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Generic Programming and the C++ Standard 
Library 
One of C++'s most powerful features is its support for generic programming. This power is reflected 
directly in the flexibility of the C++ standard library, especially in its containers, iterators, and 
algorithms portion, originally known as the standard template library (STL). 

This opening section focuses on how to make the best use of the C++ standard library, particularly the 
STL. When and how can you make best use of std::vector and std::deque? What pitfalls 
might you encounter when using std::map and std::set, and how can you safely avoid them? 
Why doesn't std::remove() actually remove anything? 

This section also highlights some useful techniques, as well as pitfalls, that occur when writing 
generic code of your own, including code that's meant to work with and extend the STL. What kinds 
of predicates are safe to use with the STL; what kinds aren't, and why? What techniques are available 
for writing powerful generic template code that can change its own behavior based on the capabilities 
of the types it's given to work with? How can you switch easily between different kinds of input and 
output streams? How does template specialization and overloading work? And what's with this funny 
typename keyword, anyway? 

This and more, as we delve into topics related to generic programming and the C++ standard library. 

Item 1. Switching Streams 
Difficulty: 2 

What's the best way to dynamically use different stream sources and targets, including the standard 
console streams and files? 

1. What are the types of std::cin and std::cout? 
2. Write an ECHO program that simply echoes its input and that can be invoked equivalently in 

the two following ways: 

 
ECHO <infile >outfile 
 
ECHO infile outfile 



In most popular command-line environments, the first command assumes that the program 
takes input from cin and sends output to cout. The second command tells the program to 
take its input from the file named infile and to produce output in the file named outfile. The 
program should be able to support all of the above input/output options. 

Solution 

 

1. What are the types of std::cin and std::cout? 

The short answer is that cin boils down to: 

 
std::basic_istream<char, std::char_traits<char> > 

and cout boils down to: 

 
std::basic_ostream<char, std::char_traits<char> > 

The longer answer shows the connection by following some standard typedefs and templates. First, 
cin and cout have type std::istream and std::ostream, respectively. In turn, those 
are typdef'd as std::basic_istream<char> and std::basic_ostream<char>. 
Finally, after accounting for the default template arguments, we get the above. 

Note: If you are using a prestandard implementation of the iostreams subsystem, you might still see 
intermediate classes, such as istream_with_assign. Those classes do not appear in the 
standard. 

2. Write an ECHO program that simply echoes its input and that can be invoked equivalently in 
the two following ways: 

 
ECHO <infile >outfile 
 
ECHO infile outfile 

The Tersest Solution 

For those who like terse code, the tersest solution is a program containing just a single statement: 

 
// Example 1-1: A one-statement wonder 
// 
#include <fstream> 
#include <iostream> 



 
int main( int argc, char* argv[] ) 
{ 
  using namespace std; 
 
  (argc > 2 
    ? ofstream(argv[2], ios::out | ios::binary) 
    : cout) 
  << 
  (argc > 1 
    ? ifstream(argv[1], ios::in | ios::binary) 
    : cin) 
  .rdbuf(); 
} 

This works because of two cooperating facilities: First, basic_ios provides a convenient 
rdbuf() member function that returns the streambuf used inside a given stream object, in this 
case either cin or a temporary ifstream, both of which are derived from basic_ios. Second, 
basic_ostream provides an operator<<() that accepts just such a basic_streambuf 
object as its input, which it then happily reads to exhaustion. As the French would say, "C'est ça" 
("and that's it"). 

Toward More-Flexible Solutions 

The approach in Example 1-1 has two major drawbacks: First, the terseness is borderline, and extreme 
terseness is not suitable for production code. 

Guideline 

 Prefer readability. Avoid writing terse code (brief, but difficult to understand and 
maintain). Eschew obfuscation. 

 

Second, although Example 1-1 answers the immediate question, it's only good when you want to copy 
the input verbatim. That may be enough today, but what if tomorrow you need to do other processing 
on the input, such as converting it to upper case or calculating a total or removing every third 
character? That may well be a reasonable thing to want to do in the future, so it would be better right 
now to encapsulate the processing work in a separate function that can use the right kind of input or 
output object polymorphically: 

 
#include <fstream> 
#include <iostream> 
 
 int main( int argc, char* argv[] ) 
 { 
   using namespace std; 
 
   fstream in, out; 



   if( argc > 1 ) in.open ( argv[1], ios::in  | ios::binary ); 
   if( argc > 2 ) out.open( argv[2], ios::out | ios::binary ); 
 
   Process( in.is_open()  ? in  : cin, 
            out.is_open() ? out : cout ); 
 } 

But how do we implement Process()? In C++, there are four major ways to get polymorphic 
behavior: virtual functions, templates, overloading, and conversions. The first two methods are 
directly applicable here to express the kind of polymorphism we need. 

Method A: Templates (Compile-Time Polymorphism) 

The first way is to use compile-time polymorphism using templates, which merely requires the passed 
objects to have a suitable interface (such as a member function named rdbuf()): 

 
// Example 1-2(a): A templatized Process() 
// 
template<typename In, typename Out> 
void Process( In& in, Out& out ) 
{ 
  // ... do something more sophisticated, 
  //     or just plain "out << in.rdbuf();"... 
} 

Method B: Virtual Functions (Run-Time Polymorphism) 

The second way is to use run-time polymorphism, which makes use of the fact that there is a common 
base class with a suitable interface: 

 
// Example 1-2(b): First attempt, sort of okay 
// 
void Process( basic_istream<char>& in, 
              basic_ostream<char>& out ) 
{ 
  // ... do something more sophisticated, 
  //     or just plain "out << in.rdbuf();"... 
} 

Note that in Example 1-2(b), the parameters to Process() are not of type 
basic_ios<char>& because that wouldn't permit the use of operator<<(). 

Of course, the approach in Example 1-2(b) depends on the input and output streams being derived 
from basic_istream<char> and basic_ostream<char>. That happens to be good 
enough for our example, but not all streams are based on plain chars or even on 
char_traits<char>. For example, wide character streams are based on wchar_t, and 



Exceptional C++ [Sutter00] Items 2 and 3 showed the potential usefulness of user-defined traits with 
different behavior (in those cases, ci_char_traits provided case insensitivity). 

So even Method B ought to use templates and let the compiler deduce the arguments appropriately: 

 
// Example 1-2(c): Better solution 
// 
template<typename C, typename T> 
void Process( basic_istream<C,T>& in, 
              basic_ostream<C,T>& out ) 
{ 
  // ... do something more sophisticated, 
  //     or just plain "out << in.rdbuf();"... 
} 

Sound Engineering Principles 

All of these answers are "right" as far as they go, but in this situation I personally tend to prefer 
Method A. This is because of two valuable guidelines. The first is this: 

Guideline 

 Prefer extensibility. 

 

Avoid writing code that solves only the immediate problem. Writing an extensible solution is almost 
always better—as long as we don't go overboard, of course. 

Balanced judgment is one hallmark of the experienced programmer. In particular, experienced 
programmers understand how to strike the right balance between writing special-purpose code that 
solves only the immediate problem (shortsighted, hard to extend) and writing a grandiose general 
framework to solve what should be a simple problem (rabid overdesign). 

Compared with the approach in Example 1-1, Method A has about the same overall complexity but it's 
easier to understand and more extensible, to boot. Compared with Method B, Method A is at once 
simpler and more flexible; it is more adaptable to new situations because it avoids being hardwired to 
work with the iostreams hierarchy only. 

So if two options require about the same effort to design and implement and are about equally clear 
and maintainable, prefer extensibility. This advice is not intended as an open license to go overboard 
and overdesign what ought to be a simple system; we all do that too much already. This advice is, 
however, encouragement to do more than just solve the immediate problem, when a little thought lets 
you discover that the problem you're solving is a special case of a more general problem. This is 
especially true because designing for extensibility often implicitly means designing for encapsulation. 

Guideline 



 Prefer encapsulation. Separate concerns. 

 

As far as possible, one piece of code—function or class—should know about and be responsible for 
one thing. 

Arguably best of all, Method A exhibits good separation of concerns. The code that knows about the 
possible differences in input/output sources and sinks is separated from the code that knows how to 
actually do the work. This separation also makes the intent of the code clearer, easier for a human to 
read and digest. Good separation of concerns is a second hallmark of sound engineering, and one we'll 
see time and again in these Items. 

Item 2. Predicates, Part 1: What remove() Removes 
Difficulty: 4 

This Item lets you test your standard algorithm skills. What does the standard library algorithm 
remove() actually do, and how would you go about writing a generic function to remove only the 
third element in a container? 

1. What does the std::remove() algorithm do? Be specific. 
2. Write code that eliminates all values equal to 3 from a std::vector<int>. 
3. A programmer working on your team wrote the following alternative pieces of code to 

remove the n-th element of a container. 
4.  
5. // Method 1: Write a special-purpose 
6. // remove_nth algorithm. 
7. // 
8. template<typename FwdIter> 
9. FwdIter remove_nth( FwdIter first, FwdIter last, size_t 

n ) 
10. { 
11.   /* ... */ 
12. } 
13. // Method 2: Write a function object which returns 
14. // true the nth time it's applied, and use 
15. // that as a predicate for remove_if. 
16. // 
17. class FlagNth 
18. { 
19. public: 
20.   FlagNth( size_t n ) : current_(0), n_(n) { } 
21.  
22.   template<typename T> 
23.   bool operator()( const T& ) { return ++current_ == 

n_; } 
24.  
25. private: 



26.   size_t       current_; 
27.   const size_t n_; 
28. }; 
29.  
30. // Example invocation 
31. ... remove_if( v.begin(), v.end(), FlagNth(3) ) ... 

a. Implement the missing part of Method 1. 
b. Which method is better? Why? Discuss anything that might be problematic about 

either solution. 

Solution 

 

What remove() Removes 

1. What does the std::remove() algorithm do? Be specific. 

The standard algorithm remove() does not physically remove objects from a container; the size of 
the container is unchanged after remove() has done its thing. Rather, remove() shuffles up the 
"unremoved" objects to fill in the gaps left by removed objects, leaving at the end one "dead" object 
for each removed object. Finally, remove() returns an iterator pointing at the first "dead" object, or, 
if no objects were removed, remove() returns the end() iterator. 

For example, consider a vector<int> v that contains the following nine elements: 

 
1 2 3 1 2 3 1 2 3 

Say that you used the following code to try to remove all 3's from the container: 

 
// Example 2-1 
// 
remove( v.begin(), v.end(), 3 );  // subtly wrong 

What would happen? The answer is something like this: 

 



 

 

Three objects had to be removed, and the rest were copied to fill in the gaps. The objects at the end of 
the container may have their original values (1 2 3), or they may not; don't rely on that. Again, note 
that the size of the container is left unchanged. 

If you're wondering why remove() works that way, the most basic reason is that remove() 
doesn't operate on a container, but rather on a range of iterators, and there's no such iterator operation 
as "remove the element this iterator points to from whatever container it's in." To do that, we have to 
actually get at the container directly. For further information about remove(), see also Andrew 
Koenig's thorough treatment of this topic in [Koenig99]. 

2. Write code that removes all values equal to 3 from a std::vector<int>. 

Here's a one-liner to do it, where v is a vector<int>: 

 
// Example 2-2: Removing 3's from a vector<int> v 
// 
v.erase( remove( v.begin(), v.end(), 3 ), v.end() ); 

The call to remove( v.begin(), v.end(), 3 ) does the actual work, and returns an 
iterator pointing to the first "dead" element. The call to erase() from that point until v.end() 
gets rid of the dead elements so that the vector contains only the unremoved objects. 

3. A programmer working on your team wrote the following alternative pieces of code to remove 
the n-th element of a container. 

 



// Example 2-3(a) 
// 
// Method 1: Write a special-purpose 
// remove_nth algorithm. 
// 
template<typename FwdIter> 
FwdIter remove_nth( FwdIter first, FwdIter last, size_t n ) 
{ 
  /* ... */ 
} 
 
// Example 2-3(b) 
// 
// Method 2: Write a function object which returns 
// true the nth time it's applied, and use 
// that as a predicate for remove_if. 
// 
class FlagNth 
{ 
public: 
  FlagNth( size_t n ) : current_(0), n_(n) { } 
 
  template<typename T> 
  bool operator()( const T& ) { return ++current_ == n_; } 
 
private: 
  size_t       current_; 
  const size_t n_; 
}; 
 
// Example invocation 
... remove_if( v.begin(), v.end(), FlagNth(3) ) ... 

a) Implement the missing part of Method 1. 

People often propose implementations that have the same bug as the following code. Did you? 

 
// Example 2-3(c): Can you see the problem(s)? 
// 
template<typename FwdIter> 
FwdIter remove_nth( FwdIter first, FwdIter last, size_t n ) 
{ 
  for( ; n > 0; ++first, --n ) 
    ; 
  if( first != last ) 
  { 
    FwdIter dest = first; 
    return copy( ++first, last, dest ); 



  } 
  return last; 
} 

There is one problem in Example 2-3(c), and that one problem has two aspects: 

1. Correct preconditions: We don't require that n <= distance( first, last ), so 
the initial loop may move first past last, and then [first,last) is no longer a 
valid iterator range. If so, then in the remainder of the function, Bad Things will happen. 

2. Efficiency: Let's say we decided to document (and test!) a precondition that n be valid for the 
given range, as a way of addressing problem #1. Then we should still dispense with the 
iterator-advancing loop entirely and simply write advance( first, n ). The 
standard advance() algorithm for iterators is already aware of iterator categories, and is 
automatically optimized for random-access iterators. In particular, it will take constant time 
for random-access iterators, instead of the linear time required for other iterators. 

Here is a reasonable implementation: 

 
// Example 2-3(d): Solving the problems 
// 
// Precondition: 
//  - n must not exceed the size of the range 
// 
template<typename FwdIter> 
FwdIter remove_nth( FwdIter first, FwdIter last, size_t n ) 
{ 
  // Check precondition. Incurs overhead in debug mode only. 
  assert( distance( first, last ) >= n ); 
 
  // The real work. 
  advance( first, n ); 
  if( first != last ) 
  { 
    FwdIter dest = first; 
    return copy( ++first, last, dest ); 
  } 
  return last; 
} 

b) Which method is better? Why? Discuss anything that might be problematic about either 
solution. 

Method 1 has two main advantages: 

1. It is correct. 
2. It can take advantage of iterator traits, specifically the iterator category, and so can perform 

better for random-access iterators. 



Method 2 has corresponding disadvantages, which we'll analyze in detail in the second part of this 
miniseries. 

Item 3. Predicates, Part 2: Matters of State 
Difficulty: 7 

Following up from the introduction given in Item 2, we now examine "stateful" predicates. What are 
they? When are they useful? How compatible are they with standard containers and algorithms? 

1. What are predicates, and how are they used in STL? Give an example. 
2. When would a "stateful" predicate be useful? Give examples. 
3. What requirements on algorithms are necessary in order to make stateful predicates work 

correctly? 

Solution 

 

Unary and Binary Predicates 

1. What are predicates, and how are they used in STL? 

A predicate is a pointer to a function, or a function object (an object that supplies the function call 
operator, operator()()), that gives a yes/no answer to a question about an object. Many 
algorithms use a predicate to make a decision about each element they operate on, so a predicate 
pred should work correctly when used as follows: 

 
// Example 3-1(a): Using a unary predicate 
// 
if( pred( *first ) ) 
{ 
  /* ... */ 
} 

As you can see from this example, pred should return a value that can be tested as true. Note that 
a predicate is allowed to use const functions only through the dereferenced iterator. 

Some predicates are binary—that is, they take two objects (often dereferenced iterators) as arguments. 
This means that a binary predicate bpred should work correctly when used as follows: 

 
// Example 3-1(b): Using a binary predicate 
// 
if( bpred( *first1, *first2 ) ) 
{ 



  /* ... */ 
} 

Give an example. 

Consider the following implementation of the standard algorithm find_if(): 

 
// Example 3-1(c): A sample find_if() 
// 
template<typename Iter, typename Pred> inline 
Iter find_if( Iter first, Iter last, Pred pred ) 
{ 
  while( first != last && !pred(*first) ) 
  { 
    ++first; 
  } 
  return first; 
} 

This implementation of the algorithm visits every element in the range [first, last) in order, 
applying the predicate function pointer, or object pred, to each element. If there is an element for 
which the predicate evaluates to true, find_if() returns an iterator pointing to the first such 
element. Otherwise, find_if() returns last to signal that an element satisfying the predicate 
was not found. 

We can use find_if() with a function pointer predicate as follows: 

 
// Example 3-1(d): 
// Using find_if() with a function pointer. 
// 
bool GreaterThanFive( int i ) 
{ 
  return i > 5; 
} 
 
bool IsAnyElementGreaterThanFive( vector<int>& v ) 
{ 
  return find_if( v.begin(), v.end(), GreaterThanFive ) 
         != v.end(); 
} 

Here's the same example, only using find_if() with a function object instead of a free function: 

 
// Example 3-1(e): 
// Using find_if() with a function object. 
// 



class GreaterThanFive 
  : public std::unary_function<int, bool> 
{ 
public: 
  bool operator()( int i ) const 
  { 
    return i > 5; 
  } 
}; 
bool IsAnyElementGreaterThanFive( vector<int>& v ) 
{ 
  return find_if( v.begin(), v.end(), GreaterThanFive() ) 
         != v.end(); 
} 

In this example, there's not much benefit to using a function object over a free function, is there? But 
this leads us nicely into our other questions, in which the function object shows much greater 
flexibility. 

2. When would a "stateful" predicate be useful? Give examples. 

Continuing on from Examples 3-1(d) and 3-1(e), here's something a free function can't do as easily 
without using something like a static variable: 

 
// Example 3-2(a): 
// Using find_if() with a more general function object. 
// 
class GreaterThan 
  : public std::unary_function<int, bool> 
{ 
public: 
  GreaterThan( int value ) : value_( value ) { } 
  bool operator()( int i ) const 
  { 
    return i > value_; 
  } 
private: 
  const int value_; 
}; 
 
bool IsAnyElementGreaterThanFive( vector<int>& v ) 
{ 
  return find_if( v.begin(), v.end(), GreaterThan(5) ) 
         != v.end(); 
} 

This GreaterThan predicate has member data that remembers a value, in this case the value it 
should compare each element against. You can already see that this version is much more usable—and 



reusable—than the special-purpose code in Examples 3-1(d) and 3-1(e), and a lot of the power comes 
from the ability to store local information inside the object like this. 

Taking it one step further, we end up with something even more generalized: 

 
// Example 3-2(b): 
// Using find_if() with a fully general function object. 
// 
template<typename T> 
class GreaterThan 
  : public std::unary_function<T, bool> 
{ 
public: 
  GreaterThan( T value ) : value_( value ) { } 
 
  bool operator()( const T& t ) const 
  { 
    return t > value_; 
  } 
 
private: 
  const T value_; 
}; 
 
bool IsAnyElementGreaterThanFive( vector<int>& v ) 
{ 
  return find_if( v.begin(), v.end(), GreaterThan<int>(5) ) 
         != v.end(); 
} 

So we can see some usability benefits from using predicates that store value. 

The Next Step: Stateful Predicates 

The predicates in both Examples 3-2(a) and 3-2(b) have an important property: Copies are equivalent. 
That is, if you make a copy of a GreaterThan<int> object, it behaves in all respects just like 
the original one and can be used interchangeably. This turns out to be important, as we shall see in 
Question #3. 

Some people have tried to write stateful predicates that go further, by changing as they're used—that is, 
the result of applying a predicate depends on its history of previous applications. In Examples 3-2(a) 
and 3-2(b), the objects did carry some internal values, but these were fixed at construction time; they 
were not state that could change during the lifetime of the object. When we talk about stateful 
predicates, we mean primarily predicates having state that can change so that the predicate object is 
sensitive to what's happened to it over time, like a little state machine.[1] 

[1] As John D. Hickin so elegantly describes it: "The input [first, last) is somewhat like the tape 
fed to a Turing machine and the stateful predicate is like a program." 



Examples of such stateful predicates appear in books. In particular, people have tried to write 
predicates that keep track of various information about the elements they were applied to. For example, 
people have proposed predicates that remember the values of the objects they were applied to in order 
to perform calculations (for example, a predicate that returns true as long as the average of the values 
it was applied to so far is more than 50, or the total is less than 100, and so on). We just saw a specific 
example of this kind of stateful predicate in Item 2, Question #3: 

 
// Example 3-2(c) 
// (From Item 2, Example 2-3(b)) 
// 
// Method 2: Write a function object which returns 
// true the nth time it's applied, and use 
// that as a predicate for remove_if. 
// 
class FlagNth 
{ 
public: 
  FlagNth( size_t n ) : current_(0), n_(n) { } 
 
  template<typename T> 
  bool operator()( const T& ) { return ++current_ == n_; } 
 
private: 
  size_t       current_; 
  const size_t n_; 
}; 

Stateful predicates like the above are sensitive to the way they are applied to elements in the range that 
is operated on. This one in particular depends on both the number of times it has been applied and on 
the order in which it is applied to the elements in the range (if used in conjunction with something like 
remove_if(), for example). 

The major difference between predicates that are stateful and those that aren't is that, for stateful 
predicates, copies are not equivalent. Clearly an algorithm couldn't make a copy of a FlagNth 
object and apply one object to some elements and the other object to other elements. That wouldn't 
give the expected results at all, because the two predicate objects would update their counts 
independently and neither would be able to flag the correct n-th element; each could flag only the n-th 
element it itself happened to be applied to. 

The problem is that, in Example 3-2(c), Method 2 possibly tried to use a FlagNth object in just 
such a way: 

 
// Example invocation 
 
... remove_if( v.begin(), v.end(), FlagNth(3) ) ... 

"Looks reasonable, and I've used this technique," some may say. "I just read a C++ book that 
demonstrates this technique, so it must be fine," some may say. Well, the truth is that this technique 



may happen to work on your implementation (or on the implementation that the author of the book 
with the error in it was using), but it is not guaranteed to work portably on all implementations, or 
even on the next version of the implementation you are (or that author is) using now. 

Let's see why, by examining remove_if() in a little more detail in Question #3: 

3. What requirements on algorithms are necessary in order to make stateful predicates work 
correctly? 

For stateful predicates to be really useful with an algorithm, the algorithm must generally guarantee 
two things about how it uses the predicate: 

a. the algorithm must not make copies of the predicate (that is, it should consistently use the 
same object that it was given), and 

b. the algorithm must apply the predicate to the elements in the range in some known order 
(usually, first to last). 

Alas, the standard does not require that the standard algorithms meet these two guarantees. Even 
though stateful predicates have appeared in books, in a battle between the standard and a book, the 
standard wins. The standard does mandate other things for standard algorithms, such as the 
performance complexity and the number of times a predicate is applied, but in particular it never 
specifies requirement (a) for any algorithm. 

For example, consider std::remove_if(): 

a. It's common for standard library implementations to implement remove_if() in terms of 
find_if(), and pass the predicate along to find_if() by value. This will make the 
predicate behave unexpectedly, because the predicate object actually passed to 
remove_if() is not necessarily applied once to every element in the range. Rather, the 
predicate object or a copy of the predicate object is what is guaranteed to be applied once to 
every element. This is because a conforming remove_if() is allowed to assume that 
copies of the predicate are equivalent. 

b. The standard requires that the predicate supplied to remove_if() be applied exactly 
last - first times, but it doesn't say in what order. It's possible, albeit a little 
obnoxious, to write a conforming implementation of remove_if() that doesn't apply the 
predicate to the elements in order. The point is that if it's not required by the standard, you 
can't portably depend on it. 

"Well," you ask, "isn't there any way to make stateful predicates such as FlagNth work reliably 
with the standard algorithms?" Unfortunately, the answer is no. 

All right, all right, I can already hear the howls of outrage from the folks who write predicates that use 
reference-counting techniques to solve the predicate-copying problem (a) above. Yes, you can share 
the predicate state so that a predicate can be safely copied without changing its semantics when it is 
applied to objects. The following code uses this technique (for a suitable CountedPtr template; 
follow-up question: provide a suitable implementation of CountedPtr): 

 
// Example 3-3(a): A (partial) solution 
// that shares state between copies. 



// 
class FlagNthImpl 
{ 
public: 
  FlagNthImpl( size_t nn ) : i(0), n(nn) { } 
  size_t       i; 
  const size_t n; 
}; 
 
class FlagNth 
{ 
public: 
  FlagNth( size_t n ) 
    : pimpl_( new FlagNthImpl( n ) ) 
  { 
  } 
 
  template<typename T> 
  bool operator()( const T& ) 
  { 
    return ++(pimpl_->i) == pimpl_->n; 
  } 
 
private: 
  CountedPtr<FlagNthImpl> pimpl_; 
}; 

But this doesn't, and can't, solve the ordering problem (b) above. That is, you, the programmer, are 
entirely dependent on the order in which the predicate is applied by the algorithm. There's no way 
around this, not even with fancy pointer techniques, unless the algorithm itself guarantees a traversal 
order. 

Follow-Up Question 

The follow-up question, above, was to provide a suitable implementation of Counted Ptr, a 
smart pointer for which making a new copy just points at the same representation, and the last copy to 
be destroyed cleans up the allocated object. Here is one that works, although it could be beefed up 
further for production use: 

 
template<typename T> 
class CountedPtr 
{ 
private: 
  class Impl 
  { 
  public: 
    Impl( T* pp ) : p( pp ), refs( 1 ) { } 
 



    ~Impl() { delete p; } 
 
    T*     p; 
    size_t refs; 
  }; 
  Impl* impl_; 
public: 
  explicit CountedPtr( T* p ) 
    : impl_( new Impl( p ) ) { } 
 
  ~CountedPtr() { Decrement(); } 
 
  CountedPtr( const CountedPtr& other ) 
    : impl_( other.impl_ ) 
  { 
    Increment(); 
  } 
 
  CountedPtr& operator=( const CountedPtr& other ) 
  { 
    if( impl_ != other.impl_ ) 
    { 
      Decrement(); 
      impl_ = other.impl_; 
      Increment(); 
    } 
    return *this; 
  } 
 
  T* operator->() const 
  { 
    return impl_->p; 
  } 
 
  T& operator*() const 
  { 
    return *(impl_->p); 
  } 
 
private: 
  void Decrement() 
  { 
    if( --(impl_->refs) == 0 ) 
    { 
      delete impl_; 
    } 
  } 
 
  void Increment() 



  { 
    ++(impl_->refs); 
  } 
}; 

Item 4. Extensible Templates: Via Inheritance or Traits? 
Difficulty: 7 

This Item reviews traits templates and demonstrates some cool traits techniques. Even without traits, 
what can a template figure out about its type—and what can it do about it? The answers are nifty and 
illuminating, and not just for people who write C++ libraries. 

1. What is a traits class? 
2. Demonstrate how to detect and make use of template parameters' members, using the 

following motivating case: You want to write a class template C that can be instantiated only 
on types that have a const member function named Clone() that takes no parameters 
and returns a pointer to the same kind of object. 

3.  
4. // T must provide T* T::Clone() const 
5. template<typename T> 
6. class C 
7. { 
8.   // ... 
9. }; 

Note: It's obvious that if C writes code that just tries to invoke T::Clone() without 
parameters, then such code will fail to compile if there isn't a T::Clone() that can be 
called without parameters. But that's not enough to answer this question, because just trying 
to call T::Clone() without parameters would also succeed in calling a Clone() that 
has default parameters and/or does not return a T*. The goal here is to specifically enforce 
that T provide a function that looks exactly like this: T* T::Clone() const. 

10. A programmer wants to write a template that can require (or just detect) whether the type on 
which it is instantiated has a Clone() member function. The programmer decides to do 
this by requiring that classes offering such a Clone() must derive from a predetermined 
Cloneable base class. Demonstrate how to write the following template: 

11.  
12. template<typename T> 
13. class X 
14. { 
15.   // ... 
16. }; 

a. to require that T be derived from Cloneable; and 
b. to provide an alternative implementation if T is derived from Cloneable, and 

work in some default mode otherwise. 
17. Is the approach in #3 the best way to require/detect the availability of a Clone()? Describe 

alternatives. 



18. How useful is it for a template to know that its parameter type T is derived from some other 
type? Does knowing about such derivation give any benefit that couldn't also be achieved 
without the inheritance relationship? 

Solution 

 

1. What is a traits class? 

Quoting 17.1.18 in the C++ standard [C++98], a traits class is 

a class that encapsulates a set of types and functions necessary for template classes and template 
functions to manipulate objects of types for which they are instantiated.[2] 

[2] Here encapsulates is used in the sense of bringing together in one place, rather than hiding behind a shell. 
It's common for everything in traits classes to be public, and indeed they are typically implemented as 
struct templates. 

The idea is that traits classes are instances of templates, and are used to carry extra information—
especially information that other templates can use—about the types on which the traits template is 
instantiated. The nice thing is that the traits class T<C> lets us record such extra information about a 
class C, without requiring any change at all to C. 

For example, in the standard itself std::char_traits<T> gives information about the 
character-like type T, particularly how to compare and manipulate such T objects. This information is 
used in such templates as std::basic_string and std:: basic_ostream to allow 
them to work with character types that are not necessarily char or wchar_t, including working 
with user-defined types for which you provide a suitable specialization of std::char_traits. 
Similarly, std::iterator_traits provides information about iterators that other templates, 
particularly algorithms and containers, can put to good use. Even std::numeric_limits gets 
into the traits act, providing information about the capabilities and behavior of various kinds of 
numeric types as they're implemented on your particular platform and compiler. 

For more examples, see: 

• Items 30 and 31 on smart pointer members 
• Exceptional C++ [Sutter00] Items 2 and 3, which show how to customize 

std::char_traits to customize the behavior of std::basic_string 
• The April, May, and June 2000 issues of C++ Report, which contained several excellent 

columns about traits 

Requiring Member Functions 

2. Demonstrate how to detect and make use of template parameters' members, using the 
following motivating case: You want to write a class template C that can be instantiated only on 
types that have a member function named Clone() that takes no parameters and returns a 
pointer to the same kind of object. 



 
// Example 4-2 
// 
// T must provide T* T::Clone() const 
template<typename T> 
class C 
{ 
  // ... 
}; 

Note: It's obvious that if C writes code that just tries to invoke T::Clone() without 
parameters, then such code will fail to compile if there isn't a T::Clone() that can be called 
without parameters. 

For an example to illustrate that last note, consider the following: 

 
// Example 4-2(a): Initial attempt, 
// sort of requires Clone() 
// 
// T must provide /*...*/ T::Clone( /*...*/ ) 
template<typename T> 
class C 
{ 
public: 
  void SomeFunc( const T* t ) 
  { 
    // ... 
    t->Clone(); 
    // ... 
  } 
}; 

The first problem with Example 4-2(a) is that it doesn't necessarily require anything at all. In a 
template, only the member functions that are actually used will be instantiated.[3] If SomeFunc() is 
never used, it will never be instantiated, so C can easily be instantiated with types T that don't have 
anything resembling Clone(). 

[3] Eventually, all compilers will get this rule right. Yours might still instantiate all functions, not just the ones 
that are used. 

The solution is to put the code that enforces the requirement into a function that's sure to be 
instantiated. Many people put it in the constructor, because it's impossible to use C without invoking 
its constructor somewhere, right? (This approach is mentioned, for example, in [Stroustrup94].) True 
enough, but there could be multiple constructors. Then, to be safe, we'd have to put the requirement-
enforcing code into every constructor. An easier solution is to put it in the destructor. After all, there's 
only one destructor, and it's unlikely that C will be used without invoking its destructor (by creating a 
C object dynamically and never deleting it). So, perhaps, the destructor is a somewhat simpler place 
for the requirement-enforcing code to live: 



 
// Example 4-2(b): Revised attempt, requires Clone() 
// 
// T must provide /*...*/ T::Clone( /*...*/ ) 
template<typename T> 
class C 
{ 
public: 
  ~C() 
  { 
    // ... 
    const T t; // kind of wasteful, plus also requires 
               // that T have a default constructor 
    t.Clone(); 
    // ... 
  } 
}; 

That's still not entirely satisfactory. Let's set this aside for now, but we'll soon come back and improve 
this enforcement further, after we've done a bit more thinking about it. 

This leaves us with the second problem: Both Examples 4-2(a) and 4-2(b) don't so much test the 
constraint as simply rely on it. (In the case of Example 4-2(b), it's even worse because 4(b) does it in a 
wasteful way that adds unnecessary runtime code just to try to enforce a constraint.) 

But that's not enough to answer this question, because just trying to call T::Clone() without 
parameters would also succeed in calling a Clone() that has defaulted parameters and/or 
does not return a T*. 

The code in Examples 4-2(a) and 4-2(b) will indeed work most swimmingly if there is a function that 
looks like T* T::Clone(). The problem is that it will also work most swimmingly if there is a 
function void T::Clone(), or T* T::Clone( int = 42 ), or with some other 
oddball variant signature, like T* T::Clone( const char* = "xyzzy" ), just as long 
as it can be called without parameters. (For that matter, it will work even if there isn't a Clone() 
member function at all, as long as there's a macro that changes the name Clone to something else, 
but there's little we can do about that.) 

All that may be fine in some applications, but it's not what the question asked for. What we want to 
achieve is stronger: 

The goal here is to specifically enforce that T provide a function that looks exactly like this: T* 
T::Clone() const. 

So here's one way we can do it: 

 
// Example 4-2(c): Better, requires 
// exactly T* T::Clone() const 
// 



// T must provide T* T::Clone() const 
template<typename T> 
class C 
{ 
public: 
  // in C's destructor (easier than putting it 
  // in every C constructor): 
  ~C() 
  { 
    T* (T::*test)() const = &T::Clone; 
    test; // suppress warnings about unused variables 
    // this unused variable is likely to be optimized 
    // away entirely 
 
    // ... 
  } 
 
  // ... 
}; 

Or, a little more cleanly and extensibly: 

 
// Example 4-2(d): Alternative way of requiring 
// exactly T* T::Clone() const 
// 
// T must provide T* T::Clone() const 
template<typename T> 
class C 
{ 
  bool ValidateRequirements() const 
  { 
    T* (T::*test)() const = &T::Clone; 
    test; // suppress warnings about unused variables 
    // ... 
    return true; 
  } 
 
public: 
  // in C's destructor (easier than putting it 
  // in every C constructor): 
 ~C() 
  { 
    assert( ValidateRequirements() ); 
  } 
 
  // ... 
}; 



Having a ValidateRequirements() function is extensible, for it gives us a nice clean place 
to add any future requirements checks. Calling it within an assert() further ensures that all traces 
of the requirements machinery will disappear from release builds. 

Constraints Classes 

There's an even cleaner way to do it, though. The following technique is publicized by Bjarne 
Stroustrup in his C++ Style and Technique FAQ [StroustrupFAQ], crediting Alex Stepanov and 
Jeremy Siek for the use of pointer to function.[4] 

[4] See http://www.gotw.ca/publications/mxc++/bs_constraints.htm. 

Suppose we write the following HasClone constraints class: 

 
// Example 4-2(e): Using constraint inheritance 
// to require exactly T* T::Clone() const 
// 
 
// HasClone requires that T must provide 
// T* T::Clone() const 
template<typename T> 
class HasClone 
{ 
public: 
  static void Constraints() 
  { 
    T* (T::*test)() const = &T::Clone; 
    test; // suppress warnings about unused variables 
  } 
  HasClone() { void (*p)() = Constraints; } 
}; 

Now we have an elegant—dare I say "cool"?—way to enforce the constraint at compile time: 

 
template<typename T> 
class C : HasClone<T> 
{ 
  // ... 
}; 

The idea is simple: Every C constructor must invoke the HasClone<T> default constructor, which 
does nothing but test the constraint. If the constraint test fails, most compilers will emit a fairly 
readable error message. The HasClone<T> derivation amounts to an assertion about a 
characteristic of T in a way that's easy to diagnose. 



Requiring Inheritance, Take 1: IsDerivedFrom1 Value Helper 

3. A programmer wants to write a template that can require (or just detect) whether the type on 
which it is instantiated has a Clone() member function. The programmer decides to do this 
by requiring that classes offering such a Clone() must derive from a predetermined 
Cloneable base class. Demonstrate how to write the following template: 

 
template<typename T> 
class X 
{ 
  // ... 
}; 

a) to require that T be derived from Cloneable 

We'll take a look at two approaches. Both work. The first approach is a bit tricky and complex; the 
second is simple and elegant. It's valuable to consider both approaches because they both demonstrate 
interesting techniques that are good to know about, even though one technique happens to be more 
applicable here. 

The first approach is based on Andrei Alexandrescu's ideas in "Mappings Between Types and Values" 
[Alexandrescu00a]. First, we define a helper template that tests whether a candidate type D is derived 
from B. It determines this by determining whether a pointer to D can be converted to a pointer to B. 
Here's one way to do it, similar to Alexandrescu's approach: 

 
// Example 4-3(a): An IsDerivedFrom1 value helper 
// 
// Advantages: Can be used for compile-time value test 
// Drawbacks:  Pretty complex 
// 
template<typename D, typename B> 
class IsDerivedFrom1 
{ 
  class No { }; 
  class Yes { No no[2]; }; 
 
  static Yes Test( B* ); // declared, but not defined 
  static No Test( ... ); // declared, but not defined 
 
public: 
  enum { Is = sizeof(Test(static_cast<D*>(0))) == 
sizeof(Yes) }; 
}; 

Get it? Think about this code for a moment before reading on. 

 



* * * * * 

The above trick relies on three things: 

1. Yes and No have different sizes. This is guaranteed by having a Yes contain an array of 
more than one No object. (And anyway, two negatives sometimes do make a positive. This 
time it's not really a No no.) 

2. Overload resolution and determining the value of sizeof are both performed at compile time, 
not runtime. 

3. Enum values are evaluated, and can be used, at compile time. 

Let's analyze the enum definition in more detail. First, the innermost part is: 

 
Test(static_cast<D*>(0)) 

All this does is mention a function named Test and pretend to pass it a D*—in this case, a suitably 
cast null pointer will do. Note that nothing is actually being done here, and no code is being generated, 
so the pointer is never dereferenced or, for that matter, even ever actually created. All we're doing is 
creating a typed expression. Now, the compiler knows what D is, and will apply overload resolution at 
compile time to decide which of the two overloads of Test() ought to be chosen: If a D* can be 
converted to a B*, then Test( B* ), which returns a Yes, would get selected; otherwise, 
Test( ... ), which returns a No, would get selected. 

The obvious next step, then, is to check which overload would get selected: 

 
sizeof(Test(static_cast<D*>(0))) == sizeof(Yes) 

This expression, still evaluated entirely at compile time, will yield 1 if a D* can be converted to a B*, 
and 0 otherwise. That's pretty much all we want to know, because a D* can be converted to a B* if 
and only if D is derived from B, or D is the same as B.[5] 

[5] Or B happens to be void. 

So now that we've calculated what we need to know, we just need to store the result someplace. The 
said "someplace" has to be a place that can be set and the value used, all at compile time. Fortunately, 
an enum fits the bill nicely: 

 
enum { Is = sizeof(Test(static_cast<D*>(0))) == sizeof(Yes) }; 

In this case, for our Cloneable purposes, we don't care if D and B are the same type. We just want 
to know whether a D can be used polymorphically as a B, and that's what's being tested in 
IsDerivedFrom1. It's trivially true that a B can be used as a B. 

That's it. We can now use this facility to help build an answer to the question, to wit: 

 



// Example 4-3(a), continued: Using IsDerivedFrom1 
// helper to enforce derivation from Cloneable 
// 
template<typename T> 
class X 
{ 
  bool ValidateRequirements() const 
  { 
    // typedef needed because otherwise the , will be 
    // interpreted as delimiting macro parameters to assert 
    typedef IsDerivedFrom1<T, Cloneable> Y; 
 
    // a runtime check, but one that can be turned 
    // into a compile-time check without much work 
    assert( Y::Is ); 
 
    return true; 
  } 
 
public: 
  // in X's destructor (easier than putting it 
  // in every X constructor): 
  ~X() 
  { 
  assert( ValidateRequirements() ); 
  } 
 
  // ... 
}; 

Requiring Inheritance, Take 2: IsDerivedFrom2 Constraints Base 
Class 

By now you've probably noticed that we could use Stroustrup's approach to create a functionally 
equivalent version, which is syntactically nicer: 

 
// Example 4-3(b): An IsDerivedFrom2 constraints base class 
// 
// Advantages: Compile-time evaluation 
//             Simpler to use directly 
// Drawbacks:  Not directly usable for compile-time value test 
// 
template<typename D, typename B> 
class IsDerivedFrom2 
{ 
  static void Constraints(D* p) 
  { 
    B* pb = p; 



    pb = p; // suppress warnings about unused variables 
  } 
 
protected: 
  IsDerivedFrom2() { void(*p)(D*) = Constraints; } 
}; 
// Force it to fail in the case where B is void 
template<typename D> 
class IsDerivedFrom2<D, void> 
{ 
  IsDerivedFrom2() { char* p = (int*)0; /* error */ } 
}; 

Now the check is much simpler: 

 
// Example 4-3(b), continued: Using IsDerivedFrom2 
// constraints base to enforce derivation from Cloneable 
// 
template<typename T> 
class X : IsDerivedFrom2<T,Cloneable> 
{ 
  // ... 
}; 

Requiring Inheritance, Take 3: A Merged IsDerivedFrom 

The main advantage of IsDerivedFrom1 over IsDerivedFrom2 is that IsDerived 
From1 provides an enum value that's generated, and can be tested, at compile time. This isn't 
important to the class X example shown here, but it will be important in the following section, 
when we want to switch on just such a value to select different traits implementations at compile time. 
On the other hand, IsDerivedFrom2 provides significant ease of use for the common case, when 
we just need to place a requirement on a template parameter to ensure some facility will exist, but 
without doing anything fancy, such as selecting from among alternative implementations. We could 
just provide both versions, but the duplicated and similar functionality is a problem, especially for 
naming. We can't do much better to distinguish them than we have done, namely by tacking on some 
wart to make the names different, so that users would always have to remember whether they wanted 
IsDerivedFrom1 or IsDerivedFrom2. That's ugly. 

Why not have our cake and eat it, too? Let's just merge the two approaches: 

 
// Example 4-3(c): An IsDerivedFrom constraints base 
// with testable value 
// 
template<typename D, typename B> 
class IsDerivedFrom 
{ 
  class No { }; 



  class Yes { No no[2]; }; 
 
  static Yes Test( B* ); // not defined 
  static No Test( ... ); // not defined 
  static void Constraints(D* p) { B* pb = p; pb = p; } 
 
public: 
  enum { Is = sizeof(Test(static_cast<D*>(0))) == 
sizeof(Yes) }; 
 
  IsDerivedFrom() { void(*p)(D*) = Constraints; } 
}; 

Selecting Alternative Implementations 

The solutions in 3(a) are nice and all, and they'll make sure T must be a Cloneable. But what if T 
isn't a Cloneable? What if there were some alternative action we could take? Perhaps we could 
make things even more flexible—which brings us to the second part of the question. 

b) […] provide an alternative implementation if T is derived from Cloneable, and work in 
some default mode otherwise. 

To do this, we introduce the proverbial "extra level of indirection" that solves many computing 
problems. In this case, the extra level of indirection takes the form of a helper template: X will use 
IsDerivedFrom from Example 4-3(c), and use partial specialization of the helper to switch 
between "is-Cloneable" and "isn't-Cloneable" implementations. (Note that this requires the 
compile-time testable value from IsDerivedFrom1, also incorporated into IsDerivedFrom, 
so that we have something we can test in order to switch among different implementations.) 

 
// Example 4-3(d): Using IsDerivedFrom to make use of 
// derivation from Cloneable if available, and do 
// something else otherwise. 
// 
template<typename T, int> 
class XImpl 
{ 
  // general case: T is not derived from Cloneable 
}; 
 
template<typename T> 
class XImpl<T, 1> 
{ 
  // T is derived from Cloneable 
}; 
 
template<typename T> 
class X 
{ 



  XImpl<T, IsDerivedFrom<T, Cloneable>::Is> impl_; 
  // ... delegates to impl_ ... 
}; 

Do you see how this works? Let's work through it with a quick example: 

 
class MyCloneable : public Cloneable { /*...*/ }; 
 
X<MyCloneable> x1; 

X<T>'s impl_ has type: 

 
XImpl<T, IsDerivedFrom<T, Cloneable>::Is> 

In this case, T is MyCloneable, and so X<MyCloneable>'s impl_ has type: 

 
XImpl<MyCloneable, IsDerivedFrom<MyCloneable, Cloneable>::Is> 

which evaluates to 

 
XImpl<MyCloneable, 1> 

which uses the specialization of XImpl that makes use of the fact that MyCloneable is derived 
from Cloneable. But what if we instantiate X with some other type? Consider: 

 
X<int> x2; 

Now T is int, and so X<int>'s impl_ has type 

 
XImpl<int, IsDerivedFrom<int, Cloneable>::Is> 

which evaluates to 

 
XImpl<int, 0> 

which uses the unspecialized XImpl. Nifty, isn't it? It's not even hard to use, once written. From the 
user's point of view, the complexity is hidden inside X. From the point of view of X's author, it's just a 
matter of directly reusing the machinery already encapsulated in IsDerivedFrom, without 
needing to understand how the magic works. 



Note that we're not proliferating template instantiations. Exactly one XImpl <T,...> will ever be 
instantiated for any given T, either XImpl<T,0> or XImpl<T,1>. Although XImpl's second 
parameter could theoretically take any integer value, we've set things up here so that the integer can 
only ever be 0 or 1. (In that case, why not use a bool instead of an int? The answer is, for 
extensibility: It doesn't hurt to use an int, and doing so allows additional alternative implementations 
to be added easily in the future as needed—for example, if we later want to add support for another 
hierarchy that has a Cloneable-like base class with a different interface.) 

Requirements versus Traits 

4. Is the approach in #3 the best way to require/detect the availability of a Clone()? Describe 
alternatives. 

The approach in Question #3 is nifty, but I tend to like traits better in many cases—they're about as 
simple (except when they have to be specialized for every class in a hierarchy), and they're more 
extensible as shown in Items 30 and 31. 

The idea is to create a traits template whose sole purpose in life, in this case, is to implement a 
Clone() operation. The traits template looks a lot like XImpl, in that there'll be a general-purpose 
unspecialized version that does something general-purpose, as well as possibly multiple specialized 
versions that deal with classes that provide better or just different ways of cloning. 

 
// Example 4-4: Using traits instead of IsDerivedFrom 
// to make use of Cloneability if available, and do 
// something else otherwise. Requires writing a 
// specialization for each Cloneable class. 
// 
template<typename T> 
class XTraits 
{ 
public: 
  // general case: use copy constructor 
  static T* Clone( const T* p ) { return new T( *p ); } 
}; 
 
template<> 
class XTraits<MyCloneable> 
{ 
public: 
  // MyCloneable is derived from Cloneable, so use Clone() 
  static MyCloneable* Clone( const MyCloneable* p ) 
  { 
    return p->Clone(); 
  } 
}; 
 
// ... etc. for every class derived from Cloneable 



X<T> then simply calls XTraits<T>::Clone() where appropriate, and it will do the right 
thing. 

The main difference between traits and the plain old XImpl shown in Example 4-3(b) is that, with 
traits, when the user defines some new type, the most work that has to be done to use it with X is 
external to X —just specialize the traits template to "do the right thing" for the new type. That's more 
extensible than the relatively hard-wired approach in #3 above, which does all the selection inside the 
implementation of XImpl instead of opening it up for extensibility. It also allows for other cloning 
methods, not just a function specifically named Clone() that is inherited from a specifically named 
base class, and this too provides extra flexibility. 

For more details, including a longer sample implementation of traits for a very similar example, see 
Item 31, Examples 31-2(d) and 31-2(e). 

Note: The main drawback of the traits approach above is that it requires individual specializations for 
every class in a hierarchy. There are ways to provide traits for a whole hierarchy of classes at a time, 
instead of tediously writing lots of specializations. See [Alexandrescu00b], which describes a nifty 
technique to do just this. His technique requires minor surgery on the base class of the outside class 
hierarchy—in this case, Cloneable. 

Inheritance versus Traits 

5. How useful is it for a template to know that its parameter type T is derived from some other 
type? Does knowing about such derivation give any benefit that couldn't also be achieved 
without the inheritance relationship? 

There is little extra benefit a template can gain from knowing that one of its template parameters is 
derived from some given base class that it couldn't gain more extensibly via traits. The only real 
drawback to using traits is that traits can require writing lots of specializations to handle many classes 
in a big hierarchy, but there are techniques that mitigate or eliminate this drawback. 

A principal motivator for this Item was to demonstrate that "using inheritance for categorization in 
templates" is perhaps not as necessary a reason to use inheritance as some have thought. Traits 
provide a more general mechanism that's more extensible when it comes time to instantiate an existing 
template on new types—such as types that come from a third-party library—that may not be easy to 
derive from a foreordained base class. 

Item 5. Typename 
Difficulty: 7 

"What's in a (type) name?" Here's an exercise that demonstrates why and how to use typename, 
using an idiom that's common in the standard library. 

1. What is typename, and what does it do? 
2. What, if anything, is wrong with the code below? 
3.  
4. template<typename T> 
5. class X_base 



6. { 
7. public: 
8.   typedef T instantiated_type; 
9. }; 
10.  
11. template<typename A, typename B> 
12. class X : public X_base<B> 
13. { 
14. public: 
15.   bool operator()( const instantiated_type& i ) const 
16.   { 
17.     return i != instantiated_type(); 
18.   } 
19.  
20.   // ... more stuff ... 
21. }; 

Solution 

 

1. What is typename, and what does it do? 

This gets us back into the field of name lookup. A motivating example is dependent names in 
templates—that is, given the following code: 

 
// Example 5-1 
// 
template<typename T> 
void f() 
{ 
  T::A* pa; // what does this line do? 
} 

the name T::A is a dependent name because it depends on the template parameter T. In this case, the 
programmer probably expects T::A to be a nested class or typedef within T, because the code 
will not compile correctly if it is something else, such as a static member variable or function. The 
problem is that the standard says: 

A name used in a template declaration or definition and that is dependent on a template-parameter is 
assumed not to name a type unless the applicable name lookup finds a type name or the name is 
qualified by the keyword typename. 

This brings us to the main question: 

2. What, if anything, is wrong with the code below? 



This example illustrates the issue of why and how to use typename to refer to dependent names, 
and may shed some light on the question: "What's in a name?" 

 
// Example 5-2 
// 
template<typename T> 
class X_base 
{ 
public: 
  typedef T instantiated_type; 
}; 
 
template<typename A, typename B> 
class X : public X_base<B> 
{ 
public: 
  bool operator()( const instantiated_type& i ) const 
  { 
    return i != instantiated_type(); 
  } 
  // ... more stuff ... 
}; 

1. Use typename for Dependent Names 

The problem with X is that instantiated_type is meant to refer to the typedef supposedly 
inherited from the base class X_base<B>. Unfortunately, at the time the compiler parses the inlined 
definition of X<A,B>::operator()(), dependent names (again, names that depend on the 
template parameters, such as the inherited X_Base:: instantiated_type) are not visible, 
and so the compiler will complain that it doesn't know what instantiated_type is supposed 
to mean. Dependent names become visible only later, at the point where the template is actually 
instantiated. 

If you're wondering why the compiler couldn't just figure it out anyway, pretend that you're a compiler 
and ask yourself how you would figure out what instantiated_type means here. It's an 
illuminating exercise. Bottom line: You can't figure it out because you don't know what B is yet, and 
whether later on there might be a specialization for X_base<B> that makes 
X_base<B>::instantiated_type something unexpected—any type name, or even a 
member variable. In the unspecialized X_base template above, 
X_base<T>::instantiated_type will always be T, but there's nothing preventing 
someone from changing that when specializing. For example: 

 
template<> 
class X_base<int> 
{ 
public: 
  typedef Y instantiated_type; 



}; 

Granted, the typedef's name would be a little misleading if they did that, but it's legal. Or even: 

 
template<> 
class X_base<double> 
{ 
public: 
  double instantiated_type; 
}; 

Now the name is less misleading, but template X cannot work with X_base <double> as a base 
class, because instantiated_type is a member variable, not a type name. 

In summary, the compiler won't know how to parse the definition of X<A,B>::operator()() 
unless we tell it what instantiated_type is—at minimum, whether it's a type or something 
else. Here we want it to be a type. 

The way to tell the compiler that something like this is a type name is to throw in the keyword 
typename. There are two ways to go about it here. The less elegant is to simply write typename 
wherever we refer to instantiated_type: 

 
// Example 5-2(a): Somewhat horrid 
// 
template<typename A, typename B> 
class X : public X_base<B> 
{ 
public: 
  bool operator()( 
    const typename X_base<B>::instantiated_type& i 
    ) const 
  { 
    return i != typename X_base<B>::instantiated_type(); 
  } 
 
  // ... more stuff ... 
}; 

I hope you winced when you read that. As usual, typedefs make this sort of thing much more 
readable, and by providing another typedef, the rest of the definition works as originally written: 

 
// Example 5-2(b): Better 
// 
template<typename A, typename B> 
class X : public X_base<B> 
{ 



public: 
  typedef typename X_base<B>::instantiated_type 
          instantiated_type; 
 
  bool operator()( const instantiated_type& i ) const 
  { 
    return i != instantiated_type(); 
  } 
 
  // ... more stuff ... 
}; 

Before reading on, does anything about adding this typedef seem unusual to you? 

2. The Secondary (and Subtle) Point 

I could have used simpler examples to illustrate this (several appear in the standard, in section 14.6/2), 
but that wouldn't have pointed out the unusual thing: The whole reason the empty base X_base 
appears to exist is to provide the typedef. However, derived classes usually end up just 
typedefing it again anyway. 

Doesn't that seem redundant? It is, but only a little. After all, it's still the specialization of X_base 
that's responsible for determining what the appropriate type should be, and that type can change for 
different specializations. 

The standard library contains base classes like this, namely "bags-o-typedefs" which are intended 
to be used in just this way. Hopefully, this Item will help avert some of the questions about why 
derived classes re-typedef those typedefs, seemingly redundantly, and show that this effect is 
not really a language design glitch as much as it is just another facet of the age-old question: 

"What's in a name?" 

Postscript 

As a bonus, here's a little typename-related code joke: 

 
#include <iostream> 
 
class Rose {}; 
 
class A { public: typedef Rose rose; }; 
 
template<typename T> 
class B : public T { public: typedef typename T::rose foo; }; 
 
template<typename T> 
void smell( T ) { std::cout << "awful"; } 
 



void smell( Rose ) { std::cout << "sweet"; } 
 
int main() 
{ 
  smell( A::rose() ); 
  smell( B<A>::foo() );  // :-) 
} 

Item 6. Containers, Pointers, and Containers That 
Aren't 
Difficulty: 5 

Oil and water just don't mix. Do pointers and standard containers mix any better? 

1. Consider the following code: 
2.  
3. vector<char> v; 
4. // ... populate v ... 
5.  
6. char* p = &v[0]; 
7.  
8. // ... do something with *p ... 

Is this code valid? Whether it's valid or not, how could it be improved? 

9. Now consider the following code: 
10.  
11. template<typename T> 
12. void f( T& t ) 
13. { 
14.   typename T::value_type* p1 = &t[0]; 
15.   typename T::value_type* p2 = &*t.begin(); 
16.   // ... do something with *p1 and *p2 ... 
17. } 

Is this code valid? Discuss. 

Solution 

 

Prelude 

Little Stanislaus watched his mother as she rummaged busily in the refrigerator. "Be a dear, Stan," she 
said to him, without looking around, "and get me a container I can pour this juice into." 



Stanislaus was a good boy, and he was pretty sure he knew what a container was. He looked about and 
saw just the thing—a bright and shiny plastic bowl with a mesh bottom. Well, little Stanislaus knew 
that a bowl was a container, so happily he fetched it and held it out for his mother. She, busy, started 
to pour the juice before she'd quite got a good look at what she was pouring it into, and as Stanislaus 
held the sieve with a helpful smile, the juice ran merrily into the sieve… and through it, onto the floor. 

Stanislaus got a scolding that day. He didn't really think it was his fault, though. The bowl with the 
mesh bottom looked a lot like the other bowls. How was he to know it didn't meet his mother's 
container requirements? 

In this Item, we'll take a look at some of the C++ standard's container requirements, some reasons to 
use the technique of taking pointers into a container, and—to your possible consternation and likely 
surprise—a standard container that isn't really a container at all. 

Why Take Pointers or References into Containers? 

1. Consider the following code: 

 
// Example 6-1(a): Is this code valid? safe? good? 
// 
vector<char> v; 
 
// ... populate v ... 
 
char* p = &v[0]; 
 
// ... do something with *p ... 

Is this code valid? 

The standard guarantees that if a conforming sequence (such as vector<char>) provides 
operator[](), that operator must return an lvalue of type char, which in turn can have its 
address taken.[6] So the answer to the question is: Yes, as long as v is not empty, the code in Example 
6-1(a) is perfectly valid. 

[6] In this Item, I use different phrases for this term—for example, "pointer into a container," "pointer to an 
object inside a container," and "pointer to a contained object"—but they are all intended to mean the same 
thing. 

Is this code safe? Some C++ programmers are initially surprised at the idea of taking a pointer into a 
container, but the answer is: Yes, it's safe, as long as we remain aware of when the pointer might be 
invalidated, which is pretty much whenever an equivalent iterator would be invalidated. For example, 
clearly, if we decide to start inserting or erasing elements of the container, not only iterators but also 
any pointers into the container will be invalidated as the underlying memory moves. 

But does this code make sense? Again, yes; it can make perfect sense to have pointers or references 
into a container. One common case is when you read a data structure into memory once, say on 
program startup, and thereafter you never modify it, but you do need to access it in different ways. In 
that case, it can make sense to have additional data structures that contain pointers into the main 
container to optimize different access methods. I'll give a simple example in the next section. 



How Could the Code Be Improved? 

Whether it's valid or not, how could it be improved? 

Example 6-1(a) could be improved in the following way: 

 
// Example 6-1(b): An improvement (when it's possible) 
// 
vector<char> v; 
// ... populate v ... 
 
vector<char>::iterator i = v.begin(); 
 
// ... do something with *i ... 

In general, it's not a bad guideline to prefer using iterators instead of pointers when you want to point 
at an object that's inside a container. After all, iterators are invalidated at mostly the same times and in 
the same ways as pointers, and one reason iterators exist is to provide a way to "point" at a contained 
object. If you have a choice, prefer to use iterators into containers. 

Unfortunately, you can't always get the same effect with iterators that you get with pointers into a 
container. There are two main potential drawbacks to the iterator method, and when either applies we 
have to continue to use pointers: 

1. You can't always conveniently use an iterator where you can use a pointer (see example 
below). 

2. Using iterators might incur extra space and performance overhead when the iterator is an 
object and not just a bald pointer. 

For example, say you have a map<Name,PhoneNumber> that is loaded once at program startup 
and thereafter is only queried. The idea is that, given a name, this makes it easy to look up the 
corresponding phone number in the fixed dictionary. But what if you need to do the reverse lookup 
too? A clean solution could be to build a second structure, perhaps a 
map<PhoneNumber*,Name*,Deref> that enables the reverse lookup but avoids doubling 
the storage overhead, because, using pointers, there's no need to store each name and phone number 
twice. The second structure simply has pointers into the first. 

That's fine, and it will work well, but note that this effect would be more difficult to achieve using 
iterators instead of pointers. Why? Because the natural iterator candidate, 
map<Name,PhoneNumber>::iterator, points to a pair<Name,PhoneNumber>, 
and there's no handy way to get an iterator to just the name or phone number part individually. (We 
could store the entire iterator and always explicitly say ->first and ->second everywhere, but 
that's inconvenient to code, and it would mean that the reverse-lookup map would have to be 
redesigned or replaced by a different structure.) 

This brings us to the next (and in my opinion, the most interesting) point of this Item's theme: 

2. Now consider the following code: 



 
// Example 6-2: Is this code valid? 
// 
template<typename T> 
void f( T& t ) 
{ 
  typename T::value_type* p1 = &t[0]; 
  typename T::value_type* p2 = &*t.begin(); 
  // ... do something with *p1 and *p2 ... 
} 

Before reading on, think about these questions: Is this code valid? If yes, under what conditions is it 
valid? Specifically, what kinds of things can we say about a T that makes this code valid? (Ignore 
runtime considerations, such as whether t happens to be in a suitable state to have t[0] called on it. 
We're interested in program legality here.) 

When Is a Container Not a Container? 

Well, is Example 6-2 valid? In short, yes, it can be valid. 

The longer answer involves thinking about what kinds of T would make the code valid: What 
characteristics and abilities must a suitable T have? Let's do some detective work: 

a. To make the expression &t[0] valid, T::operator[]() must exist and must return 
something that understands operator&(), which in turn must return a valid 
T::value_type* (or something that can be meaningfully converted to a valid 
T::value_type*). 

In particular, this is true of containers that meet the standard's container and sequence 
requirements and implement the optional operator[](), because that operator must 
return a reference to the contained object. By definition, you can then take the contained 
object's address. 

b. To make the expression &*t.begin() valid, T::begin() must exist, and it must 
return something that understands operator*(), which in turn must return something 
that understands operator&, which in turn must return a valid T::value_type* (or 
something that can be meaningfully converted to a valid T::value_type*). 

In particular, this is true of containers whose iterators meet the standard's iterator 
requirements, because the iterator returned by begin() must, when dereferenced using 
operator*(), return a reference to the contained object. By definition, you can then take 
the contained object's address. 

Which Brings Us to the Awkward Part 

So here's the thing: The code in Example 6-2 will work for any container in the standard library that 
supports operator[](). If you take away the line containing "&t[0]", it will work for every 
container in the standard library, except for std::vector<bool>. 



To see why, note that the following template works for every type T except bool. 

 
// Example 6-3: Also works for every T except bool 
// 
template<typename T> 
void g( vector<T>& v ) 
{ 
  T* p = &v.front(); 
  // ... do something with *p ... 
} 

Do you see why? At first (or even second and third) glance, it may seem odd that this is valid for all 
types but one. What makes vector<bool> so special? 

The reason is as simple as it is unfortunate: Not all the templates defined in the C++ standard library 
that look like containers actually are containers. In particular, the standard library requires a 
specialization of vector for bool, and the specialization 

vector<bool> is not a container 

in that it does not meet the standard library's requirements for containers. True, vector<bool> 
does appear in the "containers and sequences" part of the standard; and, true, there's no note to 
indicate that it's really neither a container nor a sequence. But the fact is that vector<bool> is not 
a container, and so it should not be surprising that it cannot always be used as one.[7] 

[7] If anyone else had written vector<bool>, it would have been called "nonconforming" and 
"nonstandard." But it's in the standard, so it's harder to call it those names at this point. One correct solution 
to this discrepancy would be to remove clause 23.2.5, the vector<bool> specialization requirement, 
so that vector<bool> would be just another instantiation of the primary vector<> template, and 
so would really be what it claims to be — a vector of plain old bools. (Besides, many aspects of 
vector<bool> are redundant; std::bitset was designed for this kind of packed-representation 
work.) 

If this state of affairs seems a little strange to you, you're not alone, but there is a logical explanation. 

The Life and Times of vector<bool> 

The vector<bool> specialization is commonly (mis)used as an example right from the C++ 
standard showing how to write a proxied container. A "proxied container" is a container whose objects 
aren't accessed or manipulated directly. Instead of giving you pointers or references to a contained 
object, a proxied container gives you proxy objects that can be used to indirectly access or manipulate 
a contained object. Proxied collections can be useful in cases where the objects within the collection 
cannot always be reliably accessed directly as though they were in memory—as, for example, with a 
disk-based collection that automatically pages pieces of itself in and out of memory under the covers 
as needed. So the mistaken idea that many people have is that vector<bool> shows how to make 
such a proxied collection meet the requirements of a "container" in the sense defined by the standard 
library. 



The fly in the ointment is that vector<bool> is not a "container" in the sense of meeting the 
standard's container and iterator requirements.[8] Proxied containers are categorically disallowed by the 
standard's container and iterator requirements. For example, a container<T>::reference 
must be a true reference (T&), never a proxy. Iterators have similar requirements, so dereferencing a 
forward, bidirectional, or random-access iterator must yield a true reference (T&), never a proxy. 
These points preclude any proxy-based containers from meeting the standard's current container 
requirements. 

[8] Obviously it's a container in the general sense of being a collection that you can put things into and take 
things out of. 

The reason vector<bool> is of necessity nonconforming is that it attempts to do extra work 
invisibly, under the covers, in an attempt to optimize for space. A normal bool object is at least as 
big as a char; sizeof(bool) is implementation-defined and will vary from compiler to 
compiler, but it must be at least 1. Does that seem extravagant? Some people thought so, so 
vector<bool> tries to be more efficient about the amount of storage it uses. Instead of storing a 
full char or int for every contained "bool," it packs the bools and stores them as individual 
bits (inside, say, chars or ints) in its internal representation. This gives vector<bool> a 
space advantage of at least 8:1 on platforms with 8-bit "normal" bools, and possibly more. (By this 
point, some of you may already have noticed that this optimization makes the name 
vector<bool> rather misleading. The things inside aren't really normal bools at all.) 

One consequence of this packed representation is that vector<bool> clearly can't just return a 
normal bool& from its operator[] or its dereferenced iterators.[9] Instead, it has to return a 
"reference-like" proxy object that in many ways looks and smells like a bool& but which is not a 
bool&. Unfortunately, that can also make access into a vector<bool> slower, because we have 
to deal with proxies instead of direct pointers and references (not to mention the extra bit-fiddling). So 
vector<bool> is not a pure optimization, but a trade-off that favors "less space" at the expense of 
"potentially slower speed." More about this in a moment. 

[9] This is because there is no standard way to express a pointer or a reference to a bit. 

For example, whereas the functions vector<T>::operator[]() and vector<T>:: 
front() normally return simply a T& (a reference to the contained T), 
vector<bool>::operator[]() and vector<bool>::front() actually return a 
"reference-like" proxy object of type vector<bool>::reference. To make this proxy object 
look and feel as much like a real bool& as possible, reference provides an implicit conversion 
to bool, operator bool(), so that a reference can be used most anywhere a bool can 
be used, at least as a value. It also provides member functions operator=(bool), 
operator=(reference&), and flip(), which can be used to indirectly change the value of 
the bool that's actually inside the container, enabling natural coding styles such as "v[0] = 
v[1];". (For greater amusement, note that the one service vector<bool>::reference 
can't ever provide is a bool* operator&();. That is, it can't provide a suitable address-of 
operator because there's no way to take the address of the individual bit inside the vector<bool> 
for which the reference object is serving as proxy.) 



Proxied Containers and STL Assumptions 

Bottom line: std::vector<bool> may be standard, but it's not a container. (It's also not a 
particularly good bit vector, because it's missing a number of bit-twiddling operations that would be 
appropriate and which are present in std::bitset.) 

Further, both the original STL's container requirements and the C++ standard's container requirements 
are based on the implicit assumption (among others) that dereferencing an iterator: (a) is a constant-
time operation; and (b) requires negligible time compared to other operations. Neither of these 
assumptions is true for a disk-based container or a packed-representation container. For a disk-based 
container, access through the proxy object may require a disk seek, which can be orders of magnitude 
slower than main memory access. To illustrate, consider that you would be unlikely to apply a 
standard algorithm such as std::find() to a disk-based container; the performance would be 
abysmal compared with a special-purpose replacement, largely because the fundamental performance 
assumptions for in-memory containers do not apply to disk-based containers. (For similar reasons, 
even in-memory containers, such as std::map, provide their own find() as a member function.) 
For a packed-representation container like vector<bool>, access through the proxy object 
requires bitwise operations, which are generally much slower than manipulation of a native type like 
an int. Further, whenever the proxy object construction and destruction can't be completely 
optimized away by the compiler, managing the proxies themselves adds further overhead. 

Although vector<bool> was in part intended to be an example of how to write a proxied 
container, so that other programmers could follow its example when writing disk-based or other 
containers whose contained objects cannot reliably be accessed directly, it also serves to demonstrate 
that the standard's current container requirements do not allow proxied containers. 

Proxied collections are a useful tool and can often be appropriate, especially for collections that can 
become very large. Every programmer should know about them. They just don't fit as well into STL as 
many people thought, that's all. Even vector<bool> is still a perfectly good model for how to 
write a proxied collection; it's just not a "container" in the STL sense, and it should be called 
something else (some people asked for "bitvector") so that people wouldn't think that it has 
anything to do with a conforming container. 

Beware Premature Optimization 

If you've read Exceptional C++, you're already familiar with my regular harangues against premature 
optimization.[10] The rules boil down to: "(1) Don't optimize early. (2) Don't optimize until you know 
that it's needed. (3) Even then, don't optimize until you know what's needed, and where." As others 
have put it even more succinctly: 

[10] See also Item 12. 

• The First Rule of Optimization: Don't do it. 
• The Second Rule of Optimization: Don't do it yet. 

By and large, programmers—that includes you and me—are notoriously bad at guessing the actual 
space/time performance bottlenecks in their own code. If you don't have performance profiles or other 
empirical evidence to guide you, you can easily spend days optimizing something that doesn't need 
optimizing and that won't measurably affect runtime space or time performance. What's even worse, 
however, is that when you don't understand what needs optimizing, you may actually end up 



pessimizing (degrading your program) by saving a small cost while unintentionally incurring a large 
cost.[11] Once you've run performance profiles and other tests, and you actually know that a particular 
optimization will help you in your situation, then it's the right time to optimize. 

[11] For an interesting example of this, see also Appendix A "Optimizations That Aren't (in a Multithreaded 
World)" for a case in point. That appendix dissects a popular optimization that turns out to be, quite 
unintentionally, an optimization principally for single-threaded environments, and which can actually be a 
distinct pessimization for (possibly) multithreaded code. 

By now, you can probably see where I'm going with this: The most premature optimization of all is an 
optimization that's enshrined in the standard and that can't easily be avoided. In particular, 
vector<bool> intentionally favors "less space" at the expense of "slower speed," and forces this 
optimization choice on all programs. This optimization choice implicitly assumes that virtually all 
users of a vector of bools will prefer using less space at the expense of potentially slower speed, 
that they will be more space-constrained than performance-constrained, and so on. This is clearly 
untrue; on many popular implementations, a bool is the same size as an 8-bit char, and a vector of 
1,000 bools consumes about 1K of memory. Saving that 1K is unimportant in many applications. 
(Yes, clearly a 1K space saving is important in some environments, such as embedded systems, and 
clearly some applications may manipulate vectors containing millions of bools, where the saved 
megabytes are real and significant.) The point is that the correct optimization depends on the 
application. If you are writing an application that manipulates a vector<bool> with 1,000 entries 
in an inner loop, it is much more likely that you would benefit from potentially faster raw performance 
due to reduced CPU workload (without the overhead of proxy objects and bit-fiddling) than from the 
marginal space savings, even if the space savings would reduce cache misses. 

So What Should You Do? 

If you are using vector<bool> in your code, you may be using it with algorithms that expect a 
real container (and that, hence, may or may not work portably), and you are using an optimization that 
favors space over time (possibly imperceptibly). Either point might be inappropriate for your 
application. The easy way to discover the first is to use the code until it fails to compile; that day may 
never come. The only way to discover the second is by running empirical tests to measure your code's 
performance the way it uses vector<bool>. In many cases, the performance difference compared 
to something like vector<int>, if there is one, may well be negligible. 

If you are being affected by vector<bool>'s noncontainerness, or if the measured performance 
difference is not negligible in your environment and the difference is material in your application, then 
don't use vector<bool>. You might at first think of using a vector<char> or 
vector<int> instead (that is, store a bool as a char or an int), and use casts when setting 
values in the container, but that's tedious. A superior workaround is to use a deque<bool>; it's a 
far simpler solution, and ties in with the advice about deque given in Item 7. 

In summary: 

1. vector<bool> is not a container. 
2. vector<bool> attempts to illustrate how to write standard-conforming proxied 

containers that do extra work invisibly under the covers. Unfortunately, that's not a sound 
idea, because although a proxied collection can be an important and useful tool, by definition 
it must violate the standard's container requirements and therefore can never be a conforming 
container (see #1). 



Corollary: Go ahead and write proxied collections, but don't attempt to write ones that still 
meet the standard's container or sequence requirements. First, it's not possible. Second, the 
main reason for collections to conform to the standard container requirements is to be used 
with the standard algorithms, yet the standard algorithms are typically inappropriate for 
proxied containers because proxied containers have different performance characteristics than 
do plain-and-in-memory containers. 

3. vector<bool>'s name is a trifle misleading because the things inside aren't even 
standard bools. A standard bool is at least as big as a char so that it can be used 
"normally." So, in fact, vector<bool> does not even really store bools, despite the 
name. 

4. vector<bool> forces a specific optimization on all users by enshrining it in the standard. 
That's probably not a good idea, even if the actual performance overhead turns out to be 
negligible for a given compiler for most applications; different users have different 
requirements. 

A last word of advice: Optimize wisely. Never succumb to the temptation to perform premature 
optimizations until you have empirical evidence that the optimization is beneficial in your situation. 

Item 7. Using vector and deque 
Difficulty: 3 

What is the difference between vector and deque? When should you use each one? And how can 
you properly shrink such containers when you no longer need their full capacity? These answers and 
more, as we consider news updates from the standards front. 

1. In the standard library, vector and deque provide similar services. Which should you 
typically use? Why? Under what circumstances would you use the other? 

2. What does the following code do? 
3.  
4. vector<C> c( 10000 ); 
5. c.erase( c.begin()+10, c.end() ); 
6. c.reserve( 10 ); 
7. A vector or deque typically reserves extra internal storage as a hedge against future 

growth, to prevent too-frequent reallocation as new elements are added. Is it possible to 
completely clear a vector or deque (that is, not only remove all contained elements, but 
also free all internally reserved storage)? Demonstrate why or why not. 

Warning: Answers 2 and 3 may be subtle. Each has a facile answer, but don't stop at the 
surface; try to be as detailed as possible. 

Solution 

 

This Item answers the following questions: 



• Can you use a vector interchangeably with a C-style array (say, with an existing function 
that expects an array)? How? What are the issues? 

• Why would you usually prefer using a vector instead of a deque? 
• How do you shrink a vector whose capacity has grown larger than you need? In particular, 

how do you "shrink-to-fit" (so that the vector's size is just big enough to hold only its current 
contents), or clear a vector's internal storage entirely (so that the vector is truly empty, 
with no contents and little or no under-the-covers preallocated storage)? Can the same 
technique be used for other containers? 

Using a vector as an Array: A Motivating Example 

C++ programmers are strongly encouraged to use the standard vector template instead of C-style 
arrays. Using a vector is easier and safer than using an array, because a vector is a better-
abstracted and better-encapsulated form of container—for example, a vector can grow and shrink 
as needed, whereas an array has a fixed size. 

Nonetheless, there's still a lot of code out there that is designed to work with C-style arrays. For 
example, consider the following code: 

 
// Example 7-1(a): A function that operates 
// on a C-style array 
// 
int FindCustomer( 
  const char* szName,     // name to search for 
  Customer*   pCustomers, // pointer to beginning 
                          //  of a Customer array 
  size_t      nLength )   //  with nLength entries 
{ 
  // performs a (possibly optimized) search and 
  // returns the index at which the specified 
  // name was found 
} 

To use the above function, we might create, populate, and pass in an array as follows: 

 
// Example 7-1(b): Using an array 
// 
Customer c[100]; 
  //-- populate the contents of c somehow —- 
int i = FindCustomer( "Fred Jones", &c[0], 100 ); 

Example 7-1(b) is all well and good, but as modern C++ programmers aren't we supposed to use 
vectors instead of arrays? Indeed, wouldn't it be nice if we could have the best of both worlds—use 
a vector for its convenience and safety, yet still use the vector's contents with functions that 
expect an array? This desire comes up most often when an organization is migrating to C++ and 
people want to write new parts of the system in the "new and better" way while still tying in easily 
with a legacy code base. 



So let's use a vector. Our first attempt could look something like this: 

 
// Example 7-1(c): Using a vector -- will this work? 
// 
vector<Customer> c; 
//-- populate the contents of c somehow —- 
int i = FindCustomer( "Fred Jones", &c[0], c.size() ); 

In Example 7-1(c), when it comes time to call FindCustomer(), the idea is to pass in the address 
of the first element, and the number of elements, which is pretty much just what we did in Example 7-
1(b). 

Before reading on, stop for a moment and consider these questions: What potential benefits does the 
code in Example 7-1(c) have over the code in Example 7-1(b)? Do you see any potential problems 
with Example 7-1(c), or do you think that it will work as intended? 

A Fly in the Ointment? 

I didn't just pull Example 7-1(c) out of a hat. It turns out there are a lot of real-world C++ 
programmers who have done exactly this, and with good reason, because code like that in Example 7-
1(c) illustrates some of the important benefits that come from using a vector: 

• We don't have to know the potential size of c in advance. In many C programs, arrays are 
allocated pessimistically so that they'll be big enough for most intended uses. Unfortunately, 
this means that space is needlessly wasted much of the time when the full size isn't needed, 
after all. (Worse, it means the program breaks if it ever ends up needing more space than we'd 
thought.) With a C++ vector, we can grow the container as needed instead of just guessing. 
Also, if we do happen to know in advance how many objects we're going to put into the 
vector, we can simply say so (by first calling c.reserve(100), if we want to reserve 
space for 100 elements), so there's no performance disadvantage with a vector compared 
to an array, because we have a way to avoid repeated reallocations as we insert new elements 
into the vector. 

• We don't have to separately track the actual length of the array so that we can pass it as the 
final (nLength) parameter to FindCustomer(). Yes, you can use a C array and use 
workarounds that make remembering or recalculating the length easier,[12] but none of those 
workarounds are as easy and safe as just writing c.size(). 

[12] The most typical approaches are to use a const value or a #defined name for the size of 
the array, or else a macro that expands to sizeof(c)/sizeof(c[0]) to compute the 
size of the array. 

In short, as far as I know, Example 7-1(c) has always worked on every implementation of 
std::vector that has ever existed. 

Until 2001, a minor fly in the ointment was that the 1998 C++ standard [C++98] didn't actually 
guarantee that Example 7-1(c) would work portably on every C++ platform you might buy. This is 
because Example 7-1(c) assumes that the internal contents of the vector are stored contiguously in 
the same format as is an array, but the original C++ standard didn't require vendors to implement 
vector that way. If, for example, a vector implementation were to play games and store its 



contents in some other way (such as contiguously but in backwards order, or in sequential order but 
with an extra byte of housekeeping information between elements), then Example 7-1(c) would, in 
fact, fail miserably. This was fixed in 2001 as part of Technical Corrigendum #1 to the C++ standard, 
which now requires that the contents of a vector are stored contiguously, just like an array. 

Even if your compiler doesn't include support for the Technical Corrigendum yet, though, Example 7-
1(c) should work in practice today. Again, I don't know of a commercial vector implementation 
that doesn't store its elements contiguously. 

Bottom line: Prefer using vector (or deque; see below) instead of arrays. 

In Most Cases, Prefer Using vector 

1. In the standard library, vector and deque provide similar services. Which should you 
typically use? Why? Under what circumstances would you use the other? 

The C++ standard [C++98], in section 23.1.1, offers some advice on which containers to prefer. It 
says: 

vector is the type of sequence that should be used by default. … deque is the data structure of 
choice when most insertions and deletions take place at the beginning or at the end of the sequence. 

vector and deque offer nearly identical interfaces and are generally interchangeable. deque 
also offers push_front() and pop_front(), which vector does not. (True, vector 
offers capacity() and reserve(), which deque does not, but that's no loss. Those 
functions are actually something of a weakness in vector, as I'll demonstrate in a moment.) 

The main structural difference between vector and deque lies in the way the two containers 
organize their internal storage. Under the covers, a deque allocates its storage in pages, or "chunks," 
with a fixed number of contained elements in each page. This is why a deque is often compared to 
(and pronounced as) a "deck" of cards,[13] although its name originally came from "double-ended 
queue" because of its ability to insert elements efficiently at either end of the sequence. On the other 
hand, a vector allocates a contiguous block of memory, and can only insert elements efficiently at 
the end of the sequence. 

[13] The first use I know of the "deck of cards" analogy for deque was by Donald Knuth in [Knuth97]. 

The paged organization of a deque offers several benefits: 

• A deque offers constant-time insert() and erase() operations at the front of the 
container, whereas a vector does not, hence the note in the standard about using a deque 
if you need to insert or erase at both ends of the sequence. 

• A deque uses memory in a more operating system-friendly way. For example, a 10-
megabyte vector uses a single 10-megabyte block of memory. On some operating systems 
that single block can be less efficient in practice than a 10-megabyte deque that can fit in a 
series of smaller blocks of memory. On other operating systems, a contiguous address space 
can be built of smaller blocks under the covers anyway. On such platforms, this deque 
noncontiguity advantage won't matter. 



• A deque is somewhat easier to use, and inherently more efficient for growth, than a 
vector. The only operations supplied by vector that deque doesn't have are 
capacity() and reserve(). That's because deque doesn't need them! For 
vector, calling reserve() before a large number of push_back()s can eliminate 
reallocating ever-larger versions of the same buffer every time it finds out that the current one 
isn't big enough, after all. A deque has no such problem, and having a 
deque::reserve() before a large number of push_back()s would not eliminate 
any allocations (or any other work), because none of the allocations is redundant. The 
deque has to allocate the same number of extra pages whether it does it all at once or as 
elements are actually appended. 

Interestingly, note that within the C++ standard itself, the stack adapter prefers deque. Even 
though a stack can only grow in one direction and so never needs insertion in the middle or at the 
other end, the default implementation is required to be a deque: 

 
namespace std 
{ 
  template<typename T, typename Container = deque<T> > 
  class stack 
  { 
     // ... 
  }; 
} 

Despite this, for readability and simplicity, prefer using vector by default in your programs unless 
you know you need to efficiently insert and erase at the beginning of the container and don't need the 
underlying objects to be stored contiguously. Note that vector is to C++ what the array is to C—
the default container type to use in your programs, and one that does a reasonably good all-around job 
unless you know you need something different. 

The Incredible Shrinking vector 

As already noted, it's nice that vector manages its own storage, and that we can give it hints about 
how much capacity to keep ready under the covers as it grows. If we have a vector<T> c that 
we're about to grow to contain 100 elements, we can first call c.reserve(100) and incur, at most, 
a single reallocation hit. This allows optimally efficient growth. 

But what if we're doing the opposite? What if we're using a vector that's pretty big, and then we 
remove elements we no longer need and want the vector to shrink to fit—that is, we want it to get 
rid of the now-unneeded extra capacity? You might think that the following would work: 

2. What does the following code do? 

 
// Example 7-2(a): A naïve attempt at shrinking a vector. 
// 
vector<C> c( 10000 ); 



Now c.size() == 10000, and c.capacity() >= 10000. 

Next, we erase all but the first ten elements: 

 
c.erase( c.begin()+10, c.end() ); 

Now c.size() == 10, and we know we don't need all that extra capacity, but the following line 
does not shrink c's internal buffer to fit: 

 
c.reserve( 10 ); 

The reason that the last line in Example 7-2(a) does not do what one might expect is that calling 
reserve() will never shrink the vector's capacity. Calling reserve() can only increase the 
capacity, or do nothing if the capacity is already sufficient. 

Fortunately, there is a right way to get the intended effect: 

 
// Example 7-2(b): The right way to shrink-to-fit a vector. 
// 
vector<Customer> c( 10000 ); 
// ...now c.capacity() >= 10000... 
 
// erase all but the first 10 elements 
c.erase( c.begin()+10, c.end() ); 
 
// the following line does shrink c's 
// internal buffer to fit (or close) 
vector<Customer>( c ).swap( c ); 
 
// ...now c.capacity() == c.size(), or 
// perhaps a little more than c.size() 

Do you see how the shrink-to-fit statement works? It's a little subtle: 

1. First, we create a temporary (unnamed) vector<Customer> and initialize it to hold the 
same contents as c. The salient difference between the temporary vector and c is that, 
while c still carries around a lot of extra capacity in its oversize internal buffer, the temporary 
vector has just enough capacity to hold its copy of c's contents. (Some implementations 
may choose to round up the capacity slightly to their next larger internal "chunk size," with 
the result that the capacity actually ends up being slightly larger than the size of the contents.) 

2. Next, we call swap() to exchange the internals of c with the temporary vector. Now the 
temporary vector owns the oversize buffer with the extra capacity that we're trying to get 
rid of, and c owns the "right-sized" buffer with the just-enough capacity. 

3. Finally, the temporary vector goes out of scope, carrying away the old oversize buffer 
with it. The old buffer is deleted when the temporary vector is destroyed. All we're left 
with is c itself, but now c has a "right-sized" capacity. 



Note that this procedure is not needlessly inefficient. Even if vector had a special-purpose 
shrink_to_fit() member function, it would have to do pretty much all the same work just 
described. 

3. A vector or deque typically reserves extra internal storage as a hedge against future 
growth, to prevent too-frequent reallocation as new elements are added. Is it possible to 
completely clear a vector or deque (that is, not only remove all contained elements, but also 
free all internally reserved storage)? Demonstrate why or why not. 

To completely clear a vector so that it has no contents and no extra capacity at all, the code is 
nearly identical. We just initialize the temporary vector to be empty instead of making it a copy of 
c: 

 
// Example 7-3: The right way to clear out a vector. 
// 
vector<Customer> c( 10000 ); 
// ...now c.capacity() >= 10000... 
 
// the following line makes 
// c be truly empty 
vector<Customer>().swap( c ); 
 
// ...now c.capacity() == 0, unless the 
// implementation happens to enforce a 
// minimum size even for empty vectors 

Again, note that the vector implementation you use may choose to make even empty vectors 
have some slight capacity, but now you're guaranteed that c's capacity will be the smallest possible 
allowed by your implementation. It will be the same as the capacity of an empty vector. 

These techniques work for deque, too, but you don't need to do this kind of thing for list, set, 
map, multiset, or multimap, because they allocate storage on an "exactly-as-needed" basis 
and so they should never have excess capacity. 

Summary 

It's safe to use vectors interchangeably with C-style arrays, and you should always prefer to use 
vectors or deques instead of arrays. Use a vector as your default container type, unless you 
know you need something different and you don't need all the contained elements to be contiguous in 
memory. Use the swap-with-a-temporary-container idiom if you want to shrink an existing vector 
or deque. Finally, as noted in Item 6, unless you know that you really need the space optimization, 
always use deque<bool> instead of vector<bool>. 

Item 8. Using set and map 
Difficulty: 5 



In Item 7, we considered vector and deque. This time, the focus is on more news about the 
associative containers set, multiset, map, and multimap.[14] 

[14] Note that set and multiset aren't really "associative" in the usual sense of relating a lookup key 
with another value, the way a dictionary does. That's the job of map and multimap. But all four of these 
containers appear in the C++ standard under the heading "Associative Contain-ers," so I'll follow suit to be 
consistent. 

1.  
a. What's wrong with the following code? How would you correct it? 
b.  
c. map<int,string>::iterator i = m.find( 13 ); 
d. if( i != m.end() ) 
e. { 
f.   const_cast<int&>( i->first ) = 9999999; 
g. } 
h. To what extent are the problems fixed by writing the following instead? 
i.  
j. map<int,string>::iterator i = m.find( 13 ); 
k. if( i != m.end() ) 
l. { 
m.   string s = i->second; 
n.   m.erase( i ); 
o.   m.insert( make_pair( 9999999, s ) ); 
p. } 

2. Can you modify a set's contents through a set::iterator? Why or why not? 

Solution 

 

Associative Containers: Review 

First, a quick review: Here are some key points about what it means to iterate over an associative 
container, and about what associative containers' iterators do and are. 

The four standard associative containers are summarized in Figure 1. Each of these containers 
internally maintains its elements in a way that allows fast traversal in nondescending key order and 
fast retrieval by key, where the keys are always compared according to the provided Compare type 
(this defaults to less<Key>, which uses the operator<() provided for Key objects). 
Whenever a new key is inserted into a container, the container finds a proper place to insert the new 
key so that it maintains the proper ordering of its internal data structure. 

Figure 1. The standard associative containers (minus the allocator parameters). 



 

Iterators are easy to implement, because they are supposed to traverse the entries in nondescending 
Key order, and the container already internally stores the elements in a way that naturally supports 
that ordering. Pretty basic, right? 

Which brings us to the "key" issue: 

The Key Requirement 

An essential requirement, without which associative containers could not work reliably at all, is this: 
Once a key has been inserted into the container, that key had better not be changed in any way that 
would change its relative position in the container. If that ever did happen, the container wouldn't 
know about it, and its assumptions about the ordering of its entries would be violated, searches for 
valid entries could fail, iterators would no longer be guaranteed to traverse the contents in key order, 
and in general Bad Things would happen. 

I'll illustrate this issue in the context of an example, and then discuss what you can do about it. 

A Motivating Example 

Consider a map<int,string> named m that has the contents shown in Figure 2; each node 
within m is shown as a pair<const int,string>. I'm showing the internal structure as a 
binary tree because this is what all current standard library implementations actually use. 

Figure 2. Sample internal contents of a map<int, string>. 

 

As the keys are inserted, the tree's structure is maintained and balanced such that a normal inorder 
traversal visits the keys in the usual less<int> ordering. So far, so good. 

But now say that, through an iterator, we could arbitrarily change the second entry's key, using code 
that looks something like the following: 

1. a) What's wrong with the following code? How would you correct it? 

 
// Example 8-1: Wrong way to change a 
// key in a map<int,string> m. 



// 
map<int,string>::iterator i = m.find( 13 ); 
if( i != m.end() ) 
{ 
  const_cast<int&>( i->first ) = 9999999; // oops! 
} 

Note that we have to cast away const to get this code to compile. More on that in a moment. The 
problem here is that the code interferes with the map's internal representation by changing the map's 
internals in a way that the map isn't expecting and can't deal with. 

Example 8-1 corrupts the map's internal structure (see Figure 3). Now, for example, an iterator 
traversal will not return the contents of the map in key order, as it should. For example, a search for 
key 144 will probably fail, even though the key exists in the map. In general, the container is no 
longer in a consistent or usable state. Note that it is not feasible to require the map to automatically 
defend itself against such illicit usage, because it can't even detect this kind of change when it occurs. 
In Example 8-1, the change was made through a reference into the container, without calling any map 
member functions. 

Figure 3. Figure 2 after Example 8-1 executes. Problem! 

 

If the Example 8-1 code had changed the key in such a way that the relative ordering remained 
unchanged, there would have been no problem for this implementation of map. The problem is only 
with code that attempts to change the relative ordering of keys once they are in the container. 

What's the best way to deal with this? Ideally, we would like to prevent this through a suitable coding 
standard. What, then, should such a coding standard say? 

Option #1: Say "const Means const!" (Insufficient) 

In Example 8-1, we needed to cast away const in order to change the key. This is because standard 
C++ actively tries to prevent code that changes the relative ordering of keys. In fact, standard C++ 
enforces a (seemingly) stricter requirement—namely, that for both maps and multimaps, keys 
should not be modified at all. A map<Key, Value>::iterator points to a pair<const 
Key, Value> which, apparently, lets you modify the value part, but not the key part, of the 
pointed-at map entry. This, again apparently, prevents a key from changing at all, much less changing 
in a way that would alter its position in the map object's internal ordering. 

One option, then, is to print large posters that say "const means const!" and hold rallies with 
celebrity speakers and incite mass media coverage to increase awareness of this deplorable problem. 
This would prevent code like that in Example 8-1, which doesn't work in practice anyway, wouldn't it? 



It's a good idea, but unfortunately even telling people to respect const isn't enough. For example, if 
the Key type has a mutable member that affects the way Compare compares Key objects, then 
calling const member functions on a const key can still change the relative ordering of keys. 

Option #2: Say "Always Change Keys Using Erase-Then-Insert" 
(Better, But Still Insufficient) 

A better, but still insufficient, solution is to follow this discipline: To change a key, remove it and 
reinsert it. For example: 

b) To what extent are the problems fixed by writing the following instead? 

 
// Example 8-2: Better way to change a key 
// in a map<int,string> m. 
// 
map<int,string>::iterator i = m.find( 13 ); 
if( i != m.end() ) 
{ 
  string s = i->second; 
  m.erase( i ); 
  m.insert( make_pair( 9999999, s ) ); // OK 
} 

This is better, because it avoids any change to keys, even keys with mutable members that are 
significant in the ordering. It even works with our specific example. So this must be the solution, right? 

Unfortunately, it's still not enough in the general case, because keys can still be changed while they 
are in the container. "What?" one might ask. "How can keys be changed while they're in the container, 
if we adopt the discipline of never changing key objects directly?" Here are two counterexamples: 

1. Let's say the Key type has some externally available state that other code can get at—for 
example, a pointer to a shared buffer that can be modified by other parts of the system 
without going through the Key object. Let's also say that that externally available state 
participates in the comparison performed by Compare. Then making a change in the 
externally available state, even without the knowledge of the Key object and without the 
knowledge of the code that uses the associative container, can still change the relative 
ordering of keys. So in this case, even if the code owning the container tries to follow an 
erase-then-reinsert discipline, a key ordering change can happen at any time somewhere else 
and therefore without an erase-then-reinsert operation. 

2. Consider a Key type of string and a Compare type that interprets the key as a file name 
and compares the contents of the files. It's obvious that even if the keys are never changed, 
the relative ordering of keys can still change if the files are modified by another process, or (if 
the file is shared on a network) even by a user on a different machine on the other side of the 
world. 



What About set? 

This brings us to set. Because we haven't found a good answer yet for map, we might as well look 
to see what set does about it. 

2. Can you modify a set's contents through a set::iterator? Why or why not? 

One way to think of a set is as just a map<Key, Value> with a Value type of void. You 
might expect that set would do much the same thing with its key type as does map, and that a 
set<Key>::iterator and a set<Key>::const_iterator would be the same 
thing—that is, they would both point to a const Key. This would prevent a programmer from 
modifying the pointed-at key. 

Alas, the standard is not as clear about this for set as it is for map, but it's reasonable to want to 
change an object inside a set—after all, the contained object might well contain other information 
that does not affect comparison. There have been two distinct opinion camps, with differing ideas on 
the question of whether set::iterator ought to point at a non-const key, and so it should be 
no surprise that in some standard library implementations it does and in some it doesn't. In other 
words, in practice you can't portably rely on being able to modify an element of a set through a 
set::iterator without a const_cast. As this book goes to press, the current intent within 
the standards committee is to add wording to the standard that formally requires that both 
set::iterator and set::const_iterator be constant iterators, and that if you want to 
change an object in a set, you must use the const_cast bazooka. 

There are, however, good reasons to want to use the bazooka. Remember that sets and maps are 
often intended to be used somewhat differently. For example, say you want to implement a lookup 
that, given a customer's name, finds the customer's address or phone number. Then you might 
implement a map<string, CustData>, where the key is the customer's name and the value is 
a CustData structure that contains address and telephone information. 

But what if you already have a perfectly good Customer class that contains the customer's name 
and information? Then it might seem a waste of programmer time to add the needless complexity of 
yet another CustData structure that contains all the same information except for one name string. 
On the other hand, it would be wasteful of runtime resources to implement a map<string, 
Customer>, where the key is a redundant copy of the customer's name, which is already stored 
inside the Customer object. We really shouldn't have to store that name twice. Instead, you would 
naturally think of implementing a set<Customer> which needs no new data structure and incurs 
no redundant string overhead. A map<string, Customer> will let you change the 
Customer object once it's in the container—and so should set<Customer>, but in reality (and 
probably soon in legality) you will have to do it with a const_cast. Some current 
implementations of set will let you change it without a cast; some won't. If you're using one that will 
let you change it, and/or are deliberately using const_cast to change it, remember that 
implementations of set still require that you not change a Customer object in such a way that 
would change its relative ordering in the container. 

Noting that our first two attempts to write a more specific rule didn't cover all the cases, and noting 
that even set and map handle things a little differently, perhaps we can do no better than a general 
rule. 



The Key Requirement (Reprise) 

What rule should we follow to ensure that we're using associative containers correctly? Although it 
would be nice to codify a more-specific discipline, const alone won't do it (and, at any rate, set 
and map have divergent "key constness" policies in practice today), and simple coding rules alone 
won't do it. So we can't really be much more specific than to simply state the requirement and add: 
"You have to know what you're doing." 

The Associative Container Key Rule 
Once a key has been inserted into an associative container, that key must never change its 
relative position in the container. 

Be aware of the direct and indirect ways by which a key might change its relative order, and avoid 
those practices. You'll be avoiding needless problems with the standard associative containers. 

Item 9. Equivalent Code? 
Difficulty: 5 

Can subtle code differences really matter, especially in something as simple as postincrementing a 
function parameter? This Item explores an interesting interaction that becomes important in STL-style 
code. 

1. Describe what the following code does: 
2.  
3. // Example 9-1 
4. // 
5. f( a++ ); 

Be as complete as you can about all possibilities. 

6. What is the difference, if any, between the following two code fragments? 
7.  
8. // Example 9-2(a) 
9. // 
10. f( a++ ); 
11.  
12. // Example 9-2(b) 
13. // 
14. f( a ); 
15. a++; 
16. In Question #2, make the simplifying assumption that f() is a function that takes its 

argument by value, and that a is an object of class type that has an operator++(int) 
with natural semantics. Now what is the difference, if any, between Example 9-2(a) and 
Example 9-2(b)? 



Solution 

 

1. Describe what the following code does: 

 
// Example 9-1 
// 
f( a++ ); 

Be as complete as you can about all possibilities. 

A comprehensive list would be daunting, but here are the main possibilities. 

First, f could be any of the following: 

1. A macro. 

In this case, the statement could mean just about anything, and a++ could be evaluated many times or 
not at all. For example: 

 
#define f(x) x                      // once 
#define f(x) (x,x,x,x,x,x,x,x,x)    // 9 times 
#define f(x)                        // not at all 

Guideline 

 Avoid using macros. They usually make code more difficult to understand and, 
therefore, more troublesome to maintain. 

 

2. A function. 

In this case, first a++ is evaluated and then the result is passed to the function as its parameter. 
Normally, postincrement returns the previous value of a in the form of a temporary object, so f() 
could take its parameter either by value or by reference to const, but not by reference to non-
const, because a reference to non-const cannot be bound to a temporary object. 

3. An object. 

In this case, f would be a function object, that is, an object for which operator()() is defined. 
Again, if postincrement returns the previous value of a (as postincrement always should) then f's 
operator()() could take its parameter either by value or by reference to const. 



4. A type name. 

In this case, the statement first evaluates a++ and uses the result of that expression to initialize a 
temporary object of type f. 

 
* * * * * 

Next, a could be: 

1. A macro. 

In this case, again, a could mean just about anything. 

2. An object (possibly of a built-in type). 

In this case, it must be a type for which a suitable operator++(int) postincrement operator is 
defined. 

Normally, postincrement should be implemented in terms of preincrement and should return the 
previous value of a: 

 
// Canonical form of postincrement: 
T T::operator++(int) 
{ 
  T old( *this ); // remember our original value 
 
  ++*this;        // always implement postincrement 
                  //  in terms of preincrement 
 
  return old;     // return our original value 
} 

When you overload an operator, of course, you do have the option of changing its normal semantics to 
do "something unusual." For example, the following is likely to break the Example 9-1 code for most 
kinds of f, assuming a is of type A: 

 
void A::operator++(int) // doesn't return anything 

Don't do that. Instead, follow this sound advice: 

Guideline 

 Always preserve natural semantics for overloaded operators. "Do as the ints 
do"; that is, follow the semantics of the built-in types. [Meyers96, Item 32] 

 



3. A value, such as an address. 

For example, a could be a pointer. 

Some Effects of Side Effects 

For the remaining questions, I will make the simplifying assumptions that f() is not a macro, and 
that a is an object with natural postincrement semantics. 

2. What is the difference, if any, between the following two code fragments? 

 
// Example 9-2(a) 
// 
f( a++ ); 

Example 9-2(a) performs these steps: 

1. a++: Increment a and return the old value. 
2. f(): Execute f(), passing it the old value of a. 

Example 9-2(a) ensures that the postincrement is performed, and therefore a gets its new value, before 
f() executes. As already noted, f() could still be a function, a function object, or a type name that 
leads to a constructor call. 

Some coding standards state that operations like ++ should always appear on separate lines, on the 
grounds that it can be dangerous to perform multiple operations like ++ in the same statement because 
of sequence points (more about this in Items 20 and 21). Instead, such coding standards would 
recommend Example 9-2(b): 

 
// Example 9-2(b) 
// 
f( a ); 
a++; 

This example performs the following steps: 

1. f(): Execute f(), passing it the old value of a. 
2. a++: Increment a and return the old value, which is then ignored. 

In both cases, f() gets the old value of a. "So what's the big difference?" you may ask. Well, 
Example 9-2(b) will not always have the same effect as Example 9-2(a), because Example 9-2(b) 
ensures that the postincrement is performed, and therefore a gets its new value, after f() executes. 

This has two major consequences. First, in the case in which f() emits an exception, Example 9-2(a) 
ensures that a++ and all its side effects have already been completed successfully; whereas Example 
9-2(b) ensures that a++ has not been performed, and none of its side effects has occurred. 



Second, even in non-exceptional cases, if f() and a.operator++(int) have visible side 
effects, the order in which they are executed can matter. More specifically, consider what happens if 
f() has a side effect that affects the state of a itself. That's neither farfetched nor unlikely, and it can 
happen even if f() doesn't and can't directly change a, as we'll now illustrate with an example. 

Scissors, Traffic, and Iterators 

3. In Question #2, make the simplifying assumption that f() is a function that takes its 
argument by value, and that a is an object of class type that has an operator++(int) with 
natural semantics. Now what is the difference, if any, between Example 9-2(a) and Example 9-
2(b)? 

The difference is that, for perfectly normal C++ code, Example 9-2(a) can be legal when Example 9-
2(b) is not. This is because in Example 9-2(a) there is a period of time during which objects exist 
simultaneously with the old and new values of a. In Example 9-2(b), there is no such overlap. 

Consider what happens when we replace f() with list::erase(), and a with a 
list::iterator. Now the first form is valid: 

 
// Example 9-3(a) 
// 
// l is a list<int> 
// i is a valid non-end iterator into l 
// 
l.erase( i++ ); // OK, incrementing a valid iterator 

But the second form is not: 

 
// Example 9-3(b) 
// 
// l is a list<int> 
// i is a valid non-end iterator into l 
// 
l.erase( i ); 
i++;            // error, i is not a valid iterator 

The reason that Example 9-3(b) is incorrect is that the call to l.erase( i ) invalidates i, so you 
can no longer call operator++() on i afterward. 

Warning: Some programmers do write code like Example 9-3(b), perhaps because of coding 
guidelines that have a blanket policy of discouraging operations like ++ in function call statements. 
Programmers who write code like Example 9-3(b) may even be routinely getting away with it (and not 
realizing the danger) just because it happens to work on the current version of their compiler and 
library. But let them be warned: Code like Example 9-3(b) is not portable; it is not sanctioned by the 
standard; and it's likely to turn and bite them when they port to another compiler platform, or even just 
upgrade the one they're working on today. When it does bite, it will bite hard, because "using-an-
invalid-iterator" bugs can be very difficult to find—unless you have the joy of working with a good 



checked library implementation during debugging, but then you'd already have been warned about 
such errors. 

Some mothers (who are also software engineers) give the following three pieces of good advice, and 
we should always strive to follow them for our own good: 

1. Don't run with scissors. 
2. Don't play in traffic. 
3. Don't use invalid iterators. 

Having said that, with the exception of examples like the above, we'll see in Items 20 and 21 why it's 
still a good idea in general to avoid writing operations like ++ in function calls. 

Item 10. Template Specialization and Overloading 
Difficulty: 6 

How do you specialize and overload templates? When you do, how do you determine which template 
gets called? Try your hand at analyzing these 12 examples. 

1. What is template specialization? Give an example. 
2. What is partial specialization? Give an example. 
3. Consider the following declarations: 
4.  
5. template<typename T1, typename T2> 
6. void g( T1, T2 );                       // 1 
7. template<typename T> void g( T );       // 2 
8. template<typename T> void g( T, T );    // 3 
9. template<typename T> void g( T* );      // 4 
10. template<typename T> void g( T*, T );   // 5 
11. template<typename T> void g( T, T* );   // 6 
12. template<typename T> void g( int, T* ); // 7 
13. template<> void g<int>( int );          // 8 
14. void g( int, double );                  // 9 
15. void g( int );                          // 10 

Which of the above functions are invoked by each of the following? Identify the template 
parameter types, where appropriate. 

 
int             i; 
double          d; 
float           f; 
complex<double> c; 
 
g( i );         // a 
g<int>( i );    // b 
g( i, i );      // c 
g( c );         // d 



g( i, f );      // e 
g( i, d );      // f 
g( c, &c );     // g 
g( i, &d );     // h 
g( &d, d );     // i 
g( &d );        // j 
g( d, &i );     // k 
g( &i, &i );    // l 

Solution 

 

Templates provide C++'s most powerful form of genericity. They allow you to write generic code that 
works with many kinds of unrelated objects—for example, strings that contain various kinds of 
characters, containers that can hold arbitrary types of objects, and algorithms that can operate on 
arbitrary types of sequences. 

1. What is template specialization? Give an example. 

Template specialization lets templates deal with special cases. Sometimes, a generic algorithm can 
work much more efficiently for a certain kind of sequence (for example, when given random-access 
iterators), so it makes sense to specialize it for that case while using the slower but more generic 
approach for all other cases. Performance is a common reason to specialize, but it's not the only one. 
For example, you might also specialize a template to work with certain objects that don't conform to 
the normal interface expected by the generic template. 

These special cases can be handled using two forms of template specialization: explicit specialization 
and partial specialization. 

Explicit Specialization 

Explicit specialization lets you write a specific implementation for a particular combination of 
template parameters. For example, consider the following function template: 

 
template<typename T> void sort( Array<T>& v ) { /*...*/ }; 

If we have a faster (or other specialized) way we want to deal with Arrays of char*'s, we could 
explicitly specialize sort() for that case: 

 
template<> void sort<char*>( Array<char*>& ); 

The compiler will then choose the most appropriate template. For example: 

 
Array<int>   ai; 



Array<char*> apc; 
 
sort( ai );       // calls sort<int> 
sort( apc );      // calls specialized sort<char*> 

Partial Specialization 

2. What is partial specialization? Give an example. 

For class templates only, you can define partial specializations that don't have to fix all the primary 
(unspecialized) class template's parameters. 

Here is an example from the C++ standard [C++98], in 14.5.4 [temp.class.spec]. The first template is 
the primary class template: 

 
template<typename T1, typename T2, int I> 
class A             { };             // #1 

We can specialize this for the case when T2 is a T1*: 

 
template<typename T, int I> 
class A<T, T*, I>   { };             // #2 

Or for the case when T1 is any pointer: 

 
template<typename T1, typename T2, int I> 
class A<T1*, T2, I> { };             // #3 

Or for the case when T1 is int and T2 is any pointer and I is 5: 

 
template<typename T> 
class A<int, T*, 5> { };             // #4 

Or for the case when T2 is any pointer: 

 
template<typename T1, typename T2, int I> 
class A<T1, T2*, I> { };             // #5 

Declarations 2 through 5 declare partial specializations of the primary template. The compiler will 
then choose the appropriate template. From [C++98] section 14.5.4.1 comes the following: 

 
A<int, int, 1>   a1;  // uses #1 
 



A<int, int*, 1>  a2;  // uses #2, T is int, 
                      //          I is 1 
 
A<int, char*, 5> a3;  // uses #4, T is char 
 
A<int, char*, 1> a4;  // uses #5, T1 is int, 
                      //          T2 is char, 
                      //          I is 1 
 
A<int*, int*, 2> a5;  // ambiguous: 
                      // matches #3 and #5 

Function Template Overloading 

Now let's consider function template overloading. It isn't the same as specialization, but it's related to 
it. 

C++ lets you overload functions, yet makes sure the right one is called: 

 
int  f( int ); 
long f( double ); 
 
int    i; 
double d; 
 
f( i );   // calls f(int) 
f( d );   // calls f(double) 

Similarly, you can also overload function templates, which brings us to the final question: 

3. Consider the following declarations: 

 
template<typename T1, typename T2> 
void g( T1, T2 );                       // 1 
template<typename T> void g( T );       // 2 
template<typename T> void g( T, T );    // 3 
template<typename T> void g( T* );      // 4 
template<typename T> void g( T*, T );   // 5 
template<typename T> void g( T, T* );   // 6 
template<typename T> void g( int, T* ); // 7 
template<> void g<int>( int );          // 8 
void g( int, double );                  // 9 
void g( int );                          // 10 

First, let's simplify things a little by noticing that there are two groups of overloaded g()'s here: those 
that take a single parameter and those that take two parameters. 



 
template<typename T1, typename T2> 
void g( T1, T2 );                       // 1 
template<typename T> void g( T, T );    // 3 
template<typename T> void g( T*, T );   // 5 
template<typename T> void g( T, T* );   // 6 
template<typename T> void g( int, T* ); // 7 
void g( int, double );                  // 9 
 
template<typename T> void g( T );       // 2 
template<typename T> void g( T* );      // 4 
template<> void g<int>( int );          // 8 
void g( int );                          // 10 

Note that I deliberately didn't muddy the waters by including an overload with two parameters where 
the second parameter had a default. Had there been such a function, then for the purposes of 
determining the correct ordering, it should be considered in both lists—once as a single-parameter 
function (using the default), and once as a two-parameter function (not using the default). 

Now let's consider each of the calls in turn: 

Which of the above functions are invoked by each of the following? Identify the template 
parameter types, where appropriate. 

 
int             i; 
double          d; 
float           f; 
complex<double> c; 
 
g( i );         // a 

A. This calls #10, because it's an exact match for #10 and such non-templates are always 
preferred over templates (see 13.3.3). 

B.  
C. g<int>( i );    // b 
D. This calls #8, because g<int>() is being explicitly requested. 
E.  
F. g( i, i );      // c 
G. This calls #3 (T is int), because that is the best match. 
H.  
I. g( c );         // d 
J. This calls #2 (T is complex<double>), because no other g() can match. 
K.  
L. g( i, f );      // e 
M. This calls #1 (T1 is int, T2 is float). 

You might think that #9 is very close—and it is—but a nontemplate function is preferred only 
if it is an exact match. In this case, #9 is only close, not exact. 



 
g( i, d );      // f 

N. This one does call #9, because this time #9 is an exact match and the nontemplate is preferred. 
O.  
P. g( c, &c );     // g 
Q. This calls #6 (T is complex<double>), because #6 is the closest overload. Template #6 

provides an overload of g(), where the second parameter is a pointer to the same type as the 
first parameter. 

R.  
S. g( i, &d );     // h 
T. This calls #7 (T is double), because #7 is the closest overload. 
U.  
V. g( &d, d );     // i 
W. This calls #5 (T is double). #5 provides an overload of g(), where the first parameter is a 

pointer to the same type as the second parameter. 

Only a few more to go: 

 
g( &d );        // j 

X. Clearly (by now), we're asking for #4 (T is double). 
Y.  
Z. g( d, &i );     // k 
AA. Several other overloads are close, but only #1 fills the bill here (T1 is double, T2 is 

int*). 

And finally: 

 
g( &i, &i );    // l 

BB. This calls #3 (T is int*), which is the closest overload even though some of the others 
explicitly mention a pointer parameter. 

The good news is that modern compilers generally have good template support so that you can make 
use of features like the above more reliably and portably than in the past. 

The (potential) bad news is that if you got all the answers right, you may know the rules better than 
your current compiler does. 

Item 11. Mastermind 
Difficulty: 8 

To conclude this section, this puzzle offers some fun and lighthearted code techniques, but also gives 
you practice building your own function objects and reusing the standard library's built-in algorithm 
facilities. 



Write a program that plays simplified Mastermind, using only standard library containers, algorithms, 
and streams. Usually, this book's goal is to demonstrate strict and sound software engineering. This 
time, just for some fun, the challenge is a bit more lighthearted. Use as few ifs, whiles, fors, and 
other keywords as possible, and have the program take up as few statements as possible. For this one 
Item, dense code is okay. 

Simplified Rules Summary 

To start the game, the program randomly chooses a string of four pegs in some internal order. Each 
peg can be one of three colors: red (R), green (G), or blue (B). For example, the program might pick 
"RRBB" or "GGGG" or "BGRG." 

The player makes successive guesses until he figures out the order. For each guess, the program tells 
the player two numbers. The first is the number of pegs that are the correct color, independent of order. 
The second is the number of pegs having both the correct color and the correct location. 

The following is an example session, in which the program chose the combination "RRBB": 

 
guess--> RBRR 
3 1 
guess--> RBGG 
2 1 
guess--> BBRR 
4 0 
guess--> RRBB 
4 4 - solved! 

Solution 

 

The solutions presented here are not the only right answers. Both are nicely extensible to additional 
colors and pegs, because they avoid hardcoding peg-color and combination-size restrictions within the 
algorithm. Peg colors can be extended simply by changing the colors string; the combination 
length can be changed directly by changing the length of the comb string. On the downside, both 
solutions do insufficient error checking. 

One of the requirements of the problem was to minimize the number of statements, so wherever 
possible these solutions use a comma instead of a semicolon as a statement separator. Most of us aren't 
used to seeing so many commas in C or C++ code, but it's possible to use commas in more places than 
one might at first think. Another requirement was to avoid the built-in control keywords, so for our 
purposes the ternary ?: operator will understudy for if/else. 



Solution #1 

The idea of the first solution is to evaluate each guess by making only a single pass through the guess 
string input by the player. This first solution does still use one while. In the second solution, we'll 
replace it with find_if (although at some further cost of clarity). 

To see the basic structure of this code, let's start with the mainline: 

 
typedef map<int,int> M; 
 
int main() { 
  const string colors("BGR");   // possible colors 
  string comb(4, '.'),          // combination 
         guess;                  //  current guess 

Extending this program to handle more colors, or more pegs per combination, is easy: To change the 
colors, change colors. To make the guess length longer or shorter, make comb longer or shorter. 

 
int cok, pok = 0;           // right color & place 
M cm, gm;                   // helper structures 

We need a string to hold the combination to be found, and another to hold the guess. The rest are 
working data used to process each guess. 

The first thing we need to do is to generate the combination: 

 
srand( time(0) ), 
generate( comb.begin(), comb.end(), 
          ChoosePeg( colors ) ); 

After seeding the built-in random number generator, we use the standard library's generate() 
facility to make up a combination. Here generate() uses a function object of type ChoosePeg 
to generate a combination by invoking ChoosePeg's function call operator, operator()(), 
once for each peg position to determine the color at that position. We'll see how ChoosePeg works 
later on. 

Now all we need is the main loop, to print prompts and process guesses: 

 
while( pok < comb.size() ) 
  cout << "\n\nguess--> ", 
   cin >> guess, 
   guess.resize( comb.size(), ' ' ), 

We do some basic input-error handling. If the player's guess is too long, the guess is truncated; if it's 
too short, it's padded with spaces. Padding short guesses lets the player cheat by simply trying one-



letter guesses until he or she finds the right letter, then two-letter guesses to find the second letter, and 
so on to incrementally guess the solution. This code doesn't bother to prevent that. 

Next, we need to clear our working area and process the guess: 

 
cm = gm = M(), 

We have to process the guess in two ways: First, we determine the number of pegs that are the right 
color and in the right place (pok, or "place okay"). Separately, we determine the number of pegs that 
are the right color but not necessarily in the right location (cok, or just "color okay"). To avoid 
making two passes through the guess, we first use transform() to process the two ranges and let 
the CountPlace function object accumulate information about how many pegs of each color 
appear in the combination and in the guess: 

 
transform( comb.begin(), comb.end(), 
           guess.begin(), guess.begin(), 
           CountPlace( cm, gm, pok ) ), 

The standard library's transform() algorithm operates on two input ranges—here, the 
combination and guess strings viewed as sequences of characters. Now, transform() actually 
does more than we need; it can also generate output, and we don't care about the output. The easiest 
way to ignore the output is to make sure the supplied CountPlace function object doesn't actually 
change anything and then put the output back into the guess string, which is thus a no-op. 

Note that the CountPlace function object also populates our cm and gm maps, in addition to its 
primary purpose of calculating pok. These helper maps are then used in the second phase, where the 
for_each loop loops through the colors (not the guess) and counts how many pegs of each color 
will match: 

 
for_each ( colors.begin(), colors.end(), 
           CountColor( cm, gm, cok ) ), 

The for_each() algorithm is probably the best-known algorithm in the standard library. All it 
does is iterate over a range and apply the supplied function object to each element in the range. In this 
case, the CountColor object is responsible for counting and then totaling how many pegs of each 
color match up in the two strings. 

Having done all the work to process the guess, we report our results: 

 
cout << cok << ' ' << pok; 

Note that no braces are needed around the while loop's body because the whole body is one 
statement, thanks to all those commas. 

Finally, when the loop ends, we're done: 



 
  cout << " - solved!\n"; 
} 

Having seen how the whole program is intended to work, let's take a look at the three helper function 
objects. 

ChoosePeg 

The simplest of the helpers is ChoosePeg, which is used to generate the combination: 

 
class ChoosePeg 
{ 
public: 
  ChoosePeg( const string& colors ) 
    : colors_(colors) { } 
 
  char operator()() const 
    { return colors_[rand() % colors_.size()]; } 
 
private: 
  const string& colors_; 
}; 

Each invocation of operator()() generates another peg's color. 

If it weren't for the fact that ChoosePeg remembers a reference to the string of valid colors, it could 
be a plain function. We could have made colors a global string and polluted the global namespace. 
This solution prefers avoiding global data and making ChoosePeg better encapsulated rather than 
making the colors string global and having ChoosePeg depend on knowledge of the global data. 

CountPlace 

Next, CountPlace is responsible for calculating pok, the number of pegs that are the right color 
and in the right place. It's also responsible for populating statistical information about the guess and 
combination strings for later tallying by CountColor. 

 
class CountPlace 
{ 
public: 
  CountPlace( M& cm, M& gm, int& pok ) 
    : cm_(cm), gm_(gm), pok_(pok=0) { } 
 
  char operator()( char c, char g ) 
  { 
    return ++cm_[c], 
           ++gm_[g], 



           pok_ += (c == g), 
           g; 
  } 
 
private: 
  M &cm_, &gm_; 
  int& pok_; 
}; 

Each invocation of operator()() compares one of the combination's pegs, c, with the 
corresponding peg from the guess, g. If they're equal, we increment pok_. Now the purpose of the 
maps is clearer. Each map stores the number of pegs of a given color (the color's char value 
converted to an int) appearing in the given string. 

Because of transform()'s semantics, operator()() has to return some char. It doesn't 
really matter what we return because, although the output is directed back into the guess string, the 
guess string won't be used again. For simplicity and general cleanliness, though, we just return the 
guess's peg color so that the guess string remains unmodified. 

CountColor 

Finally, CountColor is responsible for calculating cok, using the statistical information 
generated by CountPlace. It does so in the obvious way: For each possible color, it adds the 
number of matching pegs regardless of location, which is to say the minimum of the number of pegs 
of that color in the combination and in the guess. 

 
class CountColor { 
public: 
  CountColor( M& cm, M& gm, int& cok ) 
    : cm_(cm), gm_(gm), cok_(cok=0) { } 
 
  void operator()( char c ) const 
    { cok_ += min( cm_[c], gm_[c] ); } 
 
private: 
  M &cm_, &gm_; 
  int& cok_; 
}; 

Summary 

Putting it all together into a complete program, we get the following: 

 
#include <iostream> 
#include <algorithm> 
#include <map> 
#include <string> 



#include <ctime> 
#include <cstdlib> 
using namespace std; 
 
typedef map<int,int> M; 
 
class ChoosePeg 
{ 
public: 
  ChoosePeg( const string& colors ) 
    : colors_(colors) { } 
 
  char operator()() const 
    { return colors_[rand() % colors_.size()]; } 
 
private: 
  const string& colors_; 
}; 
 
class CountPlace 
{ 
public: 
  CountPlace( M& cm, M& gm, int& pok ) 
    : cm_(cm), gm_(gm), pok_(pok=0) { } 
  char operator()( char c, char g ) 
  { 
    return ++cm_[c], 
           ++gm_[g], 
           pok_ += (c == g), 
           g; 
  } 
 
private: 
  M &cm_, &gm_; 
  int& pok_; 
}; 
 
class CountColor { 
public: 
  CountColor( M& cm, M& gm, int& cok ) 
    : cm_(cm), gm_(gm), cok_(cok=0) { } 
 
  void operator()( char c ) const 
    { cok_ += min( cm_[c], gm_[c] ); } 
 
private: 
  M &cm_, &gm_; 
int& cok_; 
}; 



 
int main() { 
  const string colors("BGR"); // possible colors 
  string comb(4, '.'),        // combination 
         guess;               // current guess 
  int cok, pok = 0;           // right color & place 
  M cm, gm;                   // helper structures 
 
  srand( time(0) ), 
   generate( comb.begin(), comb.end(), 
             ChoosePeg( colors ) ); 
 
  while( pok < comb.size() ) 
    cout << "\n\nguess--> ", 
     cin >> guess, 
     guess.resize( comb.size(),' '), 
     cm = gm = M(), 
     transform( comb.begin(), comb.end(), 
                guess.begin(), guess.begin(), 
                CountPlace( cm, gm, pok ) ), 
     for_each ( colors.begin(), colors.end(), 
                CountColor( cm, gm, cok ) ), 
     cout << cok << ' '<< pok; 
 
  cout << " - solved!\n"; 
} 

Solution #2 

The idea of the second solution is to make the mainline dead simple by simply saying "find the 
combination in the input." Here's the mainline: 

 
int main() 
{ 
  srand( time(0) ), 
   find_if( istream_iterator<string>(cin), 
            istream_iterator<string>(), 
            Combination() ); 
} 

That's it. The Combination predicate has to do all the work. 

Combination 

Clearly, we expect that Combination's default constructor will invent a combination: 

 
class Combination 



{ 
public: 
  Combination() 
    : comb_(4, '.') 
  { 
    generate( comb_.begin(), comb_.end(), ChoosePeg ), 
     Prompt(); 
  } 

Note that this ChoosePeg() is different from the one in the first solution; more on that in a 
moment. After generating the combination, the constructor emits the first prompt, and that's all it 
needs to do. 

Next, Combination::operator()() will compare each input guess string with the 
combination and return true if it matches the combination, and false otherwise: 

 
bool operator()( string guess ) const // one round 
{ 
  int cok, pok;   // right color & place 
 
  return 
     guess.resize( comb_.size(), '  '), 

Again, we do some basic error handling by adjusting the size of the guess, if necessary. 

The major work will, again, be done in two stages. The difference is that this time the two states are 
reversed, and we don't bother limiting ourselves to just one pass through the input. First, we determine 
cok, the number of pegs that are the right color but may or may not be in the right place: 

 
cok = accumulate( colors.begin(), colors.end(), 
                  ColorMatch( 0, &comb_, &guess ), 
                  ColorMatch::Count ), 

We'll look at the ColorMatch helper in a moment. 

Phase 2 is to calculate pok, the number of pegs with the right color and position. To do this, we're 
going to use what may seem like an inappropriate algorithm: 

 
pok = inner_product( comb_.begin(), comb_.end(), 
                     guess.begin(), 0, 
                     plus<int>(), 
                     equal_to<char>() ), 

We're not performing mathematical matrix calculations here, so why use inner_product()? 
The short answer is, because it's there. 



The longer answer is that it's the algorithm whose behavior is the closest to what's wanted. The 
inner_product() algorithm: 

• Takes two input ranges 
• Performs a specified operation (let's call it op2) on the two first elements of the ranges, then 

Son the two second elements of the ranges, and so on; and 
• Performs another specified operator (let's call it op1) to combine the results. 

It happens that the defaults for op1 and op2, respectively, are addition and multiplication. But what we 
want is only slightly different. For op1, addition is fine, and we just want op2 to return 1 if the two 
characters are equal, and 0 otherwise, which happens to be what you get when you use equality 
comparison à la equal_to<char> and let the resulting bool promote to an int. 

If the name inner_product() still worries you, think of this standard algorithm as a kind of 
mélange of accumulate(), which counts things in a single input range, and transform(), 
which processes two input ranges, with a dash of flexibility to customize what to do with the elements 
from the two ranges. A mathematical inner product calculation is a special case of the same 
description, but the inner_product() algorithm is specified more generally and can adapt to 
different ways of combining and tallying input sequences, as we've just seen. 

 
     cout << cok <<'   '<< pok, 
     (pok == comb_.size()) 
       ? (cout << " - solved!\n", true) 
       : (Prompt(), false); 
} 

Finally, the operator also generates the user interface, including guess feedback and the subsequent 
prompt or completion message. 

When it comes to nonstatic data members, we need only the obvious one: 

 
private: 
  string comb_;  // actual combination 

That's it for the nonstatic members. The rest of Combination's members are static: 

 
static char ChoosePeg() { return colors[rand() % 
colors.size()]; } 

Note that because of the changed encapsulation—with the colors string in the same scope as 
ChoosePeg()—we can simplify ChoosePeg() and make it just a stateless function. 

 
  static void Prompt()    { cout << "\n\nguess--> "; } 
  static const string colors;       // possible colors 
}; 



 
const string Combination::colors = "BGR"; 

Since Combination is now the only class that needs to know about the possible colors and the 
length of guesses, we can nicely hide that information by tucking it away inside Combination's 
scope. 

ColorMatch 

The only thing we still need is a ColorMatch function object. Remember, it is intended to be used 
like this: 

 
cok = accumulate( colors.begin(), colors.end(), 
                  ColorMatch( 0, &comb_, &guess ), 
                  ColorMatch::Count ), 

There are a couple of wrinkles here. Note that ColorMatch is actually the type of value being 
accumulated. For one thing, this means that accumulate() will return the final ColorMatch 
value, whereas we're looking for an int. That's pretty easy—we'll just provide a conversion to int: 

 
class ColorMatch { 
public: 
  ColorMatch( int i, const string* s1, const string* s2 ) 
    : cok_(i), s1_(s1), s2_(s2) { } 
 
  operator int() const { return cok_; } 

Now, when we use accumulate() as above, instead of adding plain values such as ints, we'll 
be Count()-ing using ColorMatch objects. That is, for each char in colors, 
accumulate() will apply the function ColorMatch::Count(), which takes a 
ColorMatch value representing the tally so far and the next colors character to process: 

 
static ColorMatch Count( ColorMatch& cm, char c ) 
{ 
  return 
    ColorMatch( 
      cm.cok_ + 
        min( count( cm.s1_->begin(), cm.s1_->end(), c ), 
             count( cm.s2_->begin(), cm.s2_->end(), c ) ), 
      cm.s1_, cm.s2_ ); 
} 

Count()'s job is to figure out how many pegs of color c exist in both strings (although not 
necessarily in the same positions), and add that to the current ColorMatch tally. It does this by 
simply using another standard algorithm, count(), to determine the number of pegs with color c in 



each string, and adding the lower number. Count() then returns a new ColorMatch object that 
contains the new tally. Because Count() will be called once for each possible color, the final 
ColorMatch object's cok_ value will be exactly the number we want: the number of pegs with the 
right color but not necessarily in the right place. 

Finally, the function object keeps some private state: 

 
private: 
  int cok_; 
  const string *s1_, *s2_; 
}; 

Summary 

Again, putting it all together into a complete program makes it easier to see how the various parts fit 
and coexist: 

 
#include <iostream> 
#include <algorithm> 
#include <numeric> 
#include <functional> 
#include <string> 
#include <ctime> 
#include <cstdlib> 
using namespace std; 
 
class ColorMatch { 
public: 
  ColorMatch( int i, const string* s1, const string* s2 ) 
    : cok_(i), s1_(s1), s2_(s2) { } 
 
  operator int() const { return cok_; } 
  static ColorMatch Count( ColorMatch& cm, char c ) 
  { 
    return 
      ColorMatch( 
        cm.cok_ + 
          min( count( cm.s1_->begin(), cm.s1_->end(), c ), 
               count( cm.s2_->begin(), cm.s2_->end(), c ) ), 
        cm.s1_, cm.s2_ ); 
  } 
 
private: 
  int cok_; 
  const string *s1_, *s2_; 
}; 
 



class Combination 
{ 
public: 
  Combination() 
    : comb_(4, '.') 
  { 
    generate( comb_.begin(), comb_.end(), ChoosePeg ), 
     Prompt(); 
  } 
 
  bool operator()( string guess ) const // one round 
  { 
    int cok, pok;   // right color & place 
 
    return 
       guess.resize( comb_.size(),' '), 
       cok = accumulate( colors.begin(), colors.end(), 
                      ColorMatch( 0, &comb_, &guess ), 
                      ColorMatch::Count ), 
       pok = inner_product( comb_.begin(), comb_.end(), 
                            guess.begin(), 0, 
                            plus<int>(), 
                            equal_to<char>() ), 
       cout << cok <<'   '<< pok, 
       (pok == comb_.size()) 
         ? (cout << " - solved!\n", true) 
         : (Prompt(), false); 
  } 
 
private: 
  string comb_;  // actual combination 
 
  static char ChoosePeg() { return colors[rand() % 
colors.size()]; } 
  static void Prompt()    { cout << "\n\nguess--> "; } 
  static const string colors;       // possible colors 
}; 
const string Combination::colors = "BGR"; 
 
int main() 
{ 
  srand( time(0) ), 
   find_if( istream_iterator<string>(cin), 
            istream_iterator<string>(), 
            Combination() ); 
} 



Comparing the Solutions 

This Item has two purposes. One purpose is to have some fun with some C++ features, so we've 
enjoyed some creative use of comma operators that should be used rarely, if ever, in real-world 
production code. 

The other purpose, however, and the more serious one, is to get better acquainted with generic 
programming and with what the C++ standard library has to offer, prepackaged and ready-to-use. 
Each solution approached this purpose in a different way, with different goals. The main goal shaping 
Solution 1 was to avoid multiple passes through the input. That's not a performance consideration in 
this simple program whose runtime is dominated by user input, not by the program's processing, but 
avoiding multiple passes is a useful technique worth knowing for real-world code. When might you 
want to avoid multiple passes through data? One common example is when the input data is very large, 
and multiple passes may be prohibitively expensive if the data is larger than memory and needs to be 
read from disk twice or more—clearly, it can be desirable to avoid needless access to slow secondary 
storage. Another example is when multiple passes might be impossible—you may get only one chance 
at the data, such as when the input comes from an input iterator. 

The main goal shaping Solution 2 was to have a clean and expressive mainline and better-
encapsulated internal code. Although a bit longer than Solution 1, Solution 2 is clearer because it 
avoids Solution 1's possibly mysterious indirect coordination between the main loop's two phases via 
helper structures. Those structures aren't needed when we allow two passes through the input data, and 
so the two passes become distinct instead of interdependent. Therefore, they're easier to understand. 

Both solutions have given us some exercise reusing the standard library, and both have demonstrated 
techniques that can be useful in production code. (But, yes, in production code, I'd stay away from all 
those commas; those were just for fun.) 

Optimization and Performance 
Efficiency has always been important to programmers. It is one of the key pillars in the tradition of C 
and C++, in which the guiding principle of "you shouldn't pay for what you don't use"—also known as 
the zero-cost principle—has always been at the forefront of the language's and library's design, and 
has been largely achieved. 

This section, along with the two appendixes at the end of the book, takes a hard look at a few key C++ 
optimization issues selected for their real-world impact. When and how should you optimize your 
code? What does inline do, really? Why can (and do) fancy optimizations get us into trouble? 
Finally, and to me most interestingly, how can some of these answers change if you're writing 
multithread-safe code? After all, we're interested in efficiency issues in the real world, and although 
the C++ standard is silent about threads, more and more programmers in the trenches are writing 
multithreaded C++ code every day. And they will care about the answers. 

Item 12. inline 
Difficulty: 4 

Contrary to popular opinion, the keyword inline is not some sort of magic bullet. It is, however, a 
useful tool when employed properly. The question is: When should you use it? 



1. What does inline do? 
2. Does making a function inline increase efficiency? 
3. When and how should you decide to inline a function? 

Solution 

 

1. What does inline do? 

Making a function inline directs the compiler that it may choose to place a copy of the function's 
code directly into each place the code is used. In the cases where the compiler does so, it avoids 
generating a function call. 

2. Does making a function inline increase efficiency? 

Not necessarily. 

First off, if you tried to answer this question without first asking what you want to optimize, you fell 
into a classic trap. The first question has to be: "What do you mean by efficiency?" Does the above 
question mean program size? Memory footprint? Execution time? Development speed? Build time? 
Or something else? 

Second, contrary to popular opinion, inlining can improve or worsen any of those aspects of efficiency: 

a. Program size. Many programmers assume that inlining increases program size, because 
instead of having one copy of a function's code, the compiler creates a copy in every place 
that function is used. This is often true, but not always. If the function size is smaller than the 
code the compiler has to generate to perform the function call, inlining will reduce program 
size. 

b. Memory footprint. Inlining usually has little or no effect on a program's memory usage, apart 
from the basic program size (above). 

c. Execution time. Many programmers assume that inlining a function will improve execution 
time because it avoids the function call overhead, and because "seeing through the veil" of the 
function call gives the compiler's optimizer more opportunities to work its craft. This can be 
true, but often isn't. If the function is not called extremely frequently, there will usually be no 
visible improvement in overall program execution time. In fact, just the opposite can happen. 
If inlining increases a calling function's size, it will reduce that caller's locality of reference, 
which means that overall program speed can actually worsen if the caller's inner loop no 
longer fits in the processor's cache. 

To put this point in perspective, don't forget that most programs are not CPU-bound. Probably 
the most common bottleneck is being I/O-bound, which can include anything from network 
bandwidth or latency to file or database access. 

d. Development speed, build time. To be most useful, inlined code has to be visible to the 
caller, which means that the caller has to depend on the internals of the inlined code. 
Depending on another module's internal implementation details increases the practical 
coupling of modules (it does not, however, increase their theoretical coupling, because the 



caller doesn't actually use any of the callee's internals). Usually, when functions change, 
callers do not need to be recompiled, only relinked. When inlined functions change, 
callers are forced to recompile. What's more, there's a completely separate hit on development 
speed that appears at debugging time, because stepping into inlined functions and managing 
breakpoints inside them tends to be more difficult for most debuggers. 

There is one case in which inlining a function can arguably be viewed as an optimization for 
development speed—when the cost of writing an accessor function (see below) would 
otherwise be too high to justify the good practice of providing an accessor function to avoid 
making a data member public. In this case, some would argue that inline encourages good 
coding style and better module insulation. 

Finally, if you're looking to improve efficiency in some way, always look to your algorithms and data 
structures first. They will give you the order-of-magnitude overall improvements, whereas process 
optimizations, such as inlining, generally (note, generally) yield less-dramatic results. 

Just Say "No for Now" 

3. When and how should you decide to inline a function? 

The answer is the same as when to apply any other optimization: after a profiler tells you to, and not a 
minute sooner. There are a few valid exceptions to this guideline for cases in which you would 
reasonably inline right away, such as for an empty function that's likely to stay empty, or when 
you're absolutely forced to—for example, when writing a non-exported template. 

Guideline 

 The first rule of optimization: Don't do it. 

The second rule of optimization: Don't do it yet. 
 

Bottom line, inlining always costs something, if only increased coupling, and you should never pay 
for something until you know you're going to turn a profit—that is, get something better in return. 

"But I can always tell where the bottlenecks are," you may think. Don't worry, you're not alone. Most 
programmers think this at one time or another, but they're still wrong. Dead wrong. Programmers are 
notoriously poor guessers about where their code's true bottlenecks lie. Sometimes, we get lucky and 
are right. Most of the time, we're not. 

Usually, only experimental evidence (a.k.a. profiling output) helps to tell you where the true hot spots 
are. Nine times out of ten, a programmer cannot identify the number-one hot-spot bottleneck in his or 
her code without some sort of profiling tool. In my years in this business, I've come across several 
programmers who have protested until they (or their colleagues) were blue in the face that this didn't 
apply to them, that they could consistently "feel" where the hot spots were in their code. In those same 
years, I've never seen such a claim turn out to be consistently true. We're good at fooling ourselves. 

Finally, note another practical reason for this: Profilers are a lot less good at identifying which 
inlined functions should not be inlined. 



What About Computation-Intensive Tasks (Such as Numeric 
Libraries)? 

Some people write small, tight library code, such as advanced scientific and engineering numerical 
libraries, and can do reasonably well with seat-of-the-pants inlining. Even those developers, however, 
tend to inline judiciously and to tune later rather than earlier. Note that writing a module and then 
comparing performance with "inlining on" and "inlining off" is generally an unsound idea, because 
"all on" or "all off" is a coarse measure that tells you only about the average case. It doesn't tell you 
which functions benefited, nor how much each one benefited. Even in these cases, you're usually 
better off to use a profiler and to optimize based on its advice. 

What About Accessors? 

There are people who will argue that one-line accessor functions (like "X& Y::f(){ return 
myX_; }") are a reasonable exception and could or should be automatically inlined. I understand 
the reasoning, but be careful. At the very least, all inlined code increases coupling. So, unless you're 
certain in advance that inlining will help, there's no harm in deferring that decision to profiling time. If 
at that point, a profiler does point out that inlining will help, at least you know that what you're doing 
is worth doing, and you've deferred the coupling and possible build overhead until you know it will 
really matter. Not a bad deal, that. 

Guideline 

 Avoid inlining or detailed tuning until performance profiles prove the need. 

Item 13. Lazy Optimization, Part 1: A Plain Old String 
Difficulty: 2 

Copy-on-write (also called "lazy copy") is a common optimization that uses reference counting. Do 
you know how to implement it? In this first Item, we consider a simple plain-vanilla String that's not 
reference-counted at all. In the rest of the miniseries, we'll see what impact adding copy-on-write 
semantics can have on the class. 

Consider the following simplified String class. (Note: This is not intended to be a complete string 
facility. It's been distilled to serve as an example, and is missing many common operations that you 
would otherwise see in a real string class. In particular, I don't show operator=() because its 
code is essentially the same as that of copy construction.) 

 
namespace Original 
{ 
  class String 
  { 
  public: 
    String();                // start off empty 
   ~String();                // free the buffer 
    String( const String& ); // take a full copy 



    void Append( char );     // append one character 
 
    // ... operator=() etc. omitted ... 
 
  private: 
    char*    buf_;           // allocated buffer 
    size_t   len_;           // length of buffer 
    size_t   used_;          // # chars actually used 
  }; 
  } 

This is a simple String that does not contain any fancy optimizations. When you copy an 
Original::String, the new object immediately allocates its own buffer and you immediately 
have two completely distinct objects. 

Your assignment: Implement Original::String. 

Solution 

 

Implementing Original::String 

Here is a straightforward implementation. The default constructor and destructor are simple to write: 

 
namespace Original { 
 
  String::String() : buf_(0), len_(0), used_(0) { } 
 
  String::~String() { delete[] buf_; } 

Next, to implement copy assignment, we just make a new buffer and use the standard copy() 
algorithm to make a copy of the original's contents: 

 
String::String( const String& other ) 
  : buf_(new char[other.len_]), 
    len_(other.len_), 
    used_(other.used_) 
{ 
  copy( other.buf_, other.buf_ + used_, buf_ ); 
} 

I've chosen to implement an additional Reserve() helper function for code clarity because it will 
be needed by other mutators besides Append(). Reserve() ensures that our internal buffer is at 
least n bytes long, and allocates additional space using an exponential-growth strategy: 



 
  void String::Reserve( size_t n ) 
{ 
  if( len_ < n ) 
  { 
    size_t newlen = max( len_ * 1.5, n ); 
    char*  newbuf = new char[ newlen ]; 
    copy( buf_, buf_+used_, newbuf ); 
 
    delete[] buf_;  // now all the real work is 
    buf_ = newbuf;  //  done, so take ownership 
    len_ = newlen; 
  } 
} 

Finally, Append() just makes sure there's enough space, then tacks on the new character: 

 
  void String::Append( char c ) 
  { 
    Reserve( used_+1 ); 
    buf_[used_++] = c; 
  } 
 
} 

Aside: What's the Best Buffer Growth Strategy? 

When a String object runs out of room in its currently allocated buffer, it needs to allocate a larger 
one. The key question is: How big should the new buffer be? Note that the question is important 
because the analysis we're about to do holds for other structures and containers that use allocated 
buffers, such as a standard vector. 

There are several popular buffer growth strategies. I'll note each strategy's complexity in terms of the 
number of allocations required, and the average number of times a given character must be copied, for 
a string of eventual length N. 

a. Exact growth. In this strategy, the new buffer is made exactly as large as required by the 
current operation. For example, appending one character and then appending another will 
force two allocations. First, a new buffer is allocated, with space for the existing string and 
the first new character. Next, another new buffer is allocated, with space for that and the 
second new character. 

o Advantage: no wasted space. 
o Disadvantage: poor performance. This strategy requires O(N) allocations and an 

average of O(N) copy operations per char, but with a high constant factor in the 
worst case (same as option (b) below with an increment size of 1). Control of the 
constant factor is in the hands of the user code, not controlled by the String 
implementer. 



b. Fixed-increment growth. The new buffer should be a fixed amount larger than the current 
buffer. For example, a 64-byte increment size would mean that all string buffers would be an 
integer multiple of 64 bytes long. 

o Advantage: little wasted space. The amount of unused space in the buffer is bounded 
by the increment size, and does not vary with the length of the string. 

o Disadvantage: moderate performance. This strategy requires both O(N) allocations 
and an average of O(N) copy operations per char. That is, both the number of 
allocations and the average number of times a given char is copied vary linearly 
with the length of the string. However, control of the constant factor is in the hands 
of the String implementer. 

Exponential growth. The new buffer is a factor of F larger than the current buffer. For example, with F 
= .5, appending one character to a full string that is already 100 bytes long will allocate a new buffer 
of length 150 bytes. 

Advantage: good performance. This strategy requires O(logN) allocations and an average of O(1) 
copy operations per char. That is, the number of allocations varies as the log of the length of the 
string, but the average number of times a given char is copied is constant, which means that the 
amount of copying work to create a string using this strategy is at most a constant factor greater than 
the amount of work that would have been required had the size of the string been known in advance. 

Disadvantage: some wasted space. The amount of unused space in the buffer will always be strictly 
less than NxF bytes, but that's still O(N) average space wastage. 

The following chart summarizes the trade-offs: 

Growth Strategy  Allocations  Char Copies  Wasted Space  
Exact  O(N) with high const.  O(N) with high const.  none  
Fixed-increment  O(N)  O(N)  O(1)  
Exponential  O(logN)  O(1)  O(N)  

In general, the best-performing strategy is exponential growth. Consider a string that starts empty and 
grows to 1,200 characters long. Fixed-increment growth requires O(N) allocations and, on average, 
requires copying each character O(N) times (in this case, using 32-byte increments, that's 38 
allocations and, on average, 19 copies of each character). Exponential growth requires O(logN) 
allocations and, on average, requires making only O(1)—one or two—copies of each character (yes, 
really; see the reference below). In this case, using a factor of 1.5, that's 10 allocations and on average 
2 copies of each character. 

  1,200-char string   12,000-char string  
  Fixed-incr 

growth (32 
bytes)  

Exponential 
growth (1.5x)  

 Fixed-incr 
growth (32 

bytes)  

Exponential 
growth (1.5x)  

# of memory 
allocations  

38  10   380  16  

avg # ofcopies 
made of each char  

19  2   190  2  



This result can be surprising. For more information, see Andrew Koenig's column in the September 
1998 issue of JOOP (Journal of Object-Oriented Programming). Koenig also shows why, again in 
general, the best growth factor is not 2 but probably about 1.5. He also shows why the average number 
of times a given character is copied is constant—that is, it doesn't depend on the length of the string. 

Item 14. Lazy Optimization, Part 2: Introducing 
Laziness 
Difficulty: 3 

Copy-on-write is a common optimization. Do you know how to implement it? 

Original::String (from Item 13) is all very well, but sometimes copies of string objects are 
taken, used without modification, and then discarded. 

"It seems a shame," the implementer of Original::String from Item 13 might frown to 
herself, "that I always do all the work of allocating a new buffer (which can be expensive) when it 
may turn out that I never needed to if all the user does is read from the new string and then destroy it. I 
could have simply let the two string objects share a buffer under the covers, avoiding the copy for a 
while, and only really take a copy when I know I need to because one of the objects is going to try to 
modify the string. That way, if the user never modifies the copy, I never need to do the extra work!" 

With a smile on her face and determination in her eyes, the implementer designs an 
Optimized::String that uses a copy-on-write implementation (also called "lazy copy"), 
implemented by reference-counting the underlying string representations: 

 
namespace Optimized 
{ 
  class StringBuf 
  { 
  public: 
    StringBuf();             // start off empty 
   ~StringBuf();             // delete the buffer 
    void Reserve( size_t n );// ensure len >= n 
 
    char*    buf;            // allocated buffer 
    size_t   len;            // length of buffer 
    size_t   used;           // # chars actually used 
    unsigned refs;           // reference count 
 
  private: 
    // No copying... 
    // 
    StringBuf( const StringBuf& ); 
    StringBuf& operator=( const StringBuf& ); 
  }; 
 
  class String 



  { 
  public: 
    String();                // start off empty 
   ~String();                // decrement reference count 
                             //  (delete buffer if refs==0) 
    String( const String& ); // point at same buffer and 
                             //  increment reference count 
    void   Append( char );   // append one character 
 
    // ... operator=() etc. omitted ... 
 
  private: 
    StringBuf* data_; 
    }; 
  } 

Your assignment: Implement Optimized::StringBuf and Optimized::String.[1] You 
may want to add a private String::AboutToModify() helper function to simplify the logic. 

[1] This Item incidentally illustrates another use for namespaces—namely clearer exposition. It makes code 
easy and natural both to read as code and to talk about in human language. Writing the above description 
was much nicer than writing about differently named Original String and 
OptimizedString classes, never mind that those longer names would have made reading and 
writing the example code a little harder. Using namespaces judiciously can likewise improve readability in 
your production code and "talkability" during design meetings and code reviews. 

Solution 

 

First, let's consider StringBuf. Note that the default memberwise copying and assignment don't 
make sense for StringBufs, so both operations are suppressed (declared as private and not 
defined). 

Optimized::StringBuf now does part of the work that the Original::String did for 
itself. StringBuf's default construction and destruction are just what you'd expect: 

 
namespace Optimized 
{ 
 
  StringBuf::StringBuf() 
      : buf(0), len(0), used(0), refs(1) { } 
    StringBuf::~StringBuf() { delete[] buf; } 

Reserve() too is familiar from our Original::String: 

 



void StringBuf::Reserve( size_t n ) 
{ 
  if( len < n ) 
  { 
    size_t newlen = max( len * 1.5, n ); 
    char*  newbuf = new char[ newlen ]; 
    copy( buf, buf+used, newbuf ); 
 
    delete[] buf;   // now all the real work is 
    buf = newbuf;   //  done, so take ownership 
    len = newlen; 
  } 
} 

That's it for StringBuf. 

Next, consider String itself. The default constructor is easy to implement: 

 
String::String() : data_(new StringBuf) { } 

In the destructor, we have to remember to manage the reference count because there might be other 
String objects sharing the same StringBuf representation. If other Strings are still using 
the StringBuf, we leave it alone and just go away after decrementing the usage count to note that 
we don't care about it anymore. But if we're the last client of the StringBuf, we clean it up: 

 
String::~String() 
{ 
  if( --data_->refs < 1 )  // last one out ... 
  { 
    delete data_;  // ... turns off the lights 
  } 
} 

The only other place we have to change the reference count is in the copy constructor, which we'll 
write to implement the lazy copy semantics by simply pointing at the other String's existing 
StringBuf and bumping the count to record our presence. This is a "shallow" copy. We will only 
split off the shared representation (that is, make a deep copy) if we discover that we need to modify 
one of the strings that share this buffer: 

 
String::String( const String& other ) 
  : data_(other.data_) 
{ 
  ++data_->refs; 
} 



I've chosen to implement an additional AboutToModify() helper function for code clarity, 
because it will be needed by other mutators besides Append(). AboutTo Modify() ensures 
that we have an unshared copy of the internal buffer—it lazily performs the deep copy if it has not 
already been performed. For convenience, About ToModify() also takes a minimum buffer 
size hint so that we won't needlessly take our own copy of a full string only to turn around and 
immediately perform a second allocation to get more space. 

 
void String::AboutToModify( size_t n ) 
{ 
  if( data_->refs > 1 ) 
  { 
    auto_ptr<StringBuf> newdata( new StringBuf ); 
    newdata->Reserve( max( data_->len, n ) ); 
    copy( data_->buf, data_->buf+data_->used, newdata->buf ); 
    newdata->used = data_->used; 
 
    --data_->refs;             // now all the real work is 
    data_ = newdata.release(); //  done, so take ownership 
  } 
  else 
  { 
    data_->Reserve( n ); 
  } 
} 

Now that all the other machinery is in place, Append() is simple. As before, it just declares that it's 
about to modify the string, thereby ensuring both that the physical string buffer is unshared and that 
it's big enough to hold an additional character. Then it goes ahead and makes the change: 

 
  void String::Append( char c ) { 
    AboutToModify( data_->used+1 ); 
    data_->buf[used++">data_->used++] = c; 
  } 
 
} 

That's all there is to it. In our next step, we'll make the interface just a little richer and see what 
happens. 

Item 15. Lazy Optimization, Part 3: Iterators and 
References 
Difficulty: 6 

In the third part of this miniseries, we examine the effect of references and iterators into a copy-on-
write string. Can you spot the issues? 



Consider the copy-on-write Optimized::String class from Item 14, but with two new 
functions: Length() and operator[](). 

 
namespace Optimized 
{ 
  class StringBuf 
  { 
  public: 
    StringBuf();              // start off empty 
   ~StringBuf();              // delete the buffer 
    void Reserve( size_t n ); // ensure len >= n 
 
    char*    buf;             // allocated buffer 
    size_t   len;             // length of buffer 
    size_t   used;            // # chars actually used 
    unsigned refs;            // reference count 
 
  private: 
    // No copying... 
    // 
    StringBuf( const StringBuf& ); 
    StringBuf& operator=( const StringBuf& ); 
  }; 
 
  class String 
  { 
  public: 
    String();                 // start off empty 
     ~String();                 // decrement reference count 
                                //  (delete buffer if refs==0) 
      String( const String& );  // point at same buffer and 
                                //  increment reference count 
      void   Append( char );    // append one character 
 
      size_t Length() const;    // string length 
 
      char&  operator[](size_t);// element access 
      const char operator[](size_t) const; 
 
      // ... operator=() etc. omitted ... 
    private: 
      void AboutToModify( size_t n ); 
                                // lazy copy, ensure len>=n 
      StringBuf* data_; 
    }; 
  } 

This allows code such as the following: 



 
if( s.Length() > 0 ) 
{ 
  cout << s[0]; 
  s[0] = 'a'; 
} 

Implement the new members of Optimized::String. Do any of the other members need to be 
changed because of the new member functions? Explain. 

Solution 

 

Consider the copy-on-write Optimized::String class from Item 14, but with two new 
functions: Length() and operator[](). 

The point of this Item is to demonstrate why adding functionality like operator[] changes 
Optimized::String's semantics enough to affect other parts of the class. But first things first: 

Implement the new members of Optimized::String. 

The Length() function is simple: 

 
namespace Optimized 
{ 
 
  size_t String::Length() const 
  { 
    return data_->used; 
    } 

There's more to operator[], however, than meets the casual eye. In the following, what I want 
you to notice is that what operator[] does (the non-const version returns a reference into the 
string) is really no different from what begin() and end() do for standard strings (they 
return iterators that "point into" the string). Any copy-on-write implementation of 
std::basic_string will run into the same considerations that we do below. 

Writing operator[] for Shareable Strings 

Here's a naïve first attempt: 

 
// BAD: Naïve attempt #1 at operator[] 
// 
char& String::operator[]( size_t n ) 



{ 
  return data_->buf[n]; 
} 
 
const char String::operator[]( size_t n ) const 
{ 
  return data_->buf[n]; 
} 

This isn't good enough by a long shot. Consider: 

 
// Example 15-1: Why attempt #1 doesn't work 
// 
void f( const Optimized::String& s ) 
{ 
  Optimized::String s2( s ); // take a copy of the string 
  s2[0] = 'x';               // oops: also modifies s! 
} 

You might be thinking that the poor programmer of Example 15-1 could be a little unhappy about this 
side effect. You would be right. After all, not only is he changing two strings at once when he only 
meant to change one, but that other invisibly changed string was actually supposed to be const! 
Now the poor author of f() has been turned into something of a liar in that he ended up by 
inadvertently changing something he promised would be const. But he didn't mean to lie, for there's 
not the slightest bit of casting or other subversion/perversion going on here. That things went badly 
wrong anyway is just not a good scene, except perhaps to a few strange people who also enjoy 
watching car wrecks. 

So let's go back to String::operator[]() and try again. At the very least, we'd better make 
sure the string isn't shared, or else the caller might inadvertently be modifying what looks to him like 
two unrelated Strings. "Aha," thinks the once-naïve programmer, "I'll call AboutToModify() 
to ensure I'm using an unshared representation." And so he does the following: 

 
// BAD: Inadequate attempt #2 at operator[] 
// 
char& String::operator[]( size_t n ) 
{ 
  AboutToModify( data_->len ); 
  return data_->buf[n]; 
} 
 
const char String::operator[]( size_t n ) const 
{ 
  // no need to check sharing status this time 
  return data_->buf[n]; 
} 



This looks good, but it's still not enough. The problem is that we only need to rearrange the Example 
15-1 problem code slightly to get back into the same situation as before: 

 
// Example 15-2: Why attempt #2 doesn't work either 
// 
void f( Optimized::String& s ) 
{ 
  char& rc = s[0];  // take a reference to the first char 
  Optimized::String s2( s ); // take a copy of the string 
  rc = 'x';                  // oops: also modifies s2! 
} 

You might be thinking that the poor programmer of Example 15-2 could be a little perturbed about 
this surprise, too. You would again be right, but as of this writing certain popular implementations of 
basic_string have precisely this copy-on-write-related bug. 

The problem is that the reference was taken while the original string was unshared, but then the string 
became shared and the single update through the reference modified both String objects' visible 
state. 

Key Notion: An "Unshareable" String 

When the non-const operator[]() is called, besides taking an unshared copy of the 
StringBuf, we also need to mark the string "unshareable" just in case the user remembers the 
reference (and later tries to use it). 

Now, marking the string "unshareable for all time" will work, but that's actually a little excessive. It 
turns out that all we really need to do is mark the string "unshareable for a while." To see what I mean, 
consider that it's already true that references returned by operator[]() into the string must be 
considered invalid after the next mutating operation. That is, code like this: 

 
// Example 15-3: Why references are 
// invalidated by mutating operations 
// 
void f( Optimized::String& s ) 
{ 
  char& rc = s[0]; 
  s.Append( 'i' ); 
  rc = 'x';   // error: oops, buffer may have 
}             // moved if s did a reallocation 

should already be documented as invalid, whether or not the string uses copy-on-write. In short, 
calling a mutator clearly invalidates references into the string because you never know if the 
underlying memory may move—and move invisibly, from the point of view of the calling code. 

Given that fact, in Example 15-2, rc would be invalidated anyway by the next mutating operation on 
s. So instead of marking s as "unshareable for all time" just because someone might have 



remembered a reference into it, we could just mark it "unshareable until after the next mutating 
operation," when any such remembered reference would be invalidated anyway. To the user, the 
documented behavior is the same. 

Do any of the other members need to be changed because of the new member functions? Explain. 

As we can now see, the answer is yes. 

First, we need to be able to remember whether a given string is currently unshareable so that we won't 
use reference counting when copying it. We could just throw in a Boolean flag. To avoid even that 
overhead, though, let's just encode the "unshareable" state directly in the refs count by agreeing that 
"refs == the biggest unsigned int there can possibly be" means "unshareable." We'll also 
add a flag to AboutToModify() that advises whether to mark the string unshareable. 

 
// GOOD: Correct attempt #3 at operator[] 
// 
// Add a new static member for convenience, and 
// change AboutToModify() appropriately. Because 
// now we'll need to clone a StringBuf in more than 
// one function (see the String copy constructor, 
// below), we'll also move that logic into a 
// single function... it was time for StringBuf to 
// have its own copy constructor, anyway. 
// 
const size_t String::Unshareable 
=numeric_limits<size_t>::max(); 
StringBuf::StringBuf( const StringBuf& other, size_t n ) 
  : buf(0), len(0), used(0), refs(1) 
{ 
  Reserve( max( other.len, n ) ); 
  copy( other.buf, other.buf+other.used, buf ); 
  used = other.used; 
} 
 
void String::AboutToModify( 
  size_t n, 
  bool   markUnshareable /* = false */ 
) 
{ 
  if( data_->refs > 1 && data_->refs != Unshareable ) 
  { 
    StringBuf* newdata = new StringBuf( *data_, n ); 
    --data_->refs;   // now all the real work is 
    data_ = newdata; //  done, so take ownership 
  } 
  else 
  { 
    data_->Reserve( n ); 



  } 
  data_->refs = markUnshareable ? Unshareable : 1; 
} 
 
char& String::operator[]( size_t n ) 
{ 
  AboutToModify( data_->len, true ); 
  return data_->buf[n]; 
} 
 
const char String::operator[]( size_t n ) const 
{ 
  return data_->buf[n]; 
} 

Note that all the other calls to AboutToModify() continue to work as originally written. 

Now all we need to do is make String's copy constructor respect the unshareable state, if it's set: 

 
String::String( const String& other ) 
{ 
  // If possible, use copy-on-write. 
  // Otherwise, take a deep copy immediately. 
  // 
  if( other.data_->refs != Unshareable ) 
  { 
    data_ = other.data_; 
    ++data_->refs; 
  } 
  else 
  { 
    data_ = new StringBuf( *other.data_ ); 
  } 
} 

String's destructor needs a small tweak, too: 

 
String::~String() 
{ 
  if( data_->refs == Unshareable || --data_->refs < 1 ) 
  { 
    delete data_; 
  } 
} 

The other String functions work as originally written: 



 
  String::String() : data_(new StringBuf) { } 
 
  void String::Append( char c ) 
  { 
    AboutToModify( data_->used+1 ); 
    data_->buf[used++">data_->used++] = c; 
  } 
 
} 

That's about it… in a single-threaded environment, that is. In the final Item of this lazy-optimization 
miniseries, we'll consider how multithreading affects our copy-on-write string. See Item 16 for the 
juicy details. 

Summary 

Here's all the code together. Note that I've also taken this opportunity to implement a slight change to 
StringBuf::Reserve(); it now rounds up the chosen "new buffer size" to the next multiple 
of four, in order to ensure that the size of the memory buffer's size is always a multiple of 4 bytes. 
This is in the name of efficiency, because many popular operating systems don't allocate memory in 
chunks smaller than this, anyway. For small strings, this code is also a bit faster than the original 
version. (The original code would allocate a 1-byte buffer, then a 2-byte buffer, then a 3-byte buffer, 
then a 4-byte buffer, and then a 6-byte buffer before the exponential-growth strategy would really kick 
in. The code below goes straight to a 4-byte buffer, then an 8-byte buffer, and so on.) 

 
namespace Optimized { 
 
  class StringBuf 
  { 
  public: 
      StringBuf();              // start off empty 
     ~StringBuf();              // delete the buffer 
      StringBuf( const StringBuf& other, size_t n = 0 ); 
                                // initialize to copy of other, 
                                //  and ensure len >= n 
 
      void Reserve( size_t n ); // ensure len >= n 
      char*    buf;             // allocated buffer 
      size_t   len;             // length of buffer 
      size_t   used;            // # chars actually used 
      unsigned refs;            // reference count 
 
    private: 
      // No copying... 
      // 
      StringBuf( const StringBuf& ); 
      StringBuf& operator=( const StringBuf& ); 
    }; 



 
    class String 
    { 
    public: 
      String();                 // start off empty 
     ~String();                 // decrement reference count 
                                //  (delete buffer if refs==0) 
      String( const String& );  // point at same buffer and 
                                //  increment reference count 
      void   Append( char );    // append one character 
      size_t Length() const;    // string length 
      char&  operator[](size_t);// element access 
      const char operator[](size_t) const; 
 
      // ... operator=() etc. omitted ... 
 
    private: 
      void AboutToModify( size_t n, bool bUnshareable = 
false ); 
                                // lazy copy, ensure len>=n 
                                //  and mark if unshareable 
      static size_t Unshareable;// ref-count flag for 
"unshareable" 
      StringBuf* data_; 
    }; 
 
    StringBuf::StringBuf() 
      : buf(0), len(0), used(0), refs(1) { } 
 
    StringBuf::~StringBuf() { delete[] buf; } 
 
    StringBuf::StringBuf( const StringBuf& other, size_t n ) 
      : buf(0), len(0), used(0), refs(1) 
    { 
        Reserve( max( other.len, n ) ); 
        copy( other.buf, other.buf+other.used, buf ); 
        used = other.used; 
    } 
void StringBuf::Reserve( size_t n ) 
{ 
  if( len < n ) 
  { 
    // Same growth code as in Item 14, except now we round 
    // the new size up to the nearest multiple of 4 bytes. 
    size_t needed = max<size_t>( len*1.5, n ); 
    size_t newlen = needed ? 4 * ((needed-1)/4 + 1) : 0; 
    char*  newbuf = newlen ? new char[ newlen ] : 0; 
    if( buf ) 
    { 



      copy( buf, buf+used, newbuf ); 
    } 
 
    delete[] buf;   // now all the real work is 
    buf = newbuf;   //  done, so take ownership 
    len = newlen; 
  } 
} 
 
 
const size_t String::Unshareable = 
numeric_limits<size_t>::max(); 
 
String::String() : data_(new StringBuf) { } 
 
String::~String() 
{ 
  if( data_->refs == Unshareable || --data_->refs < 1 ) 
  { 
    delete data_; 
  } 
} 
 
String::String( const String& other ) 
{ 
  // If possible, use copy-on-write. 
  // Otherwise, take a deep copy immediately. 
  // 
  if( other.data_->refs != Unshareable ) 
  { 
    data_ = other.data_; 
    ++data_->refs; 
  } 
  else 
  { 
    data_ = new StringBuf( *other.data_ ); 
  } 
} 
 
void String::AboutToModify( 
  size_t n, 
  bool   markUnshareable /* = false */ 
    ) 
    { 
      if( data_->refs > 1 && data_->refs != Unshareable ) 
      { 
        StringBuf* newdata = new StringBuf( *data_, n ); 
        --data_->refs;   // now all the real work is 
        data_ = newdata; //  done, so take ownership 



      } 
      else 
      { 
        data_->Reserve( n ); 
      } 
      data_->refs = markUnshareable ? Unshareable : 1; 
    } 
 
    void String::Append( char c ) 
    { 
      AboutToModify( data_->used+1 ); 
      data_->buf[used++">data_->used++] = c; 
    } 
 
    size_t String::Length() const 
    { 
      return data_->used; 
    } 
 
    char& String::operator[]( size_t n ) 
    { 
      AboutToModify( data_->len, true ); 
      return data_->buf[n]; 
    } 
 
    const char String::operator[]( size_t n ) const 
    { 
      return data_->buf[n]; 
    } 
 
} 

Item 16. Lazy Optimization, Part 4: Multithreaded 
Environments 
Difficulty: 8 

In this final chapter of the miniseries, we consider the effects of thread safety on copy-on-write strings. 
Is lazy copy really an optimization? The answer may surprise you. 

1. Why is Optimized::String (from Item 15) not thread-safe? Give examples. 
2. Demonstrate how to make Optimized::String thread-safe: 

a. assuming there are atomic operations to get, set, and compare integer values; and 
b. assuming there aren't. 

3. What are the effects on performance? Discuss. 



Solution 

 

Thread-Safety Problems with Copy-on-Write (COW) 

Standard C++ is silent on the subject of threads. Unlike Java, C++ has no built-in support for threads, 
and does not attempt to address thread-safety issues through the language. So why an Item on thread- 
and concurrency-related issues? Simply because more and more of us are writing multithreaded (MT) 
programs, and no discussion of copy-on-write String implementations is complete if it does not 
cover thread-safety issues. Good C++ threading classes and frameworks have existed nearly as long as 
C++ itself. Today, they include facilities such as those in ACE,[2] the omnithread library available as 
part of omniORB,[3] and many commercial libraries. Chances are that today you're already using one 
of these libraries, or using your own in-house wrapper around your operating system's native services. 

[2] See http://www.gotw.ca/publications/mxc++/ace.htm. 

[3] See http://www.gotw.ca/publications/mxc++/omniorb.htm. 

In conjunction with this Item, see also Appendix : Optimizations That Aren't (In a Multithreaded 
World). That appendix overlaps with and builds upon the results we'll see in this Item. It demonstrates 
not only the effects that mistaken optimizations can have on you and your production code, but also 
how to detect them and protect yourself against them. This Item presents a summary of results for 
which more details are shown in Appendix : Test Results for Single-Threaded Versus Multithread-Safe 
String Implementations. 

1. Why is Optimized::String (from Item 15) not thread-safe? Give examples. 

It is the responsibility of code that uses an object to ensure that access to the object is serialized as 
needed. For example, if a certain String object could be modified by two different threads, it's not 
the poor String object's job to defend itself from abuse. It's the job of the code that uses the 
String to make sure that two threads never try to modify the same String object at the same 
time. 

The problem with the code in Item 15 is twofold. First, the copy-on-write (COW) implementation is 
designed to hide the fact that two different visible String objects could be sharing a common 
hidden state. Hence, it's the String class's responsibility to ensure that the calling code never 
modifies a String whose representation is shared. The String code shown already does 
precisely that, by performing a deep copy (unsharing the representation), if necessary, the moment a 
caller tries to modify the String. This part is fine in general. 

Unfortunately, it now brings us to the second problem, which is that the code in String that 
unshares the representation isn't thread-safe. Imagine two String objects s1 and s2 such that: 

a. s1 and s2 happen to share the same representation under the covers (okay, because 
String is designed for this); 

b. Thread 1 tries to modify s1 (okay, because thread 1 knows that no one else is trying to 
modify s1); 



c. Thread 2 tries to modify s2 (okay, because thread 2 knows that no one else is trying to 
modify s2); 

d. At the same time (error) 

The problem is (d). At the same time, both s1 and s2 will attempt to unshare their shared 
representation, and the code to do that is not thread-safe. Specifically, consider the very first line of 
code in String::AboutToModify(): 

 
void String::AboutToModify( 
  size_t n, 
  bool   markUnshareable /* = false */ 
) 
{ 
  if( data_->refs > 1 && data_->refs != Unshareable ) 
  { 
    /* ... etc. ... */ 

This if-condition is not thread-safe. For one thing, evaluating even data_->refs > 1 may not 
be atomic. If so, it's possible that if thread 1 tries to evaluate data_->refs > 1 while thread 2 is 
updating the value of refs, the value read from data_->refs might be anything—1, 2, or even 
something that's neither the original value nor the new value. The problem is that String isn't 
following the basic thread-safety requirement that code that uses an object must ensure that access to 
the object is serialized as needed. Here, String has to ensure that no two threads are going to use 
the same refs value in a dangerous way at the same time. The traditional way to accomplish this is 
to serialize access to the shared StringBuf (or just its refs member) using a mutex or 
semaphore. In this case, at minimum the "comparing an int" operation must be guaranteed to be 
atomic. 

This brings us to the second issue: Even if reading and updating refs were atomic, and even if we 
knew we were running on a single-CPU machine so that the threads were interleaved rather than truly 
concurrent, there are still two parts to the if condition. The problem is that the thread executing the 
above code could be interrupted after it evaluates the first part of the condition, but before it evaluates 
the second part. In our example: 

Thread 1  Thread 2  
enter s1's AboutToModify() evaluate "data_-
>refs > 1" (true, because data_->refs is 2)  

  

context switch  
  enter s2's AboutToModify() 

(runs to completion, including 
decrementing data_->refs to 
the value 1) exit s2's 
AboutToModify()  

context switch  
evaluate "data_->refs != Unshareable" 
(true, because data_->refs is now 1) enters 
AboutToModify()'s "I'm shared and need to 

  



unshare" block, which clones the representation, 
decrements data_->refs to the value 0, and gives 
up the last pointer to the StringBuf. Poof, we have a 
memory leak, because the StringBuf that had been 
shared by s1 and s2 can now never be deleted exit 
s1's AboutToModify()  

Having covered that, we're ready to see how to solve these safety problems. 

Protecting COW Strings 

In all that follows, remember that the goal is not to protect Optimized::String against every 
possible abuse. After all, the code using the String object is still responsible for knowing whether 
any given visible String object could be used by different threads and doing the proper 
concurrency control if it is—that's just normal. The problem here is that because of the extra sharing 
going on under the covers, the calling code can't just perform its normal duty of care because it doesn't 
know which String objects really are completely distinct and which only look distinct but are 
actually invisibly joined. The goal, then, is simply for Optimized::String to get back up to 
the level at which it's safe enough so that other code that uses String can assume that distinct 
String objects really are distinct, and therefore do the usual proper concurrency control as needed. 

2. Demonstrate how to make Optimized::String thread-safe: 

a) assuming that there are atomic operations to get, set, and compare integer values; and 

b) assuming that there aren't. 

I'm going to answer (b) first because it's more general. What's needed here is a lock-management 
device such as a mutex.[4] The key to what we're about to do is quite simple. It turns out that if we do 
things right, we need only lock access to the reference count itself. 

[4] If you're using Win32, what's called a "critical section" (a slight hijacking of the term) is a lot more efficient 
than a mutex, and should be used unless you really need the Win32 mutex's heavyweight facilities. 

Before doing anything else, we need to add a Mutex member object into 
Optimized::StringBuf. Let's call the member m: 

 
namespace Optimized 
{ 
 
  class StringBuf 
  { 
  public: 
      StringBuf();              // start off empty 
     ~StringBuf();              // delete the buffer 
      StringBuf( const StringBuf& other, size_t n = 0 ); 
                                // initialize to copy of other, 
                                //  and ensure len >= n 



 
      void Reserve( size_t n ); // ensure len >= n 
 
      char*    buf;             // allocated buffer 
      size_t   len;             // length of buffer 
      size_t   used;            // # chars actually used 
      unsigned refs;            // reference count 
      Mutex    m;               // serialize work on this 
object 
 
  private: 
    // No copying... 
    // 
    StringBuf( const StringBuf& ); 
    StringBuf& operator=( const StringBuf& ); 
}; 

The only function that necessarily operates on two StringBuf objects at once is the copy 
constructor. String only calls StringBuf's copy constructor from two places (from String's 
own copy constructor and from AboutToModify()). Note that String only needs to serialize 
access to the reference count, because by definition no String will do any work on a 
StringBuf that's shared. (If it is shared, it will be read in order to take a copy. But we don't need 
to worry about anyone else trying to change or Reserve() or otherwise alter/move the buffer.) 

The default constructor needs no locks: 

 
String::String() : data_(new StringBuf) { } 

The destructor need only lock its interrogation and update of the refs count: 

 
String::~String() 
{ 
  bool bDelete = false; 
  data_->m.Lock(); //--------------------------- 
  if( data_->refs == Unshareable || --data_->refs < 1 ) 
  { 
    bDelete = true; 
  } 
  data_->m.Unlock(); //------------------------- 
  if( bDelete ) 
  { 
    delete data_; 
  } 
} 

For the String copy constructor, note that we can assume the other String's data buffer won't be 
modified or moved during this operation, because it's the responsibility of the caller to serialize access 



to visible objects. We must still, however, serialize access to the reference count itself, as we did 
above: 

 
String::String( const String& other ) 
{ 
  bool bSharedIt = false; 
  other.data_->m.Lock(); //--------------------- 
  if( other.data_->refs != Unshareable ) 
  { 
    bSharedIt = true; 
    data_ = other.data_; 
    ++data_->refs; 
  } 
  other.data_->m.Unlock(); //------------------- 
  if( !bSharedIt ) 
  { 
    data_ = new StringBuf( *other.data_ ); 
  } 
} 

So making the String copy constructor safe wasn't very hard at all. This brings us to 
AboutToModify(), which turns out to be very similar. But notice that this sample code actually 
acquires the lock during the entire deep copy operation—really, the lock is strictly needed only when 
looking at the refs value and again when updating the refs value at the end. But let's go ahead 
and lock the whole operation instead of getting slightly better concurrency by releasing the lock 
during the deep copy and then reacquiring it just to update refs: 

 
void String::AboutToModify( 
  size_t n, 
  bool   markUnshareable /* = false */ 
) 
{ 
  data_->m.Lock(); //--------------------------- 
  if( data_->refs > 1 && data_->refs != Unshareable ) 
  { 
    StringBuf* newdata = new StringBuf( *data_, n ); 
    --data_->refs;   // now all the real work is 
    data_->m.Unlock(); //----------------------- 
    data_ = newdata; //  done, so take ownership 
  } 
  else 
  { 
    data_->m.Unlock(); //----------------------- 
    data_->Reserve( n ); 
  } 
  data_->refs = markUnshareable ? Unshareable : 1; 
} 



None of the other functions need to be changed. Append() and operator[]() don't need 
locks because once AboutToModify() completes, we're guaranteed that we're not using a shared 
representation. Length() doesn't need a lock because by definition, we're okay if our 
StringBuf is not shared (there's no one else to change the used count on us), and we're okay if it is 
shared (the other thread would take its own copy before doing any work and hence still wouldn't 
modify our used count on us): 

 
   void String::Append( char c ) 
{ 
     AboutToModify( data_->used+1 ); 
     data_->buf[used++">data_->used++] = c; 
   } 
 
   size_t String::Length() const 
   { 
     return data_->used; 
   } 
 
   char& String::operator[]( size_t n ) 
   { 
     AboutToModify( data_->len, true ); 
     return data_->buf[n]; 
   } 
 
   const char String::operator[]( size_t n ) const 
   { 
     return data_->buf[n]; 
   } 
} 

Again, note the interesting thing in all of this: The only locking we needed to do involved the refs 
count itself. 

With that observation and the above general-purpose solution under our belts, let's look back to the (a) 
part of the question: 

a) assuming that there are atomic operations to get, set, and compare integer values; and 

Some operating systems provide these kinds of functions. 

Note: These functions are usually significantly more efficient than general-purpose synchronization 
primitives such as mutexes. It is, however, a fallacy to say that we can use atomic integer operations 
"instead of locks" because locking is still required—the locking is just generally less expensive than 
other alternatives, but it's not free by a long shot, as we will see. 

Here is a thread-safe implementation of String that assumes we have three functions: an 
IntAtomicGet(), and IntAtomicDecrement() and IntAtomicIncrement() 



that safely return the new value. We'll do essentially the same thing we did above, but use only atomic 
integer operations to serialize access to the refs count: 

 
namespace Optimized 
{ 
 
 
  String::String() : data_(new StringBuf) { } 
 
 
  String::~String() 
  { 
    if( IntAtomicGet( data_->refs ) == Unshareable || 
        IntAtomicDecrement( data_->refs ) < 1 ) 
    { 
      delete data_; 
    } 
  } 
 
 
  String::String( const String& other ) 
  { 
    if( IntAtomicGet( other.data_->refs ) != Unshareable ) 
    { 
      data_ = other.data_; 
      IntAtomicIncrement( data_->refs ); 
    } 
    else 
    { 
      data_ = new StringBuf( *other.data_ ); 
    } 
  } 
  void String::AboutToModify( 
        size_t n, 
        bool   markUnshareable /* = false */ 
      ) 
      { 
        int refs = IntAtomicGet( data_->refs ); 
        if( refs > 1 && refs != Unshareable ) 
        { 
          StringBuf* newdata = new StringBuf( *data_, n ); 
          if( IntAtomicDecrement( data_->refs ) < 1 ) 
          {                  // just in case two threads 
            delete newdata;  //  are trying this at once 
          } 
          else 
          {                  // now all the real work is 
            data_ = newdata; //  done, so take ownership 



          } 
        } 
        else 
        { 
          data_->Reserve( n ); 
        } 
        data_->refs = markUnshareable ? Unshareable : 1; 
      } 
 
      void String::Append( char c ) 
      { 
        AboutToModify( data_->used+1 ); 
        data_->buf[used++">data_->used++] = c; 
      } 
 
      size_t String::Length() const 
      { 
        return data_->used; 
      } 
 
      char& String::operator[]( size_t n ) 
      { 
        AboutToModify( data_->len, true ); 
        return data_->buf[n]; 
      } 
 
      const char String::operator[]( size_t n ) const 
      { 
        return data_->buf[n]; 
      } 
    } 

3. What are the effects on performance? Discuss. 

Without atomic integer operations, copy-on-write typically incurs a significant performance penalty. 
Even with atomic integer operations, COW can make common String operations take nearly 50% 
longer, even in single-threaded programs. 

In general, copy-on-write is often a bad idea in multithread-ready code. That's because the calling 
code can no longer know whether two distinct String objects actually share the same 
representation under the covers, so String must incur overhead to do enough serialization so that 
calling code can take its normal share of responsibility for thread safety. Depending on the availability 
of more-efficient options such as atomic integer operations, the impact on performance ranges from 
moderate to profound. 

Some Empirical Results 

In this test environment, I tested the following six main flavors of string implementations. 



 
           Name  Description (refined versions of 
                              code shown earlier) 
---------------  --------------------------------------- 
          Plain  Non-use-counted string; all others are 
                 modeled on this 
 
     COW_Unsafe  Plain + COW, not thread-safe 
 
  COW_AtomicInt  Plain + COW + thread-safe 
 
 COW_AtomicInt2  COW_AtomicInt + StringBuf in same 
                 buffer as the data 
 
    COW_CritSec  Plain + COW + thread-safe (Win32 
                 critical sections) 
 
      COW_Mutex  Plain + COW + thread-safe (Win32 
                 mutexes) (COW_CritSec with Win32 mutexes 
                 instead of Win32 critical sections) 

I also threw in a seventh flavor to measure the result of optimizing memory allocation instead of 
optimizing copying: 

 
Plain_FastAlloc  Plain + an optimized memory allocator 

I focused on comparing Plain with COW_AtomicInt. COW_AtomicInt was generally the 
most efficient thread-safe COW implementation. The results were as follows: 

1. For all mutating and possibly-mutating operations, COW_AtomicInt was always worse 
than Plain. This is natural and expected. 

2. COW should shine when there are many unmodified copies. But for an average string length 
of 50: 

a. When 33% of all copies were never modified and the rest were modified only once 
each, COW_AtomicInt was still slower than Plain. 

b. When 50% of all copies were never modified and the rest were modified only thrice 
each, COW_AtomicInt was still slower than Plain. 

This second result may be the more surprising one to many—particularly the result that 
COW_AtomicInt is slower in cases in which there are more copy operations than mutating 
operations in the entire system! 

Note that in both cases traditional thread-unsafe COW did perform better than Plain. This shows 
that COW can be an optimization for purely single-threaded environments, but it is less often 
appropriate for thread-safe code. 

3. It is a myth that COW's principal advantage lies in avoiding memory allocations. Especially 
for longer strings, COW's principal advantage is that it avoids copying the characters in the 
string. 



4. Optimized allocation, not COW, was a consistent true speed optimization in all cases (but 
note that it does trade off space). Here is perhaps the most important conclusion from the 
Detailed Measurements section in the appendixes: 

Most of COW's primary advantage for small strings could be gained without COW by using a 
more efficient allocator. (Of course, you could also do both—use COW and an efficient 
allocator.) 

Let's briefly raise and answer two natural questions. 

First, why measure something as inefficient as COW_CritSec? The answer is simple: Because at 
least one popular commercial basic_string implementation used this method as recently as 
2000 (and perhaps still does, I haven't seen their code lately), despite the fact that COW_CritSec is 
nearly always a pessimization. Be sure to check whether your library vendor is doing this, because if 
the library is built for possible multithreaded use, you will bear the performance cost all the time, even 
if your program is single-threaded. 

Second, what's COW_AtomicInt2? It's the same as COW_AtomicInt except that instead of 
allocating a StringBuf and then separately allocating the data buffer, the StringBuf and data 
are in the same allocated block of memory. Note that all other COW_* variants use a fast allocator for 
the StringBuf object (so that there's no unfair double allocation cost), and the purpose of 
COW_AtomicInt2 is mainly to demonstrate that I have actually addressed that concern. 
COW_AtomicInt2 is actually slightly slower than COW_AtomicInt for most operations, 
because of the extra logic. 

I also tested the relative performance of various integer operations (incrementing int, incrementing 
volatile int, and incrementing int using the Win32 atomic integer operations) to ensure that 
COW_AtomicInt results were not unfairly skewed by poor implementations or function call 
overhead. 

Summary 

A few important points about this test harness and these results: 

1. Caveat lector: Take this for what it is, a first cut at a test harness. Comments and corrections 
are welcome. I'm showing raw performance numbers here. I haven't inspected the compiled 
machine code, and I've made no attempt to determine the impact of cache hits/misses and 
other secondary effects. 

2. TANSTAAFL. ("There ain't no such thing as a free lunch."—Robert A. Heinlein) Even with 
atomic integer operations, it is incorrect to say "there's no locking required," because the 
atomic integer operations clearly do perform serialization and do incur significant overhead. 

3. Tanj. ("There ain't no justice."—Larry Niven) The test harness itself is single-threaded. A 
thread-safe COW implementation incurs overhead even in programs that are not themselves 
multithreaded. At best, COW could be a true optimization only when the COW code does not 
need to be made thread-safe at all (even then, see [Murray93] pages 70–72 for more empirical 
tests that show COW is beneficial only in certain situations). If thread safety is required, 
COW imposes a significant performance penalty on all users, even users running only single-
threaded code. 

Exception Safety Issues and Techniques 



It's pretty near impossible to write robust code in modern C++ without knowing about exception 
safety issues. Period. 

If you use the C++ standard library, including even just new, you have to be prepared for exceptions. 
This section builds on the corresponding section of Exceptional C++ and considers new issues and 
techniques, such as, What's std:: uncaught_exception(), and does it help you to write 
more-robust code? Does exception safety affect a class's design, or can it just be retrofitted as an 
afterthought? Why use manager objects to encapsulate resource ownership, and why is the "resource 
acquisition is initialization" idiom so important for writing safe code? 

But first, let's get our feet wet by considering an exception safety lesson that also demonstrates the 
deeper meaning of key fundamental C++ concepts: What does construction mean, and what is an 
object's lifetime? 

Item 17. Constructor Failures, Part 1: Object Lifetimes 
Difficulty: 4 

What exactly happens when a constructor emits an exception? What if the exception comes from an 
attempt to construct a subobject or member object? 

1. Consider the following class: 
2.  
3. // Example 17-1 
4. // 
5. class C : private A 
6. { 
7.   B b_; 
8. }; 

In the C constructor, how can you catch an exception thrown from the constructor of a base 
subobject (such as A) or a member object (such as b_)? 

9. Consider the following code: 
10.  
11. // Example 17-2 
12. // 
13. { 
14.   Parrot p; 
15. } 

When does the object's lifetime begin? When does it end? Outside the object's lifetime, what is the 
status of the object? Finally, what would it mean if the constructor threw an exception? 

Solution 

 



Function try blocks were added to C++ to slightly enlarge the scope of exceptions that a function can 
catch. This Item covers 

• What object construction and construction failure mean in C++; and 
• That function try blocks are useful to translate (not suppress) an exception thrown from a base 

or member subobject constructor—and that's pretty much it. 

For convenience, throughout this Item, member means "nonstatic class data member" unless otherwise 
noted. 

Function Try Blocks 

1. Consider the following class: 

 
// Example 17-1 
// 
class C : private A 
{ 
  B b_; 
}; 

In the C constructor, how can you catch an exception thrown from the constructor of a base 
subobject (such as A) or a member object (such as b_)? 

That's what function try blocks are for: 

 
// Example 17-1(a): Constructor function try block 
// 
C::C() 
try 
  : A ( /*...*/ )   // optional initialization list 
  , b_( /*...*/ ) 
{ 
} 
catch( ... ) 
{ 
  // We get here if either A::A() or B::B() throws. 
 
  // If A::A() succeeds and then B::B() throws, the 
  // language guarantees that A::~A() will be called 
  // to destroy the already-created A base subobject 
  // before control reaches this catch block. 
} 

The more interesting question, though, is: Why would you want to do this? That question brings us to 
the first of two key points in this Item. 



Object Lifetimes and What a Constructor Exception Means 

In a moment, we'll consider the question of whether the above C constructor can, or should, absorb an 
A or B constructor exception and emit no exception at all. But before we can answer that question 
correctly, we need to make sure we fully understand object lifetimes[1] and what it means for a 
constructor to throw an exception. 

[1] For simplicity, I'm speaking only of the lifetime of an object of class type that has a constructor. 

2. Consider the following code: 

 
// Example 17-2 
// 
{ 
  Parrot p; 
} 

When does the object's lifetime begin? When does it end? Outside the object's lifetime, what is 
the status of the object? Finally, what would it mean if the constructor threw an exception? 

Let's take the questions one at a time: 

Q: When does an object's lifetime begin? 

A: When its constructor completes successfully and returns normally. That is, when control reaches 
the end of the constructor body or completes an earlier return statement. 

Q: When does an object's lifetime end? 

A: When its destructor begins. That is, when control reaches the beginning of the destructor body. 

Q: What is the state of the object after its lifetime has ended? 

A: As a well-known software guru once put it while speaking about a similar code fragment and 
anthropomorphically referring to the local object as a "he": 

 
// Example 17-3 
// 
{ 
  Parrot& perch = Parrot(); 
  // ... 
} 
// <-- the soliloquy takes place here 

He's not pining! He's passed on! This Parrot is no more! He has ceased to be! He's expired 
and gone to meet his maker! He's a stiff! Bereft of life, he rests in peace! If you hadn't nailed him 



to the perch he'd be pushing up the daisies [even earlier, before the end of the block]! His 
metabolic processes are now history! He's off the twig! He's kicked the bucket, he's shuffled off 
his mortal coil, run down the curtain and joined the bleedin' choir invisible! This is an ex-
Parrot! 

—Dr. M. Python, B.Math, MA.Sc., Ph.D. (CompSci)[2] 

[2] With apologies to Monty Python. 

Kidding aside, the important point here is that the state of the object before its lifetime begins is 
exactly the same as after its lifetime ends: There is no object, period. This observation brings us to the 
next key question: 

Q: What does emitting an exception from a constructor mean? 

A: It means that construction has failed, the object never existed, its lifetime never began. Indeed, 
the only way to report the failure of construction—namely, the inability to correctly build a 
functioning object of the given type—is to throw an exception. (Yes, there is a now-obsolete 
programming convention that said: "If you get into trouble, just set a status flag to 'bad' and let 
the caller check it via an IsOK() function." I'll comment on that presently.) 

Incidentally, this is why a destructor will never be called if the constructor didn't succeed—there's 
nothing to destroy. It cannot die, for it never lived. Note that this makes the phrase "an object whose 
constructor threw an exception" really an oxymoron. Such a thing is even less than an ex-object. It 
never lived, never made it to objecthood. It is a non-object. 

We might summarize the C++ constructor model as follows: 

Either: 

a. The constructor returns normally by reaching its end or a return statement, and the object 
exists, or 

b. The constructor exits by emitting an exception, and the object not only does not now exist, 
but it never existed as an object. 

There are no other possibilities. Armed with this information, we can now better tackle the next Item's 
question: What about absorbing exceptions? 

Item 18. Constructor Failures, Part 2: Absorption? 
Difficulty: 7 

This Item analyzes constructor failures in detail, shows why the C++ rules should work the way they 
do, and demonstrates the implications for constructor exception specifications. 



1. In Item 17 Example 17-1, if the A or B constructor throws an exception, is it possible for the 
C constructor to absorb the exception and emit no exception at all? Justify your answer, 
explaining by example why this is as it should be. 

2. What are the minimal requirements that A and B must meet in order for us to safely put an 
empty throw-specification on C's constructor(s)? 

Solution 

 

I Can't Keep No Caught Exceptions 

1. In Item 17 Example 17-1, if the A or B constructor throws an exception,[3] is it possible for the 
C constructor to absorb the exception and emit no exception at all? 

[3] A double pun, can be sung to the chorus of the Rolling Stones' "Satisfaction" or to the opening bars of 
Pink Floyd's "Another Brick in the Wall, Part N." 

If we didn't consider the object lifetime rules, we might have tried something like the following: 

 
// Example 18-1(a): Absorbing exceptions? 
// 
C::C() 
try 
  : A ( /*...*/ )   // optional initialization-list 
  , b_( /*...*/ ) 
{ 
} 
catch( ... ) 
{ 
  // ? 
} 

How will the try block handler exit? Consider: 

• The handler cannot simply "return;" because that's illegal. 
• If the handler just says "throw;" it will rethrow whatever exception A::A() or B::B() 

originally emitted. 
• If the handler throws some other exception, that exception is emitted instead of whatever the 

base or member subobject constructor originally threw. 
• What's less obvious, but clearly stated in the C++ standard, is that if the handler does not exit 

by throwing an exception (either by rethrowing the original exception or by throwing 
something new), and control reaches the end of the catch block of a constructor or destructor, 
then the original exception is automatically rethrown as if the handler's last statement had 
been throw;. 



Think about what this means: A constructor or destructor function try block's handler code must finish 
by emitting some exception. There's no other way. As long as you don't try to violate exception 
specifications, the language doesn't care what exception it is that gets emitted—it can be the original 
one or some other translated exception—but an exception there must be! It is impossible to keep any 
exceptions thrown by base or member subobject constructors from causing some exception to leak 
beyond their containing constructors. 

In fewer words, it means that: 

In C++, if construction of any base or member subobject fails, the whole object's construction must 
fail. 

A constructor cannot possibly recover and do something sensible after one of its base or member 
subobjects' constructors throws. It cannot even put its own object into a "construction failed" state 
recognizable to the compiler. Its object is not constructed; it never will be constructed no matter what 
Frankensteinian efforts the handler attempts in order to breathe life into the nonobject. And whatever 
destruction can be done has already been done automatically by the language; that includes all base 
and member subobjects. 

What if your class can honestly have a sensible "construction partially failed" state—that is, it really 
does have some "optional" members that aren't strictly required and the object can limp along without 
them, possibly with reduced functionality? Then use the Pimpl idiom (described in Exceptional C++ 
[Sutter00] Items 27–30) to hold the possibly-bad parts of the object at arm's length. For similar 
reasoning, see Exceptional C++ Items 31–34 about abuses of inheritance. Incidentally, this "optional 
parts of an object" idea is another great reason to use delegation instead of inheritance whenever 
possible. Base subobjects can never be made optional because you can't put base subobjects into a 
Pimpl.[4] 

[4] Convergence is funny sometimes. Long after I started pushing the Pimpl idiom and bashing needless 
inheritance, I kept coming across new problems that were solved by using Pimpl or removing needless 
inheritance, especially to improve exception safety. I guess it shouldn't have been a surprise, because it's 
just this whole coupling thing again. Higher coupling means greater exposure to failure in a related 
component. To this comment, Bobby Schmidt responded in private correspondence: "And maybe that's the 
core lesson to pull out of this— we've really just rediscovered and amplified the old minimal-coupling-
maximum-cohesion axiom." 

In the past, I've sometimes had a love/hate relationship with exceptions. Even so, I've always had to 
agree that exceptions are the right way to signal constructor failures, given that constructors cannot 
report errors via return codes (ditto for most operators). I have found the "if a constructor encounters 
an error, set a status bit and let the user call IsOK() to see if construction actually worked" method 
to be outdated, dangerous, tedious, and in no way better than throwing an exception. Ditto for its 
fraternal twin, the two-phase construction approach. I'm not the only one who views these approaches 
as odious. For a thorough debunking of these outmoded styles by none other than Stroustrup, 
including juicy sound bites like "bogus" and "this style is a relic of pre-exception C++," see section 
E.3.5 of [Stroustrup00]. 

A Step Toward Morality 

Incidentally, this also means that the only (repeat only) possible use for a constructor function try 
block is to translate an exception thrown from a base or member subobject. That's Moral #1. Moral #2 
says that destructor function try blocks are entirely usele— 



"—But wait!" I hear someone interrupting from the middle of the room. "I don't agree with Moral #1. 
I can think of another possible use for constructor function try blocks—to free resources allocated in 
the initializer list or in the constructor body!" 

Sorry, no. Remember that once you get into your constructor try block's handler, any local variables in 
the constructor body are also already out of scope, and you are guaranteed that no base subobjects or 
member objects exist anymore, period. You can't even refer to their names. Either the parts of your 
object were never constructed, or those that were constructed have already been destroyed. So you 
can't be cleaning up anything that relies on referring to a base or member of the class (and anyway, 
that's what the base and member destructors are for, right?). 

Aside: Why Does C++ Do It That Way? 

To understand why it's good that C++ does it this way, let's put that restriction aside for the moment 
and imagine that C++ did let you mention member names in constructor try block handlers. Then 
imagine the following case, and try to decide: Should the handler delete t_ or z_? (Again, ignore for 
the moment that, in real C++, it can't even refer to t_ or z_.) 

 
// Example 18-1(b): Very Buggy Class 
// 
class X : Y   { 
  T* t_; 
  Z* z_; 
public: 
  X() 
  try 
    : Y(1) 
    , t_( new T( static_cast<Y*>(this) ) 
    , z_( new Z( static_cast<Y*>(this), t_ ) ) 
  { 
    /*...*/ 
  } 
  catch(...)  // Y::Y() or T::T() or Z::Z() 
               // or X::X()'s body has thrown 
  { 
    // Q: should I delete t_ or z_? 
    // (Note: NOT legal C++!) 
  } 
}; 

The first problem is that we cannot possibly know whether t_ or z_ were ever allocated. Therefore 
deleting either might not be safe. 

Second, even if we did know that we had reached one of the allocations, we probably can't destroy 
*t_ or *z_ because they refer to a Y (and possibly a T) that no longer exists, and they may try to 
use that Y (and possibly T). Incidentally, this means that not only can't we destroy *t_ or *z_, but 
they can never be destroyed by anyone. 



If that didn't just sober you up, it should have. I have seen people write code similar in spirit to the 
above, never imagining that they were creating objects that, should the wrong things happen, could 
never be destroyed! The good news is that there's a simple way to avoid the problem. These 
difficulties would largely go away if the T* members were instead held by auto_ptrs or similar 
manager objects. (For more about the dangers of auto_ptr members and how to avoid them, turn 
to Items 30 and 31.) 

Finally, if Y::~Y() can throw, it is not possible to reliably create an X object at any time! If you 
haven't been sobered yet, this should definitely do it. If Y::~Y() can throw, even writing "X x;" 
is fraught with peril. This reinforces the dictum that destructors must never be allowed to emit an 
exception under any circumstances, and writing a destructor that could emit an exception is simply an 
error. Destruction and emitting exceptions don't mix. 

All right, enough about that. The preceding side discussion was just to get a better understanding of 
why it's good that the rules are as they are. In real C++, you can't refer to t_ or z_ inside the handler 
in the first place. I've refrained from quoting standardese so far, so here's your dose, from the C++ 
standard [C++98], clause 15.3, paragraph 10: "Referring to any non-static member or base class of an 
object in the handler for a function try block of a constructor or destructor for that object results in 
undefined behavior." 

Morals About Function Try Blocks 

Therefore, the status quo can be summarized as follows: 

Moral #1: Constructor function try block handlers are only good for translating an exception thrown 
from a base or member subobject constructor (and maybe to do related logging or some other side 
effects in response to such failures). They are not useful for any other purpose. 

Moral #2: Destructor function try blocks have little or no practical use, because destructors should 
never emit an exception.[5] Thus there should never be anything for a destructor function try block to 
detect that couldn't be detected with a normal try block. Even if there were something to detect 
because of evil code (namely a member subobject whose destructor could throw), the handler would 
not be useful for dealing with it because it couldn't suppress the exception. The best it could do is log 
something, or otherwise complain.  

[5] Not even for logging or other side effects, because there shouldn't be any exceptions from base or 
member subobject destructors. Therefore, anything you could catch in a destructor function try block could 
be caught equally well using a normal try block inside the destructor body. 

Moral #3: All other function try blocks have no practical use. A regular function try block can't catch 
anything that a regular try block within the function couldn't catch just as well. 

Morals About Safe Coding 

Moral #4: Always perform unmanaged resource acquisition in the constructor body, never in 
initializer lists. In other words, either use "resource acquisition is initialization" (thereby avoiding 
unmanaged resources entirely) or else perform the resource acquisition in the constructor body.[6]  

[6] See [Stroustrup94] Section 16.5 and [Stroustrup00] Section 14.4. 



For example, building on Example 18-1(b), say T was char and t_ was a plain old char* that 
was new[]'d in the initializer list. Then there would be no way to delete[] it in the handler or 
anywhere else. The fix would be either to wrap the dynamically allocated memory resource (for 
example, change char* to string) or to new[] it in the constructor body where it can be safely 
cleaned up using a local try block or otherwise. 

Moral #5: Always clean up unmanaged resource acquisition in local try block handlers within the 
constructor or destructor body, never in constructor or destructor function try block handlers. 

Moral #6: If a constructor has an exception specification, that exception specification must allow for 
the union of all possible exceptions that could be thrown by base and member subobjects. As Holmes 
might add, "It really must, you know." (Indeed, this is the way the implicitly generated constructors 
are declared; see [GotW] #69.[7])  

[7] Available online at http://www.gotw.ca/gotw/069.htm. 

Moral #7: Use the Pimpl idiom to hold "optional parts" of a class's internals. If a constructor of a 
member object can throw but you can get along without said member, hold it by pointer and use the 
pointer's nullness to remember whether you've got one, as usual. Use the Pimpl idiom to group such 
"optional" members, so you have to allocate only once. 

And finally, one last moral that overlaps with the rest but is worth restating in its own right: 

Moral #8: Prefer using "resource acquisition is initialization" to manage resources. Really, really, 
really. It will save you more headaches than you can probably imagine, including hard-to-see ones, 
similar to some we've already dissected. 

That's Just the Way It Is 

From legality, we now turn to morality: 

Justify your answer, explaining by example why this is as it should be. 

The way the language works is entirely correct and easily defensible, once you think about the 
meaning of C++'s object lifetime model and philosophy. 

A constructor exception must be propagated. There is no other way to signal that the constructor failed. 
Two cases spring to mind: 

 
// Example 18-1(c): Auto object 
// 
{ 
  X x; 
  g( x ); // do something else 
} 

If X's construction fails—whether it's due to X's own constructor body code or to some X base 
subobject or member object construction failure—control must not continue within the scope of this 
code block. After all, there is no x object! The only way for control not to continue here is to emit an 



exception. Therefore, a failed construction of an auto object must result in some sort of exception, 
whether it is the same exception that caused the base or member subobject construction failure or 
some translated exception emitted from an X constructor function try block. 

Similarly: 

 
// Example 18-1(d): Array of objects 
// 
{ 
  X ax[10]; 
  // ... 
} 

Say the fifth X object construction fails—whether it's due to X's own constructor body code failing, or 
to some X base or member subobject construction failing. Then control must not continue within the 
scope of this code block. After all, if you tried to continue, you'd end up with a "holey array"—an 
array not all of whose objects really exist. (Even that would probably be better than leaving things in a 
holy disarray, but I digress.) 

A Final Word: Failure-Proof Constructors? 

2. What are the minimal requirements that A and B must meet in order for us to safely put an 
empty throw-specification on C's constructor(s)? 

Consider: Is it possible to write and enforce an empty throw-specification for a constructor of a class 
(like C in Item 17 Example 17-1) if some base or member constructor could throw? The answer is no; 
you could write the "I won't throw anything" empty throw-specification, but it would be a lie because 
there's no way to enforce it. To enforce a "throws nothing" guarantee for any function, we must be 
able to absorb any possible exceptions that come our way from lower-level code to avoid accidentally 
trying to emit them to our own caller. If you really want to write a constructor that promises not to 
throw, you can work around possibly-throwing member subobjects (for example, if you can hold them 
by pointer or Pimpl because they truly are optional), but you can't work around possibly-throwing 
base subobjects—another reason to avoid unnecessary inheritance, which always implies gratuitous 
coupling. 

For a constructor to have an empty throw-specification, all base and member subobjects must be 
known to never throw, whether they have throw-specifications that say so or not. An empty throw-
specification on a constructor declares to the world that construction cannot fail. If for whatever 
reason it can indeed fail, then the empty throw-specification is inappropriate. 

What happens if you wrote an empty throw-specification on a constructor, and a base or member 
subobject constructor really does throw? The short answer: "Go to terminate(). Go directly to 
terminate(). Do not pass try, do not collect $200." The slightly longer answer: The function 
unexpected() gets called, which has two choices—to throw or rethrow an exception allowed by 
the exception specification (impossible, because it's empty and won't allow anything) or to call 
terminate(). terminate(), in turn, immediately aborts the program.[8] In automobile terms: 
screech, crunch. 



[8] You can use set_unexpected() and set_terminate() to get your own handlers invoked, 
which gives you a chance to do a bit of extra logging or cleanup, but they'll end up doing much the same 
things. 

Summary 

A C++ object's lifetime begins only after its constructor completes successfully. Therefore, throwing 
an exception from a constructor always means (and is the only way of reporting) that construction 
failed. There is no way to recover from failed construction of a base or member subobject, so if 
construction of any base or member subobject fails, the whole object's construction must fail. 

Avoid function try blocks, not because they're evil but because they offer few or no benefits over plain 
try blocks—and when you're hiring, you'll find that more people understand the latter than the former. 
This follows the principles of picking the simplest solution that's effective, and of writing for clarity 
first. Constructor function try blocks are useful only to translate exceptions emitted from base or 
member constructors. All other function try blocks are rarely if ever useful at all. 

Finally, as pointed out repeatedly in Exceptional C++ Items 8 to 19, use owning objects and "resource 
acquisition is initialization" to manage resources, and you'll usually avoid having to write try and 
catch at all in your code, never mind in function try blocks. 

Item 19. Uncaught Exceptions 
Difficulty: 6 

What is the standard function uncaught_exception(), and when should it be used? The 
answer given here isn't one that most people expect. 

1. What does std::uncaught_exception() do? 
2. Consider the following code: 
3.  
4. T::~T() 
5. { 
6.   if( !std::uncaught_exception() ) 
7.   { 
8.     // ... code that could throw ... 
9.   } 
10.   else 
11.   { 
12.         // ... code that won't throw ... 
13.       } 
14.     } 

Is this a good technique? Present arguments for and against. 

15. Is there any other good use for uncaught_exception()? Discuss and draw 
conclusions. 



Solution 

 

Recapping uncaught_exception() 

1. What does std::uncaught_exception() do? 

The standard uncaught::exception() function provides a way of knowing whether there is 
an exception currently active. An important thing to note is that this is not the same thing as knowing 
whether it is safe to throw an exception. 

To quote directly from the standard (15.5.3/1): 

The function bool uncaught_exception() returns true after completing evaluation of 
the object to be thrown until completing the initialization of the exception-declaration in the matching 
handler. This includes stack unwinding. If the exception is rethrown, uncaught_exception() 
returns true from the point of rethrow until the rethrown exception is caught again. 

As it turns out, this specification is deceptively close to being useful. 

Background: The Problem with Throwing Destructors 

If a destructor throws an exception, Bad Things can happen. Specifically, consider code like the 
following: 

 
// Example 19-1: The problem 
// 
class X { 
public: 
  ~X() { throw 1; } 
}; 
 
void f() { 
  X x; 
  throw 2; 
} // calls X::~X (which throws), then calls terminate() 

If a destructor throws an exception while another exception is already active (that is, during stack 
unwinding), the program is terminated. This is usually not a good thing. 

For more information, see also Exceptional C++ [Sutter00] Item 16, which discusses "Destructors 
That Throw and Why They're Evil." 



The Wrong Solution 

"Aha," many people, including many experts, have said, "let's use uncaught_ exception() 
to figure out whether we can throw!" And that's where the code in Question 2 comes from. It's an 
attempt to solve the illustrated problem: 

2. Consider the following code: 

 
// Example 19-2: The wrong solution 
// 
T::~T() 
{ 
  if( !std::uncaught_exception() ) 
  { 
    // ... code that could throw ... 
  } 
  else 
  { 
    // ... code that won't throw ... 
  } 
} 

Is this a good technique? Present arguments for and against. 

In short: No, this is not a good technique, even though it attempts to solve a problem. There are 
technical grounds why this technique shouldn't be used. But I'm more interested in arguing against this 
idiom on moral grounds. 

The idea behind the idiom in Example 19-2 is simple: We'll use the path that could throw as long as 
it's safe to throw. This philosophy is wrong on two counts. First, this code doesn't do that. Second (and 
more important, in my opinion), the philosophy itself is in error. Let's investigate these two points 
separately. 

Why the Wrong Solution Is Unsound 

The first problem is that the idiom in Example 19-2 won't actually work as intended in some situations. 
That's because it can end up using the path that doesn't throw even when it would be safe to throw. 

 
// Example 19-2(a): Why the wrong solution is wrong 
// 
U::~U() 
{ 
  try 
  { 
    T t; 
    // do work 
  } 



  catch( ... ) 
  { 
    // clean up 
  } 
} 

If a U object is destroyed because of stack unwinding during exception propagation, T::~T() will 
fail to use the "code that could throw" path even though it safely could. T::~T() doesn't know that 
in this case it's already protected by a catch(...) block external to itself, up in U::~U(). 

Note that none of this is materially different from the following: 

 
// Example 19-3: Variant, another wrong solution 
// 
Transaction::~Transaction() 
{ 
  if( uncaught_exception() ) 
  { 
   RollBack(); 
  } 
  else 
  { 
   // ...       } 
} 

Again, note that this doesn't do the right thing if a transaction is attempted in a destructor that might be 
called during stack unwinding: 

 
// Example 19-3(a): Why the variant wrong solution 
// is still wrong 
// 
U::~U() { 
  try { 
    Transaction t( /*...*/ ); 
    // do work 
  } catch( ... ) { 
    // clean up 
  } 
} 

So Example 19-2 doesn't work the way it's intended to work. That's fine, but it's not the main issue. 

Why the Wrong Solution Is Immoral 

The second and more fundamental problem with this solution is not technical, but moral. It is poor 
design to give T::~T() two different "modes" of operation for its error reporting semantics. The 
reason is that it is always poor design to allow an operation to report the same error in two different 



ways. Making the interface not merely modal, but modal in a way that the calling code can't easily 
control or account for, has two major failings. It complicates the interface and the semantics. And it 
makes the caller's life harder because the caller must be able to handle both flavors of error 
reporting—and this when far too many programmers don't check errors well in the first place. 

Sometimes, when I'm driving my car, I find myself behind another driver who's partly in one lane and 
partly in the next. After several seconds have passed and the driver is still (from my point of view) 
behaving erratically, I feel the urge to roll down the window and call out, in a loud, but kind, 
thoughtful, and caring voice: "C'mon, buddy! Pick a lane! Any lane!" As long as the other driver 
continues to straddle the line, I have to be ready to handle the possibility of his moving into either lane 
at any time. This is not only annoying, but it slows down my own progress. 

Sometimes, when we're writing code, we find ourselves using another programmer's class or function 
that has a schizophrenic interface, such as indecisively trying to report the same failure in more than 
one way, instead of just picking one set of semantics and running with those semantics consistently. 
We should all feel the urge to walk over to the offender's office or cube and help this poor 
unenlightened person to make a decision that would simplify life for us and other users. 

The Right Solution 

The right answer to the Example 19-1 problem is much simpler: 

 
// Example 19-4: The right solution 
// 
T::~T() /* throw() */ 
{ 
  // ... code that won't throw ... 
} 

Example 19-4 demonstrates how to make a design decision instead of waffling. 

Note that the throw() throws-nothing exception specification is only a comment. That's the style 
I've chosen to follow, in part because it turns out that exception specifications confer a lot less benefit 
than they're worth. Whether or not you decide to actually write the specification is a matter of taste. 
The important thing is that this function won't emit an exception. For a discussion about the possibility 
of exceptions thrown by destructors of members of T, turn to Item 18. 

If necessary, T can provide a "pre-destructor" function (for example, T::Close()), which can 
throw and which performs all shutdown of the T object and any resources it owns. That way, the 
calling code can call T::Close() if it wants to detect hard errors, and T::~T() can be 
implemented in terms of T::Close() plus a try/catch block: 

 
// Example 19-5: Alternative right solution 
// 
T::Close() 
{ 
  // ... code that could throw ... 
} 



 
T::~T() /* throw() */ 
{ 
  try 
  { 
    Close(); 
  } 
  catch( ... ) { } 
} 

This nicely follows the principle of "one function, one responsibility." A problem in the original code 
was that it had the same function responsible for both destroying the object and final cleanup/reporting. 

See also Items 17 and 18 about why this try block is inside the destructor body and should not be a 
destructor function try block. 

Guideline 

 Never allow an exception to be emitted from a destructor. Write destructors as 
though they had an exception specification throw() (whether the throw-
specification actually appears in the code is a matter of personal taste). 

 

Guideline 

 If a destructor calls a function that might throw, always wrap the call in a 
try/catch block that prevents the exception from escaping. 

 

3. Is there any other good use for uncaught_exception()? Discuss and draw conclusions. 

Unfortunately, I do not know of any good and safe use for uncaught_ exception(). My 
advice: Don't use it. 

Item 20. An Unmanaged Pointer Problem, Part 1: 
Parameter Evaluation 
Difficulty: 6 

Readers of Exceptional C++ and this book know that exception safety is anything but trivial. This Item 
points out an exception safety problem that was discovered fairly recently, and shows how best to 
avoid it in your own code. 

1. In each of the following statements, what can you say about the order of evaluation of the 
functions f, g, and h and the expressions expr1 and expr2? Assume that expr1 and 
expr2 do not contain more function calls. 

2.  
3. // Example 20-1(a) 



4. // 
5. f( expr1, expr2 ); 
6.  
7. // Example 20-1(b) 
8. // 
9. f( g( expr1 ), h( expr2 ) ); 
10. In your travels through the dusty corners of your company's code archives, you find the 

following code fragment: 
11.  
12. // Example 20-2 
13. // 
14.  
15. // In some header file: 
16. void f( T1*, T2* ); 
17.  
18. // In some implementation file: 
19. f( new T1, new T2 ); 

Does this code have any potential exception safety problems? Explain. 

Solution 

 

Recap: Evaluation Orders and Disorders 

1. In each of the following statements, what can you say about the order of evaluation of the 
functions f, g, and h and the expressions expr1 and expr2? Assume that expr1 and 
expr2 do not contain more function calls. 

Ignoring threads, which are not mentioned in the C++ standard, the answer to the first question hinges 
on the following basic rules: 

1. All of a function's arguments must be fully evaluated before the function is called. This 
includes the completion of any side effects of expressions used as function arguments. 

2. Once the execution of a function begins, no expressions from the calling function begin or 
continue to be evaluated until execution of the called function has completed. Function 
executions never interleave with each other. 

3. Expressions used as function arguments may generally be evaluated in any order, including 
interleaved, except as otherwise restricted by the other rules. 

Given those rules, let's see what happens in our opening examples: 

 
// Example 20-1(a) 
// 
f( expr1, expr2 ); 



In Example 20-1(a), all we can say is that both expr1 and expr2 must be evaluated before f() is 
called. 

That's it. The compiler may choose to perform the evaluation of expr1 before, after, or interleaved 
with the evaluation of expr2. There are enough people who find this surprising that it comes up as a 
regular question on the newsgroups, but it's just a direct result of the C and C++ rules about sequence 
points. 

 
// Example 20-1(b) 
// 
f( g( expr1 ), h( expr2 ) ); 

In Example 20-1(b), the functions and expressions may be evaluated in any order that respects the 
following rules: 

• expr1 must be evaluated before g() is called. 
• expr2 must be evaluated before h() is called. 
• both g() and h() must complete before f() is called. 
• The evaluations of expr1 and expr2 may be interleaved with each other, but nothing may 

be interleaved with any of the function calls. For example, no part of the evaluation of 
expr2 nor the execution of h() may occur from the time g() begins until it ends. 

That's it. For example, this means that any one or more of the following are possible: 

• Either g() or h() could be called first. 
• Evaluation of expr1 could begin, then be interrupted by h() being called, then complete. 

(Likewise for expr2 and g().) 

Some Function Call Exception Safety Problems 

2. In your travels through the dusty corners of your company's code archives, you find the 
following code fragment: 

 
// Example 20-2 
// 
 
// In some header file: 
void f( T1*, T2* ); 
 
// In some implementation file: 
f( new T1, new T2 ); 

Does this code have any potential exception safety problems? Explain. 

Yes, there are several potential exception safety problems. 



Brief recap: An expression such as new T1 is called, simply enough, a new-expression. Recall what 
a new-expression really does (ignoring in-place and array forms for simplicity, because they're not 
very relevant here): 

• It allocates memory; 
• It constructs a new object in that memory; and 
• If the construction fails because of an exception the allocated memory is freed. 

So each new-expression is essentially a series of two function calls: one call to operator new() 
(either the global one, or one provided by the type of the object being created), and then a call to the 
constructor. 

For Example 20-1, consider what happens if the compiler decides to generate code as follows: 

1. allocate memory for the T1 
2. construct the T1 
3. allocate memory for the T2 
4. construct the T2 
5. call f() 

The problem is this: If either step 3 or step 4 fails because of an exception, the C++ standard does not 
require that the T1 object be destroyed and its memory deallocated. This is a classic memory leak, 
and clearly Not a Good Thing. 

Another possible sequence of events is the following: 

1. allocate memory for the T1 
2. allocate memory for the T2 
3. construct the T1 
4. construct the T2 
5. call f() 

This sequence has not one, but two exception safety problems with different effects: 

a. If step 3 fails because of an exception, then the memory allocated for the T1 object is 
automatically deallocated (step 1 is undone), but the standard does not require that the 
memory allocated for the T2 object be deallocated. The memory is leaked. 

b. If step 4 fails because of an exception, then the T1 object has been allocated and fully 
constructed, but the standard does not require that it be destroyed and its memory deallocated. 
The T1 object is leaked. 

"Hmm," you might wonder, "then why does this exception safety loophole exist at all? Why doesn't 
the standard just prevent the problem by requiring compilers to Do the Right Thing when it comes to 
cleanup?" 

Following the spirit of C in the matter of efficiency, the C++ standard allows the compiler some 
latitude with the order of evaluation of expressions, because this allows the compiler to perform 
optimizations that might not otherwise be possible. To permit this, the expression evaluation rules are 
specified in a way that is not exception-safe, so if you want to write exception-safe code you need to 



know about, and avoid, these cases. Fortunately, you can do just that and prevent this problem. 
Perhaps a managed pointer like auto_ptr could help? We'll see the answer in Item 21. 

Item 21. An Unmanaged Pointer Problem, Part 2: What 
About auto_ptr? 
Difficulty: 8 

Does using auto_ptr help to solve the problem in Item 20? 

1. As you continue to root through the archives, you see that someone must not have liked Item 
20 Example 20-2 because later versions of the files in question were changed as follows: 

2.  
3. // Example 21-1 
4. // 
5. // In some header file: 
6. void f( auto_ptr<T1>, auto_ptr<T2> ); 
7.  
8. // In some implementation file: 
9. f( auto_ptr<T1>( new T1 ), auto_ptr<T2>( new T2 ) ); 

What improvements does this version offer over Item 20 Example 20-2, if any? Do any 
exception safety problems remain? Explain. 

10. Demonstrate how to write an auto_ptr_new facility that solves the safety problems in 
Question 1 and can be invoked as follows: 

11.  
12. // Example 21-2 
13. // 
14.  
15. // In some header file: 
16. void f( auto_ptr<T1>, auto_ptr<T2> ); 
17.  
18. // In some implementation file: 
19. f( auto_ptr_new<T1>(), auto_ptr_new<T2>() ); 

Solution 

 

1. As you continue to root through the archives, you see that someone must not have liked Item 
20 Example 20-2 because later versions of the files in question were changed as follows: 

 
// Example 21-1 
// 
 



// In some header file: 
void f( auto_ptr<T1>, auto_ptr<T2> ); 
 
// In some implementation file: 
f( auto_ptr<T1>( new T1 ), auto_ptr<T2>( new T2 ) ); 

What improvements does this version offer over Item 20 Example 20-2, if any? Do any exception 
safety problems remain? Explain. 

This code attempts to "throw[9] auto_ptr at the problem." Many people believe that a smart pointer 
like auto_ptr is an exception-safety panacea, a touchstone or amulet that by its mere presence 
somewhere nearby can help ward off compiler indigestion. 

[9] Pun intended. 

It is not. Nothing has changed. Example 21-1 is still not exception-safe, for exactly the same reasons 
as before. 

Specifically, the problem is that the resources are safe only if they really make it into a managing 
auto_ptr, but the same problems already noted can still occur before either auto_ptr 
constructor is ever reached. This is because both of the two problematic execution orders mentioned 
earlier are still possible, but now with the auto_ptr constructors tacked onto the end before f(). 
For one example: 

1. allocate memory for the T1 

2. construct the T1 
3. allocate memory for the T2 
4. construct the T2 
5. construct the auto_ptr<T1> 
6. construct the auto_ptr<T2> 
7. call f() 

In the above case, the same problems are still present if either of steps 3 or 4 throws. Similarly: 

1. allocate memory for the T1 
2. allocate memory for the T2 
3. construct the T1 
4. construct the T2 
5. construct the auto_ptr<T1> 
6. construct the auto_ptr<T2> 
7. call f() 

Again, the same problems are present if either step 3 or step 4 throws. 

Fortunately, though, this is not a problem with auto_ptr; auto_ptr is being used the wrong 
way, that's all. In a moment, we'll see several ways to use it better. 



Aside: A Non-Solution 

Note that the following is not a solution: 

 
// In some header file: 
void f( auto_ptr<T1> = auto_ptr<T1>( new T1 ), 
        auto_ptr<T2> = auto_ptr<T2>( new T2 ) ); 
 
// In some implementation file: 
f(); 

Why is this code not a solution? Because it's identical to Example 21-1 in terms of expression 
evaluation. Default arguments are considered to be created in the function call expression, even 
though they're written somewhere else entirely (in the function declaration). 

A Limited Solution 

2. Demonstrate how to write an auto_ptr_new facility that solves the safety problems in 
Question 1 and can be invoked as follows: 

 
// Example 21-2 
// 
 
// In some header file: 
void f( auto_ptr<T1>, auto_ptr<T2> ); 
 
// In some implementation file: 
f( auto_ptr_new<T1>(), auto_ptr_new<T2>() ); 

The simplest solution is to provide a function template like the following: 

 
// Example 21-2(a): Partial solution 
// 
template<typename T> 
auto_ptr<T> auto_ptr_new() 
{ 
  return auto_ptr<T>( new T ); 
} 

This solves the exception safety problems. No sequence of generated code can cause resources to be 
leaked, because now all we have is two functions, and we know that one must be executed entirely 
before the other. Consider the following evaluation order: 

1. call auto_ptr_new<T1>() 
2. call auto_ptr_new<T2>() 



If step 1 throws, there are no leaks because the auto_ptr_new() template is itself strongly 
exception-safe. 

If step 2 throws, then is the temporary auto_ptr<T1> created by step 1 guaranteed to be cleaned 
up? Yes, it is. One might wonder: Isn't this pretty much the same as the new T1 object created in the 
corresponding case in Item 20 Example 20-2, which isn't correctly cleaned up? No, this time it's not 
quite the same, because here the auto_ptr<T1> is actually a temporary object, and cleanup of 
temporary objects is correctly specified in the standard. From the standard, in 12.2/3: 

Temporary objects are destroyed as the last step in evaluating the full-expression that (lexically) 
contains the point where they were created. This is true even if that evaluation ends in throwing an 
exception. 

But Example 21-2(a) is a limited solution: It only works with a default constructor, which breaks if a 
given type T doesn't have a default constructor, or if you don't want to use it. A more general solution 
is still needed. 

Generalizing the auto_ptr_new() Solution 

As pointed out by Dave Abrahams, we can extend the solution to support non-default constructors by 
providing a family of overloaded function templates: 

 
// Example 21-2(b): Improved solution 
// 
template<typename T> 
auto_ptr<T> auto_ptr_new() 
{ 
  return auto_ptr<T>( new T ); 
} 
 
template<typename T, typename Arg1> 
auto_ptr<T> auto_ptr_new( const Arg1& arg1 ) 
{ 
  return auto_ptr<T>( new T( arg1 ) ); 
} 
 
template<typename T, typename Arg1, typename Arg2> 
auto_ptr<T> auto_ptr_new( const Arg1& arg1, 
                          const Arg2& arg2 ) 
{ 
  return auto_ptr<T>( new T( arg1, arg2 ) ); 
} 
 
// etc. 

Now auto_ptr_new() fully and naturally supports non-default construction. 



A Better Solution 

Although auto_ptr_new() is nice, is there any way we could have avoided all the exception-
safety problems without writing such helper functions? Could we have avoided the problems with 
better coding standards? Yes, and here is one possible standard that would have eliminated the 
problem: Never allocate resources (for example, via new) in the same expression as any other code 
that could throw an exception. This applies even if the new'd resource will immediately be managed 
(for example, passed to an auto_ptr constructor) in the same expression. 

In the Example 21-1 code, the way to satisfy this guideline is to move one of the temporary 
auto_ptrs into a separate named variable: 

 
// Example 21-1(a): A solution 
// 
 
// In some header file: 
void f( auto_ptr<T1>, auto_ptr<T2> ); 
 
// In some implementation file: 
{ 
  auto_ptr<T1> t1( new T1 ); 
  f( t1, auto_ptr<T2>( new T2 ) ); 
} 

This satisfies guideline #1 because, although we are still allocating a resource, it can't be leaked 
because of an exception, because it's not created in the same expression as any other code that could 
throw.[10] 

[10] I'm being deliberately, but only slightly, fuzzy, because although the body of f() is included in the 
expression evaluation, we don't care whether it throws. 

Here is another possible coding standard, which is even simpler and easier to get right (and easier to 
catch in code reviews): Perform every explicit resource allocation (for example, new) in its own code 
statement, which immediately gives the new'd resource to a manager object (for example, 
auto_ptr). 

In Example 21-1, the way to satisfy the second alternative guideline is to move both of the temporary 
auto_ptrs into separate named variables: 

 
// Example 21-1(b): A simpler solution 
// 
 
// In some header file: 
void f( auto_ptr<T1>, auto_ptr<T2> ); 
 
// In some implementation file: 
{ 



  auto_ptr<T1> t1( new T1 ); 
  auto_ptr<T2> t2( new T2 ); 
  f( t1, t2 ); 
} 

This satisfies guideline #2, and it required a lot less thought to get it right. Each new resource is 
created in its own expression and is immediately given to a managing object. 

Summary 

My recommendation is: 

Guideline 

 Perform every explicit resource allocation (for example, new) in its own code 
statement, which immediately gives the new'd resource to a manager object (for 
example, auto_ptr). 

 

This guideline is easy to understand and remember, it neatly avoids all the exception safety problems 
in the original problem, and by mandating the use of manager objects, it helps to avoid many other 
exception safety problems as well. This guideline is a good candidate for inclusion in your team's 
coding standards. 
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Item 22. Exception-Safe Class Design, Part 1: Copy 
Assignment 
Difficulty: 7 

Is it possible to make any C++ class strongly exception-safe, for example, for its copy assignment 
operator? If so, how? What are the issues and consequences? To illustrate, this Item explains and 
then solves the Cargill Widget Example. 

1. What are the three common levels of exception safety? Briefly explain each one and why it is 
important. 

2. What is the canonical form of strongly exception-safe copy assignment? 
3. Consider the following class: 
4.  
5. // Example 22-1: The Cargill Widget Example 
6. // 
7. class Widget 
8. { 



9. public: 
10.   Widget& operator=( const Widget& ); // ???       

// ... 
11. private: 
12.   T1 t1_; 
13.   T2 t2_; 
14. }; 

Assume that any T1 or T2 operation might throw. Without changing the structure of the 
class, is it possible to write a strongly exception-safe Widget::operator= 
( const Widget& )? Why or why not? Draw conclusions. 

15. Describe and demonstrate a simple transformation that works on any class in order to make 
(nearly) strongly exception-safe copy assignment possible and easy for that class. Where have 
we seen this transformation technique before in other contexts? 

Solution 

 

This Item answers the following questions: 

• Can any arbitrary class be made exception-safe—that is, without modifying its structure? 
• If not (that is, if exception safety does affect a class's design), is there any simple change that 

always works to let us make any arbitrary class exception-safe? 
• Are there exception safety consequences to the way we choose to express relationships 

among classes? Specifically, does it matter whether we choose to express a relationship using 
inheritance or using delegation? 

Review: Exception Safety Canonical Forms 

1. What are the three common levels of exception safety? Briefly explain each one and why it is 
important. 

The canonical Abrahams Guarantees are as follows. 

• Basic guarantee: If an exception is thrown, no resources are leaked, and objects remain in a 
destructible and usable, but not necessarily predictable, state. This is the weakest usable level 
of exception safety and is appropriate when calling code can cope with failed operations that 
have already made changes to objects' states. 

• Strong guarantee: If an exception is thrown, program state remains unchanged. This level 
always implies commit-or-rollback semantics, including that no references or iterators into a 
container be invalidated if an operation fails. 

In addition, certain functions must provide an even stricter guarantee in order to make the above 
exception safety levels possible: 

• Nothrow guarantee: The function will not emit an exception under any circumstances. It turns 
out that it is sometimes impossible to implement the strong or even the basic guarantee unless 



certain functions are guaranteed not to throw (for example, destructors, deallocation 
functions). As we will see below, an important feature of the standard auto_ptr is that no 
auto_ptr operation will throw. 

2. What is the canonical form of strongly exception-safe copy assignment? 

The canonical form for copy assignment involves two steps. First, provide a nonthrowing Swap() 
function that swaps the guts, or internal state, of two objects: 

 
void T::Swap( T& other ) /* throw() */ 
{ 
  // ...swap the guts of *this and other... 
} 

Second, implement operator=() using the "create a temporary and swap" idiom: 

 
T& T::operator=( const T& other ) 
{ 
  T temp( other ); // do all the work off to the side 
  Swap( temp );    // then "commit" the work using 
  return *this;    //  nonthrowing operations only 
} 

Analyzing the Cargill Widget Example 

This brings us to an exception safety challenge proposed by Tom Cargill: 

3. Consider the following class: 

 
// Example 22-1: The Cargill Widget Example 
// 
class Widget 
{ 
public: 
  Widget& operator=( const Widget& ); // ??? 
  // ... 
private: 
  T1 t1_; 
  T2 t2_; 
}; 

Assume that any T1 or T2 operation might throw. Without changing the structure of the class, 
is it possible to write a strongly exception-safe Widget::operator=( const 
Widget& )? Why or why not? Draw conclusions. 



In short: Exception safety cannot be achieved in general without changing the structure of Widget. 
In Example 22-1, it's not possible to write a safe Widget::operator=() at all. We cannot 
guarantee the Widget object will even be in a consistent final state if an exception is thrown, 
because there's no way we can change the state of both of the t1_ and t2_ members atomically, or 
even reliably back out to a consistent (same or different) state if things go wrong partway through. Say 
our Widget::operator=() attempts to change t1_, then attempts to change t2_ (one or the 
other member has to be done first, it doesn't really matter which, in this case). The problem is twofold: 

If the attempt to change t1_ throws, t1_ must be unchanged. That is, to make 
Widget::operator=() exception-safe relies fundamentally on the exception safety guarantees 
provided by T1, namely that T1::operator=()—or whatever mutating function we are using—
either succeeds or does not change its target. This comes close to requiring the strong guarantee of 
T1::operator=(). The same reasoning applies to T2::operator=(). 

If the attempt to change t1_ succeeds, but the attempt to change t2_ throws, we've entered a 
"halfway" state and cannot, in general, roll back the change already made to t1_. For example, what 
if our attempt to reassign t1_'s original value, or any other reasonable value, also fails? Then the 
Widget object can't even guarantee recovery to a consistent state that maintains Widget's 
invariants. 

Therefore, the way Widget is structured in Example 22-1, its operator=() cannot be made 
strongly exception-safe. (See the accompanying sidebar, "A Simpler but Still Difficult Widget," for a 
simpler example that has a subset of the above problems.) 

Our goal is to write a Widget::operator=() that is strongly exception-safe, without making 
any assumptions about the exception safety of any T1 or T2 operation. Can it be done? Or is all lost? 



A Simpler But Still Difficult Widget 
Note that Cargill's Widget Example isn't all that different from the following simpler case. 

 
class Widget2 
{ 
  // ... 
private: 
  T1 t1_; 
}; 

Even for the simplified Widget2, problem #1 in the main text still exists. If T1:: 
operator=() can throw in such a way that it has already started to modify the target, 
there is no way to write a strongly exception-safe Widget2::operator=(), unless 
T1 provides suitable facilities through some other function. But if T1 can do that, why 
doesn't it do so for T1::operator=()? 

A General Technique: Using the Pimpl Idiom 

4. Describe and demonstrate a simple transformation that works on any class in order to make 
(nearly) strongly exception-safe copy assignment possible and easy for that class. Where have we 
seen this transformation technique before in other contexts? 

The good news is that even though Widget::operator=() can't be made strongly exception-
safe without changing Widget's structure, the following simple transformation always works to 
enable an almost strongly exception-safe assignment. Hold the member objects by pointer instead of 
by value, preferably all behind a single pointer with a Pimpl transformation. (For more details, 
including an analysis of the costs of using Pimpls and how to minimize those costs, see Exceptional 
C++ [Sutter00] Items 26 to 30.) 

Example 22-2 illustrates the general exception safety-promoting transformation (alternatively, the 
pimpl_ could be held as a bald pointer or you can use some other pointer-managing object): 

 
// Example 22-2: The general solution to 
// Cargill's Widget Example 
// 
class Widget 
{ 
public: 
  Widget();  // initializes pimpl_ with new WidgetImpl 
 
  ~Widget(); // must be provided, because the implicit 
       //  version causes usage problems 
       //  (see Items 30 and 31) 
  Widget& operator=( const Widget& ); 



 
  // ... 
 
  private: 
    class WidgetImpl;     auto_ptr<WidgetImpl> pimpl_; 
    // ... provide copy construction that 
    //     works correctly, or suppress it ... 
}; 
 
// Then, typically in a separate 
// implementation file: 
// 
class Widget::WidgetImpl 
{ 
public: 
  // ... 
  T1 t1_; 
  T2 t2_; 
}; 

Aside: Note that if you use an auto_ptr member, then: (a) you must either provide the definition 
of WidgetImpl with the definition of Widget, or if you want to keep hiding WidgetImpl 
you must write your own destructor for Widget even if it's a trivial destructor;[11] and (b) you should 
also provide your own copy construction and assignment for Widget, because you usually don't 
want transfer-of-ownership semantics for class members. If you have a different kind of smart pointer 
available, consider using that instead of auto_ptr, but the principles described here remain 
important. 

[11] If you use the automatically compiler-generated destructor, that destructor will be defined in every 
translation unit, and therefore the definition of WidgetImpl must be visible in every translation unit. 

Now we can easily implement a nonthrowing Swap(), which means we can easily implement 
exception-safe copy assignment that nearly meets the strong guarantee. First, provide the nonthrowing 
Swap() function that swaps the guts (state) of two objects. Note that this function can provide the 
no-throw guarantee that no exceptions will be thrown under any circumstances, because no 
auto_ptr operation is permitted to throw exceptions:[12] 

[12] Note that replacing the three-line body of Swap() with the single line "swap( pimpl_, 
other.pimpl_ );" is not guaranteed to work correctly, because std::swap() will not 
necessarily work correctly for auto_ptrs. 

 
void Widget::Swap( Widget& other ) /* throw() */ 
{ 
  auto_ptr<WidgetImpl> temp( pimpl_ ); 
  pimpl_ = other.pimpl_; 
  other.pimpl_ = temp; 
} 



Second, implement the common exception-safe form of operator=() using the "create a 
temporary and swap" idiom: 

 
Widget& Widget::operator=( const Widget& other ) 
{ 
  Widget temp( other ); // do all the work off to the side 
  Swap( temp );    // then "commit" the work using 
  return *this;    //  nonthrowing operations only 
} 

This is nearly strongly exception-safe. It doesn't quite guarantee that if an exception is thrown 
program state will remain entirely unchanged. Do you see why? It's because, when we create the 
temporary Widget object and therefore its pimpl_'s t1_ and t2_ members, the creation of 
those members (and/or their destruction if we fail) may cause side effects, such as changing a global 
variable, and there's no way we can know about or control that. 

A Potential Objection, and Why It's Unreasonable 

Some may leap upon this with the ardent battle cry: "Aha, so this proves exception safety is 
unattainable in general, because you can't solve the general problem of making any arbitrary class 
strongly exception-safe without changing the class." I raise this point because some people have 
indeed raised this objection. 

Such a conclusion seems unreasonable. The Pimpl transformation, a minor structural change, is indeed 
the solution to the general problem. Like most implementation goals, exception safety affects a class's 
design, period. Just as one wouldn't expect to make a class work polymorphically without accepting 
the slight change to inherit from the necessary base class, one wouldn't expect to make a class work in 
an exception-safe way without accepting the slight change to hold its members at arm's length. To 
illustrate, consider three statements: 

• Unreasonable statement #1: Polymorphism doesn't work in C++ because you can't make an 
arbitrary class usable in place of a Base& without changing it (to derive from Base). 

• Unreasonable statement #2: STL containers don't work in C++ because you can't make an 
arbitrary class usable in an STL container without changing it (to provide an assignment 
operator). 

• Unreasonable statement #3: Exception safety doesn't work in C++ because you can't make an 
arbitrary class exception-safe without changing it (to put the internals in a Pimpl class). 

The above arguments are equally fruitless, and the Pimpl transformation is indeed the general solution 
to writing classes that give useful exception safety guarantees (indeed, nearly the strong guarantee) 
without requiring any knowledge of the safety of class data members. 

So, what have we learned? 

Conclusion 1: Exception Safety Affects a Class's Design 

Exception safety is never "just an implementation detail." The Pimpl transformation is a 
straightforward structural change, but still a change. 



Conclusion 2: You Can Always Make Your Code (Nearly) Strongly 
Exception-Safe 

There's an important principle here: 

Just because a class you use isn't in the least exception-safe is no reason why code that uses it can't be 
strongly exception-safe (except for side effects). 

Anybody can use a class that lacks a strongly exception-safe copy assignment operator and make that 
use strongly exception-safe, except that of course if Widget operations cause side effects (such as 
changing a global variable), there's no way we can know about or control it. In other words, we can 
achieve what might be called the local strong guarantee: 

• Local strong guarantee: If an exception is thrown, program state remains unchanged with 
respect to the objects being manipulated. This level always implies local commit-or-rollback 
semantics, including that no references or iterators into a container be invalidated if an 
operation fails. 

The "hide the details behind a pointer" technique can be done equally well by either the Widget 
implementer or the Widget user. If it's done by the Widget implementer, however, it's always safe, 
and the user won't have to do the following: 

 
// Example 22-3: What the user has to do if 
// the Widget author doesn't 
// 
class MyClass 
{ 
  auto_ptr<Widget> w_; // hold the unsafe-to-copy 
             //  Widget at arm's length 
public: 
  void Swap( MyClass& other ) /* throw() */ 
  { 
    auto_ptr<Widget> temp( w_ ); 
    w_ = other.w_; 
    other.w_ = temp; 
    } 
 
    MyClass& operator=( const MyClass& other ) 
    { 
     MyClass temp( other ); // do all the work off to the side 
     Swap( temp );    // then "commit" the work using 
     return *this;    //  nonthrowing operations only 
     } 
 
    // ... provide destruction, copy construction 
    //     and assignment that work correctly, or 
    //     suppress them ... 
   }; 



Conclusion 3: Use Pointers Judiciously 

Scott Meyers writes[13]: 

[13] Scott Meyers, private communication. 

When I give talks on EH, I teach people two things: 

1. POINTERS ARE YOUR ENEMIES because they lead to the kinds of problems that auto_ptr is 
designed to eliminate. 

To wit, bald pointers should normally be owned by manager objects that own the pointed-at resource 
and perform automatic cleanup. Then Scott continues: 

2. POINTERS ARE YOUR FRIENDS because operations on pointers can't throw. 

Then I tell them to have a nice day. 

Scott captures a fundamental dichotomy well. Fortunately, in practice you can and should get the best 
of both worlds. 

• Use pointers because they are your friends, because operations on pointers can't throw. 
• Keep them friendly by wrapping them in manager objects such as auto_ptrs, because this 

guarantees cleanup. This doesn't compromise the nonthrowing advantages of pointers, 
because auto_ptr operations never throw either (and you can always get at the real 
pointer inside an auto_ptr whenever you need to—for example by calling 
auto_ptr::get()). 

Often, the best way to implement the Pimpl idiom is as shown in Example 22-2 above, by using a 
pointer (in order to take advantage of nonthrowing operations) while still wrapping the dynamic 
resource safely in a manager object (in this example, an auto_ptr). Just remember that if you do 
use auto_ptr, your class must provide its own destruction, copy construction, and copy 
assignment with the right semantics, or you can disable copy construction and assignment if those 
don't make sense for the class. 

In the next Item, we'll apply what we've learned by using the above to analyze the best way to express 
a common class relationship. 

Item 23. Exception-Safe Class Design, Part 2: 
Inheritance 
Difficulty: 6 

What does Is-Implemented-In-Terms-Of mean? It may surprise you to learn there are definite 
exception-safety consequences when choosing between inheritance and delegation. Can you spot them? 

1. What does Is-Implemented-In-Terms-Of mean? 



2. In C++, Is-Implemented-In-Terms-Of can be expressed by either nonpublic inheritance or by 
containment/delegation. That is, when writing a class T that is implemented in terms of a 
class U, the two main options are to inherit privately from U or to contain a U member object. 

Does the choice between these techniques have exception safety implications? Explain. 
(Ignore any issues not related to exception safety.) 

Solution 

 

Is-Implemented-In-Terms-Of 

By coining expressions like Has-A, Is-A, and Uses-A, we have developed a convenient shorthand for 
describing many types of code relationships. 

"Is-A," or more precisely "Is-Substitutable-For-A," must follow Barbara Liskov's Substitutability 
Principle (LSP), in which she defines what it means for a type S to be substitutable for a type T: 

If for each object o1 of type S there is an object o2 of type T such that for all programs P defined in 
terms of T, the behavior of P is unchanged when o1 is substituted for o2, then S is a subtype of T. 
[Liskov88] 

Is-A is usually used to describe public inheritance that preserves substitutability according to the LSP, 
as all public inheritance ought to do. For example, "D Is-A B" means that code that accepts objects of 
the base class B by pointer or reference can seamlessly use objects of the publicly derived class D 
instead. 

It's important to remember, however, that there are more ways to spell "Is-A" in C++ than are dreamt 
of in inheritance alone. Is-A can also describe unrelated (by inheritance) classes that support the same 
interface and can therefore be used interchangeably in templated code that uses that common interface. 
The LSP applies to this form of substitutability just as much as it does to other forms. In this context, 
for example, "X Is-A Y"—or, "X Is-Substitutable-For-A Y"—communicates that templated code that 
accepts objects of type Y will also accept objects of type X because both X and Y support the same 
interface. For an enjoyable treatise on substitutability, a good place to begin is Kevlin Henney's article 
"Substitutability" [Henney00]. 

Clearly, both kinds of substitutability depend on the context in which the objects are actually used, but 
the point is that Is-A can be implemented in different ways. So, as it turns out, can Is-Implemented-In-
Terms-Of, as we shall now see. 

1. What does Is-Implemented-In-Terms-Of mean? 

An equally common code relationship is Is-Implemented-In-Terms-Of, or IIITO for short. A type T 
IIITO another type U if T uses U in its implementation in some form. Saying "uses… in some form" 
certainly leaves a lot of latitude, and this can run the gamut from T being an adapter or proxy or 
wrapper for U, to T simply using U incidentally to implement some details of T's own services. 



Typically "T IIITO U" means that either T Has-A U, as shown in Example 23-1(a): 

 
// Example 23-1(a): "T IIITO U" using Has-A 
// 
class T 
{ 
  // ... 
private: 
  U* u_;  // or by value or by reference 
}; 

or that T is derived from U nonpublicly, as shown in Example 23-1(b):[14] 

[14] Arguably, public derivation also models IIITO, but the primary meaning of public derivation is still Is-
Substitutable-For-A. 

 
// Example 23-1(b): "T IIITO U" using derivation 
// 
class T : private U 
{ 
  // ... 
}; 

This brings us to the natural questions: When we have a choice, which is the better way to implement 
IIITO? What are the trade-offs? When should we consider using each one? 

How to Implement IIITO: Inheritance or Delegation? 

2. In C++, Is-Implemented-In-Terms-Of can be expressed by either nonpublic inheritance or by 
containment/delegation. That is, when writing a class T that is implemented in terms of a class U, 
the two main options are to inherit privately from U or to contain a U member object. 

As I've argued before, inheritance is often overused, even by experienced developers. A sound rule of 
software engineering is to minimize coupling. If a relationship can be expressed in more than one way, 
use the weakest relationship that's practical. Given that inheritance is nearly the strongest relationship 
we can express in C++, second only to friendship,[15] it's only really appropriate when there is no 
equivalent weaker alternative. If you can express a class relationship using delegation alone, you 
should always prefer that. 

[15] A friend of a class X has the strongest possible relationship because it has access to and can depend 
upon all the members of X. A class derived from X only has access to and can only depend upon X's public 
and protected members. 

The principle of minimum coupling clearly has a direct effect on the robustness (or fragility) of your 
code, of how long your compile times are, and other observable consequences. What's interesting is 
that the choice between inheritance and delegation for IIITO turns out to have exception safety 
implications. In hindsight, that the principle of minimum coupling should also relate to exception 



safety should not be surprising, because a design's coupling has a direct impact on its possible 
exception safety. 

The coupling principle states: 

Lower coupling promotes program correctness (including exception safety), and tight coupling 
reduces the maximum possible program correctness (including exception safety). 

This is only natural. After all, the less tightly real-world objects are related, the less effect they have 
on each other. That's why we put firewalls in buildings and bulkheads in ships. If there's a failure in 
one compartment, the more we've isolated the compartments, the less likely the failure is to spread to 
other compartments before things can be brought back under control. 

Now let's return to Examples 23-1(a) and 23-1(b) and consider again a class T that IIITO another type 
U. Consider the copy assignment operator: How does the choice of how to express the IIITO 
relationship affect how we write T::operator=()? 

Exception Safety Consequences 

Does the choice between these techniques have exception safety implications? Explain. (Ignore 
any issues not related to exception safety.) 

First, consider how we would have to write T::operator=() if the IIITO relationship is 
expressed using Has-A. We of course have the good habit of using the common "do all the work off to 
the side, then commit using nonthrowing operations only" technique to maximize exception safety, 
and so we would write something like the following: 

 
// Example 23-2(a): "T IIITO U" using Has-A 
// 
class T 
{ 
  // ... 
  private: 
    U* u_; 
}; 
 
T& T::operator=( const T& other ) 
{ 
   U* temp = new U( *other.u_ );   // do all the work 
                                   //  off to the side 
 
   delete u_;      // then "commit" the work using 
   u_ = temp;      //  nonthrowing operations only 
   return *this; 
} 

This is pretty good. Without making any assumptions about U, we can write a T::operator=() 
that is "nearly" strongly exception-safe except for possible side effects of U. 



Even if the U object were contained by value instead of by pointer, it could be easily transformed to be 
held by pointer as above. The U object could also be put into a Pimpl using the transformation 
described in the first part of this Item. It is precisely the fact that delegation (Has-A) gives us this 
flexibility that allows us to easily write a fairly exception-safe T::operator=() without making 
any assumptions about U. 

Next, consider how the problem changes once the relationship between T and U involves any kind of 
inheritance: 

 
// Example 23-2(b): "T IIITO U" using derivation 
// 
class T : private U 
{ 
  // ... 
}; 
T& T::operator=( const T& other ) 
{ 
  U::operator=( other );  // ??? 
  return *this; 
} 

The problem is the call to U::operator=(). As alluded to in the Item 22 sidebar (speaking of a 
similar case), if U::operator=() can throw in such a way that it has already started to modify 
the target, there is no way to write a strongly exception-safe T::operator=() unless U provides 
suitable facilities through some other function. (But if U can do that, why doesn't it do so for 
U::operator=()?) 

In other words, now T's ability to make an exception safety guarantee for its own member function 
T::operator=s() depends implicitly on U's own safety and guarantees. Again, should this be 
surprising? No, because Example 23-2(b) uses the tightest possible relationship, and hence the highest 
possible coupling, to express the connection between T and U. 

Summary 

Looser coupling promotes program correctness (including exception safety), and tight coupling 
reduces the maximum possible program correctness (including exception safety). 

Inheritance is often overused, even by experienced developers. See Exceptional C++ [Sutter00] Item 
24 for more information about many other reasons, besides exception safety, why and how you should 
use delegation instead of inheritance wherever possible. Always minimize coupling. If a class 
relationship can be expressed in more than one way, use the weakest relationship that's practical. In 
particular, only use inheritance when delegation alone won't suffice. 

Inheritance and Polymorphism 

What's object orientation without a little inheritance and polymorphism? 



Although it's often overused, inheritance is still an important tool 梐 nd that includes multiple 
inheritance. Multiple inheritance comes into its own especially when you're living in the real world 
and often find yourself in the situation of trying to combine libraries from different vendors. This 
section shows how to avoid the Siamese Twin problem when combining inheritance-based libraries 
from different vendors. It also demonstrates the many legitimate (and some illegitimate) uses of pure 
virtual functions, how to code alternatives to multiple inheritance, and how to control who gets to 
make use of your inheritance relationships. 

Item 24. Why Multiple Inheritance? 

Difficulty: 6 

Some languages, including the SQL99 standard, continue to struggle with the question of whether to 
support single or multiple inheritance. This Item invites you to consider the issues. 

1. What is multiple inheritance (MI), and what extra possibilities or complications does allowing 
MI introduce into C++? 

2. Is MI ever necessary? If yes, show as many situations as you can and argue why MI should be 
in a language. If no, argue why single inheritance (SI), possibly combined with Java-style 
interfaces, is equal or superior, and why MI should not be in a language. 

Solution 

 

1. What is multiple inheritance (MI), and what extra possibilities or complications does allowing 
MI introduce into C++? 

Very briefly, MI means the ability to inherit from more than a single direct base class. 

For example: 

 
class Derived : public Base1, private Base2 
{ 
  //... 
}; 

Allowing MI introduces the possibility that a class may have the same (direct or indirect) base class 
appear more than once as an ancestor. A simple example of this is the classic diamond-shaped 
inheritance graph shape shown in Figure 4. 

Figure 4. The Dreaded Diamond of Death (if inheritance from B is virtual). 



 

Here B is an indirect base class of D twice, once via C1 and once via C2. 

This situation introduces the need for an extra feature in C++: virtual inheritance. The question at 
issue is: Does the programmer want D to have one B base subobject or two? If the answer is one, then 
B should be a virtual base class and Figure 4 becomes the Dreaded Diamond of Death. If the answer is 
two, then B should be a normal (nonvirtual) base class. 

Finally, the main complication of virtual base classes is that they must be initialized directly by the 
most-derived class. For more information on this and other aspects of MI, see [Stroustrup00] or 
[Meyers97] Item 43. 

Guideline 

 Avoid multiple inheritance from more than one non-protocol class (a protocol 
class means an abstract base class, or ABC, composed entirely of pure virtual 
functions with no data). 

 



2. Is MI ever necessary? 

Short answer: No feature is strictly "necessary" insofar as any program can be written in assembler (or 
lower). However, just as most people would rather not code their own virtual function mechanism in 
plain C, in some cases not having MI requires painful workarounds. 

So here we have this wonderful feature called MI. The question is, or at least was, is this a Good 
Thing?[1] 

[1] In part, the topic for this Item was inspired by events at the SQL standards meeting in June 1998, when 
multiple inheritance was removed from the ANSI SQL99 draft standard. (Those of you who are interested in 
databases may see a revised form of MI resurrected in SQL4, if/when we get that far.) This was mainly done 
because the proposed multiple inheritance specification had technical difficulties, and in order to align with 
languages like Java that do not support true multiple inheritance. Still, just sitting there and listening to 
people discussing the merits and demerits of multiple inheritance at such a relatively late date was intriguing. 
It's something we haven't done much in the C++ world since the formative years, and it made me reminisce 
aloud about extended newsgroup flame wars from years ago (and some more recent than that) with subject 
lines like "MI is evil!!!" 

In short, there are people who think that MI is just a bad idea that should be avoided at all costs. That's 
not true. Yes, if it's used thoughtlessly, MI can incur unnecessary coupling and complexity. But so 
does any kind of misused inheritance (see Exceptional C++ [Sutter00] Item 24), and I think we agree 
that doesn't make inheritance a Bad Thing. And, yes, any program can be written without resorting to 
MI, but for that matter, any program can be written without using inheritance at all. In fact, any 
program can be written in assembler. That doesn't mean it's necessarily a good idea or even something 
you would feel happy about doing. 

If yes, show as many situations as you can and argue why MI should be in a language. If no, 
argue why single inheritance (SI), possibly combined with Java-style interfaces, is equal or 
superior, and why MI should not be in a language. 

So when is MI appropriate? In short, only when each inheritance, taken individually, is appropriate. 
Exceptional C++ Item 24 presented a fairly exhaustive list of when to use inheritance. Most 
appropriate real-world uses of MI fall into one of three categories. 

1. Combining modules or libraries. I'm citing this point first for a reason, illustrated again below. 
Many classes are designed to be base classes 梩 hat is, to use them you are intended to inherit 
from them. The natural consequence is the question: 

What if you want to write a class that extends two libraries, and each library requires you to 
inherit from one of its classes? 

When you're facing this kind of situation, you usually don't have the option of changing the 
library code to avoid some of the inheritance. You probably purchased the library from a 
third-party vendor, or maybe it's a module produced by another project team inside your 
company. Either way, not only can't you change the code, but you may not even have the 
code! If so, then MI is necessary; there's no other (natural) way to do what you have to do, 
and using MI is perfectly legitimate. 

In practice, I've found that knowing how to use MI to combine vendor libraries is an essential 
technique that belongs in every C++ programmer's toolchest. Whether you end up using it 
frequently or not, you should definitely know about it and understand it. 



2. Protocol classes (interface classes). In C++, MI's best and safest use is to define protocol 
classes 梩 hat is, classes composed of nothing but pure virtual functions. The absence of data 
members in the base class avoids outright MI's more famous complexities. 

Interestingly, different languages/models support this kind of MI through non-inheritance 
mechanisms. Two examples are Java and COM. Strictly speaking, Java has multiple 
inheritance, but constrains inheritance of implementation to single inheritance. A Java class 
can implement multiple "interfaces," where an interface is very similar to a C++ pure abstract 
base class without data members. COM does not include the concept of inheritance per se 
(although that's the usual implementation technique for COM objects written in C++), but it 
likewise has a notion of a composition of interfaces, and COM interfaces resemble a 
combination of Java interfaces and C++ templates. 

3. Ease of (polymorphic) use. Using inheritance to let other code use a derived object wherever a 
base is expected is a powerful concept. In some cases, it can be very useful to let the same 
derived object be used in the place of several kinds of bases, and that's where MI comes in. 
For a good example of this, see [Stroustrup00] section 14.2.2, which demonstrates an MI-
based design for exception classes in which a most-derived exception class may have a 
polymorphic Is-A relationship, with multiple direct base classes. 

Note that #3 overlaps greatly with #1 and #2. It's frequently useful to do #3 at the same time 
as one of the others, and for the same reasons. 

One more thing to think about: Don't forget that sometimes it's not necessary to just inherit 
from two different base classes, but to inherit from each one for a different reason. 
"Polymorphic LSP Is-A public inheritance" isn't the only game in town; there are many other 
possible reasons to use inheritance. For example, a class may need to inherit privately from 
base class A to gain access to protected members of class A, but at the same time inherit 
publicly from base class B to polymorphically implement a virtual function of class B. 

Item 25. Emulating Multiple Inheritance 

Difficulty: 5 

If you couldn't use multiple inheritance, how would you emulate it? This exercise will help you to 
understand firsthand some of the reasons why multiple inheritance works the way it does in C++. In 
your answer, don't forget to emulate as natural a syntax as possible for the calling code. 

Consider the following example: 

 
class A 
{ 
public: 
  virtual ~A(); 
  string Name(); 
private: 
  virtual string DoName(); 
}; 
 



class B1 : virtual public A 
{ 
  string DoName(); 
}; 
 
class B2 : virtual public A 
{ 
  string DoName(); 
}; 
 
A::~A() {} 
string A::Name(){   { return DoName(); } 
string A::DoName()  { return "A"; } 
string B1::DoName() { return "B1"; } 
string B2::DoName() {    return "B2"; } 
 
class D : public B1, public B2 
{ 
   string DoName() { return "D";  } 
}; 
 

Demonstrate the best way you can find to "work around" not using multiple inheritance by writing an 
equivalent (or as near as possible) class D without using MI. How would you get the same effect 
and usability for D with as little change as possible to syntax in the calling code? 

 
                            *  *  *  *  * 

Starter: You can begin by considering the cases in the following test harness. 

 
void f1( A&  x ) { cout << "f1:" << x.Name() << endl; } 
void f2( B1& x ) { cout << "f2:" << x.Name() << endl; } 
void f3( B2& x ) { cout << "f3:" << x.Name() << endl; } 
 
void g1( A   x ) { cout << "g1:" << x.Name() << endl; } 
void g2( B1  x ) { cout << "g2:" << x.Name() << endl; } 
void g3( B2  x ) { cout << "g3:" << x.Name() << endl; } 
 
int main() 
{ 
  D   d; 
  B1* pb1 = &d;   // D* -> B* conversion 
  B2* pb2 = &d; 
  B1& rb1 = d;    // D& -> B& conversion 
  B2& rb2 = d; 
 
  f1( d );        // polymorphism 



  f2( d ); 
  f3( d ); 
 
  g1( d );        // slicing 
  g2( d ); 
  g3( d ); 
 
                  // dynamic_cast/RTTI 
  cout << ( (dynamic_cast<D*>(pb1) != 0) ? "ok " : "bad " ); 
  cout << ( (dynamic_cast<D*>(pb2) != 0) ? "ok " : "bad " ); 
 
  try 
  { 
    dynamic_cast<D&>(rb1); 
    cout << "ok "; 
  } 
  catch(...) 
  { 
    cout << "bad "; 
  } 
 
  try 
  { 
    dynamic_cast<D&>(rb2); 
    cout << "ok "; 
  } 
  catch(...) 
  { 
    cout << "bad "; 
  } 
} 

Solution 

 

 
class D : public B1, public B2 
{ 
  string DoName() { return "D";  } 
}; 

Demonstrate the best way you can find to "work around" not using multiple inheritance by 
writing an equivalent (or as near as possible) class D without using MI. How would you get 
the same effect and usability for D with as little change as possible to syntax in the calling code? 

There are a few strategies, each with its weaknesses, but here's one that gets quite close. 



 
class D : public B1 
{ 
public: 
  class D2 : public B2 
  { 
  public: 
    void   Set ( D* d ) { d_ = d; } 
  private: 
    string DoName(); 
    D* d_; 
  } d2_; 
 
  D()                 { d2_.Set( this ); } 
 
  D( const D& other ) : B1( other ), d2_( other.d2_ ) 
                      { d2_.Set( this ); } 
 
  D& operator=( const D& other ) 
                      { 
                        B1::operator=( other ); 
                        d2_ = other.d2_; 
                        return *this; 
                      } 
 
  operator B2&()      { return d2_; } 
 
  B2& AsB2()          { return d2_; } 
 
private: 
  string DoName()     { return "D"; } 
}; 
 
string D::D2::DoName(){ return d_->DoName(); } 

Before reading on, take a moment to consider the code and think about the purpose of each class or 
function. 

Drawbacks 

The workaround does a pretty good job of implementing MI, automates most of MI's behavior, and 
allows all of MI's usability, as long as you rely on coding discipline to fill in the parts that are not 
completely automated. In particular, here are some drawbacks of this workaround that show which 
parts of the MI feature are not completely automated. 

• Providing operator B2&() arguably gives references special (inconsistent) treatment 
over pointers. 

• Calling code has to invoke D::AsB2() explicitly to use a D as a B2 (in the test harness, 
this means changing "B2* pb2 = &d;" to "B2* pb2 = &d.AsB2();"). 



• A dynamic_cast from D* to B2* still doesn't work (it's possible to work around this if 
you're willing to use the preprocessor to redefine dynamic_cast calls, but that's an 
extreme solution). 

Interestingly, you may have observed that the D object layout in memory is similar to what multiple 
inheritance would give. That's because we're trying to simulate MI, without all the syntactic sugar and 
convenience that built-in language support would provide. 

You may not need MI often, but when you need it, you really need it. This Item is intended to 
demonstrate that having the required language support for this kind of useful feature is far better than 
trying to roll your own, even if you can duplicate the functionality exactly through a combination of 
other features and coding discipline. 

Item 26. Multiple Inheritance and the Siamese Twin Problem 

Difficulty: 4 

Overriding inherited virtual functions is easy, as long as you're not trying to override a virtual 
function that has the same signature in two base classes. This can happen even when the base classes 
don't come from different vendors! What's the best way to separate such "Siamese Twin" functions? 

Consider the following two classes: 

 
class BaseA 
{ 
  virtual int ReadBuf( const char* ); 
  // ... 
}; 
 
class BaseB 
{ 
  virtual int ReadBuf( const char* ); 
  // ... 
}; 

Both BaseA and BaseB are clearly intended to be used as base classes, but they are otherwise 
unrelated. Their ReadBuf() functions are intended to do different things, and the classes come 
from different library vendors. 

Demonstrate how to write a class Derived, publicly derived from both BaseA and BaseB, which 
overrides both ReadBuf()s independently to do different things. 

Solution 

 



The purpose of this Item is to show you a minor pitfall that can come up with MI, and how to handle it 
effectively. Say you're using two vendors' libraries in the same project. Vendor A provides the 
following base class BaseA. 

 
class BaseA 
{ 
public: 
  virtual int ReadBuf( const char* ); 
  // ... 
}; 

The idea is that you're supposed to inherit from BaseA, probably overriding some virtual functions, 
because other parts of vendor A's library are written to expect objects they can use polymorphically as 
BaseAs. This is a common and normal practice, especially for extensible application frameworks, 
and there's nothing wrong with it. 

Nothing, that is, until you start to use Vendor B's library and discover, to your uneasy amazement: 

 
class BaseB 
{ 
public: 
  virtual int ReadBuf( const char* ); 
  // ... 
}; 

"Well, that's rather a coincidence," you may think. Not only does vendor B, too, have a base class that 
you're expected to inherit from, but it happens to have a virtual function with exactly the same 
signature as one of the virtuals in BaseA. But BaseB's is supposed to do something completely 
different. And that's the key point. 

Both BaseA and BaseB are clearly intended to be used as base classes but they are otherwise 
unrelated. Their ReadBuf() functions are intended to do different things, and the classes 
come from different library vendors. 

Demonstrate how to write a class Derived, publicly derived from both BaseA and BaseB, 
which overrides both ReadBuf()s independently to do different things. 

The problem becomes clear when you have to write a class that inherits from both BaseA and 
BaseB, perhaps because you need an object that can be used polymorphically by functions in both 
vendors' libraries. Here's a naïve attempt at such a function: 

 
// Example 26-1: Attempt #1, doesn't work 
// 
class Derived : public BaseA, public BaseB 
{ 
  // ... 



 
  int ReadBuf( const char* ); 
      // overrides both BaseA::ReadBuf() 
      // and BaseB::ReadBuf() 
}; 

Here Derived::ReadBuf() overrides both BaseA::ReadBuf() and BaseB::Read 
Buf(). To see why that isn't good enough given our criteria, consider the following code: 

 
// Example 26-1(a): Counterexample, 
// why attempt #1 doesn't work 
// 
Derived d; 
BaseA*  pba = d; 
BaseB*  pbb = d; 
 
pba->ReadBuf( "sample buffer" ); 
    // calls Derived::ReadBuf 
 
pbb->ReadBuf( "sample buffer" ); 
    // calls Derived::ReadBuf 

Do you see the problem? ReadBuf() is virtual in both interfaces, and it operates polymorphically 
just as we expect. But the same function, Derived::ReadBuf(), is invoked regardless of 
which interface is used. Yet BaseA::ReadBuf() and BaseB::ReadBuf() have different 
semantics and are supposed to do different things, not the same thing. Further, 
Derived::ReadBuf() has no way to tell whether it's being called through the BaseA 
interface or the BaseB interface (if either), so we can't put an "if" inside Derived::ReadBuf() 
to make it do something different depending on how it's called. That's lousy, but we're stuck with it. 

"Oh, come on," you may be thinking. "This is an awfully contrived example, isn't it?" Actually, it's not. 
For example, John Kdllin of Microsoft reports that creating a class derived from both the 
IOleObject and IConnectionPoint COM interfaces (think of these as abstract base 
classes composed entirely of public virtual functions) becomes problematic, because (a) both 
interfaces have a member function declared as virtual HRESULT Unadvise(unsigned 
long); and (b) typically you have to override each Unadvise() to do different things. 

Stop a moment and think about this example. How would you solve this problem? Is there any way we 
can override the two inherited ReadBuf functions separately so that we can perform different 
actions in each one, with the right actions getting performed, depending on whether outside code calls 
through the BaseA or BaseB interface? In short, how can we separate these twins? 

How to Separate Siamese Twins 

Fortunately, there is a fairly clean solution. The key to the problem is that the two overridable 
functions have exactly the same name and signature. The key to the solution, therefore, must lie in 
changing at least one function's signature, and the easiest part of the signature to change is the name. 



How do you change a function's name? Through inheritance, of course! What's needed is an 
intermediate class that derives from the base class, declares a new virtual function, and overrides the 
inherited version to call the new function. The inheritance hierarchy looks like the one shown in 
Figure 5. 

Figure 5. Using intermediate classes to rename inherited virtual functions. 

 

The code looks like the following: 

 
// Example 26-2: Attempt #2, correct 
// 
class BaseA2 : public BaseA 
{ 
public: 
  virtual int BaseAReadBuf( const char* p ) = 0; 
private: 



  int ReadBuf( const char* p )    // override inherited 
  { 
    return BaseAReadBuf( p );     // to call new func 
  } 
}; 
 
class BaseB2 : public BaseB 
{ 
public: 
  virtual int BaseBReadBuf( const char* p ) = 0; 
private: 
  int ReadBuf( const char* p )   // override inherited 
  { 
    return BaseBReadBuf( p );    // to call new func 
  } 
}; 
 
class Derived : public BaseA2, public BaseB2 
{ 
  /* ... */ 
 
public: // or "private:", depending whether other 
        // code should be able to call these directly 
 
  int BaseAReadBuf( const char* ); 
      // overrides BaseA::ReadBuf indirectly 
      // via BaseA2::BaseAReadBuf 
 
  int BaseBReadBuf( const char* ); 
      // overrides BaseB::ReadBuf indirectly 
      // via BaseB2::BaseBReadBuf 
}; 

BaseA2 and BaseB2 may also need to duplicate constructors of BaseA and BaseB so that 
Derived can invoke them. But that's it. (Often a simpler way than duplicating the constructors in 
code is to have BaseA2 and BaseB2 derive virtually so that Derived has direct access to the 
base constructors.) BaseA2 and BaseB2 are abstract classes, so they don't need to duplicate any 
other BaseA or BaseB functions or operators, such as assignment operators. 

Now everything works as it should. 

 
// Example 26-2(a): Why attempt #2 works 
// 
Derived d; 
BaseA*  pba = d; 
BaseB*  pbb = d; 
 
pba->ReadBuf( "sample buffer" ); 



    // calls Derived::BaseAReadBuf 
 
pbb->ReadBuf( "sample buffer" ); 
    // calls Derived::BaseBReadBuf 

Further-derived classes need only to know that they must not further override ReadBuf itself. If 
they do, it will disable the renaming stubs that we installed in the intermediate classes. 

Item 27. (Im)pure Virtual Functions 

Difficulty: 7 

Does it ever make sense to make a function pure virtual, but still provide a body? 

1. What is a pure virtual function? Give an example. 
2. Why might you declare a pure virtual function and also write a definition (body)? Give as 

many possible reasons or situations as you can. 

Solution 

 

1. What is a pure virtual function? Give an example. 

A pure virtual function is a virtual function you want to force concrete derived classes to override. If a 
class has any non-overridden pure virtuals, it is an "abstract" class, and you can't create objects of that 
type. 

 
// Example 27-1 
// 
class AbstractClass 
{ 
  // declare a pure virtual function: 
  // this class is now abstract 
  virtual void f(int) = 0; 
}; 
 
class StillAbstract : public AbstractClass 
{ 
  // does not override f(int), 
  // so this class is still abstract 
}; 
 
class Concrete : public StillAbstract 
{ 
public: 
  // finally overrides f(int), 



  // so this class is concrete 
  void f(int) { /*...*/ } 
}; 
 
AbstractClass a;    // error, abstract class 
StillAbstract b;    // error, abstract class 
Concrete      c;    // ok, concrete class 

2. Why might you declare a pure virtual function and also write a definition (body)? Give as 
many possible reasons or situations as you can. 

Let's consider the three main reasons you might do this. Of these three reasons, #1 is commonplace, 
#2 and #3 are useful but somewhat more rare, and #4 is a workaround used occasionally by advanced 
programmers who are working with weaker compilers. (Of course we need a fourth entry in a three-
reason list, for the self-evident reason that no trilogy is complete without a fourth item.[2]) 

[2] "Our main weapon is surprise. Fear and surprise are our two main weapons." (Monty Python's Flying 
Circus) 

1. Pure Virtual Destructor 

All base class destructors should be either virtual and public, or nonvirtual and protected. In brief, 
here's the reason: First, recall that you should always avoid deriving from a concrete class. Assuming 
that it's given that the base class is therefore not concrete, and therefore doesn't necessarily need a 
public destructor for the purpose of being instantiated on its own, you're left with one of two situations. 
Either (a) you want to allow polymorphic deletion through a base pointer, in which case the destructor 
must be virtual and public; or (b) you don't, in which case the destructor should be nonvirtual and 
protected, the latter to prevent the unwanted usage. For more, see [Sutter01]. 

If the class should be abstract (you want to prevent instantiating it) but it doesn't have any other pure 
virtual functions and it has a public destructor, the following is a common technique to make the 
destructor pure virtual (it should be anyway). 

 
// Example 27-2(a) 
// 
// file b.h 
// 
class B 
{ 
public: /*...other stuff...*/ 
  virtual ~B() = 0; // pure virtual destructor 
}; 

Of course, any derived class's destructor must implicitly call the base class's destructor, so the 
destructor must still be defined (even if it's empty). 

 
// Example 27-2(a), continued 
// 



// file b.cpp 
// 
 
B::~B() { /* possibly empty */ } 

If this definition were not supplied, you could still derive other classes from B, but they could never 
be instantiated, which makes them not particularly useful. 

Guideline 

 Always make base class destructors virtual and public or nonvirtual and 
protected. 

 

2. Force Conscious Acceptance of Default Behavior 

If a derived class doesn't choose to override a normal virtual function, it just inherits the base version's 
behavior by default. If you want to provide a default behavior but not let derived classes just inherit it 
"silently" like this, you can make it pure virtual and still provide a default the derived class author has 
to call deliberately if he wants it. 

 
// Example 27-2(b) 
// 
class B 
{ 
protected: 
  virtual bool f() = 0; 
}; 
 
bool B::f() 
{ 
  return true;   // this is a good default, but 
} 
                 // shouldn't be used blindly 
 
class D : public B 
{ 
  bool f() 
  { 
    return B::f(); // if D wants the default 
  } 
                   // behaviour, it has to say so 
}; 

In the "gang of four" book Design Patterns [Gamma95], the State pattern demonstrates one example 
of how this technique can be put to good use. 



3. Provide Partial Behavior 

It's often useful to provide partial behavior to a derived class which the derived class must still 
complete. The idea is that the derived class executes the base class's implementation as part of its own 
implementation: 

 
// Example 27-2(c) 
// 
class B 
{ 
  // ... 
protected virtual bool f() = 0; 
}; 
 
bool B::f() 
{ 
  // do something general-purpose 
} 
 
class D : public B 
{ 
  bool f() 
  { 
    // first, use the base class's implementation 
    B::f(); 
 
    // ... now do more work ... 
  } 
}; 

Referring again to [Gamma95], the Decorator pattern demonstrates a good use for this technique. 

4. Work Around Poor Compiler Diagnostics 

There are situations in which you could accidentally end up calling a pure virtual function (indirectly 
from a base constructor or destructor; see your favorite advanced C++ book for examples). Of course, 
well-written code normally won't get into these problems, but no one's perfect, and once in a while it 
happens. 

Unfortunately, not all compilers[3] actually tell you when this is the problem. Those that don't can give 
you spurious unrelated errors that take forever to track down. "Argh," you scream when you finally 
diagnose the problem some hours later, "why didn't the compiler just tell me that's what I did?!" 
(Answer: Because that's one manifestation of "undefined behavior.") 

[3] Well, technically it's the runtime environment that catches this sort of thing. I'll say compiler anyway, 
because it's generally the compiler that ought to slip in the code that checks this for you at runtime. 



One way to protect yourself against this wasted debugging time is to provide definitions for the pure 
virtual functions that should never be called, and put some really evil code into those definitions, 
which lets you know right away if you call them accidentally. 

For example: 

 
// Example 27-2(d) 
// 
class B 
{ 
public: 
  bool f();      // possibly instrumented, calls do_f() 
                 // (Non-Virtual Interface pattern) 
private: 
  virtual bool do_f() = 0; 
}; 
 
bool B::do_f()   // this should NEVER be called 
{ 
  if( PromptUser( "pure virtual B::f called -- " 
                  "abort or ignore?" ) == Abort ) 
    DieDieDie(); 
} 

In the common DieDieDie() function, do whatever is necessary on your system to get into the 
debugger or dump a stack trace or otherwise get diagnostic information. Here are some common 
methods that will get you into the debugger on most systems. Pick the one you like best. 

 
void DieDieDie()  // a C way to scribble through a null 
{                 // pointer... a proven crowd-pleaser 
  memset( 0, 1, 1 ); 
} 
 
void DieDieDie()  // another C-style method 
{ 
  abort(); 
} 
 
void DieDieDie()  // a C++ way to scribble through a null 
                  // data pointer 
  *static_cast<char *>(0) = 0; 
} 
 
void DieDieDie()  // a C++ way to follow a null function 
                  // pointer to code that doesn't exist 
  static_cast<void(*)()>(0)(); 
} 



 
void DieDieDie()  // unwind back to last "catch(...)" 
{ 
  class LocalClass {}; 
  throw LocalClass(); 
} 
 
void DieDieDie()  // an alternative for standardistes 
{ 
  throw std::logic_error(); 
} 
                 // for standardistes having good compilers 
void DieDieDie() throw() 
{ 
  throw 0; 
} 

You get the idea. Be creative. There's no shortage of ways to deliberately crash a program, but the idea 
is to do it in a way that will cause your runtime debugger to place you as close to the point of failure 
as possible. Scribbling through a null pointer is one of the bets that pays most consistently. 

Item 28. Controlled Polymorphism 
Difficulty: 3 

Is-A polymorphism is a very useful tool in OO modeling. But, sometimes, you may want to restrict 
which code can use certain classes polymorphically. This Item gives an example and shows how to get 
the intended effect. 

Consider the following code: 

 
class Base 
{ 
public: 
  virtual void VirtFunc(); 
  // ... 
}; 
 
class Derived : public Base 
{ 
public: 
  void VirtFunc(); 
  // ... 
}; 
 
void SomeFunc( const Base& ); 



There are two other functions. The goal is to allow f1() to use Derived objects polymorphically 
where a Base is expected, yet prevent all other functions (including f2()) from doing so. 

 
void f1() 
{ 
  Derived d; 
  SomeFunc( d ); // works, OK 
} 
void f2() 
{ 
  Derived d; 
  SomeFunc( d ); // we want to prevent this 
} 

Demonstrate how to achieve this effect. 

Solution 

 

Consider the following code: 

 
class Base 
{ 
public: 
  virtual void VirtFunc(); 
  // ... 
}; 
 
class Derived : public Base 
{ 
public: 
  void VirtFunc(); 
  // ... 
}; 
void SomeFunc( const Base& ); 

The reason why all code can use Derived objects polymorphically where a Base is expected is 
because Derived inherits publicly from Base (no surprises here). 

If, instead, Derived inherited privately from Base, then almost no code could use Deriveds 
polymorphically as Bases. The reason for the almost is that code with access to the private parts of 
Derived can still access the private base classes of Derived and can therefore use Deriveds 
polymorphically in place of Bases. Normally, only the member functions of Derived have such 
access. However, we can use C++'s friend feature to extend similar access to other outside code. 



Putting the pieces together, we get the following: 

There are two other functions. The goal is to allow f1() to use Derived objects 
polymorphically where a Base is expected, yet prevent all other functions (including f2()) 
from doing so. 

 
void f1() 
{ 
  Derived d; 
  SomeFunc( d ); // works, OK 
} 
 
void f2() 
{ 
  Derived d; 
  SomeFunc( d ); // we want to prevent this 
} 

Demonstrate how to achieve this effect. 

The answer is to write: 

 
class Derived : private Base 
{ 
public: 
  void VirtFunc(); 
  // ... 
  friend void f1(); 
}; 

This solves the problem cleanly, although it does give f1() greater access than f1() had in the 
original version. 

Memory and Resource Management 

Smart pointers and std::auto_ptr are key tools at our disposal for safe and efficient 
management of memory and other resources, including real-world objects such as disk files and 
database transaction locks. How can we safely use auto_ptr and use common design patterns to 
adapt it in order to avoid common pitfalls? Can you use auto_ptr as a class member, and what 
must you absolutely be aware of if you do elect to use it that way? Finally, can you avoid the problem 
by doing better, by writing a special-purpose smart pointer designed to hold a member object at arm's 
length? Indeed you can. Indeed you can… 

Item 29. Using auto_ptr 

Difficulty: 5 



This Item illustrates a common pitfall with using auto_ ptr. What is the problem, and how can 
you solve it? 

1. Consider the following function, which illustrates a common mistake when using 
auto_ptr: 

2.  
3. template<typename T> 
4. void f( size_t n ) { 
5.   auto_ptr<T> p1( new T ); 
6.   auto_ptr<T> p2( new T[n] ); 
7.  
8.   // ... more processing ... 
9. } 

What is wrong with this code? Explain. 

10. How would you fix the problem? Consider as many options as possible, including the 
Adapter pattern, alternatives to the problematic construct, and alternatives to auto_ptr. 

Solution 

 

Problem: Arrays and auto_ptr Don't Mix 

1. Consider the following function, which illustrates a common mistake when using auto_ptr: 

 
template<typename T> 
void f( size_t n ) { 
  auto_ptr<T> p1( new T ); 
  auto_ptr<T> p2( new T[n] ); 
 
  // ... more processing ... 
} 

What is wrong with this code? Explain. 

Every delete must match the form of its new. If you use single-object new, you must use single-
object delete; if you use the array form of new[], you must use the array form of delete[]. 
Doing otherwise yields undefined behavior, as illustrated in the following slightly modified code. 

 
T* p1 = new T; 
// delete[] p1; // error 
delete p1;      // ok - this is what auto_ptr does 
 
T* p2 = new T[10]; 



delete[] p2;    // ok 
// delete p2;   // error - this is what auto_ptr does 

The problem with p2 is that auto_ptr is intended to contain only single objects, so it always calls 
delete, not delete[], on the pointer it owns. This means that using plain delete, p1 will be 
cleaned up correctly, but p2 will not. 

What will actually happen when you use the wrong form of delete depends on your compiler. The 
best you can expect is a resource leak. A more typical result is memory corruption soon followed by a 
core dump. To see this effect, try the following complete program on your favorite compiler: 

 
#include <iostream> 
#include <memory> 
#include <string> 
using namespace std; 
int c = 0; 
 
class X { 
public: 
  X() : s( "1234567890" ) { ++c; } 
 ~X()                     { --c; } 
    string s; 
}; 
 
template<typename T> 
void f( size_t n ) 
{ 
  { 
    auto_ptr<T> p1( new T ); 
    auto_ptr<T> p2( new T[n] ); 
  } 
  cout << c << " ";   // report # of X objects 
}                     // that currently exist 
 
int main() 
{ 
  while( true ) 
  { 
    f<X>(100); 
  } 
} 

This program will usually either crash or else output a running update of the number of leaked X 
objects. (For extra fun, try running a system-monitoring tool in another window that shows your 
system's total memory usage. It will help you to appreciate how bad the leak can be if the program 
doesn't crash right off.) 



Aside on a Non-problem: Zero-Length Arrays Are Okay 

What if f()'s parameter is zero (for example, in the call f<int>(0))? Then the second new turns 
into new T[0], and programmers often wonder: "Hmm, is this okay? Can we have a zero-length 
array?" 

The answer is yes. Zero-length arrays are perfectly okay, kosher, and fat-free. The result of new 
T[0] is just a pointer to an array with zero elements, and that pointer behaves just like any other 
result of new T[n] including the fact that you may not attempt to access more than n elements of 
the array. In this case, you may not attempt to access any elements at all because there aren't any. 

From 5.3.4 [expr.new], paragraph 7: 

When the value of the expression in a direct-new-declarator is zero, the allocation function is called to 
allocate an array with no elements. The pointer returned by the new-expression is non-null. [Note: If 
the library allocation function is called, the pointer returned is distinct from the pointer to any other 
object.] 

"If you can't do anything with zero-length arrays (other than remember their address)," you may 
wonder, "why should they be allowed?" One important reason is that it makes it easier to write code 
that does dynamic array allocation. For example, the function f() above would be needlessly more 
complex if it were forced to check the value of its n parameter before performing the new T[n] 
call. 

Of course, getting back to the main problem, just because zero-length arrays are legal doesn't mean we 
can get an auto_ptr to own one, any more than we can get an auto_ptr to own an array of any 
other length. We can't. The array-deletion problem remains. 

2. How would you fix the problem? Consider as many options as possible, including the Adapter 
pattern, alternatives to the problematic construct, and alternatives to auto_ptr. 

There are several options (some better, some worse). Here are four: 

Option 1: Roll Your Own auto_array 

This can be both easier and harder than it sounds. 

Option 1 (a): … By Deriving from auto_ptr (Score: 0 / 10) 

Bad idea. For example, you'll have a lot of fun reproducing all the ownership and helper-class 
semantics. This might be tried only by true gurus, but true gurus would never try it because there are 
easier ways. 

Advantages: Few. 

Disadvantages: Too many to count. 

Option 1 (b): … By Cloning auto_ptr Code (Score: 8 / 10) 



The idea here is to take the code from your library's implementation of auto_ptr, clone it 
(renaming it auto_array or something like that), and change the delete statements to 
delete[] statements. 

Advantages: 

a. Easy to implement (once). We don't need to hand-code our own auto_array, and we 
keep all the semantics of auto_ptr automatically, which helps avoid surprises for future 
maintenance programmers who are already familiar with auto_ptr. 

b. No significant space or time overhead. 

Disadvantage: 

a. Hard to maintain. You'll probably want to be careful to keep your auto_array in sync 
with your library's auto_ptr when you upgrade to a new compiler/library version or 
switch compiler/library vendors. 

Option 2: Use the Adapter Pattern (Score: 7 / 10) 

This option came out of a discussion I had with C++ World attendee Henrik Nordberg, after one of 
my talks. Henrik's first reaction to the problem code was to wonder whether it would be easiest to 
write an adapter to make the standard auto_ptr work correctly, instead of rewriting auto_ptr 
or using something else. This idea has some real advantages and deserves analysis despite its few 
drawbacks. 

Here's the idea. Instead of writing 

 
auto_ptr<T> p2( new T[n] ); 

we write 

 
auto_ptr< ArrDelAdapter<T> > 
  p2( new ArrDelAdapter<T>(new T[n]) ); 

where the ArrDelAdapter (array deletion adapter) has a constructor that takes a T* and a 
destructor that calls delete[] on that pointer: 

 
template<typename T> 
class ArrDelAdapter { 
public: 
  ArrDelAdapter( T* p ) : p_(p) { } 
 ~ArrDelAdapter() { delete[] p_; } 
  // operators like "->" "T*" and other helpers 
private: 
  T* p_; 
}; 



Since there is only one ArrDelAdapter<T> object, the single-object delete statement in 
~auto_ptr() is fine. Because ~ArrDelAdapter<T> correctly calls delete[] on the 
array, the original problem has been solved. 

Sure, this may not be the most elegant and beautiful approach in the world, but at least we didn't have 
to hand-code our own auto_array template! 

Advantage: 

a. Easy to implement (initially). We don't need to write an auto_array. In fact, we get to 
keep all the semantics of auto_ptr automatically, which helps avoid surprises for future 
maintenance programmers who are already familiar with auto_ptr. 

Disadvantages: 

a. Hard to read. This solution is rather verbose. 
b. (Possibly) hard to use. Any code later in f that uses the value of the p2 auto_ptr will 

need syntactic changes, which will often be made more cumbersome by extra indirections. 
c. Incurs space and time overhead. This code requires extra space to store the required adapter 

object for each array. It also requires extra time, because it performs twice as many memory 
allocations (this can be ameliorated by using an overloaded operator new), and then an extra 
indirection each time calling code accesses the contained array. 

Having said all that, even though other alternatives turn out to be better in this particular case, I was 
very pleased to see people immediately think of using the Adapter pattern. Adapter is widely 
applicable and one of the core patterns every programmer should know. 

Guideline 

 Know about and use design patterns. 

 

Just a final note on Option 2: It's worth pointing out that writing 

 
auto_ptr< ArrDelAdapter<T> > 
  p2( new ArrDelAdapter<T>(new T[n]) ); 

isn't much different from writing 

 
auto_ptr< vector<T> > p2( new vector<T>(n) ); 

Think about that for a moment. For example, ask yourself, "What, if anything, am I gaining by 
allocating the vector dynamically that I wouldn't have if I just wrote vector p2(n);?" Then 
see Option 4. 



Option 3: Replace auto_ptr with Hand-Coded Exception-Handling Logic (Score: 1 / 
10 ) 

Function f() uses auto_ptr for automatic cleanup and probably for exception safety. Instead, we 
could drop auto_ptr for the p2 array and hand-code our own exception-handling logic. 

That is, instead of writing: 

 
auto_ptr<T> p2( new T[n] ); 
// 
// ... more processing ... 
// 

we write something like: 

 
T* p2( new T[n] ); 
try { 
  // 
  // ... more processing 
  // 
} 
delete[] p2; 

Advantages: 

a. Easy to use. This solution has little impact on the code in "more processing" that uses p2; 
probably all that's necessary is to remove .get() wherever it occurs. 

b. No significant space or time overhead. 

Disadvantages: 

a. Hard to implement. This solution probably involves many more code changes than are 
suggested by the above. The reason is that while the auto_ptr for p1 will automatically 
clean up the new T no matter how the function exits, to clean up p2 we now have to write 
cleanup code along every code path that might exit the function. For example, consider the 
case in which "more processing" includes more branches, some of which end with 
"return;". 

b. Brittle. See (a): Did we put the right cleanup code along all code paths? 
c. Hard to read. See (a): The extra cleanup logic is likely to obscure the function's normal logic. 

Option 4: Use a vector Instead of an Array (Score: 9.5 / 10 ) 

Most of the problems we've encountered have been due to the use of C-style arrays. If appropriate, and 
it's almost always appropriate, it would be better to use a vector instead of a C-style array. After all, 
a major reason why vector exists in the standard library is to provide a safer and easier-to-use 
replacement for C-style arrays! 



So instead of writing: 

 
auto_ptr<T> p2( new T[n] ); 

we write: 

 
vector<T> p2( n ); 

Advantages: 

a. Easy to implement (initially). We still don't need to write an auto_array. 
b. Easy to read. People who are familiar with the standard containers (and that should be 

everyone by now!) will immediately understand what's going on. 
c. Less brittle. Since we're pushing down the details of memory management, our code is 

(usually) further simplified. We don't need to manage the buffer of T objects—that's the job 
of the vector<T> object. 

d. No significant space or time overhead. 

Disadvantages: 

a. Syntactic changes. Any code later in f that uses the value of the p2 auto_ptr will need 
syntactic changes, although the changes will be fairly simple and not as drastic as those 
required by Option 2. 

b. (Sometimes) usability changes. You can't instantiate any standard container (including a 
vector) of T objects if those T objects are not copy-constructible and assignable. Most 
types are both copy-constructible and assignable. But if they are not, this solution won't work. 

Note that passing or returning a vector by value is more work than passing or returning an 
auto_ptr. I consider this objection somewhat of a red herring, however, because it's an unfair 
comparison. If you want to get the same effect, you simply pass a pointer or reference to the vector. 

Guideline 

 Prefer using vector instead of built-in (C-style) arrays. 

Item 30. Smart Pointer Members, Part 1: A Problem 
with auto_ptr 
Difficulty: 5 

Most C++ programmers know they have to take special care for classes with pointer members. But 
what about classes with auto_ptr members? And can we make life safer for ourselves and our 
users by devising a smart pointer class designed specifically for class membership? 

1. Consider the following class: 
2.  



3. // Example 30-1 
4. // 
5. class X1 
6. { 
7.   // ... 
8. private: 
9.   Y* y_; 
10. }; 

If an X1 object owns its pointed-at Y object, why can't the author of X1 use the compiler-
generated destructor, copy constructor, and copy assignment? 

11. What are the advantages and drawbacks of the following approach? 
12.  
13. // Example 30-2 
14. // 
15. class X2 
16. { 
17.   // ... 
18. private: 
19.   auto_ptr<Y> y_; 
20. }; 

Solution 

 

Recap: Problems of Pointer Members 

1. Consider the following class: 

 
// Example 30-1 
// 
 
class X1 
{ 
  // ... 
private: 
  Y* y_; 
}; 

If an X1 object owns its pointed-at Y object, why can't the author of X1 use the compiler-
generated destructor, copy constructor, and copy assignment? 

If X1 owns its pointed-at Y, the compiler-generated versions will do the wrong thing. First, note that 
some function (probably an X1 constructor) has to create the owned Y object, and there has to be 
another function (likely the destructor X1::~X1()) that deletes it: 



 
// Example 30-1(a): Ownership semantics. 
// 
{ 
  X1 a; // allocates a new Y object and points at it 
 
  // ... 
} // as a goes out of scope and is destroyed, it 
  // deletes the pointed-at Y 

Then use of the default memberwise copy construction will cause multiple X1 objects to point at the 
same Y object, which will cause strange results as modifying one X1 object changes the state of 
another, and which will also cause a double delete to take place: 

 
// Example 30-1(b): Sharing, and double delete. 
// 
{ 
  X1 a;   // allocates a new Y object and points at it 
 
  X1 b( a ); // b now points at the same Y object as a 
 
  // ... manipulating a and b modifies 
  // the same Y object ... 
 
} // as b goes out of scope and is destroyed, it 
  // deletes the pointed-at Y... and so does a, oops 

Any use of the default memberwise copy assignment will also cause multiple X1 objects to point at 
the same Y object, which will cause the same state sharing, the same double delete, and as an 
added bonus will also cause leaks when some objects are never deleted at all: 

 
// Example 30-1(c): Sharing, double delete, plus leak. 
// 
{ 
  X1 a;  // allocates a new Y object and points at it 
 
  X1 b;  // allocates a new Y object and points at it 
 
  b = a; // b now points at the same Y object as a, 
         // and no one points at the Y object that 
         // was created by b 
 
  // ... manipulating a and b modifies 
  // the same Y object ... 
 
} // as b goes out of scope and is destroyed, it 
  // deletes the pointed-at Y... and so does a, oops 



 
  // the Y object allocated by b is never deleted 

In other code, we normally apply the good practice of wrapping bald pointers in manager objects that 
own them and simplify cleanup. If the Y member was held by such a manager object instead of by a 
bald pointer, wouldn't that ameliorate the situation? This brings us to the following key questions. 

What About auto_ptr Members? 

2. What are the advantages and drawbacks of the following approach? 

 
// Example 30-2 
// 
class X2 
{ 
  // ... 
private: 
  auto_ptr<Y> y_; 
}; 

This has some benefits, but it doesn't do a whole lot to solve the problem that the automatically 
generated copy construction and copy assignment functions will do the wrong thing. It just makes 
them do different wrong things. 

First, if X2 has any user-written constructors, making them exception-safe is easier because if an 
exception is thrown in the constructor, the auto_ptr will perform its cleanup automatically. The 
writer of X2 is still forced, however, to allocate his own Y object and hold it, however briefly, by a 
bald pointer before the auto_ptr object assumes ownership. 

Next, the automatically generated destructor now does, in fact, do the right thing. As an X2 object 
goes out of scope and is destroyed, the auto_ptr<Y> destructor automatically performs cleanup 
by deleting the owned Y object. Even so, there is a subtle caveat here that has already caught me once: 
If you rely on the automatically generated destructor, then that destructor will be defined in each 
translation unit that uses X2. That means that the definition of Y must be visible to pretty much 
anyone who uses an X2. This is not so good if Y is a Pimpl, for example, and the whole point is to 
hide Y's definition from clients of X2. So you can rely on the automatically generated destructor, but 
only if the full definition of Y is supplied along with X2 (for example, if x2.h includes y.h): 

 
// Example 30-2(a): Y must be defined. 
// 
{ 
  X2 a; // allocates a new Y object and points at it 
 
  // ... 
 
} // as a goes out of scope and is destroyed, it 
  // deletes the pointed-at Y, and this can only 



  // happen if the full definition of Y is available 

If you don't want to provide the definition of Y, you must write the X2 destructor explicitly, even if 
it's empty. 

Next, the automatically generated copy constructor will no longer have the double-delete problem 
described in Example 30-1(b). That's the good news. The not-so-good news is that the automatically 
generated version introduces another problem— grand theft. The X2 object being constructed rips 
away the Y belonging to the copied-from X2 object, including all knowledge of the Y object. 

 
// Example 30-2(b): Grand theft pointer. 
// 
{ 
  X2 a; // allocates a new Y object and points at it 
 
  X2 b( a ); // b rips away a's Y object, leaving a's 
             // y_ member with a null auto_ptr 
 
  // if a attempts to use its y_ member, it won't 
  // work; if you're lucky, the problem will manifest 
  // as an immediate crash, otherwise it will likely 
  // manifest as a difficult-to-diagnose intermittent 
  // failure 
} 

The only redeeming point about the grand theft, and it isn't much, is that at least the automatically 
generated X2 copy constructor gives some fair warning that theft-like behavior may be impending.[1] 

Why? Because its signature will be X2::X2( X2& ). Note that it takes its parameter by reference 
to non-const. That's what auto_ptr's copy constructor does, after all, and so X2's automatically 
generated one has to follow suit. This is pretty subtle, though, but at least it prevents copying from a 
const X2. 

[1] Alas, the non-constness of the parameter is rather invisible. The function is silently generated by the 
compiler, and you never actually get to see the signature appear as human-readable code anywhere. 

Finally, the automatically generated copy assignment operator will no longer have either the double-
delete problem or the leak problem, both of which were described in Example 30-1(c). That's the 
good news. Alas, again, there's some not-so-good news. The same grand theft occurs: The assigned-to 
X2 object rips away the Y belonging to assigned-from X2 object, including all knowledge of the Y 
object, and in addition it (possibly prematurely) deletes the Y object it originally owned. 

 
// Example 30-2(c): More grand theft pointer. 
// 
{ 
  X2 a;  // allocates a new Y object and points at it 
 
  X2 b;  // allocates a new Y object and points at it 



 
  b = a; // b deletes its pointed-at Y, rips away 
         // a's Y, and leaves a with a null auto_ptr 
         // again 
 
  // as in Example 30-2(b), any attempts by a to use its 
  // y_ member will be disastrous 
} 

Similarly above, at least the thieving behavior is hinted at, because the automatically generated 
function will be declared as X2& X2::operator=( X2& ), thus advertising (albeit in the fine 
print, not in a front-page banner headline) that the operand can be modified. 

In summary, then, auto_ptr does give some benefits, particularly by automating cleanup for 
constructors and the destructor. It does not, however, of itself answer the main original problems in 
this case—that we have to write our own copy construction and copy assignment for X2 or else 
disable them if copying doesn't make sense for the class. For that, we can do better with something a 
little more special-purpose. 

Variations on a Theme by ValuePtr 

The meat of this miniseries of Items involves developing successively refined versions of a 
ValuePtr template that is more suitable than auto_ptr for the kinds of uses outlined above. 

A note on exception specifications: For reasons I won't go into here, exception specifications are not 
as useful as you might think. On the other hand, it is important to know which exceptions a function 
might throw, especially if it is known to throw none at all, giving the nothrow guarantee. You don't 
need exception specifications to document behavior, so I am going to assert the following: 

For every version of ValuePtr<T> presented in these two Items, all member functions provide the 
nothrow guarantee except that construction or assignment from a ValuePtr<U> (where U could 
be T) might emit an exception thrown from a T constructor. 

Now let's get into the meat of it in Item 31. 

Item 31. Smart Pointer Members, Part 2: Toward a ValuePtr 

Difficulty: 6 

Can we make life safer for ourselves and our users by devising a smart pointer class designed 
specifically for class membership? 

1. Write a suitable ValuePtr template that is used as shown here: 
2.  
3. // Example 31-1 
4. // 
5. class X 
6. { 
7.   // ... 



8. private: 
9.   ValuePtr<Y> y_; 
10. }; 

to suit three specific circumstances: 

a. Copying and assigning ValuePtrs is not allowed. 
b. Copying and assigning ValuePtrs is allowed and has the semantics of creating a 

copy of the owned Y object using the Y copy constructor. 
c. Copying and assigning ValuePtrs is allowed and has the semantics of creating a 

copy of the owned Y object, which is performed using a virtual Y::Clone() 
method if present and the Y copy constructor otherwise. 

Solution 

 

A Simple ValuePtr: Strict Ownership Only 

1. Write a suitable ValuePtr template that is used as shown here: 

 
// Example 31-1 
// 
class X 
{ 
  // ... 
private: 
  ValuePtr<Y> y_; 
}; 

We are going to consider three cases. In all three, the constructor benefit still applies: Cleanup is 
automated and there's less work for the writer of X::X() to be exception-safe and avoid leaks from 
failed constructors.[2] Also, in all three, the destructor restriction still applies: Either the full definition 
of Y must accompany X, or the X destructor must be explicitly provided, even if it's empty. 

[2] It is also possible to have ValuePtr itself perform the construction of the owned Y object, but I will 
omit that for clarity and because it pretty much just gives ValuePtr<Y> the same Y value semantics, 
begging the question: Why not just use a plain old Y member? 

to suit three specific circumstances: 

a) Copying and assigning ValuePtrs is not allowed. 

There's really not much to it: 

 



// Example 31-2(a): Simple case: ValuePtr without 
// copying or assignment. 
// 
template<typename T> 
class ValuePtr 
{ 
public: 
  explicit ValuePtr( T* p = 0 ) : p_( p ) { } 
 
  ~ValuePtr() { delete p_; } 

Of course, there has to be some way to access the pointer, so add something like the following, which 
parallels std::auto_ptr: 

 
T& operator*() const { return *p_; } 
 
T* operator->() const { return p_; } 

What else might we need? For many smart pointer types, it can make sense to provide additional 
facilities that parallel auto_ptr's reset() and release() functions to let users arbitrarily 
change which object is owned by a ValuePtr. It may seem at first as if such facilities would be a 
good idea because they contribute to ValuePtr's intended purpose and usage as a class member. 
Consider, for example, Examples 22-2 and 22-3 in Item 22, where the class member holds a Pimpl 
pointer and it's desirable to write an exception-safe assignment operator. Then you need a way to swap 
ValuePtrs without copying the owned objects. But providing reset()- and release()-like 
functions isn't the right way to do it because it allows too much. It would let users do what they need 
for swapping and exception safety, but it would also open the door for many other (unneeded) options 
that don't contribute to the purpose of ValuePtr and can cause problems if abused. 

So what to do? Instead of providing overly general facilities, understand your requirements well 
enough to provide just the facility you really need: 

 
  void Swap( ValuePtr& other ) { swap( p_, other.p_ ); } 
 
private: 
  T* p_; 
 
  // no copying 
  ValuePtr( const ValuePtr& ); 
  ValuePtr& operator=( const ValuePtr& ); 
}; 

We take ownership of the pointer and delete it afterward. We handle the null pointer case, and copying 
and assignment are specifically disabled in the usual way by declaring them private and not defining 
them. Construction is explicit as good practice to avoid implicit conversions, which are never needed 
by ValuePtr's intended audience. 



This part was pretty straightforward, but the next steps have some subtleties attached. 

Copy Construction and Copy Assignment 

b) Copying and assigning ValuePtrs is allowed and has the semantics of creating a copy of 
the owned Y object using the Y copy constructor. 

Here's one way to write it that satisfies the requirements but isn't as general purpose as it could be. It's 
the same as Example 31-2(a), but with copy construction and copy assignment defined: 

 
// Example 31-2(b): ValuePtr with copying and 
// assignment, take 1. 
// 
template<typename T> 
class ValuePtr 
{ 
public: 
  explicit ValuePtr( T* p = 0 ) : p_( p ) { } 
 
  ~ValuePtr() { delete p_; } 
 
  T& operator*() const { return *p_; } 
 
  T* operator->() const { return p_; } 
 
  void Swap( ValuePtr& other ) { swap( p_, other.p_ ); } 
 
  //--- new code begin ------------------------------ 
  ValuePtr( const ValuePtr& other ) 
    : p_( other.p_ ? new T( *other.p_ ) : 0 ) { } 

Note that it's important to check whether other's pointer is null or not. Because now, however, 
operator=() is implemented in terms of copy construction, we have to put the check in only one 
place. 

 
  ValuePtr& operator=( const ValuePtr& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
  //--- new code end -------------------------------- 
 
private: 
  T* p_; 
}; 



This satisfies the stated requirements because, in the intended usage, there's no case in which we will 
be copying or assigning from a ValuePtr that manages any type other than T. If that's all we know 
you'll ever need, that's fine. But whenever we design a class, we should at least consider designing for 
extensibility if it doesn't cost us much extra work and could make the new facility more useful to users 
in the future. 

At the same time, we need to balance such "design for reusability" with the danger of 
overengineering—that is, of providing an overly complex solution to a simple problem. This brings us 
to the next point. 

Templated Construction and Templated Assignment 

One question to consider is: What is the impact on the Example 31-2(b) code if we want to allow for 
the possibility of assigning between different types of ValuePtr in the future? That is, we want to 
be able to copy or assign a ValuePtr<X> to a ValuePtr<Y> if X is convertible to Y. 

It turns out that the impact is minimal. Duplicate the copy constructor and the copy assignment 
operators with templated versions that just add template<typename U> in front and take a 
parameter of type ValuePtr<U>&, as follows: 

 
// Example 31-2(c): ValuePtr with copying and 
// assignment, take 2. 
// 
template<typename T> 
class ValuePtr 
{ 
public: 
  explicit ValuePtr( T* p = 0 ) : p_( p ) { } 
 
  ~ValuePtr() { delete p_; } 
 
  T& operator*() const { return *p_; } 
 
  T* operator->() const { return p_; } 
 
  void Swap( ValuePtr& other ) { swap( p_, other.p_ ); } 
 
  ValuePtr( const ValuePtr& other ) 
    : p_( other.p_ ? new T( *other.p_ ) : 0 ) { } 
 
  ValuePtr& operator=( const ValuePtr& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
 
  //--- new code begin ------------------------------ 
  template<typename U> 



  ValuePtr( const ValuePtr<U>& other ) 
    : p_( other.p_ ? new T( *other.p_ ) : 0 ) { } 
 
  template<typename U> 
  ValuePtr& operator=( const ValuePtr<U>& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
 
private: 
  template<typename U> friend class ValuePtr; 
  //--- new code end -------------------------------- 
 
T* p_; 
}; 

Did you notice the trap we avoided? We still need to write the nontemplated forms of copying and 
assignment in order to suppress the automatically generated versions, because a templated constructor 
is never a copy constructor and a templated assignment operator is never a copy assignment operator. 
For more information about this, see Exceptional C++ [Sutter00] Item 5. 

There is still one subtle caveat, but fortunately it's not a big deal. I'd say that it's not even our 
responsibility as the authors of ValuePtr. The caveat is this: With either the templated or 
nontemplated copy and assignment functions, the source object, other, could still be holding a 
pointer to a derived type, in which case we're slicing. For example: 

 
class A {}; 
class B : public A {}; 
class C : public B {}; 
 
ValuePtr<A> a1( new B ); 
ValuePtr<B> b1( new C ); 
 
// calls copy constructor, slices 
ValuePtr<A> a2( a1 ); 
 
// calls templated constructor, slices 
ValuePtr<A> a3( b1 ); 
 
// calls copy assignment, slices 
a2 = a1; 
 
// calls templated assignment, slices 
a3 = b1; 



I point this out because this is the sort of thing one shouldn't forget to write up in the ValuePtr 
documentation to warn users, preferably in a "Don't Do That" section. There's not much else we, the 
authors of ValuePtr, can do in code to stop this kind of abuse. 

So which is the right solution to problem 1(b), Example 31-2(b) or Example 31-2(c)? Both are good 
solutions, and it's really a judgment call based on your own experience at balancing design-for-reuse 
and overengineering-avoidance. I imagine that minimalist-design advocates would automatically use 
2(b) because it's enough to satisfy the minimum requirements. I can also imagine situations in which 
ValuePtr is in a library written by one group and shared by several distinct teams, and in which 
2(c) will end up saving overall development effort through reuse and the prevention of reinvention. 

Adding Extensibility Using Traits 

But what if Y has a virtual Clone() method? It may seem from Item 30 Example 30-1 that X 
always creates its own owned Y object, but it might get it from a factory or from a new expression of 
some derived type. As we've already seen, in such a case the owned Y object might not really be a Y 
object at all, but of some type derived from Y, and copying it as a Y would slice it at best and render it 
unusable at worst. The usual technique in this kind of situation is for Y to provide a special virtual 
Clone() member function that allows complete copies to be made even without knowing the 
complete type of the object pointed at. 

What if someone wants to use a ValuePtr to hold such an object, that can only be copied using a 
function other than the copy constructor? This is the point of our final question. 

c) Copying and assigning ValuePtrs is allowed and has the semantics of creating a copy of the 
owned Y object, which is performed using a virtual Y::Clone() method if present and the Y 
copy constructor otherwise. 

In the ValuePtr template, we don't know what our contained T type really is; we don't know 
whether it has a virtual Clone() function. Therefore, we don't know the right way to copy it. Or do 
we? 

One solution is to apply a technique widely used in the C++ standard library itself, namely traits. (For 
more about traits, turn to Item 4.) To implement a traits-based approach, let's first change Example 31-
2(c) slightly to remove some redundancy. You'll notice that both the templated constructor and the 
copy constructor have to check the source for nullness. Let's put all that work in a single place and 
have a single CreateFrom() function that builds a new T object. In a moment, we'll also see 
another reason to do it this way. 

 
// Example 31-2(d): ValuePtr with copying and 
// assignment, Example 31-2(c) with a little 
// factoring. 
// 
template<typename T> 
class ValuePtr 
{ 
public: 
  explicit ValuePtr( T* p = 0 ) : p_( p ) { } 
 



  ~ValuePtr() { delete p_; } 
  T& operator*() const { return *p_; } 
 
  T* operator->() const { return p_; } 
 
  void Swap( ValuePtr& other ) { swap( p_, other.p_ ); } 
 
  ValuePtr( const ValuePtr& other ) 
    : p_( CreateFrom( other.p_ ) ) { } // changed 
 
  ValuePtr& operator=( const ValuePtr& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
 
  template<typename U> 
  ValuePtr( const ValuePtr<U>& other ) 
    : p_( CreateFrom( other.p_ ) ) { } // changed 
 
  template<typename U> 
  ValuePtr& operator=( const ValuePtr<U>& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
 
private: 
  //--- new code begin ------------------------------ 
  template<typename U> 
  T* CreateFrom( const U* p ) const 
  { 
    return p ? new T( *p ) : 0; 
  } 
  //--- new code end -------------------------------- 
 
  template<typename U> friend class ValuePtr; 
 
  T* p_; 
}; 

Now, CreateFrom() gives us a nice hook to encapsulate all knowledge about different ways of 
copying a T. 



Applying Traits 

Now we can apply the traits technique using something like the following approach. Note that this is 
not the only way to apply traits. There are other ways besides traits to deal with different ways of 
copying a T. I chose to use a single traits class template with a single static Clone() member that 
calls whatever is needed to do the actual cloning, and that can be thought of as an adapter. This 
follows the style of char_traits, for example, where basic_string simply delegates the 
work of defining the character-handling policy to a traits class. (Alternatively, for example, the traits 
class could provide typedefs and other aids so that the ValuePtr template can figure out what 
to do, but still have to do it itself. I don't like that because it feels like a needless division of 
responsibilities. For something this simple, why have one place figure out the right thing to do, but a 
different place actually do it?) 

 
template<typename T> 
class ValuePtr 
{ 
  // ... 
 
  template<typename U> 
  T* CreateFrom( const U* p ) const 
  { 
    // the "Do the Right Thing" fix... but how? 
    return p ? VPTraits<U>::Clone( p ) : 0; 
  } 
}; 

We want VPTraits to be a template that does the actual cloning work, where the main template's 
implementation of Clone() uses U's copy constructor. Two notes: First, since ValuePtr 
assumes responsibility for the null check, VPTraits::Clone() doesn't have to do it; and 
second, if T and U are different, this function can compile only if a U* is convertible to a T*, in order 
to correctly handle polymorphic cases when T is Base and U is Derived. 

 
template<typename T> 
class VPTraits 
{ 
public: 
  static T* Clone( const T* p ) { return new T( *p ); } 
}; 

Then VPTraits is specialized as follows for any given Y that does not want to use copy 
construction. For example, say that some Y has a virtual Y* CloneMe() function, and some Z has 
a virtual void CopyTo( Z& ) function. Then VPTraits<Y> is specialized to let that 
function do the cloning: 

 
// The most work any user has to do, and it only 
// needs to be done once, in one place: 



// 
template<> 
class VPTraits<Y> 
{ 
public: 
  static Y* Clone( const Y* p ) 
    { return p->CloneMe(); } 
}; 
 
template<> 
class VPTraits<Z> 
{ 
public: 
  static Z* Clone( const Z* p ) 
    { Z* z = new Z; p->CopyTo(*z); return z; } 
}; 

This is much better because the design is closed for modification but open for extension, and it will 
work with whatever flavor and signature of CloneMe() is ever invented in the future. Clone() 
only needs to create the object under the covers in whatever way it deems desirable, and the only 
visible result is a pointer to the new object—another good argument for strong encapsulation. 

To use ValuePtr with a brand new type Y that was invented centuries after ValuePtr was 
written and its authors turned to dust, the new fourth-millennium user (or author) of Y merely needs to 
specialize VPTraits once for all time, then use ValuePtr<Y>s all over the place in her code 
wherever desired. That's pretty easy. And if Y doesn't have a virtual Clone() function, the user (or 
author) of Y doesn't even need to do that, but can use ValuePtr without any work at all. 

A brief coda: Since VPTraits has only a single static function template, why make it a class 
template instead of just a function template? The main motive is for encapsulation (in particular, better 
name management) and extensibility. We want to avoid cluttering the global namespace with free 
functions. The function template could be put at namespace scope in whatever namespace 
ValuePtr itself is supplied in. But even then, this couples it more tightly to ValuePtr as 
opposed to use by other code also in that namespace. The Clone() function template may be the 
only kind of trait we need today, but what if we need new ones tomorrow? If the additional traits are 
functions, we'd otherwise have to continue cluttering things up with extra free functions. But what if 
the additional traits are typedefs or even class types? VPTraits gives us a nice place to 
encapsulate all those things. 

ValuePtr with Traits 

Here is the code for a ValuePtr that incorporates cloning traits, along with all the earlier 
requirements in Question 3.[3] Note that the only change from Example 31-2(d) is a one-line change to 
ValuePtr and one new template with a single simple function. Now that's what I call minimum 
impact, given all of the flexibility we've just bought. 

[3] Alternatively, one might also choose to provide a traits object as an additional ValuePtr template 
parameter Traits that just defaults to VPTraits<T> the same way std::basic_string 
does it. 



 
template<typename T, typename Traits = VPTraits<T> > 
class ValuePtr { /*...*/ }; 
 
 

so that it's even possible for users to have different ValuePtr<X> objects in the same program copy in 
various ways. That additional flexibility doesn't seem to make a lot of sense in this particular case, so I'm not 
doing it that way—but be aware of what's possible. 

 
// Example 31-2(e): ValuePtr with copying and 
// assignment and full traits-based 
// customizability. 
// 
//--- new code begin -------------------------------- 
template<typename T> 
class VPTraits 
{ 
static T* Clone( const T* p ) { return new T( *p ); } 
}; 
//--- new code end ---------------------------------- 
 
  template<typename T> 
class ValuePtr 
{ 
public: 
  explicit ValuePtr( T* p = 0 ) : p_( p ) { } 
 
  ~ValuePtr() { delete p_; } 
 
  T& operator*() const { return *p_; } 
 
  T* operator->() const { return p_; } 
 
  void Swap( ValuePtr& other ) { swap( p_, other.p_ ); } 
 
  ValuePtr( const ValuePtr& other ) 
    : p_( CreateFrom( other.p_ ) ) { } 
 
  ValuePtr& operator=( const ValuePtr& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
 
  template<typename U> 
  ValuePtr( const ValuePtr<U>& other ) 
    : p_( CreateFrom( other.p_ ) ) { } 



 
  template<typename U> 
  ValuePtr& operator=( const ValuePtr<U>& other ) 
  { 
    ValuePtr temp( other ); 
    Swap( temp ); 
    return *this; 
  } 
 
private: 
  template<typename U> 
  T* CreateFrom( const U* p ) const 
  { 
  //--- new code begin ---------------------------- 
    return p ? VPTraits<U>::Clone( p ) : 0; 
  //--- new code end ------------------------------ 
  } 
 
  template<typename U> friend class ValuePtr; 
 
  T* p_; 
}; 

A Usage Example 

Here is an example that shows the typical implementation of the major functions (construction, 
destruction, copying, and assignment) for a class that uses our final version of ValuePtr, ignoring 
more-detailed issues, such as whether the destructor ought to be present (or inline) because Y is or is 
not defined. 

 
// Example 31-3: Sample usage of ValuePtr. 
// 
class X 
{ 
public: 
  X() : y_( new Y(/*...*/) ) { } 
 
  ~X() { } 
 
  X( const X& other ) : y_( new Y(*(other.y_) ) ) { } 
 
  void Swap( X& other ) { y_.Swap( other.y_ ); } 
 
  X& operator=( const X& other ) 
  { 
    X temp( other ); 
    Swap( temp ); 
    return *this; 



  } 
 
private: 
  ValuePtr<Y> y_; 
}; 

Summary 

One moral I would like you to take away from this Item is to always be aware of extensibility as 
you're designing. 

Guideline 

 By default, prefer to design for reuse. 

 

While avoiding the trap of overengineering, always be aware of a longer-term view. You can always 
decide to reject it, but always be aware of it, so that you save time and effort in the long run, both for 
yourself and for all the grateful users who will be happily reusing your code with their own new 
classes for years to come. 

Free Functions and Macros 
Other sections in this book have focused on C++'s powerful support for generic programming and 
object-oriented programming. Still and all, there's something to be said for plain old functions, and 
even for the macro facilities inherited (so to speak) from the C language. 

Have you ever used a language that supported nested functions? If so, you might have wondered 
whether it's possible, or worthwhile, to try to get the same effect in C++, and you can find the answer 
in Item 33. What are preprocessor macros good for, even though much of the time they can be 
downright evil? Turn to Items 34 and 35 for these answers and more. 

But first, there's a certain kind of "machine-like" programming structure that's incredibly useful in 
many application domains and crops up frequently in real-world systems. From a language point of 
view, this structure can often make it desirable to write functions that return pointers to—themselves! 
What is this programming structure, and how can we write such odd-looking recursive function 
declarations? For the answer, turn to Item 32. 

Item 32. Recursive Declarations 

Difficulty: 6 

Can you write a function that returns a pointer to itself? If so, why would you want to? 

1. What is a pointer to function? How can it be used? 
2. Assume it is possible to write a function that can return a pointer to itself. That function could 

equally well return a pointer to any function with the same signature as itself. When might 
this be useful? Explain. 



3. Is it possible to write a function f() that returns a pointer to itself? It should be usable in the 
following natural way: 

4.  
5. // Example 32-3 
6. // 
7. // FuncPtr is a typedef for a pointer to a 
8. // function with the same signature as f() 
9. // 
10. FuncPtr p = f();    // executes f() 
11.  (*p)();            // executes f() 

If it is possible, demonstrate how. If it is not possible, explain why. 

Solution 

 

Function Pointers: Recap 

1. What is a pointer to function? How can it be used? 

Just as a pointer to an object lets you dynamically point at an object of a given type, a pointer to a 
function lets you dynamically point at a function with a given signature. For example: 

 
// Example 32-1 
// 
 
// Create a typedef called FPDoubleInt for a function 
// signature that takes a double and returns an int. 
// 
typedef int (*FPDoubleInt)( double ); 
 
// Use it. 
// 
int f( double ) { /* ... */ } 
int g( double ) { /* ... */ } 
int h( double ) { /* ... */ } 
 
FPDoubleInt fp; 
fp = f; 
fp( 1.1 );     // calls f() 
fp = g; 
fp( 2.2 );     // calls g() 
fp = h; 
fp( 3.14 );    // calls h() 



When applied well, pointers to functions can allow significant runtime flexibility. For example, the 
standard C function qsort() takes a pointer to a comparison function with a given signature, which 
allows calling code to extend qsort()'s behavior by providing a custom comparison function. 

A Brief Look at State Machines 

2. Assume it is possible to write a function that can return a pointer to itself. That function could 
equally well return a pointer to any function with the same signature as itself. When might this 
be useful? Explain. 

Many situations come to mind, but one common example is when implementing a state machine. 

In brief, a state machine is composed of a set of possible states, along with a set of legal transitions 
between those states. For example, a simple state machine might look something like Figure 6. 

Figure 6. A sample state machine. 

 

When we are in the Start state, if we receive the input a, we transition to state S2; otherwise, if we 
receive the input be, we transition to state Stop. Any other input is illegal in state Start. In state S2, if 
we receive the input see, we transition to state Stop; any other input is illegal in state S2. For this 
state machine, there are only two valid input streams: be and asee. 

To implement a state machine, it is sometimes sufficient to make each state a function. All the state 
functions have the same signature and each one returns a pointer to the next function (state) to be 
called. For example, here is an oversimplified code fragment that illustrates the idea. 

 
// Example 32-2 
// 
StatePtr Start( const string& input ); 
StatePtr S2   ( const string& input ); 
StatePtr Stop ( const string& input ); 
StatePtr Error( const string& input ); // error state 



StatePtr Start( const string& input ) 
{ 
  if( input == "a" ) 
  { 
    return S2; 
  } 
  else if( input == "be" ) 
  { 
    return Stop; 
  } 
  else 
  { 
    return Error; 
  } 
} 

See your favorite computer science textbook for more information about state machines and their uses. 

Of course, the above code doesn't say what StatePtr is, and it's not necessarily obvious how to 
say what it should be. This leads us nicely into the final question. 

How Can a Function Return a Pointer to Itself? 

3. Is it possible to write a function f() that returns a pointer to itself? It should be usable in the 
following natural way: 

 
// Example 32-3 
// 
// FuncPtr is a typedef for a pointer to a 
// function with the same signature as f() 
// 
FuncPtr p = f();    // executes f() 
(*p)();             // executes f() 

If it is possible, demonstrate how. If it is not possible, explain why. 

Yes, it's possible, but it's not obvious. 

For example, one might first try using a typedef directly, writing code that looks something like this: 

 
// Example 32-3(a): Naïve attempt (doesn't work) 
// 
typedef FuncPtr (*FuncPtr)(); // error 

Alas, this kind of recursive typedef isn't allowed. Some people, thinking that the type system is just 
getting in the way, try to do an end run around the type system "nuisance" by casting to and from 
void*: 



 
// Example 32-3(b): A nonstandard and nonportable hack 
// 
typedef void* (*FuncPtr)(); 
 
void* f() { return (void*)f; }  // cast to void* 
FuncPtr p = (FuncPtr)(f());     // cast from void* 
p(); 

This isn't a solution because it doesn't satisfy the criteria of the question. Worse, it is dangerous 
because it deliberately defeats the type system; it is onerous because it forces all users of f() to write 
casts. Worst of all, Example 32-3(b) is not supported by the standard. Although a void* is guaranteed 
to be big enough to hold the value of any object pointer, it is not guaranteed to be suitable to hold a 
function pointer. On some platforms, a function pointer is larger than an object pointer. Even if code 
like Example 32-3(b) happens to work on the compiler you're using today, it's not portable and may 
not work on another compiler, or even on the next release of your current compiler. 

Of course, one way around this is to cast to and from another function pointer type instead of a simple 
void*: 

 
// Example 32-3(c): Standard and portable, 
// but nonetheless still a hack 
// 
typedef void (*VoidFuncPtr)(); 
typedef VoidFuncPtr (*FuncPtr)(); 
 
VoidFuncPtr f() { return (VoidFuncPtr)f; } 
                          // cast to VoidFuncPtr 
 
FuncPtr p = (FuncPtr)f(); // cast from VoidFuncPtr 
p(); 

This code is technically legal, but it has all but one of the major disadvantages of Example 32-3(b). It 
is a dangerous hack because it deliberately defeats the type system. It imposes an unacceptable burden 
on all users of f() by requiring them to write casts. And, of course, it's still not really a solution at all 
because it doesn't meet the requirements of the problem. 

Can we really do no better? 

A Correct and Portable Way 

Fortunately, we can get exactly the intended effect required by Question #3 in a completely type-safe 
and portable way, without relying on nonstandard code or type-unsafe casting. The way to do it is to 
add a level of indirection in the form of a proxy class that takes, and has an implicit conversion to, the 
desired pointer type. 

 
// Example 32-3(d): A correct solution 
// 



class FuncPtr_; 
typedef FuncPtr_ (*FuncPtr)(); 
class FuncPtr_ 
{ 
public: 
  FuncPtr_( FuncPtr p ) : p_( p ) { } 
  operator FuncPtr() { return p_; } 
private: 
  FuncPtr p_; 
}; 

Now we can declare, define, and use f() naturally: 

 
FuncPtr_ f() { return f; } // natural return syntax 
 
int main() 
{ 
  FuncPtr p = f();  // natural usage syntax 
  p(); 
} 

This solution has three main strengths: 

1. It solves the problem as required. Better still, it's type-safe and portable. 
2. Its machinery is transparent. You get natural syntax for the caller/user, and natural syntax for 

the function's own "return myname;" statement. 
3. It probably has zero overhead. OS modern compilers, the proxy class, with its storage and 

functions, should inline and optimize away to nothing. 

Coda 

Normally, a special-purpose FuncPtr_ proxy class like this (which contains some old object 
and doesn't really care much about its type) just cries out to be templatized into a general-purpose 
Holder proxy. Alas, you can't just directly templatize the FuncPtr_ class above, because then 
the typedef would have to look something like the following, 

 
typedef Holder<FuncPtr> (*FuncPtr)(); 

which is self-referential. 

Item 33. Simulating Nested Functions 

Difficulty: 5 

C++ has nested classes, but not nested functions. When might nested functions be useful, and can they 
be simulated in C++? 



1. What is a nested class? Why can it be useful? 
2. What is a local class? Why can it be useful? 
3. C++ does not support nested functions. That is, we cannot write something like 
4.  
5. // Example 33-3 
6. // 
7. int f( int i ) 
8. { 
9.   int j = i*2; 
10.  
11.   int g( int k )  // not valid C++ 
12.   { 
13.     return j+k; 
14.   } 
15.  
16.   j += 4; 
17.  
18.   return g( 3 ); 
19. } 

Demonstrate how it is possible to achieve the same effect in standard C++, and show how to 
generalize the solution. 

Solution 

 

Recap: Nested and Local Classes 

C++ provides many useful tools for information hiding and dependency management. As we recap 
nested classes and local classes, don't fixate too much on the syntax and semantics. Rather, focus on 
how these features can be used to write solid, maintainable code and express good object designs—
designs that prefer weak coupling and strong cohesion. 

1. What is a nested class? Why can it be useful? 

A nested class is a class enclosed within the scope of another class. For example: 

 
// Example 33-1: Nested class 
// 
class OuterClass 
{ 
/*...public, protected, or private...*/: 
  class NestedClass 
  { 
    // ... 
  }; 
 



  // ... 
  }; 

Nested classes are useful for organizing code and controlling access and dependencies. Nested classes 
obey access rules just as other parts of a class do. So, in Example 33-1, if NestedClass is 
public, then any outside code can name it as Outer Class::NestedClass. Often, nested 
classes contain private implementation details, and are therefore made private. In Example 33-1, 
if NestedClass is private, then only OuterClass's members and friends can use 
NestedClass. 

Note that you can't get the same effect with namespaces alone, because namespaces merely group 
names into distinct areas. Namespaces do not by themselves provide access control, whereas classes 
do. So, if you want to control access rights to a class, one tool at your disposal is to nest it within 
another class. 

2. What is a local class? Why can it be useful? 

A local class is a class defined within the scope of a function—any function, whether a member 
function or a free function. For example: 

 
// Example 33-2: Local class 
// 
int f() 
{ 
  class LocalClass 
  { 
    // ... 
  }; 
 
  // ... 
}; 

Like nested classes, local classes can be a useful tool for managing code dependencies. In Example 
33-2, only the code within f() itself knows about LocalClass and is able to use it. This can be 
useful when LocalClass is, say, an internal implementation detail of f() that should never be 
advertised to other code. 

You can use a local class in most places where you can use a nonlocal class, but there is a major 
restriction to keep in mind. A local or unnamed class cannot be used as a template parameter. From 
the C++ standard [C++98] section 14.3.1/2: 

A local type, a type with no linkage, an unnamed type or a type compounded from any of these types 
shall not be used as a template-argument for a template type-parameter. [Example: 

 
template<class T> 
class X { /* ... */ }; 
void f() 
{ 



  struct S { /* ... */ }; 
  X<S> x3;  // error: local type used as 
              //  template-argument 
    X<S*> x4; // error: pointer to local type 
              //  used as template-argument 
  } 

--end example] 

Both nested classes and local classes are among C++'s many useful tools for information hiding and 
dependency management. 

Nested Functions: Overview 

Some languages (but not C++) allow nested functions, which have similarities to nested classes. A 
nested function is defined inside another function, the "enclosing function," such that: 

• The nested function has access to the enclosing function's variables; and 
• The nested function is local to the enclosing function—that is, it can't be called from 

elsewhere unless the enclosing function gives you a pointer to the nested function. 

Just as nested classes can be useful because they help control the visibility of a class, nested functions 
can be useful because they help control the visibility of a function. 

C++ does not have nested functions. But can we get the same effect? This brings us to the following 
key question. 

3. C++ does not support nested functions. That is, we cannot write something like 

 
// Example 33-3 
// 
int f( int i ) 
{ 
  int j = i*2; 
 
  int g( int k )  // not valid C++ 
  { 
    return j+k; 
  } 
 
  j += 4; 
 
  return g( 3 ); 
} 

Demonstrate how it is possible to achieve the same effect in standard C++, and show how to 
generalize the solution. 



Yes, it is possible, with only a little code reorganization and a minor limitation. The basic idea is to 
turn a function into a function object. This discussion, not coincidentally, will also serve to nicely 
illustrate some of the power of function objects. 

Attempts at Simulating Nested Functions in C++ 

To solve a problem like Question #3, most people start out by trying something like the following: 

 
// Example 33-3(a): Naïve "local function object" 
// approach (doesn't work) 
// 
int f( int i ) 
{ 
  int j = i*2; 
 
  class g_ 
  { 
  public: 
    int operator()( int k ) 
    { 
      return j+k;   // error: j isn't accessible 
    } 
  } g; 
 
  j += 4; 
 
  return g( 3 ); 
} 

In Example 33-3(a), the idea is to wrap the function in a local class and call the function through a 
function object. 

It's a nice idea, but it doesn't work for a simple reason: The local class object doesn't have access to 
the enclosing function's variables. 

"Well," one might say, "why don't we just give the local class pointers or references to all the 
function's variables?" Indeed, that's usually the next attempt. 

 
// Example 33-3(b): Naïve "local function object plus 
// references to variables" approach (complex, 
// fragile) 
// 
int f( int i ) 
{ 
  int j = i*2; 
 
  class g_ 
  { 



  public: 
    g_( int& j ) : j_( j ) { } 
 
    int operator()( int k ) 
    { 
      return j_+k;  // access j via a reference 
    } 
 
  private: 
    int& j_; 
  } g( j ); 
 
  j += 4; 
 
  return g( 3 ); 
} 

All right, I have to admit that this "works"—but only barely. This solution is fragile, difficult to 
extend, and can rightly be considered a hack. For example, consider that just to add a new variable 
requires four changes: 

a. Add the variable; 
b. Add a corresponding private reference to g_; 
c. Add a corresponding constructor parameter to g_; and 
d. Add a corresponding initialization to g_::g_(). 

That's not very maintainable. It also isn't easily extended to multiple local functions. Couldn't we do 
better? 

A Somewhat Improved Solution 

We can do better by moving the variables themselves into the local class. 

 
// Example 33-3(c): A better solution 
// 
int f( int i ) 
{ 
  class g_ 
  { 
  public: 
    int j; 
 
    int operator()( int k ) 
    { 
      return j+k; 
    } 
  } g; 
 



  g.j = i*2; 
  g.j += 4; 
  return g( 3 ); 
} 

This is a solid step forward. Now g_ doesn't need pointer or reference data members to point at 
external data; it doesn't need a constructor; and everything is much more natural all around. Note also 
that the technique is now extensible to any number of local functions, so let's go a little crazy and add 
some more local functions called x(), y(), and z(), and while we're at it, why not rename g_ 
itself to be more indicative of what the local class is actually doing? 

 
// Example 33-3(d): Nearly there! 
// 
int f( int i ) 
{ 
  // Define a local class that wraps all 
  // local data and functions. 
  // 
  class Local_ 
  { 
  public: 
    int j; 
 
    // All local functions go here: 
    // 
    int g( int k ) 
    { 
      return j+k; 
    } 
    void x() { /* ... */ } 
    void y() { /* ... */ } 
    void z() { /* ... */ } 
  } local; 
 
  local.j = i*2; 
  local.j += 4; 
 
  local.x(); 
  local.y(); 
  local.z(); 
 
  return local.g( 3 ); 
} 

This still has the problem that when you need to initialize j using something other than default 
initialization, you have to add a clumsy constructor to the local class just to pass through the 
initialization value. The original question tried to initialize j to the value of i*2. Here, we've had to 



create j and then assign the value, which isn't exactly the same thing and could be difficult for more-
complex types. 

A Complete Solution 

If you don't need f itself to be a bona fide function (for example, if you don't take pointers to it), you 
can turn the whole thing into a function object and elegantly support non-default initialization into the 
bargain. 

 
// Example 33-3(e): A complete and nicely 
// extensible solution 
// 
class f 
{ 
  int  retval; // f's "return value" 
  int  j; 
  int  g( int k ) { return j + k; }; 
  void x() { /* ... */ } 
  void y() { /* ... */ } 
  void z() { /* ... */ } 
 
public: 
  f( int i )   // original function, now a constructor 
    : j( i*2 ) 
  { 
    j += 4; 
    x(); 
    y(); 
    z(); 
    retval = g( 3 ); 
  } 
  operator int() const // returning the result 
  { 
    return retval; 
  } 
}; 

The code is shown inline for brevity, but all the private members could also be hidden behind a Pimpl, 
giving the same full separation of interface from implementation we had with the original simple 
function. 

Note that this approach is easily extensible to member functions. For example, suppose that f() is a 
member function instead of a free function, and we would like to write a nested function g() inside 
f() as follows: 

 
// Example 33-4: This isn't legal C++, but it 
// illustrates what we want: a local function 



// inside a member function 
// 
class C 
{ 
  int data_; 
 
public: 
  int f( int i ) 
  { 
    // a hypothetical nested function 
    int g( int i ) { return data_ + i; } 
 
    return g( data_ + i*2 ); 
  } 
}; 

We can express this by turning f() into a class, as demonstrated in Example 33-3(e), except whereas 
in Example 33-3(e) the class was at global scope, it is now a nested class and accessed via a 
passthrough helper function. 

 
// Example 33-4(a): The complete and nicely 
// extensible solution, now applied to a 
// member function 
// 
class C 
{ 
  int data_; 
  friend class C_f; 
public: 
  int f( int i ); 
}; 
 
class C_f 
{ 
  C*  self; 
  int retval; 
  int g( int i ) { return self->data_ + i; } 
 
public: 
  C_f( C* c, int i ) : self( c ) 
  { 
    retval = g( self->data_ + i*2 ); 
  } 
 
  operator int() const { return retval; } 
}; 
 
int C::f( int i ) { return C_f( this, i ); } 



Summary 

This approach illustrated above in Examples 33-3(e) and 33-4(a) simulates most of the features of 
local functions and is easily extensible to any number of local functions. Its main weakness is that it 
requires that all variables be defined at the start of the "function" and doesn't (easily) allow us to 
declare variables closer to point of first use. It's also more tedious to write than a local function would 
be, and it is clearly a workaround for a language limitation. But, in the end, it's not bad, and it 
demonstrates some of the power inherent in function objects over plain functions. 

The purpose of this Item wasn't just to learn about how nice it might be to have local functions in C++. 
The purpose was, as always, to set a specific design problem, explore alternative methods for solving 
it, and weigh the solutions to pick the best-engineered option. Along the way, we also got to 
experiment with various C++ features and see through use what makes function objects useful. 

When designing your programs, strive for simplicity and elegance wherever possible. Some of the 
intermediate above solutions would arguably "work" but should never be allowed to see the light of 
day in production code. They are complex, difficult to understand, and therefore difficult and 
expensive to maintain. 

Guideline 

 Prefer clarity. Avoid complex designs. Eschew obfuscation. 

 

Simpler designs are easier to code and test. Avoid complex solutions, which are almost certain to be 
fragile and harder to understand and maintain. While being careful to avoid the trap of 
overengineering, recognize that even if coming up with a judicious simple design takes a little extra 
time up front, the long-term benefits usually make that time well spent. Putting in a little time now 
often means saving more time later. And most people would agree that the "more time later" is better 
spent with the family at the cottage than slaving away over a hot keyboard, trying to find those last 
few bugs in a complicated rat's nest of code. 

Item 34. Preprocessor Macros 

Difficulty: 4 

Preprocessor macros are part of C++'s heritage from C. This Item considers whether they are still 
relevant in the modern C++ scheme of things. 

With flexible features such as overloading and type-safe templates available, why would a C++ 
programmer ever write a preprocessor directive like "#define"? 

Solution 

 



C++ features often, but not always, cancel out the need for using #define. For example, "const 
int c = 42;" is superior to "#define c 42" because it provides type safety, and avoids 
accidental preprocessor edits, among other reasons. 

There are, however, still a few good reasons to write #define. 

1. Header Guards 

This is the usual trick to prevent multiple header inclusions. 

 
#ifndef MYPROG_X_H 
#define MYPROG_X_H 
// ... the rest of the header file x.h goes here... 
#endif 

2. Accessing Preprocessor Features 

It's often nice to insert things such as line numbers and build times in diagnostic code. An easy way to 
do this is to use predefined standard macros such as __FILE__, __LINE__, __DATE__, and 
__TIME__. For the same and other reasons, it's often useful to use the stringizing and token-pasting 
preprocessor operators (# and ##). 

3. Selecting Code at Compile Time (or Build-Specific Code) 

This is an important, if overused, category of uses for the preprocessor. Although I am anything but a 
fan of preprocessor magic, there are things you just can't do as well, or at all, in any other way. 

a) Debug Code 

Sometimes, you want to build your system with certain "extra" pieces of code (typically, debugging 
information) and sometimes you don't. 

 
void f() 
{ 
#ifdef MY_DEBUG 
  cerr << "some trace logging" << endl; 
#endif 
  // ... the rest of f() goes here... 
} 

The thing about this code, though, is that what we really have is two different programs. When we 
compile it with MY_DEBUG defined, we get source code that includes output to cerr, and the 
compiler will check that line's syntax and semantics, too. When we compile it without MY_DEBUG 
defined, we get a different program that does not include the output to cerr, and the compiler cannot 
verify the correctness of the excluded code. 

Usually it is better to use a conditional expression instead of the #define. 



 
void f() 
{ 
  if( MY_DEBUG ) 
  { 
    cerr << "some trace logging" << endl; 
  } 
  // ... the rest of f() goes here... 
} 

This way, there's only one program to compile and test, the compiler can validate all the code, and the 
compiler can easily eliminate the unreachable code if MY_DEBUG isn't true. 

b) Platform-Specific Code 

Usually, it's best to deal with platform-specific code using a factory pattern, because this approach 
makes for better code organization and runtime flexibility. Sometimes, however, there are just too few 
differences to justify a factory, and the preprocessor can be a useful way to switch optional code. 

c) Variant Data Representations 

A common example is that a module may define a list of error codes, which outside users should see 
as a simple enum with comments, but which inside the module should be stored in a map for easy 
lookup. That is: 

 
// For outsiders 
// 
enum Error 
{ 
  ERR_OK = 0,            // No error 
  ERR_INVALID_PARAM = 1, // <description> 
  ... 
}; 
 
// For the module's internal use 
// 
map<Error,const char*> lookup; 
lookup.insert( make_pair( ERR_OK, 
                          (const char*)"No error" ) ); 
lookup.insert( make_pair( ERR_INVALID_PARAM, 
                          (const char*)"<description>" ) ); 
... 

We'd like to have both representations, without defining the actual information (code/message pairs) 
twice. With macro magic, we can simply write a list of errors as follows, creating the appropriate 
structure at compile time: 

 
ERR_ENTRY( ERR_OK,            0, "No error" ), 



ERR_ENTRY( ERR_INVALID_PARAM, 1, "<description>" ), 
... 

The implementations of ERR_ENTRY and related macros is left to the reader. 

These are three common examples, but there are many more. Suffice it to say that although the C 
preprocessor should be avoided in many places, it still has its share of useful features that can, when 
used judiciously, make writing C++ code easier and safer. 

Guideline 

 Avoid preprocessor macros: 

• Except #include guards 
• Except conditional compilation for portability or debugging in .cpp 

files (not in .h files!) 
• Except #pragmas used to disable known-to-be-innocuous warnings, 

but such #pragmas must always be inside a "conditional compilation 
for portability" guard to prevent warnings from compilers that do not 
understand them 

 

To see what the inventor of the C++ language thinks of the preprocessor, check out section 18 of 
[Stroustrup94]. 

Item 35. #Definition 

Difficulty: 4 

What can and can't macros do? Not all compilers agree. 

1. Demonstrate how to write a simple max() preprocessor macro that takes two arguments and 
evaluates to the one that is greater, using normal < comparison. What are the usual pitfalls in 
writing such a macro? 

2. What can a preprocessor macro not create? Why not? 

Solution 

 

Common Macro Pitfalls 

1. Demonstrate how to write a simple max() preprocessor macro that takes two arguments and 
evaluates to the one that is greater, using normal < comparison. What are the usual pitfalls in 
writing such a macro? 



There are four major pitfalls, in addition to several further drawbacks. Focusing on the pitfalls first, 
here are common ways to go wrong when writing a macro. 

1. Don't forget to put parentheses around arguments. 
 
// Example 35-1(a): Paren pitfall #1: arguments 
// 
#define max(a,b) a < b ? b : a 

The problem here is that the uses of the parameters a and b are not fully parenthesized. Macros only 
do straight textual substitution, so this can cause some unexpected results. For example: 

 
max( i += 3, j ) 

expands to 

 
i += 3 < j ? j : i += 3 

which, because of operator precedence and language rules, actually means 

 
i += ((3 < j) ? j : i += 3) 

This could cause some long debugging sessions. There is also a problem related to sequence points 
and attempting to modify i twice between sequence points; more on this in a moment. 

2. Don't forget to put parentheses around the whole expansion. 

Fixing the first problem, we still fall prey to another subtlety. 

 
// Example 35-1(b): Paren pitfall #2: expansion 
// 
#define max(a,b) (a) < (b) ? (b) : (a) 

The problem now is that the entire expansion is not correctly parenthesized. For example: 

 
k = max( i, j ) + 42; 

expands to 

 
k = (i) < (j) ? (j) : (i) + 42; 

which, because of operator precedence, actually means 



 
k = (((i) < (j)) ? (j) : ((i) + 42)); 

If i >= j, k is assigned the value of i+42, as intended. But if i < j, k is assigned the value of 
j. 

We can fix problem #2 by putting parentheses around the entire macro expansion, but this leaves us 
with yet another problem: 

3. Watch for multiple argument evaluation. 

Consider what happens if one or both of the expressions has side effects: 

 
// Example 35-1(c): Multiple argument evaluation 
// 
#define max(a,b) ((a) < (b) ? (b) : (a)) 
 
max( ++i, j ) 

If the result of ++i >= j, i gets incremented twice, which is probably not what the programmer 
intended: 

 
((++i) < (j) ? (j) : (++i)) 

Similarly, consider 

 
max( f(), pi ) 

which expands to 

 
((f()) < (pi) ? (pi) : (f())) 

If the result of f() >= pi, f() gets executed twice, which is almost certainly inefficient and 
often wrong. 

Although we could work around the first two problems, this one is a corker. There is no solution as 
long as max is a macro. 

4. Name tromping. 

Finally, macros don't care about scope. (They don't care about much of anything; see [GotW] #63.[1]) 
They just perform textual substitution, no matter where the text is. This means that if we use macros at 
all, we have to be careful about what we name them. In particular, the biggest problem with the max 
macro is that it is highly likely to interfere with the standard max() function template: 



[1] Available online at http://www.gotw.ca/gotw/063.htm. 

 
// Example 35-1(d): Name tromping 
// 
#define max(a,b) ((a) < (b) ? (b) : (a)) 
 
#include <algorithm> // oops! 

The problem is that inside header <algorithm>, there will be something like the following: 

 
template<typename T> const T& 
max(const T& a, const T& b); 

Alas, the macro "helpfully" turns that into an uncompilable mess: 

 
template<typename T> const T& 
((const T& a) < (const T& b) ? (const T& b) : (const T& a)); 

If you think that's easy to avoid by putting your macro definition after all #included header files 
(which really is a good idea in any case), just imagine what the macro does to all your other code that 
happens to have variables or other things that just happen to be named max. 

If you have to write a macro, try to give it an unusual and hard-to-spell name that will be less likely to 
tromp on other names. 

Other Macro Drawbacks 

There are a few other major things a macro can't do: 

5. Macros can't recurse. 

We can write a recursive function, but it's impossible to write a recursive macro. As the C++ standard 
[C++98] says, in 16.3.4/2: 

If the name of the macro being replaced is found during this scan of the replacement list (not 
including the rest of the source file's pre-processing tokens), it is not replaced. Further, if any nested 
replacements encounter the name of the macro being replaced, it is not replaced. These nonreplaced 
macro name preprocessing tokens are no longer available for further replacement even if they are 
later (re)examined in contexts in which that macro name preprocessing token would otherwise have 
been replaced. 

6. Macros don't have addresses. 

It's possible to form a pointer to any free or member function (for example, to use it as a predicate), 
but it's not possible to form a pointer to a macro, because a macro has no address. Why not should be 
obvious—macros aren't code. A macro doesn't have any existence of its own, because it is only a 
glorified (and not particularly glorious) text substitution rule. 



7. Macros are debugger-unfriendly. 

In addition to the fact that macros change the underlying code before the compiler gets a chance to see 
it—and therefore can wreak havoc with variable names and other names—a macro can't be stepped 
into during debugging. 

Have you heard the one about the scientists who started experimenting on lawyers instead of on 
laboratory macros? It was because… 

There Are Some Things Even a Macro Won't Do 

There are valid reasons to use macros (for details, turn to Item 34), but there are limits. This brings us 
to the final question. 

2. What can a preprocessor macro not create? Why not? 

In the standard, clause 2.1 defines the phases of translation. Preprocessing directives and macro 
expansions take place in phase 4. Thus, on a compliant compiler, it is not possible for a macro to 
create any of the following: 

• a trigraph (trigraphs are replaced in phase 1); 
• a universal character name (\uXXXX, replaced in phase 1); 
• an end-of-line line-splicing backslash (replaced in phase 2); 
• a comment (replaced in phase 3); 
• another macro or preprocessing directive (expanded and executed in phase 4); or 
• changes to a character literal (for example, 'x') or string literal (for example, "hello, 

world") via macro names inside the strings. 

For this last point, as noted in 16.3/8 footnote 7: 

Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, 
not sequences possibly containing identifier-like subsequences (see 2.1.1.2, translation phases), they 
are never scanned for macro names or parameters. 

A published article[2] once claimed that it's possible for a macro to create a comment as follows: 

[2] M. Timperley. "A C/C++ Comment Macro" (C/C++ Users Journal, 19(1), January 2001). 

 
#define COMMENT SLASH(/) 
#define SLASH(s) /##s 

This is nonstandard and not portable, but it's an understandable mistake because it actually works on 
some popular compilers. Why does it work? Because those compilers don't implement the phases of 
translation correctly. 

Miscellaneous Topics 

Some topics are important but don't lend themselves to easy pigeonholing. Our final five Items focus 
on four language features: initialization; forward declarations; typedef; and a concluding pair on 



namespaces. Items 39 and 40, in particular, finish off with answers to what is one of the most 
frequently asked questions about modern C++: When and how should you use namespaces, anyway? 
Enjoy. 

Item 36. Initialization 

Difficulty: 3 

What's the difference between direct initialization and copy initialization, and when are they used? 

1. What is the difference between direct initialization and copy initialization? 
2. Which of the following cases uses direct initialization, and which uses copy initialization? 
3.  
4. class T : public S 
5. { 
6. public: 
7.   T() : S(1),             // base initialization 
8.         x(2) {}           // member initialization 
9.   X x; 
10. }; 
11.  
12. T f( T t )                // passing a function 

argument 
13. { 
14.   return t;               // returning a value 
15. } 
16.  
17. S s; 
18. T t; 
19. S& r = t; 
20.  
21. reinterpret_cast<S&>(t);  // performing a 

reinterpret_cast 
22. static_cast<S>(t);        // performing a static_cast 
23. dynamic_cast<T&>(r);// performing a dynamic_cast 
24. const_cast<const T&>(t);  // performing a const_cast 
25.  
26. try 
27. { 
28.   throw T();              // throwing an exception 
29. } 
30. catch( T t )              // handling an exception 
31. { 
32. } 
33.  
34. f( T(s) );                // functional-notation type 

conversion 
35. S a[3] = { 1, 2, 3 };     // brace-enclosed 

initializers 



36. S* p = new S(4);          // new expression 

Solution 

 

1. What is the difference between direct initialization and copy initialization? 

Direct initialization means the object is initialized using a single (possibly conversion) constructor, 
and is equivalent to the form "T t(u);": 

 
U u; 
T t1(u); // calls T::T( U& ) or similar 

Copy initialization means the object is initialized using the copy constructor, after first calling a user-
defined conversion if necessary, and is equivalent to the form "T t = u;": 

 
T t2 = t1;  // same type: calls T::T( T& ) or similar 
T t3 = u;   // different type: calls T::T( T(u) ) 
            //  or T::T( u.operator T() ) or similar 

Aside: The reason for the "or similar" equivocation is that the copy and conversion constructors could 
take something slightly different from a plain reference (the reference could be const or 
volatile, or both), and the user-defined conversion constructor or operator could, in addition, take 
or return an object rather than a reference. Also, the copy and conversion constructors could have 
additional default arguments. 

Note that in the last case ("T t3 = u;") the compiler could call both the user-defined conversion 
(to create a temporary object) and the T copy constructor (to construct t3 from the temporary), or it 
could choose to elide the temporary and construct t3 directly from u (which would end up being 
equivalent to "T t3(u);"). Either way, the unoptimized code must still be legal. In particular, the 
copy constructor must still be accessible, even if the call to it is optimized away. 

In the C++ standard, the compiler's latitude to elide temporary objects has been restricted compared 
with the latitude compilers enjoyed in pre-standard times. Elision is still allowed, however, for this 
optimization and for the return value optimization. For more details, see Exceptional C++ [Sutter00] 
Item 42 about the basics, and Exceptional C++ Item 46 covering the change in the final standard. 

Guideline 

 Prefer using the form "T t(u)" over "T t = u" for variable initialization. 

 

2. Which of the following cases uses direct initialization, and which uses copy initialization? 



In the standard, the thrilling section 8.5 covers most of these. There were also three tricks that don't 
involve initialization at all. Did you catch them? 

 
class T : public S 
{ 
public: 
  T() : S(1),              // base initialization 
        x(2) {}            // member initialization 
  X x; 
}; 

Base and member initialization both use direct initialization. 

 
T f( T t )                // passing a function argument 
{ 
  return t;               // returning a value 
} 

Passing and returning values both use copy initialization. 

 
S s; 
T t; 
S& r = t; 
 
reinterpret_cast<S&>(t);  // performing a reinterpret_cast 
dynamic_cast<T&>(r);      // performing a dynamic_cast 
const_cast<const T&>(t);  // performing a const_cast 

Trick: No initialization of a new object is involved in these cases. Only references are created. 

 
static_cast<S>(t);        // performing a static_cast 

A static_cast uses direct initialization. 

 
try 
{ 
  throw T();              // throwing an exception 
} 
catch( T t )              // handling an exception 
{ 
} 

Throwing and catching an exception object both use copy initialization. 



Note that in this particular code, there are two copies, for a total of three T objects. A copy of the 
thrown object is made at the throw site. And in this case, a second copy is made because the handler 
catches the thrown object by value. 

In general, though, prefer to catch exceptions by reference, not by value, to avoid making extra copies 
and to eliminate potential object slicing.[1] 

[1] See also Item 13 in [Meyers96]. 

 
f( T(s) );              // functional-notation type conversion 

This function-style cast uses direct initialization. 

 
S a[3] = { 1, 2, 3 };   // brace-enclosed initializers 

Brace-enclosed initializers use copy initialization. 

 
S* p = new S(4);        // new expression 

Finally, new expressions use direct initialization. 

Item 37. Forward Declarations 
Difficulty: 3 

Forward declarations are a great way to eliminate needless compile-time dependencies. But here's an 
example of a forward-declaration snare. How would you avoid it? 

1. Forward declarations are very useful tools. In this case, they don't work as the programmer 
expected. Why are the marked lines errors? 

2.  
3. // file f.h 
4. // 
5. class ostream;  // error 
6. class string;   // error 
7. string f( const ostream& ); 
8. Without including any other files, write the correct forward declarations for ostream and 

string above. 

Solution 

 

1. Forward declarations are very useful tools. In this case, they don't work as the programmer 
expected. Why are the marked lines errors? 



 
// file f.h 
// 
class ostream;  // error 
class string;   // error 
string f( const ostream& ); 

Alas, you cannot forward-declare ostream and string this way because they are not classes. 
Both are typedefs of templates. 

(True, you used to be able to forward-declare ostream and string this way in pre-standard C++, 
but that was many years ago. It is no longer possible in the standard language.) 

2. Without including any other files, write the correct forward declarations for ostream and 
string above. 

Short answer: This is not possible. In fact, it turns out there exists no standard and portable way to 
forward-declare ostream without including another file, and there is no standard and portable way 
to forward-declare string at all. 

The reason we can't just forward-declare either of these ourselves is that the standard is explicit that 
we cannot write our own declarations to namespace std, which is where ostream and 
string live: 

It is undefined for a C++ program to add declarations or definitions to namespace std or 
namespaces within namespace std unless otherwise specified. 

Among other things, this rule is intended to let vendors provide implementations of the standard 
library that have more template parameters for library templates than the standard requires (suitably 
defaulted, of course, to remain compatible). Even if we were allowed to forward-declare standard 
library templates and classes, we couldn't do it portably, because vendors are allowed to extend those 
declarations differently from implementation to implementation. 

The best you can do (which is not a solution to the problem "without including any other files") is the 
following: 

 
#include <iosfwd> 
#include <string> 

The iosfwd header does contain bona fide forward declarations. The string header does not. 
This is all you can do and still be portable. Fortunately, forward-declaring string and ostream 
isn't too much of an issue in practice, because they're generally small and widely used. The same is 
true for most standard headers. However, beware the pitfalls, and don't be tempted to start forward-
declaring templates, or anything else, that belongs to namespace std. That's a high and solemn 
privilege reserved for the compiler and library writers, and them alone. 

Guideline 



 Never #include a header when a forward declaration will suffice. Prefer to 
#include only <iosfwd> when the complete definition of a stream is not 
needed. 

 

See also Exceptional C++ [Sutter00] Item 26. 

Item 38. Typedef 
Difficulty: 3 

Why use typedef? Besides the many traditional reasons, we'll consider typedef techniques that 
make using the C++ standard library safer and easier. 

1. Why use typedef? Name as many situations/reasons as you can. 
2. Why is typedef such a good idea in code that uses standard (STL) containers? 

Solution 

 

Typedef: Controlling What's in a Name 

To recap, writing typedef allows you to assign another equivalent name for a type. For example, 

 
typedef vector< vector<int> > IntMatrix; 

lets you write the simpler IntMatrix in place of the more verbose vector< vector<int> 
>. 

1. Why use typedef? Name as many situations/reasons as you can. 

Here are several "abilities." 

Typeability 

Shorter names are easier to type. 

Readability 

Typedefs can make code, especially long template type names, much more readable. For a simple 
example, a public newsgroup posting asked what the following code meant: 

 
int ( *t(int) )( int* ); 



If you're used to reading C declarations just like you'd read a Victorian English novel (that is, dense 
and verbose prose that at times feels like slogging through ankle-deep sucking muck), you know the 
answer and you're fine. If you're not, typedefs really help, even with as meaningless a typedef 
name as Func: 

 
typedef int (*Func)( int* ); 
 
Func t( int ); 

Now it's clearer that this is a function declaration, for a function named t that takes an int and 
returns a pointer to a function that takes an int* and returns an int. (Say that three times fast.) In 
this case, the typedef is easier to read than the English. 

Typedefs can also add semantic meaning. For example, "PhoneBook" is much easier to 
understand than "map< string, string>," where the latter has little semantic content and 
could mean nearly anything. 

Communication 

Typedefs can help to communicate intent. For example, instead of littering the program with lots of 
unadorned ints, it can be clearer to give the types names, even though at heart they still are just 
ints. Compare this: 

 
int x; 
int y; 
y = x * 3;   // might be okay -- who knows? 

with this: 

 
typedef int Inches; 
typedef int Dollars; 
 
Inches  x; 
Dollars y; 
y = x * 3;   // hmmm...? 

Which would you prefer to read if you were the maintenance programmer? 

Portability 

If you use typedef'd names for platform-specific or otherwise nonportable names, you'll find it 
easier to move to new platforms. After all, it's easier to write this: 

 
#if defined USING_COMPILER_A 
  typedef __int32 Int32; 



  typedef __int64 Int64; 
#elif defined USING_COMPILER_B 
  typedef int       Int32; 
  typedef long long Int64; 
#endif 

than search-and-replace for one of the system-specific names throughout your code. The typedef 
names help to insulate your code from simple platform dependencies. (For reasons why you might not 
want to use #define for this purpose, however, turn to Item 35.) 

2. Why is typedef such a good idea in code that uses standard (STL) containers? 

Flexibility 

Changing a typedef name in one place is easier than changing all its uses throughout the code. For 
example, consider the following code: 

 
void f( vector<Customer>& custs ) 
{ 
  vector<Customer>::iterator i = custs.begin(); 
  ... 
} 

What if, a few months later, we find out that vector isn't the right container after all? If we're 
storing huge quantities of Customer objects, the fact that vector's storage is contiguous[2] may 
be a disadvantage and we might like to switch to deque instead. Or if we find ourselves frequently 
inserting/removing elements from the middle, we might like to switch to list instead. 

[2] See Item 7. 

In the above code, we'd have to make that change everywhere the type name 
"vector<Customer>" appears. How much easier it would be if we had only written: 

 
typedef vector<Customer> Customers; 
typedef Customers::iterator CustIter; 
 
... 
 
void f( Customers& custs ) 
{ 
  CustIter i = custs.begin(); 
  ... 
} 

and only needed to change the typedef to list<Customer> or deque<Customer>! Of 
course, it is not always this easy—for example, our code might be rely- ing on the 
Customers::iterator being a random-access iterator, which a 



list<Customer>::iterator is not. But the typedef still insulates us from a lot of 
tedious changes that would be necessary otherwise. 

Traitability 

The traits idiom is a powerful way to associate information with a type, and if you want to customize 
standard containers or algorithms, you'll often need to provide traits. See the coverage of traits in the 
Generic Programming section of this book, and consider also the case-insensitive string example 
from Exceptional C++ [Sutter00] Items 2 and 3, where we defined our own char_traits 
replacement. 

Summary 

Most uses of typedef fall into one of these categories. In general, typedef makes code easier to 
write, easier to read, and easier to change through the proverbial "additional level of indirection"—in 
this case, an indirection in name only is still as sweet. 

Item 39. Namespaces, Part 1: Using-Declarations and Using-
Directives 

Difficulty: 2 

Standard C++ includes support for namespaces and name visibility control with using-declarations 
and using-directives. This Item provides a quick recap, laying the groundwork for the next Item's 
practical application. 

What are using-declarations and using-directives, and how are they used? Give examples. 
Which is order-dependent? 

Solution 

 

Although C++ changed greatly during standardization, few of the changes the committee made are 
likely to break existing code. There is one change, however, that will cause nearly all earlier C++ code 
to fail to compile—the addition of namespaces and, particularly, the fact that the whole C++ standard 
library now lives in namespace std. 

If you are a C++ programmer and this hasn't troubled you yet, it probably will soon, because the 
newest releases of most compilers have conformed to this change. As you start upgrading to the latest 
release of your compiler, or stop using legacy (and now nonstandard) pre-namespace headers, your 
code will be forced to adapt. 

What are using-declarations and using-directives, and how are they used? Give examples. 
Which is order-dependent? 



Using-Declarations 

A using-declaration creates a local synonym for a name actually declared in another namespace. For 
the purposes of overloading and name resolution, a using-declaration works just like any declaration. 

 
// Example 39-1(a) 
// 
namespace A 
{ 
  int f( int ); 
  int i; 
} 
 
using A::f; 
 
int f( int ); 
 
int main() 
{ 
  f( 1 );     // ambiguous: A::f() or ::f()? 
 
  int i; 
  using A::i; // error, double declaration (just as 
              //  writing "int i;" again would be) 
} 

A using-declaration brings in only names whose declarations have already been seen. For example: 

 
// Example 39-1(b) 
// 
namespace A 
{ 
  class X {}; 
  int Y(); 
  int f( double ); 
} 
using A::X; 
using A::Y; // only function A::Y(), not class A::Y 
using A::f; // only A::f(double), not A::f(int) 
 
namespace A 
{ 
  class Y {}; 
  int f( int ); 
} 
 
int main() 



{ 
  X x;      // OK, X is a synonym for A::X 
 
  Y y;      // error, A::Y not visible because the 
            //  using-declaration preceded the 
            //  actual declaration that's wanted 
 
  f( 1 );   // oops: this uses a silent implicit 
            //  conversion and calls A::f(double), 
            //  NOT A::f(int), because only the 
            //  first A::f() declaration had been 
             //  seen at the point of the using- 
             //  declaration for the name A::f 
} 

This feature makes using-declarations order-dependent, particularly when using names from a 
namespace split across a group of header files. The order of header inclusion, specifically which 
headers are included before and after the using-declaration, affects which names the using-declaration 
brings into scope. Of course, namespace std just happens to fit the description "a namespace split 
across a group of header files." More on this in the next Item. 

Using-Directives 

A using-directive allows all names in another namespace to be used in the scope of the using-directive. 
Unlike a using-declaration, a using-directive brings in names declared both before and after the using-
directive. Of course, the name's declaration still has to be seen before the name can be used. For 
example: 

 
// Example 39-1(c) 
// 
namespace A 
{ 
  class X {}; 
  int f( double ); 
} 
void f() 
{ 
  X x;      // OK, X is a synonym for A::X 
  Y y;      // error, no Y has been seen yet 
  f( 1 );   // OK, calls A::f(double) with parameter promotion 
} 
 
using namespace A; 
 
namespace A 
{ 
  class Y {}; 
  int f( int ); 
} 



 
int main() 
{ 
  X x;      // OK, X is a synonym for A::X 
  Y y;      // OK, Y is a synonym for A::Y 
  f( 1 );   // OK, calls A::f(int) 
} 

Item 40. Namespaces, Part 2: Migrating to Namespaces 

Difficulty: 4 

What's the best way to use C++'s powerful namespace management facilities while avoiding traps 
and pitfalls? Further, what's the most effective way to initially migrate your existing C++ code to a 
namespace-aware compiler and library? 

You are working on a MLOC (million-lines-of-code) project with more than 1,000 .h and .cpp files. 
The project team is just upgrading to the latest version of your compiler, which finally both supports 
namespaces and puts all the standard library features into namespace std (or your compiler already 
had namespace support, but until now your team has been using legacy pre-namespace headers such 
as <vector.h>). Unfortunately, this conformance boon (or header migration) has the side effect of 
breaking your current build. As always, there is never enough time allocated to do a detailed job. You 
would like to analyze every source file and write exactly the needed using-declarations in each one, 
but that's infeasible at this time. 

What is the most effective way to deal with this problem and safely migrate your code base to the new 
(and more standard) environment? Discuss alternatives, and prefer the quickest approach that gets the 
job done, without compromising future safety and usability. How can you best defer unnecessary (for 
now) migration work to the future, without increasing the overall migration workload later? 

Solution 

 

Migrating to Namespaces, Safely and Effectively 

The situation described in this question is typical for projects that are just moving to compilers with 
added support for namespaces, or projects that are just moving away from legacy non-namespace 
headers. The main problem that needs a solution is that, now, the standard library is in namespace 
std and so unqualified uses of std:: names in the project code will fail to compile. 

For example, code that used to work, such as the following: 

 
// Example 40-1: This used to work 
// 
#include <iostream.h>  // "legacy" pre-standard header 
 
int main() 



{ 
  cout << "hello, world" << endl; 
} 

now requires that you either specifically say which names are in std: 

 
// Example 40-2(a): Option A, specify everything 
// 
#include <iostream> 
 
int main() 
{ 
  std::cout << "hello, world" << std::endl; 
} 

or write using-declarations to bring the necessary std names into scope: 

 
// Example 40-2(b): Option B, write using-declarations 
// 
#include <iostream> 
 
using std::cout; 
using std::endl; 
 
int main() 
{ 
  cout << "hello, world" << endl; 
} 

or write a using-directive to simply drag all the std names into scope wholesale: 

 
// Example 40-2(c): Option C, write using-directives 
// 
#include <iostream> 
 
int main() 
{ 
  using namespace std; // or this can go at file scope 
  cout << "hello, world" << endl; 
} 

or some combination of the above. 

So what's the right way to use namespaces in the long run? And what's the best way to move a large 
body of existing code to the new rules quickly today, deferring unnecessary (for now) migration work 



to the future, without increasing the overall migration workload later? The rest of this Item answers 
these questions. 

Guidelines for a Good Long-Term Solution 

First, what's the right way to use namespaces in the long run? It's important to decide this first, 
because knowing the long-term answer will help us determine what to aim for when we craft our best 
short-term migration strategy. 

In short, a good long-term solution for namespace usage should follow at least these rules: 

Namespace Rule #1: Never write using-directives in header files. 

The reason for Rule #1 is that using-directives causes wanton namespace pollution by bringing in 
potentially huge numbers of names, many (usually the vast majority) of which are unnecessary. The 
presence of the unnecessary names greatly increases the possibility of unintended name conflicts—not 
just in the header itself, but in every module that #includes the header. I find it helpful to think of 
a using-directive in a header file as a marauding army of crazed barbarians that sows indiscriminate 
destruction wherever it passes; something that by its mere presence can cause "unintended conflicts," 
even when you think you're allied with it. 

Namespace Rule #2: Never write namespace using-declarations in header files. 

(Note the qualifier "namespace using-declarations." Of course, you should feel free to write class 
member using-declarations to bring in base class names as needed.) 

This one might surprise you, because Rule #2 goes much further than most popular advice. Most 
authors recommend that using-declarations never appear at file scope in shared header files. That's 
good advice, as far as it goes, because at file scope a using-declaration causes the same kind of 
namespace pollution as a using-directive, only less of it. 

In my opinion the above "popular advice" doesn't go far enough. You should never write using-
declarations in header files at all, not even in a namespace scope. The meaning of the using-
declaration may change, depending on what other headers happen to be #included before it in any 
given module. This kind of unpredictability should never be permitted, for not only is it bad, but it can 
make your program illegal. Consider just this one possible case: If the header file has the inline code 
definition for a function f() (for example, say f() is a template, or is part of a template), and some 
code line within f() changes meaning depending on #includes, then the whole program is illegal 
because it violates the One Definition Rule (ODR). The ODR requires that the definition of any given 
entity, here f(), must be identical in every translation unit where it's used. Because it's not, we're 
banished to Undefined Behavior Land. Even when ODR violations aren't involved, though, 
unpredictability is still bad, and I'll illustrate this problem again later in Example 40-3(c). 

Namespace Rule #3: In implementation files, never write a using-declaration or a using-directive 
before an #include directive. 

All using-declarations and using-directives must come after all #include directives. Otherwise, 
there's a chance the using could change the semantics of the #included header by introducing 
unexpected names. 



Other than that, in your implementation files you can go ahead and use whatever combination of 
using-declarations and/or using-directives make sense, at file scope and/or function scope, without 
feeling guilty. Your local decision will be driven by what's convenient for you in that particular file, 
and won't have potential side effects for other implementation files. Using-declarations and using-
directives exist for your convenience, not you for theirs. Do what makes sense (if you have no name 
collisions, why not just use all names?), as long as it affects only your own translation unit and not 
anybody else's headers or translation units. 

"Kinda Sorta" Namespace Rule #4: Use C headers with the new style #include <cheader> 
instead of the old style #include <header.h>. 

This one really isn't as big a deal in practice, but I mention it for theoretical completeness and to keep 
the standardistes' safety patrol off my back. For backward compatibility with C, C++ still supports all 
the standard C header names (for example, stdio.h), and when you #include those original 
versions the associated C library functions are visible in the global namespace as before. But in the 
same breath, C++ also says that the old header names are deprecated, which puts the world on notice 
that they may be removed in a future version of the C++ standard. Thus standard C++ strongly 
encourages programmers to prefer using the new versions of the C headers that start with "c" and 
drop the ".h" extension (for example, cstdio). When you #include the C headers using the 
new names, you get the same C library functions, but now they live in namespace std. 

So why do I say it's not really a big deal? First, because even though the "name.h" names are 
officially deprecated, you can bet your coffee money they will never really disappear. Speaking quite 
frankly, and just between us and these four walls, even if the committee did remove them at some 
future date, the standard library vendors would still ship the old headers forever as extensions. Why? 
Because many of you, their customers, have way too much production code out there that uses them. 
And, of course, the C++ standards committee is aware of this because it's inhabited in part by those 
same vendors. 'Nuff said. Second, you may have reason to prefer the "name.h" headers because some 
other standards, such as Posix, require adding new names to the "name.h" headers. If you're using 
such extensions, it's theoretically safer for you to use the "name.h" style, even though library vendors 
are likely to provide those same names in the "cname" headers, too, as a common extension for your 
convenience and for consistency, even though no standard officially requires it. 

Long-Term Approaches: A Motivating Example 

To illustrate the foregoing rules, consider the following example module and two good long-term 
approaches for migrating the module to namespaces. 

 
// Example 40-3(a): Original namespace-free code 
// 
 
//--- file x.h --- 
// 
#include "y.h"  // defines Y 
#include <deque.h> 
#include <iosfwd.h> 
 
ostream& operator<<( ostream&, const Y& ); 
Y operator+( const Y&, int ); 



int f( const deque<int>& ); 
 
//--- file x.cpp --- 
// 
#include "x.h" 
#include "z.h"  // defines Z 
#include <ostream.h> 
 
ostream& operator<<( ostream& o, const Y& y ) 
{ 
  // ... uses Z in the implementation ... 
  return o; 
} 
 
Y operator+( const Y& y, int i ) 
{ 
  // ... uses another operator+() in the implementation... 
  return result; 
} 
 
int f( const deque<int>& d ) 
{ 
  // ... 
} 

How can we best migrate the preceding code to a compiler that respects namespaces and a library that 
puts the standard names in namespace std? Before reading on, please stop for a moment and think 
about the alternatives you might consider. Which ones are good? Which ones aren't? Why? 

Have you made a decision? All right, then. There are several ways you might approach this, and I'll 
describe two common strategies—only one of which is good form. 

A Good Long-Term Solution 

A good long-term solution is to explicitly qualify every standard name wherever it is mentioned in a 
header (.h) file, and to write just the using-declarations that are needed inside each source (.cpp) file 
for convenience, because those names are likely to be widely used in the source file. 

 
// Example 40-3(b): A good long-term solution 
// 
 
//--- file x.h --- 
// 
#include "y.h"  // defines Y 
#include <deque> 
#include <iosfwd> 
 
std::ostream& operator<<( std::ostream&, const Y& ); 



Y operator+( const Y&, int i ); 
int f( const std::deque<int>& ); 
 
//--- file x.cpp --- 
// 
#include "x.h" 
#include "z.h"  // defines Z 
#include <ostream> 
using std::deque;   // "using" appears AFTER all #includes 
using std::ostream; 
using std::operator+; 
// or, "using namespace std;" if that suits you 
ostream& operator<<( ostream& o, const Y& y ) 
{ 
  // ... uses Z in the implementation ... 
  return o; 
} 
 
Y operator+( const Y& y, int i ) 
{ 
  // ... uses another operator+() in the implementation... 
  return result; 
} 
 
int f( const deque<int>& d ) 
{ 
  // ... 
} 

Note that the using-declarations inside x.cpp had better come after all #include directives, 
otherwise they may introduce name conflicts into other header files depending on the order in which 
they're #included. In particular, uses of x.h's operator+() might end up being ambiguous 
depending on what other operator+() functions are visible, which depends on which standard 
headers happen to be included before or after the using declaration. 

I sometimes encounter people who, even in their .cpp files, like to eschew "using" entirely and 
explicitly qualify every standard name. I don't recommend doing this, because it's a lot of extra work 
that normally doesn't deliver any real advantage. 

A Not-So-Good Long-Term Solution 

In contrast, one often-proposed solution is actually dangerous. This bad long-term "solution" proposes 
to put all the project's code into its own namespace (which is not objectionable in itself, but isn't as 
useful as one might think) and write the using-declarations or using-directives in the headers (which 
unintentionally opens a gaping door for potential problems). The reason some people have proposed 
this method is that it requires less typing than some other namespace-migration methods: 

 
// Example 40-3(c): Bad long-term solution 
// (or, Why to never write using-declarations 



// in headers, even within a namespace) 
// 
 
//--- file x.h --- 
// 
#include "y.h"  // defines MyProject::Y and adds 
                //  using-declarations/directives 
                //  in namespace MyProject 
#include <deque> 
#include <iosfwd> 
namespace MyProject 
{ 
  using std::deque; 
  using std::ostream; 
  // or, "using namespace std;" 
 
ostream& operator<<( ostream&, const Y& ); 
Y operator+( const Y&, int ); 
int f( const deque<int>& ); 
} 
 
//--- file x.cpp --- 
// 
#include "x.h" 
#include "z.h"  // defines MyProject::Z and adds 
                //  using-declarations/directives 
                //  in namespace MyProject 
  // error: potential future name ambiguities in 
  //        z.h's declarations, depending on what 
  //        using-declarations exist in headers 
  //        that happen to be #included before z.h 
  //        in any given module (in this case, 
  //        x.h or y.h may cause potential changes 
  //        in meaning) 
#include <ostream> 
 
namespace MyProject 
{ 
  using std::operator+; 
 
  ostream& operator<<( ostream& o, const Y& y ) 
  { 
    // ... uses Z in the implementation ... 
    return o; 
  } 
 
  Y operator+( const Y& y, int i ) 
  { 
    // ... uses another operator+() in the implementation... 



    return result; 
  } 
 
  int f( const deque<int>& d ) 
  { 
    // ... 
  } 
} 

Note the highlighted error. The reason, as stated, is that the meaning of a using-declaration in a header 
can change—even when the using-declaration is inside a namespace, not at file scope—depending on 
what else a client module may happen to #include before it. For example, the statement using 
std::operator<<; can mean very different things, as can using std::operator+;, 
depending on what headers have been included so far (never mind that the answer will also vary from 
one standard library implementation to another). Clearly, it's always bad form to write any kind of 
code that can silently change meaning depending on the order in which headers are #included. 

An Effective Short-Term Solution 

The reason I've spent time explaining the desirable long-term solution, and discrediting some bad 
approaches, is that knowing what we want to achieve eventually will help us to pick a simpler short-
term solution that won't compromise our long-term solution. So now we're ready to tackle the short-
term question: What is the most effective way to migrate your existing code base to deal with 
namespace std? 

Speaking pragmatically, the "upgrade to the new compiler version" task is just one of a list of things to 
be done in our product's release cycle. Upgrading the compiler and migrating to namespaces probably 
isn't the most urgent item on the task list, and you have lots of other things to do and product features 
to add. More likely than not, you're under project deadline pressure to boot, so you should prefer the 
quickest namespace migration approach that gets the job done without compromising future safety and 
usability. How can you best defer unnecessary (for now) migration work to the future, without 
increasing the overall migration workload later? First, consider migrating the header files. 

Migration Step #1: In every header file, add "std::" qualifiers wherever needed. 

"Is adding std:: everywhere really necessary?" you might ask. "Couldn't you just add using-
declarations or using-directives in the headers?" Well, adding using-declarations or using-directives 
would indeed be the least work, but it's work that would have to be undone when you implement the 
correct long-term solution. Namespace Rules #1 and #2 presented earlier in this Item already reject 
such an approach, and we've already seen what I hope you'll agree are compelling reasons not to go 
down that road. Given that we mustn't add using-declarations or using-directives in headers, our only 
alternative for headers is to add "std::" in the right places. 

You can do the bulk of the work quickly using automated text substitution—for example using a tool 
to change "string" to "std::string" (and so forth for common names like vector and 
list) in all "*.h*" files. Be careful that you don't accidentally substitute common names that also 
appear in other namespaces you're using, such as if you're using a third-party tool that has its own 
nonstandard string. Such names will have to be resolved manually. 



Migration Step #2: Create a new header file called myproject_last.h that contains the 
directive using namespace std;. In every implementation file, #include 
myproject_last.h after all other #includes. 

Things are a little better with implementation files. We can get away with simply writing a using-
directive in each implementation file, as long as the using-directive appears after all #include 
statements. This doesn't violate the spirit of Rule #1 because this header is special. It's not a normal 
header that declares something for later use, but a mechanism for injecting code into implementation 
files at a particular well-controlled point. 

Doing it this way has a small advantage over just pasting "using namespace std;" into all 
your implementation files. On many projects, it's common to have such a header, and so you may have 
something like myproject_last.h already. If so, you only have to write one line and you're 
done. If you don't already have such a header, you'll probably find having one to be convenient later 
on. In any case, whether you paste the line "using namespace std;" or the line 
"#include "myproject_last.h" " into every file represents the same total amount of work. 

Finally, what about the new <cheader> header style? Fortunately, that's optional, so it doesn't need 
to be done during the initial migration pass (or ever, really). 

Here's the result of applying our two-step migration strategy to Example 40-3(a): 

 
// Example 40-3(d): Good short-term solution, 
// applying our two-step migration 
// 
 
//--- file x.h --- 
// 
#include "y.h"  // defines Y 
#include <deque> 
#include <iosfwd> 
 
std::ostream& operator<<( std::ostream&, const Y& ); 
  Y operator+( const Y& y, int i ); 
int f( const std::deque<int>& ); 
 
//--- file x.cpp --- 
// 
#include "x.h" 
#include "z.h"  // defines Z 
#include <ostream> 
#include "myproject_last.h" 
                // AFTER all other #includes 
ostream& operator<<( ostream& o, const Y& y ) 
{ 
  // ... uses Z in the implementation ... 
  return o; 
} 



 
Y operator+( const Y& y, int i ) 
{ 
  // ... uses another operator+() in the implementation... 
  return result; 
} 
 
int f( const deque<int>& d ) 
{ 
  // ... 
} 
 
//--- common file myproject_last.h --- 
// 
using namespace std; 

This does not compromise the long-term solution in that it doesn't do anything that will need to be 
"undone" for the long-term solution. At the same time, it's simpler and requires fewer code changes 
than the full long-term solution would. In fact, this approach represents the minimum amount of work 
we can get away with that will make our code work on a namespace-aware compiler but that won't 
make us have to go back and undo any of the work later. 

Conclusion: Migrating to the Long-Term Solution 

Finally, at some happy and quite possibly imaginary point in the future, when you are momentarily 
free of pressing project deadlines, you can perform a simple migration to the full long-term solution 
illustrated in Example 40-3(b). Simply follow these steps. 

1. In myproject_last.h, comment out the using-directive. 
2. Rebuild your project. See what breaks the compile. In each implementation file, add the 

correct using-declarations and/or using-directives, either at file scope (after all #includes) 
or within each function. Season to taste. 

3. Optionally, in each header or implementation file, change lines that #include C headers 
to the new <cheader> style. For example, change #include <stdio.h> to 
#include <cstdio>. This can usually be done quickly using automated text 
substitution tools. It can be done even more quickly by skipping this step entirely. 

If you follow this advice, then even with looming project deadlines, you'll be able to quickly and 
effectively migrate to a namespace-aware compiler and library, all without compromising your long-
term solution. 

Afterword 

I hope you've enjoyed not just the puzzles and problems in this book and its predecessor Exceptional 
C++, but also the solutions and techniques that have been presented. Most of these solutions and 
techniques have been carefully designed to be directly applicable and useful to your production coding 
today. I hope you've found even just a few things here that have been immediately useful in your daily 
work. If you have, it's been a success. 



As before, I should add that there's more where this came from. Today, on the Internet, new Guru of 
the Week issues are being published and discussed and debated on the newsgroup 
comp.lang.c++.moderated, and are archived at the official Web site at www.Gotw.ca. These topics 
and much more will in time be incorporated into the third and concluding volume of the Exceptional 
C++ books, Exceptional C++ Style. Here's a small sampling of the material you can expect to see in 
the next book. 

• More and new information on popular themes you've already seen in the first two books, 
including generic programming and template techniques; solid class design using 
encapsulation, along with ways of enforcing rules for derived classes; efficiency and 
optimization; effective use of the standard library, with analysis of how much memory and 
resources the various standard containers use in practice (not just theory) on today's popular 
platforms; and the de rigueur exception safety issues and techniques. These take the next step 
beyond Items like 1 through 8, 12 through 23, and 26 through 28 in this book. 

• Practical information on real-world issues, such as writing code for debuggability, efficient 
data formats, and compression issues. 

• Pragmatic discussions of how memory management issues can vary and potentially affect 
your code differently on various real-world platforms, even if you're using fully standard-
conforming compilers on all those platforms. 

• But, most important of all: A set of real-world case studies, dissecting actual production code 
and code that's been published in print, in order to demonstrate the exceptional style 
guidelines recommended throughout the Exceptional C++ books. 

Thanks again to all who have expressed interest and support for Exceptional C++ and this book. I 
hope you've found this material to be useful in your daily work, as you keep on writing faster, cleaner, 
and safer C++ programs. 

 


