-30T01:59:59" >
 <logo HREF="pix/SGI_corp_lg.gif" STYLE="image-wide"/>
 <logo HREF="pix/SGI_corp_med.gif" STYLE="image"/>
 <logo HREF="pix/SGI_corp_sm.gif" STYLE="icon"/>
 <title>Space Gems, Inc.</title>
 <abstract>Space Gems! Satisfaction Guaranteed!</abstract>
<!-- Update Schedule - ->
 <schedule STARTDATE="2047-07-01" STOPDATE="2048-06-30">
 <intervaltime DAY="7" />
 <earliesttime HOUR="3" TIMEZONE="-0700" />
 <latesttime HOUR="5" TIMEZONE="-0700" />
 </schedule>
<!-- Logging End User Traffic - ->
 <logtarget HREF="http://www.spacegems.com/cgi-bin/traffic.cgi"
 METHOD="POST" SCOPE="All" />
 <purgetime HOUR="24" />
<!-- Item - Corporate Info - ->
 <item HREF="corp/spacegems.htm">
 <logo HREF="pix/SGI_sm.gif" STYLE="icon"/>
 <title>Company Info</title>
 <abstract>All you need to know!</abstract>
<!-- Logging End User Traffic to the Corporate Info Page - ->
 <log VALUE="document:view" />
 </item>
<!-- Item - Screensaver - ->
 <item HREF="SGI_screen_01.htm">
 <usage VALUE="ScreenSaver"></usage>
 </item>
<!-- Subchannel - Product Info - ->
 <channel HREF="prods/SGI_cat_2047.htm" >
 <title>Space Gems Catalog</title>
 <abstract>Best selection! Lowest prices!</abstract>
 <logo HREF="pix/SGI_cat_lg.gif" STYLE="image-wide"/>
 <logo HREF="pix/SGI_cat_med.gif" STYLE="image"/>
 <logo HREF="pix/SGI_cat_sm.gif" STYLE="icon"/>
<!-- Item - Diamonds - ->
 <item HREF="prods/diamonds.htm">
 <logo HREF="pix/diamond_sm.gif" STYLE="icon"/>
 <title>Space Gems Diamonds</title>
 <abstract>The most precious gems!</abstract>

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

CDF 565

422541 Ch14.qxd 6/19/03 10:13 AM Page 565

Figure 14.13 (continued)

Figure 14.14 Rendering of the simple CDF document.

 </item>
<!-- Item - Emeralds - ->
 <item HREF="prods/emeralds.htm">
 <logo HREF="pix/emerald_sm.gif" STYLE="icon"/>
 <title>Space Gems Emeralds</title>
 <abstract>Green, blue and gold!</abstract>
 </item>
<!-- Item - Other Gems - ->
 <item HREF="prods/othergems.htm">
 <logo HREF="pix/citrine_sm.gif" STYLE="icon"/>
 <title>Other Space Gems</title>
 <abstract>Rubies, sapphires and more!</abstract>
 </item>
<!-- End of subchannel - ->
 </channel>
<!-- End of Top-level channel - ->
</channel>

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

566 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 566

Figure 14.15 File directory structure for the simple CDF document.

Alternatively, Microsoft suggests for better functionality that your Web page
include their Add Active Channel or Add to Active Desktop logo button. That
means, of course, that you would also have to store the associated button logos
with your other images and make them accessible to the pages. Using these
buttons requires you to agree beforehand to the terms of the Active Channel
Logo agreement. Then you have to place specific JavaScript elements in the
<HEAD> element and add HTML coding in the <BODY> element. The bene-
fits are that when end users click these buttons, they access a more visible, con-
sistent, and easily recognizable method for adding Active Channel sites and
Active Desktop items in any browser.

For further information regarding these buttons and the method of
installation, go to http://msdn.microsoft.com/workshop/delivery/
cdf/tutorials/generic.asp

Chapter 14 Labs: Getting Started with CDF

CDF is an established XML technology that has been around since the intro-
duction of Internet Explorer 4.0. However, in recent years, Web publishers
have tended not to advertise CDF’s push technology-related features on their
sites to the same extent that they did in the late 1990s. Also, there are few tools
and utilities in the marketplace. However, the files are not that difficult to
code, although assistance from a CDF editor certainly doesn’t hurt.

www.spacegems.com/

channels BASE

prods

SGI_cat_2047.htm

diamonds.htm

emeralds.htm

othergems.htm

cgi-bin

traffic.cgispacegems.htm

corp

index.htm

SGI_screen_01.htm

pix

SGI_corp_lg.gif

SGI_corp_med.gif

SGI_corp_sm.gif

SGI_sm.gif

SGI_cat_lg.gif

SGI_cat_med.gif

SGI_cat_sm.gif

diamond_sm.gif

emerald_sm.gif

citrine_sm.gif

CDF 567

422541 Ch14.qxd 6/19/03 10:13 AM Page 567

Basic CDF File for Web Pages
In this multistage lab, we show you how to replace the basic navigational links
on the bottom of the Space Gems start Web page, index.html, with active chan-
nel technology. Here are the four basic steps you will accomplish:

1. Install Microsoft’s CDF Generator application.

2. Create a basic CDF File.

3. Modify the CDF File.

4. Make the CDF file available and verify that it works.

Lab 14.1: Installing Microsoft’s CDF Generator

Here’s the procedure to install the Microsoft CDF Generator application:

1. The URL for this file is too long to enter accurately here, so we ask
you to use the MSN Search For engine. Go to http://www.
microsoft.com. Type “CDF Generator” inside the Search For box,
and click Go.

2. Click the link called Microsoft CDF Generator that was returned
from the search.

3. Click the link that says “You can download CDF Generator from
MSDN Online.”

4. On the cdfgenerator Web page that appears, click the Download
sample link.

5. The file (the name should be similar to sample.zip) is downloaded
to the directory of your choice. After it has been downloaded, go to
that directory and double-click the CDFGen.exe file to install the
application. During the installation procedure, the application will
suggest installing to the C:\Workshop or C:\Program Files\
Microsoft CDF Generator directories. Either location is acceptable.

As of this writing, there was a problem with the link to the Microsoft CDF
editor. If your download does not succeed—that is, if you get a license file
only—visit the Chapter 14 page at the XML in 60 Minutes a Day Web site,
which contains instructions for downloading the editor.

568 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 568

Lab 14.2: Creating a Basic CDF File

Here’s the procedure to create a basic CDF file:

1. Download the 16x16-pixel image files named diamond.gif and red-
star.gif from the XML in 60 Minutes a Day Web site and save them to
your C:\WWW\SpaceGems\images directory.

2. Open the Microsoft CDF editor by double-clicking the cdfgen.exe
file in the directory you selected for the installation in the previous
section of this lab exercise. A blank editing area appears.

3. From the top menu click File, New.

4. Enter the following information inside the Channel window:

a. HREF: Then click the Attribute radio button.

b. Enter “http://localhost/spacegems/” in both the HREF and
BASE input boxes. Leave the SELF input box empty. Click Next.

c. Type “Space Gems Main Page” inside the Title input box.

d. Type “We will sell to anyone in the universe tax-free! Please look
at our easy-to-follow directions!” inside the Abstract input box.
Click Next.

e. Type “images/diamond.gif” inside the Icon input box. Click
Next.

f. In the Schedule box, enter today’s date in the Start Date and at
least five days from the current date inside the End Date. Click
Interval Time and enter Day=1, Hour=1 and Min=2.

g. Click Earliest Time and enter Day=1, Hour=0 and Min=2.

h. Click Latest Time and leave 12 as the default (that is, Day and
Min should remain blank while Hour=12). Click Next.

i. Uncheck the Log Target box. Click Next.

j. Several lines of code appear, reflecting the choices you made.
Click Finish.

k. Highlight the root Channel–Space Gems Main Page element and
right-click. Choose New, Item from the context menu.

l. Type “galaxys_largest_diamonds.htm” inside the HREF input
box. Click Next.

m. Type “The Galaxy’s Largest Diamonds” in the Title input box.

n. Type “Learn about the largest diamonds in the galaxy! Images of
all diamonds are available!” in the Abstract input box. Click Next.

CDF 569

422541 Ch14.qxd 6/19/03 10:13 AM Page 569

o. Select the Icon selection box by clicking it. Then type
“images/diamond.gif” in the Icon input box. Click Next.

p. Several more lines of code appear, reflecting the choices you
made. Click Finish.

5. Click the Save icon on the menu bar, and save the file as gems.cdf to
the C:\WWW\SpaceGems directory. Leave the file and editor open.

If you experience trouble saving the gems.cdf file, don’t despair. Simply
download a copy of the final gems.cdf file from the book’s Web site
discussed in the book’s introduction and save it to the C:\WWW\
SpaceGems directory.

6. Test the CDF file by activating Internet Explorer and entering
“http://localhost/spacegems/gems.cdf” into its locator bar. An
Add Favorites menu should appear. Click OK and proceed. Click
the new Favorite entry in the sidebar to verify that the links work.

Lab 14.3: Modifying the CDF File

This next section checks your understanding of how the CDF compo-
nents in the gems.cdf document work. However, rather than provide
step-by-step instructions for using the Microsoft CDF generator/editor
to add new code, we are just going to provide the new code, and you can
add it using the methods we’ve already shown you.

1. With the Microsoft CDF editor still open and the gems.cdf file still
on-screen, add the lines of code that are highlighted (the lines that
are not highlighted are the existing lines of code that are already
on-screen).
<?XML VERSION=”1.0” ENCODING=”UTF-8”?>

<CHANNEL HREF=http://localhost/spacegems/

BASE=”http://localhost/spacegems/”>

<TITLE>Space Gems Main Information Page</TITLE>

<ABSTRACT>We will sell to anyone in the universe tax free.

Please look at our easy-to-get-here directions.

</ABSTRACT>

<LOGO HREF=”http://localhost/spacegems/images/diamond.gif”

STYLE=”ICON”/>

<SCHEDULE STARTDATE=”2003-01-14” ENDDATE=”2004-11-14”

TIMEZONE=”-0700”>

<INTERVALTIME MIN=”2”/>

<EARLIESTTIME DAY=”15” HOUR=”1”/>

<LATESTTIME DAY=”31” HOUR=”23”/>

570 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 570

</SCHEDULE>

<ITEM HREF=”http://localhost/spacegems/galaxys_largest_

diamonds.htm”

PRECACHE=”NO”>

<TITLE>Galaxy’s Largest Diamonds</TITLE>

<ABSTRACT>Find out where the largest diamonds in the

universe are.

</ABSTRACT>

<LOGO HREF=”http://localhost/spacegems/images/

diamond.gif”

STYLE=”ICON”/>

</ITEM>

<ITEM HREF=http://localhost/spacegems/magicgems.xml

PRECACHE=”yes”>

<TITLE>The Magic of Gems</TITLE>

<ABSTRACT>Buy, sell, trade and learn about precious

gems.

</ABSTRACT>

<LOGO HREF=”http://localhost/spacegems/images/

diamond.gif”

STYLE=”ICON”/>

</ITEM>

<ITEM HREF=”gemsB_EDI.htm” LASTMOD=”2003-01-14T23:44”

PRECACHE=”YES” LEVEL=”0”>

<TITLE>Quick List of Diamonds for Sale</TITLE>

<ABSTRACT>We pride ourselves in having the best quality

diamonds in the universe. We also guarantee

that we have the largest diamonds available!

If you know where there is a larger one, let

us know and we will actually try to buy it!

</ABSTRACT>

<LOGO HREF=”images/diamond.gif” STYLE=”ICON”/>

</ITEM>

<ITEM LASTMOD=”2003-01-14T23:47” PRECACHE=”YES” LEVEL=”0”>

<TITLE>Space Gems Catalog</TITLE>

<ABSTRACT>These diamonds are the best we have. Please

find the time to visit us and see them in

person. We simply can’t capture the beauty of

these gems in a holograph!

</ABSTRACT>

<LOGO HREF=”images/diamond.gif” STYLE=”ICON”/>

</ITEM>

<ITEM HREF=”SPFeature.htm” LASTMOD=”2003-01-14T23:51”

PRECACHE=”YES” LEVEL=”0”>

<TITLE>Space Gems Special Features</TITLE>

<ABSTRACT>These are limited time offers. So if you are

interested please drop by soon.

</ABSTRACT>

<LOGO HREF=”images/diamond.gif” STYLE=”ICON”/>

<LOG VALUE=”document:view”/>

CDF 571

422541 Ch14.qxd 6/19/03 10:13 AM Page 571

</ITEM>

<ITEM HREF=”SPFeature_Starts.htm” LASTMOD=”2003-01-15T22:03”

PRECACHE=”YES” LEVEL=”0”>

<TITLE>Spage Gems New Special Features</TITLE>

<ABSTRACT>This is a limited time offer and will only be

available for another 12 hours!

</ABSTRACT>

<LOGO HREF=”images/redstar.gif” STYLE=”ICON”/>

</ITEM>

</CHANNEL>

2. Save the file.

3. Retest the CDF file. Using Internet Explorer, enter “http://localhost/
spacegems/gems.cdf”. An Add Favorites menu appears. Click OK.
Click the new Favorite entry in the sidebar to validate that the links
work.

Lab 14.4: Making the Channel Available and
Verifying that It Works

There are two basic ways to make a channel available. One is to make the
main or primary link the CDF file itself so that it is automatically
invoked. The second method is to place a Microsoft channel marker on
the page so users can voluntarily add the channel. The following code
snippet supports the second option:

1. Download the ch_chbtn.gif file from the Chapter 14 page of the
XML in 60 Minutes a Day Web site, and save it to the C:\WWW\
SpaceGems\images directory. This button image can also be
obtained from many Microsoft sites.

2. Using HTML-Kit, add the following code to the bottom of the
index.html file. The new code is shown in highlight.
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

<html>

<head>

<title>Space Gems Home Page</title>

<link rel=”stylesheet” type=”text/css”

href=”master.css”></link>

<meta name=”generator” content=”HTML Tidy for Windows

(vers 1st August 2002), see www.w3.org” />

<meta http-equiv=”Content-Language” content=”en-us” />

<meta http-equiv=”Content-Type”

content=”text/html;charset=windows-1252” />

<meta name=”GENERATOR”

content=”Microsoft FrontPage 4.0” />

572 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 572

<meta name=”ProgId” content=”FrontPage.Editor.

Document” />

</head>

<body>

<h1 align=”center”>Welcome to Space Gems</h1>

<p align=”center”> </p>

<p align=”center”> </p>

<div align=”center”>

<center>

<table

summary=”Table used to format images

and text”

border=”0” cellpadding=”20”

cellspacing=”0” width=”71%”>

<tr>

<td width=”50%”>

<p align=”center”>

<img alt=”C4D3_s.jpg”

border=”0” src=”images/

C4D3_s.jpg”

width=”170” height=”128”/>

</p>

</td>

<td width=”50%”>We have locations all

around the galaxy to

ensure that you do not

have to travel light years

to find that very special

gem.

</td>

</tr>

<tr>

<td width=”50%”>

<p>We have lots of parking

at all of

our facilities!

</p>

</td>

<td width=”50%”>

<p align=”center”>

<img alt=”secret_s.jpg”

border=”0” src=

”images/secret_s.jpg”

width=”170”

height=”120” />

</p>

</td>

</tr>

</table>

See the

CDF 573

422541 Ch14.qxd 6/19/03 10:13 AM Page 573

Galaxy’s Largest Diamonds

Quick List of

Diamonds

The Magic of

Gems

Space Gems Catalog

Space Gems Special

Features

</center>

</div>

<center>

<p>

<a name=”chbut”

href=”http://localhost/spacegems/gems.cdf”>

<img srcC=”images/ch_chbtn.gif” border=0

width=136 height=20>

<script language=”JavaScript”>

if (isMsie4orGreater())

{ uniqueName.href=”http://localhost/spacegems/gems.cdf”; }

</script>

</p>

</center>

</body>

</html>

3. Save the index.html file to the C:\WWW\SpaceGems directory.

4. Test the index.html file. Activate Internet Explorer and enter
“http://localhost/spacegems/” in its locator bar.

5. Click the Microsoft channel image on the bottom of the page.

6. An Add Favorites menu should appear. Click OK and proceed.
Click the new Favorite entry in the sidebar to verify that the links
work.

Summary

Although CDF is falling out of favor from a push technology standpoint, it has
thrived from a pull technology standpoint and has inspired imitators among
competitor browsers.

574 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 574

Here are some key points we’d like you to take away from this chapter:

■■ The Channel Definition Format language (CDF) is, according to
Microsoft, “. . . an open specification that permits a Web publisher to offer
frequently updated collections of information . . . for automatic delivery
to compatible receiver programs on PCs or other information appli-
ances.” It gives Web site publishers the capability of providing informa-
tion, usually updated information (even software updates), to its end
user subscribers on a periodic or regular basis. They create CDF docu-
ments that manipulate, combine, or condense their information. Then
they deliver that information upon request, or preferably, on a regular
schedule, and affiliate those documents with Web page documents.

■■ Microsoft introduced CDF in 1997 to overcome the existing shortcom-
ings of webcasting by introducing managed webcasting. In the same
year, CDF and two other push technology proposals—OSD and DRP—
were submitted to the W3C. All the proposals were given W3C Note
status. W3C metadata activity was initiated to develop a standard that
created a common ground. RDF was developed and approved as a Rec-
ommendation in 1999. RDF, thus, surpassed its forebears. Microsoft,
however, continued to develop CDF.

■■ A Web site publisher uses certain CDF specialized elements and attrib-
utes to define information groupings into channels, subchannels, and
other constituent items. Other specialized elements allow publishers to
configure the scheduling for updating/synchronizing the channels.

■■ A channel can be designed as a single page, multiple pages, or the con-
tent of a whole Web site and can be distributed from any Web server
that supports the HTTP protocol.

■■ Because they have both push and pull aspects, including scheduling
capability, channels are not the same as favorites or bookmarks.

■■ In this chapter, you learned three ways to investigate available chan-
nels, two ways to subscribe to channels, one method for synchroniza-
tion, and one method for viewing channels offline.

■■ The general strategy for creating channels is to design the channel, cre-
ate logo images, create the CDF document, post the CDF file so it will
be accessible from its affiliated Web page documents, and provide a
means for end users to subscribe to the channel.

■■ You learned about several elements and attributes for creating CDF
documents. The most important of these is the <channel> element,
which is the top-level element in the document and the container for
other subchannels and information items, if applicable.

CDF 575

422541 Ch14.qxd 6/19/03 10:13 AM Page 575

576 Chapter 14

Review Questions

1. Television, email, and webcasting are samples of which kind of technology?

a. Pull

b. CDF

c. Push

d. Webcasting

e. None of the above

2. Channels are ______________________ that a Web publisher broadcasts from
standard Web servers to compatible receiving applications.

3. True or false? Because CDF was submitted to the W3C first, development was initiated,
and that’s why Microsoft continued to use it with Internet Explorer.

4. Which of the following are drawbacks to early webcasting? (Choose all that apply.)

a. Configuration could be complex.

b. Bandwidth usage could not be optimized.

c. Web publishers could not specify the information to be sent to subscribers and,
so, could not optimize their delivery.

d. Updating often occurred at inopportune times.

e. All of the above.

5. True or false? Favorites (or bookmarks) are the same as channels.

6. The general strategy for creating channels includes designing the channel, creating
logo images, creating the CDF document, __________________, and providing a
means for end users to subscribe. Which step is missing?

a. Creating an appropriate file structure

b. Consulting with administrators and Internet Service Providers

c. Creating synchronization schedules

d. Posting the CDF file for public access

e. Nothing is missing. All the steps are there.

7. True or false? The main channel page has to be the Web site’s home page, and sub-
channels and items come from lower positions in the Web site hierarchy, just as they
are lower positions in the channel hierarchy.

8. True or false? A <channel> element must be used as the document root element, but
<channel> elements can be nested.

422541 Ch14.qxd 6/19/03 10:13 AM Page 576

9. If you want to create a message that appears when a mouse pointer hovers over a
channel, subchannel, or item title, which element would you insert in the CDF file?

a. <abstract>

b. <title>

c. <style>

d. <item>

e. None of the above

10. Which value for the style attribute creates an icon with the 32H x 194W dimensions?

a. image

b. image-wide

c. icon

d. icon-wide

e. None of the above

CDF 577

422541 Ch14.qxd 6/19/03 10:13 AM Page 577

Answers to Review Questions

1. c. They are both examples of push technology. They are actually forerunners of web-
casting, which is an example of push technology.

2. “Channels are prescribed collections of information that Web publishers broadcast
from standard Web servers to compatible receiving applications.” Any phrase equiva-
lent to “collections of information” will suffice.

3. False. CDF was given Note status and the W3C did not initiate any further develop-
ment. Its Metadata Activity went off in a different direction. However, Microsoft
continued development of CDF on its own.

4. e. They are all examples of drawbacks of early webcasting.

5. False. Channels are more sophisticated than bookmarks or Favorites, although
Microsoft’s smart-pull technology is being applied to old-style Favorites to make them
more like channels. Old-style Favorites and bookmarks are URLs stored on an end
user’s system to save wear and tear on our own memories.

6. d. Some might choose c. However, creating those schedules are considered part of
creating the CDF document.

7. False. Although this is a common misconception, you can design the channels, sub-
channels, and items in any order you want them to appear.

8. True. The question covers the two major functions of the <channel> element. Check
the text for a further explanation.

9. a. This was discussed in the Other CDF Elements section, under <abstract>.

10. b. This was also discussed in the Other CDF Elements section, under <logo>.

578 Chapter 14

422541 Ch14.qxd 6/19/03 10:13 AM Page 578

579

It seems like everyone wants to know about the Simple Object Access Protocol
(SOAP): what is it and how is it used? Although a lot of attention has been
focused on it, SOAP is just part of a larger solution: an Internet consisting of
many Web services that rely on XML to enhance system and commerce inte-
gration. SOAP is becoming a popular, high-profile protocol used to carry XML
messages to and from Web services. These Web services—which we call
SOAP-aware or SOAP-capable—use SOAP as a message format protocol. But
without the support of the Web Services Description Language (WSDL) and
HTTP, SOAP wouldn’t work. In fact, Web services don’t even have to include
SOAP, because the information and messages could be carried over HTTP
only. So why do we want to discuss SOAP? Because it has become the most
popular protocol for exchanging messages, especially machine-to-machine
messages, in the Internet’s distributed environment.

In this chapter, we demonstrate how SOAP fits into the Web services archi-
tecture and how you can use it. First, we define Web services and discuss
where they are and how to find them, using the Universal Description, Dis-
covery, and Integration service (UDDI). UDDI is a multifaceted concept that
includes project, organization, specification, and business registries, all of

SOAP

C H A P T E R

15

422541 Ch15.qxd 6/19/03 10:13 AM Page 579

which play an important role in the discovery of and integration with Web
services. Our descriptions of Web services available through UDDI lead to a
discussion of the Web Service Description Language (WSDL) and, finally, SOAP.

By the end of this chapter, you should have a better grasp of Web services,
how to find them yourself, and SOAP’s role in accessing them. You will even
have created some simple SOAP messages to access existing services.

What Are Web Services?

The W3C formally defines a Web service as “a software system identified by a
URI, whose public interfaces and bindings are defined and described using
XML. Its definition can be discovered by other software systems. These sys-
tems may then interact with the Web service in a manner prescribed by its def-
inition, using XML-based messages conveyed by Internet protocols.” The
UDDI.org defines Web services as “self-contained, modular business applica-
tions that have open, Internet-oriented, standards-based technologies. These
standards-based communications allow Web services to be accessed by cus-
tomers, suppliers, and partners independent of hardware, operating system,
or even programming environment.”

The W3C Web service definition is excerpted from the W3C’s November
2002 Working Draft of their Web Services Architecture specification. That
document can be found at www.w3.org/TR/2002/WD-ws-arch-20021114/
#whatisws. The UDDI definition is excerpted from the “UDDI Executive
White Paper,” published by the UDDI.org in November 2001, and can be
found at www.uddi.org/whitepapers.html.

A hierarchy of concepts is at work here. The first is Web-based services,
which are any kind of service available over the Web. Web services, on the
other hand, are considered Web-based services that are implemented with
Web service technologies. Web service technologies, in turn, are defined as the
Web Services Description Language and two XML-based protocols: SOAP and
UDDI. These three mechanisms form the foundation of SOAP messaging.
They allow different programs on different systems to communicate with each
other, especially “automatically” (consider, for example, a customer system
that can read inventory records, and if it perceives that certain supplies have
fallen below their programmed thresholds, it can automatically order new
supplies and authorize payment).

580 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 580

The UDDI: Organization, Project,
Specification, and Registry

Before the UDDI project was developed, no industry-wide single-access
approach existed that enabled businesses to provide their customers, suppli-
ers, and partners with product and service information. The only technology
available was Internet search engines, with all their inherent shortcomings: no
ideal choice of search engine to register a business with, the question of “mem-
bership level” to purchase with each, the lack of clarity with respect to what
metadata (that is, keywords and other information) to emphasize on a Web
site, lack of knowledge with respect to formulating a proper search, and the
limited information received from a search attempt (a hyperlink to a URL and,
after traversing the link, some HTML pages).

Also, prior to the UDDI project, no universal method existed for integrating
communication and commerce systems among business suppliers, customers,
or partners. Many companies created proprietary approaches, content, and
architectures, which aggravated the already-diverging nature of Internet
e-commerce.

Before we define the UDDI project, be aware that you may eventually
encounter the term UDDI in several contexts. It is a multifaceted term, and it
refers to the following:

Sponsoring organization. UDDI.org now consists of 14 Working Group
members—of which four (IBM, Microsoft, Hewlett-Packard, and SAP)
are the UDDI operators—and approximately 200 advisory group mem-
bers, which are software developers and e-business leaders.

Project. The UDDI project is a pan-industry project undertaken by plat-
form providers, software developers, and business leaders to create a
global, open approach to service provision computing. This approach
allows participants to discover one another, to define their lines of busi-
ness, to indicate how they will interact over the Internet (their applica-
tions, platforms, and policies), and to share information in a global
registry. The UDDI project, originally developed by Ariba, Inc., IBM Cor-
poration, and Microsoft Corporation, began in 2000. The project includes
the specification and the business registry, described next.

Specification. The UDDI.org participants developed a standards-based
specification for Web service descriptions, for discovery of those ser-
vices, and for company-to-company integration. Integration involves
making a network connection, discovering services, agreeing on a com-
mon data representation (XML is becoming the data representation of
choice), and agreeing on a common communication protocol (SOAP is
rising in popularity). The UDDI specification builds on XML, HTTP,

SOAP 581

422541 Ch15.qxd 6/19/03 10:13 AM Page 581

DNS, WSDL, and other common standards. The UDDI Version 1.0 draft
specification was released in September 2000; Version 2.0 was released in
June 2001; and Version 3.0 in July 2002.

Business registry. The UDDI Business Registry (UBR) is a master direc-
tory of available e-business services. The directory is installed on four
highly available sets of server services (called UBR Nodes), each oper-
ated by IBM, Microsoft, SAP, and NTT-Com. Those UBR operators (also
occasionally called discovery agencies) must maintain their services so
that downtime never occurs. NTT-Com is the most recent addition to the
roster of UBR operators; more are anticipated in the future.

A business registry is created to provide opportunities for those companies
who wish to provide services and to create affordable solutions for those busi-
nesses who wish to consume or use those services, or to exchange data or
information. One of the goals of UDDI is to create a model that companies can
use to safely and conveniently register their Web services and, when they find
suitable customers, suppliers, or partners, to integrate their systems.

Registries like this are expected to have a significant impact on global busi-
ness-to-business transactions. But a UDDI-compliant registry is more than a
resourceful public business directory. Besides simply sharing data, the UDDI
model requires security and integrity components to be included in the
registries.

Three types of business registries exist: private, shared, and public. Organi-
zations build private UDDI registries to facilitate services between depart-
ments or locations within a common firewalled environment. Many Web
services are private, to be shared among specific applications and never
viewed by the general public. Shared registries are created to allow password-
related or other authorized access to an organization’s system by clients, sup-
pliers, or other partners. Currently, only a few UDDI registries are maintained
for public service, and these are kept by the UDDI Node operators.

However, even these public registries are exclusive to the companies that
register with them—companies that offer Internet Web services of their own.
Thus, real commerce is facilitated and conducted.

When a Web service provider registers its service with a UDDI UBR Node,
it provides its identity; a description of the goods, services, or information it
provides (the descriptions are kept within the WSDL document files that com-
prise the registry; we discuss WSDL in the next section); and its point of ser-
vice for access purposes.

582 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 582

Classroom Q & A
Q: How do the UDDI Business Registries keep track of all the poten-

tially millions of Web service providers?
A: A mechanism is used to ensure that each and every service regis-

tered with a UDDI service is uniquely classified. Once the registra-
tion is approved, the newly registered service provider is assigned
a unique key that ensures the uniqueness of its identity. That
unique key would be the only way to differentiate between similar
services, like Credit Service A and Credit Service B, for example.

During the registration process, the provider must give precise instructions
about how to access or use their Web service. Later, other end users will be
responsible for establishing a connection to a Web service after discovering it.
How is that done? First, the end user or programmer looks for a WSDL docu-
ment that contains the descriptions of the service and the point of service
access. Once the WSDL document has been located, the end user can construct
a SOAP message with the appropriate body content—content that the Web
service provider would expect to receive from a potential consumer.

At the risk of getting ahead of ourselves, the following code shows part of
such a SOAP message. This code is a snippet only—it’s the payload or actual
request portion of the <Body> element of a SOAP request message:

<find_business generic=’1.0’ xnkbs=’urn:uddiorg:api’>

<name>SpaceGems</name>

</find_business>

The actual service or information being offered by a registered UBR
provider is not kept on the UDDI registry servers (in other words, not kept on
the UBR Nodes). Only information describing the service and how to access it
are stored in the registry. The UDDI registries resemble Domain Name Ser-
vices (DNS)—Internet services that translate domain names into IP
addresses—since they perform name resolution only and don’t contain any
content.

Figure 15.1 illustrates the role of the UDDI Business Registry Nodes and
their relationships with a client end user (a potential customer, supplier, or
partner) and the Web service provider.

For further information about any aspect of UDDI, visit the UDDI.org Web
site at www.uddi.org. There, you can register your own organization, find
services, read the UDDI white papers, check the latest UDDI news, or
contact UDDI.org. You can also access the UBR Nodes.

SOAP 583

422541 Ch15.qxd 6/19/03 10:13 AM Page 583

Figure 15.1 UDDI UBR Node operators maintain lists of available Web services.

OASIS sponsors a UDDI Technical Committee (TC) that continues to work
on UDDI.org’s Web service specifications. OASIS is a not-for-profit, global
consortium that works to standardize e-business transactions. OASIS works in
parallel with the W3C and continues to propose and develop XML interoper-
ability specifications.

Consumer
client or user

Find or locate
a service

Choose a
service

Internet

UDDI
UBR Node

List of Web service
providers
1,2, ... n

Web service
provider 1

Web service
provider 2

Web service
provider n

1
1

2

2

Web service
descriptions

(WSDL)
Service 1

Web service
descriptions

(WSDL)
Service 2

Web service
descriptions

(WSDL)
Service n

584 Chapter 15

♦ Is Space Gems Registered on a UBR Node?

To see what SpaceGems has to offer, try the following:

1. Go to http://uddi.microsoft.com.

2. Click Search.

3. Click the Services tab.

4. Enter the word “space” into the search field, and click Search.

The results should appear on the left panel of the browser window. You will see
SpaceGems as a provider. The SpaceGems Inventory Service should appear. Immediately
under that you will see the SpaceGems URL with the Access Point defined.

422541 Ch15.qxd 6/19/03 10:13 AM Page 584

The Web Service Description Language (WSDL)

The Web Service Description Language is an XML application used to describe
the interface, protocol bindings, and deployment details of network services.
In other words, WSDL describes how to connect to a Web service. In this sec-
tion, we discuss the development of WSDL as a specification and show how
WSDL document files play a role in the discovery and provision of access to a
Web service. Later, we discuss WSDL document components using a real
WSDL file as an example.

WSDL Development
WSDL was originally developed by IBM, Microsoft, and Ariba by merging
three previous proposals: Microsoft’s SOAP Contract Language (SCL), the Ser-
vice Description Language (SDL), and IBM’s Network Accessible Services
Specification Language (NASSL). Version 1.0 of the WSDL specification was
released by its developers in September 2000. In March 2001, those three devel-
opers, along with 17 other industry proponents, submitted the WSDL 1.0 spec-
ification to the W3C as a proposal for eventual development into a W3C
Recommendation. It was immediately published as a W3C Note titled Web
Services Description Language (WSDL) 1.1. As with all W3C Notes, publica-
tion by the W3C is not meant to indicate that they endorse the document as a
specification and does not commit them to further development. However, in
this case, the W3C did continue to work on the WSDL specification, publish-
ing its own Working Drafts of Web Services Description Language (WSDL)
Version 1.2 and Web Services Description Language (WSDL) Version 1.2: Bind-
ings in July 2002.

The W3C also published a Working Draft of Web Services Internationaliza-
tion Usage Scenarios in late December 2002, the goal of which is to examine the
different ways that language, culture, and related issues affect Web service
architecture and technology. The WSDL specification is used by numerous
developers, most notably with the public UDDI Business Registry.

Once we use the Business Registry to locate a service, we must review the
service’s WSDL document file, which tells us how to use the Web service. It is
the responsibility of the Web service provider to create the WSDL file when it
registers, maintain it, and make it available. The service provider must do this
because the WSDL document should describe in detail all the capabilities or
methods the XML Web service exposes for use.

As a simple analogy, let’s say we write a Visual Basic or Java class to add two
numbers together. To use it, an external client user must supply the numbers
he or she wants added together. Once we obtain the numbers, we can perform
the operation and send back the answer. So, as a developer, how do we com-
municate that we need those two numbers, and how do we specify the format

SOAP 585

422541 Ch15.qxd 6/19/03 10:13 AM Page 585

we expect the numbers to be in? Because we are the only ones who know these
requirements, we have to express them in a WSDL document file and then
allow potential clients to examine it.

Once a client has examined the WSDL document, he or she creates a SOAP
request in the form of an XML SOAP message to supply the two numbers. This
process is also referred to as creating the client. The actual class or business logic
code can be written in almost any programming language that has the neces-
sary APIs or foundation classes required to connect to a Web service (Java, C#,
Visual Basic, C++, and Perl, to name a few). Figure 15.2 illustrates a simplified
SOAP request/response Web service usage process.

Classroom Q & A
Q: Are there alternatives to creating SOAP requests to invoke a

response from a Web service?
A: Yes. For example, a simple HTTP Get will work, but using some-

thing like that would defeat the purpose of implementing stan-
dard SOAP messaging.

Normally, we would not code WSDL files by hand. Many IDE tools, such as
Microsoft Studio, WebSphere Studio Application Developer, and others have
the necessary built-in tool set to allow us to easily create an XML-related
WSDL document to describe a service. WSDL coding is highly standardized,
resulting in very predictable behavior. That’s why WSDL and these applica-
tions work as well as they do.

Meanwhile, development tools and editors, such as those listed in the pre-
ceding paragraph, can also connect to a Web service and create skeletal code
for client users to use as they create service request code. Later, in the lab exer-
cises, we’ll show you how to take advantage of this capability.

A Real WSDL File at Work: The GetLocalTime Web Service
In this section, we demonstrate how WSDL files and client requests work with-
out having to code up a storm (just yet, anyway). To do so, let’s look at the Get-
LocalTime Web service. At this site, the development team has provided access
to the code and the necessary service descriptions. (Actually, it’s this trans-
parency that influenced us to use it here for illustration. In fact, this time ser-
vice site serves as a good example of best practices for those who may want to
provide a Web service.)

As of this writing, the GetLocalTime Web site is operating with no problem.
But we recognize that, as good as it is, it may not last forever. If it has
disappeared by the time you read this, then visit the XML in 60 Minutes a
Day Web site, where we provide a link to an alternate Web service.

586 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 586

Figure 15.2 SOAP request/response process.

To see how the GetLocalTime Web service works:

1. Activate your browser.

2. Go to http://services.develop.co.za/GetLocalTime.asmx.

3. Click the GetTime link.

4. Click the Invoke button.

A response similar to Figure 15.3 should appear.
The Invoke button was supplied by Web service developers to allow you to

see the results quickly. Clicking the Invoke button automatically creates and
sends the client request. Client creation and transmission devices like this are
used by a Web service provider to facilitate the use of its service.

The GetLocalTime Invoke button executes a GetLocalTimeHTTPGet, but the
developers there have configured the Web service so that it can activate, send,
and respond to SOAP-based requests as well. Please refer to Figure 15.4 and
note the subtle differences between the SOAP/HTTP versus the HTTP Get
communication paths.

How do we know that they first used an HTTPGet strategy? We already
examined the WSDL file! The developers have also provided their WSDL file
code for us, too.

Figure 15.3 Message returned from the GetLocalTime service provider.

Web service
business logic

(written in Java, Perl, C#,
 C++, VB, .Net, others)

Client

SOAP req

SOAP resp

Se
rv

er

HTTP

HTTP

HTTP

HTTP

SOAP 587

422541 Ch15.qxd 6/19/03 10:13 AM Page 587

Figure 15.4 Clients invoking Web services. Top view: SOAP. Bottom view: HTTPGet.

WSDL File Structure
Every WSDL document has a specific structure that defines the Web service.
WSDL files are not difficult to create; true to their name, they are documents
that consist of definitions. The code and structure of a WSDL file is so standard
that most coding tools will automatically generate the WSDL file from the
class or business logic code. The major mandatory elements are as follows:

A prolog. The only mandatory prolog statement is the <? xml ... ?> XML
declaration statement.

<definitions> element. The <definitions> element functions as the root
data element. It is no surprise that, since WSDL is a definitions language,
the root element should be named <definitions>.

Child elements. Within the <definitions> element, several child elements
are required: <types>, <message>, <portType>, <binding>, <port>, and
<service>.

We briefly describe the role of each element as we discuss our sample Get-
LocalTime WSDL file.

A Sample WSDL Document File: GetLocalTime
In this section, we explore the details of a sample WSDL file, top to bottom, a
portion at a time. The sample WSDL file we use is available from the GetLo-
calTime Web service. To find it on the Web:

1. Activate a browser.

2. Go to http://services.develop.co.za/GetLocalTime.asmx.

3. Click the Service Description link.

Web service
business logic

(written in Java, Perl, C#,
 C++, VB, .Net, others)

Client

SOAP req

SOAP resp

Se
rv

er

HTTP

HTTP

HTTP

HTTP

Web service
business logic

(written in Java, Perl, C#,
 C++, VB, .Net, others)

Client

HTTP req

HTTP resp

Se
rv

er

HTTP

HTTP

HTTP

HTTP

SOAP/HTTP

HTTPGet

588 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 588

The Prolog

The GetLocalTime document has only one prolog statement, its XML
declaration:

<?xml version=”1.0” encoding=”utf-8” ?>

The <definitions> Root Data Element

The <definitions> element type is the root data element for a WSDL document
file. Its start tag contains all the namespace declarations for GetLocalTime:

<definitions xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:s0=”http://tempuri.org/”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

targetNamespace=”http://tempuri.org/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

Notice that the service provider customizes the declarations for components
whose names begin with the prefix s0. The default namespace is the WSDL
namespace.

The end tag, as we’ll eventually demonstrate, appears at the end of the
WSDL document. From several declarations in this start tag, though, we can
see that WSDL files use XML schemas exclusively to provide their component
declarations. DTDs are not supported by WSDL.

The <types> Element

The <types> element defines the data types of the messages to be used in the
service. XML schema concepts are used (complexTypes, simpleTypes). The val-
ues for the name attributes within the <s:element> elements are the pointers to
the <part> elements within the respective <message> elements found further
on in the WSDL document. As with the <definitions> element, this element
provides a major clue that WSDL documents use XML schemas exclusively.

<types>

<s:schema elementFormDefault=”qualified”

targetNamespace=”http://tempuri.org/”>

<s:element name=”GetTime”>

<s:complexType />

</s:element>

<s:element name=”GetTimeResponse”>

SOAP 589

422541 Ch15.qxd 6/19/03 10:13 AM Page 589

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1”

name=”GetTimeResult” type=”s:string” />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”string” nillable=”true” type=”s:string” />

</s:schema>

</types>

GetTime and GetTimeResult are dealt with as simple string type data. The
service provider has defined its own targetNamespace (a reminder, in addition
to the <definitions> start tag, that it has created its own schema), so that it can
define customized required elements named GetTime, GetTimeResponse, and
GetTimeResult without running the risk of clobbering a previously declared
element type. In addition, the GetTimeResult element imposes its own min
and max specifications: GetTimeResult is actually optional, but if one appears,
then only one can appear—the maximum number is one.

The <message> Element

The <message> element is the part or parameter required to access data or
fields inside the WSDL <portTypes> (that is, inside the functions or classes).

<message name=”GetTimeSoapIn”>

<part name=”parameters” element=”s0:GetTime” />

</message>

<message name=”GetTimeSoapOut”>

<part name=”parameters” element=”s0:GetTimeResponse” />

</message>

<message name=”GetTimeHttpGetIn” />

<message name=”GetTimeHttpGetOut”>

<part name=”Body” element=”s0:string” />

</message>

<message name=”GetTimeHttpPostIn” />

<message name=”GetTimeHttpPostOut”>

<part name=”Body” element=”s0:string” />

</message>

Separate parameters support SOAP requests and HTTP requests. If we want
to construct a SOAP request, we would be concerned with GetTimeSoapIn/
GetTimeSoapOut, not the GetTimeHTTPGetIn/GetTimeHTTPGetOut pair or
the GetTimeHTTPPostIn/GetTimeHTTPPostOut pair. The GetTimeSoapIn and
GetTimeSoapOut messages both perform operations; together they form the
<portType>.

590 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 590

At this point, we should have a good idea about the code that the service
provider has created. This WSDL document almost constructs its own SOAP
request; the SOAP request simply sends a string called GetTime. A slightly
more complex example is used in the lab exercises, which requires a param-
eter inside the SOAP message.

The <portType> Element

This portion of the document defines the Web services available. In the Get-
Time example you should see three <portType> elements that define GetLo-
calTimeSoap, GetLocalTimeHTTPGet, and GetLocalTimeHTTPPost.

<portType name=”GetLocalTimeSoap”>

<operation name=”GetTime”>

<input message=”s0:GetTimeSoapIn” />

<output message=”s0:GetTimeSoapOut” />

</operation>

</portType>

<portType name=”GetLocalTimeHttpGet”>

<operation name=”GetTime”>

<input message=”s0:GetTimeHttpGetIn” />

<output message=”s0:GetTimeHttpGetOut” />

</operation>

</portType>

<portType name=”GetLocalTimeHttpPost”>

<operation name=”GetTime”>

<input message=”s0:GetTimeHttpPostIn” />

<output message=”s0:GetTimeHttpPostOut” />

</operation>

</portType>

The provider exposes three functions or methods that we can access to
acquire the time. Think of these as interface classes that we can activate for the
desired information. If we were going to perform this operation using a SOAP
request, we would only be concerned with GetLocalTimeSoap.

This is the second indication that both SOAP and HTTP requests can be sent.
At this point, we should make note of the name of the operation: GetTime. We
will need this to call the code’s interface, which may be one or more methods,
functions, or similar items.

The fact that there are both <input> and <output> elements defined for all
three <portType> elements indicates that this is a request-response operation.
The values of the respective name attributes in the <operation> child elements
within the <portType> elements specify the data type of the messages, since
they point back to the name attributes of the <s:element> elements within the
preceding <types> element.

SOAP 591

422541 Ch15.qxd 6/19/03 10:13 AM Page 591

The <binding> Element

The <binding> elements define both the message format and the protocol used
for transporting the operations and messages. Three bindings are defined in
this example. The value for the type attribute within the <binding> element
start tag ties the binding back to the name attribute found within the respec-
tive <portType> elements.

<binding name=”GetLocalTimeSoap” type=”s0:GetLocalTimeSoap”>

<soap:binding transport=http://schemas.xmlsoap.org/soap/http

style=”document” />

<operation name=”GetTime”>

<soap:operation soapAction=”http://tempuri.org/GetTime”

style=”document” />

<input>

<soap:body use=”literal” />

</input>

<output>

<soap:body use=”literal” />

</output>

</operation>

</binding>

<binding name=”GetLocalTimeHttpGet” type=”s0:GetLocalTimeHttpGet”>

<http:binding verb=”GET” />

<operation name=”GetTime”>

<http:operation location=”/GetTime” />

<input>

<http:urlEncoded />

</input>

<output>

<mime:mimeXml part=”Body” />

</output>

</operation>

</binding>

<binding name=”GetLocalTimeHttpPost” type=”s0:GetLocalTimeHttpPost”>

<http:binding verb=”POST” />

<operation name=”GetTime”>

<http:operation location=”/GetTime” />

<input>

<mime:content type=”application/x-www-form-urlencoded” />

</input>

<output>

<mime:mimeXml part=”Body” />

</output>

</operation>

</binding>

The binding for the SOAP-related request is defined in the first <binding> ele-
ment, the one containing the name attribute whose value is GetLocalTimeSoap.
This binding element tells us that the name of the service is GetLocalTimeSoap,
GetLocalTimeSoap is defined as the port, and GetTime is the operation.

592 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 592

Within the <input> and <output> elements, there are <soap:body> ele-
ments whose start tags contain use attributes. The value specified for each use
attribute is literal, indicating that the message that appears within the <Body>
element of the SOAP request message will not be encoded. It will be identical
to the messages specified previously in the <input> or <output> elements
within the <operation> elements within the respective <portType> element. In
other words, the input message will be s0:GetTimeSoapIn, and the output will
be s0:GetTimeSoapOut.

From the attributes in the <soap:binding> element within the <binding>
element, we see that we are using HTTP as the transport protocol, and the
message styles are documents. The only other option for the value of the style
attribute in the <binding> element is RPC (Remote Procedure Call).

The <service> and <port> Elements

The <port> element defines the end point by specifying a single address for a
specific binding (that is, it defines the connection point or address of the ser-
vice). In this example, the GetLocalTimeSoap port name points to the <bind-
ing> element of the same name, since the name of the binding is specified as
the value for the binding attribute in <port>. The specific address http://
services.develop.co.za/GetLocalTime.asmx is tied to the port by being speci-
fied as the value for the location attribute within the <soap:address> child
element within <port>. We can specify only one address per port.

<service name=”GetLocalTime”>

<port name=”GetLocalTimeSoap” binding=”s0:GetLocalTimeSoap”>

<soap:address

location=”http://services.develop.co.za/GetLocalTime.asmx” />

</port>

<port name=”GetLocalTimeHttpGet” binding=”s0:GetLocalTimeHttpGet”>

<http:address

location=”http://services.develop.co.za/GetLocalTime.asmx” />

</port>

<port name=”GetLocalTimeHttpPost”

binding=”s0:GetLocalTimeHttpPost”>

<http:address

location=”http://services.develop.co.za/GetLocalTime.asmx” />

</port>

</service>

The <service> element groups all the port information for the ports related
to a single service—the one specified by the value for the name attribute in the
<service> element start tag. Remember, a single WSDL document may define
several services, bindings, and ports; this document only defines one, the
GetLocalTime service. Two HTTP-binding ports also exist within the <service>
element, since they, too, are related to the GetLocalTime service.

SOAP 593

422541 Ch15.qxd 6/19/03 10:13 AM Page 593

The Last Line

After the <service> element has been defined, one last line is inserted:

</definitions>

This last line closes the WSDL document file for the GetLocalTime service.

The Bottom Line

From this exploration of a sample WSDL document file, we see that the opera-
tion GetTime requires no input parameters and returns a time result as a
string. Basically, to the service consumer, WSDL files are really quite simple.
When looking at them, try not to get caught in the quagmire of code. Just keep
in mind that, whether you are developing WSDL files or analyzing them, there
are only so many services and only so many major elements, so many ports
and so many bindings. It’s like going to a grocery store: We won’t be interested
in buying everything in stock. We usually look for and select comparatively
few items. The same is true in a WSDL file.

What Is SOAP?

When describing the four aspects of the UDDI, we mentioned that business
integration needs a common communications protocol. The Simple Object
Access Protocol is just such a protocol. SOAP is a standard, lightweight, plat-
form- and language-neutral (but still specialized) machine-to-machine proto-
col that is used to format messages, information, and responses into a common
format in a decentralized, distributed environment, so that any Web service
that implements SOAP can read, process, and respond to them. Although our
introductory-level approach to SOAP won’t really reflect it, SOAP is a
metaprotocol (in other words, a protocol that can also be used to create other
protocols).

SOAP uses XML technologies to define a messaging framework and pro-
vide a specific message construct that can be exchanged over a variety of
underlying protocols like HTTP or SMTP. The SOAP framework was designed
to be simple, extensible, and independent of any particular programming
model and other implementation-specific semantics.

To summarize, SOAP facilitates message exchanges in a distributed envi-
ronment. It does so by creating an envelope to surround an XML-based mes-
sage called its payload. That message must be delivered and processed. The
overall premise is that if we can get everyone to conform to the new SOAP-
aware XML Web services using SOAP as the primary protocol, then informa-
tion and messages will flow freely and there will be a reduction in redundant
development.

594 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 594

SOAP itself is not a transport-level protocol. In other words, a SOAP mes-
sage still requires the help of a transport protocol such as HTTP on TCP/IP.
And, by the way, HTTP on TCP/IP is not the only transport protocol that
SOAP can bind to or use. Any protocol that is designed to support RPCs will
work. But since HTTP has become so prevalent over the Web, it has become
the most common protocol for transporting SOAP messages. Messages com-
bining SOAP and HTTP are accepted and processed by servlets running on the
Web service provider’s servers. Such messages can be used to transfer infor-
mation or to invoke remote services on other systems.

As an example, let’s say the Space Gems site is looking for an economical
way to perform credit card validation. It could locate an existing service, send
a SOAP message request to that Web service to perform a credit card valida-
tion, and ship our product only after receiving a positive response. This allevi-
ates Space Gems from having to purchase, maintain, and store all the database
information on its own systems. What the world doesn’t need is thousands of
copies of the same consumer credit database information everywhere (unless,
of course, your business is selling such databases).

The uses for these types of services and the business opportunities they
breed are limitless.

Development of the SOAP Specification
The development of the SOAP specification took place in two major phases.
The first SOAP specification was developed by DevelopMentor, Inc., Microsoft
Corporation, and UserLand Software, Inc., beginning in 1998. Industry feed-
back on the first publicly announced SOAP 0.9 specification was solicited by
Microsoft in September 1999. The SOAP/1.0 specification was published in
December 1999. For various reasons, development slowed, and UserLand sub-
sequently developed a separate protocol, XML-RPC.

SOAP development restarted with contributions from the original develop-
ers plus IBM and Lotus Development Corp. These industry proponents made
some technical changes to make SOAP’s modular nature more apparent. This
resulted in SOAP/1.1, which some argue was not much better than SOAP/1.0.
It was submitted as a proposal to the W3C in May 2001. Parallel developments
in Java, specifically the J2EE specification, and the introduction of Microsoft’s
.NET technology further spurred SOAP development.

Upon receipt of the SOAP/1.0 submission, the W3C published it as a Note,
titled Simple Object Access Protocol (SOAP) 1.1, in May 2001. Further SOAP
development is being done by the XML Protocol Working Group, which is part
of the W3C’s Web Services Activity. Basic SOAP/1.1 messages have survived
virtually intact, with only a few changes in document structure, syntax, HTTP
binding, RPCs, and SOAP encodings.

SOAP 595

422541 Ch15.qxd 6/19/03 10:13 AM Page 595

Table 15.1 Components of the Three-Part SOAP 1.2 Specification

SOAP VERSION 1.2 PART COMPONENTS

Part 1 – Messaging Framework SOAP processing model
SOAP extensibility model
Framework for SOAP to underlying protocols
SOAP message structure

Part 2 – Adjuncts SOAP data model
SOAP data encoding
RPC calls and responses
Features and binding
Message exchange patterns
WWW method controls
Binding SOAP to HTTP

Part 0 – Primer Tutorial describing SOAP 1.2 features

A last call for technical drafts for SOAP 1.2 was issued July 2, 2002. In
December 2002, the W3C published three SOAP 1.2 Candidate Recommenda-
tions, each prescribing a part of the full SOAP 1.2 specification. Table 15.1 sum-
marizes the components of the three-part SOAP 1.2 specification.

By the time you read this, we expect that the candidate recommendations
will already have been endorsed as full W3C Recommendations. We also
expect that the final version of the SOAP specifications may be called XP.

(If you need to know what implementations are available for SOAP 1.2,
check the W3C’s SOAP 1.2 Implementation Summary at www.w3.org/2000/
xp/Group/2/03/soap1.2implementation.html.)

If you need further information regarding the three parts of the W3C SOAP
specification, visit the following three Web sites:

Part 1: www.w3.org/TR/2002/CR-soap12-part1-20021219/

Part 2: www.w3.org/TR/2002/CR-soap12-part2-20021219/

Part 0: www.w3.org/TR/2002/CR-soap12-part0-20021219/

Meanwhile, for developers and providers who have already invested in
SOAP/1.1, a complete list of enhancements and changes can be viewed by
visiting the SOAP 1.2 Part 0 specification at www.w3c.org/TR/soap12-part0
and clicking the link titled “6. Changes between SOAP 1.1 and SOAP 1.2.”

596 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 596

Basic SOAP Message Construct

The basic premises for SOAP messages have not changed substantially from
SOAP 1.1 to 1.2. Referring back to Figures 15.2 and 15.4, consider those little
request messages that are volleyed from the client to the XML Web service on
the server, and those response messages that are volleyed back from the server
to the client, both courtesy of HTTP as the transport protocol. Figure 15.5 rep-
resents a basic HTTP/SOAP message. Here, we focus on the SOAP coding,
because various coding tools generally provide sufficient HTTP header coding.

Figure 15.5 Graphical representation of a SOAP message.

The SOAP message itself is written with XML-related components in an
XML-related structure. We’ll examine the components in order, using the fol-
lowing code as an illustrative example. It is an actual, functional request mes-
sage used to retrieve a daily quote from a Web service.

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:wsdlns=”http://tempuri.org/wsdl/”

xmlns:typens=”http://tempuri.org/type”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:stk=”http://schemas.microsoft.com/soap-toolkit/wsdl-extension”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >

<SOAP-ENV:Body>

<mns:getTodaysQuote xmlns:mns=”http://tempuri.org/message/”

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/

soap/encoding/”>

</mns:getTodaysQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

XML
Environment

SOAP message
(request or
response)

SOAP Envelope (namespaces)

SOAP body (payload)

SOAP header (optional)

HTTP header

SOAP 597

422541 Ch15.qxd 6/19/03 10:13 AM Page 597

You can clearly see the XML elements that represent the Envelope and Body
parts. Did you notice that there is no <Header> element (also referred to as a
SOAP Header)?

Classroom Q & A
Q: What would the previous request message look like if it had a

SOAP header?
A: The identical message, including a <Header> element, is shown

below. The <Header> element code is highlighted for emphasis.

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:wsdlns=”http://tempuri.org/wsdl/”

xmlns:typens=”http://tempuri.org/type”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:stk=”http://schemas.microsoft.com/

soap-toolkit/wsdl-extension”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >

<SOAP-ENV:Header>

<mn:alertcontrol xmlns:mn=”http://tempuri.org/alertcontrol>

<mn:priority>1</mn:priority>

<mn:expires>2002-06-22T14:00:00-03:00</mn:expires>

</mn:alertcontrol>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<mns:getTodaysQuote xmlns:mns=”http://tempuri.org/message/”

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/

soap/encoding/”>

</mns:getTodaysQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP Envelope
The <Envelope> element is the SOAP message’s root element. Each message is
composed, at a minimum, of the SOAP <Envelope>, its optional child
<Header> element, and its mandatory child <Body> element. Sometimes the
<Envelope> element is mistakenly referred to as the environment because in
its start tag, we declare all the namespaces—including any user-defined name-
spaces—and schema references. Notice that the start tag is actually <SOAP-
ENV:Envelope>. The prefix SOAP-ENV stems from its namespace declaration,

598 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 598

the value of which must be http://schemas.xmlsoap.org/soap/envelope/ to
indicate that it is a SOAP-related envelope (as opposed to other kinds of
envelopes). The namespace value reflects the current schema for the SOAP 1.1
envelope.

One of the frustrating issues about SOAP specifications in general is that
in an overall SOAP version (SOAP 1.2), current versions for each SOAP
part—that is, for the Envelope, Header, and Body—also exist. If you need
further information regarding the SOAP Envelope schema, visit the W3C’s
Web site at www.w3.org/2001/06/soap-envelope.

Notice that the <Envelope> start tag contains a comprehensive list of name-
space declarations. All the message’s components must be accounted for, with
respect to namespaces.

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:s0=”http://tempuri.org/”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >

<soap:Header>

<m:Trans xmlns:m=”http://www.tampuri.org/transaction/”

soap:mustUnderstand=”1” soap:actor=http://tempuri.org/timeapp/>

13:00:06

</m:Trans>

</soap:Header>

<SOAP-ENV:Body>

<s0:GetTime xmlns:s0=”http://tempuri.org/”> </s0:GetTime>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP Header
In any SOAP message, the <Header> element is optional, but when one
appears, it must be nested within the <Envelope> element and must appear
before the <Body> element. Meanwhile, SOAP is a clever protocol, but you can
make it even more clever by adding metadata to the <Header> element. In
theory, this metadata is processed prior to opening the actual message in the
<Body> element. Thus, the metadata header is the place to give instructions to

SOAP 599

422541 Ch15.qxd 6/19/03 10:13 AM Page 599

the parser regarding how the message should be processed before the message
is actually read. The metadata in the <Header> element is user-defined and is
based on priority setting, transaction-based requirements, alerts, expiration,
authentication, or other coding or transmission requirements.

For example, let’s consider a situation where there may be a queue full of
SOAP messages. It would make sense to order the queued SOAP messages by
priority before processing and to put such order or urgency-related informa-
tion into the Header as metadata, so that the receiver doesn’t have to process
or read the actual message to determine its priority.

In the following example, we coded in the concept of priority, but this could
also have been a transaction-based requirement (for example, a typical trans-
action-based requirement might state that if a network fault is encountered, a
rollback or retry should occur).

Metadata information might also be handy if the SOAP messages are
intended to be one-way, two-way, or multidirectional. A multidirectional mes-
sage passes from A to B over a network, and also passes through one or more
intermediary systems (that is, through intermediate nodes). Information in the
header can be read and processed by the intermediary nodes as the message
travels to its ultimate receiver (that is, its ultimate destination server). Thus,
decisions in processing can be made en route.

The following three attributes, which can be used to enhance the header’s
meaning, do not appear inside our previous code example. A code example
containing the three attributes is presented after the discussion of the attributes.

The role Attribute

The role attribute (which replaces the older actor attribute) can be used to
address the message to a specific end point. It indicates the SOAP node to
which the SOAP message block is targeted. The value is a URI. This attribute
should only appear in SOAP headers. A SOAP receiver must ignore the role
attribute if it appears on any descendant of a SOAP <Body> element. A SOAP-
aware application is expected to process a header block if its URI is the one
identified as the value of the role attribute.

The mustUnderstand Attribute

By default, if servers don’t understand an element, they follow the rule
“Ignore all elements you don’t understand.” To modify this default behavior
with respect to SOAP headers, the mustUnderstand attribute was developed.
The mustUnderstand attribute in the <Header> start tag, or in the start tag of
a child element within <Header>, indicates whether the processing of a SOAP
header block is mandatory (mustUnderstand=”1” or mustUnderstand=”true”)
or optional (mustUnderstand=”0” or mustUnderstand=”false”). A SOAP
header block may carry this attribute information item; it’s not mandatory.

600 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 600

When the value of the attribute is “true” or “1,” the SOAP header block is said
to be mandatory and the receiving system software must attempt to recognize
the header element in which the attribute is inserted. If the receiving system
cannot recognize the element, it must generate a SOAP fault message.

If there is no mustUnderstand attribute or if the value of the mustUnder-
stand attribute is “0” or “false,” the system can ignore the element. Mandatory
SOAP header blocks will thus modify the semantics of other SOAP header
blocks or SOAP body elements. In summary, for every mandatory SOAP
header block targeted to a node, that node must either process the header
block or not process the SOAP message at all and instead generate a fault.
SOAP fault messages are discussed later in this chapter, in the section titled
SOAP Faults.

The encodingStyle Attribute

The encodingStyle attribute information item may appear:

■■ In the start tag of a SOAP header block or a descendant element

■■ In the start tag of a child element (or descendant) of the SOAP <Body>
element, as long as that child element is not a SOAP <Fault> element

■■ In the start tag of a child element of the SOAP <Detail> element, or in
any of its descendants

Otherwise, the attribute must not appear within any element other than
those candidates in the preceding list. The attribute’s value (in the form of a
URI) identifies a set of serialization rules that can be used to deserialize the
SOAP message. The possible values we can specify for the encodingStyle
attribute are as follows:

www.w3.org/2002/12/soap-encoding. Indicating SOAP encoding.

www.w3.org/2002/12/soap-envelope/encoding/none. Indicating that
there is no encoding.

http://example.org/encoding/. Here, we are using a generic URI to indi-
cate that an organization (in this case, the fictitious Example Org) can
create and specify its own custom encoding scheme.

Because in the example this attribute is not exclusive to the <Header> ele-
ment, its namespace declaration is shown inside the <Envelope> start tag.

Here is the previous example, now supplemented to show you how we
might use the three <Header> attributes (components containing the supple-
mental code are highlighted for emphasis):

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP 601

422541 Ch15.qxd 6/19/03 10:13 AM Page 601

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:s0=”http://tempuri.org/”

xmlns:soapenc=”http://www.w3.org/2002/12/soap-envelope”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >

<soap:Header>

<m:Trans xmlns:m=”http://www.tempuri.org/transaction/”

soap:mustUnderstand=”1” soap:role=http://tempuri.org/timeapp/

soapenc:encodingStyle=”http://www.w3.org/2002/12/

soap-envelope/encoding/none >

13:00:06

</m:Trans>

</soap:Header>

<SOAP-ENV:Body>

<s0:GetTime xmlns:s0=”http://tempuri.org/”>

</s0:GetTime>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP Body

The SOAP <Body> element is required. It contains the SOAP message or pay-
load intended for the end point or ultimate receiver (that is, the SOAP-aware
application to which the payload is addressed). Thus, the SOAP Body contains
the actual SOAP request or SOAP response. The <Body> element is also where
you find any returned fault or error messages. No elements are allowed after
the <Body> element.

It is best practice to assign an explicit namespace to the element inside the
SOAP Body—do not use or inherit the default namespace from the root ele-
ment, if possible.

Although not shown in this example, any parameters required as arguments
to the receiver are set in the <Body> element. Examples in the lab exercises
demonstrate how parameters are passed. In Lab 15.3: Email Verifier with Para-
meters, for example, you must supply an email address as an argument for the
Web service to validate.

SOAP Request Example

SOAP requests sent over an HTTP protocol are sent as an HTTP POST. Here is
our small but typical GetTime SOAP request, not including the HTTP header:

602 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 602

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:s0=”http://tempuri.org/”

xmlns:soapenc=”http://www.w3.org/2002/12/soap-envelope”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >

<soap:Header>

<m:Trans xmlns:m=”http://www.tempuri.org/transaction/”

soap:mustUnderstand=”1” soap:role=http://tempuri.org/timeapp

soapenc:encodingStyle=”http://www.w3.org/2002/12/” />

13:00:06

</m:Trans>

</soap:Header>

<SOAP-ENV:Body>

<s0:GetTime xmlns:s0=”http://tempuri.org/”> </s0:GetTime>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Response Example

Here is a typical GetTime SOAP response (not including the HTTP header):

<?xml version=”1.0” encoding=”utf-8” ?>

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<soap:Body>

<GetTimeResponse xmlns=”http://tempuri.org/”>

<GetTimeResult>

From : 63.75.203.6 DateTime : 29 December 2002 11:10:05

</GetTimeResult>

</GetTimeResponse>

</soap:Body>

</soap:Envelope>

SOAP Faults

When an error or fault occurs, it results in the generation of a fault message. A
SOAP <Fault> element exists exclusively for this purpose. To be recognized as
carrying SOAP error information, a SOAP message must contain a single

SOAP 603

422541 Ch15.qxd 6/19/03 10:13 AM Page 603

<Fault> element as the only child element of the <Body> element. The subele-
ments to the <Fault> element must appear in this order:

A mandatory <Code> element. <Code> contains a mandatory <Value>
element and an optional <Subcode> element. We discuss the values for
the <Value> element later.

A mandatory <Reason> element. <Reason> contains one or more <Text>
elements, each of which should have a different value as its xml:lang
attribute.

An optional <Node> element. The value of the <Node> element is the
URI of the SOAP node that generated the fault. If it is not the ultimate
receiver, the SOAP node must include this element. If it is the ultimate
receiver, the node may include this element to indicate explicitly that it
generated the fault.

An optional <Role> element. The value for this element must be one of
the roles assumed by the node.

An optional <Detail> element. This element contains zero or more
attributes or zero or more child elements. <Detail> might contain infor-
mation message deficiencies. All child elements are called detail entries.

Values for the <Value> Element within the <Code> Element

The following possible values might be specified within the <Value> element
nested within the <Code> element that, in turn, is nested within the <Fault>
element:

VersionMismatch. Found an invalid namespace for the SOAP <Enve-
lope> element.

MustUnderstand. An immediate child element of the <Header> element,
with the mustUnderstand attribute set to “1,” was not understood.

DataEncodingUnknown. A SOAP header block or SOAP body child ele-
ment has data encoding that the “X” node does not support.

Sender. The message was incorrectly formed or did not contain the
appropriate information (examples: lacks proper authentication or pay-
ment information). Generally, the message must not be re-sent without
changes.

Receiver. Message could not be processed for reasons attributable to the
server processes, not to the message contents (example: an upstream
SOAP node, if applicable, might not have responded). The message
might succeed if re-sent later.

604 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 604

SOAP’s fault structure becomes quite involved. If you need further
information, please visit the SOAP—Part 1 Candidate Recommendation
Web page at www.w3.org/TR/soap12-part1/#soapfault.

Example SOAP Fault Message

This sample SOAP error message shows what SOAP faults look like:

<?xml version=”1.0” encoding=”utf-8” ?>

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>

<soap:Fault>

<soap:Code>

<soap:Value>soap:VersionMismatch</soap:Value>

</soap:Code>

<soap:Reason>

<soap:Text>System.Web.Services.Protocols.SoapException:

Possible SOAP version mismatch: Envelope namespace

http://schemas.xmlsoap.org/soap1/envelope/ was

unexpected.

Expecting http://schemas.xmlsoap.org/soap/envelope/.

at System.Web.Services.Protocols.SoapServerProtocol.

ReadParameters()

at System.Web.Services.Protocols.WebServiceHandler.

Invoke()

at System.Web.Services.Protocols.WebServiceHandler.

CoreProcessRequest()

</soap:Text>

</soap:Reason>

</soap:Fault>

</soap:Body>

</soap:Envelope>

Chapter 15 Labs: Accessing
Web Services with SOAP

These simple entry-level lab exercises show you how to use the information
obtained from an XML Web service WSDL file and how to access some third-
party Web services. These utility and help sites are good examples of what is
available to test your SOAP server service. We use them to demonstrate just
how generic SOAP client code is. We don’t expect you to perform any coding
here; just think about the types of requests you’re sending and the responses
you’re getting. In fact, the code is so generic it can be auto-generated directly
from the WSDL file. In the event that any of these third-party sites change, visit
the book’s Web site for new labs.

SOAP 605

422541 Ch15.qxd 6/19/03 10:13 AM Page 605

Lab 15.1: Time Service

1. Activate your Web browser. Type the following in the locator bar:

http://www.soapclient.com/soapmsg.html.

2. Skip the top part of the page that has to do with the SOAP Message
Builder. Navigate down to the SOAP Message Generator. Enter the
location of the WSDL file for the Time Service Web service.

a. For WSDL File, enter the following URL on one line with no
breaks:

http://services.develop.co.za/GetLocalTime.asmx?WSDL

b. For Method Name enter GetTime.

3. Click Generate.

4. Move back to the top of the page. The Server Address, SOAP Action,
and SOAP Message code has been auto-generated and is ready to
use.

5. Click Execute to send the SOAP request. The SOAP response will be
similar to Figure 15.6.

Figure 15.6 SOAP message results.

606 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 606

Lab 15.2: Daily Quote Generator

1. Activate your browser again and type the following in the locator bar:

http://www.soapclient.com/soapmsg.html.

2. Skip the top part of the page that has to do with the SOAP Message
Builder. Navigate down to the SOAP Message generator. Enter the
location of the WSDL file for the Today’s Quote Web service.

a. For WSDL File, enter the following URL on one line with no
breaks:

http://webservice.effective--web.net/globalself/

globalselfDailyThought.WSDL

b. For Method Name, enter “getTodaysQuote”.

3. Click Generate.

4. Move back to the top of the page. The Server Address, SOAP Action,
and SOAP Message code has been auto-generated and is ready to use.

5. Click Execute to send the SOAP request. You should see a SOAP
response similar to Figure 15.7.

Figure 15.7 SOAP message results.

SOAP 607

422541 Ch15.qxd 6/19/03 10:13 AM Page 607

Lab 15.3: Email Verifier with Parameters

This XML Web service is interesting, since it ensures that you understand
how to interpret a WSDL file well enough to pick out the required
parameters.

1. Activate your browser and type the following into the locator bar:

http://www.soapclient.com/uddisearch.html.

2. In the UDDI Browser, set the following search criteria:

a. Operator: “Microsoft”

b. Search for “email” in Service Names.

c. Click Search.

3. Scroll down to Email Verify. Make sure that you have CDYNE
(because we know it works).

4. Click Discovery URL to review the XML file.

5. Locate the Web Service Interface for Email Verify, and note exactly
where the WSDL file for the Email Verify is. Hint: look for the
<accessPoint ...> element that contains a URLType attribute whose
value is http.

6. Go to the WSDL file for the Email Verify by entering the URL that
you discovered in the previous step in your browser:

http://ws.cdyne.com/emailverify/ev.asmx?wsdl

7. Inside the WSDL file, find the name of the method. It’s called
VerifyEmail. Make a note of it. You will need it later.

8. Inside the VerifyEmail method, a parameter is defined as “email” in
a typestring where minOccurs= “0” and maxOccurs= “1”. Make a
note of it, too. You will need it later also.

9. In your browser, type the following in the locator bar:

http://www.soapclient.com/soapmsg.html.

10. Skip the top part of the page that has to do with the SOAP Message
Builder. Navigate down to the SOAP Message Generator. Enter the
location of the WSDL file for the Email Verifier Web service.

a. For WSDL File, enter the following URL on one line with no
breaks:

http://ws.cdyne.com/emailverify/ev.asmx?wsdl

b. For Method Name, enter VerifyEmail.

608 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 608

11. Move back to the top of the page. The Server Address, SOAP Action,
and SOAP Message code has been auto-generated and is ready to
use—except for the one parameter, called email.

12. Enter a valid string value for the message to pass to the method to
check. Modify the code so that it matches the code that follows, but
insert your own email address. The modified line is highlighted.
<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:s0=”http://ws.cdyne.com/”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >

<SOAP-ENV:Body>

<s0:VerifyEmail xmlns:s0=”http://ws.cdyne.com/”>

<s0:email>linda@skillsinmotion.com</s0:email>

</s0:VerifyEmail>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

13. Click Execute to send the SOAP request. First try sending a request
that you know is correct; then send a request that you know is
incorrect.

Summary

SOAP technology and concepts can’t be isolated and explained alone. SOAP
must be explained within the context of XML Web services, because it is a part
of that environment. Meanwhile, more programming tools for SOAP are con-
stantly being developed and introduced, since SOAP is rapidly increasing in
popularity. Here are a few more SOAP-related facts you should take away
with you:

■■ We provided two definitions for Web services. Both are acceptable.
Essentially, Web services are business applications with Internet-
related, standards-based technologies. They are accessed by existing or
potential customers, suppliers, and partners using a variety of hard-
ware and platforms.

SOAP 609

422541 Ch15.qxd 6/19/03 10:13 AM Page 609

■■ The UDDI Business Registry has endless potential and will probably be
the key for successful business-to-business interoperability. UDDI pro-
vides a database of useful services: some for free, some for a fee. Devel-
opers and providers are responsible for creating the services and
registering the services. Although the services themselves can be writ-
ten in various languages like Visual Basic, C#, Java, and C++, they shall,
by specification, include WSDL XML files and service descriptions on
how to use the services.

■■ WSDL files are XML files and are the key to Web service consumption,
forming a contract between the code and XML Web services. WSDL
files are well structured, and although they can be coded by hand,
they are more often auto-generated by the programmer’s IDE or other
development tool set.

■■ SOAP messages are XML files. Their root data element is <Envelope>.
<Header> elements are optional but useful for containing metadata.
The mandatory <Body> element contains the SOAP payload (whether
request or response).

■■ Typically, there are SOAP requests and SOAP responses. SOAP requires
the help of a transport protocol, usually HTTP, to move information
from node to node.

■■ When we refer to XML Web services, we mean UDDI, WSDL, and
SOAP messaging working together. Special Web extensions, APIs, and
foundation classes are required to support XML Web services. A normal
Web server will not have the capability to receive and respond to SOAP
messages.

■■ XML Web services, with SOAP messaging, are the future of e-business.

610 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 610

SOAP 611

Review Questions

1. Which of the following protocols is used to discover XML Web services?

a. WSDL

b. SOAP

c. UDDI

d. XMLP

e. RPC

2. True or false? It is mandatory for Web services to be registered with a UDDI registry.

3. Which XML file describes the service in enough detail for a Web services consumer?

a. UDDI

b. tModel

c. XMIDL

d. WSDL

e. All of the above

4. True or false? WSDL XML files are generated from the programmer’s code using a sup-
plied utility or tool.

5. The transport protocol for SOAP messaging is

a. TCP/IP

b. IIOP

c. RPC

d. HTTP

e. None of the above

6. True or false? A SOAP request can be auto-generated from a WSDL XML file.

7. Which Web site would you visit to obtain the most recent status and information on
the SOAP/1.2 specification?

a. www.w3c.org

b. www.uddi.org

c. http://schemas.xmlsoap.org

d. www.xmlsoap.org

422541 Ch15.qxd 6/19/03 10:13 AM Page 611

8. What are the mandatory required elements of a SOAP message?

a. <Envelope>

b. <Header>

c. <Body>

d. <Fault>

e. All of the above

9. True or false? It is a best practice to ensure that all attributes inside the <Envelope>
element of the SOAP request be namespace-qualified.

10. Which of the following namespaces identifies the <Envelope> element as a SOAP
envelope?

a. http://schemas.xmlsoap.org/soap

b. http://schemas.xmlsoap.org/wsdl/soap

c. http://schemas.xmlsoap.org/soap/envelope

d. http://schemas.xmlsoap.org/wsdl/envelope

e. None of the above

612 Chapter 15

422541 Ch15.qxd 6/19/03 10:13 AM Page 612

Answers to Review Questions

1. a. UDDI. Universal Discovery, Description, and Integration. The root organization for
UDDI services is http:/www.uddi.org.

2. False. By registering with a UDDI service, you can be discovered and uniquely classi-
fied. No rule out there says that you have to register the service.

3. WSDL. Once the WSDL XML file has been located, a considerable amount of informa-
tion can be derived—in fact, enough to create a SOAP message to request information.

4. True. Yes, it is the responsibility of the programmer to create a working WSDL XML file.
Although it can be auto-generated from the code, it is a good idea for a programmer
to be familiar with WSDL files so that he or she can troubleshoot and tweak the WSDL
XML file if necessary.

5. d. HTTP. However, it is not the only protocol, but rather the protocol of choice.
Remember HTTP + XML = SOAP.

6. True. A technically correct WSDL file has enough information in it to create a valid
SOAP request to a Web service.

7. a. www.w3c.org. Always!

8. a. and c. <Envelope> and <Body>. The <Header> is optional. There is no <Message>
element, and <Fault> is a subelement of the <Body> element.

9. False. All attributes inside the <Envelope> element must be namespace-qualified,
without question. It is not just best practice.

10. c. http://schemas.xmlsoap.org/soap/envelope.

SOAP 613

422541 Ch15.qxd 6/19/03 10:13 AM Page 613

422541 Ch15.qxd 6/19/03 10:13 AM Page 614

615

This chapter introduces the Mathematical Markup Language (MathML),
defined by the W3C as a “. . . specification for describing mathematics as a basis
for machine-to-machine communication. It provides a much-needed founda-
tion for the inclusion of mathematical expressions in Web pages.” They further
define it as “. . .intended to facilitate the use and reuse of mathematical and sci-
entific content on the Web, and for other applications such as computer algebra
systems, print typesetting, and voice synthesis. MathML can be used to encode
both the presentation of mathematical notation for high-quality visual display,
and mathematical content, for applications where the semantics plays more of
a key role, such as scientific software or voice synthesis. MathML attempts to
capture something of the meaning behind equations rather than concentrating
entirely on how they are going to be formatted out on the screen. This is on the
basis that mathematical equations are meaningful to many applications with-
out regard as to how they are rendered aurally or visually.”

MathML was developed to answer an issue that actually goes back long
before the advent of the World Wide Web, perhaps to the very beginning of
technical publishing. This issue encompasses the sharing of mathematical and
scientific expressions in an unambiguous manner.

No matter what the final goal is—from the production of printed material
to the creation of input for an automated research design or simulation

MathML

C H A P T E R

16

422541 Ch16.qxd 6/19/03 10:14 AM Page 615

program—number and symbol combinations lose their meaning, or even mis-
lead the reader, if they are not coded or represented accurately.

This chapter explores the challenges faced by those who strive to make
mathematical and scientific notation—the display and the underlying mean-
ing—more ubiquitous across the Web. You will see that, while MathML is
another XML-related application, it is one that has its own idiosyncrasies. We
will introduce you to some basic MathML concepts and techniques, and then
introduce you to three applications (of more than three dozen that have been
developed) for developing math expressions that meet these challenges. By
the end of this chapter, you will be able to create simple MathML expressions
and integrate them into your Web page documents.

Mathematical Expression Issues

Those who want to communicate the meaning of mathematical or scientific
expressions face several challenges, including these historic ones:

■■ Do my symbols mean the same to my readers as they do to me? Or do
my symbols confuse my audience? For example, does the A in A=πr2

mean “area” to them? Or do they think I’m talking about amperes (elec-
tricity) or acceleration (physics)? Or do they think I should use a lower-
case a? Does the r stand for radius to them, or turn/rotate to the right,
or resistance (electricity)? And what about π? Or what if they think I’ve
included typographical errors? Or should I be using Greek, Cyrillic,
Latin, Chinese, or any other characters?

■■ Are the units of measure that I use the same as my reader’s or corre-
spondent’s? Or should I provide alternate versions of the expressions to
accommodate them? Do most readers expect symbols and constants to
be pertinent to the metric system or to the imperial system? Or to some
system of weights and measures that they are more familiar with?

■■ Is the syntax I use for these expressions the same as the syntax my read-
ers expect to use (or will the syntax change for the country, institution,
or field of endeavor of my audience)? Or do they reorder the expres-
sions, based on their own language or conventions? Are my super-
scripts the same as theirs?

Figure 16.1 introduces the equation that we will use as an example through-
out this chapter. The equation on the left (A=πr2) should be very familiar. If not,
let us explain: It allows us to calculate the area (A) of a circle. The r is the length
of the circle’s radius (the distance from the center of the circle to its outer edge)
and the π represents the ratio of the circumference of the circle to its diameter
(π=c/d). The little superscript 2 indicates that the value of r must be multiplied
by itself.

616 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 616

Figure 16.1 Ambiguity in expressions.

Thus, in Figure 16.1, the circle equation on the left should not be considered
to be the same as, say, the equation on the right (A=πr2). We are not using the
A=πr2 equation here to represent any other known scientific or mathematical
concept but, oddly, many people—Web site developers among them—have
difficulty expressing A=πr2. The A=πr2 variation of the equation appears fairly
frequently on the Web, as does A=(pi)r2 and other variations.

From an appearance perspective, interchanging A with a, or R with r, or “pi”
for π doesn’t matter much. The context usually clarifies the meaning. How-
ever, it could be a different story if mix-ups occur in a teaching, research, or
other functional environment. If the literal underlying meaning of A=πr2 is
mistakenly taught or used instead of A=πr2, serious errors may occur.

Meanwhile, the development of the Internet and the World Wide Web has
exacerbated the historic mathematical expression issues and introduced a few
more:

■■ Will the printing/rendering technology I use be able to produce the
symbols I have to use? Do I have to create or download fonts? Will the
symbols and constants scale well?

■■ What if someone in my audience is handicapped visually? Will my
expressions translate well into audio or some other compensatory
medium?

■■ Once I have created and transmitted my expressions, can they be used
quickly as input to other applications, without having to be re-created
from scratch? That is, can I create active documents that not only dis-
play mathematical or scientific expressions, but actually communicate
the semantics (that is, the underlying meaning) of the numbers, sym-
bols, constants, and operations within those expressions?

r

A = πr2 A = πr2

or

A = 2πr?

C = πr2?

C = 2πr?

A = πr2?

MathML 617

422541 Ch16.qxd 6/19/03 10:14 AM Page 617

Classroom Q & A
Q: Hold it a second. There’s that word semantics again. Is this the

same semantics we’ve seen in previous chapters, like Chapter 13,
“RDF”?

A: No, the term semantics is one that appears in several XML con-
texts. It is used most generally when we just want to discuss the
structure or display of a document versus the semantics of the
document (that is, the content data found within the structure). In
Chapter 13, we referred to the W3C’s Semantic Web objective,
wherein Web search agents can examine standardized metadata
to learn about the subject matter in Web resources. Semantics, as
we use it here, has a narrower focus: the actual meaning of num-
bers, constants, variables, and operators in the mathematical
expressions in a document.

The Web community clearly needs a way to render and transmit mathemati-
cal expressions accurately and quickly. As more research and commerce are con-
ducted and coordinated via the Web, the Web community has spotlighted the
last issue: the development of math and science objects that are “active,” that
provide for the automatic processing and manipulation described previously.

Early Visual Presentation Solutions

Since the mid-1970s, the IT industry has developed several visual presentation
solutions, such as:

eqn. Developed in 1975 by Bell Labs for use with the UNIX typesetting
system named troff. It was an influence on EzMath, which is demon-
strated in the Chapter 16 lab exercises.

TeX. Developed by D. Knuth of Stanford University in the late 1970s.
Became the most popular method for electronic typesetting of mathe-
matical expressions. Provides more control over typesetting details and
relies heavily on macros. Available as freeware or shareware, or from
commercial vendors.

LaTeX. Developed by L. Lamport in the mid-1980s. Available by anony-
mous FTP from the LaTeX3 Project (which has continued development)
Web site at www.latex-project.org/ftp.html.

AMS-TeX. Developed by the American Mathematical Society in the
1990s. A set of fonts and macros for mathematical typesetting, above and
beyond those available with TeX and LaTeX.

618 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 618

ISO12083:1994. A DTD for math expressions. One of four DTDs in
ANSI/NISO/ISO 12083, the Electronic Manuscript Preparation and
Markup standard.

Others. From the 1980s to the present, several word processing and
graphics applications provide the capability to create math and science
expressions, which are usually converted to proprietary formats or into
graphics formats like JPEG, GIF, or TIFF.

However, those developments were capable only of visual presentation and
were not capable of conveying the underlying semantics (that is, the actual
meaning) of math and science expressions. Plus, the first five listed were con-
sidered a little too esoteric and complex for ordinary Web page developers and
end users. That’s why many opted for the “Others”: commercial word proces-
sor and graphics applications that could be used to create mathematical
expressions as graphic images, which would then be loaded as graphics into
Web pages. In this way, browsers were less likely to misinterpret the code and
would at least present something. This approach, however, is not ideal, since it
has several drawbacks:

■■ Image-containing pages are slow to download and display in an end
user’s browser.

■■ Once displayed on the screen, the images may not be satisfactory to
look at. (In Chapter 11, “VML,” you learned that bitmap images espe-
cially are not scalable.)

■■ Extra graphic files must be administered.

■■ Once transmitted and displayed, the math expressions cannot be
manipulated (e.g., you cannot cut and paste the whole expression or
parts of the expression; you also can’t fill in values and get answers).

■■ Expression fonts and formats are fixed and may not match an end
user’s display settings.

■■ No alternatives exist for people who are visually handicapped.

ISO 12083:1994 (the Electronic Manuscript Preparation and Markup stan-
dard) only describes declarations for presentation syntax; however, it repre-
sents a major step toward integrating presentation and semantic markup.

The W3C and MathML

From the discussion so far, it’s no surprise that Web and other technical appli-
cation developers were searching for a mathematical expression application
that would facilitate the automatic processing of the underlying mathematics
while unambiguously displaying the concepts, constants, and operators. Thus,

MathML 619

422541 Ch16.qxd 6/19/03 10:14 AM Page 619

documents would have to be clear and active. This basic requirement appears,
on the surface, that it could be easily met, but it has proved to be a challenge.
During the early 1990s, the W3C recognized the issues surrounding the
expression of mathematics and the need for better support for scientific com-
munication. In fact, Dave Raggett even included an HTML Math proposal in
the Working Draft of HTML 3.0, in 1994.

The W3C Math Working Group
In mid-1996, the HTML Math Editorial Review Board was formed after a meet-
ing of the Digital Library Initiative brought many interested parties together.
That Board expanded and, in 1997, became the W3C Math Working Group.
Over the years, the Working Group’s membership has included representa-
tives from many organizations: the American Mathematical Society, the Boe-
ing Company, Design Science, Inc., Geometry Technologies, Inc., IBM
Corporation, the French National Institute for Research in Computer Science
and Control (INRIA), MacKichan Software, Inc., MATH.EDU, Inc., Microsoft
Corporation, the Numerical Algorithms Group Ltd. (NAG), Radical Flow Inc.,
Stilo Technology, Universita di Bologna (Italy), University of Western Ontario
(Canada), Waterloo Maple Inc., Wolfram Research, Inc., and others. MathML
continues to be produced by the Math Working Group as part of W3C Math
Activity.

MathML Design Goals
To the W3C, math expressions make up just one of several kinds of structured
data that have to be integrated into the Web. Originally, to integrate math
expressions, they envisioned just a simple, straightforward extension to
HTML, one that could be easily implemented in Web browsers, office suites,
and other applications. The design goals included the following:

■■ Easy to implement and easy to use.

■■ Sophisticated enough to meet all math-related requirements.

■■ Able to interact with other applications so that expressions do not lose
their meaning and do not have to be reentered or reconstructed.

■■ Capable of producing high-quality renderings in several media.

■■ Markup that embeds seamlessly into Web page documents.

■■ Existing authoring tools should require few modifications to generate
MathML.

■■ Flexible enough to provide for tailored input and output; a sort of “all
things to all developers” solution.

620 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 620

Check the W3C Goals, too.

The design goals in the preceding list paraphrase those found at the W3C
MathML Web site and in other literature. If you want to see a listing of the
actual documented W3C MathML design goals, visit www.w3.org/TR/
2002/WD-MathML2-20021219/chapter1.html#intro.goals.

As the Math Working Group’s work progressed, it became apparent that the
answer did not lie in extending HTML, but in extending XML instead. The W3C’s
Math Working Group produced the following W3C MathML Recommendations:

■■ Mathematical Markup Language (MathML) 1.0 Specification (MathML
1.0), which was endorsed by the W3C in April 1998.

■■ Mathematical Markup Language (MathML) 1.01 Specification,
endorsed as a revision of MathML 1.0 in July 1999.

■■ Mathematical Markup Language (MathML) Version 2.0 (MathML 2.0),
endorsed in February 2001.

■■ The first Working Draft of Mathematical Markup Language (MathML)
Version 2.0 (2nd Edition)—the second edition of MathML 2.0—in
December 2002.

The second edition of MathML 2.0 is a reissue of MathML 2.0 and incorpo-
rates corrections resulting from MathML 2.0 errata into the main text. Also, for
the first time, it includes a W3C XML Schema. In this version of MathML, all
examples are included in the text (see it at www.w3.org/TR/2002/WD-
MathML2-20021219/).

MathML Implementations
A veritable explosion of MathML implementations has occurred in the past
year or two. We demonstrate three implementations (Amaya, EzMath, and
WebEQ) in the lab exercises. For a comprehensive list of MathML implemen-
tation, please visit the W3C MathML Software Web page (www.w3.org/
Math/implementations.html). However, please read the following caution.

If you are looking for a MathML application/implementation, be careful to
read the descriptions attached to those listed on the MathML Software
Web page. Some are compliant with the most up-to-date MathML
specifications (at this writing, MathML 2.0); some only comply with older
versions, like MathML 1.01 or 1.0. Others provide both content and
presentation markup, while others provide only one or the other.

MathML 621

422541 Ch16.qxd 6/19/03 10:14 AM Page 621

To obtain a list of Web browsers that display MathML expressions, check the
list provided by the W3C at their Putting Mathematics on the Web with MathML
Web page at www.w3.org/Math/XSL/.

MathML document validation services are available at the W3C, too. These
provide the MarkUp Validation Service at validator.w3.org/ or the original
W3C MathML validation service at www.w3.org/Math/validator/. These
validation services are especially handy if the editor you use does not validate
your code.

What Is MathML?

MathML consists of XML tags that can be used to mark up expressions so that
they display properly and maintain their semantics. Approximately 30 of its
elements are presentation elements that describe notational structures. Another
150 or so elements (the content elements) specify the intended meaning of math
expressions. MathML also has interface elements (the main one is the <math>
element) that facilitate the embedding of MathML into Web page documents.
MathML can be used to encode math expressions for the following:

■■ Presentation in high-quality visual displays

■■ Mathematical semantics, to be used with applications where semantics
play a major role (as in scientific software or voice synthesis)

MathML expressions can be searched, indexed, and manipulated with a sci-
entific or mathematical application; rendered with Web browsers; edited with
office applications; displayed with projectors; and printed with printers or
plotters. MathML is legible to humans but is not primarily intended for direct
use by developers. In most cases, coding MathML data documents can be very
complex—especially when a developer wishes to combine presentation and
content elements—thus, it is better left to equation editors, conversion pro-
grams, and other specialized applications.

The W3C recognized early that any mathematical expression language that
met all the design requirements would be complex. They concluded that a lay-
ered architecture approach, such as that represented in Figure 16.2, would be
appropriate.

The bottom layer—Layer 1—provides a set of general, yet powerful
platform-independent tools that Layer 2 applications use to exchange, process,
encode, and render expressions. MathML constitutes Layer 1, since its features
define a standard for interoperability, ease of implementation, ease of process-
ing and rendering, and ease of maintenance. MathML is called a low-level
XML application because its specification serves as a model and stimulus for
writing and coordinating other math expression applications.

622 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 622

Figure 16.2 Layered architecture model.

The top layer of the Layered Architecture Model—Layer 2—consists of the
specialized software tools used to generate coded mathematical data and
expressions, such as those listed at the W3C’s MathML Software page at
www.w3.org/Math/implementations.html. When you read the descriptions
on that Web page, you see that the applications are fairly specialized, aimed at
specific user groups or toward accomplishing specific tasks. In fact, some of
the MathML-compliant applications listed at the W3C Web site are already
integrated into other office and technical application suites.

The Logical Structure of a MathML Document

If you build a dedicated MathML document, it should come as no surprise
that it must have a prolog and root data element, just like other XML-related
documents.

The Prolog
The only mandatory statement is the XML declaration, which should resemble:

<? xml version=”1.0” encoding=”iso-8859-1” ?>

All other statements are considered optional. However, to achieve various
objectives, you may want to include document type declarations (DTDs), pro-
cessing instructions (PIs), or comments.

MathML DTDs or Schemas

MathML does not provide the capability to create your own arbitrarily named
element types. However, the W3C Math Working Group works continually to
create new element types to provide us with more flexibility so that you can

Layer 2 — Specialized Software Applications
ConTeXt

BraMaNet

Amaya

MathTypeMathPlayer
WebEQ

 Jade

E -LiteEzMath
GtkMathViewtechexplorer

JEuclid

Scientific Workplace

Maple

Mathcad

Mathematica

MathML to SVG

mathmledMozilla
Meditor LaTeX2HTML

Publicon

SoftLine

tbook

TeX4ht
TIMathML

TtM

Yaroshevich's translator webMathematica WeM

Layer 1 — MathML "Power Tools"
exchange

process

encode

render

Internet Explorer

ORCCA

OpenMath
Omega

xmltex

MathCadREDUCE

Stilo

Mathwriter

MathMLc2p
iMath

mmlctop

MathML 623

422541 Ch16.qxd 6/19/03 10:14 AM Page 623

display and manipulate more math expressions. Those element types and
other components are declared in two DTDs and one schema. The two
MathML.DTDs correspond to MathML 1.01 and MathML 2.0. The schema was
introduced with MathML 2.0, second edition. You can view and copy them
from the following Web sites:

■■ DTD for MathML 1.01: www.w3.org/TR/REC-MathML/
appendixA.html

■■ DTD for MathML 2.0: www.w3.org/TR/2002/WD-MathML2-
20021219/appendixa.html#parsing.dtd

■■ Schema for MathML 2.0: www.w3.org/Math/XMLSchema/
mathml2/mathml2.xsd

To create a MathML-dedicated data document, include the following in the
DTD statement:

<!DOCTYPE math

PUBLIC “-//W3C//DTD MathML 2.0//EN”

“http://www.w3.org/Math/DTD/mathml2/mathml2.dtd”>

If you copy the DTD to a local site, you should provide the appropriate URI
instead of the www.w3.org URI that appears in the third line of code.

Most of the time, however, your MathML expressions will not require their
own dedicated document. If the MathML expression will be used in an
XHTML document, you can take advantage of the XHTML DTD, extended
with this MathML module. This DTD includes all the necessary declarations
included in one file. To use it, insert the following doctype declaration:

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN”

“http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd”>

Again, if you copied the DTD to a local site, you should provide the appro-
priate URI.

You can also validate MathML expressions using the XML Schema for
MathML, located at www.w3.org/Math/XMLSchema/mathml2/mathml2
.xsd. Although the declaration does not appear in the prolog, we think it’s
still appropriate to mention it here. Thus, to link our MathML expressions to
the XML Schema for MathML, use the following declarations in the <math>
element:

<mml:math xmlns:mml=”http://www.w3.org/1998/Math/MathML”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://www.w3.org/1998/Math/MathML

http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd”>

...

</mml:math>

624 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 624

If you need to review these terms, refer back to Chapter 5, “XML Schemas.”
Remember that the value of the schemaLocation attribute is a pair of URIs. The
first is the MathML namespace URI; the second, the location of the schema for
that namespace. If you use a local copy of the schema, you must adjust the sec-
ond URI accordingly.

If you need to validate your MathML documents, validation services are
available from the W3C. Please refer back to the MathML Implementations sec-
tion earlier in this chapter.

MathML and Style Sheets

If you wish to use MathML in a dedicated document or in an XHTML docu-
ment, insert the following processing instruction into the prolog:

<?xml-stylesheet type=”text/xsl”

href=”http://www.w3.org/Math/XSL/mathml.xsl”?>

<html xmlns=”....

Unfortunately, because of its security configuration, Internet Explorer will
not allow an XSLT style sheet to be applied to a data document unless both
documents are located on the same server. If that is possible, and the expres-
sion will be displayed without connecting to the Internet, consider using the
following:

<?xml-stylesheet type=”text/xsl” href=”mathml.xsl”?>

For further information regarding styles and other MathML display issues,
please visit the W3C’s Putting Mathematics on the Web with MathML
Web page at www.w3.org/Math/XSL/.

MathML Markup Specifications
MathML markup consists of presentation elements, content elements, and
interface elements. Some specifications pertain to all MathML elements, and
some pertain to each of the three component types.

Two main W3C markup specifications exist: MathML 1.0 and MathML 2.0.
If you create small, uncomplicated math expressions according to either, the
results are similar. Differences begin to appear when you try to create more
complex expressions.

However, even with fairly simple expressions, you can see differences
between the MathML 1.0 and MathML 2.0 specifications. For example, look at
the MathML presentation markup examples in Figure 16.3.

MathML 625

422541 Ch16.qxd 6/19/03 10:14 AM Page 625

The <math> Element

In Figure 16.3, all three of the MathML 2.0-compliant presentation markup
examples contain top-level <math> elements, but the MathML 1.0 example
doesn’t. MathML 2.0 specifies the need for a single root <math> element,
which provides a number of improvements:

■■ It provides for an island of MathML markup within a Web page docu-
ment, resolves some presentation issues, and produces improvements
in functionality and interoperability.

■■ It provides an attachment point for information, which affects a
MathML expression as a whole (for example, in the future, a <math>
element will be the logical place to attach style sheet or macro informa-
tion, when these facilities become available for MathML).

Figure 16.3 Presentation markup comparison: MathML 1.0 versus MathML 2.0.

<mrow>
 <mi>A</mi><mo>=</mo><mi>π</mi>
 <msup>
 <mi>r</mi>
 <mn>2</mn>
 </msup>
</mrow>

<m:math display='block'>
 <m:mrow>
 <m:mi>A</m:mi><m:mo>=</m:mo><m:mi>π</m:mi>
 <m:msup>
 <m:mi>r</m:mi>
 <m:mn>2</m:mn>
 </m:msup>
 </m:mrow>
</m:math>

<math display='block' xmlns='http://www.w3.org/1998/Math/MathML'>
 <mrow>
 <mi>A</mi><mo>=</mo><mi>π</mi>
 <msup>
 <mi>r</mi>
 <mn>2</mn>
 </msup>
 </mrow>
</math>

<math display='block'>
 <mrow>
 <mi>A</mi><mo>=</mo><mi>π</mi>
 <msup>
 <mi>r</mi>
 <mn>2</mn>
 </msup>
 </mrow>
</math>

MathML 1.0/1.01

MathML 2.0
No namespace

MathML 2.0
m namespace

MathML 2.0
Default namespace

A = πr2

626 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 626

■■ If the MathML document will be used by an application that conforms
to the W3C Namespaces in XML Recommendation, you can place a
MathML namespace declaration in the <math> element start tag, since
the <math> element is an interface element. The namespace syntax
would resemble the following:
<math xmlns=”http://www.w3.org/1998/Math/MathML”>

■■ It can contain various attributes that affect all the elements nested
within the <math> element’s entire enclosed expression (inward-
looking attributes).

■■ It can contain various attributes that may be used to integrate with
third-party rendering software, to render expressions properly in a
browser, and to integrate them into XHTML documents (outward-
looking attributes).

Table 16.1 lists the <math> element’s attributes.

Table 16.1 The <math> Element Attributes

ATTRIBUTE EXPLANATION

Inward-looking attributes

class=”value” Provided for CSS support.

style=”value” Provided for CSS support.

id=”value” Provided for CSS support.

macros=”URI” Provides a pointer to external macro definition files.
Macros are not part of the MathML specification, but
a macro mechanism is anticipated as a future
extension to MathML.

mode=”display/inline” Specifies whether the enclosed MathML expression
should be rendered in a display style or an in-line
style. The default is mode=”inline”. Deprecated in
MathML 2.0.

display=”block/inline” Replaces the deprecated mode attribute. Specifies
whether the enclosed MathML expression should be
rendered in a display style or an in-line style.
Allowed values are block and inline (default).

xref=”URI” With id, provided for use with XSL processing.

(continued)

MathML 627

422541 Ch16.qxd 6/19/03 10:14 AM Page 627

Table 16.1 (continued)

ATTRIBUTE EXPLANATION

Outward-looking attributes

overflow=”scroll/elide/ If size negotiation is not possible or fails (for
truncate/scale” example, a long equation), overflow can be used to

suggest an alternative processing method. scroll
instructs the processor to provide a viewport with
horizontal or vertical scrollbars to allow the users to
examine the entire expression. elide means that the
expression is to be abbreviated by removing enough
of it so that the remainder fits into the window (for
example, a large expression might have only the first
and last terms displayed, with ‘+ ... +’ between
them). truncate means the expression will be
abbreviated by simply cutting remainders off at the
right and bottom borders. scale means that, if the
expression is too large, fonts will be chosen so that
the full expression fits in the window.

altimg=”URL” Provides a fall-back for browsers that do not support
embedded elements.

alttext= “text string” Another fall-back for browsers that do not support
embedded elements or images. It is recommended
that an alttext attribute always be provided, so that
an end user can at least get some information
despite a MathML malfunction.

When providing values for any MathML attributes, you should consult with
the W3C’s MathML Web site, since the values must be listed in a particular
format.

No nesting of <math> elements is allowed; one <math> element cannot con-
tain another <math> element. It is considered an error if such nesting occurs.

MathML and Namespaces

Even when working with applications that help you create and display math-
ematical expressions in MathML, you must still consider how to use name-
spaces and DTDs, and how to validate your MathML code.

If the MathML expressions are to be used by an application that conforms to
the Namespaces in XML Recommendation, then the following typical syntax
should be used (note the use of the MathML 2.0-related <math> element for

628 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 628

the namespace declaration, which we recommend unless the application will
not support it):

<math xmlns=”http://www.w3.org/1998/Math/MathML”>

As with other XML-related languages, since the declaration is only being
used for the purpose of creating unique element names, the XML Namespaces
Recommendation does not require the existence of the URI that is used for the
namespace name.

MathML Attributes

MathML is particular about its attribute syntax, even more so than normal
XML. It has additional rules that must be observed by the MathML implemen-
tations, and it is considered an error to violate them. The MathML syntax and
values for each attribute value are specified in each element’s attribute table.
We recommend consulting those attribute tables when composing MathML
documents (another good reason to use MathML implementations when pos-
sible). We also recommend that you read the MathML Attribute Values section
of the current MathML specification (for MathML 2.0, section 2.4.4, which
can be viewed at www.w3.org/TR/2002/WD-MathML2-20021219/chapter2.
html#fund.attval).

Bases, Scripts, Characters, and Symbols

When we discuss how the text, numbers, and other expression components
are encoded in MathML, the instructions—here and in MathML specifications
and tutorials—are often given in terms of bases, scripts, characters, and sym-
bols. To understand these terms, look at the dissected equation for the area of
a circle in Figure 16.4.

Figure 16.4 Dissected equation.

Character
Symbol

Character

Character

Base Script

MathML 629

422541 Ch16.qxd 6/19/03 10:14 AM Page 629

Expressions are broken into a base (A = πr) and a script (the single super-
scripted character 2). The base can be further dissected into a sequence of
characters—A, π, and r—and symbols, like the equal sign (=).

Presentation Markup

Presentation markup element tag names generally begin with an m character,
which is then followed by those additional characters that describe the content
of the element.

Presentation elements create a syntactic structure for the math expression,
in a manner similar to the way that titles, sections, and paragraphs describe
the structure of a text document. These are the basic symbols and expression-
building structures that we are most familiar with. They are usually focused on
visual impression, so their element names usually appear to be visual in nature.
However, they are also designed to contain information for audio renderings.

Thirty-one presentation elements and more than 50 attributes are grouped
in five categories. We’ve listed the elements in Table 16.2. To view a list of and
explanations for all the attributes that can be used with these elements, visit
the W3C MathML 2.0 Web site at www.w3.org/TR/2002/WD-MathML2-
20021219/chapter3.html and select any appropriate links.

If you are going to use more than a few presentation elements and attributes
in an expression, do not attempt to code the expressions manually. Instead, use
one of several available implementations to do that. For example, an abun-
dance of potentially confusing elements, attributes, and other components
exist. Further, token elements and general layout elements have specific rules,
as defined in the DTDs. Following are a few examples:

■■ General layout schemata elements, like the outer <mrow> element,
expect to only find token elements in their content.

■■ The <mi> and <mo> elements are tokens, and their content consists
only of characters and symbols.

■■ Scripts and limits help to further define the content of the token charac-
ters and symbols.

It’s even difficult for longtime experts to keep track of all the presentation
markup rules.

Table 16.2 MathML Presentation Elements

ELEMENT NAME EXPLANATION

Token elements Represent the smallest units of meaningful
mathematical notation (examples: characters and
symbols).

<mglyph> Adds new character glyphs to MathML.

630 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 630

Table 16.2 (continued)

ELEMENT NAME EXPLANATION

<mi> Identifier.

<mn> Number.

<mo> Operator, fence, or separator.

<ms> String literal.

<mspace/> Space (declared empty element).

<mtext> Text.

General layout Describe basic notations (examples: fractions, radicals)
schemata elements or general functions (examples: style properties, error

handling) not handled by other element types.

<menclose> Encloses content with a stretching symbol (e.g., a long-
division sign).

<merror> Encloses a syntax error message from a preprocessor.

<mfenced> Surrounds content with a pair of fences.

<mfrac> Forms a fraction from two subexpressions.

<mpadded> Adjusts space around content.

<mphantom> Makes content invisible but preserves its size.

<mroot> Forms a radical with specified index.

<mrow> Groups any number of subexpressions horizontally.

<msqrt> Forms a square root sign (radical without an index).

<mstyle> Style change.

Script and limit Positions one or more scripts around a base level script.
schemata elements

<mmultiscripts> Attaches prescripts and tensor indices to a base.

<mover> Attaches an overscript to a base.

<msub> Attaches a subscript to a base.

<msubsup> Attaches a subscript-superscript pair to a base.

<msup> Attaches a superscript to a base.

<munder> Attaches an underscript to a base.

<munderover> Attaches an underscript-overscript pair to a base.

(continued)

MathML 631

422541 Ch16.qxd 6/19/03 10:14 AM Page 631

Table 16.2 (continued)

ELEMENT NAME EXPLANATION

Table and matrix For matrix, array, and other tablelike mathematical
elements notation; similar to HTML table elements except that,

with these, you can use specialized attributes for finer
layout control.

<maligngroup/> Alignment group marker (declared empty element).

<malignmark/> Alignment point marker (declared empty element).

<mlabeledtr> A row in a table or matrix with a label or equation
number.

<mtable> Table or matrix.

<mtd> One entry in a table or matrix.

<mtr> Row in a table or matrix.

Enlivening expression Provides a mechanism for binding actions to expressions
element(s) or subexpressions.

<maction> Binds actions to a subexpression.

A basic presentation encoding for the sample area of a circle equation is
shown in Figure 16.5.

The top-level structure in the figure starts with a general layout schemata
element named <mrow>, which instructs the parser to lay the expression out
horizontally. The base A, π, r characters are each inside their own <mi> token
element; an <mi> element indicates that these are to be displayed as identi-
fiers. The equal sign (=) sign is inside a <mo> token element, signifying that it
is to be displayed as an operator. Finally, the character 2 is inside a <mn> token
element that specifies that the 2 is a number (or value). This number is a super-
script to the token element r, since the MathML markup shows that the
<msup> and </msup> tags surround the variable r and its power value 2.

Figure 16.5 Presentation markup example.

<mrow>
 <mi>A</mi>
 <mo>=</mo>
 <mi>π</mi>
 <msup>
 <mi>r</mi>
 <mn>2</mn>
 </msup>
</mrow>

632 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 632

Content Markup

Content markup (also referred to as semantic markup) elements differ from
presentation elements, because they prescribe how their contents are to be
manipulated mathematically, as opposed to prescribing how the content will
be displayed. Content markup is intended for eventual transcription into
input for computer applications that calculate and otherwise manipulate the
expressions. Content markup looks like presentation markup, but it uses a dif-
ferent set of 150 elements and an even greater number of attributes to convey
the same expressions while maintaining their mathematical semantics.

The MathML content markup elements available with MathML 2.0 are listed
in Table 16.3, without descriptions.

These elements are constantly being added to, deleted, and modified with
respect to function. For the latest list, along with explanations and
examples, please visit the content element definitions at www.w3.org/
TR/2002/WD-MathML2-20021219/appendixc.html#cedef.Constants
.and.Symbol.Elements.

Table 16.3 MathML Content Elements

ELEMENT NAME ELEMENT NAME ELEMENT NAME

Token elements

<cn> <ci> <csymbol>

Basic content elements

<apply> <codomain> <compose>
<condition> <declare> <domain>
<domainofapplication> <e> <fn>
<ident> <image> <inverse/>
<interval> <lambda> <otherwise>
<piece> <piecewise> <reln>
<sep/>

Arithmetic, algebra, and logic elements

<abs/> <and/> <arg/>
<ceiling/> <conjugate/> <divide/>
<exists/> <factorial/> <floor/>
<forall/> <gcd/> <idiv/>
<imaginary/> <implies/> <lcm/>
<max/> <min/> <minus/>
<not/> <or/> <over/>
<plus/> <power/> <quotient>
<real/> <rem/> <root/>
<times/> <xor/>

(continued)

MathML 633

422541 Ch16.qxd 6/19/03 10:14 AM Page 633

Table 16.3 (continued)

ELEMENT NAME ELEMENT NAME ELEMENT NAME

Relation elements

<approx/> <eq/> <equivalent/>
<factorof> <geq/> <gt/>
<leq/> <lt/> <neq/>

Elements related to calculus

<bvar> <curl/> <degree>
<diff/> <divergence/> <grad/>
<int/> <laplacian/> <lowlimit>
<partialdiff/> <uplimit>

Elements related to set theory

<card/> <cartesianproduct> <in/>
<intersect/> <list> <notin/>
<notprsubset/> <notsubset/> <prsubset/>
<set> <setdiff/> <subset/>
<union/>

Elements related to sequences and series

<limit/> <product/> <sum/>
<tendsto/>

Elementary classical function (including trigonometric function) elements

<sin/> <sinh/> <arcsin/> <arcsinh/>
<cos/> <cosh/> <arccos/> <arccosh/>
<tan/> <tanh/> <arctan/> <arctanh/>
<sec/> <sech/> <arcsec/> <arcsech/>
<cosec/> <csch/> <arccsc/> <arccsch/>
<cotan/> <coth/> <arccot/> <arccoth/>
<exp/> <ln/> <log/>

Elements related to statistics

<mean/> <median/> <mode/>
<moment/> <momentabout/> <sdev/>
<var/>

Elements related to linear algebra

<determinant/> <matrix> <matrixrow>
<outerproduct/> <scalarproduct/> <selector/>
<transpose/> <vector> <vectorproduct/>

Semantic mapping elements

<annotation> <semantics> <xmlannotation>

634 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 634

Table 16.3 (continued)

ELEMENT NAME ELEMENT NAME ELEMENT NAME

Elements related to constants and symbols

<complexes/> <emptyset/> <eulergamma/>
<exponentiale/> <false/> <imaginaryi/>
<infinity/> <integers/> <naturalnumbers/>
<notanumber/> <pi/> <primes/>
<rationals/> <reals/> <true/>

We strongly recommend that you use an equation editor to code content
markup equations. Manipulating all these elements and their attributes, while
following all the coding rules, is a very complex operation to be done manu-
ally. Let the equation editors deal with the rules and components. However, to
maintain a handle on the process, we suggest that you construct abstract trees
of your markup projects; the abstract tree technique is discussed later in this
chapter.

Figure 16.6 provides the content markup version of the A=πr2 example. Note
that there are twice as many lines of code as shown previously in the presen-
tation markup example of Figure 16.5. You can see that conveying the seman-
tics of the expression is a more involved process than conveying simply its
display characteristics.

Figure 16.6 Content markup example.

<apply>
 <eq/>
 <ci>A</ci>
 <apply>
 <times/>
 <apply>
 <approx/>
 <pi/>
 <cn type = "rational">22<sep/>7</cn>
 </apply>
 <apply>
 <power/>
 <ci>r</ci>
 <ci>2</ci>
 </apply>
 </apply>
</apply>

MathML 635

422541 Ch16.qxd 6/19/03 10:14 AM Page 635

The top-level structure in Figure 16.6 starts with an application marker. This
is encoded with the outermost (that is, the top and bottom) <apply> and
</apply> tags. This <apply> element explicitly applies a function to its argu-
ment(s); thus, the first thing after the <apply> start tag should be the function
or operator (in this case, the equal sign), followed by its argument (the variable
named A). The A data character is placed inside a <ci> element, which is a con-
tent identifier.

The next <apply> tag begins the πr2 grouping, which won’t be complete
until the second to last </apply> tag. The <apply> start tag here is followed by
a <times/> empty element, which activates a multiplication operator. Now the
arguments to the multiplication operator must be provided. Since the next
argument is the constant π and because MathML uses a function to define π,
another set of nested <apply> and </apply> tags must appear. In this case,
they surround the π function that begins with the binary function approxima-
tion (<approx/>) element, followed by the <pi/> element, which actually
identifies the function to the parser. The function itself is enclosed within a
numerical constant element <cn>. The parser is told that the constant will be a
rational number of a value approximating 22 divided by 7. The <sep/> ele-
ment tells the parser that two parts are needed to fully describe the constant,
and the two parts appear on each side of that element.

The next <apply> element encloses the r2 function. The operator <power/>
element tells the parser that the first <ci> content identifier data, r, should be
raised to the power indicated in the second content identifier (that is, 2).

Prefix Notation

The odd-looking MathML element nesting scheme is called prefix notation
(PN), since it places the operators (the equal sign, the multiplication sign, the
power notation) before the respective operands (the A, π, and r) in their respec-
tive elements. If they were in the opposite order (for example, <ci>A</ci><eq
/>, instead of <eq /> <ci>A</ci>), that is postfix notation. When we use pen
and paper for arithmetic calculations, we usually use a scheme called infix
notation, in which the operands and operators are mixed. In fact, the familiar
A=πr2 is an example of infix notation.

Consider the PN processing algorithm as a series of scans from left to right,
as illustrated in Figure 16.7.

The first scan travels until it has passed the last operator: the power opera-
tor. It then applies that operation to the subsequent operands, r and 2, to get r2.
On the next scan, the last operator encountered is the multiplication sign,
which is applied to the π constant and the r2. On the third scan, the equality
operation element is encountered; it is applied to the A and the πr2 combina-
tion to obtain the final result.

636 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 636

Figure 16.7 Prefix notation example.

Combining Presentation and Content Markup

Content markup is not altogether concerned with the display of our expres-
sion. For some expressions, the display must be almost inferred by an end
user. Thus, those who are unfamiliar with the expression or its components
may be at a disadvantage. Sophisticated rendering applications may soon be
developed that use appropriate style sheets or other techniques, but as of this
writing, rendering content expressions with all the necessary visual nuances
still requires the developer to take extra steps. It is obvious that employing
presentation tags alone limits the ability to reuse MathML expressions or to
evaluate or manipulate them using another application. The question, then,
becomes “can we combine the two techniques?” The answer is “yes.”

Presentation markup and content markup can be combined in two ways: by
using mixed markup, which intersperses content and presentation elements in
a single abstract tree; or by using parallel markup, which requires separate
presentation and content trees. If you are interested in learning more about
mixed and parallel markup techniques, please visit the appropriate section of
the latest MathML specification. As of this writing, the section is located at
http://web3.w3.org/TR/MathML2/chapter5.html.

Two Basic Math-Expression Creation
Techniques and Concepts

Before we examine an example math editor, we will introduce a couple of tech-
niques or concepts that can help to create math expressions, regardless of the

First scan
(= (* π ('power' r 2)))
A

(= (* π r 2))
A

Second scan

(= π r 2)
A

Third scan

A = π r 2Final result

MathML 637

422541 Ch16.qxd 6/19/03 10:14 AM Page 637

kind of markup structure (presentation, content, or both) or editor you ulti-
mately use. Once you grasp these concepts, you will more easily use the math
editor tools described in subsequent sections.

Abstract Expression Trees
The abstract expression tree was mentioned briefly in previous sections.
Abstract expression tree diagrams are similar to file directory (or file folder)
diagrams. They are good for both designing MathML expressions and for
checking the progress or results of a MathML editor. Figure 16.8 shows an
example of an abstract expression tree applied to the area of a circle example
and depicting presentation markup elements (of course, either presentation or
content markup elements can be illustrated).

To organize the tree so that it might be more meaningful and easier to work
with, we segmented the math expression according to its <mrow> elements. If
we use content markup, then segmenting expressions according to the <apply>
elements may work.

Layout Boxes
The layout box is a concept that ought to be understood before we set out to
create MathML markup. Layout boxes are used by several MathML editors as
a kind of bounding box for certain math notations and are categorized accord-
ing to their intended contents:

■■ Simple layout boxes contain individual characters, and their dimen-
sions depend only on the character font being used.

■■ More complicated layout boxes arrange their child boxes—similar in
concept to child elements—according to ready-made configurations
that an author can choose from on the MathML editor’s grid of symbol
buttons.

A composition window from Design Science, Inc.’s MathType MathML edi-
tor is illustrated Figure 16.9.

The MathML editor provides a symbol grid with several (in this case two)
rows of symbol buttons from which you can select the appropriate symbols to
populate your expression. The working area of the editor contains a nearly
complete expression; the only character that remains to be added is the power
of 2, although a layout box has already been placed in the proper position.
That layout box was placed by the developer who, after entering the other
characters, clicked the superscript/subscript symbol button and selected, from
the several option buttons displayed, a superscript button. All the developer

638 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 638

has to do now is type in a “2”. Meanwhile, the developer has also used the
lowercase Greek symbol button to insert the π symbol. Some developers refer
to the symbol buttons and other utilities as widgets (slang for programming
subroutines, which is what they really are).

Layout boxes can be a little tricky for beginners, especially because they
have to be selected in the proper order. The abstract expression tree technique
can help here, but be prepared to practice with layout boxes until they feel
more automatic to you.

Figure 16.8 Abstract expression tree example.

Figure 16.9 Layout boxes and symbol buttons.

'Power' layout box

Superscript/subscript symbol button

Lowercase Greek alphabet symbol button

<mrow> ... </mrow>

<mi>A</mi> <mo>=</mo> <mi>π</mi> <msup>...</msup>

<mi>r</mi> <mn>2</mn>

MathML 639

422541 Ch16.qxd 6/19/03 10:14 AM Page 639

Meanwhile, MathType can be used as a standalone math editor, or it can be
integrated with other office suite applications, like Microsoft Word or Visio. If
you would like more information about the MathType editor, or its siblings
MathPlayer (a MathML display engine for Internet Explorer) or WebEQ (a
MathML content markup editor), visit Design Science, Inc.’s Web site at
www.mathtype.com/.

Chapter 16 Labs: Getting Started with MathML

MathML had something of a slow start, but development has accelerated
recently. Two years before we published this book, it was difficult to find a
MathML-compliant math editor. Now there are many different editors avail-
able that are compliant with the most recent specifications (an up-to-date list-
ing resides at www.w3.org/Math/implementations.html). The major issue
now is to find one that has the right combinations of features to best suit your
uses. Despite varying features, all math editors are somewhat similar to use.
The approach we chose for these labs is to demonstrate a few editors and
demonstrate some very basic instruction so that you can quickly become
familiar with them and productive.

Lab 16.1: Install and Use Amaya for MathML

In this lab, we download, install, and use the presentation-oriented
Amaya editor, which was developed and is currently maintained by the
W3C. It’s free, so let’s take a look at it to see what it can do. Be aware
that currently only Netscape, Mozilla, and Amaya itself can display the
MathML expressions we create with it.

1. Activate a browser and go to www.w3.org/Amaya/.

2. Locate the link on the side navigation bar called Distributions under
the Download Amaya section.

The most current version as of this writing is 7.2. Download the most
current release shown. Be careful not to link to non-Windows binary code.
You must use the executable Windows code for this lab.

640 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 640

3. Click the amaya-WinNT-7.2a.exe link.

4. Download and save the executable file to your hard disk.

5. Go to the directory where the amaya-WinNT-7.2a.exe file is located
and double-click the file to start the installation.

6. Accept all defaults during the installation.

7. Reboot if necessary.

8. Start the Amaya editor by clicking Start, Programs, Amaya, Amaya.

9. On the top menu bar, go to File, New, New MathML document.

10. Rename the file from New.mml to MathML-Lab1.mml and click
Confirm.

11. Enter your example area of a circle expression: A equals pi “r”
squared. To do this, first make sure that the Amaya editor window,
now named MathML-Lab1.mml, is the active window. Type in an
uppercase letter “A”. If the window is inactive, click Edit on the top
menu bar and make sure Editor Mode is check marked.

12. Click anywhere inside the editor window. You should see the editor
stylize the uppercase A into italics.

13. Type in an equal sign (=) immediately following the A.

14. Click anywhere inside the editor window. You should see the editor
stylize and space the equal sign.

15. Enter the pi symbol. Click the Maths icon on the top menu bar. The
Maths icon looks like a yellow X over Y.

16. Click the Greek letter icon at the bottom of the second column (the
alpha, beta, and gamma symbols).

17. Click on the pi symbol, as shown in Figure 16.10. A pi symbol
should now appear inside the main editor window.

MathML 641

422541 Ch16.qxd 6/19/03 10:14 AM Page 641

Figure 16.10 Use the pi symbol as indicated on the Greek Alphabet template.

18. Click Cancel to close the Greek Alphabet template.

19. Click anywhere inside the editor window to format the pi symbol.

20. Enter r2. To insert these symbols, click the Maths icon on the top
menu bar. The Maths icon looks like a yellow X over Y.

21. Click the superscript format symbol, as shown in Figure 16.11. A
generic format symbol should now appear inside the editor.

Use this Pi symbol

642 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 642

Figure 16.11 Click on this format symbol to create a power exponent.

22. Click the pink icon that represents the base number, and type a
letter “r”.

23. Click the pink icon that represents the power exponent, and type the
number “2”.

24. Click anywhere inside the editor window to format the entire equa-
tion. Your editor should resemble Figure 16.12.

Figure 16.12 The area of a circle expression as depicted in the Amaya editor.

25. Save the file by clicking File, Save.

26. Review the MathML presentation source code for the file by clicking
Views, Source code. Compare it to Figure 16.13.

Use this format symbol

MathML 643

422541 Ch16.qxd 6/19/03 10:14 AM Page 643

Figure 16.13 XML source code (presentation format) for the area of a circle expression.

Lab 16.2: Install and Use WebEQ for MathML

Design Science, Inc.’s presentation-related WebEQ application has many
more features than those we introduce in this lab exercise. The resulting
source code is the same regardless of how the equation was built. In an
effort to support Web browser presentation, WebEQ has an applet option
that offers an opportunity to build an equation that will display inside
Internet Explorer.

1. Go to www.dessci.com/en/. Click the WebEQ 30-Day Trial down-
load link. The trial download link is located on the right-hand side
of the window under Free Downloads.

2. Enter your email address as requested.

3. Download the Windows platform version of WebEQ, and save the
file to your disk.

4. Go to the directory where the install.exe file is located and double-
click the file to start the installation.

5. These instructions assume that you are using the English version, so
choose English.

6. Accept all remaining defaults by clicking Next, Install, Done to the
End.

7. Reboot if necessary.

8. Start the WebEQ editor by clicking Start, Programs, WebEQ 3.0 Evalu-
ation, WebEQ Editor.

644 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 644

9. Enter the sample area of a circle expression A=πr2. First make sure
that the WebEQ editor window is the active window, and type in an
uppercase letter “A”.

10. Type in an equal sign (=) immediately after the A.

11. Insert the pi symbol. Click the Lowercase Greek Alphabet palette—
the menu bar looks like an alpha/beta (α /β) symbol set—then click
the pi symbol, as shown in Figure 16.14.

Figure 16.14 Lowercase Greek palette with pi symbol.

12. Enter “r2”. To insert these symbols, click the leftmost formatting icon
on the top menu bar. The icon has a square root sign inside it, as
shown in Figure 16.15.

Figure 16.15 Formatting a base number with a power.

13. Choose the formatting symbol indicated in Figure 16.15.

14. Click inside the base number box, and type a lowercase r in the space.

15. Click inside the power number box, and type “2” inside the box.
Your editor should resemble Figure 16.16.

MathML 645

422541 Ch16.qxd 6/19/03 10:14 AM Page 645

Figure 16.16 The area of a circle as depicted by the WebEQ editor.

16. Save the file by clicking File, Save As MathML, MathML-Lab2.

17. Use Notepad to review the MathML presentation-related source
code for the file. Navigate to the directory where you saved the
MathML-Lab2 file, open the file using the Notepad editor, and
compare the code to that shown in Figure 16.17.

Figure 16.17 Source code (presentation format) as depicted by Notepad.

Lab 16.3: Install and Use EzMath for MathML

EzMath was developed by Dave Raggett and Davy Batsalle, with sup-
port from Hewlett-Packard Laboratories. We consider EzMath to be the
easiest MathML editor to use. Its resulting source file will be in content
format as opposed to presentation format. In an effort to support Web
browser presentation, it has a plug-in option. In this lab, however, we will
build an expression that displays inside Netscape but not Internet
Explorer.

646 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 646

1. Go to www.w3.org/People/Raggett/EzMath/. Click the
www.w3.org/People/Raggett/ezmath1_1.zip download link.

2. Download and save the file to your disk.

3. Go to the directory where the ezmath1_1.zip file is located and
double-click the file to unzip file contents.

4. Extract All Files to the C:\ directory. This process creates an EzMath
directory.

5. Start the EzMath editor. Click the C:\EzMath\EzMath.exe file; the
editor appears, as shown in Figure 16.18.

Figure 16.18 EzMath Editor.

6. Enter the example expression A=πr2. To do this, first, on the EzMath
menu bar, click Edit and then scroll down to and select View
expression... Ctrl-S.

7. Inside the EzMath Expression Editor, type in the phrase “A equals
pi r squared”. Compare your input window to Figure 16.19.

Figure 16.19 Example expression entered as a phrase or sentence.

8. Click OK. The EzMath editor should now look like Figure 16.20.

MathML 647

422541 Ch16.qxd 6/19/03 10:14 AM Page 647

Figure 16.20 The area of a circle expression as shown by the EzMath editor.

9. Review the source code. To do so:

a. Click the Set Clipboard Format to MathML button on the menu
bar (the button looks like an M over ML).

b. Click the Copy to Clipboard button (the Copy to Clipboard but-
ton looks like two pages side by side).

c. Click the View Clipboard icon.

10. Compare your code to that shown in Figure 16.21.

If you click the Set Clipboard Format to EzMath button (which looks like a
Greek letter sigma with a small subscript z next to it, both inside angle
brackets), then you click Copy to Clipboard, View Clipboard, you will see
the generated plug-in code to use for the Netscape browser.

Figure 16.21 Content markup source code, as depicted by EzMath editor.

648 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 648

11. Normally, you would be expected to cut and paste the MathML
code into a file of your choice to save the generated results. In this
case, you can save the code to a file called MathML-Lab3 (using
Notepad) if you think it may benefit you in the future.

Summary

MathML development is accelerating. Implementations are proliferating.
MathML shows great promise as it begins to answer issues that have faced
technical publishers for many years and the Internet since its inception.

Following are some key concepts to remember about the MathML
specification:

■■ The W3C defines MathML as a “. . .specification for describing mathe-
matics as a basis for machine-to-machine communication. It provides a
much-needed foundation for the inclusion of mathematical expressions
in Web pages.”

■■ MathML allows technical publishers and developers to overcome his-
toric issues regarding ambiguities and internationalism, as well as more
recent issues concerning updatable or active documents and expres-
sions that are accessible to visually handicapped persons.

■■ Since the mid-1970s, the IT industry has provided interim solutions,
only capable of facilitating visual presentation and incapable of convey-
ing the underlying semantics of mathematical equations. Several were
too esoteric and complex for ordinary Web page developers and end
users to use.

■■ In the early 1990s, the W3C recognized the issues surrounding the
expression of mathematics. By 1997, the W3C established its Math
Working Group, which developed four ever-improving MathML speci-
fications from 1998 to the present. Their design goals included ease of
implementation and use, sufficient sophistication to meet all math-
related needs, the capability to produce high-quality renderings plus
active documents, and the ability to embed MathML expressions into
Web page documents.

■■ MathML consists of markup tags that create expressions that display
properly and maintain their semantics. Approximately 30 presentation
elements describe notational structures, 150 content elements specify
the intended meaning of math expressions, and a few interface ele-
ments facilitate the embedding of MathML into Web page documents.

MathML 649

422541 Ch16.qxd 6/19/03 10:14 AM Page 649

■■ MathML constitutes the lower Layer 1 of the mathematics-related Lay-
ered Architecture Model. It provides powerful platform-independent
tools to facilitate interoperability, implementation, processing, mainte-
nance, and processing. The top Layer 2 consists of specialized applica-
tions and other implementations.

■■ Many MathML implementations have been developed in the past few
years. For a list of implementations, visit W3C’s Implementations Web
page at www.w3.org/Math/implementations.html. A list of Web
browsers that display MathML expressions can be found at
www.w3.org/Math/XSL/. MathML document validation services are
available at validator.w3.org/ or www.w3.org/Math/validator/.

■■ The nesting scheme of content markup relies on prefix notation. It facili-
tates processing by a succession of scans, each involving relations
around the operators in the expressions.

■■ Content and presentation techniques can be combined, since each is
dedicated to semantics or display, respectively. Two methods are used:
mixed markup or parallel markup.

■■ Abstract expression trees and layout boxes are valuable tools to use
when designing MathML expressions, when checking the progress of
MathML editor applications, or when using math editors.

650 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 650

MathML 651

Review Questions

1. Which of the following are issues faced by technical publishers regarding mathemati-
cal expressions?

a. Do I share a common syntax with my readers?

b. Are my symbols and constants the same as my readers’?

c. Can visually handicapped people still benefit from my expressions?

d. Are my documents active?

e. All of the above.

2. True or false? Early IT expression solutions were capable of visual presentation and
conveying the underlying semantics, but could not cope with internalization and other
Internet-related concerns.

3. Which of the following were not MathML design goals?

a. Seamless embedding into Web page documents

b. Flexibility with respect to input and output

c. Easy to implement/easy to use

d. Capability of high-quality rendering in various media

e. None of the above

4. True or false? MathML constitutes the upper Layer 2 of the Layered Software Architec-
ture Model, where it facilitates interoperability, implementation, maintenance, pro-
cessing, and rendering.

5. Fill in the blank: If a MathML expression is used in an XHTML document, we can use
the _________________________________.

a. XHTML DTD

b. The XHTML DTD, extended with its MathML module

c. MathML 2.0, second edition DTD

d. Any MathML DTD or schema

e. None of the above

6. True or false? Internet Explorer will not allow a MathML-related XSLT style sheet to be
applied to a data document unless both documents are located on the same server.

422541 Ch16.qxd 6/19/03 10:14 AM Page 651

7. In the expression, A=πr2, in MathML terms, the A is called a
____________________.

a. Character

b. Symbol

c. Script

d. All of the above

e. None of the above

8. True or false? Presentation markup is concerned with syntactic structure, whereas con-
tent markup is concerned with semantics.

9. Which notation scheme does MathML’s content markup observe?

a. Postfix

b. Prefix

c. Infix

d. Suffix

e. None of the above

10. The basic concepts that benefit MathML expression designers
are______________________. (Choose all that apply.)

a. Symbol buttons

b. Abstract trees

c. Layout boxes

d. Widgets

e. Process subroutines

652 Chapter 16

422541 Ch16.qxd 6/19/03 10:14 AM Page 652

Answers to Review Questions

1. e. These are all concerns faced with those who have developed MathML.

2. False. Early IT solutions were capable of visual presentation, but they could not convey
semantics. Plus, they were often esoteric and tough to learn.

3. e. These are all design goals. Others are described in the text and at the W3C MathML
2.0 specification Web site.

4. False. Although the description is true, MathML actually constitutes the lower level of
the model.

5. b. This question is taken directly from the text, in the MathML DTDs or Schemas
section.

6. True. This was mentioned in the section titled MathML and Style Sheets.

7. a. The A, π, and r are all characters.

8. True. The answer is found in the text in the Presentation Markup and Content Markup
sections.

9. b. This was discussed in the section titled Prefix Notation.

10. b. and c. These were discussed and demonstrated in the section titled Two Basic Math
Expression Creation Techniques and Concepts.

MathML 653

422541 Ch16.qxd 6/19/03 10:14 AM Page 653

422541 Ch16.qxd 6/19/03 10:14 AM Page 654

655

This appendix provides you with information on the contents of the Web site
that accompanies this book. On this site, you will find information that will
help you with each of the book’s chapters.

This Web site contains:

■■ Streaming video presentations that introduce you to each chapter of the
book. These presentations provide overview information that can help
you understand the content of the chapter.

■■ Sample code that is used throughout the book. The sample code is pre-
sented in separate simple text files, which will allow you to easily copy
and paste the code when and where you need it.

■■ Data and solution files for the lab exercises in each chapter.

■■ There is also a case study Web site (www.spacegems.com) that facili-
tates the completion of the lab exercises.

To access the site, visit www.wiley.com/compbooks/60minutesaday.

About the 60 Minutes Web Site

A P P E N D I X

a422541 AppA.qxd 6/19/03 10:14 AM Page 655

System Requirements

Make sure that your computer meets the minimum system requirements listed
in this section. If your computer doesn’t match up to most of these require-
ments, you may have a problem using the contents of the Knowledge Pub-
lisher Studio.

■■ PC with a Pentium processor running at 266 Mhz or faster with Win-
dows NT4, Windows 2000, or Windows XP.

■■ At least 256 MB of total RAM installed on your computer; for best per-
formance, we recommend at least 512 MB.

■■ A high-speed Internet connection of at least 100K is recommended for
viewing online video.

■■ Internet Explorer 6.0 or higher.

■■ Browser settings need to have Cookies enabled; Java must be enabled
(including JRE 1.2.2 or higher installed) for chat functionality and live
Webcast.

■■ Screen Resolution of 1024x768 pixels.

60 Minutes a Day Presentations

To enhance the learning experience and further replicate the classroom envi-
ronment, XML in 60 Minutes a Day is complemented by a multimedia Web site
which aggregates a streaming video and audio presentation. The multimedia
Web site includes an online presentation and introduction to each chapter. The
presentation, hosted by Linda McKinnon and Al McKinnon, includes a 10 to
15 minute video segment for each chapter that helps to deliver the training
experience to your desktop and to convey advanced topics in a user-friendly
manner.

Each video/audio segment introduces a chapter and details the important
concepts and details of that chapter. After viewing the online presentation, you
are prepped and primed to read the chapter.

Upon reaching the companion site that contains the video content for this
book you will be asked to register using a valid email address and self-generated
password. This will allow you to bookmark video progress and manage notes,
email, and collaborative content as you progress through the chapters. All video
content is delivered “on demand,” meaning that you can initiate the viewing of
a video at any time of the day or night at your convenience.

656 Appendix

a422541 AppA.qxd 6/19/03 10:14 AM Page 656

Any video can be paused and replayed as many times as you wish. The nec-
essary controls and widgets used to control the delivery of the videos use strict
industry standard symbols and behaviors, thus eliminating the necessity to
learn new techniques. If you would like to participate in a complete five minute
online tutorial on how to use all features available inside the presentation
panel, visit http://www.propoint.com/solutions/ and click on the DEMO
NOW link on the left hand side of the Web page.

This video delivery system may be customized somewhat to enhance and
accommodate the subject matter within a particular book. In these cases, spe-
cial effort has been made to ensure that all information is readily available and
easy to understand. In the unlikely event that you should encounter a problem
with the content on the site, please do not hesitate to contact us at Wiley Prod-
uct Technical Support.

Code and Bonus Content

In addition to the presentations, you can download the sample code files and
view additional resources.

Troubleshooting

If you have trouble with the Web site, please call the Wiley Product Technical
Support phone number: (800) 762-2974. Outside the United States, call 1 (317)
572-3994. You can also visit our Web site at www.wiley.com/techsupport.
Wiley Publishing, Inc. will provide technical support only for installation and
other general quality control items; for technical support on the applications
themselves, consult the program’s vendor or author.

About the 60 Minutes Web Site 657

a422541 AppA.qxd 6/19/03 10:14 AM Page 657

a422541 AppA.qxd 6/19/03 10:14 AM Page 658

659

Index

, (comma) content operator, 133
<> (angle brackets), tags, 77
* (asterisk) content operator, 134
| (pipe) content operator, 133
+ (plus sign), content operator,

133–134
? (question mark) content operator, 133

A
<a> element, SMIL hyperlinking,

480–481
abbreviations, RDF, 515
absolute positioning

CSS style rules and, 269–271
VML figures, 436–437

<abstract> element, CDF documents,
554

abstract expression trees,
MathML, 638

access
channels, 564–567
public, remote external DTDs,

125–126
Active channels, Webcasting, 532
Active Desktop, Webcasting, 532
actuate attribute, XLinks, 291–292
Adobe FrameMaker, 48

Advanced Text Management
System (IBM), 9

algebra elements, MathML content
markup, 633–634

align attribute, <div> element, 379
alignment, text, CSS style rules, 269
Amaya editor, installation, 640–644
Amaya software project, 227–228
AMS-TeX, MathML and, 618
<anchor> element, SMIL hyperlinking,

481–483
angle brackets (< >), 77
<animation> element, SMIL, 473
ANSI (American National Standards

Institute), Computer Languages for
the Processing of Text, 12

ANY keyword, 132
anyURI data type, definition, 182
Apache Web Server, 42
applications. See XML applications
Arbortext Epic, 55
arcs

VML, 430
XLinks, 286

inbound, 286
outbound, 286
third-party, 286

b422541 index.qxd 6/19/03 10:14 AM Page 659

660 Index

arithmetic elements, MathML content
markup, 633–634

asterisk (*) content operator, 134
ATTLIST keyword, 135
attribute declarations (DTDs)

attribute list declarations, 134–135
default values, 137
definition, 119
languages, 138–139
types, 136
white space preservation, 137–138

attribute node type, style sheets, 348
attribute normalization, definition, 149
attributes

<a> element, SMIL, 481
<anchor> element, SMIL, 481–483
<channel> element, 551
child elements and, 81
datafld, 385–387
datasrc, 385–387
description, 80–81
<Description> element, RDF, 513
<div> element, 379
elements and, 81
global, XLinks, 287–299
id, <layout> element, SMIL, 462–463
ID attribute, selectors and, 263–264
instances, lab, 110–111
<item> element, 556–557
<logo> element, 558
<logtarget> element, 560–561
<math> element, 627–628
MathML, 629
media object elements, SMIL,

475–476
names, 80–81
namespaces, declaring in DTD,

146–149
nesting, 81
notation declarations and, 143–145
pseudo-attributes, 73
resource attribute, RDF, 516

SOAP messages
encodingStyle, 601–602
mustUnderstand, 600
role, 600

start tags, 80–81
style sheets

named set, 343
output attributes, 344–345

<switch> element test attributes,
SMIL, 478

<table> element, dataPageSize, 382
type, <layout> element, SMIL,

462–463
XHTML, 223–225
XLinks, type elements combination,

292–293
XML Schema, declaration, 165

<audio> element, SMIL, 473
authoring software. See also editing

software
classifications, 45
definition, 40
graphical editors, 45, 47–51
integrated development

environments, 45
simple text editors, 45–47

axes, XPath, 304–306

B
backgrounds, images as, 264–266
behavior declarations, VML

documents, 423–424
Berners-Lee, Tim, 15, 25
binary data type, definition, 182
binding. See data binding
binding agents, data binding and,

392–393
<binding> element, WSDL

documents, 592–593
bitmap graphics

advantages, 417
disadvantages, 417–418

b422541 index.qxd 6/19/03 10:14 AM Page 660

Index 661

files, file format, 417
pixels, 416
raster graphic files, 416

BizTalk, DTDs and, 162
block-level boxes, VML, 425
<body> element, SMIL

media object elements, 472–477
<par> element, 470–472
<seq> element, 470–472
<switch> element, 477–479

<Body> element, SOAP messages, 602
boolean data type, definition, 182
borders, elements, 268
browsers. See Web browsers

pull technology and, 530
XLinks, display, 315–316

buttons, descriptions, recordsets, 398

C
CAD (computer-aided design), vector

graphics and, 418
calculus-related elements, MathML

content markup, 634
CALS (Continuous Acquisition and

Lifecycle support), 14
cascading nature of style sheets,

272–273
case sensitivity, HTML-related

tags, 221
cataloging Web content, RDF and, 503
CC/PP (Composite Capabilities/

Preferences Profile Specification), 512
CDATA section, reserved characters

and, 100–101
CDF (Channel Definition Format)

channels
availability, 534–536
<channel> element, 548–549

description, 545–546
file modification, 570–572
files

creating, 569–570
posting to Web server, 564

generator, downloadable, 545
Internet Explorer 4, 532
introduction, 529
Microsoft Note, 544
resources, 544–545
specification development, 544–546
subscriptions, adding channels and,

536–541
XML differences, 546

CDF documents
channel definitions, 550
character encoding, 563–564
elements

<abstract> element, 554
<channel> element, 550–551
<earliesttime> element, 555–556
<http-equiv> element, 561
<intervaltime> element, 555
<item> element, 556–557
<latesttime>, 556
<log> element, 559–560
<login> element, 562–563
<logo> element, 558–559
<logtarget> element, 560–561
<schedule> element, 555
<title> element, 557
<usage> element, 561–562

prolog, 549–550
special characters, 563–564

CDF Generator, installation, lab, 568
<channel> element, CDF documents,

548–551
Channel value, CDF <usage>

element, 562
channels

accessing, 564–567
adding to Favorites, CDF

subscriptions and, 535–541
availability, 534–536
designing, 547–549
Favorites button, IE, 535
logo images, 549
overview, 532–534

b422541 index.qxd 6/19/03 10:14 AM Page 661

662 Index

channels (continued)
synchronization

activation, 542–543
setup, 542–543

viewing offline, 543
character data, definition, 71
character encoding, CDF documents,

563–564
character points, XPointer, 314
character references

numeric
parsing and, 98–100
reserved characters and, 98–100

XML Schema validation and, 190
characters

MathML, 629–630
reserved, 97

child elements
asterisk (*) content operator, 134
attributes and, 81
comma (,) content operator, 133
description, 78
element content, 79
pipe (|) content operator, 133
plus sign (+) content operator,

133–134
question mark (?) content

operator, 133
CIM/XML, 511
classes

pseudo-classes, 258–260
CSS classes and, 260–263

selector grouping, 256–258
classical function elements, MathML

content markup, 634
clientless streaming, streaming media

delivery, 456
closed elements, XHTML syntax,

221–223
<Code> element, SOAP <Fault>

element, 604–605
coding, open source, 7

color
hexadecimal values, 440
predefined names, 440
RGB function, 440
shapes, VML, 440–441

comma (,), content operator, 133
comment node type, style sheets, 347
comments

literal string, 76
prolog, 76
XML Schema prolog, 168

communications
pull technology, 530
push technology, 530
Webcasting and, 531

complex content types, XML
Schema, 165

compositors, element type declara-
tions (XML Schema), 181

Conglomerate, description, 48
constant-related elements, MathML

content markup, 635
content

element content, 78
child elements, 79
mixed, 183–184
mixed content, 79

MathML markup elements, 633–636
presentation markup mix, 637

Web, RDF rating and, 503
content axes, XPath, 306
content handlers, XML parsers, 69
content model

constraints, XML Schema, 166
element type declarations, 129
RDF documents, 510–512
XML data, substituting, 515–516

content operators
asterisk (*), 134
comma (,), 133
pipe (|), 133
plus sign (+), 133–134
question mark (?), 133

b422541 index.qxd 6/19/03 10:14 AM Page 662

Index 663

content separators, GML tags, 10
control codes (specific coding) in

early documents, 7
Coombs, Renear, DeRose paper on

markup, 5
Corel XMetal, description, 54
CSS (Cascading Style Sheets)

cascading, 272–273
classes, pseudo-classes and, 260–263
Dave Raggett’s Adding a Touch of

Style Web site, 241
inline style specifications, 242–243
introduction, 239
levels, 240–241
parsing and, 247–248
properties, 251–253
Strict variant (XHTML) and, 215
style rules

absolute positioning, 269–271
borders, 268
declarations, 251
images as backgrounds, 264–266
images as discrete elements,

266–267
indentations, 269
margins, 269
pseudo-classes, 260–263
relative positioning, 271–272
selectors grouped by class, 256–258
selectors grouped by ID attribute,

263–264
selectors grouped by pseudo-

classes, 258–260
selectors overview, 249–251
selectors with pseudo-elements,

253–255
syntax, 249
text alignment, 269

W3C CSS Validation Service, 241
W3C CSS Working Group, 240–242
XHTML and, lab, 273–274
XML and, lab, 274–275
XSLT and, 335

current template rule, style sheets, 349
curved lines, VML, 430

D
daily quote generator, SOAP lab, 607
DARPA (Defense Advanced

Research Projects Agency),
XML origins and, 17

data bindable elements, 376
data binding

binding agent, 392–393
data island storage, 389–392
datafld attribute, 385–387
datasrc attribute, 385–387
definition, 374–375
DSOs (data source objects), 393–396
introduction, 373
labs

JavaScripts using IE’s DSO binding,
405–409

XHTML file with internal XML data
island, 401–403

XHTML file with reference to
external data island, 403–405

mapping and, 374
nesting data, 387–388
parser instructions and, 385–387
placeholders and, 374, 376–378
synchronization and, 374
table repetition agents, 392–393
two-level rule, 387–388
variables, style sheet elements, 344

data consumer elements
introduction, 376
single-valued, 378

overrestrictive data and, 382–385
tabular data, 378
XHTML data consumer elements, 378

data instance
attributes, 80–82
declared-empty elements, 77
default namespace declarations,

90–91

b422541 index.qxd 6/19/03 10:14 AM Page 663

664 Index

data instance (continued)
elements

content, 78–79
creation lab, 105–109
element types, 77–78
empty elements, 78–79

empty string namespace
declarations, 91–92

namespace declarations, inheritance
and, 92

namespaces, 85–88
nested elements, 83–85
prefix namespace declarations, 89–90
tags, 77
XHTML documents’ logical

structure, 219–220
data island storage

external data islands, 389–391
internal data islands, 391–392
XHTML file with internal XML data

island, 401–403
XHTML file with reference to

external data island, 403–405
data placeholders. See placeholders
data type constraints, XML

Schema, 166
data types

anyURI, 182
binary, 182
boolean, 182
date, 182
decimal, 182
ENTITY/ENTITIES, 182
ID, 182
int, 182
integer, 182
language, 182
Qname, 182
simple, element type declarations

and, 181–182
string, 182
time, 182

datafld attribute, div element,
379, 385–387

dataPageSize attribute, table
element, 382

datasrc attribute, div element, 379,
385–387

date data type, definition, 182
Dave Raggett’s Adding a Touch of

Style Web Site, 241
DCD (Document Content

Description), DTDs and, 162
DCF (Document Composition

Facility), 10
DCMI (Dublin Core Metatdata Initia-

tive), RDF documents and, 511
decimal character references, table, 99
decimal data type, 182
decimal format, style sheet

declaration, 343
declarations

DTDs, 127–134
namespaces, prefixes, 148
style rules, 251

declared-empty elements, 79–80
<definitions> element, WSDL

documents, 589
delimiters, GML tags, 10
<Description> element, RDF

documents, 512–513
descriptive markup, definition, 5
design

CDF channels, 547–549
MathML, 620–621

DesktopComponent value, CDF
<usage> element, 562

DHTML (Dynamic HTML), DSOs
and, 393

digital imaging
bitmap graphics, 416–418
vector graphics, 418–419

direction of links, XLinks, 286
discrete elements, images as, 266–267
distortion, SMIL objects, 466–467
<div> element

align attribute, 378
datafld attribute, 385–387

b422541 index.qxd 6/19/03 10:14 AM Page 664

Index 665

datasrc attribute, 385–387
HTML tables and, 379–380
 element and, 378

DMZs (Demilitarized Zones), network
segments, 41–42

DNS (Domain Name Services), UDDI
registries and, 583

DOCTYPE definition
declaration statement, Transitional

variant (XHTML) and, 216
internal DTDs, 75
introduction, 74–75
VML document prolog, 422

DOCTYPE keyword, 74
document element, 78
document processing

applications, 68
definition, 4
errors, 70
XML parsers, 69–70

document root node type, style
sheets, 347

document type declaration, 74–76
documentation, DTD suites, 121
domain names, mapping, 42
drawing

Bézier curves, 427–429
vector graphic images, 418

DrawML Specification, introduction,
446

DSOs (data source objects)
DHTML and, 393
recordsets, navigating, 396–401

DTD handlers, XML parsers, 69
DTDs (document type definitions)

attribute declarations, 119, 134–135
default values, 137
languages, 138–139
types, 136
white space preservation, 137–138

BizTalk and, 162
creating, 120–121
DCD and, 162
declarations, 127–134

element type declarations, 119
any content, 132
content model, 129
content operators, 132–134
declaration identifier, 128
empty elements, 131–132
mixed content, 130–131
names, 129
other element types, 130
parsed character data, 129

entity declarations, 119
general, 139–140

extensibility in design, 121
external, 118

lab, 149–153
private, 123–124
remote with public access, 125–126
subsets, 122–123
subsets on Web sites, 124–125

Frameset variant (XHTML), 217–218
history of, 118
instances, creating, 153–154
internal, 75, 118

external DTD combination, 126–127
subsets, 122

introduction, 117–118
locations, 121–122
MathML document prolog, 623–625
namespace declarations

attributes, 146–149
limitations, 149

notation declarations, 119, 143–146
overview, 118–119
parameter entity declarations,

140–141
reasons to use, 119–120
RELAX and, 162
Schematron and, 162
SGML and, 13
SMIL document prolog, 460–461
Strict variant (XHTML) and, 215
suites, documentation, 121
Transitional variant (XHTML) and,

215–216

b422541 index.qxd 6/19/03 10:14 AM Page 665

666 Index

DTDs (continued)
types, 121–122
valid documents and, 104
well-formed documents and, 120
XML Schema and, 162, 190

DTP (desktop publishing) applications
description, 11
TeX applications, 11

duration facet, description, 185
DVI (Device Independent) format,

DTP and, 11

E
<earliesttime> element, CDF

documents, 555–556
editing software, 40. See also authoring

software
element content

child elements, 79
definition, 78
mixed content, 79, 183–184
operators, 132

element node type, style sheets, 347
element type declarations (DTDs)

any content, 132
content model, 129
content operators, 132

asterisk (*), 134
comma (,), 133
pipe (|), 133
plus sign (+), 133–134
question mark (?), 133

declaration identifier, 128
definition, 119
empty elements, 131–132
mixed content, 130–131
names, 128
other element types, 130
parsed character data, 129
XML Schema

compositors, 181
data types, 181–182
empty element content, 181
mixed content, 183–184
<sg1:catalog> element, 181–182

<sg1:diamonds> element, 178–181
<sg1:gem> element, 178–181

elements. See also individual elements
attributes and, 81
borders, 268
content, 78–79
creating, style sheet nodes 6-12, 348
data instance, creation lab, 105–109
declared-empty, 77
empty elements, 79–80
extent, 78
instances, lab, 110–111
MathML, 212–213
names, well-formed documents

and, 102
nested, 83–85

sibling elements, 84
no content, 79–80
types

child elements, 78
description, 77
document element, 78
GI (generic identifier), 78
naming rules, 77
nested, 220–221
root element, 78
white space, 77

XML Schema, declaration, 165
Emacs, 46
email

push technology and, 530
verification, SOAP lab, 608–609

Email value, CDF <usage>
element, 562

Emilé, 48
empty elements

declared-empty, 79–80
element type declarations (DTDs),

131–132
end tags, 80
no content, 79–80
start tags, 80
XHTML syntax, 221–223
XML Schema element type

declarations, 181

b422541 index.qxd 6/19/03 10:14 AM Page 666

Index 667

empty string namespace declarations,
91–92

encodingStyle attribute, SOAP
messages, 601–602

end tags
definition, 77
empty elements, 80
SGML, 14

enlivening expression elements,
MathML, 632

entities
definition, 92–93
external, 93–94
general entities, 94–96
internal, 93–94
named entities, 98
notation declarations and, 145–146
parameter entities, 94–96
parsing, 93
predefined, 97–98

ENTITIES data type, 182
ENTITY data type, 182
entity declarations (DTDs)

definition, 119
general, 139–140

ENTITY keyword, 140
entity resolvers, XML parsers, 70
<Envelope> element, SOAP, 598–599
eqn, MathML and, 618
equation editors, MathML content

markup, 635
error files, virtual hosting, 42
error handlers, XML parsers, 69
errors

document processing, 70
XML parsers, 70

expat XML parser, 70
expressions

MathML
abstract expression trees, 638
layout boxes, 638–640
planning and, 616–617

XPath
functions in, 308–311
location paths and, 301–304
predicates, 307–308

extended-type XLinks, 295–299
extent of element, description, 78
external data islands

definition, 389–391
XHTML files with reference, 403–405

external DTDs
definition, 118
lab, 149–153
private, 123–124
remote with public access, 125–126
subsets, 122–123

at Web sites, 124–125
external entities

description, 93–94, 139
parameter entities, 140, 143

external style sheets, document
affiliation, 244–247

external subsets, 76
EzMath, 646–649

F
facets, XML Schema, 180, 184–185
<Fault> element, SOAP messages,

603–604
figure placement, VML

absolute positioning, 436–437
relative positioning, 437
static positioning, 436
z-index, 437–438

figures, VML
coloring shapes, 440–441
overlapping, 437–438

file formats, procedural markup and, 5
filenames, virtual hosting, 42
<fill> element, VML, 441–442
fills, VML

gradient fills, 442–443
pattern fills, 443
pictures, 443

flat catalog structure, XML Schema
documents, 186–189

flipping images, VML, 438–439
fonts, vector fonts, 418
formatting language, XSL, 333
fractionDigits facet, 185

b422541 index.qxd 6/19/03 10:14 AM Page 667

668 Index

Frameset variant (XHTML)
DTDs and, 217–218
introduction, 214

freeform XML, 103
functions

function elements, MathML content
markup, 634

XPath expressions, 308–311

G
GCA (Graphic Communication

Association)
GML and, 8
System X project (GenCode), 10

GenCode, 10
general entities, 94–96
generic coding, beginnings, 7–8
GetLocalTime Web service, WSDL

files, 586–588
GI (generic identifier), 78
GIF image format, logo images, 558
global attributes, XLinks

actuate, 291–292
definition, 287–288
extended-type, 295–299
show attribute, 291–292
simple-type linking elements,

294–295
type attribute, 289–291

global references, XML Schema,
173–175

GML (Generalized Markup Language)
code examples, 9
origins, 8–9
portability, 10
tags, 10

GO (Gene Ontology) project, 512
Goldfarb, Charles, 9
gradient fills, VML, 442–443
graphic objects, VML path attribute,

427–429
graphical browsers, 43
graphical editors

Adobe FrameMaker, 48
Conglomerate, 48

Emilé, 48
GUIs, 47
Microsoft FrontPage 2002, 49
Microsoft Word, 49–51
Microsoft XML Notepad, 48
Peter’s XML Editor, 48
structure checking, 47
XAE (XML Authoring Environment

for Emacs), 48
graphics

bitmap graphics, 416
raster graphics, 416

graphs, RDF, 509–510
grouping shapes, VML, 444–446
GUIs (graphical user interfaces), 47

H
hardware requirements

authoring software, 40
editing software, 40

<head> element, SMIL
<layout> element, 462–463
<meta> element, 469
<region> element, 465–466
<root-layout> element, 463–465
<switch> element, 469–470

helper components, XML Schema, 165
hexadecimal character references,

table, 99
hexadecimal color values, 440
hierarchies, virtual hosting, 42
HLink, XHTML development and, 210
HTML (HyperText Markup Language)

data and, 208–209
document conversion to XML, 55–56
DTP and, 11
extensibility, 208
history, 15–16
limitations, 208–209
SGML and, 14
styles

inline specifications, 242–243
internal style sheet specifications,

243–244
table, XSLT elements, 348

b422541 index.qxd 6/19/03 10:14 AM Page 668

Index 669

tables
<div> element, 379–380
first row, 349

tags, versus XML tags, 20
VML document prolog and, 422
W3C validation service, conversion

and, 226–227
Web site conversion to XHTML,

225–226
XHTML history, 206–207

HTML-Kit, 229, 232–234
HTML-Tidy utility

HTML file validation lab, 230–232
introduction, 229

<http-equiv> element, CDF
documents, 561

HTTP server, 40
HTTP streaming, streaming media

delivery, 456
hyperlinks, SMIL elements, 479–483

I
IBM Http Server, 43
IBM Script, Advanced Text Manage-

ment System and, 9
id() function, XPath/Xpointer,

310–311
id attribute

<div> element, 379
<layout> element, SMIL, 462–463

ID attribute, selectors and, 263–264
ID data type, 182
IDEAlliance, 8
IDEs (Integrated Development

Environments)
Arbortext Epic, 55
Corel XMetal, 54
description, 52–53
Komodo, 55
TurboXML, 54
Xeena, 54
XML Spy, 55

IETF (Internet Engineering Task
Force), 15–16

IIS (Internet Information Services)
configuration, 58–59
installation, lab, 57–60
software, 40
testing, 59–60
Web Server software, 43

image property names, 265
images

as backgrounds, 264–266
as discrete elements, 266–267
flipping, VML, 438–439
generating, with VML, 420
logo images, CDF channels, 549
rotating, VML, 438
shapes, VML, 431
XML-to-HTML transformations,

366–368
 element, SMIL, 473
importing

style sheet element for, 343
style sheets, 343

inbound arcs, XLinks, 286
indentations, CSS style rules, 269
infix notation, MathML, 636
inline style specifications, 242–243
installation

Amaya editor, MathML, 640–644
CDF Generator, lab, 568
EzMath, 646–649
IIS, lab, 57–60
TIBCO XML Transform software,

353–354
TurboXML, lab, 60–61
WebEQ, 644–646

instan, design, lab, 111–112
instances

creating, lab, 153–154
elements and attributes, lab, 110–111

instantiation, 349
int data type, 182
integer data type, 182
internal data islands, 391–392

XHTML files, 401–403

b422541 index.qxd 6/19/03 10:14 AM Page 669

670 Index

internal DTDs
definition, 118
external DTDs combination, 126–127
subsets, 122

internal entities
description, 93–94, 139
parameter entities, 140, 141–142

internal style sheet specifications,
243–244

internal subsets, 75–76
Internet browsers. See Web browsers
Internet Explorer

browser software requirements, 40
channels, 535
description, 44
media environment, lab, 485–486

<intervaltime> element, CDF
documents, 555

inventory control, <xs:pattern>
element and, 184

ISBNs (International Standard Book
Numbers), <xs:pattern> element
and, 184

ISO (International Organization for
Standardization)

ISO12083:1994, MathML and, 619
SGML and, 13

<item> element, CDF documents,
556–557

J
JavaScript

code, recordsets, 396–397
DSO binding technology, 405–409

JPEG image format, logo images, 558

K
key declaration, style sheets, 343
keywords

ANY, 132
ATTLIST, 135
DOCTYPE, 74
ENTITY, 140
NOTATION, 144

Komodo, 55
Konqueror

browser software requirements, 40
description, 44

L
labs

authoring environment creation,
56–61

CDF
CDF Generator installation, 568
channel availability, 572–574
conventions, 27–32

CSS
combining with XHTML, 273–274
combining with XML, 274–275

data binding
JavaScript using IE’s DSO binding,

405–409
XHTML file with internal XML data

island, 401–403
XHTML file with reference to

external data island, 403–405
data instance with elements,

creation, 105–109
DTDs

creating external, 149–153
instance creation, 153–154

file creation, 569–570
file modification, 570–572
HTML file validation, HTML-Tidy

and, 230–232
IIS Web server installation, 57–60
instances

design, 111–112
elements and attributes and,

110–111
instructions, 27–32
links, inserting in XML file that has

DTD, 275–278
MathML

Amaya editor installation, 640–644
EzMath installation, 646–649
WebEQ installation, 644–646

b422541 index.qxd 6/19/03 10:14 AM Page 670

Index 671

RDF creation
code validation, 517–519
RDFedt editor, 519–523

SMIL
IE media environment, 485–486
media environment, 486–490
RealOne Media Player

installation, 484
SOAP

daily quote generator, 607
email verifier, 608–609
time service, 606

Space Gems, 29
transformation software, 351–368

TIBCO XML Transform, 353–368
TurboXML installation, 60–61
VML document creation, VML

example, 447–449
VML shapes, 450
Web service access, SOAP, 605–609
XHTML file creation, HTML-Kit,

232–234
XLink, 316

comparing types, 322–325
link creation, 317–318
multiple links in XML file, 318–319
outbound links, 319–322
third-party links, 324–325

XML, searches, 29–30
XML Schema

complex elements extended, 198
complex types, 196–198
creation, 191–195
instances, 195

XPath, 316
XPointer, 316

language data type, 182
languages

attribute declarations, 138–139
lingua franca, 8
subset languages, 18

<latesttime> element, CDF
documents, 556

LaTeX, MathML and, 618

layout boxes, MathML expression
creation, 638–640

<layout> element, SMIL <head>
element, 462–463

left-flush tags, GML, 14
Length facet, 184
linear algebra-related elements,

MathML content markup, 634
lines, VML, 431
lingua franca, 8
<link> element, 242–246
links. See also XLinks

XML files, DTDs and, 275–278
literal string, comments and, 76
local references, XML Schema, 173–175
location paths, XLinks and XPath

expressions, 301–304
location steps, XPath

axes, 304–306
node tests, 306–307
predicates, 307–308

<log> element, CDF documents,
559–560

logic elements, MathML content
markup, 633–634

logical devices, 88
logical structures

documents, 71–92
XHTML syntax, 218–220

RDF documents, 510–514
XLinks, 286–299

<login> element, CDF documents,
562–563

<logo> element, CDF documents,
558–559

logo images, CDF channels, 549
<logtarget> element, CDF document,

560–561
Lorie, Ray, 9

M
mapping

data binding and, 374
domains, 42

b422541 index.qxd 6/19/03 10:14 AM Page 671

672 Index

margins, CSS style rules, 269
markup

definition, 6–7, 71
descriptive, 5
metamarkup, 5
presentational, 5
procedural, 5
proprietary data formats, 12
punctuational, 5
reasons to use, 6
referential, 5
standards, 12
tags, 6
Text Description Language, 8
types, 4

<math> element, MathML, 626–628
MathML documents

MathML DTDs, 623–625
schemas, 623–625
style sheets, 625

MathML (Mathemat Markup
Language)

presentation markup, script and
limit schemata elements, 631–632

MathML (Mathematical Markup
Language)

AMS-TeX, 618
attributes, 629
bases, 629–630
characters, 629–630
content markup, 633–636

algebra elements, 633–634
arithmetic elements, 633–634
basic content elements, 633
calculus-related elements, 634
classical function elements, 634
constant-related elements, 635
linear algebra-related elements, 634
logic elements, 633–634
presentation markup mix, 637
relation elements, 634
semantic mapping elements, 634
sequence-related elements, 634
series-related elements, 634
set theory related elements, 634

statistic-related elements, 634
symbol-related elements, 635
token elements, 633

display speed, 619
download speed, 619
elements, 212–213
eqn, 618
expressions

abstract expression trees, 638
layout boxes, 638–640
planning and, 616–617

fonts, 617
infix notation, 636
introduction, 615–616
ISO12083:1994 and, 619
labs

Amaya editor installation, 640–644
EzMath installation, 646–649
WebEQ installation, 644–646

LaTeX and, 618
<math> element, 626–628
namespaces, 212–213, 628–629
overview, 622–623
PN (prefix notation), 636–637
postfix notation, 636
presentation markup, 630–632

content markup mix, 637
enlivening expression elements, 632
general layout schemata

element, 631
table and matrix elements, 632
token elements, 630–631

printing technology and, 617
rendering technology and, 617
scripts, 629–630
symbols, 629–630
TeX and, 618
visual presentation solutions,

618–619
visually handicapped persons, 619
W3C and, 619–620

design goals, 620–621
implementations, 621–622
Math Working Group, 620

XHTML development and, 210

b422541 index.qxd 6/19/03 10:14 AM Page 672

Index 673

matrix elements, MathML, 632
maxExclusive facet, 185
maxLength facet, 184
media environment, Internet Explorer,

485–486
media object elements, SMIL <body>

element, 472–477
memory, vector graphics files, 418
<message> element, WSDL

documents, 590–591
<meta> element, SMIL <head>

element, 469
meta tags, metadata and, 499–500
metadata

initiatives, 511
introduction, 499–500
meta tags and, 499–500
PICS and, 500–502
RDF and, 500–502
SOAP messages, 600

Metadata Activity
Semantic Web Activity and, 504
W3C, 500–501

metalanguages
definition, 7
description, 6
introduction, 6
meta-markup, 7
XML as, 18

metamarkup, 5
Microsoft FrontPage 2002, 49
Microsoft Note, CDF and, 544
Microsoft Notepad, 46
Microsoft Word, HTML/XML

creation, 49–51
Microsoft WordPad, 46
Microsoft XML Notepad, 48
minExclusive facet, 185
minLength facet, 184
mixed content

description, 183–184
elements, 79

modularity of XHTML, 213–214
Mosher, Ed, 9

Mozilla
browser software requirements, 40
description, 44
Mozilla.org, RDF and, 506

MSXML XML parser, 70
multidirectional links, XLinks, 324
mustUnderstand attribute, SOAP

messages, 600–601

N
name attribute, <div> element, 379
named entities, 98
namespace declarations

default, 147
default namespace declarations,

90–91
definition, 85–86
DTD limitations, 149
empty string namespace declara-

tions, 91–92
inheritance and, 92
prefix namespace declarations, 89–90
RDF documents, 511
<schema> element, 170–171
SMIL documents, 461
VML documents, 422–423
XSLT style sheets, 341

namespace node type, style sheets, 347
namespaces

attributes, declarations in DTD,
146–149

definition, 85–88
MathML, 212–213, 628–629
qualifying URLs, 88
RDF documents, 510–512
universal name, 88
XLinks, 287
XML Schema

target namespaces, 171–172
xs prefix, 170

naming
attributes, 80–81
element types, 77

b422541 index.qxd 6/19/03 10:14 AM Page 673

674 Index

naming (continued)
elements, well-formed documents

and, 102
links, XLinks, 287

NASSL (Network Accessible
Services Specification Language),
WSDL and, 585

nesting
attributes, 81
data binding and, 387–388
element types, XHTML syntax,

220–221
elements, 83–85
XML Schema document

structure, 186
Netscape

browser software requirements, 40
description, 44

NITF (News Industry Text Format), 14
nodal structure, source document, 340
node points, XPointer, 313–314
node tests, XPath location steps,

306–307
nodes, style sheets

current template rule, 349
element creation, 348
filling out cells in table row, 350–351
HTML table initial row, 349
HTML table with XSLT element

types, 348
individual name table cell, 350
matching to, 347–348
source node, 349
template patterns and table row, 350
template rule, 349

NONE value, CDF <usage>
element, 562

normalization, attribute
normalization, 149

notation declarations (DTDs)
definition, 119
non-XML data

attributes and, 143–145
entities and, 145–146

NOTATION keyword, 144
numeric character references

parsing and, 98–100
reserved characters and, 98–100

O
Oasis Cover Pages Web site,

SGML-related languages, 13
object-oriented graphics

fonts, 418
vector graphic images, 418

objects, SMIL documents, 466–469
offline work, channel viewing, 543
open source

document coding, 7
OSI, 208

Opera, 44
operating system requirements, 40
OSD (Open Software Description

Format), CDF development and, 544
OSI (Open Source Initiative), 208
outbound arcs, XLinks, 286
outbound links, XLinks lab, 319–322
outline fonts, vectors and, 418
output of style sheet elements

description, 343
output attributes, 344–345

ovals, VML, 431
overlapping figures, VML, 437–438

P
<par> element, SMIL <body>

element, 470–472
paragraph breaks,

element, 380
parameter entities

declarations, 140–141
definition, 94
external, 143
internal, 141–142

parsing
character data, element type

declarations, 129
character references, numeric, 98–100
CSS and, 247–248

b422541 index.qxd 6/19/03 10:14 AM Page 674

Index 675

entities, 93
expressions, XPath and, 301–303
predefined entities and, 97–98
reserved characters, 97
well-formed documents and, 101

path attribute
relative coordinates, 428
VML graphic objects, 427–429

<path> element, VML, 429–430
pattern fills, VML, 443
payload, SOAP, 594
PDF (Portable Document Format),

DTP and, 11
Peter’s XML Editor, 48
physical structure of documents,

92–96
PICS (Platform for Internet Content

Selection), metadata and, 500–502
picture fills, VML, 443
piname in processing instructions, 74
pipe (|), content operator, 133
pixels

bitmap graphics and, 416
definition, 416

placeholders
data bindable elements, 376
data binding and, 374
data consumer elements, 376–378
<div> element, 378–380

plaintext applications, 12
plus sign (+), content operator,

133–134
PN (prefix notation), MathML,

636–637
pointers, internal document structure,

312–313
points, XPointer, 313

character points, 314
node points, 313–314

<port> element, WSDL
documents, 593

portability
GML, 10
XHTML, 214

<portType> element, WSDL
documents, 591

position() function,
XPath/XPointer, 311

postfix notation, MathML, 636
posting CDF files to Web server, 564
Precision Graphics Markup Language,

introduction, 446
predefined entities, 97–98
predefined entity references, data

content, 563
predefined shapes, VML

description, 430–434
templates, 433–434

predicates, XPath, 307–308
prefix namespace declarations,

89–90, 148
presentation markup, MathML,

630–632, 637
presentational markup, 5
primary components, XML

Schema, 165
primitive graphic objects, 426
PRISM (Publishing Requirements for

Industry Standard Metadata), 511
private external DTDs, 123–124
procedural markup, 5
processing instruction node type,

style sheets, 348
processing instructions, prolog, 73–74
prologs

CDF documents, 549–550
MathML documents

MathML DTDs, 623–625
schemas, 623–625
style sheets, 625

RDF documents, 510
SMIL documents, 460–461
VML documents, 422
WSDL documents, 589
XHTML documents, 219
XML documents

comments, 76
document type declaration, 74–76
processing instructions, 73–74
XML declaration, 72–73

XML Schema, 168–169

b422541 index.qxd 6/19/03 10:14 AM Page 675

676 Index

properties
CSS language, 251
image properties, 265
RDF, 508–509

property elements, RDF, 512–514
proprietary data formats, markup

languages and, 12
PS (PostScript) format, DTP and, 11
pseudo-attributes

definition, 73
style sheets, 339

pseudo-classes
CSS classes and, 260–263
grouping selectors, 258–260

pseudo-elements, selectors with,
253–255

public access, remote external DTDs,
125–126

public domain software, Web
servers, 42

publication, Web, 498–499
publishing, CDF channel creation,

546–547
pull technology, 530
punctuational markup, 5
push technology, 530

Q
Qname data type, 182
qualified references, XML Schema,

173–175
qualifying URLs, namespaces and, 88
query contexts, style sheet node 5,

346–348
question mark (?), content

operator, 133

R
radio broadcasting, push

technology and, 530
ranges, XPointer, 314–315
raster graphic files, 416
RDF documents

abbreviations, 515
content model, 510–512

<Description> element, 512–513
namespaces, 510–512
resource attribute, 516
structure

prolog, 510
<RDF> element, 510–512

URIs, 503
<RDF> element, RDF documents,

510–512
RDF (Resource Description

Framework)
code validation, lab, 517–519
definition, 502–504
file creation, RDFedt editor, 519–523
graphs, 509–510
implementations, 506–507
introduction, 497
metadata and, 500–502
properties, 508–509
resources, 508
statements, 507–508
values, 509

RDF Validation Service, 506
RDFedt editor, RDF file creation,

519–523
RealOne Media Player, SMIL

installation lab, 484
recordsets

button descriptions, 398
DSOs and, 396–401
JavaScript code, 396–397
XHTML table definition, 398
<xml> element, 397

rectangles, VML, 431
<ref> element, SMIL, 473
referential markup, 5
<region> element, SMIL <head>

element, 465–466
relation elements, MathML content

markup, 634
relative coordinates, VML

graphics, 428
relative positioning

CSS style rules and, 269
VML figures, 437

b422541 index.qxd 6/19/03 10:14 AM Page 676

Index 677

RELAX (Regular Language description
for XML), DTDs and, 162

remote external DTDs, public access,
125–126

reserved characters
CDATA sections, 100–101
numeric character references, 98–100
parser and, 97
predefined entity references, 563–564

resource attribute, RDF, 516
resources

CDF, 544–545
RDF, 503, 508
XLinks, 285–286

RGB color, VML, 440
Rice, Stanley, 8
role attribute, SOAP messages, 600
root directories

creating, 58
virtual hosts, 42

root element
definition, 78
nesting, 84–85
<sg1:diamonds> element

declaration, 175–178
SMIL documents, 461–462
well-formed documents and, 101

rotating images, VML, 438
rounded rectangles, VML, 431
RSS (RDF Site Summary), 511
Ruby Annotation, XHTML, 209–210

S
scalability

shapes, VML, 443–444
vector graphics, 419

scalable fonts, vectors and, 418
<schedule> element, CDF

documents, 555
<schema> element, namespace

declarations, 170–171
schema handlers, XML parsers, 69
schemas, MathML document prolog,

623–625

Schematron (Schema for Object-
oriented XML), DTDs and, 162

SCL (SOAP Contract Language),
WSDL and, 585

screening, XML parsers and, 69
ScreenSaver value, CDF <usage>

element, 562
scripts, MathML, 629–630
searches

labs, 29–30
VML, 421
Web searches, 498–499

secondary components, XML
Schema, 165

selectors
grouping

by class, 256–258
by ID attribute, 263–264
by pseudo-class, 258–260

pseudo-elements, 253–255
style rules, overview, 249–251

semantic mapping elements, MathML
content markup, 634

Semantic Web, 22, 504–505
<seq> element, SMIL <body> element,

470–472
sequence-related elements, MathML

content markup, 634
series-related elements, MathML

content markup, 634
<service> element, WSDL

documents, 593
set theory related elements, MathML

content markup, 634
<sg1:catalog> element declaration,

181–182
<sg1:diamonds> element declaration,

175–178
<sg1:gem> element declaration,

178–181
SGML (Standard Generalized Markup

Language)
approval, 13
DTDs and, 13, 120

b422541 index.qxd 6/19/03 10:14 AM Page 677

678 Index

SGML (continued)
end tags, 14
first draft, 12
SGML-based languages, 13–14
start tags, 14
Web site, 7
XML and, 18

<shape> element, VML, 425–426
shapes, VML

color, 440–441
grouping, 444–446
predefined, 430–434
scaling, 443–444

<shapetype> element, VML, 435
show attribute, XLinks, 291–292
sibling elements, nesting, 84
simpl text editors. See text editors
simple content types, XML

Schema, 165
SimpleText, 46
single-valued data consumer elements

data binding agent, 393
definition, 378
overrestrictive data and, 382–385
<table> element, 380–381

sitecrawlers, Webcasting and, 531
SKUs (stock keeping units),

<xs:pattern> element and, 184
SMDL (The Standard Music

Description Language), 14
SMIL documents

<body> element
media object elements, 472–477
<par> element, 470–472
<seq> element, 470–472
<switch> element, 477–479

<head> element
<layout> element, 462–463
<meta> element, 469
<region> element, 465–466
<root-layout> element, 463–465
<switch> element, 469–470

hyperlinks, 479–483
namespace declarations, 461

objects
dimension matching, 466–469
fitting to region, 466–469

prolog, SMIL DTD, 460–461
root element, 461–462
<smil> element, 461–462

<smil> element, 461–462
SMIL (Synchronized Multimedia

Integration Language)
labs, RealOne Media Player

installation, 484
media environment lab, 486–490
overview, 455, 456–457
streaming media and, 455–456
W3C and

version 1.0, 457–458
version 2.0, 458

XHTML and, 459
XHTML development and, 210
XML applications and, 68

SOAP (Simple Object Access Protocol)
Envelope, 598–599
description, 594–595
<Fault> element, 603–604

<Code> element, 604–605
<Value> element, 604–605

introduction, 579
labs

daily quote generator, 607
email verifier, 608–609
time service, 606

messages, 597–598
<Body> element, 602
encodingStyle attribute, 601–602
header, 599–605
mustUnderstand attribute, 600–601
role attribute, 600
sample, 605

requests
creating the client, 586
example, 602–603

response example, 603
specification development, 595–596
UDDI and, 579–580
WSDL and, 579

b422541 index.qxd 6/19/03 10:14 AM Page 678

Index 679

software
browser software, 40
editing software (See editing

software)
TIBCO XML Transform, 353–368
Web servers, 41–43

SoftwareUpdate value, CDF <usage>
element, 562

source document
nodal structure, 340
style sheets, embedded, 339
transformations, 336–341

source node, style sheets, 349
Space Gems

labs, 29
Web server configuration, 41–42

Space Gems’ Private Network, 41
 element

<div> element and, 378
element names, 378
paragraph breaks, 380

special characters, CDF documents,
563–564

specific coding, 7
start tags

attributes, 80–81
definition, 77
empty element, 80
SGML, 14
well-formed documents and, 102

static library, HTML, 21
static positioning, VML figures, 436
statistic-related elements, MathML

content markup, 634
storage, data islands

external, 389–391
internal, 391–392

streaming media
clientless streaming, 456
definition, 455
HTTP streaming, 456
SMIL and, 455–456
true streaming, 456

Strict variant (XHTML)
CSS and, 215
DTDs and, 215
introduction, 214

string data type, 182
strings, empty string namespace

declarations, 91–92
structure checking, graphical editors

and, 47
style attribute, <div> element, 379
<STYLE> element, 243–244
<style> element, 243–244
style sheets. See also CSS (Cascading

Style Sheets)
attributes, named set definition, 343
decimal format declaration, 343
elements, 343
embedding in source documents, 339
importing, 343
key declaration, 343
MathML documents, 625
namespace declarations, 341
nodes

6-12/element creation, 348
18-22/filling out cells in table row,

350–351
23-25/individual name table cell,

350
13/building HTML table with XSLT

element types, 348
15/current template rule, 349
16/HTML table initial row, 349
5/query contexts and first

template rule, 346–348
14/source node, 349
17/template patterns and table

row, 350
15/template rule, 349
matching to, 347–348

output attributes, 344–345
processing instructions,

pseudo-attributes, 339
root node, 341

b422541 index.qxd 6/19/03 10:14 AM Page 679

680 Index

style sheets (continued)
templates, 343
tree output, 343
variables, binding, 344
white space

preserving, 343
stripping, 343

styles
inline specifications, 242–243
internal style sheet specifications,

243–244
rules

absolute positioning, 269–271
borders, 268
declarations, 251
images as backgrounds, 264–266
images as discrete elements,

266–267
indentations, 269
margins, 269
relative positioning, 271–272
selectors grouped by class, 256–258
selectors grouped by ID attribute,

263–264
selectors grouped by pseudo-

classes, 258–260
selectors overview, 249–251
selectors with pseudo-elements,

253–255
syntax, 249
text alignment, 269

subset languages, 18
subsets

external subsets, 76
internal subsets, 75–76

Sun ONE Web Server, Web site
information, 43

SVG (Scalar Vector Graphics)
overview, 446
VML and, 415
XHTML development and, 210

<switch> element, SMIL <body>
element, 477–479

symbol-related elements, MathML
content markup, 635

symbols, MathML, 629–630
SYMM-WG (Synchronized Multi-

media Working Group), SMIL and,
457–458

synchronization
channels

activation, 542–543
setup, 542–543

data binding and, 374
syntax

grammar rules, 21
RDF, abbreviations, 515
style rules, 249
XHTML, document logical structure,

218–220
XLinks, browser display, 315–316

SYSTEM keyword, DTDs, 75
system requirements, authoring

environment creation, 56

T
<table> element

attributes, dataPageSize, 382
single-valued consumer elements,

380–381
overrestrictive data and, 382–385

tabular consumer elements, 380–381
table elements, MathML, 632
table repetition agents, data binding

and, 392–393
tabular data consumer elements

definition, 378
<table> element, 380–381
table repetition agent, 393

tags
end tags, 77
GML, 10
introduction, 6
start tags, 77

target namespaces, XML Schema,
171–172

TEI (Text Encoding Initiative), 14

b422541 index.qxd 6/19/03 10:14 AM Page 680

Index 681

television broadcasting, push
technology and, 530

template rule
current template rule and, 349
style sheet node 5, 346–348

templates
current template rule, 349
patterns, table rows, 350
predefined shapes, VML, 433–434
<shape> element, VML, 425–426
style sheet elements, 343
template rule, 346–349

TeX applications
DTP applications, 11
MathML and, 618

text
alignment, CSS style rules, 269
definition, 71
description, 3

Text Description Language, 8–9
text editors

definition, 12
design and, 21
development and, 21
displays, 46
Emacs, 46
Microsoft Notepad, 46
Microsoft WordPad, 46
origins, 45–46
SimpleText, 46
vi, 46

<text> element, SMIL, 473
text node type, style sheets, 348
<textstream> element, SMIL, 473
third-party arcs, XLinks, 286
third-party links, lab, 324–325
TIBCO XML Transform software

installation, 353–354
XML-to-HTML transformation,

360–366
images and, 366–368

XML-to-XML transformation,
354–360

time data type, 182

<title> element, CDF documents, 557
token elements

MathML content markup, 633
MathML presentation markup,

630–631
totalDigits facet, 185
transformations

diamond list tabulation example,
336–351

formatting, 336
introduction, 331
reasons to transform, 332–333
software, labs, 351–368
source document, 336–341

nodal structure, 340
structural transformation, 336
style sheets, pseudo-attributes, 339
XML Transform software

XML-to-HTML transformations,
360–366

XML-to-XML transformations,
354–360

XPath and, 335
XSL and, 333–334
XSL parsers and, 334
XSLT and, 334–335
XSLT style sheet, root node, 341

Transitional variant (XHTML)
DOCTYPE declaration statement, 216
DTDs and, 215–216
introduction, 214

traversal, XLinks, 286
true streaming media, streaming

media delivery, 456
Tunnicliffe, William, 8
TurboXML

description, 54
installation, lab, 60–61

two-level rule in data binding,
387–388

type attribute
<layout> element, SMIL, 462–463
XLinks, 289–291

type elements, XLinks attributes
combination and, 292–293

b422541 index.qxd 6/19/03 10:14 AM Page 681

682 Index

type linking elements, XLinks,
294–295

<types> element, WSDL documents,
589–590

typesetting technologies
DTP applications, 11
GML, 10
mainframe publishing

applications, 11
plaintext applications, 12
text editors, 12
word processor applications, 11–12

U
UBR nodes, UDDI and, 583–584
UDDI (Universal Description

Discovery, and Integration)
business registry, 582
project, 581
registries, DNS and, 583
SOAP and, 579–580
specification, 581–582
sponsoring organization, 581
UDDI TC (Technical Committee), 584

<uline> element, 242–243
universal name, 88
UPCs (Universal Product Codes),

<xs:pattern> element and, 184
URIs (Universal Resource Identifier),

RDF documents and, 503
<usage> element, CDF documents,

561–562
use= attribute, 180

V
valid documents, 104
validating parsers, 69
validation

CSS Validation Service, 241
DTDs and, 120
HTML files, HTML-Tidy utility and,

230–232
RDF code, lab, 517–519
XML Schema validation, character

references and, 190

<Value> element, SOAP <Fault>
element, 604–605

values, RDF and, 509
variables, style sheets, 344
vector graphics

advantages, 418–419
CAD systems and, 418
disadvantages, 419
fonts, 418
memory, 418
object-oriented graphics, 418
scalability, 419

vi text editor, 46
<video> element, SMIL, 473
virtual hosting

definition, 42
error files, 42
filenames, 42
hierarchies, 42
root directories, 42

virtual server, 42
VML (Vector Markup Language)

advantages, 421
arcs, 430
block-level boxes, 425
<body> element, 424
CSS and, 420
curved lines, 430
custom figures, 435
development of, 419–420
documents

behavior declarations, 423–424
creating, lab, 447–449
namespace declarations, 422–423
prolog, 422

element categories, 424
figure overlap, 437–438
figure placement, 435–436

absolute positioning, 436–437
relative positioning, 437
static positioning, 436
z-index, 437–438

figures, coloring shapes, 440–441
files, size, 421

b422541 index.qxd 6/19/03 10:14 AM Page 682

Index 683

<fill> element, 441–442
fills

gradient fills, 442–443
pattern fills, 443
pictures, 443

HTML and, 420
images

flipping, 438–439
rotating, 438
in shapes, 431

introduction, 415
lines, 431
ovals, 431
path attribute, 427–429

pen commands, 427–428
<path> element, 429–430
rasterizers, 421
rectangles, 431
relative coordinates, 428
rounded rectangles, 431
searches, 421
<shape> element, 425–426
shapes

grouping, 444–446
predefined, 430–434
scaling, 443–444

<shapetype> element, 435
specification document, 420
vector graphics definition, 420
XHTML and, 420

W
W3C

Amaya open source software,
227–228

CSS Validation Service, 241
CSS Working Group, CSS develop-

ment, 240–242
HTML validation service, 226–227
MathML and, 619–620

design goals, 620–621
implementations, 621–622
Math Working Group, 620

Push Technology Workshop,
CDF development and, 544

transformations and
XPath and, 335
XSL, 333–334
XSL parsers, 334
XSLT and, 334–335

XLinks and, 284–285
XML and, 25–28
XML document definition, 4
XPointer and, 311–312

Web browsers
definition, 43
graphical browsers, 43
Internet Explorer, 44
Konqueror, 44
Mozilla, 44
Netscape, 44
Opera, 44
software requirements, 40
XML parser and, 43

Web content, RDF rating, 503
Web resources, metadata, 499–500
Web searches, 498–499
Web servers

Apache Web Server, 42
CDF file posting, 564
definition, 40
IBM HTTP Server, 43
IIS (Internet Information Server)

software, 43
public domain software, 42
root directory, creation, 58
software, configuration, 41
Sun ONE Web Server, 43

Web services, 580
Web sites

channel subscriptions, 541
converters, 55–56
converting to HTML

HTML-Kit, 229
HTML Tidy utility, 229
W3C validation service, 226–227

converting to XHTML, 225–226
Dave Raggett’s Adding a Touch of

Style, 241

b422541 index.qxd 6/19/03 10:14 AM Page 683

684 Index

Web sites (continued)
external DTD subsets, 124–125
XML in 60 Minutes a Day

DTD labs, 154
IIS installation files, 57

Web traffic, <log> element, CDF
documents, 559–560

Webcasting
Active channels, 532
Active Desktop, 532
communications and, 531
overview, 531–532
sitecrawlers and, 531

WebEQ, 644–646
well-formed documents

composition, 101–103
DTDs and, 120

white space
attribute declarations and, 137–138
data instance and, 82–83
element types and, 77
preserving, style sheet element, 343
stripping, style sheet element, 343

whiteSpace facet, 185
word processor applications,

WYSIWYG, 11
WSDL documents

<binding> element, 592–593
<definitions> element, 589
GetLocalTime sample file, 588–594
last line, 594
<message> element, 590–591
<port> element, 593
<portType> element, 591
prolog, 589
<service> element, 593
SOAP requests, creating the client,

586
<types> element, 589–590

WSDL (Web Services Description
Language)

development of, 585–586
file structure, 588
GetLocalTime Web service, 586–588

introduction, 585
NASSL and, 585
SCL and, 585
SOAP and, 579

WYSIWYG (What You See Is What
You Get), 11–12

X
XAE (XML Authoring Environment

for Emacs), description, 48
Xeena, 54
Xerces XML parser, 70
XFrames, XHTML development

and, 210
XHTML (Extensible HyperText

markup language), 24
advantages, 211–214
CSS and, lab, 273–274
data consumer elements, 378
definition, 209
documents, external style sheet

affiliation, 244–247
extensibility, 212–213
files

internal XML data island, 401–403
reference to external data island,

403–405
Frameset variant, 214, 217–218
history, 209–211
HTML history, 206–207
introduction, 205
modularity, 213–214
portability, 214
Ruby Annotation, 209–210
SMIL and, 459
Strict variant, 214, 215–216
syntax

attributes, 223–225
closed elements, 221–223
document logical structure, 218–220
HTML-related tags, 221
nested element types, 220–221

table definition, recordsets, 398
Transitional variant, 214, 216–217

b422541 index.qxd 6/19/03 10:14 AM Page 684

Index 685

Web site conversion
HTML-Kit, 229
HTML Tidy utility, 229
HTML validation service, 226–227

Web site conversion to, 225–226
Working Draft, 210
XHTML Modularization, 210
XML relationship, 211–212

XLinks
arcs, 286

inbound, 286
outbound, 286
third-party, 286

attributes, global, 287–299
direction, 286
extended-type, 295–299
inbound links, lab, 323
introduction, 283–284
labs, 316

comparing types, 322–325
creating links, 317–318
multiple links in XML file, 318–319
outbound links, 319–322

links
browser display, 315–316
naming, 287

logical structure, 286
namespaces, 287

multidirectional links, lab, 324
namespaces, 287
outbound links, lab, 323–324
resources, 285–286
simple-type linking elements,

294–295
syntax, browser display, 315–316
third-party links, lab, 324–325
traversal, 286
type elements, combining with

attributes, 292–293
W3C and, 284–285
XPath and, 284, 300

location paths, 301–304
XPath/XPointer expression and, 300
XPointer and, 284–285, 300

XML applications
definition, 68
SMIL and, 68

XML declaration
pseudo-attributes, 73
VML document prolog, 422
XML documents, prolog and, 72–73
XML Schema prolog, 168

XML documents
attributes, names, 80–81
conversion, HTML to XML, 55–56
data instance

attributes, 80–81
default namespace declarations,

90–91
element content, 78–79
element types, 77–78
empty elements, 78–79
empty string namespace

declarations, 91–92
namespace declarations and

inheritance, 92
namespaces, 85–88
nested elements, 83–85
prefix namespace declarations,

89–90
white space, 82–83

definition, 67–68
description, 3–4
entities, 92–96

external, 93–94
internal, 93–94
parsing, 93

external style sheet affiliation,
244–247

prolog, 71–72
comments, 76
document type declaration, 74–76
processing instructions, 73–74
XML declaration, 72–73

structure
logical structure, 71–92
physical structure, 92–96

b422541 index.qxd 6/19/03 10:14 AM Page 685

686 Index

XML documents (continued)
styles

inline specifications, 242–243
internal style sheet specifications,

243–244
valid, 104
well-formed, 101–103

<xml> element, recordsets, 397
XML (Extensible Markup Language)

best practices list, 26
CSS and, lab, 274–275
DARPA and, 17
data substitution to data content

models, 515–516
derivative languages, 7
files, inserting links, 275–278
goals list, 26
history of

control codes, 7
generic coding, 7–8
macros, 7
open source code, 7

introduction, 1
as metalanguage, 18
SGML and, 14
SGML heritage, 18
W3C and, document definition, 4

XML files, XLinks lab, 318–319
XML in 60 Minutes a Day Web site,

labs, 154
XML parsers

content handlers, 69
definition, 43
description, 69–70
DTD handlers, 69
entity resolvers, 70
error handlers, 69
errors, 70
literal string and, 76
schema handlers, 69
screening and, 69
validating parsers, 69

XML-related applications, 22–25

XML Schema
abstract model, 164–166
attributes, declaration, 165
component groups, 165
content model constraints, 166
content types, 165
data type constraints, 166
definition, 24
document structures, 185–189

flat catalog structure, 186–189
introduction, 185
nesting, 186

DTDs and, 162, 190
element type declarations

complex data types, 175–178
compositors, 181
empty element content, 181
mixed content, 183–184
<sg1:catalog> element, 181–182
<sg1:diamonds> element, 175–178
<sg1:gem> element, 178–181

elements, declaration, 165
facets, 180, 184–185
global references, 173–175
introduction, 161–161
labs

complex elements extended, 198
complex types, 196–198
constraints, 192–195
creation, 191–192
instances, 195

local references, 173–175
logical structure, 166–175
main documents, 172
model construction, 165
models, constraints, 166
namespaces

target namespaces, 171–172
xs prefix, 170

overview, 162–163
prolog, 168–169
<schema> element, namespace

declarations, 170–171

b422541 index.qxd 6/19/03 10:14 AM Page 686

Index 687

support documents, 172
validation, character references

and, 190
version 1.0, 163–164

XML Schema WG, Web site, 163
XML Spy, 55
XML transformations.

See transformations
XPackage (XML Package

Specification), 511
XPath

axes, 304–306
expressions

functions in, 308–311
location paths and, 301–304

functions, 308–311
introduction, 300–301
labs, 316
location steps, 303–304

node tests, 306–307
predicates, 307–308

node tests, 306–307
transformations and, 335
XLinks and, 284, 300
XPointer and, 311–312
XSL and, 333

XPath/XPointer expression, XLinks
and, 300

XPointer
functions, 308–311
internal document structure, 312–313
labs, 316

node tests, 306–307
points, 313

character points, 314
node points, 313–314

ranges, 314–315
W3C and, 311–312
XLinks and, 284–285, 300
XPath and, 311–312

xs prefix, namespaces, 170
XSD (XML Schema Definition)

language, definition, 163
XSL (Extensible Stylesheet Language)

formatting language, 333
formatting objects, 333
transformation language, 333

XSL-FO (XSL Formatting Objects),
XSL and, 333

XSL parsers, transformation and, 334
XSLT (XSL Transformation)

CSS and, 335
description, 334–335
elements, HTML table, 348
style sheets

elements, 343
example, 342
root node, 341

XSL and, 333

Z
z-index, VML figure placement,

437–438

b422541 index.qxd 6/19/03 10:14 AM Page 687

c422541 ad 1.qxd 6/19/03 10:14 AM Page 689

c422541 ad 2.qxd 6/19/03 10:14 AM Page 691

	XML in 60 Minutes a Day
	Cover

	Contents
	Acknowledgments
	About the Authors
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	Summary

	Chapter 1 XML Backgrounder
	Why Do We Need a History Lesson Chapter?
	Basics: From Documents to
	Markup and Metalanguages
	The Evolution of XML
	The Arrival of XML
	XML- Related Applications
	The World Wide Web Consortium and XML
	Lab Exercises: Instructions and Conventions
	A Brief Introduction to Space Gems, Inc.
	Chapter 1 Labs: Web Exploration
	Lab 1.1: Looking Locally for XML Files
	Lab 1.2: Examining an XML File
	Lab 1.3: Visit Some Web Sites
	to See How Many Use XML
	Summary

	Chapter 2 Setting Up Your XML Working Environment
	Hardware Requirements
	Web Servers
	Web Browsers
	XML Authoring Tools
	Converting HTML Documents to XML
	Chapter 2 Labs: Creating an XML
	Authoring Environment
	Lab 2.1: Installing Microsoft’s IIS Web Server
	Lab 2.2: Installing TurboXML
	Summary

	Chapter 3 Anatomy of an XML Document
	What Are XML Documents?
	XML Document Processing
	The Structure of XML Documents
	Preserving Characters from Parser Misinterpretation
	What Is a Well- Formed XML Document?
	What Is a Valid XML Document?
	Chapter 3 Labs: Anatomy of an XML File
	Lab 3.1: Create a Simple XML
	Data Instance with Elements
	Lab 3.2: Creating an XML Instance
	Using Elements and Attributes
	Lab 3.3: Design Your Own XML Instance
	Summary

	Chapter 4 Document Type Definitions
	What Are Document Type Definitions?
	Why Use Document Type Definitions?
	Creating DTDs— General
	DTD Types and Locations
	DTD Declarations: General
	Chapter 4 Labs: Creating a DTD
	Lab 4.1: Creating a Simple External DTD
	Lab 4.2: Creating a New Instance
	from the DTD
	Additional Labs
	Summary

	Chapter 5 XML Schemas
	What Are Schemas?
	XML Schema 1.0: A Two- Part W3C XML
	Schema Recommendation
	The XML Schema Abstract Model
	The Logical Structure of a Sample XML Schema
	Element Type Declarations
	Schema Document Structures
	Using Schemas and DTDs Together
	Chapter 5 Labs: Creating Simple Schemas
	Lab 5.1: Create a Basic Schema
	Lab 5.2: Add Constraints to the Basic Schema
	Lab 5.3: Create a New Instance
	from diamonds2. xsd
	Lab 5.4: Use Complex Types in Schemas
	Lab 5.5: Create a Complex < diamonds>
	Element to Extend < gemdata>
	Lab 5.6: Create One More
	Complex < precious. gems>
	Element to Extend < gemdata>
	Summary

	Chapter 6 XHTML
	HTML Review
	XHTML Definition and Background
	Advantages of XHTML
	XHTML 1.0’ s Three Variants, DTDs, and Schemas
	XHTML Syntax
	Start Moving to XHTML Soon!
	Chapter 6 Labs: Creating XHTML Documents
	Lab 6.1 Validate a Simple HTML File
	Using HTML- Tidy
	Lab 6.2: Using the HTML- Kit GUI Tool
	to Create XHTML Files
	Summary

	Chapter 7 XML and Cascading Style Sheets
	Overview of Cascading Style Sheets
	Specifying Styles for HTML and XML Documents
	CSS and the Parsing Process
	Creating CSS Style Rules
	The Cascading Nature of Cascading Style Sheets
	Chapter 7 Labs: Applying CSS
	Lab 7.1: Combining CSS with XHMTL
	Lab 7.2: Combining CSS with XML
	Lab 7.3: Inserting a Link into an
	XML File That Has a DTD
	Summary

	Chapter 8 XLinks
	XLink: The XML Linking Language
	XLink Logical Structures
	Combining XLink, XPath, and XPointer
	to Access Subresources
	The XML Path Language (XPath)
	The XML Pointer Language Extends XPath
	Chapter 8 Labs: Using XLink, XPath, and XPointer
	Lab 8.1: A Simple XLink
	Lab 8.2: Simple XLinking:
	Multiple Links Inside XML File
	Lab 8.3: Outbound XLinks
	Lab 8.4: Comparing XLink Types
	Summary

	Chapter 9 XML Transformations
	Why Transform XML Data?
	The W3C and Transformations
	Sample XML Transformation:
	Tabulating a List of Diamonds
	Chapter 9 Labs: Using XML
	Transformation Software
	Lab 9.1: Installing TIBCO’s
	XMLTransform Software
	Lab 9.2: XML- to- XML Transformation
	Lab 9.3: Simple XML- to- HTML Transformation
	Lab 9.4: Transforming XML
	to HTML with Images
	Summary

	Chapter 10 XML Data Binding
	What Is Data Binding?
	Performing Data Binding
	Navigating Recordsets
	Chapter 10 Labs: Data Binding with XML
	Lab 10.1: XHTML File Containing a
	Simple Internal XML Data Island
	Lab 10.2: XHTML File Containing a
	Reference to an External Data Island
	Lab 10.3: JavaScript Using Internet Explorer’s
	DSO Binding Technology
	Summary

	Chapter 11 VML
	Basic Digital Imaging Technologies
	VML Development
	What Is VML? A Definition
	Creating VML Documents
	Scalable Vector Graphics (SVG)
	Chapter 11 Labs: Creating VML Documents
	Lab 11.1: A Simple but Impressive
	VML Example
	Lab 11.2: A Truly Impressive VML Example
	Summary

	Chapter 12 SMIL
	What Is Streaming Media?
	What Is the Synchronized Multimedia
	Integrated Language?
	Creating SMIL Documents
	Chapter 12 Labs: Getting Started with SMIL
	Lab 12.1: Install RealOne Media Player
	Lab 12.2: Internet Explorer’s
	Media Environment
	Lab 12.3: SMIL’s Media Environment
	Summary

	Chapter 13 RDF
	Web Search and Publication Issues
	Metadata Is the Key to the Solution
	RDF Concepts and Syntax
	Chapter 13 Labs: Creating and Validating RDF
	Lab 13.1: Validating RDF Code
	Lab 13.2: Using RDFedt to
	Create a Basic RDF File
	Summary

	Chapter 14 CDF
	Basic Communication Concepts
	The User’s Side of CDF: Accessing Channels
	Development of the CDF Specification
	The Publisher’s Side of CDF: Creating CDF Channels
	Chapter 14 Labs: Getting Started with CDF
	Lab 14.1: Installing Microsoft’s CDF Generator
	Lab 14.2: Creating a Basic CDF File
	Lab 14.3: Modifying the CDF File
	Lab 14.4: Making the Channel Available and
	Verifying that It Works
	Summary

	Chapter 15 SOAP
	What Are Web Services?
	The UDDI: Organization, Project,
	Specification, and Registry
	Is Space Gems Registered on a UBR Node?
	The Web Service Description Language (WSDL)
	What Is SOAP?
	Basic SOAP Message Construct
	Chapter 15 Labs: Accessing
	Web Services with SOAP
	Lab 15.1: Time Service
	Lab 15.2: Daily Quote Generator
	Lab 15.3: Email Verifier with Parameters
	Summary

	Chapter 16 MathML
	Mathematical Expression Issues
	Early Visual Presentation Solutions
	The W3C and MathML
	What Is MathML?
	The Logical Structure of a MathML Document
	Two Basic Math- Expression Creation
	Techniques and Concepts
	Chapter 16 Labs: Getting Started with MathML
	Lab 16.1: Install and Use Amaya for MathML
	Lab 16.2: Install and Use WebEQ for MathML
	Lab 16.3: Install and Use EzMath for MathML
	Summary

	APPENDIX About the 60 Minutes Web Site
	System Requirements
	60 Minutes a Day Presentations
	Code and Bonus Content
	Troubleshooting

	Index
	Team DDU

