

jQuery in Action

jQuery in Action

BEAR BIBEAULT
YEHUDA KATZ

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid-free paper, and we exert our best efforts
to that end. Recognizing also our responsibility to conserve the resources of our planet,
Manning books are printed on paper that is at least 15% recycled and processed without
the use of elemental chlorine.

Manning Publications Co. Copyeditor: Andrea Kaucher
Sound View Court 3B Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-35-5

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 12 11 10 09 08

http://www.manning.com

contents

foreword xi
preface xiii
acknowledgments xvi
about this book xix
about the authors xxiv
about the title xxvi
about the cover illustration xxvii

1 Introducing jQuery 1
1.1 Why jQuery? 2

1.2 Unobtrusive JavaScript 3

1.3 jQuery fundamentals 5
The jQuery wrapper 6 ■ Utility functions 8 ■ The document
ready handler 9 ■ Making DOM elements 11 ■ Extending
jQuery 12 ■ Using jQuery with other libraries 14

1.4 Summary 14

2 Creating the wrapped element set 16
2.1 Selecting elements for manipulation 17

Using basic CSS selectors 19 ■ Using child, container, and
attribute selectors 20 ■ Selecting by position 24
Using custom jQuery selectors 27
v

vi CONTENTS
2.2 Generating new HTML 31

2.3 Managing the wrapped element set 32
Determining the size of the wrapped set 34 ■ Obtaining elements
from the wrapped set 34 ■ Slicing and dicing the wrapped
element set 36 ■ Getting wrapped sets using relationships 43
Even more ways to use a wrapped set 44 ■ Managing
jQuery chains 45

2.4 Summary 47

3 Bringing pages to life with jQuery 48
3.1 Manipulating element properties and attributes 49

Manipulating element properties 51 ■ Fetching attribute
values 52 ■ Setting attribute values 54 ■ Removing
attributes 56 ■ Fun with attributes 56

3.2 Changing element styling 58
Adding and removing class names 58 ■ Getting and
setting styles 61 ■ More useful style-related commands 67

3.3 Setting element content 68
Replacing HTML or text content 68 ■ Moving and
copying elements 70 ■ Wrapping elements 75
Removing elements 76 ■ Cloning elements 78

3.4 Dealing with form element values 79

3.5 Summary 81

4 Events are where it happens! 82
4.1 Understanding the browser event models 84

The DOM Level 0 Event Model 85 ■ The DOM
Level 2 Event Model 91 ■ The Internet Explorer
Event Model 97

4.2 The jQuery Event Model 98
Binding event handlers using jQuery 98 ■ Removing event
handlers 103 ■ Inspecting the Event instance 104
Affecting the event propagation 106 ■ Triggering event
handlers 106 ■ Other event-related commands 107

4.3 Putting events (and more) to work 112

4.4 Summary 124

CONTENTS vii
5 Sprucing up with animations and effects 126
5.1 Showing and hiding elements 127

Implementing a collapsible list 128 ■ Toggling the display
state of elements 134

5.2 Animating the display state of elements 135
Showing and hiding elements gradually 135 ■ Fading elements
into and out of existence 140 ■ Sliding elements up and
down 143 ■ Stopping animations 145

5.3 Creating custom animations 145
A custom scale animation 148 ■ A custom drop animation 148
A custom puff animation 150

5.4 Summary 152

6 jQuery utility functions 153
6.1 Using the jQuery flags 154

Detecting the user agent 155 ■ Determining the box model 161
Detecting the correct float style to use 163

6.2 Using other libraries with jQuery 163

6.3 Manipulating JavaScript objects and collections 167
Trimming strings 168 ■ Iterating through properties
and collections 169 ■ Filtering arrays 170
Translating arrays 172 ■ More fun with
JavaScript arrays 175 ■ Extending objects 176

6.4 Dynamically loading scripts 180

6.5 Summary 184

7 Extending jQuery with custom plugins 185
7.1 Why extend? 186

7.2 The jQuery plugin authoring guidelines 187
Naming files and functions 187 ■ Beware the $ 189
Taming complex parameter lists 190

7.3 Writing custom utility functions 192
Creating a data manipulation utility function 193
Writing a date formatter 195

viii CONTENTS
7.4 Adding new wrapper methods 199
Applying multiple operations in a wrapper method 201
Retaining state within a wrapper method 206

7.5 Summary 216

8 Talk to the server with Ajax 217
8.1 Brushing up on Ajax 218

Creating an XHR instance 219 ■ Initiating the request 221
Keeping track of progress 222 ■ Getting the response 223

8.2 Loading content into elements 224
Loading content with jQuery 226 ■ Loading dynamic
inventory data 229

8.3 Making GET and POST requests 233
Getting data with jQuery 234 ■ Getting JSON data 236
Making POST requests 248

8.4 Taking full control of an Ajax request 249
Making Ajax requests with all the trimmings 249
Setting request defaults 252 ■ Global functions 253

8.5 Putting it all together 258
Implementing the flyout behavior 259 ■ Using The
Termifier 262 ■ Room for improvement 264

8.6 Summary 266

9 Prominent, powerful, and practical plugins 268
9.1 The Form Plugin 269

Getting form control values 270 ■ Clearing and resetting
form controls 274 ■ Submitting forms through Ajax 276
Uploading files 284

9.2 The Dimensions Plugin 285
Extended width and height methods 285 ■ Getting scroll
dimensions 287 ■ Of offsets and positions 289

9.3 The Live Query Plugin 292
Establishing proactive event handlers 292 ■ Defining match and
mismatch listeners 294 ■ Forcing Live Query evaluation 294
Expiring Live Query listeners 295

CONTENTS ix
9.4 Introduction to the UI Plugin 299
Mouse interactions 300 ■ UI widgets and visual effects 316

9.5 Summary 316

9.6 The end? 317

appendix JavaScript that you need to know but might not! 319

index 339

foreword
It’s all about simplicity. Why should web developers be forced to write long,
complex, book-length pieces of code when they want to create simple pieces
of interaction? There’s nothing that says that complexity has to be a require-
ment for developing web applications.

 When I first set out to create jQuery I decided that I wanted an emphasis on
small, simple code that served all the practical applications that web developers
deal with day to day. I was greatly pleased as I read through jQuery in Action to
see in it an excellent manifestation of the principles of the jQuery library.

 With an overwhelming emphasis on practical, real-world code presented in
a terse, to-the-point format, jQuery in Action will serve as an ideal resource for
those looking to familiarize themselves with the library.

 What’s pleased me the most about this book is the significant attention to
detail that Bear and Yehuda have paid to the inner workings of the library.
They were thorough in their investigation and dissemination of the jQuery
API. It felt like nary a day went by in which I wasn’t graced with an email or
instant message from them asking for clarification, reporting newly discov-
ered bugs, or recommending improvements to the library. You can be safe
knowing that the resource that you have before you is one of the best thought-
out and researched pieces of literature on the jQuery library.

 One thing that surprised me about the contents of this book is the explicit
inclusion of jQuery plugins and the tactics and theory behind jQuery plugin
development. The reason why jQuery is able to stay so simple is through the
xi

xii FOREWORD
use of its plugin architecture. It provides a number of documented extension
points upon which plugins can add functionality. Often that functionality, while
useful, is not generic enough for inclusion in jQuery itself—which is what makes
the plugin architecture necessary. A few of the plugins discussed in this book, like
the Forms, Dimension, and LiveQuery plugins, have seen widespread adoption
and the reason is obvious: They’re expertly constructed, documented, and main-
tained. Be sure to pay special attention to how plugins are utilized and con-
structed as their use is fundamental to the jQuery experience.

 With resources like this book the jQuery project is sure to continue to grow
and succeed. I hope the book will end up serving you well as you begin your
exploration and use of jQuery.

JOHN RESIG

CREATOR OF jQUERY

preface
One of your authors is a grizzled veteran whose involvement in programming
dates back to when FORTRAN was the bomb, and the other is an enthusiastic
domain expert, savvy beyond his years, who’s barely ever known a world with-
out an Internet. How did two people with such disparate backgrounds come
together to work on a joint project?

 The answer is, obviously, jQuery.
 The paths by which we came together over our affection for this most use-

ful of client-side tools are as different as night and day.
 I (Bear) first heard of jQuery while I was working on Ajax in Practice. Near

the end of the creation cycle of a book is a whirlwind phase known as the copy-
edit when the chapters are reviewed for grammatical correctness and clarity
(among other things) by the copyeditor and for technical correctness by the
technical editor. At least for me, this is the most frenetic and stressful time in
the writing of a book, and the last thing I want to hear is “you really should
add a completely new section.”

 One of the chapters I contributed to Ajax in Practice surveys a number of
Ajax-enabling client-side libraries, one of which I was already quite familiar
with (Prototype) and others (the Dojo Toolkit and DWR) on which I had to
come up to speed pretty quickly.

 While juggling what seemed like a zillion tasks (all the while holding
down a day job, running a side business, and dealing with household issues),
xiii

xiv PREFACE
the technical editor, Valentin Crettaz, casually drops this bomb: “So why don’t
you have a section on jQuery?”

 “J who?” I asked.
 I was promptly treated to a detailed dissertation on how wonderful this fairly

new library was and how it really should be part of any modern examination of
Ajax-enabling client-side libraries. I asked around a bit. “Have any of you ever
heard of this jQwerty library?”

 I received a large number of positive responses, all enthusiastic and all agree-
ing that jQuery really was the cat’s pajamas. On a rainy Sunday afternoon, I
spent about four hours at the jQuery site reading documentation and writing lit-
tle test programs to get a feel for the jQuery way of doing things. Then I banged
out the new section and sent it to the technical editor to see if I had really gotten it.

 The section was given an enthusiastic thumb’s up, and we went on to finally
complete the Ajax in Practice book. (That section on jQuery eventually went on to
be published in the online version of Dr. Dobb’s Journal.)

 When the dust had settled, my frenzied exposure to jQuery had planted
relentless little seeds in the back of my mind. I’d liked what I’d seen during my
headlong research into jQuery, and I set out to learn more. I started using jQuery
in web projects. I still liked what I saw. I started replacing older code in previous
projects to see how jQuery would simplify the pages. And I really liked what I saw.

 Enthusiastic about this new discovery and wanting to share it with others, I
took complete leave of my senses and submitted a proposal for jQuery in Action to
Manning. Obviously, I must’ve been convincing. (As penance for causing such
mayhem, I asked the technical editor who started all the trouble to also be the
technical editor for this book. I’ll bet that taught him!)

 It’s at that point that the editor, Mike Stephens, asked, “How would you like
to work with Yehuda Katz on this project?”

 “Yehenta who?” I asked…

Yehuda came to this project by a different route; his involvement with jQuery
predates the days when it even had version numbers. After he stumbled on the
Selectables Plugin, his interest in the jQuery core library was piqued. Somewhat
disappointed by the (then) lack of online documentation, he scoured the wikis
and established the Visual jQuery site (visualjquery.com).

 Before too long, he was spearheading the push for better online documents,
contributing to jQuery, and overseeing the plugin architecture and ecosystem, all
while evangelizing jQuery to the Ruby community.

PREFACE xv
 Then came the day when he received a call from Manning (his name having
been dropped to the publisher by a friend), asking if he’d be interested in work-
ing with this Bear guy on a jQuery book…

Despite the differences in our backgrounds, experiences, and strengths, and the
manner in which we came together on this project, we’ve formed a great team
and have had a lot of fun working together. Even geographic distance (I’m in the
heart of Texas, and Yehuda is on the California coast) proved no barrier. Thank
goodness for email and instant messaging!

 We think that the combination of our knowledge and talents brings you a
strong and informative book. We hope you have as much fun reading this book
as we had working on it.

 We just advise you to keep saner hours.

acknowledgments
Have you ever been surprised, or even bemused, by the seemingly endless list
of names that scrolls up the screen during the ending credits of a motion pic-
ture? Do you ever wonder if it really takes that many people to make a movie?

 Similarly, the number of people involved in the writing of book would
probably be a big surprise to most people. It takes a large collaborative effort
on the part of many contributors with a variety of talents to bring the volume
you are holding (or ebook that you are reading onscreen) to fruition.

 The staff at Manning worked tirelessly with us to make sure that this book
attained the level of quality that we hoped for, and we thank them for their
efforts. Without them, this book would not have been possible. The “end cred-
its” for this book include not only our publisher, Marjan Bace, and editor Mike
Stephens, but also the following contributors: Douglas Pudnick, Andrea
Kaucher, Karen Tegtmayer, Katie Tenant, Megan Yockey, Dottie Marsico, Mary
Piergies, Tiffany Taylor, Denis Dalinnik, Gabriel Dobrescu, and Ron Tomich.

 Enough cannot be said to thank our peer reviewers who helped mold the
final form of the book, from catching simple typos to correcting errors in ter-
minology and code and even helping to organize the chapters within the
book. Each pass through a review cycle ended up vastly improving the final
product. For taking the time to help review the book, we’d like to thank
Jonathan Bloomer, Valentin Crettaz, Denis Kurilenko, Rama Krishna Vavilala,
Philip Hallstrom, Jay Blanchard, Jeff Cunningham, Eric Pascarello, Josh
Heyer, Gregg Bolinger, Andrew Siemer, John Tyler, and Ted Goddard.
xvi

ACKNOWLEDGMENTS xvii
 Very special thanks go to Valentin Crettaz who served as the book’s technical
editor. In addition to checking each and every sample of example code in multi-
ple environments, he also offered invaluable contributions to the technical accu-
racy of the text.

BEAR BIBEAULT

For this, my third published tome, the cast of characters I’d like to thank has a
long list of “usual suspects,” including, once again, the membership and staff at
javaranch.com. Without my involvement in JavaRanch, I’d never have gotten the
opportunity to start writing in the first place, and so I sincerely thank Paul
Wheaton and Kathy Sierra for starting the whole thing, as well as fellow staffers
who gave me encouragement and support, including (but probably not limited
to) Eric Pascarello, Ben Souther, Ernest Friedman Hill, Mark Herschberg, and
Max Habbibi.

 Thanks go out to Valentin Crettaz—not only for serving as technical editor but
also for introducing me to jQuery in the first place—and to my coworker Daniel
Hedrick who volunteered the PHP examples for the latter part of the book.

 My partner Jay, and dogs, Little Bear (well, we couldn’t have named him just
Bear, now could we?) and Cozmo, get the usual warm thanks for putting up with
the shadowy presence who shared their home but who rarely looked up from the
MacBook Pro keyboard for all the months it took to write this book.

 And finally I’d like to thank my coauthor, Yehuda Katz, without whom this
project would not have been possible.

YEHUDA KATZ

To start, I’d like to thank Bear Bibeault, my coauthor, for the benefit of his exten-
sive writing experience. His talented writing and impressive abilities to navigate
the hurdles of professional publishing were a tremendous part of what made this
book possible.

 While speaking of making things possible, it’s necessary that I thank my
lovely wife Leah, who put up with the long nights and working weekends for far
longer than I would have felt comfortable asking. Her dedication to completing
this book rivaled even my own; and, as in all things, she made the most difficult
part of this project bearable. I love you, Leah.

 Obviously, there would be no jQuery in Action without the jQuery library itself.
I’d like to thank John Resig, the creator of jQuery, for changing the face of
client-side development and easing the burden of web developers across the

xviii ACKNOWLEDGMENTS
globe (believe it or not, we have sizable user groups in China, Japan, France, and
many other countries). I also count him as a friend who, as a talented author
himself, helped me to prepare for this tremendous undertaking.

 There would be no jQuery without the incredible community of users and
core team members, including Brandon Aaron and Jörn Zaefferer on the devel-
opment team; Rey Bango and Karl Swedberg on the evangelism team; Paul
Bakaus, who heads up jQuery UI; and Klaus Hartl and Mike Alsup, who work on
the plugins team with me. This great group of programmers helped propel the
jQuery framework from a tight, simple base of core operations to a world-class
JavaScript library, complete with user-contributed (and modular) support for vir-
tually any need you could have. I’m probably missing a great number of jQuery
contributors; there are a lot of you guys. Suffice it to say that I would not be here
without the unique community that has come up around this library, and I can’t
thank you enough.

 Lastly, I want to thank my family whom I don’t see nearly enough since my
recent move across the country. Growing up, my siblings and I shared a tight
sense of camaraderie, and the faith my family members have in me has always
made me imagine I can do just about anything. Mommy, Nikki, Abie, and Yaakov:
thank you, and I love you.

about this book
Do more with less.

 Plain and simple, that is the purpose of this book: to help you learn how to
do more on your web application pages with less script. Your authors, one a
jQuery contributor and evangelist and the other an avid and enthusiastic user,
believe that jQuery is the best library available today to help you do just that.

 This book is aimed at getting you up and running with jQuery quickly and
effectively and, hopefully, having some fun along the way. The entire core
jQuery API is discussed, and each API method is presented in an easy-to-digest
syntax block that describes the parameters and return values of the method.
Small examples of using the APIs effectively are included; and, for those big
concepts, we provide what we call lab pages. These comprehensive and fun
pages are an excellent way for you to see the nuances of the jQuery methods
in action without the need to write a slew of code yourself.

 All example code and lab pages are available for download at http://
www.manning.com/bibeault.

 We could go on and on with some marketing jargon telling you how great
this book is, but you don’t want to waste time reading that, do you? What you
really want is to get your arms into the bits and bytes up to your elbows, isn’t it?

 What’s holding you back? Read on!
xix

http://www.manning.com/bibeault
http://www.manning.com/bibeault

xx ABOUT THIS BOOK
Audience
This book is aimed at novice to advanced web developers who want to take con-
trol of the JavaScript on their pages and produce great, interactive Rich Internet
Applications without the need to write all the client-side code necessary to
achieve such applications from scratch.

 All web developers who yearn to create usable web applications that delight,
rather than annoy, their users by leveraging the power that jQuery brings to
them will benefit from this book.

 Although novice web developers may find some sections a tad involved, this
should not deter them from diving into this book. We’ve included an appendix
on essential JavaScript concepts that help in using jQuery to its fullest potential,
and such readers will find that the jQuery library itself is novice-friendly once
they understand a few key concepts—all without sacrificing the power available
to the more advanced web developers.

 Whether novices or veterans of web development, client-side programmers
will benefit greatly from adding jQuery to their repertoire of development tools.
We know that the lessons within this book will help add this knowledge to your
toolbox quickly.

Roadmap
This book is organized to help you wrap your head around jQuery in the quick-
est and most efficient manner possible. It starts with an introduction to the
design philosophies on which jQuery was founded and quickly progresses to fun-
damental concepts that govern the jQuery API. We then take you through the
various areas in which jQuery can help you write fabulous client-side code, from
the handling of events all the way to making Ajax requests to the server. To top it
all off, we take a survey of some of the most popular jQuery extensions.

 In chapter 1, we’ll learn about the philosophy behind jQuery and how it
adheres to modern principles such as Unobtrusive JavaScript. We examine why
we might want to adopt jQuery and run through an overview of how it works, as
well as the major concepts such as document-ready handlers, utility functions,
Document Object Model (DOM) element creation, and how jQuery extensions
are created.

 Chapter 2 introduces us to the concept of the jQuery wrapped set—the core
concept around which jQuery operates. We’ll learn how this wrapped set—a col-
lection of DOM elements that’s to be operated upon—can be created by selecting
elements from the page document using the rich and powerful collection of

ABOUT THIS BOOK xxi
jQuery selectors. We’ll see how these selectors, while powerful, leverage knowl-
edge that we already possess by using standard CSS notation.

 In chapter 3, we’ll learn how to use the jQuery wrapped set to manipulate the
page DOM. We cover changing the styling and attributes of elements, setting ele-
ment content, moving elements around, and dealing with form elements.

 Chapter 4 shows us how we can use jQuery to vastly simplify the handling of
events on our pages. After all, handling user events is what makes Rich Internet
Applications possible, and anyone who’s had to deal with the intricacies of event
handler across the differing browser implementations will certainly appreciate
the simplicity that jQuery brings to this particular area.

 The world of animations and effects is the subject of chapter 5. We’ll see
how jQuery makes creating animated effects not only painless but also efficient
and fun.

 In chapter 6, we’ll learn about the utility functions and flags that jQuery pro-
vides, not only for page authors, but also for those who will write extensions and
plugins for jQuery.

 We present writing such extensions and plugins in chapter 7. We’ll see how
jQuery makes it extraordinarily easy for anyone to write such extensions without
intricate JavaScript or jQuery knowledge and why it makes sense to write any
reusable code as a jQuery extension.

 Chapter 8 concerns itself with one of the most important areas in the devel-
opment of Rich Internet Applications: making Ajax requests. We’ll see how
jQuery makes it almost brain-dead simple to use Ajax on our pages and how it
shields us from all the pitfalls that can accompany the introduction of Ajax to our
pages, while vastly simplifying the most common types of Ajax interactions (such
as returning JSON constructs).

 Finally, in chapter 9 we’ll take a survey of the most popular and powerful of
the vast multitude of jQuery plugins and make sure that we know where we can
find information on even more such plugins.We examine plugins that enable us
to deal with forms and Ajax submissions with even more power than core jQuery
and those that let us employ drag-and-drop on our pages.

 We provide an appendix highlighting key JavaScript concepts such as function
contexts and closures—essential to making the most effective use of jQuery on our
pages—for those who would like a refresher on these concepts.

xxii ABOUT THIS BOOK
Code conventions
All source code in listings or in the text is in a fixed-width font like this to sepa-
rate it from ordinary text. Method and function names, properties, XML ele-
ments, and attributes in the text are also presented in this same font.

 In some cases, the original source code has been reformatted to fit on the
pages. In general, the original code was written with page-width limitations in
mind, but sometimes you may find a slight formatting difference between the
code in the listings and that provided in the source download. In a few rare
cases, where long lines could not be reformatted without changing their mean-
ing, the book listings will contain line-continuation markers.

 Code annotations accompany many of the listings, highlighting important
concepts. In many cases, numbered bullets link to explanations that follow in
the text.

Code downloads
Source code for all the working examples in this book (along with some extras that
never made it into the text) is available for download from http://www.manning.
com/jQueryinAction or http://www.manning.com/bibeault.

 The code examples for each chapter are organized to be easily served by a
local web server. Unzip the downloaded code into a folder of your choice, and
make that folder the document root of the application. A launch page is set up at
the application root in the file index.html.

 With the exception of the examples for chapter 8 and a handful from chap-
ter 9, most of the examples don’t require the presence of a web server and can be
loaded directly into a browser for execution. Instructions for easily setting up
Tomcat to use as the web server for these examples is provided in file chapter8/
tomcat.pdf.

 All examples were tested in a variety of browsers that include Internet
Explorer 7, Firefox 2, Opera 9, Safari 2, and Camino 1.5. The examples will also
generally run in Internet Explorer 6 although some layout issues might be
encountered. Note that all jQuery code works flawlessly in IE6—it’s the CSS of
the examples that cause any layout anomalies. Because the target audience of this
book is professional web developers, it’s assumed that all readers will have a vari-
ety of browsers available in which to execute the example code.

http://www.manning.com/jQueryinAction
http://www.manning.com/jQueryinAction
http://www.manning.com/bibeault

ABOUT THIS BOOK xxiii
Author Online
The purchase of jQuery in Action includes free access to a private forum run by
Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the authors and other users. To access
and subscribe to the forum, point your browser to http://www.manning.com/
jQueryinAction or http://www.manning.com/bibeault. This page provides infor-
mation on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct in the forum. (Play nice!)

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the authors
can take place. It’s not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the book’s forum remains volun-
tary (and unpaid). We suggest you try asking the authors some challenging ques-
tions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

http://www.manning.com/jQueryinAction
http://www.manning.com/jQueryinAction
http://www.manning.com/bibeault

about the authors
BEAR BIBEAULT has been writing software for over
three decades, starting with a Tic-Tac-Toe program
written on a Control Data Cyber supercomputer via
a 100-baud teletype. Because he has two degrees in
Electrical Engineering, Bear should be designing
antennas or something; but, since his first real job
with Digital Equipment Corporation, he has always
been much more fascinated with programming.

 Bear has also served stints with companies such
as Lightbridge Inc., BMC Software, Dragon Systems, and even served in the
U. S. Military teaching infantry soldiers how to blow up tanks. (Care to guess
which job was the most fun?) Bear is currently a Software Architect and Tech-
nical Manager for a company that builds and maintains a large financial web
application used by the accountants that many of the Fortune 500 companies
keep in their dungeons.

 In addition to his day job, Bear also writes books (duh!), runs a small busi-
ness that creates web applications and offers other media services (but not wed-
ding videography, never wedding videography), and helps to moderate
JavaRanch.com as a “sheriff.” When not planted in front of a computer, Bear
likes to cook big food (which accounts for his jeans size), dabble in photogra-
phy and video editing, ride his Yamaha V-Star, and wear tropical print shirts.
xxiv

ABOUT THE AUTHORS xxv
 He works and resides in Austin, Texas, a city he dearly loves except for the
completely insane drivers.

YEHUDA KATZ has been involved in a number of
open-source projects over the past several years. In
addition to being a core team member of the jQuery
project, he is also a contributor to Merb, an alterna-
tive to Ruby on Rails (also written in Ruby).

 Yehuda was born in Minnesota, grew up in New
York, and now lives in sunny Santa Barbara, Califor-
nia. He has worked on websites for the New York Times,
Allure Magazine, Architectural Digest, Yoga Journal, and

other similarly high-profile clients. He has programmed professionally in a
number of languages including Java, Ruby, PHP, and JavaScript.

 In his copious spare time, he maintains VisualjQuery.com and helps answer
questions from new jQuery users in the IRC channel and on the official jQuery
mailing list.

about the title
By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research
in cognitive science, the things people remember are things they discover dur-
ing self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that
for learning to become permanent it must pass through stages of exploration,
play, and, interestingly, re-telling of what is being learned. People understand
and remember new things, which is to say they master them, only after
actively exploring them. Humans learn in action. An essential part of an In
Action book is that it is example-driven. It encourages the reader to try things
out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: Our
readers are busy. They use books to do a job or solve a problem. They need
books that allow them to jump in and jump out easily and learn just what they
want just when they want it. They need books that aid them in action. The
books in this series are designed for such readers.
xxvi

about the cover illustration
The figure on the cover of jQuery in Action is called “The Watchman.” The
illustration is taken from a French travel book, Encyclopedie des Voyages by J. G.
St. Saveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, intro-
ducing both the tourist as well as the armchair traveler to the inhabitants of
other regions of the world, as well as to the regional costumes and uniforms
of French soldiers, civil servants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of
the uniqueness and individuality of the world’s towns and provinces just 200
years ago. This was a time when the dress codes of two regions separated by a
few dozen miles identified people uniquely as belonging to one or the other.
The travel guide brings to life a sense of isolation and distance of that period
and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one con-
tinent from another. Perhaps, trying to view it optimistically, we have traded a
cultural and visual diversity for a more varied personal life. Or a more varied
and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life
two centuries ago brought back to life by the pictures from this travel guide.
xxvii

Introducing jQuery
This chapter covers
■ Why you should use jQuery
■ What Unobtrusive JavaScript means
■ The fundamental elements and concepts

of jQuery
■ Using jQuery in conjunction with other

JavaScript libraries
1

2 CHAPTER 1
Introducing jQuery
Considered a “toy” language by serious web developers for most of its lifetime, Java-
Script has regained its prestige in the past few years as a result of the renewed
interest in Rich Internet Applications and Ajax technologies. The language has
been forced to grow up quickly as client-side developers have tossed aside cut-and-
paste JavaScript for the convenience of full-featured JavaScript libraries that solve
difficult cross-browser problems once and for all and provide new and improved
paradigms for web development.

 A relative latecomer to this world of JavaScript libraries, jQuery has taken the
web development community by storm, quickly winning the support of major
websites such as MSNBC, and well-regarded open source projects including
SourceForge, Trac, and Drupal.

 Compared with other toolkits that focus heavily on clever JavaScript tech-
niques, jQuery aims to change the way that web developers think about creating
rich functionality in their pages. Rather than spending time juggling the complex-
ities of advanced JavaScript, designers can leverage their existing knowledge of
Cascading Style Sheets (CSS), Extensible Hypertext Markup Language (XHTML),
and good old straightforward JavaScript to manipulate page elements directly,
making more rapid development a reality.

 In this book, we’re going to take an in-depth look at what jQuery has to offer
us as page authors of Rich Internet Applications. Let’s start by finding out what
exactly jQuery brings to the page-development party.

1.1 Why jQuery?

If you’ve spent any time at all trying to add dynamic functionality to your pages,
you’ve found that you’re constantly following a pattern of selecting an element or
group of elements and operating upon those elements in some fashion. You
could be hiding or revealing the elements, adding a CSS class to them, animating
them, or modifying their attributes.

 Using raw JavaScript can result in dozens of lines of code for each of these
tasks. The creators of jQuery specifically created the library to make common
tasks trivial. For example, designers will use JavaScript to “zebra-stripe” tables—
highlighting every other row in a table with a contrasting color—taking up to 10
lines of code or more. Here’s how we accomplish it using jQuery:

$("table tr:nth-child(even)").addClass("striped");

Don’t worry if that looks a bit cryptic to you right now. In short order, you’ll under-
stand how it works, and you’ll be whipping out your own terse—but powerful—

Unobtrusive JavaScript 3
jQuery statements to make your pages come alive. Let’s briefly examine how this
code snippet works.

 We identify every even row (<tr> element) in all of the tables on the page and
add the CSS class striped to each of those rows. By applying the desired back-
ground color to these rows via a CSS rule for class striped, a single line of Java-
Script can improve the aesthetics of the entire page.

 When applied to a sample table, the effect could be as shown in figure 1.1.
 The real power in this jQuery statement comes from the selector, an expression

for identifying target elements on a page that allows us to easily identify and grab
the elements we need; in this case, every even <tr> element in all tables. You’ll
find the full source for this page in the downloadable source code for this book in
file chapter1/zebra.stripes.html.

 We’ll study how to easily create these selectors; but first, let’s examine how the
inventors of jQuery think JavaScript can be most effectively used in our pages.

1.2 Unobtrusive JavaScript

Remember the bad old days before CSS when we were forced to mix stylistic
markup with the document structure markup in our HTML pages?

 Anyone who’s been authoring pages for any amount of time surely does and,
perhaps, with more than a little shudder. The addition of CSS to our web devel-
opment toolkits allows us to separate stylistic information from the document
structure and give travesties like the tag the well-deserved boot. Not only
does the separation of style from structure make our documents easier to

Figure 1.1
Adding “zebra
stripes” to a table is
easy to accomplish
in one statement
with jQuery!

4 CHAPTER 1
Introducing jQuery
manage, but it also gives us the versatility to completely change the stylistic ren-
dering of a page by swapping out different stylesheets.

 Few of us would voluntarily regress back to the days of applying style with
HTML elements; yet markup such as the following is still all too common:

<button
 type="button"
 onclick="document.getElementById('xyz').style.color='red';">
 Click Me
</button>

We can easily see that the style of this button element, including the font of its
caption, is not applied via the use of the tag and other deprecated style-
oriented markup, but is determined by CSS rules in effect on the page. But
although this declaration doesn’t mix style markup with structure, it does mix
behavior with structure by including the JavaScript to be executed when the button is
clicked as part of the markup of the button element (which in this case turns some
Document Object Model [DOM] element named xyz red upon a click of the button).

 For all the same reasons that it’s desirable to segregate style from structure
within an HTML document, it’s as beneficial (if not more so) to separate the behav-
ior from the structure.

 This movement is known as Unobtrusive JavaScript, and the inventors of jQuery
have focused that library on helping page authors easily achieve this separation
in their pages. Unobtrusive JavaScript, along with the legions of the jQuery-savvy,
considers any JavaScript expressions or statements embedded in the <body> of
HTML pages, either as attributes of HTML elements (such as onclick) or in script
blocks placed within the body of the page, to be incorrect.

 “But how would I instrument the button without the onclick attribute?” you
might ask. Consider the following change to the button element:

<button type="button" id="testButton">Click Me</button>

Much simpler! But now, you’ll note, the button doesn’t do anything.
 Rather than embedding the button’s behavior in its markup, we’ll move it to a

script block in the <head> section of the page, outside the scope of the document
body, as follows:

<script type="text/javascript">
 window.onload = function() {
 document.getElementById('testButton').onclick = makeItRed;
 };

 function makeItRed() {
 document.getElementById('xyz').style.color = 'red';

jQuery fundamentals 5
 }
</script>

We place the script in the onload handler for the page to assign a function, make-
ItRed(), to the onclick attribute of the button element. We add this script in the
onload handler (as opposed to inline) because we need to make sure that the but-
ton element exists before we attempt to manipulate it. (In section 1.3.3 we’ll see
how jQuery provides a better place for us to put such code.)

 If any of the code in this example looks odd to you, fear not! Appendix A pro-
vides a look at the JavaScript concepts that you’ll need to use jQuery effectively.
We’ll also be examining, in the remainder of this chapter, how jQuery makes writ-
ing the previous code easier, shorter, and more versatile all at the same time.

 Unobtrusive JavaScript, though a powerful technique to further add to the
clear separation of responsibilities within a web application, doesn’t come without
its price. You might already have noticed that it took a few more lines of script to
accomplish our goal than when we placed it into the button markup. Unobtrusive
JavaScript not only may increase the amount of script that needs to be written,
but also requires some discipline and the application of good coding patterns to
the client-side script.

 None of that is bad; anything that persuades us to write our client-side code
with the same level of care and respect usually allotted to server-side code is a
good thing! But it is extra work—without jQuery.

 As mentioned earlier, the jQuery team has specifically focused jQuery on the
task of making it easy and delightful for us to code our pages using Unobtrusive
JavaScript techniques, without paying a hefty price in terms of effort or code bulk
in order to do so. We’ll find that making effective use of jQuery will enable us to
accomplish much more on our pages by writing less code.

 Without further ado, let’s start taking a look at just how jQuery makes it so
easy for us to add rich functionality to our pages without the expected pain.

1.3 jQuery fundamentals

At its core, jQuery focuses on retrieving elements from our HTML pages and per-
forming operations upon them. If you’re familiar with CSS, you’re already well
aware of the power of selectors, which describe groups of elements by their
attributes or placement within the document. With jQuery, you’ll be able to lever-
age your knowledge and that degree of power to vastly simplify your JavaScript.

 jQuery places a high priority on ensuring our code will work in a consistent
manner across all major browsers; many of the more difficult JavaScript problems,

6 CHAPTER 1
Introducing jQuery
such as waiting until the page is loaded before performing page operations, have
been silently solved for us.

 Should we find that the library needs a bit more juice, its developers have built
in a simple but powerful method for extending its functionality. Many new jQuery
programmers find themselves putting this versatility into practice by extending
jQuery on their first day.

 But first, let’s look at how we can leverage our CSS knowledge to produce pow-
erful, yet terse, code.

1.3.1 The jQuery wrapper

When CSS was introduced to web technologies in order to separate design from
content, a way was needed to refer to groups of page elements from external
style sheets. The method developed was through the use of selectors, which con-
cisely represent elements based upon their attributes or position within the
HTML document.

 For example, the selector

p a

refers to the group of all links (<a> elements) that are nested inside a <p> element.
jQuery makes use of the same selectors, supporting not only the common selec-
tors currently used in CSS, but also the more powerful ones not yet fully imple-
mented by most browsers. The nth-child selector from the zebra-striping code we
examined earlier is a good example of a more powerful selector defined in CSS3.

 To collect a group of elements, we use the simple syntax

$(selector)

or

jQuery(selector)

Although you may find the $() notation strange at first, most jQuery users
quickly become fond of its brevity.

 For example, to retrieve the group of links nested inside a <p> element, we use
the following

$("p a")

The $() function (an alias for the jQuery() function) returns a special Java-
Script object containing an array of the DOM elements that match the selector.
This object possesses a large number of useful predefined methods that can act
on the group of elements.

http://jquery.com/

jQuery fundamentals 7
 In programming parlance, this type of construct is termed a wrapper because it
wraps the matching element(s) with extended functionality. We’ll use the term
jQuery wrapper or wrapped set to refer to this set of matched elements that can be
operated on with the methods defined by jQuery.

 Let’s say that we want to fade out all <div> elements with the CSS class not-
LongForThisWorld. The jQuery statement is as follows:

$("div.notLongForThisWorld").fadeOut();

A special feature of a large number of these methods, which we often refer to as
jQuery commands, is that when they’re done with their action (like a fading-out
operation), they return the same group of elements, ready for another action. For
example, say that we want to add a new CSS class, removed, to each of the elements
in addition to fading them out. We write

$("div.notLongForThisWorld").fadeOut().addClass("removed");

These jQuery chains can continue indefinitely. It’s not uncommon to find exam-
ples in the wild of jQuery chains dozens of commands long. And because each
function works on all of the elements matched by the original selector, there’s no
need to loop over the array of elements. It’s all done for us behind the scenes!

 Even though the selected group of objects is represented as a highly sophisti-
cated JavaScript object, we can pretend it’s a typical array of elements, if neces-
sary. As a result, the following two statements produce identical results:

$("#someElement").html("I have added some text to an element");

or

$("#someElement")[0].innerHTML =
 "I have added some text to an element");

Because we’ve used an ID selector, only one element will match the selector. The
first example uses the jQuery method html(), which replaces the contents of a
DOM element with some HTML markup. The second example uses jQuery to
retrieve an array of elements, select the first one using an array index of 0, and
replace the contents using an ordinary JavaScript means.

 If we want to achieve the same results with a selector that resulted in multiple
matched elements, the following two fragments would produce identical results:

$("div.fillMeIn")
 .html("I have added some text to a group of nodes");

or

8 CHAPTER 1
Introducing jQuery
var elements = $("div.fillMeIn");
for(i=0;i<elements.length;i++)
 elements[i].innerHTML =
 "I have added some text to a group of nodes";

As things get progressively more complicated, leveraging jQuery’s chainability
will continue to reduce the lines of code necessary to produce the results that you
want. Additionally, jQuery supports not only the selectors that you have already
come to know and love, but also more advanced selectors—defined as part of the
CSS Specification—and even some custom selectors.

 Here are a few examples.

$("p:even");

This selector selects all even <p> elements.

$("tr:nth-child(1)");

This selector selects the first row of each table.

$("body > div");

This selector selects direct <div> children of <body>.

$("a[href$=pdf]");

This selector selects links to PDF files.

$("body > div:has(a)")

This selector selects direct <div> children of <body>-containing links.
 Powerful stuff!
 You’ll be able to leverage your existing knowledge of CSS to get up and run-

ning fast and then learn about the more advanced selectors jQuery supports.
We’ll be covering jQuery selectors in great detail in section 2.1, and you can find a
full list at http://docs.jquery.com/Selectors.

 Selecting DOM elements for manipulation is a common need in our pages, but
some things that we also need to do don’t involve DOM elements at all. Let’s take
a brief look at more that jQuery offers beyond element manipulation.

1.3.2 Utility functions

Even though wrapping elements to be operated upon is one of the most frequent
uses of jQuery’s $() function, that’s not the only duty to which it’s assigned. One of
its additional duties is to serve as the namespace prefix for a handful of general-
purpose utility functions. Because so much power is given to page authors by the
jQuery wrapper created as a result of a call to $() with a selector, it’s somewhat rare

http://docs.jquery.com/Selectors
http://docs.jquery.com/Selectors

jQuery fundamentals 9
for most page authors to need the services provided by some of these functions; we
won’t be looking at the majority of these functions in detail until chapter 6 as a
preparation for writing jQuery plug-ins. But you will see a few of these functions
put to use in the upcoming sections, so we’re introducing their concept here.

 The notation for these functions may look odd at first. Let’s take, for example,
the utility function for trimming strings. A call to it could be

$.trim(someString);

If the $. prefix looks weird to you, remember that $ is an identifier like any other
in JavaScript. Writing a call to the same function using the jQuery identifier,
rather than the $ alias, looks a bit more familiar:

jQuery.trim(someString);

Here it becomes clear that the trim() function is merely namespaced by jQuery or
its $ alias.

NOTE Even though these elements are called the utility functions in jQuery doc-
umentation, it’s clear that they are actually methods of the $() function.
We’ll put aside this technical distinction and use the term utility function to
describe these methods so as not to introduce conflicting terminology
with the online documentation.

We’ll explore one of these utility functions that helps us to extend jQuery in sec-
tion 1.3.5, and one that helps jQuery peacefully coexist with other client-side
libraries in section 1.3.6. But first, let’s look at another important duty that
jQuery’s $ function performs.

1.3.3 The document ready handler
When embracing Unobtrusive JavaScript, behavior is separated from structure,
so we’ll be performing operations on the page elements outside of the document
markup that creates them. In order to achieve this, we need a way to wait until
the DOM elements of the page are fully loaded before those operations execute.
In the zebra-striping example, the entire table must load before striping can
be applied.

 Traditionally, the onload handler for the window instance is used for this pur-
pose, executing statements after the entire page is fully loaded. The syntax is typ-
ically something like

window.onload = function() {
 $("table tr:nth-child(even)").addClass("even");
};

10 CHAPTER 1
Introducing jQuery
This causes the zebra-striping code to execute after the document is fully loaded.
Unfortunately, the browser not only delays executing the onload code until after
the DOM tree is created but also waits until after all images and other external
resources are fully loaded and the page is displayed in the browser window. As a
result, visitors can experience a delay between the time that they first see the page
and the time that the onload script is executed.

 Even worse, if an image or other resource takes a significant time to load, visitors
would have to wait for the image loading to complete before the rich behaviors
become available. This could make the whole Unobtrusive JavaScript movement a
non-starter for many real-life cases.

 A much better approach would be to wait only until the document structure is
fully parsed and the browser has converted the HTML into its DOM tree form
before executing the script to apply the rich behaviors. Accomplishing this in a
cross-browser manner is somewhat difficult, but jQuery provides a simple means
to trigger the execution of code once the DOM tree, but not external image
resources, has loaded. The formal syntax to define such code (using our striping
example) is as follows:

$(document).ready(function() {
 $("table tr:nth-child(even)").addClass("even");
});

First, we wrap the document instance with the jQuery() function, and then we
apply the ready() method, passing a function to be executed when the document
is ready to be manipulated.

 We called that the formal syntax for a reason; a shorthand form used much
more frequently is as follows:

$(function() {
 $("table tr:nth-child(even)").addClass("even");
});

By passing a function to $(), we instruct the browser to wait until the DOM has
fully loaded (but only the DOM) before executing the code. Even better, we can
use this technique multiple times within the same HTML document, and the
browser will execute all of the functions we specify in the order that they are
declared within the page. In contrast, the window’s onload technique allows for
only a single function. This limitation can also result in hard-to-find bugs if any
third-party code we might be using already uses the onload mechanism for its
own purpose (not a best-practice approach).

 We’ve seen another use of the $() function; now let’s see yet something else
that it can do for us.

jQuery fundamentals 11
1.3.4 Making DOM elements

It’s become apparent by this point that the authors of jQuery avoided introducing
a bunch of global names into the JavaScript namespace by making the $() function
(which you’ll recall is merely an alias for the jQuery() function) versatile enough to
perform many duties. Well, there’s one more duty that we need to examine.

 We can create DOM elements on the fly by passing the $() function a string
that contains the HTML markup for those elements. For example, we can create a
new paragraph element as follows:

$("<p>Hi there!</p>")

But creating a disembodied DOM element (or hierarchy of elements) isn’t all that
useful; usually the element hierarchy created by such a call is then operated on
using one of jQuery’s DOM manipulation functions.

 Let’s examine the code of listing 1.1 as an example.

<html>
 <head>
 <title>Follow me!</title>
 <script type="text/javascript" src="../scripts/jquery-1.2.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $("<p>Hi there!</p>").insertAfter("#followMe");
 });
 </script>
 </head>

 <body>
 <p id="followMe">Follow me!</p>
 </body>
</html>

This example establishes an existing HTML paragraph element named followMe
c in the document body. In the script element within the <head> section, we
establish a ready handler b that uses the following statement to insert a newly
created paragraph into the DOM tree after the existing element:

$("<p>Hi there!</p>").insertAfter("#followMe");

The result is as shown in figure 1.2.

Listing 1.1 Creating HTML elements on the fly

Ready handler that
creates HTML element

b

Existing element
to be followed

c

12 CHAPTER 1
Introducing jQuery
We’ll be investigating the full set of DOM manipulation functions in chapter 2,
where you’ll see that jQuery provides many means to manipulate the DOM to
achieve about any structure that we may desire.

 Now that you’ve seen the basic syntax of jQuery, let’s take a look at one of the
most powerful features of the library.

1.3.5 Extending jQuery

The jQuery wrapper function provides a large number of useful functions we’ll
find ourselves using again and again in our pages. But no library can anticipate
everyone’s needs. It could be argued that no library should even try to anticipate
every possible need; doing so could result in a large, clunky mass of code that
contains little-used features that merely serve to gum up the works!

 The authors of the jQuery library recognized this concept and worked hard to
identify the features that most page authors would need and included only those
needs in the core library. Recognizing also that page authors would each have
their own unique needs, jQuery was designed to be easily extended with addi-
tional functionality.

 But why extend jQuery versus writing standalone functions to fill in any gaps?
 That’s an easy one! By extending jQuery, we can use the powerful features it

provides, particularly in the area of element selection.
 Let’s look at a particular example: jQuery doesn’t come with a predefined func-

tion to disable a group of form elements. And if we’re using forms throughout our
application, we might find it convenient to be able to use the following syntax:

$("form#myForm input.special").disable();

Figure 1.2
A dynamically created
and inserted element

jQuery fundamentals 13
Fortunately, and by design, jQuery makes it easy to extend its set of functions by
extending the wrapper returned when we call $(). Let’s take a look at the basic
idiom for how that is accomplished:

$.fn.disable = function() {
 return this.each(function() {
 if (typeof this.disabled != "undefined") this.disabled = true;
 });
}

A lot of new syntax is introduced here, but don’t worry about it too much yet. It’ll
be old hat by the time you make your way through the next few chapters; it’s a
basic idiom that you’ll use over and over again.

 First, $.fn.disable means that we’re extending the $ wrapper with a function
called disable. Inside that function, this is the collection of wrapped DOM ele-
ments that are to be operated upon.

 Then, the each() method of this wrapper is called to iterate over each element
in the wrapped collection. We’ll be exploring this and similar methods in greater
detail in chapter 2. Inside of the iterator function passed to each(), this is a
pointer to the specific DOM element for the current iteration. Don’t be confused
by the fact that this resolves to different objects within the nested functions. After
writing a few extended functions, it becomes natural to remember.

 For each element, we check whether the element has a disabled attribute, and
if it does, set it to true. We return the results of the each() method (the wrapper)
so that our brand new disable() method will support chaining like many of the
native jQuery methods. We’ll be able to write

$("form#myForm input.special").disable().addClass("moreSpecial");

From the point of view of our page code, it’s as though our new disable()
method was built into the library itself! This technique is so powerful that most
new jQuery users find themselves building small extensions to jQuery almost as
soon as they start to use the library.

 Moreover, enterprising jQuery users have extended jQuery with sets of useful
functions that are known as plugins. We’ll be talking more about extending jQuery
in this way, as well as introducing the official plugins that are freely available in
chapter 9.

 Before we dive into using jQuery to bring life to our pages, you may be won-
dering if we’re going to be able to use jQuery with Prototype or other libraries
that also use the $ shortcut. The next section reveals the answer to this question.

14 CHAPTER 1
Introducing jQuery
1.3.6 Using jQuery with other libraries

Even though jQuery provides a set of powerful tools that will meet the majority of
the needs for most page authors, there may be times when a page requires that
multiple JavaScript libraries be employed. This situation could come about
because we’re in the process of transitioning an application from a previously
employed library to jQuery, or we might want to use both jQuery and another
library on our pages.

 The jQuery team, clearly revealing their focus on meeting the needs of their
user community rather than any desire to lock out other libraries, have made pro-
visions for allowing such cohabitation of other libraries with jQuery on our pages.

 First, they’ve followed best-practice guidelines and have avoided polluting the
global namespace with a slew of identifiers that might interfere with not only
other libraries, but also names that you might want to use on the page. The iden-
tifiers jQuery and its alias $ are the limit of jQuery’s incursion into the global
namespace. Defining the utility functions that we referred to in section 1.3.2 as
part of the jQuery namespace is a good example of the care taken in this regard.

 Although it’s unlikely that any other library would have a good reason to
define a global identifier named jQuery, there’s that convenient but, in this par-
ticular case, pesky $ alias. Other JavaScript libraries, most notably the popular
Prototype library, use the $ name for their own purposes. And because the usage
of the $ name in that library is key to its operation, this creates a serious conflict.

 The thoughtful jQuery authors have provided a means to remove this conflict
with a utility function appropriately named noConflict(). Anytime after the con-
flicting libraries have been loaded, a call to

jQuery.noConflict();

will revert the meaning of $ to that defined by the non-jQuery library.
 We’ll further cover the nuances of using this utility function in section 7.2.

1.4 Summary

In this whirlwind introduction to jQuery we’ve covered a great deal of material in
preparation for diving into using jQuery to quickly and easily enable Rich Inter-
net Application development.

 jQuery is generally useful for any page that needs to perform anything but the
most trivial of JavaScript operations, but is also strongly focused on enabling
page authors to employ the concept of Unobtrusive JavaScript within their pages.
With this approach, behavior is separated from structure in the same way that CSS

Summary 15
separates style from structure, achieving better page organization and increased
code versatility.

 Despite the fact that jQuery introduces only two new names in the JavaScript
namespace—the self-named jQuery function and its $ alias—the library provides
a great deal of functionality by making that function highly versatile; adjusting
the operation that it performs based upon its parameters.

 As we’ve seen, the jQuery() function can be used to do the following:

■ Select and wrap DOM elements to operate upon
■ Serve as a namespace for global utility functions
■ Create DOM elements from HTML markup
■ Establish code to be executed when the DOM is ready for manipulation

jQuery behaves like a good on-page citizen not only by minimizing it incursion
into the global JavaScript namespace, but also by providing an official means to
reduce that minimal incursion in circumstances when a name collision might still
occur, namely when another library such as Prototype requires use of the $ name.
How’s that for being user friendly?

 You can obtain the latest version of jQuery from the jQuery site at http://
jquery.com/. The version of jQuery that the code in this book was tested against
(version 1.2.1) is included as part of the downloadable code.

 In the chapters that follow, we’ll explore all that jQuery has to offer us as page
authors of Rich Internet Applications. We’ll begin our tour in the next chapter as
we bring our pages to life via DOM manipulation.

http://jquery.com/
http://jquery.com/

Creating the
wrapped element set
This chapter covers
■ Selecting elements to be wrapped by jQuery

using selectors

■ Creating and placing new HTML elements in
the DOM

■ Manipulating the wrapped element set
16

Selecting elements for manipulation 17
In the previous chapter, we discussed the many ways that the jQuery $() function
can be used. Its capabilities range from the selection of DOM elements to defining
functions to be executed when the DOM is loaded.

 In this chapter, we examine in great detail how the DOM elements to be oper-
ated upon are identified by looking at two of the most powerful and frequently
used capabilities of $(): the selection of DOM elements via selectors and the cre-
ation of new DOM elements.

 A good number of the capabilities required by Rich Internet Applications are
achieved by manipulating the DOM elements that make up the pages. But before
they can be manipulated, they need to be identified and selected. Let’s begin our
detailed tour of the many ways that jQuery lets us specify what elements are to be
targeted for manipulation.

2.1 Selecting elements for manipulation

The first thing we need to do when using virtually any jQuery method (frequently
referred to as jQuery commands) is to select some page elements to operate upon.
Sometimes, the set of elements we want to select will be easy to describe, such as “all
paragraph elements on the page.” Other times, they’ll require a more complex
description like “all list elements that have the class listElement and contain a link.”

 Fortunately, jQuery provides a robust selector syntax; we’ll be able to easily
specify virtually any set of elements elegantly and concisely. You probably already
know a big chunk of the syntax: jQuery uses the CSS syntax you already know and
love, and extends it with some custom methods to select elements that help you
perform tasks both common and complex.

 To help you learn about element selection, we’ve put together a Selectors
Lab page that’s available with the downloadable code examples for this book. If
you haven’t yet downloaded the example code, now would be a great time to do
so. Please see the book’s front section for details on how to find and download
this code.

 This Selectors Lab allows you to enter a jQuery selector string and see (in real
time!) which DOM elements get selected. The Selectors Lab can be found at
chapter2/lab.selectors.html in the example code.

 When displayed, the Lab should look as shown in figure 2.1 (if the panes don’t
appear correctly lined up, you may need to widen your browser window).

 The Selector pane at top left contains a text box and a button. To run a Lab
experiment, type a selector into the text box and click the Apply button. Go
ahead and type the string li into the box, and click Apply.

18 CHAPTER 2
Creating the wrapped element set
The selector that you type (in this case li) is applied to the HTML page loaded
into an <iframe> in the DOM Sample pane at upper right. The jQuery code on
the sample page causes all matched elements to be highlighted with a red border.
After clicking Apply, you should see the display shown in figure 2.2 in which all
 elements in the page are highlighted.

 Note that the elements in the sample page have been outlined and that
the executed jQuery statement, along with the tag names of the selected ele-
ments, has been displayed below the Selector text box.

 The HTML markup used to render the DOM Sample page is displayed in the
lower pane labeled HTML for DOM Sample to help you experiment with writing
selectors.

 We’ll talk more about using this Lab as we progress through the chapter. But
first, let’s wade into familiar territory: traditional CSS selectors.

Figure 2.1 The Selectors Lab page allows us to observe the behavior of any selector we choose in
real time.

Selecting elements for manipulation 19
2.1.1 Using basic CSS selectors

For applying styles to page elements, web developers have become familiar with a
small, but powerful and useful, group of selection methods that work across all
browsers. Those methods include selection by an element’s ID, CSS class name,
tag name, and the DOM hierarchy of the page elements.

 Here are some examples to give you a quick refresher.

■ a—This selector matches all link (<a>) elements.
■ #specialID—This selector matches elements that have an id of specialID.

■ .specialClass—This selector matches elements that have the class of spe-
cialClass.

■ a#specialID.specialClass—This selector matches links with an id of spe-
cialID and a class of specialClass.

■ p a.specialClass—This selector matches links with a class of specialClass
declared within <p> elements.

We can mix and match the basic selector types to select fairly fine-grained sets
of elements. In fact, the most fancy and creative websites use some combination of
these basic options to create their dazzling displays.

Figure 2.2 A selector value of li matches all elements when applied as shown by the
display results.

20 CHAPTER 2
Creating the wrapped element set
 We can use jQuery out of the box with the CSS selectors that we’re already
accustomed to using. To select elements using jQuery, we wrap the selector in $(),
as in

 $("p a.specialClass")

With a few exceptions, jQuery is fully CSS3 compliant, so selecting elements this
way will come with no surprises; the same elements that would be selected in a
style sheet by a standards-compliant browser will be selected by jQuery’s selector
engine. Note that jQuery doesn’t depend upon the CSS implementation of the
browser it’s running within. Even if the browser doesn’t implement a standard
CSS selector correctly, jQuery will correctly select elements according to the rules
of the World Wide Web Consortium (W3C) standard.

 For some exercise, go play with the Selectors Lab and run some experiments
with the various basic CSS selectors.

 These basic selectors are powerful, but sometimes we need even finer-grained
control over which elements we want to match. jQuery meets this challenge and
steps up to the plate with even more advanced selectors.

2.1.2 Using child, container, and attribute selectors

For more advanced selectors, jQuery uses the next generation of CSS supported
by Mozilla Firefox, Internet Explorer 7, Safari, and other modern browsers.
These advanced selectors include selecting the direct children of some elements,
elements that occur after other elements in the DOM, and elements with
attributes matching certain conditions.

 Sometimes, we’ll want to select only the direct children of a certain element.
For example, we might want to select list elements directly under some list, but
not list elements belonging to a sublist. Consider the following HTML fragment
from the sample DOM of the Selectors Lab:

<ul class="myList">
 jQuery supports

 CSS1
 CSS2
 CSS3
 Basic XPath

 jQuery also supports

http://jquery.com

Selecting elements for manipulation 21
 Custom selectors
 Form selectors

Suppose we want to select the link to the remote jQuery site, but not the links to
various local pages describing the different CSS specifications. Using basic CSS
selectors, we might try something like ul.myList li a. Unfortunately, that selector
would grab all links because they all descend from a list element.

 You can verify this by entering the selector ul.myList li a into the Selectors
Lab and clicking Apply. The results will be as shown in figure 2.3.

 A more advanced approach is to use child selectors, in which a parent and its
direct child are separated by the right angle bracket character (>), as in

p > a

This selector matches only links that are direct children of a <p> element. If a link
were further embedded, say within a within the <p>, that link would not
be selected.

 Going back to our example, consider a selector such as

ul.myList > li > a

This selector selects only links that are direct children of list elements, which are
in turn direct children of elements that have the class myList. The links
contained in the sublists are excluded because the elements serving as the

Figure 2.3 All anchor tags that are descendents, at any depth, of an element are selected by
ul.myList li a.

22 CHAPTER 2
Creating the wrapped element set
parent of the sublists elements don’t have the class myList, as shown in the
Lab results of figure 2.4.

 Attribute selectors are also extremely powerful. Say we want to attach a special
behavior only to links that point to locations outside our sites. Let’s take another
look at a portion of the Lab example that we previously examined:

jQuery supports

 CSS1
 CSS2
 CSS3
 Basic XPath

What makes the link pointing to an external site unique is the presence of the
string http:// at the beginning of the value of the link’s href attribute. We could
select links with an href value starting with http:// with the following selector:

a[href^=http://]

This matches all links with an href value beginning with exactly http://. The caret
character (^) is used to specify that the match is to occur at the beginning of a value.
This is the same character used by most regular expression processors to signify
matching at the beginning of a candidate string; it should be easy to remember.

 Visit the Lab page, from which the example HTML fragment was lifted, type
a[href^=http://] into the text box, and click Apply. Note how only the jQuery
link is highlighted.

 There are other ways to use attribute selectors. To match an element that pos-
sesses a specific attribute, regardless of its value, we can use

form[method]

Figure 2.4 With the selector ul.myList > li > a, only the direct children of parent nodes
are matched.

http://jquery.com

Selecting elements for manipulation 23
This matches any <form> element that has an explicit method attribute.
 To match a specific attribute value, we use something like

input[type=text]

This selector matches all input elements with a type of text.
 We’ve already seen the “match attribute at beginning” selector in action.

Here’s another:

div[title^=my]

This selects all <div> elements with title attributes whose value begins with my.
 What about an “attribute ends with” selector? Coming right up:

a[href$=.pdf]

This is a useful selector for locating all links that reference PDF files.
 And there’s a selector for locating elements whose attributes contain arbitrary

strings anywhere in the attribute value:

a[href*=jquery.com]

As we would expect, this selector matches all <a> elements that reference the
jQuery site.

 Beyond attributes, we’ll sometimes want to select an element only if it contains
some other element. In the previous list example, suppose we want to apply some
behavior to list elements containing links. jQuery supports this kind of selection
with the container selector:

li:has(a)

This selector matches all elements that contain an <a> element. Note that
this is not the same as a selector of li a, which matches all <a> elements contained
within elements. Use the Selectors Lab page to convince yourself of the dif-
ference between these two forms.

 Table 2.1 shows the CSS selectors that we can use with jQuery.
 Be aware that only a single level of nesting is supported. Although it’s possible

to nest one level, such as

foo:not(bar:has(baz))

additional levels of nesting, such as

foo:not(bar:has(baz:eq(2)))

aren’t supported.

24 CHAPTER 2
Creating the wrapped element set
With all this knowledge in hand, head over to the Selectors Lab page, and spend
some more time running experiments using selectors of various types from
table 2.1. Try to make some targeted selections like the elements contain-
ing the text Hello and Goodbye (hint: you’ll need to use a combination of selectors
to get the job done).

 As if the power of the selectors that we’ve discussed so far isn’t enough,
there are some more options that give us an even finer ability to slice and dice
the page.

2.1.3 Selecting by position

Sometimes, we’ll need to select elements by their position on the page or in rela-
tion to other elements. We might want to select the first link on the page, or every
other paragraph, or the last list item of each list. jQuery supports mechanisms for
achieving these specific selections.

Table 2.1 The basic CSS Selectors supported by jQuery

Selector Description

* Matches any element.

E Matches all element with tag name E.

E F Matches all elements with tag name F that are descendents of E.

E>F Matches all elements with tag name F that are direct children of E.

E+F Matches all elements F immediately preceded by sibling E.

E~F Matches all elements F preceded by any sibling E.

E:has(F) Matches all elements with tag name E that have at least one descendent with tag name F.

E.C Matches all elements E with class name C. Omitting E is the same as *.C.

E#I Matches element E with id of I. Omitting E is the same as *#I.

E[A] Matches all elements E with attribute A of any value.

E[A=V] Matches all elements E with attribute A whose value is exactly V.

E[A^=V] Matches all elements E with attribute A whose value begins with V.

E[A$=V] Matches all elements E with attribute A whose value ends with V.

E[A*=V] Matches all elements E with attribute A whose value contains V.

Selecting elements for manipulation 25
 For example, consider

a:first

This format of selector matches the first <a> element on the page.
 What about picking every other element?

p:odd

This selector matches every odd paragraph element. As we might expect, we can
also specify that evenly ordered elements be selected with

p:even

Another form

li:last-child

chooses the last child of parent elements. In this example, the last child of
each element is matched.

 There are a whole slew of these selectors, and they can provide surprisingly
elegant solutions to sometimes tough problems. See table 2.2 for a list of these
positional selectors.

Table 2.2 The more advanced positional selectors supported by jQuery: selecting elements based
on their position in the DOM

Selector Description

:first The first match of the page. li a:first returns the first link also under
a list item.

:last The last match of the page. li a:last returns the last link also under
a list item.

:first-child The first child element. li:first-child returns the first item
of each list.

:last-child The last child element. li:last-child returns the last item
of each list.

:only-child Returns all elements that have no siblings.

:nth-child(n) The nth child element. li:nth-child(2) returns the second list item of
each list.

:nth-child(even|odd) Even or odd children. li:nth-child(even) returns the even children
of each list.

continued on next page

26 CHAPTER 2
Creating the wrapped element set
There is one quick gotcha (isn’t there always?). The nth-child selector starts
counting from 1, whereas the other selectors start counting from 0. For CSS com-
patibility, nth-child starts with 1, but the jQuery custom selectors follow the more
common programming convention of starting at 0. With some use, it becomes
second nature to remember which is which, but it may be a bit confusing at first.

 Let’s dig in some more.
 Consider the following table, containing a list of some programming languages

and some basic information regarding them:

<table id="languages">
 <thead>
 <tr>
 <th>Language</th>
 <th>Type</th>
 <th>Invented</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Java</td>
 <td>Static</td>
 <td>1995</td>
 </tr>
 <tr>
 <td>Ruby</td>
 <td>Dynamic</td>
 <td>1993</td>
 </tr>
 <tr>
 <td>Smalltalk</td>

:nth-child(Xn+Y) The nth child element computed by the supplied formula. If Y is 0, it may
be omitted. li:nth-child(3n) returns every third item, whereas
li:nth-child(5n+1) returns the item after every fifth element.

:even and :odd Even and odd matching elements page-wide. li:even returns every even
list item.

:eq(n) The nth matching element.

:gt(n) Matching elements after (and excluding) the nth matching element.

:lt(n) Matching elements before (and excluding) the nth matching element.

Table 2.2 The more advanced positional selectors supported by jQuery: selecting elements based
on their position in the DOM (continued)

Selector Description

Selecting elements for manipulation 27
 <td>Dynamic</td>
 <td>1972</td>
 </tr>
 <tr>
 <td>C++</td>
 <td>Static</td>
 <td>1983</td>
 </tr>
 </tbody>
</table>

Let’s say we want to get all of the table cells that contained the names of program-
ming languages. Because they are all the first cells in their row, we can use

table#languages tbody td:first-child

We can also easily use

table#languages tbody td:nth-child(1)

But the first syntax would be considered pithier and more elegant.
 To grab the language type cells, we change the selector to use :nth-child(2),

and for the year they were invented, we use :nth-child(3) or :last-child. If we
want the absolute last table cell (the one containing the text 1983), we’d use td:last.
Also, whereas td:eq(2) returns the cell containing the text 1995, td:nth-child(2)
returns all of the cells giving programming language types. Again, remember
that :eq is 0-based, but :nth-child is 1-based.

 Before we move on, head back over to the Selectors Lab, and try selecting
entries two and four from the list. Then, try to find three different ways to select
the cell containing the text 1972 in the table. Also, try and get a feel for the dif-
ference between the nth-child selectors and the absolute position selectors.

 Even though the CSS selectors we’ve examined so far are incredibly powerful,
let’s discuss ways of squeezing even more power out of jQuery’s selectors.

2.1.4 Using custom jQuery selectors

The CSS selectors give us a great deal of power and flexibility to match the
desired DOM elements, but sometimes we’ll want to select elements based on a
characteristic that the CSS specification did not anticipate.

 For example, we might want to select all check boxes that have been checked
by the user. Because trying to match by attribute will only check the initial state
of the control as specified in the HTML markup, jQuery offers a custom selector,
:checked, that filters the set of matched elements to those that are in checked
state. For example, whereas the input selector selects all <input> elements, the

28 CHAPTER 2
Creating the wrapped element set
input:checked narrows the search to only <input> elements that are checked.
The custom :checked selector works like a CSS attribute selector (such as
[foo=bar]) in that both filter the matching set of elements by some criteria. Com-
bining these custom selectors can be powerful; consider :radio:checked and
:checkbox:checked.

 As we discussed earlier, jQuery supports all of the CSS filter selectors and also
a number of custom selectors defined by jQuery. They are described in table 2.3.

Table 2.3 The jQuery custom filter selectors that give immense power to identify
target elements

Selector Description

:animated Selects elements that are currently under animated control. Chapter 5 will cover
animations and effects.

:button Selects any button (input[type=submit], input[type=reset],
input[type=button], or button).

:checkbox Selects only check box elements (input[type=checkbox]).

:checked Selects only check boxes or radio buttons that are checked (supported by CSS).

:contains(foo) Selects only elements containing the text foo.

:disabled Selects only form elements that are disabled in the interface (supported by CSS).

:enabled Selects only form elements that are enabled in the interface (supported by CSS).

:file Selects all file elements (input[type=file]).

:header Selects only elements that are headers; for example: <h1> through
<h6> elements.

:hidden Selects only elements that are hidden.

:image Selects form images (input[type=image]).

:input Selects only form elements (input, select, textarea, button).

:not(filter) Negates the specified filter.

:parent Selects only elements that have children (including text), but not empty elements.

:password Selects only password elements (input[type=password]).

:radio Selects only radio elements (input[type=radio]).

:reset Selects reset buttons (input[type=reset] or button[type=reset]).

continued on next page

Selecting elements for manipulation 29
Many of the custom jQuery selectors are form-related, allowing us to specify,
rather elegantly, a specific element type or state. We can combine selector filters
too. For example, if we want to select only enabled and checked check boxes, we
could use

:checkbox:checked:enabled

Try out as many of these filters as you like in the Selectors Lab until you feel that
you have a good grasp of their operation.

 These filters are an immensely useful addition to the set of selectors at our dis-
posal, but what about the inverse of these filters?

Using the :not filter
If we want to negate a filter, let’s say to match any input element that’s not a check
box, we use the :not filter, which is supported for CSS filters and works with cus-
tom jQuery selector filters too.

 To select non-check box <input> elements, we use

input:not(:checkbox)

It’s important to recognize the distinction between filter selectors, which attenuate
a matching set of elements by applying a further selection criteria to them (like the
ones shown previously), and find selectors. Find selectors, such as the descendent
selector (space character), the child selector (>), and the sibling selector (+), find
other elements that bear some relationship to the ones already selected, rather than
limiting the scope of the match with criteria applied to the matched elements.

 We can apply the :not filter to filter selectors, but not to find selectors. The
selector

div p:not(:hidden)

is a perfectly valid selector, but div :not(p:hidden) isn’t.

:selected Selects option elements that are selected.

:submit Selects submit buttons (button[type=submit] or
input[type=submit]).

:text Selects only text elements (input[type=text]).

:visible Selects only elements that are visible.

Table 2.3 The jQuery custom filter selectors that give immense power to identify
target elements (continued)

Selector Description

30 CHAPTER 2
Creating the wrapped element set
 In the first case, all <p> elements descending from a <div> element that aren’t
hidden are selected. The second selector is illegal because it attempts to apply
:not to a selector that isn’t a filter (the p in p:hidden isn’t a filter).

 To make things simpler, filter selectors are easily identified because they all
begin with a colon character (:) or a square bracket character ([). Any other selec-
tor can’t be used inside the :not() filter.

 As we’ve seen, jQuery gives us a large toolset with which to select existing ele-
ments on a page for manipulation via the jQuery methods, which we’ll examine
in chapter 3. But before we look at the manipulation methods, let’s see how to use
the $() function to create new HTML elements to include in matched sets.

“But wait!” as they say, “there’s more!”

We’ve emphasized, and will continue to emphasize, that part of jQuery’s strength is
the ease with which it allows extensions via plugins. If you’re familiar with using
XML Path Language (XPath) to select elements within an Extensible Markup Lan-
guage (XML) document, you’re in luck. A jQuery plugin provides some basic XPath
support that can be used together with jQuery’s excellent CSS and custom selec-
tors. Look for this plugin at http://jquery.com/plugins/project/xpath.

Keep in mind that the support for XPath is basic, but it should be enough (in com-
bination with everything else we can do with jQuery) to make some powerful selec-
tions possible.

First, the plugin supports the typical / and // selectors. For example, /html//
form/fieldset selects all <fieldset> elements that are directly under a <form>
element on the page.

We can also use the * selector to represent any element, as in/html//form/*/
input, which selects all <input> elements directly under exactly one element
that’s under a <form> element.

The XPath plugin also supports the parent selector .., which selects parents of
previous element selectors. For example: //div/.. matches all elements that are
directly parent to a <div> element.

Also supported are XPath attribute selectors (//div[@foo=bar]), as well as con-
tainer selectors (//div[@p], which selects <div> elements containing at least one
<p> element). The plugin also supports position() via the jQuery position selec-
tors described earlier. For instance, position()=0 becomes :first, and posi-
tion()>n becomes :gt(n).

http://jquery.com/plugins/project/xpath

Generating new HTML 31
2.2 Generating new HTML

Sometimes, we’ll want to generate new fragments of HTML to insert into the
page. With jQuery, it’s a simple matter because, as we saw in chapter 1, the $ func-
tion can create HTML in addition to selecting existing page elements. Consider

$("<div>Hello</div>")

This expression creates a new <div> element ready to be added to the page. We
can run any jQuery commands that we could run on wrapped element sets of
existing elements on the newly created fragment. This may not seem impressive
on first glance, but when we throw event handlers, Ajax, and effects into the mix
(as we will in the upcoming chapters), we’ll see how it can come in handy.

 Note that if we want to create an empty <div> element, we can get away with
a shortcut:

$("<div>")

As with many things in life, there is a small caveat: we won’t be able to use this
technique to reliably create <script> elements. But there are plenty of techniques
for handling the situations that would normally cause us to want to build <script>
elements in the first place.

 To give you a taste of what you’ll be able to do later (don’t worry if some of it
goes over your head at this point), take a look at this:

$("<div class='foo'>I have foo!</div><div>I don't</div>")
 .filter(".foo").click(function() {
 alert("I'm foo!");
 }).end().appendTo("#someParentDiv");

In this snippet, we first create two <div> elements, one with class foo and one
without. We then narrow down the selection to only the <div> with class foo and
bind an event handler to it that will fire an alert dialog box when clicked. Finally,
we use the end() method (see section 2.3.6) to revert back to the full set of both
<div> elements and attach them to the DOM tree by appending them to the ele-
ment with the id of someParentDiv.

 That’s a lot going on in a single statement, but it certainly shows how we can
get a lot accomplished without writing a lot of script.

 An HTML page that runs this example is provided in the downloaded code as
chapter2/new.divs.html. Loading this file into a browser results in the displays
shown in figure 2.5.

 On initial load, as seen in the upper portion of figure 2.5, the new <div> ele-
ments are created and added to the DOM tree (because we placed the example

Identical to $("<div></div>")
and $("<div/>")

32 CHAPTER 2
Creating the wrapped element set
snippet into the page’s ready handler) right after the element containing text Div 2
(which has the id of someParentDiv). The lower portion of the figure shows that the
defined event handler is triggered when the first newly-created <div> is clicked.

 Don’t be too worried that we haven’t covered much of what you may need to
fully understand the previous example; we’ll get to all of it soon enough. In fact,
let’s get right to manipulating the wrapped set, including the filter() command
we used in the example.

2.3 Managing the wrapped element set

Once we’ve got the set of wrapped elements that we either identified by using a
selector to match existing DOM elements or created as new elements using HTML
snippets (or a combination of both), we’re ready to manipulate those elements
using the powerful set of jQuery commands. We’ll start looking at those com-
mands in the next chapter; but what if we’re not quite ready yet? What if we want
to further refine the set of elements wrapped by the jQuery function?

 In this section, we’ll explore the many ways that we can refine, extend, or sub-
set the set of wrapped elements that we wish to operate upon.

Figure 2.5 New HTML elements can be created under script control and given
advanced attributes, such as event handlers, all in a single jQuery statement.

Managing the wrapped element set 33
 In order to visually help you in this endeavor, another lab page has been set up
and included in the downloadable example code for this chapter: the Wrapped
Set Lab, which you will find in chapter2/lab.wrapped.set.html. This page, which
looks a lot like the Selectors Lab we examined earlier in this chapter, is shown in
figure 2.6.

 This new lab page not only looks like the Selectors Lab, it also operates in a
similar fashion. Except in this Lab, rather than typing a selector, we can type in
a complete jQuery wrapped set operation. The operation is applied to the DOM
Sample, and, as with the Selectors Lab, the results are displayed.

 In this sense, the Wrapped Set Lab is a more general case of the Selectors
Lab. Whereas the latter only allowed us to enter a single selector, the Wrapped
Set Lab allows us to enter any expression that results in a jQuery wrapped set.
Because of the way jQuery chaining works, this expression can also include com-
mands, making this a powerful Lab for examining the operations of jQuery. Be

Figure 2.6 The Wrapped Set Lab helps us see how wrapped sets can be created and managed.

34 CHAPTER 2
Creating the wrapped element set
aware that you need to enter valid syntax, as well as expressions that result in a
jQuery wrapped set. Otherwise, you’re going to be faced with a handful of unhelp-
ful JavaScript errors.

 We’ll see this new Lab in action as we work our way through the sections
that follow.

2.3.1 Determining the size of the wrapped set

We mentioned before that the set of jQuery wrapped elements acts a lot like an
array. This mimicry includes a length property, like JavaScript arrays, that con-
tains the number of wrapped elements.

 Should we wish to use a method rather than a property, jQuery also defines
the size() method, which returns the same information.

 Consider the following statement:

$('#someDiv')
 .html('There are '+$('a').size()+' link(s) on this page.');

The inner jQuery wrapper matches all elements of type <a> and returns the num-
ber of matched elements using the size() method. This is used to construct a text
string, which is set as the content of an element with id of someDiv using the
html() method (which we’ll see in the next chapter).

 The formal syntax of the size() command is as follows:

OK, so now you know how many elements you have. What if you want to access
them directly?

2.3.2 Obtaining elements from the wrapped set

Usually, once we have a wrapped set of elements, we can use jQuery commands to
perform some sort of operation upon them; for example, hiding them all with
the hide() method. But there may be times when we want to get our hands on a

Command syntax: size

size()

Returns the count of elements in the wrapped set

Parameters
none

Returns
The element count

Managing the wrapped element set 35
direct reference to an element or elements to perform raw JavaScript operations
upon them.

 Because jQuery allows us to treat the wrapped set as a JavaScript array, we can
use simple array indexing to obtain any element in the wrapped list by position.
For example, to obtain the first element in the set of all elements with an
alt attribute on the page, we can write

$('img[alt]')[0]

If we prefer to use a method rather than array indexing, jQuery defines the get()
method for that purpose.

The fragment

$('img[alt]').get(0)

is equivalent to the previous example that used array indexing.
 The get() method can also be used to obtain a plain JavaScript array of all the

wrapped elements. Consider:

var allLabeledButtons = $('label+button').get();

This statement wraps all the <button> elements on a page that are immediately
preceded by <label> elements in a jQuery wrapper and then creates a JavaScript
array of those elements to assign to the allLabeledButtons variable.

 We can use an inverse operation to find the index of a particular element in
the wrapped set. Let’s say for some reason we want to know the ordinal index of
an image with the id of findMe within the entire set of images in a page. We can
obtain this value with

var n = $('img').index($('img#findMe')[0]);

Command syntax: get

get(index)

Obtains one or all of the matched elements in the wrapped set. If no parameter is specified,
all elements in the wrapped set are returned in a JavaScript array. If an index parameter is
provided, the indexed element is returned.

Parameters
index (Number) The index of the single element to return. If omitted, the entire set is

returned in an array.

Returns
A DOM element or an array of DOM elements.

36 CHAPTER 2
Creating the wrapped element set
The syntax of the index() command is as follows:

Now, rather than obtaining elements, how would you go about adjusting the set
of elements that are wrapped?

2.3.3 Slicing and dicing the wrapped element set

Once we have a wrapped element set, we may want to augment that set by adding
to it or by reducing the set to a subset of the originally matched elements. jQuery
gives us a large collection of methods to manage the set of wrapped elements.
First, let’s look at adding elements to a wrapped set.

Adding more elements to the wrapped set
Often, we may find ourselves in a situation where we want to add more elements
to an existing wrapped set. This capability is most useful when we want to add
more elements after applying some command to the original set. Remember,
jQuery chaining makes it possible to perform an enormous amount of work in a
single statement.

 But first, let’s examine a simple situation. Let’s say that we want to match all
 elements that have either an alt or a title attribute. The powerful jQuery
selectors allow us to express this as a single selector, such as

$('img[alt],img[title]')

But to illustrate the operation of the add() method, we could match the same set
of elements with

$('img[alt]').add('img[title]')

Using the add() method in this fashion allows us to chain a bunch of selectors
together into an or relationship, creating the union of the elements that satisfy
both of the selectors. Methods such as add() can also be useful in place of selectors

Command syntax: index

index(element)

Finds the passed element in the wrapped set and returns its ordinal index within the set. If
the element isn’t resident in the set, the value -1 is returned.

Parameters
element (Element) A reference to the element whose ordinal value is to be determined.

Returns
The ordinal value of the passed element within the wrapped set or -1 if not found.

Managing the wrapped element set 37
in that the end() method (which we’ll examine in section 2.3.6) can be used to
back out of the elements added via add().

Bring up the Wrapped Set Lab page in your browser, enter the previous exam-
ple (exactly as shown), and click the Execute button. This should execute the
jQuery operation and result in the selection of all images with either an alt or
title attribute.

 Inspecting the HTML source for the DOM Sample reveals that all the images
depicting flowers have alt attributes, the puppy images have title attributes,
and the coffee pot image has neither. Therefore, we should expect that all images
but the coffee pot would become part of the wrapped set. Figure 2.7 shows a
screen capture of the relevant page portions of the results.

Command syntax: add

add(expression)

Adds elements, specified by the expression parameter, to the wrapped set. The expression
can be a selector, an HTML fragment, a DOM element, or an array of DOM elements.

Parameters
expression (String|Element|Array) Specifies what is to be added to the matched set.

This parameter can be a jQuery selector, in which case any matched
elements are added to the set. If an HTML fragment, the appropriate
elements are created and added to the set. If a DOM element or an array
of DOM elements, they are added to the set.

Returns
The wrapped set.

Figure 2.7 The expected image elements, those with an alt or title attribute, have been matched
by the jQuery expression.

38 CHAPTER 2
Creating the wrapped element set
We can see that five of the six images (all but the coffee pot) were added to the
wrapped set. (The red outline may be a bit hard to see in the print version of this
book with grayscale figures.)

 Now let’s take a look at a more realistic use of the add() method. Let’s say that
we want to apply a thick border to all elements with alt attributes, and then
apply a level of transparency to all elements with either alt or title
attributes. The comma operator (,) of CSS selectors won’t help us with this one
because we want to apply an operation to a wrapped set and then add more ele-
ments to it. We could easily accomplish this with multiple statements, but it would
be more efficient and elegant to use the power of jQuery chaining to accomplish
the task in a single statement, such as

$('img[alt]').addClass('thickBorder').add('img[title]')
 .addClass('seeThrough')

In this statement, we create a wrapped set of all elements with alt
attributes, apply a predefined class that applies a thick border, add the ele-
ments that have title attributes, and finally apply a class that applies transpar-
ency to the newly augmented set.

 Enter this statement into the Wrapped Set Lab page (which has predefined the
named classes), and view the results as shown in figure 2.8.

 In these results, we can see that the flower images (those with alt) have thick
borders, and all images but the coffee pot (the only one with neither an alt nor a
title) are faded as a result of applying an opacity rule.

 The add() method can also be used to add elements to an existing wrapped set
given references to those elements. Passing an element reference, or an array of
element references, to the add() method adds the elements to the wrapped set. If
we assume that we have an element reference in a variable named someElement, it
could be added to the set of all images containing an alt property with

$('img[alt]').add(someElement)

➥

Figure 2.8
jQuery chaining allows us to
perform complex operations
in a single statement, as
seen by these results.

Managing the wrapped element set 39
As if that weren’t flexible enough, the add() method not only allows us to add
existing elements to the wrapped set, we can also use it to add new elements by
passing it a string containing HTML markup. Consider

$('p').add('<div>Hi there!</div>')

This fragment creates a wrapped set of all <p> elements in the document, and
then creates a new <div>, and adds it to the wrapped set. Note that doing so only
adds the new element to the wrapped set; no action has been taken in this state-
ment to add the new element to the DOM. We might then use the jQuery
append() method (patience, we’ll be talking about such methods soon enough) to
append the elements we selected, as well as the newly created HTML, to some
part of the DOM.

 Augmenting the wrapped set with add() is easy and powerful, but now let’s
look at the jQuery methods that let us remove elements from a wrapped set.

Honing the contents of the wrapped set
We saw that it’s a simple matter in jQuery to create wrapped sets from multiple
selectors chained together with the add() method to form an or relationship. It’s
also possible to chain selectors together to form an except relationship by employ-
ing the not() method. This is similar to the :not selector filter we discussed ear-
lier, but can be employed in a similar fashion to the add() method to remove
elements from the wrapped set anywhere within a jQuery chain of commands.

 Let’s say that we want to select all elements in a page that sport a title
attribute except for those that contain the text puppy in the title attribute value.
We could come up with a single selector that expresses this condition (namely
img[title]:not([title*=puppy])), but for the sake of illustration, let’s pretend
that we forgot about the :not filter. By using the not() method, which removes
any elements from a wrapped set that match the passed selector expression, we
can express an except type of relationship. To perform the described match, we
can write

$('img[title]').not('[title*=puppy]')

Type this expression into the Wrapped Set Lab page, and execute it. You’ll see
that only the tan puppy image is selected. The black puppy, which is included in
the original wrapped set because it possesses a title attribute, is removed by the
not() invocation because its title contains the text puppy.

 Note that the selectors we can pass to the not() method are limited to filter
expressions that omit any element reference (allowing it to imply all element
types). If we had passed the more explicit selector img[title*=puppy] to the not()

40 CHAPTER 2
Creating the wrapped element set
method instead, we would not get the expected result because element selectors
are not supported.

As with add(), the not() method can also be used to remove individual elements
from the wrapped set by passing a reference to an element or an array of element
references. The latter is interesting and powerful because, remember, any jQuery
wrapped set can be used as an array of element references.

 At times, we may want to filter the wrapped set in ways that are difficult or
impossible to express with a selector expression. In such cases, we may need to
resort to programmatic filtering of the wrapped set items. We could iterate
through all the elements of the set and use the not(element) method to remove
the specific elements that do not meet our selection criteria. But the jQuery team
didn’t want us to have to resort to doing all that work on our own and so have
defined the filter() method.

 The filter() method, when passed a function, invokes that function for each
wrapped element and removes any element whose function invocation returns
the value false. Each invocation has access to the current wrapped element via
the function context (this) in the body of the filtering function.

 For example, let’s say that, for some reason, we want to create a wrapped set of
all <td> elements that contain a numeric value. As powerful as the jQuery selector
expressions are, such a requirement is impossible to express using them. For such
situations, the filter() method can be employed, as follows:

$('td').filter(function(){return this.innerHTML.match(/^\d+$/)})

This jQuery expression creates a wrapped set of all <td> elements and then
invokes the function passed to the filter() method for each, with the current

Command syntax: not

not(expression)

Removes elements from the matched set according to the value of the expression parame-
ter. If the parameter is a jQuery filter selector, any matching elements are removed. If an ele-
ment reference is passed, that element is removed from the set.

Parameters
expression (String|Element|Array) A jQuery filter expression, element reference, or

array of element references defining what is to be removed from the
wrapped set.

Returns
The wrapped set.

Managing the wrapped element set 41
matched elements as the this value for the invocation. The function uses a regu-
lar expression to determine if the element content matches the described pattern
(a sequence of one or more digits), returning false if not. Every element whose
filter function invocation returns false is removed from the wrapped set.

Again, bring up the Wrapped Set Lab, type the previous expression in, and exe-
cute it. You will see that the table cells for the Invented column are the only <td>
elements that end up being selected.

 The filter() method can also be used with a passed selector expression that
conforms to the same constraints that we described earlier for the not() method,
namely, filter selectors with an implied element type. When used in this manner,
it operates in the inverse manner than the corresponding not() method, remov-
ing any elements that do not match the passed selector. This isn’t a powerful
method, as it’s usually easier to use a more restrictive selector in the first place,
but it can be useful within a chain of jQuery commands. Consider, for example,

$('img').addClass('seeThrough').filter('[title*=dog]')
 .addClass('thickBorder')

This chained statement selects all images and applies the seeThrough class to
them and then reduces the set to only those image elements whose title attribute
contains the string dog before applying another class named thickBorder. The
result is that all the images end up semi-transparent, but only the tan dog gets the
thick border treatment.

 The not() and filter() methods give us powerful means to adjust a set of
wrapped elements on the fly, based on just about any criteria regarding aspects

Command syntax: filter

filter(expression)

Filters out elements from the wrapped set using a passed selector expression, or a filtering
function.

Parameters
expression (String|Function) Specifies a jQuery selector used to remove all elements

that do not match from the wrapped set, or a function that makes the
filtering decision. This function is invoked for each element in the set,
with the current element set as the function context for that invocation.
Any element that returns an invocation of false is removed from
the set.

Returns
The wrapped set.

➥

42 CHAPTER 2
Creating the wrapped element set
of the wrapped elements. We can also subset the wrapped set, based on the posi-
tion of the elements within the set. Let’s see which methods allow us to do that.

Obtaining subsets of the wrapped set
Sometimes we may wish to obtain a subset of the wrapped set, based on the posi-
tion of elements within the set. jQuery provides a method to do that named
slice(). This command creates and returns a new set from any contiguous por-
tion, or a slice, of an original wrapped set. The syntax for this command follows:

If we want to obtain a wrapped set that contains a single element from another
set, based on its position in the original set, we could employ the slice() method,
passing the zero-based position of the element within the wrapped set. For exam-
ple, to obtain the third element, we write

$('*').slice(2,3);

This statement selects all elements on the page and then generates a new set con-
taining the third element in the matched set.

 Note that this is different from $('*').get(2), which returns the third element
in the wrapped set, not a wrapped set containing the element.

 Therefore, a statement such as

$('*').slice(0,4);

selects all elements on the page and then creates a set containing the first four
elements.

 To grab elements from the end of the wrapped set, the statement

$('*').slice(4);

Command syntax: slice

slice(begin,end)

Creates and returns a new wrapped set containing a contiguous portion of the matched set.

Parameters
begin (Number) The zero-based position of the first element to be included in the

returned slice.

end (Number) The optional zero-based index of the first element not to be included in
the returned slice, or one position beyond the last element to be included. If omit-
ted, the slice extends to the end of the set.

Returns
The newly created wrapped set.

Managing the wrapped element set 43
matches all elements on the page and then returns a set containing all but the
first four elements.

 And we’re not done yet! jQuery also gives us the ability to obtain subsets of a
wrapped set, based on the relationship of the wrapped items with other elements
in the DOM. Let’s see how.

2.3.4 Getting wrapped sets using relationships

jQuery allows us to get new wrapped sets from an existing set, based on the hier-
archical relationships of the wrapped element to the other elements within the
HTML DOM. Note that these methods operate in a slightly different manner than
most earlier methods in this section that modify the wrapped set upon which they
are called. Like the slice() method, the methods we’ll see in this section return a
new wrapped set, leaving the original set unchanged.

 Table 2.4 shows these methods and their descriptions. Each of these methods
accepts an optional selector expression that any selected elements must match. If
no such selector parameter is passed, all eligible elements are selected.

 These methods give us a large degree of freedom to select elements from the
DOM, based on relationships to the other DOM elements. But we’re still not done.
Let’s see how jQuery deals further with wrapped sets.

Table 2.4 Methods to obtain new wrapped set based on relationships

Method Description

children() Returns a wrapped set consisting of all unique children of the wrapped elements.

contents() Returns a wrapped set of the contents of the elements, which may include text nodes, in
the wrapped set. (Frequently used to obtain the contents of <iframe> elements.)

next() Returns a wrapped set consisting of all unique next siblings of the wrapped elements.

nextAll() Returns a wrapped set containing all the following siblings of the wrapped elements.

parent() Returns a wrapped set consisting of the unique direct parents of all wrapped elements.

parents() Returns a wrapped set consisting of the unique ancestors of all wrapped elements. This
includes the direct parents as well as the remaining ancestors all the way up to, but not
including, the document root.

prev() Returns a wrapped set consisting of all unique previous siblings of the wrapped elements.

prevAll() Returns a wrapped set containing all the previous siblings of the wrapped elements.

siblings() Returns a wrapped set consisting of all unique siblings of the wrapped elements.

44 CHAPTER 2
Creating the wrapped element set
All of the methods in table 2.4, with the exception of contents(), accept a param-
eter containing a string that can be used to filter the results.

2.3.5 Even more ways to use a wrapped set

As if all that were not enough, there are still a few more tricks that jQuery has up
its sleeve to let us define our collections of wrapped objects.

 The find() method lets us search through an existing wrapped set and returns
a new set that contains all elements that match a passed selector expression. For
example, given a wrapped set in variable wrappedSet, we can get another
wrapped set of all citations (<cite> elements) within paragraphs with

wrappedSet.find('p cite')

Note that if this were all to occur in a single statement, we could also accomplish
this by passing a context parameter to a jQuery selector:

$('p cite',wrappedSet)

Like many other jQuery wrapped set methods, the find() method’s power comes
when it’s used within a jQuery chain of operations.

In addition to finding elements in a wrapped set that match a selector, jQuery
also provides a method to find elements that contain a specified string. The con-
tains() method will return a new wrapped set that consists of all elements that
contain the passed string anywhere within its body content. Consider

$('p').contains('Lorem ipsum')

This expression yields a wrapped set containing all paragraphs that contain the
text Lorem ipsum. Note that the string test is applied to all aspects of the body

Command syntax: find

find(selector)

Returns a new wrapped set containing all elements of the original set that match the passed
selector expression.

Parameters
selector (String) A jQuery selector that elements must match to become part of the

returned set.

Returns
The newly created wrapped set.

Managing the wrapped element set 45
content, including markup and attribute values of children elements, but it
doesn’t match markup or attribute values of the original elements being tested.

The last method that we’ll examine in this section is one that allows us to test a
wrapped set to see if it contains at least one element that matches a given selector
expression. The is() method returns true if at least one element matches the
selector, and false if not. For example:

var hasImage = $('*').is('img');

This statement sets the value of the hasImage variable to true if the current page
has an image element.

2.3.6 Managing jQuery chains

We’ve made a big deal (and will continue to do so, because it is a big deal) about
the ability to chain jQuery wrapper methods together to perform a lot of activity
in a single statement. This chaining ability not only allows us to write powerful
operations in a concise manner, but it also improves efficiency because wrapped
sets do not have to be recomputed in order to apply multiple commands to them.

 Depending upon the methods used in a command chain, multiple wrapped sets
may be generated. For example, using the clone() method (which we’ll explore in

Command syntax: contains

contains(text)

Returns a new wrapped set composed of elements that contain the text string passed as the
text parameter

Parameters
text (String) The text that an element must contain in order to be added to the returned set

Returns
The newly created wrapped set

Command syntax: is

is(selector)

Determines if any element in the wrapped set matches the passed selector expression

Parameters
selector (String) The selector expression to test against the elements of the wrapped set

Returns
true if at least one element matches the passed selector; false if not

46 CHAPTER 2
Creating the wrapped element set
detail in chapter 3) generates a new wrapped set, which creates copies of the ele-
ments in the first set. If, once a new wrapped set is generated, we had no way to
reference the original set, our ability to construct versatile jQuery command
chains would be curtailed.

 Consider the following statement:

$('img').clone().appendTo('#somewhere');

Two wrapped sets are generated within this statement: the original wrapped set
of all the elements on a page and a second wrapped set consisting of copies
of those elements. The clone() method returns this second set as its result, and
it’s that set that’s operated on by the appendTo() command.

 But what if we subsequently want to apply a command, such as adding a class
name, to the original wrapped set after it’s been cloned? We can’t tack it onto the
end of the existing chain; that would affect the clones, not the original wrapped
set of images.

 jQuery provides for this need with the end() command. This method, when
used within a jQuery chain, will back up to a previous wrapped set and return it as
its value so that subsequent operations will apply to the previous set.

 Consider

$('img').clone().appendTo('#somewhere').end().addClass('beenCloned');

The appendTo() method returns the set of new clones, but by calling end() we
back up to the previous wrapped set (the original images), which gets operated on
by the addClass() command. Without the intervening end() command, addClass()
would have operated on the set of clones.

It might help to think of the wrapped sets generated during a jQuery command
chain as being held on a stack. When end() is called, the topmost (most recent)

Command syntax: end

end()

Used within a chain of jQuery command to back up the wrapped set to a previously
returned set

Parameters
none

Returns
The previous wrapped set

Summary 47
wrapped set is popped from the stack, leaving the previous wrapped set exposed
for subsequent commands to operate upon.

 Another handy jQuery method that modifies the wrapped set stack is and-
Self(), which merges the two topmost sets on the stack into a single wrapped set.

2.4 Summary

This chapter focused on creating and adjusting sets of elements (referred in this
chapter and beyond as the wrapped set) via the many methods that jQuery pro-
vides for identifying elements on an HTML page.

 jQuery provides a versatile and powerful set of selectors, patterned after the
selectors of CSS, for identifying elements within a page document in a concise but
powerful syntax. These selectors include not only the CSS2 syntax currently sup-
ported by most browsers, but also CSS3 syntax; a handful of custom selectors;
and, with a plugin, even some basic XPath selectors.

 jQuery also allows us to create or augment a wrapped set using HTML frag-
ments to create new elements on the fly. These orphaned elements can be manip-
ulated, along with any other elements in the wrapped set, and eventually
attached to parts of the page document.

 jQuery provides a robust set of methods to adjust the wrapped set to hone the
contents of the set, either immediately after creation or midway through a set of
chained commands. Applying filtering criteria to an already existing set can also
easily create new wrapped sets.

 All in all, jQuery gives us a lot of tools to make sure that we can easily and accu-
rately identify the page elements that we wish to manipulate.

 In this chapter, we covered a lot of ground without doing anything to the DOM
elements of the page. But now that we know how to select the elements that we
want to operate upon, we’re ready to start adding life to our pages with the power
of the jQuery commands.

Command syntax: andSelf

andSelf()

Merges the two previous wrapped sets in a command chain

Parameters
none

Returns
The merged wrapped set

Bringing pages
to life with jQuery
This chapter covers:
■ Getting and setting element attributes
■ Manipulating element class names
■ Setting element content
■ Dealing with form element values
■ Modifying the DOM tree
48

Manipulating element properties and attributes 49
Remember those days (not all that long ago) when fledgling page authors would try
to add pizzazz to their pages with counterproductive abominations such as mar-
quees; blinking text; loud background patterns that interfered with the readability
of page text; annoying animated GIFs; and, perhaps worst of all, unsolicited back-
ground sounds that would play upon page load (and served to test how fast a user
could close down the browser)?

 We’ve come a long way since then.
 Today’s savvy web developers and designers know better and use the power

given to them by Dynamic HTML (DHTML) to enhance a user’s web experience,
rather than showcase annoying tricks.

 Whether it’s to incrementally reveal content, create input controls beyond the
basic set provided by HTML, or give users the ability to tune pages to their own
liking, DHMTL—or DOM manipulation—has allowed many a web developer to
amaze (not annoy) their users.

 On an almost daily basis, we come across web pages that do something that
makes us say, “Wow! I didn’t know you could do that!” And being the commensu-
rate professionals that we are (not to mention insatiably curious about such
things), we immediately start looking at the source code to find out how they did it.

 But rather than having to code up all that script ourselves, we’ll find that
jQuery provides a robust set of tools to manipulate the DOM, making those types of
“Wow!” pages possible with a minimum of code. Whereas the previous chapter
introduced us to the many ways jQuery lets us select DOM elements into a wrapped
set, this chapter puts the power of jQuery to work performing operations on those
elements to bring life and that elusive wow factor to our pages.

3.1 Manipulating element properties and attributes

Some of the most basic components we can manipulate when it comes to DOM
elements are the properties and attributes assigned to those elements. These prop-
erties and attributes are initially assigned to the DOM elements as a result of pars-
ing their HTML markup and can be changed dynamically under script control.

 To make sure we have our terminology and concepts straight, consider the fol-
lowing HTML markup for an image element:

<img id="myImage" src="image.gif" alt="An image" class="someClass"
 title="This is an image"/>

In this element’s markup, the tag name is img, and the markup for id, src, alt,
class, and title represents the element’s attributes, each of which consists of a
name and a value. This element markup is read and interpreted by the browser to

➥

50 CHAPTER 3
Bringing pages to life with jQuery
create the JavaScript object that represents this element in the DOM. In addition
to storing the attributes, this object possesses a number of properties, including
some that represent the values of the markup attributes (and even one that main-
tains the list of the attributes themselves). Figure 3.1 shows a simplified overview
of this process.

 The HTML markup is translated by the browser into a DOM element that rep-
resents the image. A NodeList object (one of the container types defined by the
DOM) is created and assigned as a property of the element named attributes.
There is a dynamic association between the attributes and their corresponding
properties (which we’ll refer to as attribute properties). Changing an attribute
results in a change in the corresponding attribute property and vice versa. Even
so, the values may not always be identical. For example, setting the src attribute
of the image element to image.gif will result in the src property being set to the
full absolute URL of the image.

Figure 3.1 HTML markup is translated into DOM elements, including the attributes of the tag and
the properties created from them.

Manipulating element properties and attributes 51
For the most part, the name of a JavaScript attribute property matches that of
any corresponding attribute, but there are some cases where they differ. For
example, the class attribute in this example is represented by the className
attribute property.

 jQuery gives us the means to easily manipulate an element’s attributes and
gives us access to the element so that we can also change its properties. Which of
these we choose to manipulate depends on what we want to do and how we want
to do it.

 Let’s start by looking at getting and setting element properties.

3.1.1 Manipulating element properties
jQuery doesn’t possess a specific command to obtain or modify the properties
of elements. Rather, we use the native JavaScript notation to access the proper-
ties and their values. The trick is in getting to the element references in the
first place.

 The easiest way to inspect or modify the component elements of a matched set
is with the each() command. The syntax of this command is as follows:

This command can be used to easily set a property value onto all elements in a
matched set. For example, consider:

$('img').each(function(n){
 this.alt='This is image['+n+'] with an id of '+this.id;
});

This statement will invoke the inline function for each image element on the
page, modifying its alt property using the order of the element and its id value.
Note that, because this is an attribute property tied to an attribute of the same
name, the alt attribute is also indirectly updated.

Command syntax: each

each(iterator)

Traverses all elements in the matched set invoking the passed iterator function for each.

Parameters
iterator (Function) A function called for each element in the matched set. The parame-

ter passed to this function is set to the zero-based index of the element
within the set, and the element itself is available as the this property of the
function.

Returns
The wrapped set.

52 CHAPTER 3
Bringing pages to life with jQuery
 Similarly, we can collect all values for a specific property into an array using
each(), as follows:

var allAlts = new Array();
$('img').each(function(){
 allAlts.push(this.alt);
});

If all we want to do is obtain the property value of a single element, remember
that the matched set can be treated like a JavaScript array; we could obtain the
property via

var altValue = $('#myImage')[0].alt;

Dealing with attributes is a little less straightforward than dealing with properties
in JavaScript, so jQuery provides assistance for dealing with them. Let’s look
at how.

3.1.2 Fetching attribute values

As we’ll find is true with many jQuery commands, the attr() command can be
used either as a read or as a write operation. When jQuery commands can per-
form such disparate operations, the number and types of parameters passed into
the command determine the variant of the command used.

 The attr() command can be used to either fetch the value of an attribute
from the first element in the matched set or set attribute values onto all
matched elements.

 The syntax for the fetch variant of the attr() command is as follows:

Even though we usually think of attributes as predefined by HTML, we can use
attr() with custom attributes set through JavaScript or HTML markup. To illustrate

Command syntax: attr

attr(name)

Obtains the values assigned to the specified attribute for the first element in the matched
set.

Parameters
name (String) The name of the attribute whose value is to be fetched.

Returns
The value of the attribute for the first matched element. The value undefined is returned if
the matched set is empty or the attribute doesn’t exist on the first element.

Manipulating element properties and attributes 53
this, let’s amend the element of our previous example with a custom
markup attribute (highlighted in bold):

<img id="myImage" src="image.gif" alt="An image" class="someClass"
 title="This is an image" custom="some value"/>

Note that we have added a custom attribute, unimaginatively named custom, to
the element. We can retrieve that attribute’s value, as if it were any of the standard
attributes, with

$("#myImage").attr("custom")

WARNING Using a nonstandard attribute name such as custom, although a com-
mon sleight-of-hand trick, will cause your markup to be considered
invalid; it will fail validation testing. This may have implications for
accessibility, as well as for parsing by programs that expect your site to be
written in valid HTML or XHTML.

Attribute names are not case sensitive in HTML. Regardless of how an attribute
such as title is declared in the markup, we can access (or set, as we shall see)
attributes using any variants of case: Title, TITLE, TiTlE, or any other combina-
tions are all equivalent. In XHTML, even though attribute names must be lower-
case in the markup, we can retrieve them using any case variant.

 At this point you may be asking, “Why deal with attributes at all when access-
ing the properties is so easy (as seen in the previous section)?”

 The answer to that question is that the jQuery attr() command is much more
than a wrapper around the JavaScript getAttribute() and setAttribute() meth-
ods. In addition to allowing access to the set of element attributes, jQuery pro-
vides access to some commonly used properties that, traditionally, have been a
thorn in the side of page authors everywhere due to their browser dependency.

 This set of normalized-access names is shown in table 3.1.

Table 3.1 jQuery attr() normalized-access names

Normalized name Source name

class className

cssFloat styleFloat for IE, cssFloat for others (when used with .css)

float styleFloat for IE, cssFloat for others (when used with .css)

for htmlFor

continued on next page

➥

54 CHAPTER 3
Bringing pages to life with jQuery
In addition to these helpful shortcuts, the set variant of attr() has some of its
own handy features. Let’s take a look.

3.1.3 Setting attribute values

There are two ways to set attributes onto elements in the wrapped set with jQuery.
Let’s start with the most straightforward that allows us set a single attribute at a
time (for all elements in the wrapped set). Its syntax is as follows:

This variant of attr(), which may at first seem simple, is rather sophisticated in
its operation.

 In its most basic form, when the value parameter is any JavaScript expression
that results in a value (including an array), the computed value of the expres-
sion is set as the attribute value.

 Things get more interesting when the value parameter is a function refer-
ence. In such cases, the function is invoked for each element in the wrapped set,
with the return value of the function used as the attribute value. When the func-
tion is invoked, it’s passed a single parameter that contains the zero-based index
of the element within the wrapped set. Additionally, the element is established

maxlength maxLength

readonly readOnly

styleFloat styleFloat for IE, cssFloat for others (when used with .css)

Table 3.1 jQuery attr() normalized-access names (continued)

Normalized name Source name

Command syntax: attr

attr(name,value)

Sets the named attribute onto all elements in the wrapped set using the passed value.

Parameters
name (String) The name of the attribute to be set.

value (String|Object|Function) Specifies the value of the attribute. This can be any Java-
Script expression that results in a value, or it can be a function. See the following
discussion for how this parameter is handled.

Returns
The wrapped set.

Manipulating element properties and attributes 55
as the this variable for the function invocation, allowing the function to tune
its processing for each specific element—the main power of using functions in
this way.

 Consider the following statement:

$('*').attr('title',function(index) {
 return 'I am element ' + index + ' and my name is ' +
 (this.id ? this.id : 'unset');
});

This command will run through all elements on the page, setting the title
attribute of each element to a string composed using the index of the element
within the DOM and the id attribute of each specific element.

 We’d use this means of specifying the attribute value whenever that value is
dependent upon other aspects of the elements, rather than some unrelated value.

 The second set variant of attr() allows us to conveniently specify multiple
attributes at a time.

This format is a quick and easy way to set multiple attributes onto all the elements
of a wrapped set. The passed parameter can be any object reference, commonly
an object literal, whose properties specify the names and values of the attributes
to be set. Consider:

$('input').attr(
 { value: '', title: 'Please enter a value' }
);

This statement sets the value of all <input> elements to the empty string, as well
as sets the title to the string Please enter a value.

 Note that if any property value in the object passed as the value parameter is
a function reference, it operates in a manner similar to that described for the

Command syntax: attr

attr(attributes)

Sets the attributes and values specified by the passed object onto all elements of the
matched set

Parameters
attributes (Object) An object whose properties are copied as attributes to all

elements in the wrapped set

Returns
The wrapped set

56 CHAPTER 3
Bringing pages to life with jQuery
previous format of attr(); the function is invoked for each individual element in
the matched set.

WARNING Internet Explorer won’t allow the name attribute of <input> elements to
be changed. If you want to change the name of <input> elements in
Internet Explorer, you must replace the element with a new element pos-
sessing the desired name.

Now we know how to get and set attributes. But what about getting rid of them?

3.1.4 Removing attributes

In order to remove an attribute from DOM elements, jQuery provides the
removeAttr() command. Its syntax is as follows:

Note that removing an attribute doesn’t remove any corresponding property
from the JavaScript DOM element, though it may cause its value to change. For
example, removing a readonly attribute from an element would cause the value
of the element’s readOnly property to flip from true to false, but the property
itself isn’t removed from the element.

 Now let’s look at some examples of how we might use this knowledge on
our pages.

3.1.5 Fun with attributes

Let’s say that we want to make all links on our site that pointed to external
domains open in a new window. This is fairly trivial if we’re in total control of the
entire markup, as shown:

Some External Site

Command syntax: removeAttr

removeAttr(name)

Removes the specified attribute from every matched element

Parameters
name (String) The name of the attribute to be removed

Returns
The wrapped set

http://external.com

Manipulating element properties and attributes 57
That’s all well and good, but what if we’re running a Content Management
System or a wiki, where end users will be able to add content, and we can’t rely on
them to add the target="_blank" to all external links? First, let’s try and deter-
mine what we want; we want all links whose href attribute begins with http:// to
open in a new window (which we have determined can be done by setting the
target attribute to _blank).

 We can use the techniques we’ve learned in this section to do this concisely,
as follows:

$("a[href^=http://]").attr("target","_blank");

First, we select all links with an href attribute starting with http:// (which indi-
cates that the reference is external). Then, we set its target attribute to _blank.
Mission accomplished with a single line of jQuery code!

 Another excellent use for jQuery’s attribute functionality is helping to solve a
long-standing issue with web applications (rich and otherwise): the Dreaded Dou-
ble Submit Problem. This is a common problem in web applications when the
latency of form submissions, sometimes several seconds or longer, gives users an
opportunity to press the submit button multiple times, causing all manner of
grief for the server-side code.

 For our solution, we’ll hook into the form’s submit event and disable the sub-
mit button after its first press. That way, users won’t get the opportunity to click
the submit button more than once and will get a visual indication (assuming that
disabled buttons appear so in their browser) that the form is in the process of
being submitted. Don’t worry about the details of event handling in the following
example (we’ll get more than enough of that coming up in chapter 5), but con-
centrate on the use of the attr() command:

$("form").submit(function() {
 $(":submit",this).attr("disabled", "disabled");
});

Within the body of the event handler, we grab all submit buttons that are inside
our form with the :submit selector and modify the disabled attribute to the value
"disabled" (the official W3C-recommended setting for the attribute). Note that
when building the matched set, we provide a context value (the second parame-
ter) of this. As we’ll find out when we dive into event handing in chapter 5, the
this pointer always refers to the page element to which the event was bound
while operating inside event handlers.

58 CHAPTER 3
Bringing pages to life with jQuery
WARNING Disabling the submit button(s) in this way doesn’t relieve the server-side
code from its responsibility to guard against double submission or any
other types of validation. Adding this type of feature to the client code
makes things nicer for the end user and helps prevent the double-submit
problem under normal circumstances. It doesn’t protect against attacks
or other hacking attempts, and server-side code must continue to be on
its guard.

We mentioned the className property earlier in this section as an example of the
case where markup attribute names differ from property names; but, truth be
told, class names are a bit special in other respects and are handled as such by
jQuery. The next section will describe a better way to deal with class names than
by directly accessing the className property or using the attr() command.

3.2 Changing element styling

If we want to change the styling of an element, we have two options. We can add
or remove a CSS class, causing the existing stylesheet to restyle the element
based on its new classes. Or we can operate on the DOM element itself, applying
styles directly.

 Let’s look at how jQuery makes it simple to make changes to an element’s
style classes.

3.2.1 Adding and removing class names

The class name attributes and properties of DOM elements are unique in their
format and semantics and are also important to the creation of rich user inter-
faces. The addition of class names to and removal of class names from an ele-
ment is one of the primary means by which their stylistic rendering can be
modified dynamically.

 One of the aspects of element class names that make them unique—and a
challenge to deal with—is that each element can be assigned any number of class
names. In HTML, the class attribute is used to supply these names as a space-
delimited string. For example:

<div class="someClass anotherClass yetAnotherClass"></div>

Unfortunately, rather than manifesting themselves as an array of names in the DOM
element’s corresponding className property, the class names appear as the

Changing element styling 59
space-delimited string. How disappointing, and how cumbersome! This means
that whenever we want to add class names to or remove class names from an
element that already has class names, we need to parse the string to determine
the individual names when reading it and be sure to restore it to valid space-
delimited format when writing it.

 Although it’s not a monumental task to write code to handle all that, it’s always
a good idea to abstract such details behind an API that hides the mechanical
details of such operations. Luckily, jQuery has already done that for us.

 Adding class names to all the elements of a matched set is an easy operation
with the following addClass() command:

Removing class names is as straightforward with the following removeClass()
command:

Often, we may want to switch a set of styles back and forth, perhaps to indicate a
change between two states or for any other reasons that make sense with our
interface. jQuery makes it easy with the toggleClass() command.

Command syntax: addClass

addClass(names)

Adds the specified class name or class names to all elements in the wrapped set

Parameters
names (String) A string containing the class name to add or, if multiple class names are

to be added, a space-delimited string of class names

Returns
The wrapped set

Command syntax: removeClass

removeClass(names)

Removes the specified class name or class names from each element in the wrapped set

Parameters
names (String) A string containing the class name to remove or, if multiple class names

are to be removed, a space-delimited string of class names

Returns
The wrapped set

60 CHAPTER 3
Bringing pages to life with jQuery
One situation where the toggleClass() command is most useful is when we want
to switch visual renditions between elements quickly and easily. Remember the
zebra-stripe example of figure 1.1? What if we had some valid reason to swap
the colored background from the odd rows to the even rows (and perhaps back
again) when certain events occurred? The toggleClass() command would make
it almost trivial to add a class name to every other row, while removing it from
the remainder.

 Let’s give it a whirl. In the file chapter3/zebra.stripes.html, you’ll find a copy
of the same page from chapter 1 with some minor changes. We added the follow-
ing function to the <script> element in the page header:

function swap() {
 $('tr').toggleClass('striped');
}

This function uses the toggleClass() command to toggle the class named stripe
for all <tr> elements. We also added calls to this function as the onmouseover and
onmouseout attributes of the table:

<table onmouseover="swap();" onmouseout="swap();">

The result is that every time the mouse cursor enters or leaves the table, all <tr>
elements with the class striped will have the class removed, and all <tr> elements
without the class will have it added. This (rather annoying) activity is shown in the
two parts of figure 3.2.

 Manipulating the stylistic rendition of elements via CSS class names is a pow-
erful tool, but sometimes we want to get down to the nitty-gritty styles themselves
as declared directly on the elements. Let’s see what jQuery offers us for that.

Command syntax: toggleClass

toggleClass(name)

Adds the specified class name if it doesn’t exist on an element, or removes the name from
elements that already possess the class name. Note that each element is tested individu-
ally, so some elements may have the class name added, and others may have it removed.

Parameters
name (String) A string containing the class name to toggle.

Returns
The wrapped set.

Changing element styling 61
3.2.2 Getting and setting styles

Although modifying the class of an element allows us to choose which predeter-
mined set of defined stylesheet styles should be applied, sometimes we want to
override the stylesheet altogether. Applying styles directly on the elements them-
selves will automatically override stylesheets, giving us more fine-grained control
over individual elements and their styles.

 The css() method works similarly to the attr() method, allowing us to set an
individual CSS property by specifying its name and value, or a series of elements
by passing in an object. First, let’s look at specifying a name and value.

Figure 3.2 The presence or absence of the striped class is toggled whenever the mouse cursor
enters or leaves the table.

Command syntax: css

css(name,value)

Sets the named CSS style property to the specified value for each matched element.

Parameters
name (String) The name of the CSS property to be set.

value (String|Number|Function) A string, number, or function containing the property
value. If a function is passed as this parameter, it will be invoked for each element
of the wrapped set with its return value serving as the value for the CSS property.
The this property for each function invocation will be set to the element being
evaluated.

Returns
The wrapped set.

62 CHAPTER 3
Bringing pages to life with jQuery
As described, the value accepts a function in a similar fashion to the attr() com-
mands. This means that we can, for instance, expand the width of all elements in
the wrapped set by 20 pixels as follows:

$("div.expandable").css("width",function() {
 return $(this).width() + 20 + "px";
});

Don’t worry that we haven’t discussed the width() command yet. It does exactly
what you would expect it to (namely, return the width of the element as a num-
ber), and we’ll discuss it in more detail shortly. One interesting side note is that
the normally problematic opacity property will work perfectly across browsers by
passing in a value between 0.0 and 1.0; no more messing with IE alpha filters,
-moz-opacity, and the like!

 Next, let’s look at using the shortcut form of the css() command, which works
exactly as the shortcut version of attr() worked.

As in the shortcut version of the attr() command, we can use functions as val-
ues to any CSS property in the properties parameter object, and they will be
called on each element in the wrapped set to determine the value that should
be applied.

 Lastly, we can use css() with a name passed in to retrieve the computed style
of the property associated with that name. When we say computed style, we mean
the style after all linked, embedded, and inline CSS has been applied. Impres-
sively, this works perfectly across all browsers, even for opacity, which returns a
string representing a number between 0.0 and 1.0.

Command syntax: css

css(properties)

Sets the CSS properties specified as keys in the passed object to their associated values for
all matched elements

Parameters
properties (Object) Specifies an object whose properties are copied as CSS proper-

ties to all elements in the wrapped set

Returns
The wrapped set

Changing element styling 63
Keep in mind that this variant of the css() command always returns a string, so if
you need a number or some other type, you’ll need to parse the returned value.

 For a small set of CSS values that are commonly accessed, jQuery thoughtfully
provides convenience commands that easily access these values and convert them
to the most commonly used types. Specifically, we can get (or set) the width and
height of an element as a number by using the convenient width() and height()
commands. To set the width or height:

Keep in mind that these are shortcuts for the more verbose css() function, so

$("div.myElements").width(500)

is identical to

$("div.myElements").css("width","500px")

Command syntax: css

css(name)

Retrieves the computed value of the CSS property specified by name for the first element in
the wrapped set

Parameters
name (String) Specifies the name of a CSS property whose computed value is to

be returned

Returns
The wrapped set

Command syntax: width and height

width(value)
height(value)

Sets the width or height of all elements in the matched set

Parameters
value (Number) The value to be set in pixels

Returns
The wrapped set

64 CHAPTER 3
Bringing pages to life with jQuery
To retrieve the width or height:

The fact that the width and height values are returned from these functions as
numbers isn’t the only convenience that these commands bring to the table. If
you’ve ever tried to find the width or height of an element by looking at its
style.width or style.height property, you were confronted with the sad fact that
these properties are only set by the corresponding style attribute of that ele-
ment; to find out the dimensions of an element via these properties, you have to
set them in the first place. Not exactly a paragon of usefulness!

 The width() and height() commands, on the other hand, compute and
return the size of the element. Although knowing the precise dimensions of an
element in simple pages that let their elements lay out wherever they end up isn’t
usually necessary, knowing such dimensions in Rich Internet Applications is cru-
cial to be able to correctly place active elements such as context menus, custom
tool tips, extended controls, and other dynamic components.

 Let’s put them to work. Figure 3.3 shows a sample set up with two primary ele-
ments: a test subject <div> that contains a paragraph of text (also with a border

Command syntax: width and height

width()
height()

Retrieves the width or height of the first element of the wrapped set

Parameters
none

Returns
The computed width or height as a number

Figure 3.3 The width and height of the test element aren’t fixed and depend on the width of the
browser window.

Changing element styling 65
and background color for emphasis) and a second <div> in which to display
the dimensions.

 The dimensions of the test subject aren’t known in advance because no style
rules specifying dimensions are applied. The width of the element is determined
by the width of the browser window, and its height depends on how much room
will be needed to display the contained text. Resizing the browser window would
cause both dimensions to change.

 In our page, we define a function that will use the width() and height() com-
mands to obtain the dimensions of the test subject <div> (named testSubject)
and display the resulting values in the second <div> (named display).

function report() {
 $('#display').html(
 $('#testSubject').width()+'x'+$('#testSubject').height()
);
}

We call this function in the ready handler of the page, resulting in the display of
the values 675 and 48 for that particular size of browser window, as shown in fig-
ure 3.3.

 We also add a call to the function in the onresize attribute of the <body>
element:

<body onresize="report();">

Resizing the browser results in the display shown in figure 3.4.
 This ability to determine the computed dimensions of an element at any point

is crucial to accurately positioning dynamic elements on our pages.
 The full code of this page is shown in listing 3.1 and can be found in the file

chapter3/dimensions.html.

Figure 3.4
Resizing the browser causes
the test subject to change
size; this change is reflected
in the computed values.

66 CHAPTER 3
Bringing pages to life with jQuery
<html>
 <head>
 <title>width() and height() Test</title>
 <link rel="stylesheet" type="text/css" href="../common.css">
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript">
 $(function(){
 report();
 });

 function report() {
 $('#display').html(
 $('#testSubject').width()+'x'+$('#testSubject').height()
);
 }
 </script>
 <style>
 #testSubject {
 background-color: plum;
 border: 1px solid darkmagenta;
 padding: 8px;
 font-size: .85em;
 }
 </style>
 </head>

 <body onresize="report();">
 <div id="testSubject">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eget enim id neque aliquet porttitor. Suspendisse
 nisl enim, nonummy ac, nonummy ut, dignissim ac, justo.
 Aenean imperdiet semper nibh. Vivamus ligula. In in ipsum
 sed neque vehicula rhoncus. Nam faucibus pharetra nisi.
 Integer at metus. Suspendisse potenti. Vestibulum ante
 ipsum primis in faucibus orci luctus et ultrices posuere
 cubilia Curae; Proin quis eros at metus pretium elementum.
 </div>
 <div id="display"></div>
 </body>
</html>

You may have picked up on the fact the we embedded behavior in the HTML
markup of this example in violation of the rules of Unobtrusive JavaScript. That’s
OK for now, but in the next chapter we’ll learn a better way to bind event handlers.

Listing 3.1 Dynamically tracking the dimensions of an element

Invokes reporting
function at page ready Displays width and

height of test subject

Applies styling
to test subject

Reports
dimensions
on window
resize Declares test subject

with dummy text

Displays dimensions
in this area

Changing element styling 67
Now that we’ve explored manipulating the styles on a wrapped set of elements,
let’s take a look at a couple of related style-oriented activities that you might want
to accomplish, and how to achieve them.

3.2.3 More useful style-related commands

It’s extremely common to need to determine whether an element has a particular
class. With jQuery, we can do that by calling the hasClass() function.

$("p:first").hasClass("surpriseMe")

This will return true if any element in the matched set has the specified class. The
syntax of this command is as follows:

Recalling the is() command from chapter 2, we could achieve the same thing with

$("p:first").is(".surpriseMe")

In fact, jQuery’s inner workings implement the hasClass() function exactly that
way! But arguably, the hasClass() command makes for more readable code.

 Another commonly desired ability is to obtain the list of classes defined for a
particular element as an array instead of the cumbersome space-separated list.
We could try to achieve that by writing

$("p:first").attr("class").split(" ");

Recall that the attr() command will return undefined if the attribute in question
doesn’t exist, so this statement will throw an error if the <p> element doesn’t pos-
sess any class names. We could solve this by first checking for the attribute, and if
we wanted to wrap the entire thing in a repeatable, useful jQuery extension, we
could write

$.fn.getClassNames = function() {
 if (name = this.attr("className")) {

Command syntax: hasClass

hasClass(name)

Determines if any element of the matched set possesses the passed class name

Parameters
name (String) The class name to be checked

Returns
Returns true if any element in the wrapped set possesses the passed class name;
false if not

68 CHAPTER 3
Bringing pages to life with jQuery
 return name.split(" ");
 }
 else {
 return [];
 }
};

But don’t worry about the specifics of the syntax for extending jQuery; we’ll go
into that in more detail in chapter 7. What’s important is that we can use get-
ClassNames() anywhere in our script to obtain an array of class names or an
empty array if an element has no classes. Nifty!

 Now that we’ve learned how to get and set the styles of elements, let’s discuss
different ways for modifying their contents.

3.3 Setting element content

When it comes to modifying the contents of elements, there’s an ongoing debate
regarding which technique is better: using DOM API methods or changing their
inner HTML. In most cases, modifying an element’s HTML is easier and more
effective, so jQuery gives us a number of methods to do so.

3.3.1 Replacing HTML or text content
First is the simple html() command, which allows us to retrieve the HTML con-
tents of an element when used without parameters or, as we’ve seen with other
jQuery functions, to set its contents when used with a parameter.

 Here’s how to get the HTML content of an element:

Here’s how to set the HTML content of all matched elements:

Command syntax: html

html()

Obtains the HTML content of the first element in the matched set.

Parameters
none

Returns
The HTML content of the first matched element. The returned value is identical to accessing
the innerHTML property of that element.

Setting element content 69
We can also set or get only the text contents of elements. The text()command,
when used without parameters, returns a string that’s the concatenation of all
text. For example, let’s say we have the following HTML fragment:

<ul id="theList">
 One
 Two
 Three
 Four

The statement

var text = $('#theList').text();

results in variable text being set to OneTwoThreeFour.

We can also use the text command to set the text content of the wrapped ele-
ments. The syntax for this format is as follows:

Command syntax: html

html(text)

Sets the passed HTML fragment as the content of all matched elements

Parameters
text (String) The HTML fragment to be set as the element content

Returns
The wrapped set

Command syntax: text

text()

Concatenates all text content of the wrapped elements and returns it as the result of
the command

Parameters
none

Returns
The concatenated string

70 CHAPTER 3
Bringing pages to life with jQuery
Note that setting the inner HTML or text of elements using these commands will
replace contents that were previously in the elements, so use these commands
carefully. If you don’t want to bludgeon all of an element’s previous content, a
number of other methods will leave the contents of the elements as they are but
modify their contents or surrounding elements. Let’s look at them.

3.3.2 Moving and copying elements

To add content to the end of existing content, the append() command is available.

This function accepts a string containing an HTML fragment, a reference to an
existing or newly created DOM element, or a jQuery wrapped set of elements.

 Consider the following simple case:

$('p').append('some text');

This statement appends the HTML fragment created from the passed string to
the end of the existing content of all <p> elements on the page.

Command syntax: text

text(content)

Sets the text content of all wrapped elements to the passed value. If the passed text con-
tains angle brackets (< and >), these characters are replaced with their equivalent HTML
entities.

Parameters
content (String) The text content to be set into the wrapped elements. Any angle

bracket characters are escaped as HTML entities.

Returns
The wrapped set.

Command syntax: append

append(content)

Appends the passed HTML fragment or elements to the content in all matched elements.

Parameters
content (String|Element|Object) A string, element, or wrapped set to append to the ele-

ments of the wrapped set. See the following description for details.

Returns
The wrapped set.

Setting element content 71
 A more complex use of this command identifies already-existing elements of
the DOM as the items to be appended. Consider the following:

$("p.appendToMe").append($("a.appendMe"))

This statement appends all links with the class appendMe to <p> elements with the
class appendToMe. The disposition of the original elements depends on the num-
ber of elements serving as the target of the append. If there is a single target, the
element is removed from its original location—performing a move operation of
the original element to a new parent. In the case where there are multiple tar-
gets, the original element remains in place and copies of it are appended to each
of the targets—a copy operation.

 In place of a full-blown wrapped set, we can also reference a specific DOM ele-
ment, as shown:

var toAppend = $("a.appendMe")[0];
$("p.appendToMe").append(toAppend);

Whether the element identified by toAppend is moved or copied again depends
on the number of elements identified by $("p.appendToMe"): a move if one ele-
ment is matched, a copy if more than one element is matched.

 If we want to move or copy an element from one place to another, a simpler
approach uses the appendTo() command, which allows us to grab an element and
move it somewhere else in the DOM.

A common semantic for most functions in this section is that an element will be
moved if the destination identifies only one target. If the destination denotes mul-
tiple target elements, the source element will remain in its original location and
be copied to each destination.

Command syntax: appendTo

appendTo(target)

Moves all elements in the wrapped set to the end of the content of the specified target(s).

Parameters
target (String|Element) A string containing a jQuery selector or a DOM element. Each

element of the wrapped set will be appended to that location. If more than one
element matches a string selector, the element will be copied and appended to
each element matching the selector.

Returns
The wrapped set.

72 CHAPTER 3
Bringing pages to life with jQuery
Before we move on to other commands that work in a similar fashion, let’s look at
an example to make sure that this important concept is clear. We’ve set up a lab
page with some elements to serve as the source of an appendTo() operation and
some to serve as targets. Upon initial display, this Move and Copy Laboratory
Page looks as shown in figure 3.5.

 The HTML markup for the test candidates in the fieldsets is as follows:

<fieldset id="source">
 <legend>Source elements</legend>

</fieldset>

Figure 3.5 The Move and Copy Laboratory Page is set up to illustrate the operation of the
appendTo and prependTo commands.

Setting element content 73
<fieldset id="targets">
 <legend>Target elements</legend>
 <p></p>
 <p></p>
 <p></p>
</fieldset>

The source fieldset contains two images: one with an id of flower, and one with an
id of car. These image elements will serve as the source of the commands that we’ll
apply. The target fieldset contains three <p> elements, each of which contains an
image. These paragraph elements will serve as the target of our commands.

 Display this page, which can be found in the file chapter3/lab.move.and
.copy.html, in your browser. Leaving the appendTo radio button checked, click
the Execute button, which will execute code equivalent to the following:

$('#flower').appendTo('#targets p')
$('#car').appendTo('#targets p:first')

The first statement executes the appendTo() command on the flower image, spec-
ifying the three paragraph elements as the target. Because there’s more than one
target element, we would expect the flower image to be copied. The second state-
ment issues the same command for the car image, but specifying only the first of
the paragraph elements as the target. Because there is only one target, we would
expect the car image to be moved.

 The display of figure 3.6, taken after the click of the Execute button, shows
that these expectations were correct.

 It’s clear from these results that when there are multiple targets, the source ele-
ment is copied, and when there is only a single target the source element is moved.

 A number of related commands work in a fashion similar to append() and
appendTo():

■ prepend() and prependTo()—Work like append() and appendTo(), but insert
the source element before the destination target’s contents instead of after.
These commands can also be demonstrated in the Move and Copy Labora-
tory by clicking the PrependTo radio button before clicking Execute.

■ before() and insertBefore()—Insert the element before the destination
elements instead of before the destination’s first child.

■ after() and insertAfter()—Insert the element after the destination ele-
ments instead of after the destination’s last child.

Because the syntax of these commands is so similar to that of the append class of
commands, we won’t waste the space to show individual syntax descriptions for

74 CHAPTER 3
Bringing pages to life with jQuery
them. Please refer back to the syntax blocks for append() and appendTo() for the
format of the syntax for these commands.

 One more thing before we move on…
 Remember back in the previous chapter when we showed how to create new

HTML fragments with the jQuery $() wrapper function? Well, that becomes a
really useful trick when paired with the appendTo(), prependTo(), insertBefore(),
and insertAfter() commands. Consider the following:

$('<p>Hi there!</p>').insertAfter('p img');

This statement creates a friendly paragraph and inserts a copy of it after every
image element within a paragraph element.

Figure 3.6 After execution, it’s clear that the car has been moved and the flower has
been copied.

Setting element content 75
 Sometimes, rather than inserting elements into other elements, we want to do
the opposite. Let’s see what jQuery offers for that.

3.3.3 Wrapping elements
Another type of DOM manipulation that we’ll often need to perform is to wrap an
element (or series of elements) in some markup. For example, we might want to
wrap all links of a certain class inside a <div>. We can accomplish such DOM mod-
ifications by using jQuery’s wrap() command. Its syntax is as follows:

To wrap each link with the class surprise in a <div> with the class hello, we write
$("a.surprise").wrap("<div class='hello'></div>")

If we wanted to wrap the link in a clone of the first <div> element on the page:
$("a.surprise").wrap($("div:first")[0]);

When multiple elements are collected in a matched set, the wrap() method oper-
ates on each one individually. If we’d rather wrap all the elements in the set as a
unit, we can use the wrapAll() method instead:

Command syntax: wrap

wrap(wrapper)

Wraps the elements of the matched set with the passed HTML tags or a clone of the
passed element.

Parameters
wrapper (String|Element) The opening and closing tags of the element with which to

wrap each element of the matched set, or an element to be cloned and server
as the wrapper.

Returns
The wrapped set.

Command syntax: wrapAll

wrapAll(wrapper)

Wraps the elements of the matched set, as a unit, with the passed HTML tags or a clone of
the passed element.

Parameters
wrapper (String|Element) The opening and closing tags of the element with which to

wrap each element of the matched set, or an element to be cloned and server
as the wrapper.

Returns
The wrapped set

76 CHAPTER 3
Bringing pages to life with jQuery
Sometimes we may not want to wrap the elements that are in a matched set, but
rather their contents. For just such cases, the wrapInner() method is available:

Now that we know how to create, wrap, copy, and move elements, we may wonder
how we make them go away.

3.3.4 Removing elements

If we want to empty or remove a set of elements, this can be accomplished with
the remove() command whose syntax is as follows:

Note that, as with many other jQuery commands, the wrapped set is returned as
the result of this command. The elements that were removed from the DOM are
still referenced by this set (and hence not yet eligible for garbage collection) and
can be further operated upon using other jQuery commands including appendTo(),
prependTo(), insertBefore(), insertAfter(), and any other similar behaviors
we’d like.

Command syntax: wrapInner

wrapInner(wrapper)

Wraps the contents, to include text nodes , elements of the matched set with the passed
HTML tags or a clone of the passed element.

Parameters
wrapper (String|Element) The opening and closing tags of the element with which to

wrap each element of the matched set, or an element to be cloned and server
as the wrapper.

Returns
The wrapped set

Command syntax: remove

remove()

Removes all elements in the wrapped set from the page DOM

Parameters
none

Returns
The wrapped set

Setting element content 77
 To empty DOM elements of their contents, we can use the empty() command.
Its syntax is as follows:

A common idiom is to use the remove() and after() commands to effect a
replacement operation. Consider the following:

$("div.elementToReplace").after("<p>I am replacing the div</p>").remove();

Because the after() function returns the original wrapped set containing the
<div>, we can then remove it, resulting in a replacement of the original <div> with
the newly created <p> element.

 If this is an idiom that you’ll find yourself using over and over again,
remember that you can always wrap up such useful statements as extensions to
jQuery with

$.fn.replaceWith = function(html) {
 return this.after(html).remove();
};

Its usage, to perform the same operation as shown in the previous example, is

$("div.elementToReplace").replaceWith("<p>I am replacing the div</p>");

Here, we see another example of creating extensions to jQuery. It’s important
when doing so to return the wrapped set so that the chain can be continued after
it has been called (unless the purpose of the extension is to return other data).
You should be getting the hang of extending jQuery, but don’t worry if you aren’t;
it’ll get fuller treatment later in this book (in chapter 7, to be exact).

 Sometimes, we don’t want to move elements, but to copy them…

Command syntax: empty

empty()

Removes the content of all DOM elements in the matched set

Parameters
none

Returns
The wrapped set

78 CHAPTER 3
Bringing pages to life with jQuery
3.3.5 Cloning elements

One more way that we can manipulate the DOM is to make copies of elements to
attach elsewhere in the tree. jQuery provides a handy wrapper method for doing
so with its clone() command.

Making a copy of existing elements with clone() isn’t useful unless we do some-
thing with the carbon copies. Generally, once the wrapped set containing the
clones is generated, another jQuery command is applied to stick them some-
where in the DOM. For example:

$('img').clone().appendTo('fieldset.photo');

This statement makes copies of all image elements and appends them to all
<fieldset> elements with the class name photo.

 A slightly more complex example is as follows:

$('ul').clone().insertBefore('#here');

This command chain performs a similar operation but the targets of the cloning
operation—all elements—are copied, including their children (it’s likely
that any element will have a number of children).

 One last example:

$('ul').clone().insertBefore('#here').end().hide();

This statement performs the same operation as the previous example, but after
the insertion of the clones, the end() command is used to select the original
wrapped set (the original targets) and hide them. This emphasizes how the clon-
ing operation creates a new set of elements in a new wrapper.

Command syntax: clone

clone(copyHandlers)

Creates copies of the elements in the wrapped set and returns a new wrapped set that con-
tains them. The elements and any children are copied. Event handlers are optionally copied
depending upon the setting of the copyHandlers parameter.

Parameters
copyHandlers (Boolean) If true, event handlers are copied. If false, or omitted,

handlers are not copied.

Returns
The newly created wrapped set.

Dealing with form element values 79
 Now that we’ve discussed handling general DOM elements, let’s take a brief
look at handling a special type of element: form elements.

3.4 Dealing with form element values

Because form elements have special properties, jQuery’s core contains a number
of convenience functions for activities like getting and setting their values, serial-
izing them, and selecting elements based on form properties. They will serve us
well in simple cases, but the Form Plugin—an officially sanctioned plugin devel-
oped by members of the jQuery Core Team—provides a much more robust set of
functionality. We’ll discuss the Form Plugin in chapter 9.

NOTE When we use the term form element, we are referring to the elements that
can appear within a form and possess name and value attributes that sub-
mit to the server as request parameters when the form is submitted. Deal-
ing with such elements by hand in script can be tricky because, not only
can elements be disabled, but the W3C defines an unsuccessful state for
controls. This state determines which elements should be ignored during
a submission, and it’s a tad on the complicated side.

That said, let’s take a look at one of the most common operations we’ll want to
perform on a form element: getting access to its value. jQuery’s val() command
takes care of the most common cases, returning the value attribute of a form ele-
ment for the first element in the wrapped set. Its syntax is as follows:

This command, although quite useful, has a number of limitations of which we
need to be wary. If the first element in the wrapped set isn’t a form element, a
JavaScript error is thrown. This command also doesn’t distinguish between the

Command syntax: val

val()

Returns the value property of the first element in the matched set. When the element is a
multi-select element, the returned value is an array of all selections.

Parameters
none

Returns
The fetched value or values.

80 CHAPTER 3
Bringing pages to life with jQuery
checked or unchecked states of check boxes and radio buttons, and will return the
value of check boxes or radio buttons as defined by their value attribute, regard-
less of whether they are checked or not.

 For radio buttons, the power of jQuery selectors combined with the val()
method saves the day. Consider a form with a radio group (a set of radio buttons
with the same name) named radioGroup and the following expression:

$('[name=radioGroup]:checked').val()

This expression returns the value of the single checked radio button (or unde-
fined if none is checked). That’s a lot easier than looping through the buttons
looking for the checked element, isn’t it? Since val() only considers the first ele-
ment in a wrapped set, it’s not as useful for check box groups where more than
one control might be checked.

 If we want to obtain the values with which the controls would be submitted
through a form submission, we’ll be much better off using the serialize() com-
mand (which we’ll see in chapter 8) or the official Form Plugin.

 Another common operation we’ll perform is to set the value of a form ele-
ment. The val() command is also used for this purpose by supplying a value. Its
syntax is as follows:

Like the get variant of this command, this function has its limitations. It can’t set
multiple values into a multiselect list, for example. This is the reason that much
more robust functionality is available in the Form Plugin. In addition to lifting
the limitations mentioned so far, it’s capable of such operations as retrieving an
array of values for check box groups, serializing the elements in the wrapped set,
clearing fields, and even converting a DOM form into a format suitable for use
with Ajax.

Command syntax: val

val(value)

Sets the passed value as the value of all matched form elements

Parameters
value (String) A string that’s set as the value property of each form element in the

wrapped set

Returns
The wrapped set

Summary 81
 Another way that the val() method can be used is to cause check box or radio
elements to become checked, or to select options within a <select> element. The
syntax of this variant of val() is as follows:

Consider the following statement:

$('input,select').val(['one','two','three']);

This statement will search all the <input> and <select> elements on the page for
values that match any of the input strings: one, two or three. Any check boxes or
radio buttons that are found to match will become checked, and any options that
match will become selected.

 This makes val() useful for much more than just text elements.

3.5 Summary

In this chapter, we’ve gone beyond the art of selecting elements and started manip-
ulating them. With the techniques we’ve learned so far, we can select elements
using powerful criteria, and then move them surgically to any part of the page.

 We can choose to copy elements, or to move them, or even create brand
new elements from scratch. We can append, prepend, or wrap any element or set
of elements on the page. And we’ve learned how we can treat a single element or
a set of elements the same, leading to powerful yet succinct logic.

 With that behind us, we’re ready to start looking into more advanced concepts,
starting with the typically messy job of handling events in our pages.

Command syntax: val

val(values)

Causes any check boxes, radio buttons, or options of <select> elements in the wrapped set
to become checked or selected if their values match any of the values passed in the values
array.

Parameters
values (Array) An array of values that will be used to determine which elements are to

be checked or selected.

Returns
The wrapped set.

Events are where
it happens!
This chapter covers
■ The event models as implemented by

the browsers
■ Using jQuery to bind event handlers

to elements
■ The Event object instance
■ Triggering event handlers under script control
82

Events are where it happens! 83
Anyone familiar with the Broadway show Cabaret, or its subsequent Hollywood film,
probably remembers the song “Money Makes the World Go Around.” Although this
cynical view might be applicable to the physical world, in the virtual realm of the
World Wide Web, it’s events that make it all happen!

 Like many other GUI management systems, the interfaces presented by HTML
web pages are asynchronous and event-driven (even if the HTTP protocol used to
deliver them to the browser is wholly synchronous in nature). Whether a GUI is
implemented as a desktop program using Java Swing, X11, the .NET framework,
or a page in a web application using HTML and JavaScript, the procedure is
pretty much the same:

1 Set up the user interface.

2 Wait for something interesting to happen.

3 React accordingly.

4 Repeat.

The first step sets up the display of the user interface; the others define its behavior.
In web pages, the browser handles the setup of the display in response to the
markup (HTML and CSS) that we send to it. The script we include in the page
defines the behavior of the interface.

 This script takes the form of event handlers, also known as listeners, that react to
the various events that occur while the page is displayed. These events could be
generated by the system (such as timers or the completion of asynchronous
requests) but are most often the result of some user action (such as moving or
clicking the mouse or entering text via the keyboard). Without the ability to react
to these events, the World Wide Web’s greatest use might be limited to showing
pictures of kittens.

 Although HTML itself does define a small set of built-in semantic actions that
require no script on our part (such as reloading pages as the result of clicking an
anchor tag or submitting a form via a submit button), any other behaviors that we
wish our pages to exhibit require us to handle the various events that occur as our
users interact with those pages.

 In this chapter, we examine the various ways that the browsers expose these
events, how they allow us to establish handlers to control what happens when
these events occur, and the challenges that we face due to the multitude of differ-
ences between the browser event models. We then see how jQuery cuts through
the browser-induced fog to relieve us of these burdens.

 Let’s start off by examining how browsers implement their events models.

84 CHAPTER 4
Events are where it happens!
4.1 Understanding the browser event models

Long before anyone considered standardizing how browsers would handle
events, Netscape Communications Corporation introduced an event-handling
model in its Netscape Navigator browser; all modern browsers still support this
model, which is probably the best understood and most employed by the majority
of page authors.

 This model is known by a few names. You may have heard it termed the
Netscape Event Model, the Basic Event Model, or even the rather vague Browser
Event Model; but most people have come to call it the DOM Level 0 Event Model.

NOTE The term DOM Level is used to indicate what level of requirements an
implementation of the W3C DOM Specification meets. There isn’t a DOM
Level 0, but that term is used to informally describe what was imple-
mented prior to the DOM Level 1.

JavaScript you need to know!

One of the great benefits that jQuery brings to web applications is the ability to
implement a great deal of scripting-enabled behavior without having to write a
whole lot of script ourselves. jQuery handles the nuts-and-bolts details so that we
can concentrate on the job of making our applications do what it is that our appli-
cations need to do!

Up to this point, the ride has been almost free. You only needed rudimentary Java-
Script skills to code and understand the jQuery examples we introduced in the
previous chapters; in this chapter and the chapters that follow, you must under-
stand a handful of fundamental JavaScript concepts to make effective use of the
jQuery library.

Depending on your background, you may already be familiar with these concepts,
but some page authors can write a lot of JavaScript without a firm grasp on exactly
what’s going on under the covers—the flexibility of JavaScript makes such a situa-
tion possible. Before we proceed, it’s time to make sure that you’ve wrapped your
head around these core concepts.

If you’re already comfortable with the workings of the JavaScript Object and Func-
tion classes and have a good handle on concepts like function contexts and clo-

sures, you may want to continue reading this and the upcoming chapters. If these
concepts are unfamiliar or hazy, we strongly urge you to turn to appendix A to help
you get up to speed on these necessary concepts.

Understanding the browser event models 85
The W3C didn’t create a standardized model for event handling until DOM
Level 2, introduced in November 2000. This model enjoys support from all mod-
ern standards-compliant browsers such as Firefox, Camino (as well as other
Mozilla browsers), Safari, and Opera. Internet Explorer continues to go its own
way and supports a subset of the DOM Level 2 Event Model functionality, albeit
using a proprietary interface.

 Before we see how jQuery makes that irritating fact a non-issue, let’s spend
time getting to know how the event models operate.

4.1.1 The DOM Level 0 Event Model
The DOM Level 0 Event Model is probably the event model that most web devel-
opers employ on their pages. In addition to being somewhat browser-indepen-
dent, it’s fairly easy to use.

 Under this event model, event handlers are declared by assigning a reference
to a function instance to properties of the DOM elements. These properties are
defined to handle a specific event type; for example, a click event is handled by
assigning a function to the onclick property, and a mouseover event by assigning
a function to the onmouseover property of elements that support these event types.

 The browsers allow us to specify the body of an event handler function as
attribute values in the DOM elements’ HTML, providing a shorthand for creating
event handlers. An example of defining such handlers is shown in listing 4.1.
This page can be found in the downloadable code for this book in the file
chapter4/dom.0.events.html.

<html>
 <head>
 <title>DOM Level 0 Events Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $('#vstar')[0].onmouseover = function(event) {
 say('Whee!');
 }
 });

 function say(text) {
 $('#console').append('<div>'+new Date()+' '+text+'</div>');
 }
 </script>
 </head>

Listing 4.1 Declaring DOM Level 0 event handlers

Ready handler defines
mouseover handler

b

Utility function emits
text to console

c

86 CHAPTER 4
Events are where it happens!
 <body>
 <img id="vstar" src="vstar.jpg"
 onclick="say('Vroom vroom!');"/>
 <div id="console"></div>
 </body>
</html>

In this example, we employ both styles of event handler declaration: declaring
under script control and declaring in a markup attribute.

 The page first declares a ready handler b in which a reference to the image
element with the id of vstar is obtained (using jQuery), and its onmouseover prop-
erty is set to a function instance that we declare inline. This function becomes the
event handler for the element when a mouseover event is triggered on it. Note
that this function expects a single parameter to be passed to it. We’ll learn more
about this parameter shortly.

 We also declare a small utility function, say() c, that we use to emit text mes-
sages to a <div> element on the page e. This will save us the trouble of nuisance
alerts to indicate when things happen on our page.

 In the body of the page (along with the console element), we define an image
element d on which we’ll define event handlers. We’ve already seen how to
define one under script control in the ready handler b, but here we declare a
handler for a click event using the onclick attribute of the element.

 Loading this page into a browser (found in the file chapter4/dom.0.events.
html), waving the mouse pointer over the image a few times, and then clicking
the image result in a display similar to that shown in figure 4.1.

 We declare the click event handler in the element markup using the fol-
lowing attribute:

onclick="say('Vroom vroom!');"

This might lead us to believe that the say() function becomes the click event han-
dler for the element, but that’s not the case. When handlers are declared via
markup attributes, an anonymous function is automatically created using the value
of the attribute as the function body. The action taken as a result of the attribute
declaration is equivalent to (assuming that imageElement is a reference to the
image element) the following:

imageElement.onclick = function(event) {
 say('Vroom vroom!');
}

 element is
instrumented

d

<div> element
serves as consolee

Understanding the browser event models 87
Note how the value of the attribute is used as the body of the generated function,
and note that the function is created so that the event parameter is available
within the generated function.

 Before we move on to examining what that parameter is all about, we should
note that using the attribute mechanism of declaring DOM Level 0 event handlers
violates the precepts of Unobtrusive JavaScript that we explored in section 1.2.
When using jQuery in our pages, we should adhere to the principles of Unobtru-
sive JavaScript and avoid mixing behavior defined by JavaScript with display
markup. We’ll see that jQuery provides a better way to declare event handlers
than either of these means before the end of this chapter.

 But first, let’s examine what that event parameter is all about.

The Event instance
When an event handler is fired, an instance of a class named Event is passed to
the handler as its first parameter in most browsers. Internet Explorer, always the
life of the party, does things in its own proprietary way by tacking the Event
instance onto a window property named event.

 In order to deal with this discrepancy we’ll often see the following used as the
first statement in an event handler:

if (!event) event = window.event;

This levels the playing field by using object detection to check if the event param-
eter is undefined (or null) and assigning the value of the window’s event property

Figure 4.1 Waving the mouse over the image and clicking it result in the event
handlers firing and emitting their messages to the console.

88 CHAPTER 4
Events are where it happens!
to it if so. After this statement, the event parameter can be referenced regardless
of how it was made available to the handler.

 The properties of the Event instance provide a great deal of information
regarding the event that has been fired and is currently being handled. This
includes details such as which element the event was triggered on, the coordi-
nates of mouse events, and which key was clicked for keyboard events.

 But not so fast. Not only does Internet Explorer use a proprietary means to
get the Event instance to the handler, but it also uses a proprietary definition of
the Event class in place of the W3C-defined standard—we’re not out of the object-
detection woods yet.

 For example, to get a reference to the target element—the element on which the
event was triggered—we access the target property in standards-compliant brows-
ers and the srcElement property in Internet Explorer. We deal with this inconsis-
tency by employing object detection with a statement such as the following:

var target = (event.target) ? event.target : event.srcElement;

This statement tests if event.target is defined and, if so, assigns its value to the
local target variable; otherwise, it assigns event.srcElement. We take similar
steps for other Event properties of interest.

 Up until this point, we’ve acted as if event handlers are only pertinent to the
elements that serve as the trigger to an event—the image element of listing 4.1,
for example. But events propagate throughout the DOM tree. Let’s find out
about that.

Event bubbling
When an event is triggered on an element in the DOM tree, the event-handling
mechanism of the browser checks to see if a handler has been established for that
particular event on that element and, if so, invokes it. But that’s hardly the end of
the story.

 After the target element has had its chance to handle the event, the event
model checks with the parent of that element to see if it has established a handler
for the event type, and if so, it’s also invoked—after which its parent is checked,
then its parent, then its parent, and on and on, all the way up to the top of the
DOM tree. Because the event handling propagates upward like the bubbles in a
champagne flute (assuming we view the DOM tree with its root at the top), this
process is termed event bubbling.

 Let’s modify the example of listing 4.1 so that we can see this process in action.
Consider the code in listing 4.2.

Understanding the browser event models 89
<html id="greatgreatgrandpa">
 <head>
 <title>DOM Level 0 Events Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $('*').each(function(){
 var current = this;
 this. onclick = function(event) {
 if (!event) event = window.event;
 var target = (event.target) ?
 event.target : event.srcElement;
 say('For ' + current.tagName + '#'+ current.id +
 ' target is ' + target.id);
 }
 });
 });

 function say(text) {
 $('#console').append('<div>'+text+'</div>');
 }
 </script>
 </head>

 <body id="greatgrandpa">
 <div id="grandpa">
 <div id="pops">

 </div>
 </div>
 <div id="console"></div>
 </body>
</html>

We do a lot of interesting things in the changes to this page. First, we remove any
handling for the mouseover event so that we can concentrate on the click event.
We also embed the image element that will serve as the target for our event exper-
iment in a couple of nested <div> elements to place the image element deeper
within the DOM hierarchy. We also give almost every element in the page a spe-
cific and unique id—even the <body> and <html> tags!

 We retain the console and its say() utility function for the same reporting pur-
poses used in the previous example.

Listing 4.2 Events propagating from the point of origin to the top of the DOM tree

Selects every
element on the page

b

Applies onclick handler to
every selected elementc

90 CHAPTER 4
Events are where it happens!
 Now let’s look at even more interesting changes.
 In the ready handler for the page, we use jQuery to select all elements on the

page and to iterate over each one with the each() method b. For each matched
element, we record its instance in the local variable current and establish an
onclick handler c. This handler first employs the browser-dependent tricks that
we discussed in the previous section to locate the Event instance and identify the
event target, and then emits a console message. This message is the most inter-
esting part of this example.

 It displays the tag name and id of the current element, putting closures to work
(please read section A.2.4 in appendix A if closures are a subject that gives you
heartburn), followed by the id of the target. By doing so, each message that’s
logged to the console displays the information about the current element of the
bubble process, as well as the target element that started the whole shebang.

 Loading the page (located in the file chapter4/dom.0.propagation.html) and
clicking the image result in the display of figure 4.2.

 This clearly illustrates that, when the event is fired, it’s delivered first to the
target element and then to each of its ancestors in turn, all the way up to the <html>
element itself.

 This is a powerful ability because it allows us to establish handlers on elements
at any level to handle events occurring on its descendents. Consider a handler on
a <form> element that reacts to any change event on its child elements to effect
dynamic changes to the display based upon the elements’ new values.

 But what if we don’t want the event to propagate? Can we stop it?

Figure 4.2 The console messages clearly show the propagation of the event as it
bubbles up the DOM tree from the target element to the tree root.

Understanding the browser event models 91
Affecting event propagation and semantics
There may be occasions where we want to prevent an event from bubbling any
further up the DOM tree. This might be because we’re fastidious and we know
that we’ve already accomplished any processing necessary to handle the event,
or we may want to forestall unwanted handling that might occur higher up in
the chain.

 Regardless of the reason, we can prevent an event from propagating any
higher via mechanisms provided on the Event instance. For standards-compliant
browsers, we call the stopPropagation() method of the Event instance to halt the
propagation of the event further up the ancestor hierarchy. In Internet Explorer,
we set a property named cancelBubble to true in the Event instance. Interestingly,
many modern standards-compliant browsers support the cancelBubble mecha-
nism even though it’s not part of any W3C standard.

 Some events have default semantics associated with them. As examples, a click
event on an anchor element will cause the browser to navigate to the element’s
href, and a submit event on a <form> element will cause the form to be submitted.
Should we wish to cancel these semantics—sometimes termed the default actions—
of the event, we set the return value for the handler to false.

 A frequent use for such an action is in the realm of form validation. In the
handler for the form’s submit event, we can make validation checks on the
form’s <input> elements and return false if any problems with the data entry
are detected.

 We may also see the following on <form> elements:

<form name="myForm" onsubmit="return false;" ...

This effectively prevents the form from being submitted under any circumstances
except under script control (via form.submit(), which doesn’t trigger a submit
event)—a common trick used in many Ajax applications where asynchronous
requests will be made in lieu of form submissions.

 Under the DOM Level 0 Event Model, almost every step we take in an event
handler involves using browser-specific detection in order to figure out what
action to take. What a headache! But don’t put away the aspirin yet—it doesn’t get
any easier when we consider the more advanced event model.

4.1.2 The DOM Level 2 Event Model

One severe shortcoming of the DOM Level 0 Event Model is that, because a prop-
erty is used to store a reference to a function that’s to serve as an event handler,
only one event handler per element can be registered for any specific event type

92 CHAPTER 4
Events are where it happens!
at a time. If we have two things that we want to do when an element is clicked, the
following statements aren’t going to let that happen:

someElement.onclick = doFirstThing;
someElement.onclick = doSecondThing;

Because the second assignment replaces the previous value of the onclick prop-
erty, only doSecondThing is invoked when the event is triggered. Sure, we could
wrap both functions in another single function that calls both; but as pages get
more complicated, as is highly likely in Rich Internet Applications, it becomes
increasingly difficult to keep track of such things. Moreover, if we use multiple
reusable components or libraries in a page, they may have no idea of the event-
handling needs of the other components.

 We could employ other solutions: implementing the Observable pattern that
establishes a publish/subscribe scheme for the handlers, or even tricks using clo-
sures. But all of these add complexity to pages that are already complex enough.

 Besides the establishment of a standard event model, the DOM Level 2 Event
Model was designed to address these types of problems. Let’s see how event han-
dlers, even multiple handlers, are established on DOM elements under this more
advanced model.

Establishing events
Rather than assigning a function reference to an element property, DOM Level 2
event handlers—also termed listeners—are established via an element method.
Each DOM element defines a method named addEventListener() that’s used to
attach event handlers (listeners) to the element. The format of this method is
as follows:

addEventListener(eventType,listener,useCapture)

The eventType parameter is a string that identifies the type of event to be han-
dled. This string is, generally, the same event names we used in the DOM Level 0
Event Model without the on prefix: for example, click, mouseover, keydown, and
so on.

 The listener parameter is a reference to the function (or inline function)
that’s to be established as the handler for the named event type on the element.
As in the basic event model, the Event instance is passed to this function as its
first parameter.

 The final parameter, useCapture, is a Boolean whose operation we’ll explore
in a few moments when we discuss event propagation in the Level 2 Model. For
now, leave it set to false.

Understanding the browser event models 93
 Let’s once again change the example of listing 4.1 to use the more advanced
event model. We’ll concentrate only on the click event type; this time, we’ll estab-
lish three click event handlers on the image element. The new example code can
be found in the file chapter4/dom.2.events.html and is shown in listing 4.3.

<html>
 <head>
 <title>DOM Level 2 Events Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>
 <script type="text/javascript">
 $(function(){
 var element = $('#vstar')[0];
 element.addEventListener('click',function(event) {
 say('Whee once!');
 },false);
 element.addEventListener('click',function(event) {
 say('Whee twice!');
 },false);
 element.addEventListener('click',function(event) {
 say('Whee three times!');
 },false);
 });

 function say(text) {
 $('#console').append('<div>'+text+'</div>');
 }
 </script>
 </head>

 <body>

 <div id="console"></div>
 </body>
</html>

This code is simple but clearly shows how we have the ability to establish multiple
event handlers on the same element for the same event type—something we were
not able to do easily with the Basic Event Model. In the ready handler b for the
page, we grab a reference to the image element and then establish three event
handlers for the click event.

 Loading this page into a standards-compliant browser (not Internet Explorer)
and clicking the image result in the display shown in figure 4.3.

Listing 4.3 Establishing event handlers with the DOM Level 2 Model

Establishes three
event handlers!

b

94 CHAPTER 4
Events are where it happens!
Note that even though the handlers fire in the order in which they were estab-
lished, this order isn’t guaranteed by the standard! Testers of this code never observed
an order other than the order of establishment, but it would be foolish to write
code that relies on this order. Always be aware that multiple handlers established
on an element may fire in random order.

 Now, what’s up with that useCapture parameter?

Event propagation
We saw earlier that, with the Basic Event Model, once an event was triggered on
an element the event propagated from the target element upwards in the DOM
tree to all the target’s ancestors. The advanced Level 2 Model also provides this
bubbling phase but ups the ante with an additional phase: capture phase.

 Under the DOM Level 2 Event Model, when an event is triggered, the event
first propagates from the root of the DOM tree down to the target element and
then propagates again from the target element up to the DOM root. The former
phase (root to target) is called capture phase, and the latter (target to root) is called
bubble phase.

 When a function is established as an event handler, it can be flagged as a cap-
ture handler in which case it will be triggered during capture phase, or as a bub-
ble handler to be triggered during bubble phase. As you might have guessed by
this time, the useCapture parameter to addEventListener() identifies which type
of handler is established. A value of false for this parameter establishes a bubble
handler, whereas a value of true registers a capture handler.

Figure 4.3 Clicking the image once demonstrates that all three handlers established
for the click event are triggered.

Understanding the browser event models 95
Think back a moment to the example of listing 4.2 where we explored the prop-
agation of the Basic Model events through a DOM hierarchy. In that example we
embedded an image element within two layers of <div> elements. Within such a
hierarchy, the propagation of a click event with the element as its target
would move through the DOM tree as shown in figure 4.4.

 Let’s put that to the test, shall we? Listing 4.4 shows the code for a page con-
taining the element hierarchy of figure 4.4 (chapter4/dom.2.propagation.html).

<html id="greatgreatgrandpa">
 <head>
 <title>DOM Level 2 Propagation Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $('*').each(function(){
 var current = this;
 this.addEventListener('click',function(event) {
 say('Capture for ' + current.tagName + '#'+ current.id +
 ' target is ' + event.target.id);
 },true);
 this.addEventListener('click',function(event) {
 say('Bubble for ' + current.tagName + '#'+ current.id +
 ' target is ' + event.target.id);
 },false);
 });
 });

Listing 4.4 Tracking event propagation with bubble and capture handlers

Figure 4.4 Propagation in the DOM Level 2 Event Model traverses the DOM
hierarchy twice: once from top to target during capture phase and once from
target to top during bubble phase.

Establishes listeners
on all elementsb

96 CHAPTER 4
Events are where it happens!
 function say(text) {
 $('#console').append('<div>'+text+'</div>');
 }
 </script>
 </head>

 <body id="greatgrandpa">
 <div id="grandpa">
 <div id="pops">

 </div>
 </div>
 <div id="console"></div>
 </body>
</html>

This code changes the example of listing 4.2 to use the DOM Level 2 Event Model
API to establish the event handlers. In the ready handler b, we use jQuery’s pow-
erful abilities to run through every element of the DOM tree. On each, we estab-
lish two handlers: one capture handler and one bubble handler. Each handler
emits a message to the console identifying which type of handler it is, the current
element, and the id of the target element.

 With the page loaded into a standards-compliant browser, clicking the image
results in the display in figure 4.5, showing the progression of the event through
the handling phases and the DOM tree.

 Note that, because we defined both capture and bubble handlers for the tar-
get, two handlers were executed for the target and all its ancestor nodes.

 Well, now that we’ve gone through all the trouble to understand that, we
should know that capture handlers are hardly ever used in web pages. The simple
reason for that is that Internet Explorer (still inexplicably the most dominant
browser) doesn’t support the DOM Level 2 Event Model. Although it does have a
proprietary model corresponding to the bubble phase of the Level 2 standard, it
doesn’t support any semblance of a capture phase.

 Before we look at how jQuery is going to help sort all this mess out, let’s briefly
examine the Internet Explorer Model.

Understanding the browser event models 97
4.1.3 The Internet Explorer Event Model

Internet Explorer (both IE6 and, most disappointingly, IE7) doesn’t provide sup-
port for the DOM Level 2 Event Model. Both these versions of Microsoft’s browser
provide a proprietary interface that closely resembles the bubble phase of the
standard model.

 Rather than addEventListener(), the Internet Explorer Model defines a
method named attachEvent() for each DOM element. This method, as follows,
accepts two parameters similar to those of the standard model:

attachEvent(eventName,handler)

The first parameter is a string that names the event type to be attached. The stan-
dard event names aren’t used; the name of the corresponding element property
from the DOM Level 0 Model is used—onclick, onmouseover, onkeydown, and so on.

 The second parameter is the function to be established as the handler, and
as in the Basic Model, the Event instance must be fetched from the window
.event property.

 What a mess! Even when using the relatively browser-independent DOM Level
0 Model, we’re faced with a tangle of browser-dependent choices to make at each
stage of event handling. And when using the more capable DOM Level 2 or Internet

Figure 4.5 Clicking the image results in each handler emitting a console
message that identifies the path of the event.

98 CHAPTER 4
Events are where it happens!
Explorer Model, we even have to diverge our code when establishing the han-
dlers in the first place.

 Well, jQuery is going to make our lives simpler by hiding these browser dispar-
ities from us as much as it possibly can. Let’s see how!

4.2 The jQuery Event Model

Although it’s true that the creation of Rich Internet Applications requires a hefty
reliance on event handling, the thought of writing event-handling code on a large
scale while dealing with the browser differences is enough to daunt even the most
intrepid of page authors.

 We could hide the differences behind an API that abstracts the differences
away from our page code, but why bother when jQuery has already done it for us?

 jQuery’s event implementation, which we’ll refer to informally as the jQuery
Event Model, exhibits the following features:

■ Provides a unified method for establishing event handlers
■ Allows multiple handlers for each event type on each element
■ Uses standard event-type names: for example, click or mouseover
■ Makes the Event instance available as a parameter to the handlers
■ Normalizes the Event instance for the most often used properties
■ Provides unified methods for event canceling and default action blocking

With the notable exception of support for a capture phase, the feature set of the
jQuery Event Model closely resembles that of the Level 2 Model while supporting
both standards-compliant browsers and Internet Explorer with a single API. The
omission of capture phase should not be an issue for the vast majority of page
authors who never use it (or even know it exists) due to its lack of support in IE.

 Is it really that simple? Let’s find out.

4.2.1 Binding event handlers using jQuery

Using the jQuery Event Model, we can establish event handlers on DOM elements
with the bind() command. Consider the following simple example:

$('img').bind('click',function(event){alert('Hi there!');});

This statement binds the supplied inline function as the click event handler for
every image on a page. The full syntax of the bind() command is as follows:

The jQuery Event Model 99
Let’s put bind into action. Taking the example of listing 4.3 and converting it
from the DOM Level 2 Model to the jQuery Model, we end up with the code
shown in listing 4.5 and found in the file chapter4/jquery.events.html.

<html>
 <head>
 <title>DOM Level 2 Events Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $('#vstar')
 .bind('click',function(event) {
 say('Whee once!');
 })
 .bind('click',function(event) {
 say('Whee twice!');
 })
 .bind('click',function(event) {
 say('Whee three times!');
 });
 });

 function say(text) {
 $('#console').append('<div>'+text+'</div>');
 }

Command syntax: bind

bind(eventType,data,listener)

Establishes a function as the event handler for the specified event type on all elements in
the matched set.

Parameters
eventType (String) Specifies the name of the event type for which the handler is to be

established. This event type can be namespaced with a suffix separated
from the event name with a period character. See the remainder of this
section for details.

data (Object) Caller-supplied data that’s attached to the Event instance as a
property named data for availability to the handler functions. If omitted, the
handler function can be specified as the second parameter.

listener (Function) The function that’s to be established as the event handler.

Returns
The wrapped set.

Listing 4.5 Establishing event handlers without the need for browser-specific code

Binds three event
handlers to the image

b

100 CHAPTER 4
Events are where it happens!
 </script>
 </head>

 <body>

 <div id="console"></div>
 </body>
</html>

The changes to this code, limited to the body of the ready handler, are minor but
significant b. We create a wrapped set consisting of the target element and
apply three bind() commands to it—remember, jQuery chaining lets us apply
multiple commands in a single statement—each of which establishes a click event
handler on the element.

 Loading the page into a standards-compliant browser and clicking the image
result in the display of figure 4.6, which not surprisingly, is the exact same result
we saw in figure 4.3 (except for the URL and window caption).

 Perhaps more importantly, when loaded into Internet Explorer, it also works
as shown in figure 4.7. This was not possible using the code from listing 4.3 with-
out adding a lot of browser-specific testing and branching code to use the correct
event model for the current browser.

 At this point, page authors who have wrestled with mountains of browser-
specific event-handling code in their pages are no doubt singing “Happy Days
Are Here Again” and spinning in their office chairs. Who could blame them?

Figure 4.6 Using the jQuery Event Model allows us to specify multiple event
handlers as in the DOM Level 2 Model.

The jQuery Event Model 101
Another little nifty event handling extra that jQuery provides for us is the ability
to group event handlers by assigning them to a namespace. Unlike conventional
namespacing (which assigns namespaces via a prefix), the event names are
namespaced by adding a suffix to the event name separated by a period character.

 By grouping event bindings in this way, we can easily act upon them later as
a unit.

 Take, for example, a page that has two modes: a display mode and an edit
mode. When in edit mode, event listeners are placed on many of the page ele-
ments, but these listeners are not appropriate for display mode and need to be
removed when the page transitions out of edit mode. We could namespace the
edit mode events with code such as

$('#thing1').bind('click.editMode',someListener);
$('#thing2').bind('click.editMode',someOtherListener);
 ...
$('#thingN').bind('click.editMode',stillAnotherListener);

By grouping all these bindings into a namespace named editMode, we can later
operate upon them as a whole. For example, when the page leaves edit mode and
it comes time to remove all the bindings we could do this easily with

$('*').unbind('click.editMode');

This will remove all click bindings (the explanation of the unbind() method is com-
ing up in the next section) in the namespace editMode for all elements on the page.

Figure 4.7 The jQuery Event Model allows us to use a unified code base to support events in
Internet Explorer.

102 CHAPTER 4
Events are where it happens!
 In addition to the bind() command, jQuery provides a handful of shortcut
commands to establish specific event handlers. Because the syntax of each of
these commands is identical except for the method name of the command, we’ll
save some space and present them all in the following single syntax descriptor:

jQuery also provides a specialized version of the bind() command, named one(),
that establishes an event handler as a one-shot deal. Once the event handler exe-
cutes the first time, it’s automatically removed as an event handler. Its syntax is
similar to the bind() command and is as follows:

Command syntax: specific event binding

eventTypeName(listener)

Establishes the specified function as the event handler for the event type named by the
method’s name. The supported commands are as follows:

■ blur
■ change
■ click
■ dblclick
■ error

■ focus
■ keydown
■ keypress
■ keyup
■ load

■ mousedown
■ mousemove
■ mouseout
■ mouseover
■ mouseup

■ resize
■ scroll
■ select
■ submit
■ unload

Note that when using these shortcut methods, we cannot specify a data value to be placed
in the event.data property.

Parameters
listener (Function) The function that’s to be established as the event handler.

Returns
The wrapped set.

Command syntax: one

one(eventType,data,listener)

Establishes a function as the event handler for the specified event type on all elements in
the matched set. Once executed, the handler is automatically removed.

Parameters
eventType (String) Specifies the name of the event type for which the handler is to be

established.

data (Object) Caller-supplied data that’s attached to the Event instance for avail-
ability to the handler functions. If omitted, the handler function can be spec-
ified as the second parameter.

listener (Function) The function that’s to be established as the event handler.

Returns
The wrapped set.

The jQuery Event Model 103
These commands give us many choices to bind an event handler to matched ele-
ments. And once a handler is bound, we may eventually need to remove it.

4.2.2 Removing event handlers
Typically, once an event handler is established, it remains in effect for the remainder
of the life of the page. Particular interactions may dictate that handlers be removed
based on certain criteria. Consider, for example, a page where multiple steps are pre-
sented, and once a step has been completed, its controls revert to read-only.

 For such cases, it would be advantageous to remove event handlers under
script control. We’ve seen that the one() command can automatically remove a
handler after it has completed its first (and only) execution, but for the more gen-
eral case where we’d like to remove event handlers under our own control, jQuery
provides the unbind() command.

 The syntax of unbind() is as follows:

This command can be used to remove event handlers from the elements of the
matched set at various levels of granularity. All listeners can be removed by omit-
ting parameters, or listeners of a specific type can be removed by providing that
event type.

 Specific handlers can be removed by providing a reference to the function orig-
inally established as the listener. For this to be possible, a reference to the function
must be retained when binding the function as an event listener in the first place.
For this reason, when a function that’s eventually to be removed as a handler is

Command syntax: unbind

unbind(eventType,listener)

unbind(event)

Removes events handlers from all elements of the wrapped set as specified by the optional
passed parameters. If no parameters are provided, all listeners are removed from the ele-
ments.

Parameters
eventType (String) If provided, specifies that only listeners established for the specified

event type are to be removed.

listener (Function) If provided, identifies the specific listener that’s to be removed.

event (Event) Removes the listener that triggered the event described by this Event
instance.

Returns
The wrapped set.

104 CHAPTER 4
Events are where it happens!
originally established as a listener, it’s either defined as a top-level function (so that
it can be referred to by its top-level variable name) or a reference to it is retained by
some other means. Supplying the function as an anonymous inline reference
would make it impossible to later reference the function in a call to unbind().

 So far, we’ve seen that the jQuery Event Model makes it easy to establish (as
well as remove) event handlers without worries about browser differences, but
what about writing the event handlers themselves?

4.2.3 Inspecting the Event instance
When an event handler established with the bind() command is invoked, the
Event instance is passed to it as the first parameter to the function. This eliminates
the need to worry about the window.event property under Internet Explorer, but
what about accessing the divergent properties of the Event instance?

 Even when using jQuery to establish handlers, the Event instance passed to
the event handler is a clone of the native object as defined by the browser. That
means that in standards-compliant browsers, the Event instance will follow the
standardized layout of properties, and under Internet Explorer, the instance will
use the proprietary layout. Before the proprietary instance is passed to the event
handler, jQuery does its best to fix up the object so that the most commonly
accessed properties and methods of that object follow the standardized format.
So once again, except for the most obscure of Event properties, we can write the
code for our event handlers without regard for browser platform.

 Table 4.1 shows the Event properties that are safe to access in a platform-
independent manner.

Table 4.1 Safe Event instance properties

Property Description

altKey Set to true if the Alt key was pressed when the event was triggered, false if not.
The Alt key is labeled Option on most Mac keyboards.

ctrlKey Set to true if the Ctrl key was pressed when the event was triggered, false if not.

data The value, if any, passed as the second parameter to the bind() command when the
handler was established.

keyCode For keyup and keydown events, this returns the key that was pressed. Note that for
alphabetic characters, the uppercase version of the letter will be returned, regardless
of whether the user typed an uppercase or lowercase letter. For example, both a and A
will return 65. You can use shiftKey to determine which case was entered. For key-
press events, use the which property, which is reliable across browsers.

continued on next page

The jQuery Event Model 105
Importantly, the keypress property isn’t reliable cross-browser for non-alphabetic
characters. For instance, the left arrow key has a code of 37, which works reliably
on keyup and keydown events. Safari returns nonstandard results for these keys
on a keypress event.

 We can get a reliable, case-sensitive character code in the which property
of keypress events. During keyup and keydown events, we can only get a case-
insensitive key code (so a and A both return 65), but we can determine case by
checking shiftKey.

 The Event instance contains not only properties that give us information
regarding the event that’s handled, but also possesses a handful of methods that
lets us control the propagation of the event. Let’s dig into those.

metaKey Set to true if the Meta key was pressed when the event was triggered, false if not.
The Meta key is the Ctrl key on PCs and the Command key on Macs.

pageX For mouse events, specifies the horizontal coordinate of the event relative from the
page origin.

pageY For mouse events, specifies the vertical coordinate of the event relative from the page
origin.

relatedTarget For some mouse events, identifies the element that the cursor left or entered when
the event was triggered.

screenX For mouse events, specifies the horizontal coordinate of the event relative from the
screen origin.

screenY For mouse events, specifies the vertical coordinate of the event relative from the
screen origin.

shiftKey Set to true if the Shift key was pressed when the event was triggered, false if not.

target Identifies the element for which the event was triggered.

type For all events, specifies the type of event that was triggered (for example, click). This
can be useful if you’re using one event handler function for multiple events.

which For keyboard events, specifies the numeric code for the key that caused the event,
and for mouse events, specifies which button was pressed (1 for left, 2 for middle, 3
for right). This should be used instead of button, which can’t be relied on to function
consistently across browsers.

Table 4.1 Safe Event instance properties (continued)

Property Description

106 CHAPTER 4
Events are where it happens!
4.2.4 Affecting the event propagation

In addition to standardizing the most-used properties of the Event instance,
jQuery provides the same benefit for the standard methods used to affect event
propagation.

 The stopPropagation() method will prevent the event from bubbling further
up the DOM tree (if needed, refer back to figure 4.4 for a reminder of how events
propagate), and the preventDefault() method will cancel any semantic action
that the event might cause. Some examples of such semantic actions are link tra-
versal for <a> elements, forms submissions, and toggling the state of check boxes
on a click event.

 If we want to both stop the propagation of the event, as well as cancel its
default behavior, we can return false as the return value of the listener function.

 In addition to allowing us to set up event handling in a browser-independent
manner, jQuery provides a set of commands that gives us the ability to trigger
event handlers under script control. Let’s look at those.

4.2.5 Triggering event handlers

Event handlers are designed to be invoked when their associated event triggers
the propagation of the event through the DOM hierarchy. But there may be times
when we want to trigger the execution of a handler under script control. We could
define such event handlers as top-level functions so that we can invoke them by
name, but as we’ve seen, defining event handlers as inline anonymous functions
is much more common and so darned convenient!

 jQuery has provided means to assist us in avoiding top-level functions by
defining a series of methods that will automatically trigger event handlers on our
behalf under script control. The most general of these commands is trigger(),
whose syntax is as follows:

Command syntax: trigger

trigger(eventType)

Invokes any event handlers established for the passed event type for all matched elements

Parameters
eventType (String) Specifies the name of the event type for handlers which are

to be invoked

Returns
The wrapped set

The jQuery Event Model 107
Note that the trigger() command (as well as the convenience commands that
we’ll introduce in a moment) does not cause an event to be triggered and to prop-
agate through the DOM hierarchy. As there’s no dependable cross-browser means
to generate an event, jQuery calls the handlers as normal functions.

 Each handler called is passed a minimally populated instance of Event.
Because there’s no event, properties that report values, such as the location of a
mouse event, have no value. The target property is set to reference the element
of the matched set to which the handler was bound.

 Also because there’s no event, no event propagation takes place. The handlers
bound to the matched elements will be called, but no handlers on the ancestors of
those elements will be invoked. Remember, these commands are convenient ways
to call an event handler, not to try and emulate an event.

 In addition to the trigger() command, jQuery provides convenience com-
mands for most of the event types. The syntax for all these commands is exactly
the same except for the command name, and that syntax is described as follows:

In addition to binding, unbinding, and triggering event handlers, jQuery offers
high-level functions that further make dealing with events on our pages as easy
as possible.

4.2.6 Other event-related commands

There are often interaction styles that are commonly applied to pages in Rich
Internet Applications and are implemented using combinations of behaviors.

Command syntax: eventName

eventName()

Invokes any event handlers established for the named event type for all matched elements.
The supported commands are as follows:

■ blur
■ click
■ focus
■ select
■ submit

Parameters
none

Returns
The wrapped set.

108 CHAPTER 4
Events are where it happens!
jQuery provides a few event-related convenience commands that make it easier to
use these interaction behaviors on our pages. Let’s look at them.

Toggling listeners
The first of these is the toggle() command, which establishes a pair of click event han-
dlers that swap off with each other on every other click event. Its syntax is as follows:

A common use for this convenience command is to toggle the enabled state of an
element based upon how many times it has been clicked. We can simulate this
using the image element of our previous examples, changing its opacity to reflect
whether it’s enabled (fully opaque) or disabled (partially transparent). We could
do this example for real by toggling the read-only state of a text input control, but
that would not make as clear a visual statement for demonstration purposes. Let’s
fake it with the image example.

 Consider figure 4.8, which shows a page containing the image in a time-lapse
display of the page in three states:

1 On initial display

2 After clicking the image once

3 After clicking the image again

The code for this example is shown in listing 4.6 and can be found in the file
chapter4/toggle.html.

Command syntax: toggle

toggle(listenerOdd,listenerEven)

Establishes the passed functions as click event handlers on all elements of the wrapped set
that toggle between each other with every other trigger of a click event

Parameters
listenerOdd (Function) A function that serves as the click event handler for all odd-

numbered clicks (the first, the third, the fifth, and so on)

listenerEven (Function) A function that serves as the click event handler for all even-
numbered clicks (the second, the fourth, the sixth, and so on)

Returns
The wrapped set

The jQuery Event Model 109
<html>
 <head>
 <title>jQuery Toggle Command Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $('#vstar').toggle(
 function(event) {
 $(event.target)
 .css('opacity',0.4);
 },
 function(event) {
 $(event.target)
 .css('opacity',1.0);
 }
);
 });
 </script>
 </head>

 <body>

 </body>
</html>

Listing 4.6 Invoking complementary listeners on every other click event

Figure 4.8 The toggle() command makes it easy to toggle the visual state of the image.

Applies toggle()
command to image

b

Odd listener grays
out the image

c

Even listener
restores full opacity

d

110 CHAPTER 4
Events are where it happens!
In this example, we apply the toggle() command b to the images supplying an
odd listener c that reduces the opacity value to 0.4 (graying out the image, a com-
mon term for indicating disablement) and an even listener that restores the opac-
ity to its full value of 1.0 d. Because the toggle() command handles all the
swapping out for us, we don’t need to bother keeping track of whether the current
click is odd or even. How convenient.

 All we accomplished in this example was the toggling of the image from full to
partial opacity, but it’s easy to imagine supplying listeners that would toggle any
complementary states: enabled versus disabled, for example.

 Another common multi-event scenario that’s frequently employed in Rich
Internet Applications involves mousing into and out of elements.

Hovering over elements
Events that inform us when the mouse pointer has entered an area, as well as when
it has left that area, are essential to building many of the user interface elements
that are commonly presented to users on our pages. Among these element types,
the menus used as navigation systems for web applications are a common example.

 A vexing behavior of the mouseover and mouseout event types often hinders
the easy creation of such elements when a mouseout event fires as the mouse is
moved over an area and its children. Consider the display in figure 4.9 (available
in the file chapter4/hover.html).

 This page displays two identical (except for naming) sets of areas: an outer
area and an inner area. Load this page into your browser as you follow the rest of
this section.

Figure 4.9
This page helps
demonstrate when
mouse events fire as
the mouse pointer is
moved over an area
and its children.

The jQuery Event Model 111
For the top set, the following script in the ready handler establishes handlers for
the mouse events:

$('#outer1')
 .bind('mouseover',report)
 .bind('mouseout',report);

This statement establishes a function named report as the event handler for both
the mouseover and mouseout events. The report() function is defined as follows:

function report(event) {
 $('#console').append('<div>'+event.type+'</div>');
}

This listener merely adds a <div> element containing the name of the event that
fired to a <div> named console that’s defined at the bottom of the page, allowing
us to see when each event fires.

 Now, let’s move the mouse pointer into the area labeled Outer 1 (being careful
not to enter Inner 1). We’ll see (from looking at the bottom of the page) that a
mouseover event has fired. Move the pointer back out of the area. As expected,
we’ll see that a mouseout event has fired.

 Let’s refresh the page to start over, clearing the console.
 Now, move the mouse pointer into Outer 1 (noting the event), but this time

continue inward until the pointer enters Inner 1. As the mouse enters Inner 1, a
mouseout event fires for Outer 1. If we wave our pointer over the inner area, we’ll
see a flurry of mouseout and mouseover events. This is the expected behavior.
Even though the pointer is still within the bounds of Outer 1, when the pointer
enters a contained element, the event model considers the transition from the
area of Outer 1 for its contained element to be leaving the outer area.

 Expected or not, we don’t always want that behavior. Often, we want to be
informed when the pointer leaves the bounds of the outer area and don’t care
whether the pointer is over a contained area or not.

 We could write our handlers to detect when a mouse event is the result of leav-
ing the area or the result of merely entering a contained element, but luckily we
won’t have to. jQuery comes to our aid with the hover() command.

 The syntax of this command is as follows:

112 CHAPTER 4
Events are where it happens!
We use the following script to establish mouse event handlers for the second set of
areas (Outer 2 and its Inner 2 child) on the hover.html example page:

$('#outer2').hover(report,report);

As with the first set of areas, the report() function is established as the mouseover
and mouseout handlers for Outer 2. But unlike the first set of areas, when we pass
the mouse pointer over the boundaries between Outer 2 and Inner 2, neither of
these handlers is invoked. This is useful for those situations where we have no
need to react when the mouse pointer passes over child elements.

 With all these event-handling tools under our belts, let’s use what we’ve
learned so far and look at an example page that makes use of them, as well as
some of the other jQuery techniques that we’ve learned from previous chapters!

4.3 Putting events (and more) to work

Now that we’ve covered how jQuery brings order to the chaos of dealing with dis-
parate event models across browsers, let’s work an example page that puts the
knowledge that we’ve gained so far to use. This page uses not only events but also
some jQuery techniques that we’ve explored in earlier chapters, including some
heavy-weight jQuery selectors.

 The page that we’ll create in this section is a small part of an online order form
for an Asian restaurant named Bamboo Asian Grille. For brevity, we’re going to
restrict ourselves to the appetizer section of the menu, but you can apply the les-
sons learned to the remainder of the menu form, which you can complete to
practice your jQuery skills.

Command syntax: hover

hover(overListener,outListener)

Establishes handlers for the mouseover and mouseout events for matched elements. These
handlers only fire when the area covered by the elements is entered and exited, ignoring
transitions to child elements.

Parameters
overListener (Function) The function to become the mouseover handler.

outListener (Function) The function to become the mouseout handler.

Returns
The wrapped set.

Putting events (and more) to work 113
 The goal for this example seems simple: to allow users to select the type and
number of appetizers they would like added to their order. No problem, right? A
series of check boxes and text boxes will do nicely as the expected GUI element
for making multiple choices and specifying the quantities.

 But there’s a small catch: for each appetizer, other options must be presented.
For example, when ordering Crab Rangoon, diners can choose sweet-and-sour
sauce, hot mustard, or (for those who can’t decide) both. Again, this shouldn’t be
a problem because we can associate a series of radio buttons representing the
options with each appetizer entry.

 But as it turns out, this does lead to a small problem. With a little HTML coding
and some CSS magic, we create the layout shown in figure 4.10.

 Even with only five appetizer choices and their corresponding options, the
number of controls is overwhelming; it may even be difficult to see the choices
the diner has made so far. The form works as required, but its usability leaves
much to be desired.

 We can solve this usability dilemma by applying a principle known as progres-
sive disclosure. We don’t need to present options for an appetizer the user isn’t
ordering, so we’ll hide the radio button options until the user needs to see them.

 Progressively disclosing information as it’s needed will vastly improve the
usability of the form by reducing the confusing clutter, as shown in figure 4.11.

Figure 4.10 All our appetizers and options are displayed, but the screen is a
jumbled mess!

114 CHAPTER 4
Events are where it happens!
As a bonus, we’ll also instrument the controls so that when a quantity is entered by
the hungry user, the displayed dollar amount will reflect the price for the quantity
chosen. Let’s see what it takes to make all that happen.

 The full page code for this example is available in the file chapter4/bamboo/
bamboo.html, but let’s start by examining the structure of the HTML that’s used
to implement the display of one appetizer entry as shown in listing 4.7.

<div>
 <label>
 <input type="checkbox" name="appetizers"
 value="imperial"/>
 Fried Imperials rolls (2)
 </label>

 <input type="text" name="imperial.quantity"
 disabled="disabled" value="1"/>
 $

 <div>
 <label>
 <input type="radio" name="imperial.option"
 value="pork" checked="checked"/>
 Pork
 </label>
 <label>

Listing 4.7 HTML structure for a single appetizer entry

Figure 4.11 By hiding the options until they’re needed, we reduce the confusion and
clutter, and the user isn’t overwhelmed by controls that aren’t relevant.

Label construct
contains control

b

Uses custom attribute
to hold price data

c

Holds place for
computed priced

Contains options to be
conditionally displayede

Putting events (and more) to work 115
 <input type="radio" name="imperial.option"
 value="vegetarian"/>
 Vegetarian
 </label>
 </div>
</div>

We repeat this HTML structure for each appetizer entry. Note that this snippet
contains no visual rendition information; such information is factored out to CSS
definitions (which can be found in the file bamboo.css in the same folder as the
HTML file).

 Similarly, note that there’s no script embedded within the HTML markup. The
behavior of our page will be defined following the principles of Unobtrusive Java-
Script with all script properly sequestered from the HTML markup.

 We should emphasize some aspects of this structure because they will become
important when adding the behaviors to these elements. First, note that the
check box elements (as well as the radio elements further into the markup) are
contained within <label> elements b that also hold the text that corresponds to
the controls. This makes clicking the text of the label flip the checked state of the
contained control as if the user clicked the control itself. This is a handy usability
enhancement that makes it easier for people to use our pages (especially for so-
called sloppy clickers, a group to which at least one of your authors belongs).

 Another notable feature is the element that contains the quantity text
box and price display c. This element is adorned with a custom attribute named
price that we use to store the price value for the appetizer. We’ll need this value to
calculate the price when the quantity is entered, and the attribute will also serve
as a useful selector handle in our jQuery selectors. (The use of custom attributes
in this fashion is considered controversial by some; please see the sidebar for
more information.)

 Note also that the element created to contain the computed amount is
initially empty d. We could just fill it in statically, but that means we’d have price
information in two places—generally considered not a best practice. Later, we’ll
see how we fill this in as part of the setup behavior of the page.

 The final major construct in our markup is the <div> element e that contains
the radio buttons representing the appetizer options. This is the element that will
be hidden until an appetizer is checked.

 With the markup all settled, let’s develop the behavior of the page step by
step, starting with hiding the container element for the radio button options.

116 CHAPTER 4
Events are where it happens!
Inspecting the HTML structure of each appetizer entry allows us to concoct a
selector that matches the <div> elements and to use the hide() command on
them as follows:

$('fieldset div div').hide();

NOTE We could initially hide these elements with CSS, but doing so in script
ensures that users who turn off JavaScript (yes, there are still people who
do that) will get a usable interface, albeit at the price of some computation
load when the page is displayed. There are other reasons to do the hiding
in the ready handler that we’ll discuss in chapter 5 when we examine
wrapper methods like hide() in greater detail.

Having tucked the appetizer options away for later display, we now turn our
attention to enabling the usability behaviors that we want the elements to exhibit.
Let’s start by tying the display of the radio button options associated with an
appetizer to whether that appetizer is checked or not.

 To react to a change in the state of an appetizer check box, which should trig-
ger the change in visibility of the <div> element containing its options, we establish

Custom attributes: heroic or heinous?

The use of custom attributes to adorn DOM elements with attributes not defined by
the HTML or XHTML Specifications is a practice that has both its supporters and
detractors. To some, it’s a useful leveraging of the tools that HTML and the brows-
ers make available to us; to others, it’s an affront to all that is good because using
custom attributes can prevent the page from passing validation testing.

Your authors take no sides on this issue and leave it to you, the reader, to deter-
mine whether you think that using custom attributes is a useful mechanism or a
wart on the face of a page.

Without the use of the attribute, the price data could be stored in a JavaScript vari-
able containing an object hash that associates an appetizer name (imperial, for
example) with its price.

The custom attribute tactic can be said to be advantageous over the JavaScript
variable mechanism because adding new appetizer entries means adding a new,
self-contained construct to the page without having to remember to update the
object hash with the price of added appetizers.

Again, we leave it to you to determine which approach you feel suits you best.

Putting events (and more) to work 117
a listener for a click event on the check boxes in which we can adjust the visibility
of the options based upon the state of the check box. Let’s look at the following
statement, which establishes this listener:

$(':checkbox').click(function(){
 var checked = this.checked;
 $('div',$(this).parents('div:first'))
 .css('display',checked ? 'block':'none');
 $('input[type=text]',$(this).parents('div:first'))
 .attr('disabled',!checked)
 .css('color',checked ? 'black' : '#f0f0f0')
 .val(1)
 .change()
 .each(function(){ if (checked) this.focus();});
});

All that just to hide and show a <div>?
 Well, no. Hiding and showing the options is just one of the things that we need

to do when the state of one of the check boxes changes. Let’s look at each step in
this fragment to see what it does for us.

 First, the click handler stores the checked state of the check box in a variable
named checked. This makes for easy reference in the code, and it establishes a
local variable that we can use in any closures that we create.

 Next, the handler locates the <div> containing the appetizer options and sets
its CSS display value to hide those options when the check box is unchecked or to
show them when the check box is checked. The jQuery expression that we use
to locate the element to be shown or hidden is $('div',$(this).parents('div:
first')), which equates to “find the <div> elements in the first ancestor element
of this that is a <div>.” Because we know from our HTML structure that there will
be only one match, we don’t need to differentiate any further.

 Being astute, you’ll have noted that, because we know the initial state of the
check box is unchecked and the options are hidden, we could have written less
code by using the toggle() command without needing to query the state of the
check box. That type of assumptive code can be fragile and break easily when its
assumptions change, so it’s generally better to make explicitly certain that the vis-
ibility of our options matches the state of their respective check boxes.

 Our handler isn’t done yet; it still needs to adjust the state of the quantity text
boxes. These boxes are initially disabled and will only be enabled when an appe-
tizer is checked. We locate the text box with $('input[type=text]',$(this)
.parents('div:first')), a similar selector to the one we just employed that says
“locate the <input> element of type text in my first parent <div>.”

118 CHAPTER 4
Events are where it happens!
 To this element, we do the following:

■ Use the attr() command to set its disabled state to correspond to the
inverse of the check box state.

■ Apply a CSS color value so that the text is invisible when the control is dis-
abled. (Note that this doesn’t work on all browsers—some like Opera and
Internet Explorer don’t allow us to override the color of disabled fields.)

■ Set the value to 1. If we’re enabling the control, this is the default value we
want to use; when disabling the field, we want to revert to this default.

■ Call the change handler of the text box (which we haven’t defined yet, but
don’t worry because that’s next). This change handler will compute the
price for the appetizer and display it. Because we changed the value under
the covers (to 1), we need to call this handler to ensure that the price dis-
play is accurate.

■ Employ the each() method to obtain a reference to the element and assign
focus to that element if the check box is in checked state. Don’t you just
love closures that give us access to the checked local variable?

NOTE When pondering what type of event to handle for the check boxes, you
may initially have thought of capturing change events as opposed to click
events. For our scheme to work, we need to be immediately notified when
the state of a check box changes. Immediate notification occurs within
Safari and the Mozilla-based browsers, but Internet Explorer does not
trigger change events until after focus has been blurred from the control,
making the change event unsuitable for this use; instead, we rely on the
click event.

Now let’s turn our attention to the change handler for the text box. When the
value in the text box changes, we want to recompute and display the cost of the
appetizer—a simple calculation made by multiplying the price of one appetizer
by the quantity.

 The statement to add the change handler is as follows:

$('span[price] input[type=text]').change(function(){
 $('~ span:first',this).text(
 $(this).val() *
 $(this).parents("span[price]:first").attr('price')
);
});

Putting events (and more) to work 119
After locating the text boxes (with a selector that reads “find all <input> elements
of type text that are within elements possessing a price attribute”), we
assign a change handler that finds the to be updated and sets its text con-
tent to the computed value; the expression $('~ span:first',this) locates the
first sibling of this that’s a element. The computation is made by obtain-
ing the value of the text box and multiplying it by the value of the price attribute
on the parent .

 If any of these rather advanced selector expressions has you scratching your
head, it might be a good time to review the selector syntax presented in chapter 2.

 Before we let the user interact with our page, we have one more thing that we
need to do. Remember how we left the elements that are to contain the
computed values blank? Now it’s time to fill those in.

 The values of the quantity text boxes were preset to 1, so all we need to do is to
perform the same computation that occurs when the values are changed. But we
don’t want to repeat any code so we trigger the change handler on the text boxes
and let that change handler do its thing.

$('span[price] input[type=text]').change();

With that, we’ve completed whipping up the appetizer order form—at least to the
point where we’ve met our stated goals. This example exposed us to some very
important lessons:

■ It showed us how to establish click and change handlers on elements that can
be used to effect whatever user interface changes we want when triggered.

■ We saw how to trigger handlers under script control to avoid both repeated
code and the need to factor common code out into global named functions.

■ We were exposed to some mighty fancy selectors used to pick and choose
which elements we wanted to perform operations on.

The complete code for the page is shown in listing 4.8.

<html>
 <head>
 <title>Bamboo Asian Grille - Online Order Form</title>
 <link rel="stylesheet" type="text/css" href="bamboo.css">
 <script type="text/javascript"
 src="../../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript">
 $(function(){

Listing 4.8 Complete code for the appetizer order form

120 CHAPTER 4
Events are where it happens!
 $('fieldset div div').hide();
 $(':checkbox').click(function(){
 var checked = this.checked;
 $('div',$(this).parents('div:first'))
 .css('display',checked ? 'block':'none');
 $('input[type=text]',$(this).parents('div:first'))
 .attr('disabled',!checked)
 .css('color',checked ? 'black' : '#f0f0f0')
 .val(1)
 .change()
 .each(function(){ if (checked) this.focus();});
 });
 $('span[price] input[type=text]').change(function(){
 $('~ span:first',this).text(
 $(this).val() *
 $(this).parents("span[price]:first").attr('price')
);
 });
 $('span[price] input[type=text]').change();
 });
 </script>
 </head>

 <body>
 <h1>Bamboo Asian Grille</h1>
 <h2>Online Order Menu</h2>
 <fieldset>
 <legend>Appetizers</legend>

 <div>
 <label>
 <input type="checkbox" name="appetizers"
 value="imperial"/>
 Fried Imperials rolls (2)
 </label>

 <input type="text" name="imperial.quantity"
 disabled="disabled" value="1"/>
 $

 <div>
 <label>
 <input type="radio" name="imperial.option"
 value="pork" checked="checked"/>
 Pork
 </label>
 <label>
 <input type="radio" name="imperial.option"
 value="vegetarian"/>
 Vegetarian
 </label>

Putting events (and more) to work 121
 </div>
 </div>

 <div>
 <label>
 <input type="checkbox" name="appetizers" value="spring"/>
 Spring rolls (2)
 </label>

 <input type="text" name="spring.quantity"
 disabled="disabled" value="1"/>
 $

 <div>
 <label>
 <input type="radio" name="spring.option" value="pork"
 checked="checked"/>
 Pork
 </label>
 <label>
 <input type="radio" name="spring.option"
 value="shrimp"/>
 Pork and Shrimp
 </label>
 <label>
 <input type="radio" name="spring.option"
 value="vegetarian"/>
 Vegetarian
 </label>
 </div>
 </div>

 <div>
 <label>
 <input type="checkbox" name="appetizers" value="vnrolls"/>
 Vietnamese rolls (4)
 </label>

 <input type="text" name="vnrolls.quantity"
 disabled="disabled" value="1"/>
 $

 <div>
 <label>
 <input type="radio" name="vnrolls.option" value="pork"
 checked="checked"/>
 Pork
 </label>
 <label>
 <input type="radio" name="vnrolls.option"
 value="shrimp"/>

122 CHAPTER 4
Events are where it happens!
 Pork and Shrimp
 </label>
 <input type="radio" name="vnrolls.option"
 value="vegetarian"/>
 <label>Vegetarian</label>
 </div>
 </div>

 <div>
 <label>
 <input type="checkbox" name="appetizers" value="rangoon"/>
 Crab rangoon (8)
 </label>

 <input type="text" name="rangoon.quantity"
 disabled="disabled" value="1"/>
 $

 <div>
 <label>
 <input type="radio" name="rangoon.option"
 value="sweet checked="checked"/>
 Sweet-and-sour sauce
 </label>
 <label>
 <input type="radio" name="rangoon.option" value="hot"/>
 Hot mustard
 </label>
 <label>
 <input type="radio" name="rangoon.option" value="both"/>
 Both
 </label>
 </div>
 </div>

 <div>
 <label>
 <input type="checkbox" name="appetizers"
 value="stickers"/>
 Pot stickers (6)
 </label>

 <input type="text" name="stickers.quantity"
 disabled="disabled" value="1"/>
 $

 <div>
 <label>
 <input type="radio" name="stickers.option"
 value="pork" checked="checked"/>

Putting events (and more) to work 123
 Pork
 </label>
 <label>
 <input type="radio" name="stickers.option"
 value="vegetarian"/>
 Vegetarian
 </label>
 </div>
 </div>

 <div></div>

 </fieldset>
 </body>
</html>

This code is robust in that it’s independent of the number of appetizer entries.
You’ll note that nowhere in the JavaScript is it necessary to tell the code what ele-
ments correspond to appetizer entries. The power of jQuery selectors allows us to
automatically locate them. New appetizer entries can be added at will—as long as
they follow the prescribed format—and the code will automatically instrument
them along with the previously existing entries.

 In many ways, the code could stand some improvements. In the interest of
brevity and focusing on the lessons at hand, we took a number of shortcuts that
should be fixed before putting any such code into production. The following list
details some areas for improvement (or even blatant shortcomings of the code)
that you’re encouraged to explore as exercises:

■ As written, the code assumes that users will enter only valid numeric values
into the quantity fields. We know better! Add validation that ensures that
only valid numeric entries are made. What should you do when an invalid
entry is made?

■ When the options for unchecked appetizers are hidden, they are still
enabled and will be submitted along with the rest of the visible elements.
This is wasted bandwidth and more data for the server-side code to sift
through. How would you enable and disable the radio options at appropri-
ate times?

■ The form is incomplete. In fact, without a <form> element, it isn’t a form
at all! Complete the HTML to make a valid form that can be submitted to
the server.

124 CHAPTER 4
Events are where it happens!
■ Man does not live by appetizers alone! How would you go about adding new
sections for entrees, beverages, and desserts? Banana flambé sounds delight-
ful! How would these new sections affect the setup of the JavaScript code?

■ As diners are selecting (and deselecting) their choices, you could provide a
running total of the order amount. How would you go about keeping track
of the order total?

■ If the use of custom attributes is not to your liking, refactor the page to
eliminate them. But be sure that the price information remains defined in
one place only!

■ Perhaps the biggest flaw in the code is that it depends greatly on the posi-
tional relationships of the elements in an appetizer entry. This allowed the
markup to remain simple but at the expense of both creating a strong bind-
ing between the structure of an entry and the supporting code and introduc-
ing complex jQuery selectors. How would you go about making the code
more robust so that changes to the structure of an entry would have less
impact on the code? Adding CSS class names to tag the elements (rather
than relying on positional relationships) would be one fine way of accom-
plishing this; how would you go about it? What other ideas do you have?

If you come up with ideas that you’re proud of, be sure to visit the Manning web
page for this book at http://www.manning.com/bibeault, which contains a link to the
discussion forum. You’re encouraged to post your solutions for all to see and discuss!

4.4 Summary

Building upon the jQuery knowledge that we’ve gained so far, this chapter intro-
duced us to the world of event handling.

 We learned that there are vexing challenges to implementing event handling
in web pages, but such handling is essential for creating pages in Rich Internet
Applications. Not insignificant among those challenges is the fact the there are
three event models that each operate in different ways across the set of modern
popularly used browsers.

 The legacy Basic Event Model, also informally termed the DOM Level 0 Event
Model, enjoys somewhat browser-independent operation to declare event listen-
ers, but the implementation of the listener functions requires divergent browser-
dependent code. This event model is probably the most familiar to page authors,
and assigns event listeners to DOM elements by assigning references to the lis-
tener functions to properties of the elements; the onclick property, for example.

http://www.manning.com/bibeault

Summary 125
 Although simple, this model suffers from a you-only-get-one-shot problem;
only one listener can be defined for any event type on a particular DOM element.

 We can avoid this deficiency by using the DOM Level 2 Event Model, a more
advanced and standardized model in which an API binds handlers to their event
types and DOM elements. Versatile though this model is, it enjoys support only by
standards-compliant browsers such as Firefox, Safari, Camino, and Opera.

 For Internet Explorer 6 and 7, an API-based proprietary event model that pro-
vides a subset of the functionality of the DOM Level 2 Model is available.

 Coding all event handling in a series of if statements—one clause for the
standard browsers and one for Internet Explorer—is a good way to drive our-
selves to early dementia. Luckily jQuery comes to the rescue and saves us from
that fate.

 jQuery provides a general bind() command to establish event listeners of any
type on any element, as well as event-specific convenience commands such as
change() and click(). These methods operate in a browser-independent fashion
and normalize the Event instance passed to the handlers with the standard prop-
erties and methods most commonly used in event listeners.

 jQuery also provides the means to remove event handlers, causes them to be
invoked under script control, and even defines some higher-level commands that
make implementing common event-handling tasks as easy as possible.

 We explored a few examples of using events in our pages. In the next chapter,
we’ll look at how jQuery builds upon these capabilities to put animation and ani-
mated effects to work for us.

Sprucing up with
animations and effects
This chapter covers
■ Showing and hiding elements

without animations
■ Showing and hiding elements using core jQuery

animated effects
■ Other built-in effects
■ Writing our own custom animations
126

Showing and hiding elements 127
Have you ever looked at a website built in Flash and become envious because of all
the pretty effects that Flash developers have at their disposal? Heck, you might have
even become tempted to learn Flash purely for those slick effects.

 Not long ago, smooth effects and animations weren’t realistic options using
JavaScript. Between cross-browser issues and slow browser implementations, try-
ing to fade or zoom elements, or even move them around the screen, was extraor-
dinarily difficult. Thankfully, that state of affairs has passed, and jQuery provides
a trivially simple interface for doing all sorts of neat effects.

 But before we dive into adding whiz-bang effects to our pages, we need to con-
template the question: should we? Like a Hollywood blockbuster that’s all special
effects and no plot, a page that overuses effects can elicit the opposite reaction
than we intended. Be mindful that effects should be used to enhance the usability
of a page, not hinder it.

 With that caution in mind, let’s see what jQuery has to offer.

5.1 Showing and hiding elements

Perhaps the most common type of dynamic effect we’ll want to perform on an ele-
ment or group of elements is the simple act of showing or hiding them. We’ll get
to more fancy animations (like fading an element in or out) in a bit, but sometimes
we want to keep it simple and pop elements into existence or make them vanish!

 The commands for showing and hiding elements are pretty much what we’d
expect: show() to show the elements in a wrapped set and hide() to hide them.
We’re going to delay presenting their formal syntax for reasons that will
become clear in a bit; for now, let’s concentrate on using these commands with
no parameters.

 As simple as these methods may seem, we should keep a few things in mind.
First, jQuery hides elements by changing the display value of the style property
to none. If an element in the wrapped set is already hidden, it will remain hidden
but still be returned for chaining. For example, suppose we have the following
HTML fragment:

<div style="display:none;">This will start hidden</div>
<div>This will start shown</div>

If we apply $("div").hide().addClass("fun"), we’ll end up with the following:

<div style="display:none;" class="fun">This will start hidden</div>
<div style="display:none;" class="fun">This will start shown</div>

http://gsgd.co.uk/sandbox/jquery.easing.php

128 CHAPTER 5
Sprucing up with animations and effects
Second, if an element starts as hidden by having its display style property value
explicitly set to none, the show() command will always set its display style prop-
erty value to block. That’s even if the element would typically default to inline
for its display value—as would a element, for example. If the element
starts out without an explicitly declared display value, and we use the jQuery
hide() command to hide it, the show() command will remember the original
value and restore it to that original display state.

 So it’s usually a good idea not to use style attributes on the elements we want
initially hidden, but to apply the hide() command to them in the page’s ready
handler. This prevents them from being displayed on the client, and also makes
sure everything is in a known initial state and will behave as expected during sub-
sequent hide and show operations.

 Let’s see about putting these commands to good use.

5.1.1 Implementing a collapsible list
Inundating a user with too much information at once is a common and classic
user interface boo-boo. It’s best to allow users to ask for information in digestible
chunks that are under their control. This is a tiny glimpse into a larger principle
known as progressive disclosure (which we were introduced to in the previous chap-
ter) in which the data presented to users is kept to the minimum and expanded as
required to perform the task at hand.

 A good example of this might be browsing the filesystem of a computer. This
information is frequently presented as a hierarchical list in which the content of
folders is nested to the depth required to represent all files and folders on the sys-
tem. It would be ludicrous to try to present all the files and folders on the system
at once! A better approach is to allow each level in the list to be opened or closed
to reveal the contained hierarchical information. You’ve surely seen such controls
in any application that allows you to browse the filesystem.

 In this section, we’ll see how to use the hide() and show() commands to instru-
ment a nested list that acts in this manner.

NOTE There are some nifty plugins that provide this type of control out-of-the-
box if, once you understand the principles behind it, you’d rather use a
ready-made solution than write your own.

To start, let’s take a look at the HTML structure of the list we’ll use to test our code.

<body>
 <fieldset>
 <legend>Collapsible List — Take 1</legend>

Showing and hiding elements 129

 Item 1
 Item 2

 Item 3

 Item 3.1

 Item 3.2

 Item 3.2.1
 Item 3.2.2
 Item 3.2.3

 Item 3.3

 Item 4

 Item 4.1

 Item 4.2

 Item 4.2.1
 Item 4.2.2

 Item 5

 </fieldset>
</body>

NOTE Because this section focuses on the effects, let’s assume the list we’ll
instrument is small enough to send completely as part of the page.
Obviously, this would not be true for something as massive as the data
set for an entire filesystem. In such cases, you’d want to go back to the
server for more and more data as you need it, but that’s not what we
want to focus on in this chapter. After you’ve read the Ajax chapter, you
can revisit these examples and apply your skills to enhance these con-
trols with such abilities.

When displayed in the browser (prior to tinkering with it), this list appears as
shown in figure 5.1.

130 CHAPTER 5
Sprucing up with animations and effects
A list of this size is relatively easy to digest, but it’s easy to imagine it getting
longer and deeper, in which case presenting the full list to users could cause them
to suffer from the dreaded Information Overload Syndrome.

 We want to instrument all list items that contain another embedded list so that
the embedded content is hidden until the users choose to view it by clicking the
item. After such a click, the child content of the item will be revealed, and a sub-
sequent click will hide the contents again.

 If we only hide the content of items that contain child lists (items 3 and 4 of
the topmost list, for example), we’d likely confuse the users because they’d have
no way of knowing these items are active and expandable; we need to visually
distinguish these expandable items from those that are leaf items (those that
can’t be expanded). We do that by changing the cursor to the hand when it
passes over an active item, as well as replacing its list marker with the ubiquitous
plus- and minus-sign graphics to indicate that the item can be either expanded
or collapsed.

 We’ll start the list off in its fully collapsed state and let the users take it from
there. After instrumentation, the list will appear as shown in figure 5.2 when ini-
tially displayed.

Figure 5.1 The nested list before we get our hands on it

Showing and hiding elements 131
We can see that for the list items that have content (items 3 and 4) the follow-
ing occurs:

■ The children of the list items 3 and 4 are hidden.
■ The list markers for the items have been replaced with a plus-sign graphic

to indicate that the item can be expanded.
■ The mouse cursor changes to the hand when it hovers over these items.

Clicking these active items reveals their children as shown in the series of displays
in figure 5.3.

 Let’s examine how we apply this behavior to the DOM elements of the list, set-
ting it up within the ready handler, as shown in listing 5.1.

$(function(){
 $('li:has(ul)')
 .click(function(event){
 if (this == event.target) {
 if ($(this).children().is(':hidden')) {
 $(this)
 .css('list-style-image','url(minus.gif)')
 .children().show();
 } else {
 $(this)
 .css('list-style-image','url(plus.gif)')
 .children().hide();
 }
 }
 return false;
 })

Listing 5.1 Ready-handler code that instruments the list with expandable behavior

Figure 5.2 After instrumentation, the list has been fully collapsed and the expandable
items are visually distinct.

b
c

d

e

132 CHAPTER 5
Sprucing up with animations and effects
 .css('cursor','pointer')
 .click();
 $('li:not(:has(ul))').css({
 cursor: 'default',
 'list-style-image':'none'
 });
});

There isn’t a whole lot of code to this ready handler, but there is a lot of activity.
 First, we select all list items that possess list children by applying the jQuery

containment selector li:has(ul) b, and apply a chained series of jQuery com-
mands to the matched elements, beginning with attaching a click handler c.

 This click handler checks to make sure that the target element of the event
matches this. This is true only when the clicked item is the same as the one on
which the listener was established; it allows us to ignore clicks on the child ele-
ments. After all, we only want to open and close an item when users click the par-
ent item, not one of its children.

 If we determine that a parent item has been clicked, we then determine if its
children are hidden or shown by employing the handy is() command using the
:hidden filter d. If the children are hidden, we reveal them using show(), and if
shown, we hide them using hide(). In either case, we change the parent item
marker to the plus or minus image (as appropriate) and return false as the value
of the listener e to prevent needless propagation.

 We set the mouse cursor shape to the active pointer using the css() command
f and hide the child elements for the active items, performing the actions
defined within the else clause of the if statement in the click handler, by invok-
ing the click handler g.

 As the final step before users can interact with the page, we need to sledge-
hammer some styling elements for the leaf items h. We’ve set the list-style-
image style (which controls the item marker) of the active items to one of the plus
or minus GIF images, and we don’t want that setting to be inherited by the list
items that are children of those items. To prevent that inheritance, we explicitly
set that list-style-image style property value to none for all leaf list items.
Because we have set it directly on the items, it will take precedence over any
inherited value.

 We do the same for the mouse cursor for the leaf items by setting it to the
default mouse cursor shape. Otherwise leaf items contained by an active parent
would inherit the active cursor shape.

f
g

h

Showing and hiding elements 133
Figure 5.3 Clicking active elements causes their contents to be revealed.

134 CHAPTER 5
Sprucing up with animations and effects
The full code for this page can be found in file chapter5/collapsible.list
.take.1.html. (If you surmise that the take 1 part of this name indicates that we’ll
be revisiting this example, you’re right!)

 That wasn’t too difficult for the amount of functionality enabled, but as it turns
out, it can be even easier.

5.1.2 Toggling the display state of elements

Toggling the display state of elements between revealed or hidden—as for the
collapsible list example—is such a common occurrence that jQuery defines a
command named toggle() that makes it even easier.

 Let’s apply this command to the collapsible list and see how it helps to simplify
the previous code. Listing 5.2 shows only the ready handler for the refactored page
(no other changes are necessary) with the new changes highlighted in bold. The
complete page code can be found in file chapter5/collapsible.list.take.2.html.

$(function(){
 $('li:has(ul)')
 .click(function(event){
 if (this == event.target) {
 $(this).children().toggle();
 $(this).css('list-style-image',
 ($(this).children().is(':hidden')) ?
 'url(plus.gif)' : 'url(minus.gif)');
 }
 return false;
 })
 .css('cursor','pointer')
 .click();
 $('li:not(:has(ul))').css({
 cursor: 'default',
 'list-style-image':'none'
 });
});

Listing 5.2 Changes to the collapsible list to use the toggle() command

Animating the display state of elements 135
Note that we no longer need the conditional statement to determine whether to
hide or show the elements; toggle() takes care of swapping the displayed state.
We still use the .is(':hidden') test as part of a simpler ternary expression to
determine the appropriate image to use for the item marker.

 Instantaneously making elements appear and disappear is handy, but some-
times we want the transition to be less abrupt. Let’s see what’s available for that.

5.2 Animating the display state of elements

Human cognitive ability being what it is, making items pop into and out of exist-
ence instantaneously can be jarring to us. If we blink at the wrong moment, we
could miss the transition, leaving us to wonder, “What just happened?”

 Gradual transitions of a short duration help us know what’s changing and how
we got from one state to the other. And that’s where the jQuery core effects come
in, of which there are three sets:

■ Show and hide (there’s a bit more to these commands than we let on in sec-
tion 5.1)

■ Fade in and fade out
■ Slide down and slide up

Let’s look more closely at each of these effect sets.

5.2.1 Showing and hiding elements gradually

The show(), hide(), and toggle() commands are more complex than we led you
to believe in the previous section. When called with no parameters, these com-
mands effect a simple manipulation of the display state of the wrapped elements,
causing them to instantaneously be revealed or hidden from the display. But
when passed parameters, these effects can be animated so that their changes in
display status take place over a period of time.

 Now we’re ready to look at the full syntaxes of these commands.

136 CHAPTER 5
Sprucing up with animations and effects
Command syntax: hide

hide(speed,callback)

Causes the elements in the wrapped set to become hidden. If called with no parameters, the
operation takes place instantaneously by setting the display style property value of the ele-
ments to none. If a speed parameter is provided, the elements are hidden over a period of
time by adjusting their size and opacity downward to zero, at which time their display style
property value is set to none to remove them from the display.
An optional callback can be specified that’s invoked when the animation is complete.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: slow, normal, or fast. If omit-
ted, no animation takes place, and the elements are immediately removed
from the display.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

Command syntax: show

show(speed,callback)

Causes any hidden elements in the wrapped set to be revealed. If called with no parameters,
the operation takes place instantaneously by setting the display style property value of the
elements to their previous setting (such as block or inline) if the element was hidden via a
jQuery effect. If the element was not hidden via jQuery, the display style property value
defaults to block.
If a speed parameter is provided, the elements are revealed over a specified duration by
adjusting their size and opacity upward.
An optional callback can be specified that’s invoked when the animation is complete.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: slow, normal, or fast. If omit-
ted, no animation takes place and the elements are immediately revealed in
the display.

callback (Function) An optional function invoked when the animation is complete. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

Animating the display state of elements 137
Let’s do a third take on the collapsible list, animating the opening and closing of
the sections.

 Given the previous information, you’d think that the only change we need
to make to the code of take 2 of this collapsible list implementation would be to
change the call to the toggle() command to

toggle('slow')

But not so fast! When we make this change and test the page, we’ll notice some
weird things going on. First, recall that, in order to initially hide the collapsible
elements, we called the click handler of the active items. That was well and good
when all the handler did was to immediately hide the child elements. But now
we’ve animated that activity; when the page loads, we see the child items hiding
themselves in the animated fashion. That won’t do at all!

 We need to explicitly use the hide() command, without parameters, to hide
the element before the user gets a chance to see them and then to set the markers
to the plus image. You’ll recall that we didn’t do that in the earlier example
because it would have created repeated code. Well, with the changes we’ve made,
that’s no longer an issue.

 The second problem we’d notice is that marker images no longer act correctly.
When the toggle action was instantaneous, we could safely check for the results of
the action immediately after it took place. Now that the toggle action is animated,
its results are no longer synchronous, and checking afterward for whether the
children are hidden or not (in order to know which image the marker should be
set to) is no longer possible.

Command syntax: toggle

toggle(speed,callback)

Performs show() on any hidden wrapped elements and hide() on any non-hidden wrapped
elements. See the syntax description of these commands for their respective semantics.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: slow, normal, or fast. If omit-
ted, no animation takes place.

callback (Function) An optional function invoked when the animation is complete. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

138 CHAPTER 5
Sprucing up with animations and effects
 Let’s invert the sense of the test and check the state of the children before we
issue the animated toggle.

 The new ready handler, with changes highlighted in bold, is shown in listing 5.3.

$(function(){
 $('li')
 .css('pointer','default')
 .css('list-style-image','none');
 $('li:has(ul)')
 .click(function(event){
 if (this == event.target) {
 $(this).css('list-style-image',
 (!$(this).children().is(':hidden')) ?
 'url(plus.gif)' : 'url(minus.gif)');
 $(this).children().toggle('slow');
 }
 return false;
 })
 .css({cursor:'pointer',
 'list-style-image':'url(plus.gif)'})
 .children().hide();
 $('li:not(:has(ul))').css({
 cursor: 'default',
 'list-style-image':'none'
 });
});

The page with these changes can be found in file chapter5/collapsible.list.take
.3.html.

 Knowing how much people like us love to tinker, we’ve set up a handy tool that
we’ll use to further examine the operation of these commands.

Introducing the jQuery Effects Lab Page
Back in chapter 2, we introduced the concept of lab pages to help us experiment
with using jQuery selectors. For this chapter, we set up a lab page for exploring
the operation of the jQuery effects in file chapter5/lab.effects.html.

 Loading this page into your browser results in the display shown in figure 5.4.
 This lab page consists of two main panels: a control panel in which we’ll spec-

ify which effect will be applied and one that contains four test subject elements
upon which the effects will act.

 “Are they daft?” you might be thinking. “There are only two test subjects.”

Listing 5.3 Our list example augmented with the animated effects

Animating the display state of elements 139
No, your authors haven’t lost it yet. There are four elements, but two of them
(another <div> with text and another image) are initially hidden.

 Let’s use this page to demonstrate the operations of the commands we’ve dis-
cussed to this point. Display the page in your browser, and follow along with the
ensuing exercises:

■ Exercise 1—With the controls left as is after the initial page load, click the
Apply button. This will execute a show() command with no parameters.
The command that was applied is displayed below the Apply button for
your information. Note how the two initially hidden test subject elements
appear instantly. If you’re wondering why the image on the far right
appears a bit faded, its opacity has been purposefully set to 50 percent.

■ Exercise 2—Select the Hide radio button, and click Apply to execute a
parameterless hide() command. All of the test subjects vanish. Take spe-
cial notice that the fieldset in which they reside has tightened up. This
indicates that the elements have been completely removed from the dis-
play rather than made invisible.

Figure 5.4 The initial state of the jQuery Effects Lab Page, which will help us examine the
operation of the jQuery effects commands

140 CHAPTER 5
Sprucing up with animations and effects
NOTE When we say that an element has been removed from the display (here, and in
the remainder of our discussion about effects), we mean that the element
is no longer being taken into account by the browser’s layout manager, just
as if its CSS display style property value has been set to none. It does not
mean that the element has been removed from the DOM tree; none of the
effects will ever cause an element to be removed from the DOM.

■ Exercise 3—Next, select the Toggle radio button, and click Apply. Click
Apply again. And again. You’ll note that each subsequent execution of
toggle() flips the presence of the test subjects.

■ Exercise 4—Reload the page to reset everything to the initial conditions (in
Firefox, set focus to the address bar and hit the Enter key). Select Toggle,
and click Apply. Note how the two initially visible subjects vanish and the
two that were hidden appear. This demonstrates that the toggle() com-
mand applies individually to each wrapped element, revealing the ones
that are hidden and hiding those that aren’t.

■ Exercise 5—In this exercise, let’s move into the realm of animation. Refresh
the page, and for the Speed setting, select Slow. Click Apply, and carefully
watch the test subjects. The two hidden elements, rather than popping
into existence, gradually grow from their upper left corners. If you want to
see what’s going on, refresh the page, select Milliseconds for the speed and
enter 10000 for the speed value. This will extend the duration of the effect
to 10 (excruciating) seconds and give you plenty of time to observe the
behavior of the effect.

■ Exercise 6—Choosing various combinations of Show, Hide, and Toggle, as
well as various speeds, experiment with these effects until you feel you
have a good handle on how they operate.

Armed with the jQuery Effects Lab Page, and the knowledge of how this first set
of effects operates, let’s take a look at the next set of effects.

5.2.2 Fading elements into and out of existence

If you watched the operation of the show() and hide() effects carefully, you noted
that they scaled the size of the elements (either up or down as appropriate) and
adjusted the opacity of the elements as they grew or shrank. The next set of
effects, fadeIn() and fadeOut(), only affect the opacity of the elements.

Animating the display state of elements 141
Other than the lack of scaling, these commands work in a fashion similar to
show() and hide() (when animated) respectively. The syntaxes of these commands
are as follow:

Let’s have some more fun with the jQuery Effects Lab Page. Display the lab, and
run through a set of exercises similar to those we followed in the previous section

Command syntax: fadeIn

fadeIn(speed,callback)

Causes any matched elements that are hidden to be shown by gradually changing their opac-
ity to their natural value. This value is either the opacity originally applied to the element, or
100%. The duration of the change in opacity is determined by the speed parameter. Any ele-
ments that aren’t hidden aren’t affected.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of millisec-

onds or as one of the predefined strings: slow, normal, or fast. If omitted, the
default is normal.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

Command syntax: fadeOut

fadeOut(speed,callback)

Causes any matched elements that aren’t hidden to be removed from the display by gradu-
ally changing their opacity to 0% and then removing the element from the display. The dura-
tion of the change in opacity is determined by the speed parameter. Any elements that are
already hidden aren’t affected.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of millisec-

onds or as one of the predefined strings: slow, normal, or fast. If omitted, the
default is normal.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

142 CHAPTER 5
Sprucing up with animations and effects
using the Fade In and Fade Out selections (don’t worry about Fade To for now,
we’ll attend to that soon enough).

 It’s important to note that when the opacity of an element is adjusted, the
jQuery hide(), show(), fadeIn(), and fadeOut() effects remember the original
opacity of an element and honor its value. In the lab page, we purposefully set the
initial opacity of the image at the far right to 50 percent before hiding it.
Throughout all the opacity changes that take place when applying the jQuery
effects, this original value is never stomped on.

 Run though additional exercises in the lab until you’re convinced that this is so
and are comfortable with the operation of the fade effects.

 Another effect that jQuery provides is via the fadeTo() command. This effect
adjusts the opacity of the elements like the previously examined fade effects, but
never removes the elements from the display. Before we start playing with
fadeTo() in the lab, here’s its syntax.

Unlike the other effects that adjust opacity while hiding or revealing elements,
fadeTo() doesn’t remember the original opacity of an element. This makes sense
because the whole purpose of this effect is to explicitly change the opacity to a
specific value.

 Bring up the lab page, and cause all elements to be revealed (you should know
how by now). Then work through the following exercises:

Command syntax: fadeTo

fadeTo(speed,opacity,callback)

Adjusts the opacity of the wrapped elements from their current setting to the new setting
specified by opacity.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of millisec-

onds or as one of the predefined strings: slow, normal, or fast. If omitted, the
default is normal.

opacity (Number) The target opacity to which the elements will be adjusted specified
as a value from 0.0 to 1.0.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

Animating the display state of elements 143
■ Exercise 1—Select Fade To and a speed value slow enough for you to observe
the behavior; 4000 milliseconds is a good choice. Now set the Fade to Opac-
ity field (which expects a percentage value between 0 and 100, converted to
0.0 through 1.0 when passed to the command) to 10, and click Apply. The
test subjects will fade to 10 percent opacity over the course of four seconds.

■ Exercise 2—Set the opacity to 100, and click Apply. All elements, including
the initially semi-transparent image, are adjusted to full opaqueness.

■ Exercise 3—Set the opacity to 0, and click Apply. All elements fade away to
invisibility, but note that once they’ve vanished, the enclosing fieldset does
not tighten up. Unlike the fadeOut() effect, fadeTo() never removes the
element from the display, even when it’s fully invisible.

Continue experimenting with the Fade To effect until you’ve mastered its work-
ings. Then we’ll be ready to move on to the next set of effects.

5.2.3 Sliding elements up and down
Another set of effects that hide or show elements—slideDown() and slideUp()—
also works in a similar manner to the hide() and show() effects, except that the
elements appear to slide down from their tops when being revealed and to slide
up into their tops when being hidden.

 As with hide() and show(), the slide effects have a command that will toggle
the elements between hidden and revealed: slideToggle(). The by-now-familiar
syntaxes for these commands follow below.

Command syntax: slideDown

slideDown(speed,callback)

Causes any matched elements that are hidden to be shown by gradually increasing their ver-
tical size. Any elements that aren’t hidden aren’t affected.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of millisec-

onds or as one of the predefined strings: slow, normal, or fast. If omitted, the
default is normal.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

144 CHAPTER 5
Sprucing up with animations and effects
Except for the manner in which the elements are revealed and hidden, these
effects act similarly to the other show/hide effects. Convince yourself of this by
displaying the jQuery Effects Lab Page and running through sets of exercises sim-
ilar to those we applied to the other effects.

Command syntax: slideUp

slideUp(speed,callback)

Causes any matched elements that aren’t hidden to be removed from the display by gradu-
ally decreasing their vertical size.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of millisec-

onds or as one of the predefined strings: slow, normal, or fast. If omitted, the
default is normal.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

Command syntax: slideToggle

slideToggle(speed,callback)

Performs slideDown() on any hidden wrapped elements and slideUp() on any non-hidden
wrapped elements. See the syntax description of these commands for their respective
semantics.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: slow, normal, or fast. If omit-
ted, no animation takes place.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated.

Returns
The wrapped set.

Creating custom animations 145
5.2.4 Stopping animations

We may have a reason now and again to stop an animation once it has started.
This could be because a user event dictates that something else should occur or
because we want to start a completely new animation. The stop() command will
achieve this for us:

Note that any changes that have already taken place for any animated elements
will remain in effect. If we want to restore the elements to their original state, it’s
our responsibility to put the CSS values back to their starting values using the
css() method or similar commands.

 Now that we’ve seen the effects built into core jQuery, let’s investigate writing
our own!

5.3 Creating custom animations

The number of core effects supplied with jQuery is purposefully kept small (in
order to keep jQuery’s core footprint to a minimum) with the expectation that
plugins are available to add more animations at the page author’s discretion. It’s
also a simple matter to write our own animations.

 jQuery publishes the animate()wrapper method that allows us to apply our
own custom animated effects to the elements of the wrapped set. Let’s take a look
at its syntax.

Command syntax: stop

stop()

Halts all animations that may be currently in progress for the elements in the matched set

Parameters
none

Returns
The wrapped set

146 CHAPTER 5
Sprucing up with animations and effects
We create custom animations by supplying a set of CSS style properties and target
values that those properties will converge towards as the animation progresses.
Animations start with an element’s original style value and proceed by adjusting
that style value in the direction of the target value. The intermediate values that
the style achieves during the effect (automatically handled by the animation
engine) are determined by the duration of the animation and the easing function.

 The specified target values can be absolute values, or we can specify relative val-
ues from the starting point. To specify relative values, prefix the value with += or -=
to indicate relative target values in the positive or negative direction, respectively.

Command syntax: animate

animate(properties,duration,easing,callback)
animate(properties,options)

Applies an animation, as specified by the properties and easing parameters, to all mem-
bers of the wrapped set. An optional callback function can be specified that’s invoked when
the animation is complete. An alternate format specifies a set of options in addition to the
properties.

Parameters
properties (Object) An object hash that specifies the end values that supported CSS

styles should reach at the end of the animation. The animation takes place
by adjusting the values of the style properties from the current value for an
element to the value specified in this object hash.

duration (Number|String) Optionally specifies the duration of the effect as a number
of milliseconds or as one of the predefined strings: slow, normal, or fast. If
omitted, no animation takes place.

easing (String) The optional name of a function to perform easing of the anima-
tion. Easing functions must be registered by name and are often provided
by plugins. Core jQuery supplies two easing functions registered as linear
and swing.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is
set to the element that was animated.

options (Object) Specifies the animation parameter values using an object hash.
The supported properties are as follow:

■ duration—See previous description of duration parameter.
■ easing—See previous description of easing parameter.
■ complete—Function invoked when the animation completes.
■ queue—If false, the animation isn’t queued and begins running

immediately.

Returns
The wrapped set.

Creating custom animations 147
 The term easing is used to describe the manner in which the processing and
pace of the frames of the animation are handled. By using some fancy math on the
duration of the animation and current time position, some interesting variations
to the effects are possible. The subject of writing easing functions is a complex,
niche topic that’s usually only of interest to the most hard-core of plugin authors;
we’re not going to delve into the subject of custom easing functions in this book. If
you’d like to sample more easing functions than linear (which provides a linear
progression) or swing (which speeds up slightly near the end of an animation),
check out the Easing Plugin at http://gsgd.co.uk/sandbox/jquery.easing.php.

 By default, animations are added to a queue for execution; applying multiple
animations to an object will cause them to run serially. If you’d like to run anima-
tions in parallel, set the queue option to false.

 The list of CSS style properties that can be animated is limited to those that
accept numeric values for which there is a logical progression from a start value to
a target value. This numeric restriction is completely understandable—how
would we envision the logical progress from a source value to an end value for a
non-numeric property such as image-background? For values that represent
dimensions, jQuery assumes the default unit of pixels, but we can also specify em
units or percentages by including the em or % suffixes.

 Frequently animated style properties include top, left, width, height, and
opacity. But if it makes sense for the effect we want to achieve, numeric style
properties such as font size and border widths can also be animated.

NOTE If you want to animate a CSS value that specifies a color, you may be inter-
ested in the official jQuery Color Animation Plugin at http://jquery.com/
plugins/project/color.

In addition to specific values, we can also specify one of the strings hide, show, or
toggle; jQuery will compute the end value as appropriate to the specification of
the string. Using hide for the opacity property, for example, will result in the
opacity of an element being reduced to 0. Using any of these special strings has
the added effect of automatically revealing or removing the element from the dis-
play (like the hide() and show() commands).

 Did you notice when we introduced the core animations that there was no
toggling command for the fade effects? That’s easily solved using animate() and
toggle as follows:

$('.animateMe').animate({opacity:'toggle'},'slow');

http://gsgd.co.uk/sandbox/jquery.easing.php
http://jquery.com/plugins/project/color
http://jquery.com/plugins/project/color

148 CHAPTER 5
Sprucing up with animations and effects
Let’s try our hand at writing a few more custom animations.

5.3.1 A custom scale animation

Consider a simple scale animation in which we want to adjust the size of the ele-
ments to twice their original dimensions. We write such an animation as

$('.animateMe').each(function(){
 $(this).animate(
 {
 width: $(this).width() * 2,
 height: $(this).height() * 2
 },
 2000
);
});

To implement this animation, we iterate over all the elements in the wrapped set
via each() to apply the animation individually to each matched element. This is
important because the property values that we need to specify for each element
are based upon the individual dimensions for that element. If we always knew
that we’d be animating a single element (such as if we were using an id selector)
or applying the exact same set of values to each element, we could dispense with
each() and animate the wrapped set directly.

 Within the iterator function, the animate() command is applied to the ele-
ment (identified via this) with style property values for width and height set to
double the element’s original dimensions. The result is that over the course of
two seconds (as specified by the duration parameter of 2000), the wrapped ele-
ments (or element) will grow from their original size to twice that original size.

 Now let’s try something a bit more extravagant.

5.3.2 A custom drop animation

Let’s say that we want to conspicuously animate the removal of an element from
the display, perhaps because it’s vitally important to convey to users that the item
being removed is gone and that they should make no mistake about it. The anima-
tion we’ll use to accomplish this will make it appear as if the element drops off the
page, disappearing from the display as it does so.

 If we think about it for a moment, we can figure out that, by adjusting the top
position of the element, we can make it move down the page to simulate the drop;
adjusting the opacity will make it seem to vanish as it does so. And finally, when
all that’s done, we want to remove the element from the display (similar to the
animated hide()).

Creating custom animations 149
 We accomplish this drop effect with the following code:

$('.animateMe').each(function(){
 $(this)
 .css('position','relative')
 .animate(
 {
 opacity: 0,
 top: $(window).height() - $(this).height() -
 $(this).position().top
 },
 'slow',
 function(){ $(this).hide(); });
});

There’s a bit more going on here than with the previous effect. We once again
iterate over the element set, this time adjusting the position and opacity of the
elements. But to adjust the top value of an element relative to its original posi-
tion, we first need to change its CSS position style property value to relative.

 Then for the animation, we specify a target opacity of 0 and a computed top
value. We don’t want to move an element so far down the page that it moves
below the window’s bottom; this could cause scroll bars to be displayed where
none may have been before, possibly distracting users. We don’t want to draw
their attention away from the animation—grabbing their attention is why we’re
animating in the first place! So we use the height and vertical position of the ele-
ment, as well as the height of the window, to compute how far down the page the
element should drop.

NOTE In most examples in this book, we’ve avoided using plugins as much as
possible in order to focus on core jQuery. This doesn’t always reflect real-
world situations where core jQuery is usually used along with whatever
plugins a page author needs to get the job done. The ease of writing
jQuery plugins and the rich pool of plugins that are available are two of
jQuery’s greatest strengths. In this example animation (as well as the next
that we’ll examine), we’ve employed the services of the Dimensions Plu-
gin’s position() command to determine the initial location of the ele-
ment relative to the page. We’ll be looking into the Dimensions Plugin in
more detail in chapter 9 (section 9.2, to be exact).

When the animation is complete, we want to remove the element from the dis-
play, so we specify a callback routine that applies the non-animated hide() com-
mand to the element (which is available to the function as its function context).

150 CHAPTER 5
Sprucing up with animations and effects
NOTE We did a little more work than we needed to in this animation, so we could
demonstrate doing something that needs to wait until the animation is
complete in the callback function. If we were to specify the value of the
opacity property as hide rather than 0, the removal of the element(s)
at the end of the animation would be automatic, and we could dispense
with the callback.

Now let’s try one more type of “make it go away” effect for good measure.

5.3.3 A custom puff animation

Rather than dropping elements off the page, let’s say that we want an effect that
makes it appear as if the element dissipates away into thin air like a puff of smoke.
To animate such an effect, we combine a scale effect with an opacity effect, grow-
ing the element while fading it away. One issue we need to deal with for this effect
is that this dissipation would not fool the eye if we let the element grow in place
with its upper-left corner anchored. We want the center of the element to stay
in the same place as it grows, so we need to adjust the position of the element, in
addition to its size, as part of the animation.

 The code for our puff effect is

$('.animateMe').each(function(){
 var position = $(this).position();
 $(this)
 .css({position:'absolute',top:position.top,
 left:position.left})
 .animate(
 {
 opacity: 'hide',
 width: $(this).width() * 5,
 height: $(this).height() * 5,
 top: position.top - ($(this).height() * 5 / 2),
 left: position.left - ($(this).width() * 5 / 2)
 },
 'normal');
});

In this animation, we decrease the opacity to 0 while growing the element to five
times its original size and adjusting its position by half that new size, resulting in
the position of the center of the element remaining constant. We don’t want the
elements surrounding the animated element to be pushed out while the target
element is growing, so we take it out of the flow by changing its position to abso-
lute and explicitly setting its position coordinates.

Creating custom animations 151
Because we specify hide for the opacity value, the elements are automatically hid-
den (removed from the display) once the animation is complete.

 Each of these three custom effects can be observed by loading the page at
chapter5/custom.effects.html whose display is shown in figure 5.5.

 We purposefully kept the browser window to a minimum for the screen shot;
you’ll want to make the window bigger when running this page to properly
observe the behavior of the effects. And although we’d love to show you how these
effects behave, screenshots have obvious limitations. Nevertheless, figure 5.6
shows the puff effect in progress.

 We’ll leave it to you to try out the various effects on this page and observe
their behavior.

Figure 5.5
Initial display of the page
that demonstrates the
three custom effects:
scale, drop, and puff

Figure 5.6
The puff effect expands
and moves the image while
simultaneously reducing
its opacity.

152 CHAPTER 5
Sprucing up with animations and effects
5.4 Summary

This chapter introduced us to the animated effects that jQuery makes available
out-of-the-box, as well as to the animate() wrapper method that allows us to cre-
ate our own custom animations.

 The show() and hide() commands, when used without parameters, reveal and
conceal elements from the display immediately, without any animation. We can
perform animated versions of the hiding and showing of elements with these
commands by passing parameters that control the speed of the animation, as well
as providing an optional callback that’s invoked when the animation completes.
The toggle() command toggles the displayed state of an element between hid-
den and shown.

 Another set of wrapper methods, fadeOut() and fadeIn(), also hides and
shows elements by adjusting the opacity of elements when removing or revealing
them in the display. A third method, fadeTo(), animates a change in opacity for
its wrapped elements without removing the elements from the display.

 A final set of three built-in effects animates the removal or display of our
wrapped elements by adjusting their vertical height: slideUp(), slideDown(), and
toggleSlide().

 For building our own custom animations, jQuery provides the animate() com-
mand. Using this method, we can animate any CSS style property that accepts a
numeric value, most commonly the opacity and dimensions of the elements. We
explored writing some custom animations that remove elements from the page in
novel fashions.

 We wrote the code for these custom effects as inline code within the on-page
JavaScript. A much more common, and useful, method is to package these custom
animations as jQuery commands. We’ll learn how to do that in chapter 7, and
you’re encouraged to revisit these effects after you’ve read that chapter. Repack-
aging the custom effects found in this chapter, and any that you can think up on
your own, would be an excellent follow-up exercise.

 But before we write our own jQuery extensions, let’s take a look at some high-
level functions that jQuery provides.

jQuery utility functions
This chapter covers
■ The jQuery browser detection flags
■ Using other libraries with jQuery
■ Functions for manipulating arrays
■ Extending and merging objects
■ Dynamically loading new script
153

154 CHAPTER 6
jQuery utility functions
Up to this point, we’ve spent a fair number of chapters examining jQuery com-
mands—the term that we’ve applied to methods that operate upon a set of DOM ele-
ments wrapped by the $() function. But you may recall that way back in chapter 1,
we also introduced the concept of utility functions—functions namespaced by $ that
don’t operate on a wrapped set. These functions could be thought of as top-level
functions except that they are defined on the $ instance rather than window.

 Generally, these functions either operate upon JavaScript objects other than
DOM elements (that’s the purview of the commands after all), or they perform
some non-object-related operation.

 You may wonder why we waited until this chapter to introduce these functions.
Well, we had two primary reasons, which follow:

■ We wanted to guide you into thinking in terms of using jQuery commands
rather than resorting to lower-level operations that might feel more famil-
iar but not be as efficient or as easy to code as using the jQuery commands.

■ Because the commands take care of much of what we want to do when
manipulating DOM elements on the pages, these lower-level functions are
frequently most useful when writing the commands themselves (as well as
other extensions) rather than in page-level code. (We’ll be tackling how to
write our own plugins to jQuery in the next chapter.)

In this chapter we’re finally getting around to formally introducing most of the
$-level utility functions, as well as a handful of useful flags. We’ll put off talking
about the utility functions that deal with Ajax until the chapter that deals exclu-
sively with jQuery’s Ajax functionality.

 We’ll start out with those flags that we mentioned.

6.1 Using the jQuery flags

Some of the information jQuery makes available to us as page authors, and even plu-
gin authors, is available, not via methods or functions but as variables defined on $.
These flags are generally focused on helping us divine the capabilities of the current
browser so that we can make decisions based on such information when necessary.

 The jQuery flags intended for public use are as follows:

■ $.browser

■ $.boxModel

■ $.styleFloat

Let’s start by looking at how jQuery informs us which browser is being used.

Using the jQuery flags 155
6.1.1 Detecting the user agent

Thankfully, almost blissfully, the jQuery commands that we’ve introduced so far
shield us from having to deal with browser differences, even in traditionally prob-
lematic areas like event handling. But when we’re the ones writing these com-
mands (or other extensions), we often need to account for the differences in the
ways browsers operate so that the users of our extensions don’t have to.

 But before we dive into seeing how jQuery helps us in this regard, let’s talk
about the concept of browser detection.

Why browser detection is heinous
OK, maybe the word heinous is too strong, but unless it’s absolutely necessary,
browser detection is a technique that should only be used when no other options
are available.

 Browser detection might seem, at first, like a logical way to deal with browser
differences. After all, it’s easy to say: “I know what the set of capabilities of
browser X are, so testing for the browser makes perfect sense, right?” But browser
detection is full of pitfalls and problems.

 One of the major arguments against this technique is that the proliferation of
browsers, as well as varying levels of support within versions of the same browser,
makes this technique an unscalable approach to the problem.

 You could be thinking, “Well, all I need to test for is Internet Explorer and
Firefox.” But why would you exclude the growing number of Safari users? What
about Opera? Moreover, there are some niche, but not insignificant, browsers that
share capability profiles with the more popular browsers. Camino, for example,
uses the same technology as Firefox behind its Mac-friendly UI. And OmniWeb uses
the same rendering engine as Safari.

 There’s no need to exclude support for these browsers, but it is a royal pain to
have to test for them. And that’s not even considering differences between ver-
sions—IE6 and IE7, for example.

 Another argument against browser detection (or sniffing as it’s sometimes
called) is that it’s getting harder and harder to know who’s who.

 Browsers identify themselves by setting a request header known as the user
agent string. Parsing this string isn’t for the faint-hearted. In addition, many
browsers now allow their users to spoof this string, so we can’t even believe what it
tells us after we do parse it!

 A JavaScript object named navigator gives us a partial glimpse into the user
agent information, but even it has browser differences. We almost need to do
browser detection in order to do browser detection!

156 CHAPTER 6
jQuery utility functions
 Browser detection can be the following:

■ Imprecise—Accidentally blocking browsers that our code would work within
■ Unscalable—Leading to enormous nested if and if-else statements to sort

things out
■ Inaccurate—Due to users spoofing false user agent information

Obviously, we’d like to avoid using it whenever possible.
 But what can we do instead?

What’s the alternative?
If we think about it, we’re not really interested in which browser anyone is using,
are we? The only reason we’re thinking about browser detection is so that we can
know which browser capabilities we can use. It’s the capabilities of a browser that
we’re after; using browser detection is just a ham-handed way of trying to deter-
mine those capabilities.

 Why don’t we figure out what those capabilities are rather than trying to infer
them from the browser identification? The technique known broadly as object
detection allows code to branch based on whether certain objects, properties, or
even methods exist.

 Let’s think back to our chapter on event handling as an example. We remem-
ber that there are two advanced event-handling models: the W3C standard DOM
Level 2 Event Model and the proprietary Internet Explorer Model. Both models
define methods on the DOM elements that allow listeners to be established, but
each uses different method names. The standard model defines the method
addEventListener(), whereas the IE model defines attachEvent().

 Using browser detection, assuming that we’ve gone through the pain and
aggravation of (maybe even correctly) determining what browser is being used,
we could write

...
complex code to set flags: isIE, isFirefox and isSafari
...
if (isIE) {
 element.attachEvent('onclick',someHandler);
}
else if (isFirefox || isSafari) {
 element.addEventListener('click',someHandler);
}
else {
 throw new Error('event handling not supported');
}

http://www.quirksmode.org/css/quirksmode.html
http://www.quirksmode.org/css/quirksmode.html

Using the jQuery flags 157
Aside from the fact that this example glosses over whatever necessarily complex
code we are using to set the flags isIE, isFirefox, and isSafari, we can’t be sure
if these flags accurately represent the browser being used. Moreover, this code will
throw an error if used in Opera, Camino, OmniWeb, or a host of other lesser-
known browsers that might perfectly support the standard model.

 Consider the following variation of this code:

if (element.attachEvent) {
 element.attachEvent('onclick',someHandler);
}
else if (element.addEventListener) {
 element.addEventListener('click',someHandler);
}
else {
 throw new Error('event handling not supported');
}

This code doesn’t perform a lot of complex, and ultimately unreliable, browser
detection; it automatically supports all browsers that support either of the two
competing event models. Much better!

 Object detection is vastly superior to browser detection. It’s more reliable, and
it doesn’t accidentally block browsers that support the capability we are testing for
simply because we don’t know about the capabilities of that browser.

NOTE Even object detection is best avoided unless absolutely required. If we can
come up with a cross-browser solution, it should be preferred over any
type of branching.

But as superior to browser detection as object detection may be, it can’t always
come to our rescue. There are times when we’ll need to make browser-specific
decisions (we’ll see an example in a moment) that can only be made using
browser detection.

 So without any further ado, let’s get around to finally answering the question…

What are the blasted browser flags?

For those times when only browser detection will do, jQuery provides a set of flags
that we can use for branching that are set up when the library is loaded, making
them available even before any ready handlers have executed. They are defined
as properties of an object instance with a reference of $.browser. The formal syn-
tax for this flag set is as follows:

158 CHAPTER 6
jQuery utility functions
Note that these flags don’t attempt to identify the specific browser that’s being
used; jQuery classifies a user agent based upon which family of browsers it belongs
to. Browsers within each family will sport the same sets of characteristics; specific
browser identification should not be necessary.

 The vast majority of commonly used, modern browsers will fall into one of
these four browser families.

 The version property deserves special notice because it’s not as handy as we
might think. The value set into this property isn’t the version of the browser (as
we might initially believe) but the version of the browser’s rendering engine. For
example, when executed within Firefox 2.0.0.2, the reported version is 1.8.1.6—
the version of the Gecko rendering engine. This value is handy for distinguishing
between IE6 and IE7, containing 6.0 and 7.0 respectively.

 We mentioned earlier that there are times when we can’t fall back on object
detection and must resort to browser detection. One example of such a situation
is when the difference between browsers isn’t that they present different object
classes or different methods but that the parameters passed to a method are inter-
preted differently across the browser implementations. In such a case, there’s no
object to perform detection on.

 Let’s look at the add() method to the <select> elements. It’s defined as
the following:

selectElement.add(element,before)

In this method, the first parameter identifies an <option> or <optgroup> element
to add to the <select> element and the second identifies the existing <option> (or
<optgroup>) that the new element is to be placed before. In standards-compliant
browsers, this second parameter is a reference to the existing element; in Internet
Explorer, it’s the ordinal index of the existing element.

Flag syntax: $.browser

$.browser

Defines a set of flags that can be used to discover to which broad set of browser families the
current user agent belongs. These flags are as follows:

■ msie—Set to true if the user agent header identifies the browser as Microsoft Internet
Explorer.

■ mozilla—Set to true if the user agent header identifies the browser as any Mozilla-
based browser. This includes browsers such as Firefox, Camino, and Netscape.

■ safari—Set to true if the user agent header identifies the browser as Safari or any
Safari-based browser such as OmniWeb.

■ opera—Set to true if the user agent header identifies the browser as Opera.
■ version—Set to the version number of the rendering engine for the browser.

Using the jQuery flags 159
 Because there’s no way to perform object detection to determine if we should
pass an object reference or an integer value, we must resort to browser detection
as shown in the example page of listing 6.1, which can be found in the file
chapter6/$.browser.html.

<html>
 <head>
 <title>$.browser Example</title>
 <link rel="stylesheet" type="text/css" href="../common.css">
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#testButton').click(function(event){
 var select = $('#testSubject')[0];
 select.add(
 new Option('Two and \u00BD','2.5'),
 $.browser.msie ? 2 : select.options
);
 });
 });
 </script>
 </head>

 <body class="plain">
 <select id="testSubject" multiple="multiple" size="5">
 <option value="1">One</option>
 <option value="2">Two</option>
 <option value="3">Three</option>
 <option value="4">Four</option>
 </select>
 <div>
 <button type="button" id="testButton">Click me!</button>
 </div>
 </body>
</html>

This example sets up a <select> element with four entries and a simple button.
The button is instrumented to add a new <option> element between the second
and third original options. Because Internet Explorer will expect the ordinal
value 2, but W3C-standard browsers will expect a reference to the third existing
option, we use browser detection to branch what gets passed as the second
parameter to the add() method.

 The before-and-after results for a sampling of browsers are shown in figure 6.1.

Listing 6.1 Testing for browsers

Employs browser
detection for second
parameter

160 CHAPTER 6
jQuery utility functions
The example code was executed in six modern browsers—Firefox, Safari, Opera,
Camino, Internet Explorer 7, and OmniWeb—giving representation from each of
the four browser families supported by the jQuery $.browser flag set. As can be
seen, the addition of the option occurs correctly in each of the browsers.

Figure 6.1 The option-adding functionality works flawlessly in a wide range of browsers.

Using the jQuery flags 161
 Not to belabor the point, it’s important to once again note that this method of
branching (browser detection) is far from optimal. The code that we wrote
assumes that all non-Internet Explorer browsers will follow the W3C standard for
the add() method to the <select> element. With testing, we’ve determined that
this is true of the five non-Internet Explorer browsers depicted in figure 6.1 but
what of other browsers? Would you know how Konqueror works without testing?

 The bottom line is that because browser detection is such a broad brush, it
requires thorough investigation of any browsers and platforms we wish to support
with our code to know which branch a particular browser should take.

 Leaving the subject of browser detection behind, let’s move on to another flag
that helps us deal with browser differences.

6.1.2 Determining the box model

Which box model the current page is using is available via the Boolean $.boxModel
flag, which is set to true if the page is using the W3C standard box model and
false if the page is using the Internet Explorer box model (sometimes called the
traditional box model).

 “What’s the difference?” you may ask.
 The box model determines how the size of the content of an element is deter-

mined in conjunction with its padding and border (margins, although part of the
box model, take no part in determining the content size). Most browsers, other
than Internet Explorer, support only the W3C box model, whereas Internet
Explorer can use either model depending upon whether the page is being
rendered in strict mode or quirks mode. Which mode is used depends upon the
DOCTYPE (or lack thereof) declared for the page being rendered.

 It’s beyond the scope of this book to go into a detailed examination of the var-
ious DOCTYPE issues, but some rules of thumb that work most of the time are

■ Pages with a valid and recognized DOCTYPE declaration are rendered in
strict mode.

■ Pages lacking a DOCTYPE declaration or those containing an unrecog-
nized declaration are rendered in quirks mode.

If you want to dig deeper into the DOCTYPE issues, an excellent resource to con-
sult is http://www.quirksmode.org/css/quirksmode.html.

 In a nutshell, the difference between the two box models centers on how the
width and height styles are interpreted. In the W3C box model, these values deter-
mine the dimensions of the content of the element, not counting its padding and

http://www.quirksmode.org/css/quirksmode.html

162 CHAPTER 6
jQuery utility functions
border widths; in the traditional box model, the values include padding and bor-
der width.

 Let’s say that we have an element with the following styles applied:

{
 width: 180px;
 height: 72px;
 padding: 10px;
 border-width: 5px;
}

The different ways that the box models interpret the sizing of the element is dia-
grammed in figure 6.2.

Figure 6.2 The W3C box model excludes padding and border measurements from
the width of an element, whereas the Internet Explorer model doesn’t.

Using other libraries with jQuery 163
Under the W3C box model, the size of the content of the element is 180 by 72 pix-
els exactly as specified by the width and height values. The padding and the bor-
der are applied outside this 180 by 72 pixel box, resulting in a total footprint of
210 by 102 pixels for the entire element.

 When the traditional box model is used, the entire element is rendered in the
180 by 72 pixel box defined by the width and height attributes, reducing the size
of the content to 150 by 42 pixels.

 There are those on both sides of the fence that claim that one of these mod-
els is more intuitive or correct than the other, but the fact is we have to live with
the difference.

 If our code needs to account for these differences in that way that the elements
will be rendered, the $.boxModel flag lets us know which is in force, and we can
make our computations accordingly.

6.1.3 Detecting the correct float style to use

One other difference in browser capabilities that jQuery provides a flag for is
the name used to represent the float CSS style in the element’s style property.
This flag, $.styleFloat, evaluates to the string that should be used for the prop-
erty name.

 For example, to set the float value for an element, we use

element.style[$.styleFloat] = 'left';

This will account for any browser differences between the naming of this prop-
erty—this flag evaluates to styleFloat for Internet Explorer and to cssFloat for
other browsers.

NOTE This flag is generally not required for on-page use. The css() wrapper
method, when used with float, chooses the correct property (using this
flag). The authors of plugins and other extensions are the target users of
this flag for those cases where lower-level control is essential.

Now let’s leave the world of flags and look at the utility functions that jQuery
provides.

6.2 Using other libraries with jQuery

Back in section 1.3.6, we introduced a means, thoughtfully provided for us by
the jQuery team, to easily use jQuery on the same page as other libraries. Usually,

164 CHAPTER 6
jQuery utility functions
the definition of the $ variable is the largest point of contention and conflict when
using other libraries on the same page as jQuery. As we know, jQuery uses $ as an
alias for the jQuery name, which is used for every feature that jQuery exhibits. But
other libraries, most notably Prototype, use the $ name as well.

 jQuery provides the $.noConflict() utility function to relinquish control of
the $ name to whatever other library might wish to use it. The syntax of this func-
tion is as follows:

Because $ is an alias for jQuery, all of jQuery’s functionality is still available after
the application of $.noConflict(), albeit by using the jQuery identifier. To com-
pensate for the loss of the brief—yet beloved—$, we can define our own shorter,
but non-conflicting, alias for jQuery, such as

var $j = jQuery;

Another idiom often employed is to create an environment where the $ name is
scoped to refer to the jQuery object. This technique is commonly used when
extending jQuery, particularly by plugin authors who can’t make any assumptions
regarding whether page authors have called $.noConflict() and who, most cer-
tainly, can’t subvert the wishes of the page authors by calling it themselves.

 This idiom is as follows:

 (function($) { /* function body here */ })(jQuery);

If this notation makes your head spin, don’t worry! It’s pretty straightforward if
odd-looking to those encountering it for the first time.

 Let’s dissect the first part of this idiom:

 (function($) { /* function body here */ })

Function syntax: $.noConflict

$.noConflict()

Restores control of the $ name back to another library, allowing mixed library use on pages
using jQuery.
Once this function is executed, jQuery features will need to be invoked using the jQuery
name rather than the $ name.

Parameters
none

Returns
Undefined.

Using other libraries with jQuery 165
This part declares a function and encloses it in parentheses to make an expression
out of it, resulting in a reference to the anonymous function being returned as the
value of the expression. The function expects a single parameter, which it names
$; whatever is passed to this function can be referenced by the $ identifier within
the body of the function. And because parameter declarations have precedence
over any similarly named identifiers in the global scope, any value defined for $
outside of the function is superseded within the function by the passed argument.

 The second part of the idiom

 (jQuery)

performs a function call on the anonymous function passing the jQuery object as
the argument.

 As a result, the $ name refers to the jQuery object within the body of the func-
tion regardless of whether it’s already defined by Prototype or some other library
outside of the function. Pretty nifty, isn’t it?

 When employing this technique, the external declaration of $ isn’t available
within the body of the function.

 A variant of this idiom is also frequently used to form a third syntax for
declaring a ready handler in addition to the means that we already examined in
section 1.3.3. Consider the following:

jQuery(function($) {
 alert("I'm ready!");
});

By passing a function as the parameter to the jQuery function, we declare it as a
ready handler as we saw in section 1.3.3. But this time, we declare a single param-
eter to be passed to the ready handler using the $ identifier. Because jQuery
always passes a reference to jQuery to a ready handler as its first and only param-
eter, this guarantees that the $ name refers to jQuery inside the ready handler
regardless of the definition $ might have outside the body of the handler.

 Let’s prove it to ourselves with a simple test. For the first part of the test, let’s
examine the HTML document of listing 6.2.

<html>
 <head>
 <title>Hi!</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js">
 </script>

Listing 6.2 Ready handler test 1

166 CHAPTER 6
jQuery utility functions
 <script type="text/javascript">
 var $ = 'Hi!';
 jQuery(function(){
 alert('$ = '+ $);
 });
 </script>
 </head>
 <body>
 </body>
</html>

In this document, we import jQuery, which (as we know) defines the global names
jQuery and its alias $. We then redefine the global $ name to a string value b,
overriding the jQuery definition. We replace $ with a simple string value for sim-
plicity within this example, but it could be redefined by including another library
such as Prototype.

 We then define the ready handler c whose only action is to display an alert
showing the value of $.

 When we load this page, we see the alert displayed, as shown in figure 6.3.
 Note that, within the ready handler, the global value of $ is in scope and has the

expected value resulting from our string assignment. How disappointing if we
only wanted to use the jQuery definition of $ within the handler.

 Now let’s make one change to this example document. Listing 6.3 shows only
the portion of the document that has been modified; the minimal change is high-
lighted in bold.

Overrides $ name
with custom value

b

Declares the
ready handler

c

Figure 6.3 The $ says, “Hi!” as its redefinition takes effect within the ready handler.

Manipulating JavaScript objects and collections 167
<script type="text/javascript">
 var $ = 'Hi!';
 jQuery(function($){
 alert('$ = '+ $);
 });
</script>

The only change we made was to add a parameter to the ready handler function
named $. When we load this changed version, we see something completely dif-
ferent as shown in figure 6.4.

Well, that may not have been exactly what we might have predicted in advance.
But a quick glance at the jQuery source code shows that, because we declare the
first parameter of the ready handler to be $ within that function, the $ name
refers to the jQuery function that jQuery passes as the sole parameter to all ready
handlers (so the alert displays the definition of that function).

 When writing reusable components, which might or might not be used in
pages where $.noConflict() is used, it’s best to take such precautions regarding
the definition of $.

 A good number of the remaining jQuery utility functions are used to manipu-
late JavaScript objects. Let’s take a look at them.

6.3 Manipulating JavaScript objects and collections

The majority of jQuery features implemented as utility functions are designed to
operate on JavaScript objects other than the DOM elements. Generally, anything

Listing 6.3 Ready handler test 2

Figure 6.4 The alert now displays the jQuery version of $ because its definition has
been enforced within the function.

168 CHAPTER 6
jQuery utility functions
designed to operate on the DOM is provided as a jQuery command. Although
some of these functions can be used to operate on DOM elements—which are
JavaScript objects, after all—the focus of the utility functions isn’t DOM-centric.

 Let’s start with one that’s basic.

6.3.1 Trimming strings

Almost inexplicably, the JavaScript String implementation doesn’t possess a
method to remove whitespace characters from the beginning and end of a string
instance. Such basic functionality is customarily part of a String class in most
other languages, but JavaScript mysteriously lacks this useful feature.

 Yet string trimming is a common need in many JavaScript applications; one
prominent example is form data validation. Because whitespace is invisible on the
screen (hence its name), it’s easy for users to accidentally enter extra space charac-
ters after (or sometimes even before) valid entries in text boxes or text areas. Dur-
ing validation, we want to silently trim such whitespace from the data rather than
alerting the user to the fact that something that they can’t see is tripping them up.

 To help us out, jQuery defines the $.trim() function as follows:

A small example of using this function to trim the value of a text field in-place is

$('#someField').val($.trim($('#someField').val()));

Be aware that this function doesn’t check the parameter we pass to ensure that it’s
a String value, so we’ll likely get undefined and unfortunate results (probably a
JavaScript error) if we pass any other value type to this function.

 Now let’s look at some functions that operate on arrays and other objects.

Function syntax: $.trim

$.trim(value)

Removes any leading or trailing whitespace characters from the passed string and returns
the result.
Whitespace characters are defined by this function as any character matching the JavaScript
regular expression \s, which matches not only the space character but also the form feed,
new line, return, tab, and vertical tab characters, as well as the Unicode characters \u00A0,
\u2028, and \u2029.

Parameters
value (String) The string value to be trimmed. This original value isn’t modified.

Returns
The trimmed string.

Manipulating JavaScript objects and collections 169
6.3.2 Iterating through properties and collections
Oftentimes when we have non-scalar values composed of other components, we’ll
need to iterate over the contained items. Whether the container element is a
JavaScript array (containing any number of other JavaScript values, including
other arrays) or instances of JavaScript objects (containing properties), the Java-
Script language gives us means to iterate over them. For arrays, we iterate over
their elements using the for loop; for objects, we iterate over their properties
using the for-in loop.

 We can code examples of each as follows:

var anArray = ['one','two','three'];
for (var n = 0; n < anArray.length; n++) {
 //do something here
}

var anObject = {one:1, two:2, three:3};
for (var p in anObject) {
 //do something here
}

Pretty easy stuff, but some might think that the syntax is needlessly wordy and com-
plex—a criticism frequently targeted at the for loop. We know that, for a wrapped
set of DOM elements, jQuery defines the each() command, allowing us to easily iter-
ate over the elements in the set without the need for messy for syntax. For general
arrays and objects, jQuery provides an analogous utility function named $.each().

 The same syntax is used whether iterating over the items in an array or the
properties of an object.

Function syntax: $.each

$.each(container,callback)

Iterates over the items in the passed container, invoking the passed callback function for each.

Parameters
container (Array|Object) An array whose items or an object whose properties are to be

iterated over.

callback (Function) A function invoked for each element in the container. If the con-
tainer is an array, this callback is invoked for each array item; if it’s an
object, the callback is invoked for each object property.
The first parameter to this callback is the index of the array element or the name
of the object property. The second parameter is the item or property value.
The function context (this) of the invocation is also set to the value passed
as the second parameter.

Returns
The container object.

170 CHAPTER 6
jQuery utility functions
This unified syntax can be used to iterate over either arrays or objects using the
same format. Using this function, we write the previous example as follows:

var anArray = ['one','two','three'];
$.each(anArray,function(n,value) {
 //do something here
});

var anObject = {one:1, two:2, three:3};
$.each(anObject,function(name,value) {
 //do something here
});

Although using $.each() with an inline function may seem like a six-of-one sce-
nario in choosing syntax, this function makes it easy to write reusable iterator
functions or to factor out the body of a loop into another function for purposes of
code clarity as in the following:

$.each(anArray,someComplexFunction);

Note that when iterating over an array, we can break out of the loop by returning
false from the iterator function. Doing so when iterating over object properties
has no effect.

 Sometimes we may iterate over arrays to pick and choose elements to become
part of a new array. Let’s see how jQuery makes that easy.

6.3.3 Filtering arrays

Traversing an array to find elements that match certain criteria is a frequent need
of applications that handle lots of data. We might wish to filter through the data
looking for items that fall above or below a particular threshold or, perhaps, that
match a certain pattern. For any filtering operation of this type, jQuery provides
the $.grep() utility function.

 The name of the $.grep() function might lead us to believe that the function
employs the use of regular expressions like its namesake, the UNIX grep com-
mand. But the filtering criteria used by the $.grep() utility function isn’t a regu-
lar expression; it’s a callback function provided by the caller that defines the criteria
to determine if a data value should be included or excluded from the resulting set
of values. Nothing prevents that callback from using regular expressions to
accomplish its task, but the use of regular expressions is not automatic.

 The syntax of the function is as follows:

Manipulating JavaScript objects and collections 171
Let’s say that we want to filter an array for all values that are greater than 100. We
do that with a statement such as the following:

var bigNumbers = $.grep(originalArray,function(value) {
 return value > 100;
 });

The callback function that we pass to $.grep() can use whatever processing it
likes to determine if the value should be included. The decision could be as easy
as this example or, perhaps, even as complex as making synchronous Ajax calls
(with the requisite performance hit) to the server to determine if the value should
be included or excluded.

 When the decision making is as simple as this example, jQuery provides a
shortcut that we can use to make the statement more compact—provide the
expression as a string. For example, we can rewrite our code snippet as

var bigNumbers = $.grep(originalArray,'a>100');

Function syntax: $.grep

$.grep(array,callback,invert)

Traverses the passed array invoking the callback function for each element. The return value
of the callback function determines if the value is collected into a new array returned as the
value of the $.grep() function. If the invert parameter is omitted or false, a callback
value of true causes the data to be collected. If invert is true, a callback value of false
causes the value to be collected.
The original array isn’t modified.

Parameters
array (Array) The traversed array whose data values are examined for collection.

This array isn’t modified in any way by this operation.

callback (Function|String) A function whose return value determines if the current data
value is to be collected. A return value of true causes the current value to be
collected, unless the value of the invert parameter is true in which case
the opposite occurs.
This function is passed two parameters: the current data value and the index
of that value within the original array.
A string can also be passed as this parameter that’s converted into the
callback function. See the following discussion for details.

invert (Boolean) If specified as true, it inverts the normal operation of
the function.

Returns
The array of collected values.

172 CHAPTER 6
jQuery utility functions
When the callback is specified as a string, jQuery automatically generates a call-
back function using the passed string as the value of the return statement and
passing two parameters: a for the current value and i for the current index. So
the generated function for this example is equivalent to

function(a,i){return a>100;}

Even though the $.grep() function doesn’t directly use regular expressions
(despite its name), JavaScript regular expressions can be powerful tools for us to use
in our callback functions to determine whether to include or exclude values from the
resultant array. Consider a situation in which we have an array of values and wish to
identify any values that don’t match the pattern for United States Postal Codes (also
known as ZIP Codes).

 US Postal Codes consist of five decimal digits optionally followed by a
dash and four more decimal digits. A regular expression for such a pattern would
be /^\d{5}(-\d{4})?$/, so we could filter a source array for non-conformant
entries with the following:

var badZips = $.grep(
 originalArray,
 function(value) {
 return value.match(/^\d{5}(-\d{4})?$/) != null;
 },
 true);

Notable in this example is the use of the String class’s match() method to
determine whether a value matches the pattern or not and the specification of the
invert parameter to $.grep() as true to exclude any values that match the pattern.

 Collecting subsets of data from arrays isn’t the only operation we might
perform upon them. Let’s look at another array-targeted function that jQuery
provides.

6.3.4 Translating arrays

Data might not always be in the format that we need it to be. Another common
operation that’s frequently performed in data-centric web applications is the
translation of a set of values to another set. Although it’s a simple matter to write a
for loop to create one array from another, jQuery makes it even easier with the
$.map utility function.

Manipulating JavaScript objects and collections 173
Let’s look at a trivial example that shows the $.map() function in action.

var oneBased = $.map([0,1,2,3,4],function(value){return value+1;});

This statement converts an array of values, a zero-based set of indexes to a corre-
sponding array of one-based indexes.

 As with $.grep(), for such simple expressions, we can pass a string that repre-
sents the expression to make the statement more compact. The function gener-
ated on our behalf in such cases is passed the value as a parameter named a
(unlike $.grep(), the index isn’t passed to auto-generated functions). We can
rewrite our example as

var oneBased = $.map([0,1,2,3,4],'a+1');

Another important behavior to note is that if the function returns either null or
undefined, the result isn’t collected. In such cases, the resulting array will be
smaller in length than the original, and one-to-one correspondence between
items by order is lost.

 Let’s look at a slightly more involved example. Imagine that we have an array
of strings, perhaps collected from form fields, that are expected to represent
numeric values and that we want to convert this array to an array of corresponding
Number instances. Because there’s no guarantee against the presence of an invalid
numeric string, we need to take some precautions. Consider the following code:

Function syntax: $.map

$.map(array,callback)

Iterates through the passed array, invoking the callback function for each array item and col-
lecting the return values of the function invocations in a new array.

Parameters
array (Array) The array whose values are to be transformed to values in the new

array.

callback (Function|String) A function whose return values are collected in the new array
returned as the result of a call to the $.map() function.
This function is passed two parameters: the current data value and the index
of that value within the original array.
A string can also be passed that’s converted into the callback function. See
the following discussion for details.

Returns
The wrapped set.

174 CHAPTER 6
jQuery utility functions
var strings = ['1','2','3','4','S','6'];

var values = $.map(strings,function(value){
 var result = new Number(value);
 return isNaN(result) ? null : result;
});

We start with an array of string values, each of which is expected to represent a
numeric value. But a typo (or perhaps user entry error) resulted in S instead of
the expected 5. Our code handles this case by checking the Number instance cre-
ated by the constructor to see if the conversion from string to numeric was suc-
cessful or not. If the conversion fails, the value returned will be the constant
Number.NaN. But the funny thing about Number.NaN is that by definition, it doesn’t
equal anything else, including itself! Therefore the value of the expression Num-
ber.NaN==Number.NaN is false!

 Because we can’t use a comparison operator to test for NaN (which stands for
Not a Number, by the way), JavaScript provides the isNaN() method, which we
employ to test the result of the string-to-numeric conversion.

 In this example, we return null in the case of failure, ensuring that the result-
ing array contains only the valid numeric values with any error values elided. If
we want to collect all the values, we can allow the transformation function to
return Number.NaN for bad values.

 Another useful behavior of $.map() is that it gracefully handles the case where
an array is returned from the transformation function, merging the returned
value into the resulting array. Consider the following statement:

var characters = $.map(
 ['this','that','other thing'],
 function(value){return value.split('');}
);

This statement transforms an array of strings into an array of all of the characters
that make up the strings. After execution, the value of the variable characters is
as follows:

['t','h','i','s','t','h','a','t','o','t','h','e','r','','t','h',
 'i','n','g']

This is accomplished by use of the String.split() method, which returns an
array of the string’s characters when passed an empty string as its delimiter. This
array is returned as the result of the transformation function and is merged into
the resultant array.

➥

Manipulating JavaScript objects and collections 175
 jQuery’s support for arrays doesn’t stop there. There are a handful of minor
functions that we might find handy.

6.3.5 More fun with JavaScript arrays

Have you ever needed to know if a JavaScript array contained a specific value
and, perhaps, even the location of that value in the array?

 If so, you’ll appreciate the $.inArray() function

A trivial but illustrative example of using this function is

var index = $.inArray(2,[1,2,3,4,5]);

This results in the index value of 1 being assigned to the index variable.
 Another useful array-related function creates JavaScript arrays from other

array-like objects.
 “Other array-like objects? What on Earth is an array-like object?” you may ask.
 jQuery considers other array-like objects to be any object that has a length and

the concept of indexed entries. This capability is most useful for NodeList objects.
Consider the following snippet:

var images = document.getElementsByTagName("img");

This populates the variable images with a NodeList of all the images on the page.
 Dealing with a NodeList is a bit of a pain, so converting it to a JavaScript array

makes things a lot nicer. The jQuery $.makeArray function makes converting the
NodeList easy.

Function syntax: $.inArray

$.inArray(value,array)

Returns the index position of the first occurrence of the passed value

Parameters
value (Object) The value for which the array will be searched

array (Array) The array to be searched

Returns
The index of the first occurrence of the value within the array or -1 if the value is not found

176 CHAPTER 6
jQuery utility functions
This function is intended for use in code that doesn’t make much use of jQuery,
which internally handles this sort of thing on our behalves. This function also
comes in handy when dealing with NodeList objects while traversing XML docu-
ments without jQuery.

 Another seldom-used function that might come in handy when dealing with
arrays built outside of jQuery is the $.unique() function.

Again, this is a function that jQuery uses internally to ensure that the lists of ele-
ments that we receive contain unique elements, and is intended for use on
element arrays created outside the bounds of jQuery.

 Now that we’ve seen how jQuery helps us to easily work with arrays, let’s see a
way that it helps us manipulate plain old JavaScript objects..

6.3.6 Extending objects

Although we all know that JavaScript provides some features that make it act in
many ways like an object-oriented language, we know that JavaScript isn’t what
anyone would call purely object-oriented because of the features that it doesn’t
support. One of these important features is inheritance—the manner in which new
classes are defined by extending the definitions of existing classes.

Function syntax: $.makeArray

$.makeArray(object)

Converts the passed array-like object into a JavaScript array

Parameters
object (Object) The array-like object (such as a NodeList) to be converted

Returns
The resulting JavaScript array

Function syntax: $.unique

$.unique(array)

Given an array of DOM elements, returns an array of the unique elements in the original array

Parameters
array (Array) The array of DOM elements to be examined

Returns
An array of DOM elements consisting of the unique elements in the passed array

Manipulating JavaScript objects and collections 177
 A pattern for mimicking inheritance in JavaScript is to extend an object by
copying the properties of a base object into the new object, extending the new
object with the capabilities of the base.

NOTE If you’re an aficionado of object-oriented JavaScript, you’ll no doubt be
familiar with extending not only object instances but also their blueprints
via the prototype property of object constructors. $.extend() can be
used to effect such constructor-based inheritance by extending proto-
type, as well as object-based inheritance by extending existing object
instances. Because understanding such advanced topics isn’t a require-
ment in order to use jQuery effectively, this is a subject—albeit an impor-
tant one—that’s beyond the scope of this book.

It’s fairly easy to write JavaScript code to perform this extension by copy, but as
with so many other procedures, jQuery anticipates this need and provides a
ready-made utility function to help us out. As we’ll see in the next chapter, this
function is useful for much more than extending an object, but even so its name is
$.extend(). Its syntax is as follows:

Function syntax: $.extend

$.extend(target,source1,source2, ... sourceN)

Extends the object passed as target with the properties of the remaining passed objects.

Parameters
target (Object) The object whose properties are augmented with the

properties of the source objects. This object is directly modi-
fied with the new properties before being returned as the value
of the function.
Any properties with the same name as properties in any of the
source elements are overridden with the values from the
source elements.

source1 ... sourceN (Object) One or more objects whose properties are added to
the target object.
When more than one source is provided and properties with
the same name exist in the sources, sources later in the argu-
ment list take precedence over those earlier in the list.

Returns
The extended target object.

178 CHAPTER 6
jQuery utility functions
Let’s take a look at this function doing its thing. Examine the code of listing 6.4,
which can also be found in the file chapter6/$.extend.html.

<html>
 <head>
 <title>$.extend Example</title>
 <link rel="stylesheet" type="text/css" href="../common.css">
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript"
 src="../scripts/support.labs.js"></script>
 <script type="text/javascript">
 var target = { a: 1, b: 2, c: 3 };
 var source1 = { c: 4, d: 5, e: 6 };
 var source2 = { e: 7, f: 8, g: 9 };

 $(function(){
 $('#targetBeforeDisplay').html($.toSource(target));
 $('#source1Display').html($.toSource(source1));
 $('#source2Display').html($.toSource(source2));
 $.extend(target,source1,source2);
 $('#targetAfterDisplay').html($.toSource(target));
 });
 </script>
 <style type="text/

css">
 label { float: left; width: 108px; text-align: right; }
 p { clear: both; }
 label + span { margin-left: 6px; }
 </style>
 </head>

 <body>
 <fieldset>
 <legend>$.extend() Example</legend>
 <p>
 <label>target (before) =</label>

 </p>
 <p>
 <label>source1 =</label>

 </p>
 <p>
 <label>source2 =</label>

 </p>

Listing 6.4 Putting the $.extend function to the test

Defines
test
objects

b Displays
before

state of
objects

c

Displays after state
of target object e

Extends target object
with source objects d

Defines HTML
elements for display

f

Manipulating JavaScript objects and collections 179
 <p>
 <label>target (after) =</label>

 </p>
 </fieldset>
 </body>
</html>

In this simple example, we define three objects: a target and two source objects
b. We’ll use these objects to demonstrate what happens to the target when
$.extend is used to merge the two sources into it.

 After declaring the objects, we define a ready handler in which we’ll operate
on them. Even though the objects are available immediately, we are going to dis-
play results on the page, so we need to wait until the HTML elements f have
been rendered to start playing around.

 Within the ready handler, we display the state of the three objects in ele-
ments defined to hold the results c. (If you’re interested in how the $.toSource()
function works, its definition can be found in the support.labs.js file. We’ll address
adding such utility functions to our repertoire in the next chapter.)

 We extend the target object with the two source objects d using the following:

$.extend(target,source1,source2);

This merges the properties from objects source1 and source2 into the target
object. The target object is returned as the value of the function; but, because the
target is modified in place, we don’t need to create a variable to hold its refer-
ence. The fact that the target is returned is significant when using this function
as part of a statement chain.

 Then, we display the values for the modified target e. The results are as
shown in figure 6.5.

 As we can see, all properties of the source objects have been merged into the
target object. But note the following important nuances:

■ Both the target and source1 contain a property named c. The value of c
in source1 replaces the value in the original target.

■ Both source1 and source2 contain a property named e. Note that the value
of e within source2 takes precedence over the value within source1 when
merged into target, demonstrating how objects later in the list of argu-
ments take precedence over those earlier in the list.

180 CHAPTER 6
jQuery utility functions
Although it’s evident that this utility function can be useful in many scenarios
where one object must be extended with properties from another object (or set of
objects), we’ll see a concrete and common use of this feature when learning how
to define utility functions of our own in the next chapter.

 But before we get to that, let’s wrap up our investigation of the utility functions
with one that we can use to dynamically load new script into our pages.

6.4 Dynamically loading scripts

Most of the time—perhaps, almost always—we’ll load the external scripts our
page needs from script files when the page loads via <script> tags in the <head>
of the page. But every now and again, we might want to load some script after the
fact under script control.

 We might do this because we don’t know if the script will be needed until after
some specific user activity has taken place but don’t want to include the script
unless absolutely needed, or perhaps, we might need to use some information not
available at load time to make a conditional choice between various scripts.

 Regardless of why we might want to dynamically load new script into the page,
jQuery provides the $.getScript() utility function to make it easy.

Figure 6.5 Using $.extend to merge object results in all source properties being
copied into the target object.

Dynamically loading scripts 181
Under its covers, this function uses jQuery’s built-in Ajax mechanisms to fetch the
script file. We’ll be covering these Ajax facilities in great detail in chapter 8, but
we don’t need to know anything about Ajax to use this function.

 After fetching, the script in the file is evaluated; any inline script is executed,
and any defined variables or functions become available.

WARNING In Safari, the script definitions loaded from the fetched file don’t become
available right away, even in the callback to the function. Any dynamically
loaded script elements don’t became available until after the script block
within which it is loaded relinquishes control back to the browser. If your
pages are going to support Safari, plan accordingly!

Let’s see this in action. Consider the following script file (available in chapter6/
new.stuff.js):

alert("I'm inline!");

var someVariable = 'Value of someVariable';

function someFunction(value) {
 alert(value);
}

This trivial script file contains an inline statement (which issues an alert that
leaves no doubt as to when the statement gets executed), a variable declaration,
and a declaration for a function that issues an alert containing whatever value
is passed to it when executed. Now let’s write a page to include this script

Function syntax: $.getScript

$.getScript(url,callback)

Fetches the script specified by the url parameter using a GET request to the specified
server, optionally invoking a callback upon success.

Parameters
url (String) The URL of the script file to fetch.

callback (Function) An optional function invoked after the script resource has been
loaded and evaluated.
The following parameters are passed:

■ The text loaded from the resource
■ The string success

Returns
The XHR instance used to fetch the script.

182 CHAPTER 6
jQuery utility functions
file dynamically. The page is shown in listing 6.5 and can be found in the file
chapter6/$.getScript.html.

<html>
 <head>
 <title>$.getScript Example</title>
 <link rel="stylesheet" type="text/css" href="../common.css">
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#loadButton').click(function(){
 $.getScript(
 'new.stuff.js'//,function(){$('#inspectButton').click()}
);
 });
 $('#inspectButton').click(function(){
 someFunction(someVariable);
 });
 });
 </script>
 </head>

 <body>
 <button type="button" id="loadButton">Load</button>
 <button type="button" id="inspectButton">Inspect</button>
 </body>
</html>

This page defines two buttons d that we use to trigger the activity of the exam-
ple. The first button, labeled Load, causes the new.stuff.js file to be dynamically
loaded through use of the $.getScript() function b. Note that, initially, the sec-
ond parameter (the callback) is commented out—we’ll get to that in a moment.

 On clicking that button, the new.stuff.js file is loaded, and its content is evalu-
ated. As expected, the inline statement within the file triggers an alert message as
shown in figure 6.6.

 Clicking the Inspect button executes its click handler c, which executes the
dynamically loaded someFunction() function passing the value of the dynamically
loaded someVariable variable. If the alert appears as shown in figure 6.7, we know
that both the variable and function are loaded correctly.

 If you’d like to observe the behavior of Safari that we warned you about ear-
lier, make a copy of the HTML file of listing 6.5, and uncomment the callback

Listing 6.5 Dynamically loading a script file and examining the results

Fetches the script on
clicking the Load button

b

Displays result on clicking
the Inspect button

c

Defines the
buttons

d

Dynamically loading scripts 183
parameter to the $.getScript() function. This callback executes the click han-
dler for the Inspect button, calling the dynamically loaded function with the
loaded variable as its parameter.

 In browsers other than Safari, the function and variable loaded dynamically
from the script are available within the callback function. But when executed on
Safari, nothing happens! We need to take heed of this divergence of functionality
when using the $.getScript() function.

Figure 6.6 The dynamic loading and evaluation of the script file results in the inline
alert statement being executed.

Figure 6.7 The appearance of the alert shows that the dynamic function is loaded
correctly, and the correctly displayed value shows that the variable was
dynamically loaded.

184 CHAPTER 6
jQuery utility functions
6.5 Summary

In this chapter we surveyed the features that jQuery provides outside of the meth-
ods that operate upon a wrapped set of matched DOM elements. These included
an assortment of functions, as well as a set of flags, defined directly on the jQuery
top-level name (as well as its $ alias).

 When we need to resort to browser detection to account for differences in
browser capabilites and operation, the $.browser set of flags lets us determine
within which browser family the page is being displayed. Browser detection
should be used only as a last resort when it’s impossible to write the code in a
browser-independent fashion, and the preferred approach of object detection
can’t be employed.

 The $.boxModel flag tells us which of the two box models is being used to ren-
der the page, and the $.styleFloat flag lets us reference the style property of the
float style in a browser-independent manner.

 Recognizing that page authors may sometimes wish to use other libraries in
conjunction with jQuery, jQuery provides $.noConflict(), which allows other
libraries to use the $ alias. After calling this function, all jQuery operations must
use the jQuery name rather than $.

 $.trim() exists to fill the gap left by the native JavaScript String class for trim-
ming whitespace from the beginning and end of string values.

 jQuery also provides a set of functions that are useful for dealing with data sets
in arrays. $.each() makes it easy to traverse through every item in an array;
$.grep() allows us to create new arrays by filtering through the data of a source
array using whatever filtering criteria we would like to use; and $.map() allows us
to easily apply our own transformations to a source array to produce a corre-
sponding new array with the transformed values.

 To merge objects, perhaps even to mimic a sort of inheritance scheme, jQuery
also provides the $.extend() function. This function allows us to unite the prop-
erties and any number of source objects into a target object.

 And for those times when we want to load a script file dynamically, jQuery
defines $.getScript(), which can load and evaluate a script file at any point in
the execution of other page script.

 With these additional tools safely tucked away in our toolbox, we’re ready to
tackle how to add our own extensions to jQuery. Let’s get to it in the next chapter.

Extending jQuery
with custom plugins
This chapter covers
■ Why to extend jQuery with custom code
■ The rules for effectively extending jQuery
■ Writing custom utility functions
■ Writing custom wrapper methods
185

186 CHAPTER 7
Extending jQuery with custom plugins
Over the course of the previous chapters, we’ve seen that jQuery gives us a large
toolset of useful commands and functions; we’ve also seen that we can easily tie
these tools together to give our pages whatever behavior we choose. Sometimes that
code follows common patterns we want to use again and again. When such patterns
emerge, it makes sense to capture these repeated operations as reusable tools that
we can add to our original toolset. In this chapter, we explore how to capture these
reusable fragments of code as extensions to jQuery.

 But before any of that, let’s discuss why we’d want to pattern our own code as
extensions to jQuery in the first place.

7.1 Why extend?

If you’ve been paying attention at all while reading through this book, as well as
to the code examples presented within it, you undoubtedly have noted that
adopting jQuery for use in our pages has a profound effect on how script is writ-
ten within a page.

 The use of jQuery promotes a certain style for a page’s code, frequently in the
guise of forming a wrapped set of elements and then applying a jQuery com-
mand, or chain of commands, to that set. When writing our own code, we can
write it however we please, but most experienced developers agree that having all
of the code on a site, or at least the great majority of it, adhere to a consistent style
is a good practice.

 So one good reason to pattern our code as jQuery extensions is to help main-
tain a consistent code style throughout the site.

 Not reason enough? Need more? The whole point of jQuery is to provide a set
of reusable tools and APIs. The creators of jQuery carefully planned the design of
the library and the philosophy of how the tools are arranged to promote reusabil-
ity. By following the precedent set by the design of these tools, we automatically
reap the benefit of the planning that went into these designs—a compelling sec-
ond reason to write our code as jQuery extensions.

 Still not convinced? The final reason we’ll consider (though it’s quite possible
others could list even more reasons) is that, by extending jQuery, we can leverage
the existing code base that jQuery makes available to us. For example, by creating
new jQuery commands (wrapper methods), we automatically inherit the use of
jQuery’s powerful selector mechanism. Why would we write everything from
scratch when we can layer upon the powerful tools jQuery already provides?

 Given these reasons, it’s easy to see that writing our reusable components as
jQuery extensions is a good practice and a smart way of working. In the remainder

The jQuery plugin authoring guidelines 187
of this chapter, we’ll examine the guidelines and patterns that allow us to create
jQuery plugins and we’ll create a few of our own. In the following chapter, which
covers a completely different subject (Ajax), we’ll see even more evidence that cre-
ating our own reusable components as jQuery plugins in real-world scenarios
helps to keep the code consistent and makes it a whole lot easier to write those
components in the first place.

 But first, the rules…

7.2 The jQuery plugin authoring guidelines

Sign! Sign! Everywhere a sign! Blocking out the scenery, breaking my mind. Do this!
Don’t do that! Can’t you read the sign?

—Five Man Electric Band, 1971

Although the Five Man Electric Band may have lyrically asserted an anti-
establishment stance against rules back in 1971, sometimes rules are a good
thing. Without any, chaos would reign.

 Such it is with the rules—more like common sensical guidelines—governing
how to successfully extend jQuery with our own plugin code. These guidelines
help us ensure, not only that our new code will plug into the jQuery architecture
properly, but also that it will work and play well with other jQuery plugins and
even other JavaScript libraries.

 Extending jQuery takes one of two forms:

■ Utility functions defined directly on $ (an alias for jQuery)
■ Methods to operate on a jQuery wrapped set (so-called jQuery commands)

In the remainder of this section, we’ll go over some guidelines common to both
types of extensions. Then in the following sections, we’ll tackle the guidelines and
techniques specific to writing each type of plugin element.

7.2.1 Naming files and functions

To Tell the Truth was an American game show, first airing in the 1950’s, in which
multiple contestants claimed to be the same person with the same name, and a
panel of celebrities was tasked with determining which person was whom they
claimed to be. Although fun for a television audience, name collisions are not fun at
all when it comes to programming.

188 CHAPTER 7
Extending jQuery with custom plugins
 We’ll discuss avoiding name collisions within our plugins, but first let’s address
naming the files within which we’ll write our plugins so that they do not conflict
with other files.

 The guideline recommended by the jQuery team is simple but effective, advo-
cating the following format:

■ Prefix the filename with jquery.
■ Follow that with the name of the plugin.
■ Conclude with .js.

For example, if we write a plugin that we want to name Fred, our JavaScript file-
name for this plugin is

jquery.fred.js

The use of the jquery. prefix eliminates any possible name collisions with files
intended for use with other libraries. After all, anyone writing non-jQuery plu-
gins has no business using the jquery. prefix.

 But that leaves the plugin name itself still open for contention within the
jQuery community.

 When we’re writing plugins for our own use, all we need to do is avoid conflicts
with any other plugins that we plan to use. But when writing plugins that we plan
to publish for others to use, we need to avoid conflicts with any other plugin that’s
already published.

 The best way to avoid conflicts is to stay in tune with the goings-on within the
jQuery community. A good starting point is the page at http://docs.jquery.com/
Plugins; but, beyond being aware of what’s already out there, there are other pre-
cautions we can take.

 One way to ensure that our plugin filenames are unlikely to conflict with oth-
ers is to sub-prefix them with a name that’s unique to us or our organization. For
example, all of the plugins developed in this book use the filename prefix
jquery.jqia (jqia being short for jQuery in Action) to help make sure that they won’t
conflict with anyone else’s plugin filenames should anyone wish to use them in
their own web applications. Likewise, the files for the jQuery Form Plugin begin
with the prefix jquery.form. Not all plugins follow this convention, but as the
number of plugins increases, it will become more and more important to follow
such conventions.

 Similar considerations need to be taken with the names we give to our func-
tions, whether they’re new utility functions or methods on the jQuery wrappers.

http://docs.jquery.com/Plugins
http://docs.jquery.com/Plugins

The jQuery plugin authoring guidelines 189
 When creating plugins for our own use, we’re usually aware of what other plu-
gins we’ll use; it’s an easy matter to avoid any naming collisions. But what if we’re
creating our plugins for public consumption? Or what if our plugins, that we ini-
tially intended to use privately, turn out to be so useful that we want to share them
with the rest of the community?

 Once again, familiarity with the plugins that already exist will go a long way in
avoiding API collisions, but we also encourage gathering collections of related
functions under a common prefix (similar to the proposal for filenames) to avoid
cluttering the namespace.

 Now, what about conflicts with that $?

7.2.2 Beware the $

“Will the real $ please stand up?”
 Having written a fair amount of jQuery code, we’ve seen how handy it is to use

the $ alias in place of jQuery. But when writing plugins that may end up in other
people’s pages, we can’t be quite so cavalier. As plugin authors, we have no way of
knowing whether a page author intends to use the $.noConflict() function to
allow the $ alias to be usurped by another library.

 We could employ the sledgehammer approach and use the jQuery name in
place of the $ alias, but dang it, we like using $ and are loath to give up on it
so easily.

 Section 6.2 discussed an idiom often used to make sure that the $ alias referred
to the jQuery name in a localized manner without affecting the remainder of the
page, and this little trick can also be (and often is) employed when defining
jQuery plugins as follows:

(function($){
//
// Plugin definition goes here
//
})(jQuery);

By passing jQuery to a function that defines the parameter as $, $ is guaranteed to
reference jQuery within the body of the function.

 We can now happily use $ to our heart’s content in the definition of the plugin.
 Before we dive into learning how to add new elements to jQuery, let’s look at

one more technique plugin authors are encouraged to use.

190 CHAPTER 7
Extending jQuery with custom plugins
7.2.3 Taming complex parameter lists

Most plugins tend to be simple affairs that require few, if any, parameters. We’ve
seen ample evidence of this in the vast majority of the core jQuery methods and
functions, which either take a small handful of parameters or none at all. Intelli-
gent defaults are supplied when optional parameters are omitted, and parame-
ter order can even take on a different meaning when some optional parameters
are omitted.

 The bind() method is a good example; if the optional data parameter is omit-
ted, the listener function, which is normally specified as the third parameter, can
be supplied as the second. The dynamic and interpretive nature of JavaScript
allows us to write such flexible code, but this sort of thing can start to break down
and get complex (both for page authors and ourselves as the plugin authors) as
the number of parameters grows larger. The possibility of a breakdown increases
when many of the parameters are optional.

 Consider a somewhat complex function whose signature is as follows:

function complex(p1,p2,p3,p4,p5,p6,p7) {

This function accepts seven arguments; let’s say that all but the first are
optional. There are too many optional arguments to make any intelligent
guesses about the intention of the caller when optional parameters are omitted
(as we saw with the bind() method). If a caller of this function is only omitting
trailing parameters, this isn’t much of a problem because the optional trailing
arguments can be detected as nulls. But what if the caller wants to specify p7 but
let p2 through p6 default? Callers would need to use placeholders for any omit-
ted parameters and write

complex(valueA,null,null,null,null,null,valueB);

Yuck! Even worse is a call such as

complex(valueA,null,valueC,valueD,null,null,valueB);

along with other variations of this nature. Page authors using this function are
forced to carefully keep track of counting nulls and the order of the parameters;
plus, the code is difficult to read and understand.

 But short of not allowing so many options to the caller, what can we do?
 Again, the flexible nature of JavaScript comes to the rescue; a pattern that

allows us to tame this chaos has arisen among the page-authoring communities—
the options hash.

The jQuery plugin authoring guidelines 191
 Using this pattern, optional parameters are gathered into a single parameter
in the guise of a JavaScript Object instance whose property name/value pairs
serve as the optional parameters.

 Using this technique, our first example could be written as

complex(valueA, {p7: valueB});

And the second as the following:

complex(valueA, {
 p3: valueC,
 p4: valueD,
 p7: valueB
});

Much better!
 We don’t have to account for omitted parameters with placeholder nulls, and

we also don’t need to count parameters; each optional parameter is conveniently
labeled so that it’s clear to see exactly what it represents (when we use better
parameter names than p1 through p7, that is).

 Although this is obviously a great advantage to the caller of our complex func-
tions, what about the ramifications for us as the function authors? As it turns out,
we’ve already seen a jQuery-supplied mechanism that makes it easy for us to
gather these optional parameters together and to merge them with default val-
ues. Let’s reconsider our complex example function with a required parameter
and six options. The new, simplified signature is

complex(p1,options)

Within our function, we can merge those options with default values with the
handy $.extend() utility function. Consider the following:

function complex(p1,options) {
 var settings = $.extend({
 option1: defaultValue1,
 option2: defaultValue2,
 option3: defaultValue3,
 option4: defaultValue4,
 option5: defaultValue5,
 option6: defaultValue6
 },options||{});
 // remainder of function...
}

By merging the values passed to us by the page author in the options parameter
with an object containing all the available options with their default values, the

192 CHAPTER 7
Extending jQuery with custom plugins
settings variable ends up with all possible option default values superseded by
any explicit values specified by the page author.

 Note that we guard against an options object that’s null or undefined with
||{}, which supplies an empty object if options evaluates to false (as we know
null and undefined do).

 Easy, versatile, and caller-friendly!
 We’ll see examples of this pattern in use later in this chapter and in jQuery

functions that will be introduced in chapter 8. But for now, let’s finally look at how
we extend jQuery with our own utility functions.

7.3 Writing custom utility functions

In this book, we use the term utility function to describe functions defined as prop-
erties of jQuery (and therefore $). These functions are not intended to operate on
DOM elements—that’s the job of methods defined to operate on a jQuery
wrapped set—but to either operate on non-element JavaScript objects or per-
form some other nonobject-specific operation. Some examples we’ve seen of
these types of function are $.each() and $.noConflict().

 In this section, we’ll learn how to add our own similar functions.
 Adding a function as a property to an Object instance is as easy as declaring

the function and assigning it to the object property. (If this seems like black
magic to you and you have not yet read through the appendix, now would be a
good time to do so.) Creating a trivial custom utility function should be as easy as

$.say = function(what) { alert('I say '+what); }

And in truth, it is that easy. But this manner of defining a utility function isn’t
without its pitfalls; remember our discussion in section 7.2.2 regarding the $?
What if some page author is including this function on a page that uses Prototype
and has called $.noConflict()? Rather than add a jQuery extension, we’d create
a method on Prototype’s $() function. (Get thee to the appendix if the concept of
a method of a function makes your head hurt.)

 This isn’t a problem for a private function that we know will never be shared,
but even then, what if some future changes to the pages usurp the $? It’s a good
idea to err on the side of caution.

 One way to ensure that someone stomping on $ doesn’t also stomp on us is not
using the $ at all. We could write our trivial function as

jQuery.say = function(what) { alert('I say '+what); }

Writing custom utility functions 193
This seems like an easy way out but proves to be less than optimal for more com-
plex functions. What if the function body utilizes lots of jQuery methods and
functions internally to get its job done? We’d need to use jQuery rather than $
throughout the function. That’s rather wordy and inelegant; besides, once we use
the $, we don’t want to let it go!

 So looking back to the idiom we introduced in section 7.2.2, we can safely
write our function as follows:

(function($){
 $.say = function(what) { alert('I say '+what); }
})(jQuery);

We highly encourage using this pattern (even though it may seem like overkill for
such a trivial function) because it protects the use of $ when declaring and defin-
ing the function. Should the function ever need to become more complex, we can
extend and modify it without wondering whether it’s safe to use the $ or not.

 With this pattern fresh in our minds, let’s implement a non-trivial utility func-
tion of our own.

7.3.1 Creating a data manipulation utility function

Often, when emitting fixed-width output, it’s necessary to take a numeric value
and format it to fit into a fixed-width field (where width is defined as number of
characters). Usually such operations will right-justify the value within the fixed-
width field and prefix the value with enough fill characters to make up any differ-
ence between the length of the value and the length of the field.

 Let’s write such a utility function that’s defined with the following syntax:

Function syntax: $.toFixedWidth

$.toFixedWidth(value,length,fill)

Formats the passed value as a fixed-width field of the specified length. An optional fill char-
acter can be supplied. If the numeric value exceeds the specified length, its higher order dig-
its will be truncated to fit the length.

Parameters
value (Number) The value to be formatted.

length (Number) The length of the resulting field.

fill (String) The fill character used when front-padding the value. If omitted, 0
is used.

Returns
The fixed-width field.

http://jquery.com/plugins/
http://jquery.com/plugins/

194 CHAPTER 7
Extending jQuery with custom plugins
The implementation of this function is shown in listing 7.1.

(function($){
 $.toFixedWidth = function(value,length,fill) {
 var result = value.toString();
 if (!fill) fill = '0';
 var padding = length - result.length;
 if (padding < 0) {
 result = result.substr(-padding);
 }
 else {
 for (var n = 0; n < padding; n++)
 result = fill + result;
 }
 return result;
 };
})(jQuery);

This function is simple and straightforward. The passed value is converted to its
string equivalent, and the fill character is determined either from the passed
value or the default of 0 b. Then, we compute the amount of padding needed c.

 If we end up with negative padding (the result is longer than the passed field
length), we truncate from the beginning of the result to end up with the specified
length d; otherwise, we pad the beginning of the result with the appropriate
number of fill characters e prior to returning it as the result of the function f.

 Simple stuff, but it serves to show how easily we can add a utility function. And,
as always, there’s room for improvement. Consider the following exercises:

■ As with most examples in books, the error checking is minimal to focus on
the lesson at hand. How would you beef up the function to account for
caller errors such as not passing numeric values for value and length?
What if they don’t pass them at all?

■ We were careful to truncate numeric values that were too long in order to
guarantee that the result was always the specified length. But, if the caller
passes more than a single-character string for the fill character, all bets are
off. How would you handle that?

■ What if you don’t want to truncate too-long values?

Now, let’s tackle a more complex function in which we can make use of the
$.toFixedWidth() function that we just wrote.

Listing 7.1 Implementation of the $.toFixedWidth() utility function

b

c

d

e

f

Writing custom utility functions 195
7.3.2 Writing a date formatter

If you’ve come to the world of client-side programming from the server, one of
the things you may have longed for is a simple date formatter; something that the
JavaScript Date type doesn’t provide. Because such a function would operate on a
Date instance, rather than any DOM element, it’s a perfect candidate for a utility
function. Let’s write one that uses the following syntax:

The implementation of this function is shown in listing 7.2. We’re not going to go
into great detail regarding the algorithm used to perform the formatting (after
all, this isn’t an algorithms book), but we’re going to use this implementation to

Function syntax: $.formatDate

$.formatDate(date,pattern)

Formats the passed date according to the supplied pattern. The tokens that are substituted
in the pattern are as follows:

yyyy: the 4-digit year
yy: the 2-digit year
MMMM: the full name of the month
MMM: the abbreviated name of the month
MM: the month number as a 0-filled, 2-character field
M: the month number
dd: the day in the month as a 0-filled, 2-character field
d: the day in the month
EEEE: the full name of the day of the week
EEE: the abbreviated name of the day of the week
a: the meridium (AM or PM)
HH: the 24-hour clock hour in the day as a 2-character, 0-filled field
H: the 24-hour clock hour in the day
hh: the 12-hour clock hour in the day as a 2-character, 0-filled field
h: the 12-hour clock hour in the day
mm: the minutes in the hour as a 2-character, 0-filled field
m: the minutes in the hour
ss: the seconds in the minute as a 2-character, 0-filled field
s: the seconds in the minute
S: the milliseconds in the second as a 3-character, 0-filled field

Parameters
date (Date) The date to be formatted.

pattern (String) The pattern to format the date into. Any characters not matching pat-
tern tokens are copied as-is to the result.

Returns
The formatted date.

196 CHAPTER 7
Extending jQuery with custom plugins
point out some interesting tactics that we can use when creating a somewhat com-
plex utility function.

(function($){
 $.formatDate = function(date,pattern) {
 var result = [];
 while (pattern.length > 0) {
 $.formatDate.patternParts.lastIndex = 0;
 var matched = $.formatDate.patternParts.exec(pattern);
 if (matched) {
 result.push(
 $.formatDate.patternValue[matched[0]].call(this,date)
);
 pattern = pattern.slice(matched[0].length);
 } else {
 result.push(pattern.charAt(0));
 pattern = pattern.slice(1);
 }
 }
 return result.join('');
 };

 $.formatDate.patternParts =
 /^(yy(yy)?|M(M(M(M)?)?)?|d(d)?|EEE(E)?|a|H(H)?|h(h)?|m(m)?|s(s)?|S)/;

 $.formatDate.monthNames = [
 'January','February','March','April','May','June','July',
 'August','September','October','November','December'
];

 $.formatDate.dayNames = [
 'Sunday','Monday','Tuesday','Wednesday','Thursday','Friday',
 'Saturday'
];

 $.formatDate.patternValue = {
 yy: function(date) {
 return $.toFixedWidth(date.getFullYear(),2);
 },
 yyyy: function(date) {
 return date.getFullYear().toString();
 },
 MMMM: function(date) {
 return $.formatDate.monthNames[date.getMonth()];
 },
 MMM: function(date) {
 return $.formatDate.monthNames[date.getMonth()].substr(0,3);
 },
 MM: function(date) {

Listing 7.2 Implementation of the $.formatDate() utility function

Implements the main
body of the functionb

Defines the regular
expression

c

Provides the name of the monthsd

Provides the name
of the days

e

Collects token-to-value
translation functions

f

Writing custom utility functions 197
 return $.toFixedWidth(date.getMonth() + 1,2);
 },
 M: function(date) {
 return date.getMonth()+1;
 },
 dd: function(date) {
 return $.toFixedWidth(date.getDate(),2);
 },
 d: function(date) {
 return date.getDate();
 },
 EEEE: function(date) {
 return $.formatDate.dayNames[date.getDay()];
 },
 EEE: function(date) {
 return $.formatDate.dayNames[date.getDay()].substr(0,3);
 },
 HH: function(date) {
 return $.toFixedWidth(date.getHours(),2);
 },
 H: function(date) {
 return date.getHours();
 },
 hh: function(date) {
 var hours = date.getHours();
 return $.toFixedWidth(hours > 12 ? hours - 12 : hours,2);
 },
 h: function(date) {
 return date.getHours() % 12;
 },
 mm: function(date) {
 return $.toFixedWidth(date.getMinutes(),2);
 },
 m: function(date) {
 return date.getMinutes();
 },
 ss: function(date) {
 return $.toFixedWidth(date.getSeconds(),2);
 },
 s: function(date) {
 return date.getSeconds();
 },
 S: function(date) {
 return $.toFixedWidth(date.getMilliseconds(),3);
 },
 a: function(date) {
 return date.getHours() < 12 ? 'AM' : 'PM';
 }
 };
})(jQuery);

198 CHAPTER 7
Extending jQuery with custom plugins
The most interesting aspect of this implementation, aside from a few JavaScript
tricks used to keep the amount of code in check, is that the function b needs
some ancillary data to do its job—in particular:

■ A regular expression used to match tokens in the pattern c
■ A list of the English names of the months d
■ A list of the English names of the days e
■ A set of sub-functions designed to provided the value for each token type

given a source date f

We could have included each of these as var definitions within the function body,
but that would clutter an already somewhat involved algorithm; and because
they’re constants, it makes sense to segregate them from variable data.

 We don’t want to pollute the global namespace, or even the $ namespace,
with a bunch of names needed only by this function, so we make these declara-
tions properties of our new function itself. Remember, JavaScript functions are
first-class objects, and they can have their own properties like any other Java-
Script object.

 As for the formatting algorithm itself? In a nutshell, it operates as follows:

■ Creates an array to hold portions of the result.
■ Iterates over the pattern, consuming identified token and non-token char-

acters until it has been completely inspected.
■ Resets the regular expression (stored in $.formatDate.patternParts) on

each iteration by setting its lastIndex property to 0.
■ Tests the regular expression for a token match against the current begin-

ning of the pattern.
■ Calls the function in the $.formatDate.patternValue collection of conver-

sion functions to obtain the appropriate value from the Date instance if a
match occurs. This value is pushed onto the end of the results array, and
the matched token is removed from the beginning of the pattern.

■ Removes the first character from the pattern and adds it to the end of the
results array if a token isn’t matched at the current beginning of the pattern.

■ Joins the results array into a string and returns it as the value of the func-
tion when the entire pattern has been consumed.

Note that the conversion functions in the $.formatDate.patternValue collection
make use of the $.toFixedWidth() function that we created in the previous section.

Adding new wrapper methods 199
 You’ll find both of these functions in the file chapter7/jquery.jqia.dateFormat.js
and a rudimentary page to test it at chapter7/test.dateFormat.html.

 Operating on run-of-the-mill JavaScript objects is all well and good, but the
real power of jQuery lies in the wrapper methods that operate on a set of DOM
elements collected via the power of jQuery selectors. Next, let’s see how we can
add our own powerful wrapper methods.

7.4 Adding new wrapper methods

The true power of jQuery lies in the ability to easily and quickly select and oper-
ate on DOM elements. Luckily, we can extend that power by adding wrapper
methods of our own that manipulate selected DOM elements as we deem appro-
priate. By adding wrapper methods, we automatically gain the use of the power-
ful jQuery selectors to pick and choose which elements are to be operated on
without having to do all the work ourselves.

 Given what we know about JavaScript, we probably could have figured out on
our own how to add utility functions to the $ namespace, but that’s not true of
wrapper functions. There’s a tidbit of jQuery-specific information that we need to
know; to add wrapper methods to jQuery, we must assign them as properties
to an object named fn in the $ namespace.

 The general pattern for creating a wrapper functions is

$.fn.wrapperFunctionName = function(params){function-body};

Let’s concoct a trivial wrapper method to set the color of the matched DOM ele-
ments to blue.

(function($){
 $.fn.makeItBlue = function() {
 return this.css('color','blue');
 }
})(jQuery);

As with utility functions, we make the declaration within an outer function that
guarantees that $ is an alias to jQuery. But unlike utility functions, we create the
new wrapper method as a property of $.fn rather than of $.

NOTE If you’re familiar with object-oriented JavaScript and its prototype-based
class declarations, you might be interested to know that $.fn is merely an
alias for the prototype property of the jQuery constructor function.

200 CHAPTER 7
Extending jQuery with custom plugins
Within the body of the method, the function context (this) refers to the wrapped
set. We can use all of the predefined jQuery commands on it; as in this example,
we call the css() command on the wrapped set to set the color to blue for all
matched DOM elements.

WARNING The function context (this) within the main body of a wrapper method
refers to the wrapped set, but when inline functions are declared within
this function, they each have their own function contexts. You must take
care when using this under such circumstances to make sure that it’s
referring to what you think it is! For example, if you use each() with its
iterator function, this within the iterator function references the DOM
element for the current iteration.

We can do almost anything we like to the DOM elements in the wrapped set, but
there is one very important rule when defining new wrapper methods; unless the
function is intended to return a specific value, it should always return the wrapped
set as its return value. This allows our new command to take part in any jQuery
command chains. In our example, because the css() command returns the
wrapped set, we simply return the result of the call to css().

 In this example, we apply the jQuery css() command to all the elements in
the wrapped set by applying it to this. If, for some reason, we need to deal with
each wrapped element individually (perhaps because we need to make condi-
tional processing decisions), the following pattern can be used:

(function($){
 $.fn.someNewMethod = function() {
 return this.each(function(){
 //
 // Function body goes here -- this refers to individual
 // elements
 //
 });
 }
})(jQuery);

In this pattern, the each() command is used to iterate over every individual ele-
ment in the wrapped set. Note that, within the iterator function, this refers to the
current DOM element rather than the entire wrapped set. The wrapped set
returned by each() is returned as the new method’s value so that this method can
participate in chaining.

Adding new wrapper methods 201
 That’s all there is to it, but (isn’t there always a but?) there are some techniques
we should be aware of when creating more involved jQuery wrapper methods.
Let’s define a couple more plugin methods of greater complexity to examine
those techniques.

7.4.1 Applying multiple operations in a wrapper method

Let’s develop another new plugin method that performs more than a single oper-
ation on the wrapped set. Imagine that we need to be able to flip the read-only
status of text fields within a form and to simultaneously and consistently affect the
appearance of the field. We could easily chain a couple of existing jQuery com-
mands together to do this, but we want to be neat and tidy about it and bundle
these operations together into a single method.

 We’ll name our new command setReadOnly(), and its syntax is as follows:

The implementation of this plugin is shown in listing 7.3 and can be found in the
file chapter7/jquery.jqia.setreadonly.js.

(function($){
 $.fn.setReadOnly = function(readonly) {
 return this.filter('input:text')
 .attr('readonly',readonly)
 .css('opacity', readonly ? 0.5 : 1.0);
 }
})(jQuery);

Command syntax: setReadOnly

setReadOnly(state)

Sets the read-only status of wrapped text fields to the state specified by state. The opacity
of the fields will be adjusted: 100% if not read-only or 50% if read-only. Any elements in the
wrapped set other than text fields are ignored.

Parameters
state (Boolean) The read-only state to set. If true, the text fields are made read-only;

otherwise, the read-only status is cleared.

Returns
The wrapped set.

Listing 7.3 Implementation of the setReadOnly() plugin method

202 CHAPTER 7
Extending jQuery with custom plugins
This example is only slightly more complicated than our initial example, but
exhibits the following additional key concepts:

■ A parameter is passed that affects how the method operates.
■ Three jQuery commands are applied to the wrapped set by use of jQuery

chaining.
■ The new command can participate in a jQuery chain because it returns the

wrapped set as its value.
■ The filter() command is used to ensure that, no matter what set of

wrapped elements the page author applied this method to, only text fields
are affected.

How might we put this method to use?
 Often, when defining an online order form, we may need to allow the user to

enter two sets of address information: one for where the order is to be shipped
and one for the billing information. Much more often than not, these two
addresses are going to be the same; making the user enter the same information
twice decreases our user-friendliness factor to less than we’d want it to be.

 We could write our server-side code to assume that the billing address is the
same as the shipping address if the form is left blank, but let’s assume that our
product manager is a bit paranoid and would like something more overt on the
part of the user.

 We’ll satisfy him by adding a check box to the billing address that indicates
whether the billing address is the same as the shipping address. When this box is
checked, the billing address fields will be copied from the shipping fields and
then made read-only. Unchecking the box will clear the value and read-only sta-
tus from the fields.

 Figure 7.1 shows a test form in its before and after states.
 The page for this test form is available in the file chapter7/test.setreadonly.html

and is shown in listing 7.4.

Adding new wrapper methods 203
<html>
 <head>
 <title>setReadOnly() Test</title>
 <link rel="stylesheet" type="text/css" href="../common.css">
 <link rel="stylesheet" type="text/css"
 href="test.setreadonly.css">
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js"></script>

Listing 7.4 The implementation of the form for testing the new setReadOnly()
command

Figure 7.1
The Test Form prior to
clicking the check box
and after clicking the
check box

204 CHAPTER 7
Extending jQuery with custom plugins
 <script type="text/javascript"
 src="jquery.jqia.setreadonly.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#sameAddressControl').click(function(){
 var same = this.checked;
 $('#billAddress').val(same ? $('#shipAddress').val():'');
 $('#billCity').val(same ? $('#shipCity').val():'');
 $('#billState').val(same ? $('#shipState').val():'');
 $('#billZip').val(same ? $('#shipZip').val():'');
 $('#billingAddress input')
 .setReadOnly(same);
 });
 });
 </script>
 </head>

 <body>
 <fieldset>
 <legend>The Test Form</legend>
 <div>
 <form name="testForm">
 <div>
 <label>First name:</label>
 <input type="text" name="firstName" id="firstName"/>
 </div>
 <div>
 <label>Last name:</label>
 <input type="text" name="lastName" id="lastName"/>
 </div>
 <div id="shippingAddress">
 <h2>Shipping address</h2>
 <div>
 <label>Street address:</label>
 <input type="text" name="shipAddress"
 id="shipAddress"/>
 </div>
 <div>
 <label>City, state, zip:</label>
 <input type="text" name="shipCity" id="shipCity"/>
 <input type="text" name="shipState" id="shipState"/>
 <input type="text" name="shipZip" id="shipZip"/>
 </div>
 </div>
 <div id="billingAddress">
 <h2>Billing address</h2>
 <div>
 <input type="checkbox" id="sameAddressControl"/>
 Billing address is same as shipping address
 </div>
 <div>
 <label>Street address:</label>

Applies the new pluginb

Adding new wrapper methods 205
 <input type="text" name="billAddress"
 id="billAddress"/>
 </div>
 <div>
 <label>City, state, zip:</label>
 <input type="text" name="billCity" id="billCity"/>
 <input type="text" name="billState" id="billState"/>
 <input type="text" name="billZip" id="billZip"/>
 </div>
 </div>
 </form>
 </div>
 </fieldset>
 </body>
</html>

We won’t belabor the operation of this page, as it’s relatively straightforward. The
only truly interesting aspect of this page is the click handler attached to the check
box in the ready handler. When the state of the check box is changed by a click we

1 Copy the checked state into variable same for easy reference in the
remainder of the listener.

2 Set the values of the billing address fields. If they are to be the same, we
set the values from the corresponding fields in the shipping address
information. If not, we clear the fields.

3 Call the new setReadOnly() command b on all input fields in the billing
address container.

But, oops! We were a little sloppy with that last step. The wrapped set that we cre-
ate with $('#billingAddress input') contains not only the text fields in the billing
address block but the check box too. The check box element doesn’t have read-
only semantics, but it can have its opacity changed—definitely not our intention!

 Luckily, this sloppiness is countered by the fact that we were not sloppy
when defining our plugin. Recall that we filtered out all but text fields before
applying the remainder of the commands in that method. We highly recom-
mend such attention to detail, particularly for plugins that are intended for
public consumption.

 What are some ways that this command could be improved? Consider making
the following changes:

■ We forgot about text areas! How would you modify the code to include text
areas along with the text fields?

206 CHAPTER 7
Extending jQuery with custom plugins
■ The opacity levels applied to the fields in either state are hard-coded into
the function. This is hardly caller-friendly. Modify the method to allow the
levels to be caller-supplied.

■ Oh heck, why force the page author to accept only the ability to affect
opacity? How would you modify the method to allow the page author to
determine what the renditions for the fields should be in either state?

Now let’s take on an even more complex plugin.

7.4.2 Retaining state within a wrapper method
Everybody loves a slideshow!

 At least on the web. Unlike hapless after-dinner guests forced to sit through a
mind-numbingly endless display of badly focused vacation photos, visitors to a
web slideshow can leave whenever they like without hurting anyone’s feelings!

 For our more complex plugin example, we’re going to develop a jQuery com-
mand that will easily allow a page author to whip up a quick slideshow page. We’ll
create a jQuery plugin, which we’ll name the Photomatic, and then we’ll whip up a
test page to put it through its paces. When complete, this test page will appear as
shown in figure 7.2.

 This page sports the following components:

■ A set of thumbnail images
■ A full-sized photo of one of the images available in the thumbnail list
■ A set of buttons to move through the slideshow

The behaviors of the page are as follows:

■ Clicking any thumbnail displays the corresponding full-sized image.
■ Clicking the full-sized image displays the next image.
■ Clicking any button performs the following operations:

■ First—Displays the first image
■ Previous—Displays the previous image
■ Next—Displays the next image
■ Last—Displays the last image

■ Any operation that moves off the end of the list of images wraps back to
the other end; clicking Next while on the last image displays the first
image and vice versa.

We also want to grant the page authors as much freedom for layout and styling as
possible; we’ll define our plugin so that the page authors can set up the elements

Adding new wrapper methods 207
in any manner that they would like and then tell us which page element should be
used for each purpose. Furthermore, in order to give the page authors as much
leeway as possible, we’ll define our plugin so that the authors can provide any
wrapped set of images to serve as thumbnails. Usually, thumbnails will be gath-
ered together as in our test page, but page authors are free to identify any image
on the page as a thumbnail.

 To start, let’s introduce the syntax for the Photomatic Plugin.

Command syntax: photomatic

photomatic(settings)

Instruments the wrapped set of thumbnails, as well as page elements identified in the
settings hash, to operate as Photomatic controls.

Parameters
settings (Object) An object hash that specifies the settings for the Photomatic. See

table 7.1 for details.

Returns
The wrapped set.

Figure 7.2 The Photomatic Tester that we’ll use to put our plugin through its paces

208 CHAPTER 7
Extending jQuery with custom plugins
Because we have a non-trivial number of parameters to control the operation of
the Photomatic (many of which can be defaulted), we utilize an object hash to
pass them in as outlined in section 7.2.3. The possible settings that we can specify
are shown in table 7.1.

With a nod to the notion of test-driven development, let’s create the test page for this
plugin before we dive into creating the Photomatic Plugin itself. The code for this
page, available in the file chapter7/photomatic/photomatic.html, is shown in list-
ing 7.5.

<html>
 <head>
 <title>Photomatic Test</title>
 <link rel="stylesheet" type="text/css" href="../../common.css">
 <link rel="stylesheet" type="text/css" href="photomatic.css">
 <script type="text/javascript"
 src="../../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript"
 src="jquery.jqia.photomatic.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#thumbnails img').photomatic({

Table 7.1 The settings properties for the Photomatic() plugin command

Setting name Description

firstControl (String|Object) Either a reference to or jQuery selector that identifies the DOM
element(s) to serve as a first control. If omitted, no control is instrumented.

lastControl (String|Object) Either a reference to or jQuery selector that identifies the DOM
element(s) to serve as a last control. If omitted, no control is instrumented.

nextControl (String|Object) Either a reference to or jQuery selector that identifies the DOM
element(s) to serve as a next control. If omitted, no control is instrumented.

photoElement (String|Object) Either a reference to or jQuery selector that identifies the
element that’s to serve as the full-sized photo display. If omitted, defaults to the
jQuery selector '#photomaticPhoto'.

previousControl (String|Object) Either a reference to or jQuery selector that identifies the DOM
element(s) to serve as a previous control. If omitted, no control is instrumented.

transformer (Function) A function used to transform the URL of a thumbnail image into the
URL of its corresponding full-sized photo image. If omitted, the default transforma-
tion substitutes all instances of thumbnail with photo in the URL.

Listing 7.5 The test page that creates the Photomatic display shown in figure 7.2

Invokes the
Photomatic Plugin

b

Adding new wrapper methods 209
 photoElement: '#photo',
 previousControl: '#previousButton',
 nextControl: '#nextButton',
 firstControl: '#firstButton',
 lastControl: '#lastButton'
 });
 });
 </script>
 </head>

 <body>
 <h1>Photomatic Tester</h1>
 <div id="thumbnails">

 </div>
 <div id="photoContainer">

 </div>
 <div id="buttonBar">
 <button type="button" id="firstButton">First</button>
 <button type="button" id="previousButton">Previous</button>
 <button type="button" id="nextButton">Next</button>
 <button type="button" id="lastButton">Last</button>
 </div>
 </body>
</html>

If that looks simpler that you thought it would, you shouldn’t be surprised at this
point. By applying the principles of Unobtrusive JavaScript and by keeping all
style information in an external style sheet, our markup is tidy and simple. In
fact, even the on-page script has a tiny footprint, consisting of a single statement
that invokes our plugin b.

 The HTML markup consists of a container that holds the thumbnail images
c, an image element (initially sourceless) to hold the full-sized photo d, and a
collection of buttons e that will control the slideshow. Everything else is handled
by our new plugin.

 Let’s develop that now.
 To start, let’s set out a skeleton (we’ll fill in the details as we go along). Our

starting point should look rather familiar by now because it follows the same pat-
terns we’ve been using so far.

Contains
thumbnail images

c

Defines the
image element
for full-sized
photos

d

Contains elements to
serve as controls

e

210 CHAPTER 7
Extending jQuery with custom plugins
(function($){
 $.fn.photomatic = function(callerSettings) {
 };
})(jQuery);

This defines our initially empty wrapper function, which (as expected from our
syntax description) accepts a single hash parameter named callerSettings. First,
within the body of the function, we merge these caller settings with the default
settings as described by table 7.1. This will give us a single settings object that we
can refer to throughout the remainder of the method.

 We perform this merge operation using the following idiom (that we’ve
already seen a few times):

var settings = $.extend({
 photoElement: '#photomaticPhoto',
 transformer: function(name) {
 return name.replace(/thumbnail/,'photo');
 },
 nextControl: null,
 previousControl: null,
 firstControl: null,
 lastControl: null
}, callerSettings||{});

After the execution of this statement, the settings variable will contain the values
supplied by the caller, with defaults supplied by the inline hash object. But we’re
not done with settings yet. Consider the photoElement property; it might contain
a string specifying a jQuery selector (either the default or one supplied by the
page authors), or it could be an object reference. We want to normalize that to
something we know how to deal with. By adding the statement

settings.photoElement = $(settings.photoElement);

we create a wrapped set containing the photo element (or possibly multiple ele-
ments if the page authors so chose). Now, we have something consistent that we
know how to deal with.

 We’re also going to need to keep track of a few things. In order to know
what concepts like next image and previous image mean, we need not only a list
of the thumbnail images but also an indicator that identifies the current image
being displayed.

 The list of thumbnail images is the wrapped set that this method is operating
on—or, at least, it should be. We don’t know what the page authors collected in
the wrapped set, so we want to filter it down to only image elements; we can easily
do this with a jQuery selector. But where should we store the list?

Adding new wrapper methods 211
 We could easily create another variable to hold it, but there’s a lot to be said
for keeping things corralled. Let’s store the list as another property on settings
as follows:

settings.thumbnails = this.filter('img');

Filtering the wrapped set (available via this in the method) for only image ele-
ments results in a new wrapped set (containing only elements) that we store
in a property of settings that we name thumbnails.

 Another piece of state that we need to keep track of is the current image. We’ll
keep track of that by maintaining an index into the list of thumbnails by adding
another property to settings named current as follows:

settings.current = 0;

There is one more setup step that we need to take. If we’re going to keep track of
which photo is current by keeping track of its index, there will be at least one case
where, given a reference to a thumbnail element, we’ll need to know its index.
The easiest way to handle that is to anticipate this need and to add an expando
(custom property) to the thumbnail elements, recording their respective indexes.
We do that with the following statement:

settings.thumbnails.each(function(n){this.index = n;});

This statement iterates through each of the thumbnail images, adding an index
property to it that records its order in the list. Now that our initial state is set up,
we’re ready to move on to the meat of the plugin.

 Wait a minute! State? How can we expect to keep track of state in a local vari-
able within a function that’s about to finish executing? Won’t the variable and all
our settings go out of scope when the function returns?

 In general that might be true, but there is one case where such a variable sticks
around for longer than its usual scope—when it’s part of a closure. We’ve seen clo-
sures before, but if you’re still shaky on them, please review the appendix. You
must understand closures not only for completing the implementation of the
Photomatic Plugin but also when creating anything but the most trivial of plugins.

 When we think about the job remaining, we realize that we need to attach a
number of event listeners to the controls and elements that we’ve taken such great
pains to identify to this point. And each listener we define will create a closure
that includes the settings variable, so we can rest assured that, even though set-
tings may appear to be transient, the state that it represents will stick around and
be available to all the listeners that we define.

212 CHAPTER 7
Extending jQuery with custom plugins
 Speaking of those listeners, here’s the list of click event listeners that we need
to attach to the various elements:

■ Clicking a thumbnail photo will cause its full-sized version to be displayed.
■ Clicking the full-sized photo will cause the next photo to be displayed.
■ Clicking the element defined as the previous control will cause the previ-

ous image to be displayed.
■ Clicking the next control will cause the next image to be displayed.
■ Clicking the first control will cause the first image in the list to be dis-

played.
■ Clicking the last control will cause the last image in the list to be displayed.

Looking over this list, we immediately note that all of these listeners have some-
thing in common; they all need to cause the full-sized photo of one of the thumb-
nail images to be displayed. And being the good and clever coders that we are, we
want to factor out that common processing into a function so that we don’t need
to repeat code over and over again.

 But how?
 If we were writing normal on-page JavaScript, we could define a top-level

function. If we were writing object-oriented JavaScript, we might define a method
on a JavaScript object. But we’re writing a jQuery plugin; where should we define
implementation functions?

 We don’t want to infringe on either the global or the $ namespace for a func-
tion that should only be called internally from our plugin code, so what can we
do? We could define the function as a method of the plugin function itself (similar
to what we did in the date formatter of listing 7.2); as first-class JavaScript objects,
even functions can possess methods. But there’s an even easier way.

 Recall that our plugin function is defined within the body of another func-
tion—the function that we use to ensure that the $ means jQuery. Therefore any
local variables defined within that outer function become part of the closure
defined by our plugin function. What if we define the implementation function,
which we’ll name showPhoto(), as a local variable in the outer function?

 That solves our issue nicely! Our showPhoto() function will be available to the
plugin function as part of its closure, but because it’s declared locally to the outer
function, it can’t be seen from outside that function and has no opportunity to
pollute any other namespace.

Adding new wrapper methods 213
 Outside of the plugin function, but inside the outer function, we define the
showPhoto() function as follows:

var showPhoto = function(index) {
 settings.photoElement
 .attr('src',
 settings.transformer(settings.thumbnails[index].src));
 settings.current = index;
};

This function, when passed the index of the thumbnail whose full-sized photo is
to be displayed, uses the values in the settings object to do the following:

1 Look up the src attribute of the thumbnail identified by index

2 Pass that value through the transformer function to convert it from a
thumbnail URL to a photo URL

3 Assign the result of the transformation to the src attribute of the full-
sized image element

4 Record the index of the displayed photo as the new current index

But before we break our arms patting ourselves on the back for our cleverness, we
should know that there’s still a problem. The showPhoto() function needs access
to the settings, but that variable is defined inside the plugin function and isn’t
available outside of it.

 “Holy scoped closures, Batman! How will we get out of this one?”
 We could be inelegant about it and pass settings to the function as another

parameter, but we’re slyer than that. Because the problem is that settings isn’t
defined in the outer closure containing the implementation and plugin functions
the simplest solution is to move it there. Doing so won’t affect its availability to all of
the inner closures, but it will ensure that it’s available to both the plugin function
and the implementation function or any other implementation functions that we
might want to define. (Be aware that this technique assumes that we’re only going
to have one Photomatic instance on a page—a restriction that makes sense in this
case. For more general cases, passing settings as a parameter would not impose
this restriction.)

 So we’ll add the following to the outer function:

var settings;

And remove the var from the statement within the plugin function as follows:

settings = $.extend({

214 CHAPTER 7
Extending jQuery with custom plugins
The settings variable is now available to both functions, and we’re finally ready to
complete the implementation of the plugin function. We define the listeners that
we listed earlier with the following code:

settings.thumbnails.click(function(){ showPhoto(this.index); });
settings.photoElement.click(function(){
 showPhoto((settings.current + 1) % settings.thumbnails.length);
});
$(settings.nextControl).click(function(){
 showPhoto((settings.current + 1) % settings.thumbnails.length);
});
$(settings.previousControl).click(function(){
 showPhoto((settings.thumbnails.length + settings.current - 1) %
 settings.thumbnails.length);
});
$(settings.firstControl).click(function(){
 showPhoto(0);
});
$(settings.lastControl).click(function(){
 showPhoto(settings.thumbnails.length - 1);
});

Each of these listeners calls the showPhoto() function with a thumbnail index
determined either by the index of the clicked thumbnail, the length of the list, or
computed relative to the current index. (Note how the modulus operator is used
to wrap the index values when they fall off either end of the list.)

 We have two final tasks before we can declare success; we need to display the
first photo in advance of any user action, and we need to return the original
wrapped set so that our plugin can participate in jQuery command chains. We
achieve these with

showPhoto(0);
return this;

Take a moment to do a short Victory Dance; we’re finally done!
 The completed plugin code, which you’ll find in the file chapter7/photomatic/

jquery.jqia.photomatic.js, is shown in listing 7.6.

(function($){
 var settings;

 $.fn.photomatic = function(callerSettings) {
 settings = $.extend({
 photoElement: '#photomaticPhoto',
 transformer: function(name) {

Listing 7.6 The complete Photomatic Plugin implementation

Adding new wrapper methods 215
 return name.replace(/thumbnail/,'photo');
 },
 nextControl: null,
 previousControl: null,
 firstControl: null,
 lastControl: null
 }, callerSettings || {});
 settings.photoElement = $(settings.photoElement);
 settings.thumbnails = this.filter('img');
 settings.thumbnails.each(function(n){this.index = n;});
 settings.current = 0;
 settings.thumbnails.click(function(){ showPhoto(this.index); });
 settings.photoElement.click(function(){
 showPhoto((settings.current + 1) % settings.thumbnails.length);
 });
 $(settings.nextControl).click(function(){
 showPhoto((settings.current + 1) % settings.thumbnails.length);
 });
 $(settings.previousControl).click(function(){
 showPhoto((settings.thumbnails.length + settings.current - 1) %
 settings.thumbnails.length);
 });
 $(settings.firstControl).click(function(){
 showPhoto(0);
 });
 $(settings.lastControl).click(function(){
 showPhoto(settings.thumbnails.length - 1);
 });
 showPhoto(0);
 return this;
 };

 var showPhoto = function(index) {
 settings.photoElement
 .attr('src',
 settings.transformer(settings.thumbnails[index].src));
 settings.current = index;
 };

})(jQuery);

Boy, it seemed longer than 45 lines when we were working through it, didn’t it?
 This plugin is typical of jQuery-enabled code; it packs a big wallop in some

compact code. But it serves to demonstrate an important set of techniques—
using closures to maintain state across the scope of a jQuery plugin and to enable
the creation of private implementation functions that plugins can define and use
without resorting to any namespace infringements.

216 CHAPTER 7
Extending jQuery with custom plugins
 You’re now primed and ready to write your own jQuery plugins. When you
come up with some useful ones, consider sharing them with the rest of the jQuery
community. Visit http://jquery.com/plugins/ for more information.

7.5 Summary

This chapter introduced us to how we can write code that extends jQuery.
 Writing our own code as extensions to jQuery has a number of advantages.

Not only does it keep our code consistent across our web application regardless of
whether it’s employing jQuery APIs or our own, but it also makes all of the power
of jQuery available to our own code.

 Following a few naming rules helps avoid naming collisions between file-
names, as well as problems that might be encountered when the $ name is reas-
signed by a page that will use our plugin.

 Creating new utility functions is as easy as creating new function properties on
$, and new wrapper methods are as easily created as properties of $.fn.

 If plugin authoring intrigues you, we highly recommend that you download
and comb through the code of existing plugins to see how their authors imple-
mented their own features. You’ll see how the techniques presented in this chap-
ter are used in a wide range of code and learn new techniques that are beyond the
scope of this book.

 Having yet more jQuery knowledge at our disposal, let’s move on to learn-
ing how jQuery makes incorporating Ajax into our Rich Internet Applications
a no-brainer.

http://jquery.com/plugins/

Talk to the server
with Ajax
This chapter covers
■ A brief overview of Ajax
■ Loading pre-formatted HTML from the server
■ Making general GET and POST requests
■ Making requests with fine-grained control
■ Setting default Ajax properties
■ A comprehensive example
217

218 CHAPTER 8
Talk to the server with Ajax
It can be successfully argued that no one technology has transformed the land-
scape of the web more in recent years than the adoption of Ajax. The ability to
make asynchronous requests back to the server without the need to reload pages
has enabled a whole new set of user interaction paradigms and made Rich Inter-
net Applications possible.

 Ajax is a less recent addition to the web toolbox than many people may realize.
In 1998, Microsoft introduced the ability to perform asynchronous requests
under script control (discounting the use of <iframe> elements for such activity)
as an ActiveX control to enable the creation of Outlook Web Access (OWA).
Although OWA was a moderate success, few people seemed to take notice of the
underlying technology.

 A few years passed, and a handful of events launched Ajax into the collective
consciousness of the web development community. The non-Microsoft browsers
implemented a standardized version of the technology as the XMLHttpRequest
(XHR) object; Google began using XHR; and, in 2005, Jesse James Garrett of
Adaptive Path coined the term Ajax (for Asynchronous JavaScript and XML).

 As if they were only waiting for the technology to be given a catchy name, the
web development masses suddenly took note of Ajax in a big way, and it has become
one of the primary tools by which we can enable Rich Internet Applications.

 In this chapter, we’ll take a brief tour of Ajax (if you’re already an Ajax guru,
you might want to skip ahead to section 8.2) and then look at how jQuery makes
using Ajax a snap.

 Let’s start off with a refresher on what Ajax technology is all about.

8.1 Brushing up on Ajax

Although we’ll take a quick look at Ajax in this section, please note that it’s not
intended as a complete Ajax tutorial or an Ajax primer. If you’re completely unfa-
miliar with Ajax (or worse, still think that we’re talking about a dishwashing liquid
or a mythological Greek hero), we encourage you to familiarize yourself with the
technology through resources that are geared towards teaching you all about Ajax;
the Manning books Ajax in Action and Ajax in Practice are both excellent examples.

 Some people may argue that the term Ajax applies to any means to make
server requests without the need to refresh the user-facing page (such as by sub-
mitting a request to a hidden <iframe> element), but most people associate the
term with the use of XHR or the Microsoft XMLHTTP ActiveX control.

 Let’s take a look at how those objects are used to generate requests to the
server, beginning with creating one.

Brushing up on Ajax 219
8.1.1 Creating an XHR instance

In a perfect world, code written for one browser would work in all commonly used
browsers. We’ve already learned that we don’t live in that world; things don’t
change with Ajax. There is a standard means to make asynchronous requests via
the JavaScript XHR object, and an Internet Explorer proprietary means that uses
an ActiveX control. With IE7, a wrapper that emulates the standard interface is
available, but IE6 requires divergent code.

 Once created (thankfully) the code to set up, initiate, and respond to the
request is relatively browser-independent, and creating an instance of XHR is easy
for any particular browser. The problem is that different browsers implement
XHR in different ways, and we need to create the instance in the manner appro-
priate for the current browser.

 But rather than relying on detecting which browser a user is running to deter-
mine which path to take, we’ll use the preferred technique known as object detec-
tion. In this technique, we try to figure out what the browser’s capabilities are, not
which browser is being used. Object detection results in more robust code because
it can work in any browser that supports the tested capability.

 The code of listing 8.1 shows a typical idiom used to instantiate an instance of
XHR using this technique.

var xhr;
if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
}
else if (window.ActiveXObject) {
 xhr = new ActiveXObject("Msxml2.XMLHTTP");
}
else {
 throw new Error("Ajax is not supported by this browser");
}

After creation, the XHR instance sports a conveniently consistent set of properties
and methods across all supporting browser instances. These properties and
methods are shown in table 8.1, and the most commonly used of these will be dis-
cussed in the sections that follow.

 With an instance created, let’s look at what it takes to set up and fire off the
request to the server.

Listing 8.1 Object detection resulting in code that can deal with many browsers

Tests to see if
XHR is defined

Tests to see if
ActiveX is present

Throws error if there’s no XHR support

220 CHAPTER 8
Talk to the server with Ajax
 1

Table 8.1 XHR methods and properties

Methods Description

abort() Causes the currently executing request to be cancelled.

getAllResponseHeaders() Returns a single string containing the names and values of all
response headers.

getResponseHeader(name) Returns the value of the named response header.

open(method,url,async,
 username,password)

Sets the method and destination URL of the request. Option-
ally, the request can be declared synchronous, and a username
and password can be supplied for requests requiring container-
based authentication.

send(content) Initiates the request with the specified (optional) body content.

setRequestHeader(name,value) Sets a request header using the specified name and value.

Properties Description

onreadystatechange Assigns the event handler used when the state of the
request changes.

readyState An integer value that indicates the state of the request
as follows:
■ 0—Uninitialized
■ 1—Loading
■ 2—Loaded
■ 3—Interactive
■ 4—Complete

responseText The body content returned in the response.

responseXML If the body content is XML, the XML DOM created from the
body content.

status Response status code returned from the server. For example:
200 for success or 404 for not found. See the HTTP
Specification1 for the full set of codes.

statusText The status text message returned by the response.

1 http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

1

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Brushing up on Ajax 221
8.1.2 Initiating the request

Before we can send a request to the server, we need to do the following setup steps:

1 Specify the HTTP method such as (POST or GET)

2 Provide the URL of the server-side resource to be contacted

3 Let the XHR instance know how it can inform us of its progress

4 Provide any body content for POST requests

We set up the first two items by calling the open() method of XHR as follows:

xhr.open('GET','/some/resource/url');

Note that this method does not cause the request to be sent to the server. It merely
sets up the URL and HTTP method to be used. The open() method can also be
passed a third Boolean parameter that specifies if the request is to be asynchro-
nous (if true, which is the default) or synchronous (if false). There’s seldom a
good reason not to make the request asynchronous (even if it means we don’t have
to deal with callback functions); after all, the asynchronous nature of the request
is usually the whole point of making a request in this fashion.

 Third, we provide a means for the XHR instance to tap us on the shoulder to
let us know what’s going on; we accomplish this by assigning a callback function
to the onreadystatechange property of the XHR object. This function, known as
the ready state handler, is invoked by the XHR instance at various stages of its pro-
cessing. By looking at the settings of the various other properties of XHR, we can
find out exactly what’s going on with the request. We’ll take a look at how a typical
ready state handler operates in the next section.

 The last steps to initiating the request are to provide any body content for
POST requests and send it off to the server. Both of these are accomplished via the
send() method. For GET requests, which typically have no body, no body content
parameter is passed as follows:

xhr.send(null);

When request parameters are passed to POST requests, the string passed to the
send() method must be in the proper format (which we might think of as query
string format) in which the names and values must be properly URI-encoded. URI
encoding is beyond the scope of this section (and as it turns out, jQuery is going
to handle all of that for us), but if you’re curious, do a web search for the term
encodeURIComponent, and you’ll be suitably rewarded.

222 CHAPTER 8
Talk to the server with Ajax
 An example of such a call is as follows:

xhr.send('a=1&b=2&c=3');

Now let’s see what the ready handler is all about.

8.1.3 Keeping track of progress

An XHR instance informs us of its progress through the ready state handler. This
handler is established by assigning a reference to the function to serve as the
ready handler to the onreadystatechange property of the XHR instance.

 Once the request is initiated via the send() method, this callback will be
invoked numerous times as the request makes transitions through its various
states. The current state of the request is available as a numeric code in the
readyState property (see the description of this property in table 8.1).

 That’s nice, but more times than not, we’re only interested in when the request
completes and whether it was successful or not. So frequently, we’ll see ready han-
dlers implemented using the pattern shown in listing 8.2.

xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status >= 200 &&
 xhr.status < 300) {
 //success
 }
 else {
 //error
 }
 }
}

This pattern ignores all but the completed state and, once complete, examines
the value of the status property to determine if the request succeeded or not.
The HTTP Specification defines all status codes in the 200 to 299 range as success
and those with values of 300 or above as various types of failures.

 We should note one thing about this ready handler; it referenced the XHR
instance through a top-level variable. But shouldn’t we expect the instance to be
passed to the handler as a parameter?

 Well, we could have expected that, but that’s not what happens. The instance
must be located by some other means, and that’s usually a top-level (global)

Listing 8.2 Writing the ready state handler to ignore all but the completed state

Ignores all but
completed state

Branches on
response status

Executes on
success

Executes
on failure

http://localhost:8080/chapter7/test.jsp
http://localhost:8080/chapter7/test.jsp
http://localhost:8080/chapter7/test.jsp
http://localhost:8080/chapter7/test.jsp

Brushing up on Ajax 223
variable. This could be a problem when we want to have more than one request
firing simultaneously. Luckily, we shall see that the jQuery Ajax API handily solves
this problem for us.

 Let’s explore how to deal with the response from a completed request.

8.1.4 Getting the response

Once the ready handler has determined that the readyState is complete and that
the request completed successfully, the body of the response can be retrieved
from the XHR instance.

 Despite the moniker Ajax (where the X stands for XML), the format of the
response body can be any text format; it’s not limited to XML. In fact, most of
the time, the response to Ajax requests is a format other than XML. It could be
plain text or, perhaps, an HTML fragment; it could even be a text representation
of a JavaScript object or array in JavaScript Object Notation (JSON) format.

 Regardless of its format, the body of the response is available via the response-
Text property of the XHR instance (assuming that the request completes suc-
cessfully). If the response indicates that the format of its body is XML by including
a content-type header specifying a MIME type of text/xml (or any XML MIME type),
the response body will be parsed as XML. The resulting DOM will be available in
the responseXML property. JavaScript (and jQuery itself, using its selector API) can
then be used to process the XML DOM.

 Processing XML on the client isn’t rocket science, but—even with jQuery’s
help—it can still be a pain. Although there are times when nothing but XML will
do for returning complex hierarchical data, frequently page authors will use
other formats when the full power (and corresponding headache) of XML isn’t
absolutely necessary.

 But some of those other formats aren’t without their own pain. When JSON is
returned, it must be converted into its runtime equivalent. When HTML is returned,
it must be loaded into the appropriate destination element. And what if the
HTML markup returned contains <script> blocks that need evaluation? We’re
not going to deal with these issues in this section because it isn’t meant to be a
complete Ajax reference and, more importantly, because we’re going to find out
that jQuery handles most of these issues on our behalf.

 A diagram of this whole process is shown in figure 8.1.
 In this short overview of Ajax, we’ve identified the following pain points that

page authors using Ajax need to deal with:

http://localhost:8080/chapter7/test.jsp
http://localhost:8080/chapter7/test.jsp
http://localhost/chapter7/test.php

224 CHAPTER 8
Talk to the server with Ajax
■ Instantiating an XHR object requires browser-specific code.
■ Ready handlers need to sift through a lot of uninteresting state changes.
■ Ready handlers don’t automatically get a reference to invoking XHR

instances.
■ The response body needs to be dealt with in numerous ways depending

upon its format.

The remainder of this chapter will describe how the jQuery Ajax commands and
utility functions make Ajax a lot easier (and cleaner) to use on our pages. There
are a lot of choices in the jQuery Ajax API, and we’ll start with some of the sim-
plest and most often-used tools.

8.2 Loading content into elements

Perhaps one of the most common uses of Ajax is to grab a chunk of content from
the server and stuff it into the DOM at some strategic location. The content
could be an HTML fragment that’s to become the child content of a target con-
tainer element, or it could be plain text that will become the content of the tar-
get element.

 Let’s imagine that, on page load, we want to grab a chunk of HTML from the
server using a resource named /serverResource and make it the content of a

Figure 8.1 The life cycle of an Ajax request as it makes its way from the client to the server
and back again

Loading content into elements 225
<div> element with an id of someContainer. For the final time in this chapter, let’s
look at how we do this without jQuery assistance. Using the patterns we set out
earlier in this chapter, the body of the onload handler is as shown in listing 8.3.
The full HTML file for this example can be found in the file chapter8/list-
ing.8.3.html.

Setting up for the examples

Unlike any of the example code that we’ve examined so far in this book, the code
examples for this chapter require the services of a web server to receive the
requests to server-side resources. Because it’s well beyond the scope of this book
to discuss the operation of server-side mechanisms, we’re going to set up some
minimal server-side resources that send data back to the client without worrying
about doing it for real. We’ll treat the server as a black box; we don’t need or want
to know how it’s doing its job.

To enable the serving of these smoke and mirrors resources, you’ll need to set
up a web server of some type. For your convenience, the server-side resources
have been set up in two formats: Java Server Pages (JSP) and some in PHP. The
JSP resources can be used if you’re running (or wish to run) a servlet/JSP engine;
if you want to enable PHP for your web server of choice, you can use the
PHP resources.

If you want to use the JSP resources but aren’t already running a suitable server,
instructions on setting up the free Tomcat web server are included with the sample
code for this chapter. You’ll find these instructions in the file chapter8/tomcat.pdf.
And don’t be concerned; it’s easier than you might think!

The examples found in the downloaded code are set up to use the JSP resources. If
you want to switch the examples to use PHP, do a search-and-replace of all
instances of the string .jsp with .php. Note that not all server-side resources have
been translated from JSP to PHP, but the existing PHP resources should be enough
to let the PHP-savvy fill in the rest of the resources.

Once you have the server of your choice set up, you can hit the URL http://local-
host:8080/chapter8/test.jsp (to check your Tomcat installation) or http://localhost/
chapter8/test.php (to check your PHP installation). The latter assumes that you
have set up your web server (Apache or any other you have chosen) to use the
example code root folder as a document base.

When you can successfully view the appropriate test page, you’ll be ready to run
the examples in this chapter.

http://localhost:8080/chapter8/test.jsp
http://localhost:8080/chapter8/test.jsp
http://localhost/chapter8/test.php
http://localhost/chapter8/test.php

226 CHAPTER 8
Talk to the server with Ajax
var xhr;

if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
}
else if (window.ActiveXObject) {
 xhr = new ActiveXObject("Msxml2.XMLHTTP");
}
else {
 throw new Error("Ajax is not supported by this browser");
}

xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status >= 200 && xhr.status < 300) {
 document.getElementById('someContainer')
 .innerHTML = xhr.responseText;
 }
 }
}

xhr.open('GET','/serverResource');
xhr.send();

Although there’s nothing tricky going on here, that’s a non-trivial amount of
code; 19 lines or so—even accounting for blank lines that we added for readabil-
ity and one line that we artificially broke in two so that it would fit on the page.

 The equivalent code we’d write as the body of a ready handler using jQuery is
as follows:

$('#someContainer').load('/serverResource');

We’re betting that we know which code you’d rather write! Let’s look at the
jQuery command that we used in this statement.

8.2.1 Loading content with jQuery

The simple jQuery statement from the previous section easily loads content from
the server-side resource using one of the most basic, but useful, jQuery Ajax com-
mands: load(). The full syntax description of this command is as follows:

Listing 8.3 Using native XHR to include an HTML fragment

Loading content into elements 227
Though simple to use, this command has some important nuances. For example,
when the parameters parameter is used to supply the request parameters, the
request is made using the POST HTTP method; otherwise, a GET request is initi-
ated. If we want to make a GET request with parameters, we can include them as a
query string on the URL. But be aware that when we do so, we’re responsible for
ensuring that the query string is properly formatted and that the names and val-
ues of the request parameters are URI-encoded.

 Most of the time, we’ll use the load() command to inject the complete
response into whatever elements are contained within the wrapped set, but some-
times we may want to filter elements coming back as the response. If we want to
filter response elements, jQuery allows us to specify a selector on the URL that
will be used to limit which response elements are injected into the wrapped ele-
ments by suffixing the URL with a space and pound sign character (#) followed
by the selector.

 For example, to filter response elements so that only <div> instances are
injected, we write

$('.injectMe').load('/someResource #div');

If the request parameters come from form controls, a helpful command in build-
ing a query string is serialize(), whose syntax is as follows:

Command syntax: load

load(url,parameters,callback)

Initiates an Ajax request to the specified URL with optional parameters. A callback function
can be specified that’s invoked when the request completes. The response text replaces the
content of all matched elements.

Parameters
url (String) The URL of the server-side resource to which the request is sent.

parameters (Object) An object whose properties are serialized into properly encoded
parameters to be passed to the request. If specified, the request is made
using the POST method. If omitted, the GET method is used.

callback (Function) A callback function invoked after the response data has been
loaded into the elements of the matched set. The parameters passed to
this function are the response text, the status code, and the XHR instance.

Returns
The wrapped set.

228 CHAPTER 8
Talk to the server with Ajax
The serialize() command is smart enough to only collect information from
form control elements in the wrapped set, and only from those qualifying ele-
ments that are deemed successful. A successful control is one that would be
included as part of a form submission according to the rules of the HTML Speci-
fication.2 Controls such as unchecked check boxes and radio buttons, dropdowns
with no selections, and any disabled controls are not considered successful and do
not participate in the submission. They are also ignored by serialize().

 If we’d rather get the form data in a JavaScript array (as opposed to a query
string), jQuery provides the serializeArray() method.

The array returned by serializeArray() is composed of anonymous object
instances, each of which contains a name property and a value property that con-
tain the name and value of each successful form control.

 With the load() command at our disposal, let’s put it to work solving a com-
mon real-world problem that many web developers encounter.

Command syntax: serialize

serialize()

Creates a properly formatted and encoded query string from all successful form elements in
the wrapped set

Parameters
none

Returns
The formatted query string

2 http://www.w3.org/TR/html401/interact/forms.html#h-17.13.2

Command syntax: serializeArray

serializeArray()

Collects the values of all successful form controls into an array of objects containing the
names and values of the controls

Parameters
none

Returns
The array of form data

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.2

Loading content into elements 229
8.2.2 Loading dynamic inventory data

Often in business applications, particularly for retail web sites, we want to grab
real-time data from the server to present our users with the most up-to-date infor-
mation. After all, we wouldn’t want to mislead customers into thinking that they
can buy something that’s not available, would we?

 In this section, we’ll begin to develop a page that we’ll add onto through-
out the course of the chapter. This page is part of a web site for a fictitious firm
named The Boot Closet, an online retailer of overstock and closeout motorcy-
cle boots. Unlike the fixed product catalogs of other online retailers, this inven-
tory of overstock and closeouts is fluid, depending on what deals the proprietor
was able to make that day and what’s already been sold from the inventory.
So it will be important for us to always make sure that we’re displaying the lat-
est info!

 To begin our page (which will ignore site navigation and other boilerplate to
concentrate on the lesson at hand), we want to present our customers with a drop-
down containing the styles that are currently available and, on a selection, display
detailed information regarding that style to the customer. On initial display, the
page will look as shown in figure 8.2.

 After the page first loads, a pre-loaded dropdown with the list of the styles cur-
rently available in the inventory and labeled fields to show the item data when a

Figure 8.2 The initial display of our item information page

230 CHAPTER 8
Talk to the server with Ajax
style is selected will be displayed. When no style is selected, we’ll display dashes as
a placeholder for the data.

 Let’s start by defining the HTML markup that will create this page structure
as follows:

<body id="bootCloset1">

 <form action="" id="orderForm">
 <div id="detailFormContainer">
 <h1>Choose your boots</h1>
 <div>
 <label>Please choose a style:</label>

 <select id="styleDropdown">
 <option value="">Please choose a boot style</option>
 <option value="7177382">Caterpillar Tradesman Work Boot</option>
 <option value="7269643">Caterpillar Logger Boot</option>
 <option value="7141832">Chippewa 17" Engineer Boot</option>
 <option value="7141833">Chippewa 17" Snakeproof Boot</option>
 <option value="7173656">Chippewa 11" Engineer Boot</option>
 <option value="7141922">Chippewa Harness Boot</option>
 <option value="7141730">Danner Foreman Pro Work Boot</option>
 <option value="7257914">Danner Grouse GTX Boot</option>
 </select>
 </div>
 <div id="detailsDisplay"></div>
 </div>
 </form>
</body>

Not much to it, is there?
 We’ve defined all the visual rendition information in an external stylesheet,

and we’ve included no behavioral aspects in the HTML markup in order to
adhere to the precepts of Unobtrusive JavaScript.

 The options for the styles dropdown have been pre-populated. In all the
examples in this chapter, we assume that we’re using server-side resources to
power our web application; communicating with these resources is, after all, the
whole point of Ajax. So even though the example uses a simple HTML file, we
assume that it was originally generated by some server-side templating resources
such as a JSP or PHP page and that the product data was dynamically included
from the inventory database (or wherever it’s stored).

 Also, the <div> container defined (with an id of detailsDisplay) to hold the
details display is completely empty! We’re going to rely on the server-side tem-
plating resource to provide the dynamic content, so we don’t want to specify it

Loading content into elements 231
here and in the JSP (or PHP) page; having the structure defined in two places
would necessitate keeping them in sync. Bad idea!

 On page load, we grab the empty version of the content from the server so
that the structure only needs to be defined in one place. Let’s look at our ready
handler now.

$(function(){
 $('#styleDropdown')
 .change(function(){
 var styleValue = $(this).val();
 $('#detailsDisplay').load(
 'getDetails.jsp',
 { style: styleValue }
);
 })
 .change();
});

In this ready handler, we wrap the boot style dropdown and bind a change han-
dler b to it. In the callback for the change handler, which will be invoked when-
ever a customer changes the selection, we obtain the current value of the selection
by applying the val() command to this, which in the handler is the <select> ele-
ment that triggered the event. We then apply the load() command c to the
detailsDisplay element to initiate an Ajax callback to a server-side resource, get-
Details.jsp, passing the style value as a parameter named style.

 As the final act of the ready handler, we call the change() command d to
invoke the change handler. This issues a request with the default style selection of
“” (the empty string), causing the server-side resource to return the construct that
results in the display that was shown in figure 8.2.

 After the customer chooses an available boot style, the page will appear as
shown in figure 8.3.

 The most notable operation performed in the ready handler is the use of the
load() command to quickly and easily fetch a snippet of HTML from the server
and place it within the DOM as the child of an existing element. This command is
extremely handy and well suited to web applications powered by servers capable
of server-side templating such as JSP and PHP.

 Listing 8.4 shows the complete code for our Boot Closet page, which can be
found in the file chapter8/bootcloset/boot.closet.1.html. We’ll be revisiting this
page to add further capabilities to it as we progress through this chapter.

Wraps style dropdown
and binds change handler

b

Loads data for
selected style

c

Triggers change
handler

d

232 CHAPTER 8
Talk to the server with Ajax
<html>
 <head>
 <title>Welcome to The Boot Closet™</title>
 <link rel="stylesheet" type="text/css" href="boot.closet.css">
 <script type="text/javascript"
 src="../../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#styleDropdown')
 .change(function(){
 var styleValue = $(this).val();
 $('#detailsDisplay').load(
 'getDetails.jsp',

Listing 8.4 The first phase of our Boot Closet retailer page

Figure 8.3 The server-side resource returns a pre-formatted fragment of HTML to display the
boot information.

Making GET and POST requests 233
 { style: styleValue }
);
 })
 .change();
 });
 </script>
 </head>

 <body id="bootCloset1">

 <form action="" id="orderForm">
 <div id="detailFormContainer">
 <h1>Choose your boots</h1>
 <div>
 <label>Please choose a style:</label>

 <select id="styleDropdown">
 <option value="">Please choose a boot style</option>
 <option value="7177382">
 Caterpillar Tradesman Work Boot</option>
 <option value="7269643">Caterpillar Logger Boot</option>
 <option value="7141832">Chippewa 17" Engineer Boot</option>
 <option value="7141833">Chippewa 17" Snakeproof Boot</option>
 <option value="7173656">Chippewa 11" Engineer Boot</option>
 <option value="7141922">Chippewa Harness Boot</option>
 <option value="7141730">Danner Foreman Pro Work Boot</option>
 <option value="7257914">Danner Grouse GTX Boot</option>
 </select>
 </div>
 <div id="detailsDisplay"></div>
 </div>
 </form>
 </body>
</html>

The load() command is tremendously useful when we want to grab a fragment
of HTML to stuff into the content of an element (or set of elements). But there
may be times when we either want more control over how the Ajax request gets
made, or we need to do something more esoteric with the returned data in the
response body.

 Let’s continue our investigation of what jQuery has to offer for these more
complex situations.

8.3 Making GET and POST requests

The load() command makes either a GET or a POST request, depending on
whether it’s called with request data, but sometimes we want to have a bit more

234 CHAPTER 8
Talk to the server with Ajax
control over which HTTP method gets used. Why should we care? Because,
maybe, our servers care.

 Web authors have traditionally played fast and loose with the GET and POST
methods, using one or the other without heeding how the HTTP protocol intends
for these methods to be used. The intentions for each method are as follows:

■ GET requests—Intended to be idempotent; the state of the server and the
model data for the application should be unaffected by a GET operation.
The same GET operation, made again and again and again, should return
exactly the same results (assuming no other force is at work changing the
server state).

■ POST requests—Can be non-idempotent; the data they send to the server can
be used to change the model state of the application; for example, adding
records to a database or removing information from the server.

A GET request should, therefore, be used for getting data (as its name implies). It
may be required to send some data to the server for the GET; for example, to iden-
tify a style number to retrieve color information. But when data is being sent to
the server in order to effect a change, POST should be used.

WARNING This is more than theoretical. Browsers make decisions about caching
based upon the HTTP method used; GET requests are highly subject to
caching. Using the proper HTTP method ensures that you don’t get
cross-ways with the browser’s expectations regarding the intentions of
the requests.

All that being said, jQuery gives us a few means to make GET requests, which
unlike load(), aren’t implemented as jQuery commands for a wrapped set. Utility
functions are provided to make various types of GET requests. As we pointed out in
chapter 1, jQuery utility functions are top-level functions that are namespaced
with the jQuery global name or its $ alias.

 Let’s look at each of these functions.

8.3.1 Getting data with jQuery

When we want to fetch some data from the server and decide what to do with it
ourselves (rather than letting the load() command set it as the content of an
HTML element), we can use the $.get() utility function. Its syntax is as follows:

Making GET and POST requests 235
Let’s look at a simple use of this function as shown in listing 8.5 (which can be
found in the file chapter8/$.get.html).

<html>
 <head>
 <title>$.get() Example</title>
 <link rel="stylesheet" type="text/css" href="../common.css">
 <script type="text/javascript"
 src="../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#testButton').click(function(){
 $.get(
 'reflectData.jsp',
 {a:1, b:2, c:3},
 function(data) { alert(data); }
);
 });
 });
 </script>
 </head>

 <body>
 <button type="button" id="testButton">Click me!</button>
 </body>
</html>

Command syntax: $.get

$.get(url,parameters,callback)

Initiates a GET request to the server using the specified URL with any passed parameters as
the query string.

Parameters
url (String) The URL of the server-side resource to contact via the GET method.

parameters (Object|String) An object whose properties serve as the name/value pairs
used to construct a query string to be appended to the URL, or a preformat-
ted and encoded query string.

callback (Function) A function invoked when the request completes. The response
body is passed as the first parameter to this callback, and the status as
the second.

Returns
The XHR instance.

Listing 8.5 Using $.get() utility function to fetch data from the server

Gets data from
the server

b

236 CHAPTER 8
Talk to the server with Ajax
In this simple page, we create a button and instrument it to initiate a call to
$.get() b once it’s clicked. The GET request is made to the server resource at
reflectData.jsp (which returns a text snippet showing the values that were
passed to it as request parameters), specifying values for request parameters a, b,
and c. The callback is passed the fetched data and can do whatever it wants with
it. In this case, it merely issues an alert displaying that data.

 When this HTML page is loaded into a browser and the button is clicked, we
see the display of figure 8.4.

If the response contains an XML document, the document will be parsed, and the
data parameter passed to the callback will be the resulting DOM.

 XML is great when we need its flexibility and our data is hierarchical in nature,
but it can be painful to digest. Let’s see another jQuery utility function that’s
quite useful when our data needs are more basic.

8.3.2 Getting JSON data

As stated in the previous section, when an XML document is returned from the
server, the XML document is automatically parsed, and the resulting DOM is made
available to the callback function. When XML is overkill or otherwise unsuitable as
a data transfer mechanism, JSON is often used in its place; one reason is that JSON
is easy to digest in client-side script. Well, jQuery makes it even easier.

 For times when we know that the response will be JSON, the $.getJSON() utility
function automatically parses the returned JSON string and makes the resulting

Figure 8.4 The $.get() utility function fetches data from the server that we can
manipulate as we please, including only showing it in an alert.

Making GET and POST requests 237
JavaScript data item available to its callback. The syntax of this utility function is
as follows:

This function is great for those times when we want to get data from the server
without the overhead of dealing with XML. Let’s see an example that puts it to
work for us.

Loading cascading dropdowns
When creating Rich Internet Applications, we often encounter the need to set the
options in a dropdown control to values that are dependent on the setting of
some other control, frequently another dropdown. A common example is choos-
ing a state or province from one dropdown that causes a subsequent dropdown to
be loaded with the list of cities in that state or province.

 Such a set of controls has come to be known by the term dependent dropdowns—
or, sometimes, cascading dropdowns—and has become a poster child for Ajax; it’s
used as an example in almost every Ajax book in existence, as well as all over the
Internet. In this section, we’ll look at how to solve this canonical problem and cre-
ate a set of elements by leveraging the jQuery $.getJSON() utility function.

 For this example, we’ll return to The Boot Closet page that we set up in
section 8.2.2 and extend its capabilities. As originally written, the page allows
our customers to find out which boots are available and the detailed informa-
tion associated with the available boots, but they have no way to pick a pair for

Command syntax: $.getJSON

$.getJSON(url,parameters,callback)

Initiates a GET request to the server using the specified URL with any passed parameters as
the query string. The response is interpreted as a JSON string, and the resulting data is
passed to the callback function.

Parameters
url (String) The URL of the server-side resource contacted via the GET method.

parameters (Object|String) An object whose properties serve as the name/value pairs
used to construct a query string to be appended to the URL, or a preformat-
ted and encoded query string.

callback (Function) A function invoked when the request completes. The data value
resulting from digesting the response body as a JSON string is passed as
the first parameter to this callback, and the status as the second.

Returns
The XHR instance.

238 CHAPTER 8
Talk to the server with Ajax
purchase. We like purchases, so our next step is to add controls that let them
pick color and size.

 Remember that we’re a closeout business—that means we don’t always have a
full line of any one style available. Only certain colors are available from day to
day, and only certain sizes are available in those colors. So we can’t hard-code lists
of colors and sizes; we need to obtain these lists dynamically from our real-time
inventory database.

 To allow the customer to select colors and sizes, we’ll add two dropdowns to
our form: one for color and one for size. The initial appearance of our enhanced
form is shown in figure 8.5, and you can load the HTML page for this example
from the file chapter8/bootcloset/boot.closet.2.html.

The dropdown element for choosing the boot style is enabled (and pre-filled with
the available styles as we discussed earlier), but the color and size controls are dis-
abled and empty. We can’t pre-fill these dropdowns because we don’t know what
colors to display until a style is picked, and we don’t know what sizes to display
until we know both the style and the color.

 Given that, here are the things that we wish to accomplish for these controls:

■ When a style is selected, the color dropdown should be enabled and filled
with the colors available for the selected style.

Figure 8.5 The initial state of the order form with the dependent dropdowns in an empty and
disabled state

Making GET and POST requests 239
■ When both a style and a color are selected, the size dropdown should be
enabled and display the sizes available for the combination of style and
color.

■ The dropdowns always need to be consistent with each other. We need
to ensure that, regardless of the order in which the user goes about manip-
ulating the controls, a combination that’s not available in inventory never
be shown.

Let’s roll up our sleeves and get to work.
 To begin, let’s lay out the additional HTML markup for the page body. Here’s

the HTML for the new page with significant changes and additions to the code
highlighted in bold:

<body id="bootCloset2">

 <form action="" id="orderForm">
 <div id="detailFormContainer">
 <h1>Choose your boots</h1>
 <div id="cascadingDropdowns">
 <div>
 <label>Please choose a style:</label>

 <select id="styleDropdown">
 <option value="">Please choose a boot style</option>
 <option value="7177382">
 Caterpillar Tradesman Work Boot</option>
 <option value="7269643">Caterpillar Logger Boot</option>
 <option value="7141832">Chippewa 17" Engineer Boot</option>
 <option value="7141833">Chippewa 17" Snakeproof Boot</option>
 <option value="7173656">Chippewa 11" Engineer Boot</option>
 <option value="7141922">Chippewa Harness Boot</option>
 <option value="7141730">Danner Foreman Pro Work Boot</option>
 <option value="7257914">Danner Grouse GTX Boot</option>
 </select>
 </div>
 <div>
 <label>Color:</label>

 <select id="colorDropdown" disabled="disabled"></select>
 </div>
 <div>
 <label>Size:</label>

 <select id="sizeDropdown" disabled="disabled"></select>
 </div>
 </div>
 <div id="detailsDisplay"></div>
 </div>
 </form>
</body>

240 CHAPTER 8
Talk to the server with Ajax
We’ve changed the id of the <body> tag (primarily so that we can use it as a switch
within the CSS stylesheet used by multiple versions of the page) and added the
two empty and disabled dropdowns.

 To add the new behaviors associated with these controls to the page, we also
need to enhance our ready handler. The new ready handler, once again with
changes highlighted in bold, is as follows:

$(function(){
 $('#styleDropdown')
 .change(function(){
 var styleValue = $(this).val();
 $('#detailsDisplay').load(
 'getDetails.jsp',
 { style: styleValue }
);
 adjustColorDropdown();
 })
 .change();
 $('#colorDropdown')
 .change(adjustSizeDropdown);
});

These changes are minor but significant. First, we make a call to a function
named adjustColorDropdown() within the change listener for the styles dropdown
b. This will trigger any change required for the state and content based upon the
value of the style selected.

 We then add a listener to the new colors dropdown c to adjust the state and
content of the size dropdown when the color dropdown changes value. This lis-
tener is set to be a function named adjustSizeDropdown().

 That’s all simple enough, but we still haven’t written the functions that effect
the changes to the state and content of the dependent dropdowns. Let’s tackle the
color dropdown first with the definition of the adjustColorDropdown() function.

function adjustColorDropdown() {
 var styleValue = $('#styleDropdown').val();
 var dropdownSet = $('#colorDropdown');
 if (styleValue.length == 0) {
 dropdownSet.attr("disabled",true);
 $(dropdownSet).emptySelect();
 adjustSizeDropdown();
 }
 else {
 dropdownSet.attr("disabled",false);
 $.getJSON(
 'getColors.jsp',
 {style:styleValue},

Triggers state adjustment
of color dropdown

b

Binds change listener
to color dropdown

c

Enables or disables
the color dropdown

b

Empties disabled dropdown and
clears dependent dropdown

c

Gets color values
based on style

d

Making GET and POST requests 241
 function(data){
 $(dropdownSet).loadSelect(data);
 adjustSizeDropdown();
 }
);
 }
}

After obtaining the value of the style dropdown and tucking it away in variable
styleValue for later reference, we form a wrapped set consisting of the color
dropdown and store it in variable dropdownSet. We’re going to reference this set
repeatedly throughout the remainder of the function, and we don’t want to incur
the overhead of re-creating it every time we need it.

 The decision whether the color dropdown should be enabled or disabled is
made next b, depending on the value of the style dropdown—disabled if the
value is empty, enabled if otherwise. If the color dropdown is disabled, it’s also
emptied through use of the emptySelect() command c.

 Wait a minute! What emptySelect() command?
 Before you start feverishly thumbing through the previous chapters searching

for this command, don’t bother; it doesn’t exist—at least not yet. This command
is one that we’ll create ourselves in the next section. For now, be aware that this
command will cause all the options in the color dropdown to be removed.

 After we disable and empty the color dropdown, we call the adjustSizeDrop-
down() function c to make sure that any appropriate adjustments are made to its
dependent size dropdown.

 If the color dropdown is enabled, it needs to be filled with the values that are
appropriate for the value that is selected from the styles dropdown. To obtain
those values, we use the services of the $.getJSON() function, d specifying a
server-side resource of getColors.jsp and passing it the selected style value via
a request parameter named style.

 When the callback function is invoked (after the Ajax request returns its
response), the parameter passed to the callback is the JavaScript value resulting
from the evaluation of the response as a JSON construct. A typical JSON construct
returned from getColors.jsp is as follows:

[
 {value:'',caption:'choose color'},
 {value:'bk',caption:'Black Oil-tanned'},
 {value:'br',caption:'Black Polishable'}
]

Triggers adjustment of
dependent dropdowne

242 CHAPTER 8
Talk to the server with Ajax
This notation defines an array of objects, each with two properties: value and
caption. These objects define the value and display text of the options to be
added to the color dropdown. We populate the dropdown by passing the evalu-
ated JSON value to the loadSelect() command applied to the dropdown. Yes,
loadSelect() is another custom command that we’ll define ourselves.

 Finally, whenever the value of the color dropdown changes, we need to make
sure that the size dropdown reflects the new value; we call the adjustSizeDrop-
down() function e to apply a series of operations to the size dropdown similar to
the routine for the color dropdown.

 The definition of that adjustSizeDropdown() function is as follows:

function adjustSizeDropdown() {
 var styleValue = $('#styleDropdown').val();
 var colorValue = $('#colorDropdown').val();
 var dropdownSet = $('#sizeDropdown');
 if ((styleValue.length == 0)||(colorValue.length == 0)) {
 dropdownSet.attr("disabled",true);
 $(dropdownSet).emptySelect();
 }else {
 dropdownSet.attr("disabled",false);
 $.getJSON(
 'getSizes.jsp',
 {style:styleValue,color:colorValue},
 function(data){$(dropdownSet).loadSelect(data)}
);
 }
}

It should be no surprise that the structure of this function is strikingly similar to
that of the adjustColorDropdown() function. Aside from operating upon the size
dropdown rather than the color dropdown, this function looks at both the values of
the style and color dropdowns to decide whether the size dropdown is to be
enabled or disabled. In this case, both the style and color values must not be empty
for the size dropdown to become enabled.

 If enabled, the size dropdown is loaded—once again using $.getJSON()—from
a server-side resource named getSizes.jsp, which is passed both the style and
color values.

 With these functions in place, our cascading dropdowns are now operational.
Figure 8.5 showed us what the page looks like after its initial display, and
figure 8.6 shows the relevant portion of the page after a style has been selected
(top part of figure) and after a color has been selected (bottom part of figure).

 The full code for this page is shown in listing 8.6 and can be found in the file
chapter8/bootcloset/boot.closet.2.html.

Making GET and POST requests 243
<html>
 <head>
 <title>Welcome to The Boot Closet™</title>
 <link rel="stylesheet" type="text/css" href="boot.closet.css">
 <script type="text/javascript"
 src="../../scripts/jquery-1.2.1.js"></script>
 <script type="text/javascript"
 src="jquery.jqia.selects.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#styleDropdown')
 .change(function(){
 var styleValue = $(this).val();
 $('#detailsDisplay').load(
 'getDetails.jsp',
 { style: styleValue }
);
 adjustColorDropdown();
 })
 .change();
 $('#colorDropdown')

Listing 8.6 The Boot Closet page augmented with cascading dropdowns

Figure 8.6 Selecting a style enables the color dropdown (top), and selecting a color enables the
size dropdown (bottom).

244 CHAPTER 8
Talk to the server with Ajax
 .change(adjustSizeDropdown);
 });

 function adjustColorDropdown() {
 var styleValue = $('#styleDropdown').val();
 var dropdownSet = $('#colorDropdown');
 if (styleValue.length == 0) {
 dropdownSet.attr("disabled",true);
 $(dropdownSet).emptySelect();
 adjustSizeDropdown();
 } else {
 dropdownSet.attr("disabled",false);
 $.getJSON(
 'getColors.jsp',
 {style:styleValue},
 function(data){
 $(dropdownSet).loadSelect(data);
 adjustSizeDropdown();
 }
);
 }
 }

 function adjustSizeDropdown() {
 var styleValue = $('#styleDropdown').val();
 var colorValue = $('#colorDropdown').val();
 var dropdownSet = $('#sizeDropdown');
 if ((styleValue.length == 0)||(colorValue.length == 0)) {
 dropdownSet.attr("disabled",true);
 $(dropdownSet).emptySelect();
 }else {
 dropdownSet.attr("disabled",false);
 $.getJSON(
 'getSizes.jsp',
 {style:styleValue,color:colorValue},
 function(data){$(dropdownSet).loadSelect(data)}
);
 }
 }
 </script>
 </head>

 <body id="bootCloset2">

 <form action="" id="orderForm">
 <div id="detailFormContainer">
 <h1>Choose your boots</h1>
 <div id="cascadingDropdowns">
 <div>
 <label>Please choose a style:</label>

 <select id="styleDropdown">

Making GET and POST requests 245
 <option value="">Please choose a boot style</option>
 <option value="7177382">
 Caterpillar Tradesman Work Boot</option>
 <option value="7269643">Caterpillar Logger Boot</option>
 <option value="7141832">Chippewa 17" Engineer Boot</option>
 <option value="7141833">Chippewa 17" Snakeproof Boot</option>
 <option value="7173656">Chippewa 11" Engineer Boot</option>
 <option value="7141922">Chippewa Harness Boot</option>
 <option value="7141730">Danner Foreman Pro Work Boot</option>
 <option value="7257914">Danner Grouse GTX Boot</option>
 </select>
 </div>
 <div>
 <label>Color:</label>

 <select id="colorDropdown" disabled="disabled"></select>
 </div>
 <div>
 <label>Size:</label>

 <select id="sizeDropdown" disabled="disabled"></select>
 </div>
 </div>
 <div id="detailsDisplay"></div>
 </div>
 </form>
 </body>
</html>

Before we pat ourselves on the back too hard, we should know that we’re not done
yet. We used custom commands in our functions that we haven’t written yet! Let’s
get back to work…

Writing the custom commands
Our cascading dropdowns example needed to perform two operations on the
select elements (dropdowns) on our page: removing all options from a dropdown
and loading it with options defined within a JavaScript data construct.

 We made the decision to implement these operations as jQuery commands for
two major reasons:

■ We knew that we’d need to perform these operations in multiple places
throughout our page, so we should, at minimum, separate these opera-
tions out into individual functions rather than repeat them in inline code.

■ These operations are general enough to be useful elsewhere on the site
and even in other web applications. Defining and structuring them as
jQuery commands makes a lot of sense.

246 CHAPTER 8
Talk to the server with Ajax
Let’s tackle the emptySelect() command first.

$.fn.emptySelect = function() {
 return this.each(function(){
 if (this.tagName=='SELECT') this.options.length = 0;
 });
}

We learned how to add new jQuery commands in chapter 7, and we apply those
techniques here to augment $.fn with a new function named emptySelect.
Remember that, when such a function is invoked, the function context (this) is the
matched set. By applying each() to the matched set, we iterate through all the ele-
ments in the set, calling the iterator function specified as the parameter to each().

 Within that function, the function context is the individual element for the cur-
rent round of the iteration. We check this element to ensure that it’s a <select>
element, ignoring any other element type, and set the length of the options array
for the element to 0. This is a supported, cross-browser way to remove all options
from the dropdown.

 Note that we return the wrapped set being operated on as the value of the func-
tion, ensuring that this command can participate in any jQuery command chain.

 Easy enough! Now let’s tackle the loadSelect() command.
 We add the following function to the $.fn namespace:

$.fn.loadSelect = function(optionsDataArray) {
return this.emptySelect().each(function(){
 if (this.tagName=='SELECT') {
 var selectElement = this;
 $.each(optionsDataArray,function(index,optionData){
 var option = new Option(optionData.caption,
 optionData.value);
 if ($.browser.msie) {
 selectElement.add(option);
 }
 else {
 selectElement.add(option,null);
 }
 });
 }
 });
}

This command is slightly more involved.
 As the lone parameter to this command, we expect a JavaScript construct as

defined in the previous section—an array of objects, each of which possesses a value
and a caption property that define the options to be added to the <select> element.

Making GET and POST requests 247
 We’ll, once again, iterate through all the elements in the matched set; before
we do that, we empty all <select> elements in the matched set by calling the emp-
tySelect() command that we defined. This removes any options that might be in
the element prior to our adding the new options.

 Within the iterator function, we check the tag name of the elements and
ignore all but <select> elements. For the elements that survive this test, we iterate
through the data array passed to the command, creating a new Option instance
for each array item and adding it to the <select>.

 This addition is problematic because it must be performed in a browser-
specific fashion. The W3C standard defines the add() method so that, in order to
add an option to the end of the <select>, a null must be passed as the second
parameter to add(). We’d think that this would be easily accomplished by omit-
ting the second parameter as in

selectElement.add(option);

But life can’t be that simple. The Safari and Opera browsers work equally well
whether the option is omitted or explicit, but Mozilla-based browsers throw a too-
few-arguments exception when the second parameter is omitted. Adding an
explicit null as the second parameter doesn’t help matters because doing so
causes Internet Explorer to no longer add the new option.

 Catch 22!
 Because there is no single cross-browser way to perform the operation and no

object to perform detection upon to use the preferred technique of object detection,
we’re forced to resort to browser detection. Sigh. At least we have the $.browser
utility flags to make the detection easy.

 Once again, note that the wrapped set is returned as the function’s result.
 The full implementation of these commands can be found in the file chapter8/

bootcloset/jquery.jqia.selects.js and is shown in listing 8.7.

(function($) {
 $.fn.emptySelect = function() {
 return this.each(function(){
 if (this.tagName=='SELECT') this.options.length = 0;
 });
 }

 $.fn.loadSelect = function(optionsDataArray) {
 return this.emptySelect().each(function(){
 if (this.tagName=='SELECT') {

Listing 8.7 The implementation of our custom select commands

248 CHAPTER 8
Talk to the server with Ajax
 var selectElement = this;
 $.each(optionsDataArray,function(index,optionData){
 var option = new Option(optionData.caption,
 optionData.value);
 if ($.browser.msie) {
 selectElement.add(option);
 }
 else {
 selectElement.add(option,null);
 }
 });
 }
 });
 }
})(jQuery);

Between $.get() and $.getJSON(), jQuery gives us some powerful tools when it
comes to making GET requests, but man does not live by GETs alone!

8.3.3 Making POST requests

“Sometimes you feel like a nut, sometimes you don’t.” What’s true of choosing
between an Almond Joy or a Mounds candy bar is also true of making requests to
the server. Sometimes we want to make a GET, but at other times we want (or
need) to make a POST request.

 There are any number of reasons why we might choose a POST over a GET.
First, the intention of the HTTP protocol is that POST will be used for any non-
idempotent requests. Therefore, if our request has the potential to cause a
change in the server-side state, it should be a POST (at least according to HTTP
purists). Accepted practices and conventions aside, a POST operation must some-
times be used when the data to be passed to the server exceeds the small amount
that can be passed by URL in a query string; that limit is a browser-dependent
value. And sometimes, the server-side resource we contact may only support
POST operations, or it might even perform different functions depending upon
whether our request uses the GET or POST method.

 For those occasions when a POST is desired or mandated, jQuery offers the
$.post() utility function, which operates in the exact same fashion as $.get()
except for the HTTP method used. Its syntax is as follows:

Taking full control of an Ajax request 249
Between the load() command and the various GET and POST jQuery Ajax func-
tions, we can exert some measure of control over how our request is initiated and
how we’re notified of its completion. But for those times when we need full con-
trol over an Ajax request, jQuery has a means for us to get as picky as we want.

8.4 Taking full control of an Ajax request

The functions and commands that we’ve seen so far are convenient for many
cases, but there may be times when we want to take control of the nitty-gritty
details into our own hands.

 In this section, we’ll explore how jQuery lets us exert such dominion.

8.4.1 Making Ajax requests with all the trimmings

For those times when we want or need to exert a fine-grained level of control over
how we make Ajax requests, jQuery provides a general utility function for making
Ajax requests named $.ajax(). Under the covers, all other jQuery features that
make Ajax requests eventually use this function to initiate the request. Its syntax is
as follows:

Command syntax: $.post

$.post(url,parameters,callback)

Initiates a POST request to the server using the specified URL with any parameters passed
within the body of the request.

Parameters
url (String) The URL of the server-side resource to contact via the

POST method.

parameters (Object|String) An object whose properties serve as the name/value pairs
used to construct the body of the request, or a preformatted and encoded
query string.

callback (Function) A function invoked when the request completes. The response
body is passed as the single parameter to this callback, and the status as
the second.

Returns
The XHR instance.

250 CHAPTER 8
Talk to the server with Ajax
Looks simple, doesn’t it? But don’t be deceived. The options parameter can spec-
ify a large range of values that can be used to tune the operation of this function.
These options (in order of the likelihood of their use) are defined in table 8.2.

Command syntax: $.ajax

$.ajax(options)

Initiates an Ajax request using the passed options to control how the request is made and
callbacks notified.

Parameters
options (Object) An object instance whose properties define the parameters to this

operation. See table 8.2 for details.

Returns
The XHR instance.

Table 8.2 Options for the $.ajax() utility function

Name Type Description

url String The URL for the request.

type String The HTTP method to use. Usually either POST or GET. If omitted, the default
is GET.

data Object An object whose properties serve as the query parameters to be passed to
the request. If the request is a GET, this data is passed as the query string.
If a POST, the data is passed as the request body. In either case, the
encoding of the values is handled by the $.ajax() utility function.

dataType String A keyword that identifies the type of data that’s expected to be returned by the
response. This value determines what, if any, post-processing occurs upon the
data before being passed to callback functions. The valid values are as follows:

■ xml—The response text is parsed as an XML document and the result-
ing XML DOM is passed to the callbacks.

■ html—The response text is passed unprocessed to the callbacks func-
tions. Any <script> blocks within the returned HTML fragment are
evaluated.

■ json—The response text is evaluated as a JSON string, and the result-
ing object is passed to the callbacks.

■ jsonp—Similar to jason except that remote scripting is allowed,
assuming the remote server supports it.

■ script—The response text is passed to the callbacks. Prior to any
callbacks being invoked, the response is processed as a JavaScript
statement or statements.

■ text—The response text is assumed to be plain text.

continued on next page

Taking full control of an Ajax request 251
The server resource is responsible for setting the appropriate content-type
response header.
If this property is omitted, the response text is passed to the callbacks with-
out any processing or evaluation.

timeout Number Sets a timeout for the Ajax request in milliseconds. If the request does not
complete before the timeout expires, the request is aborted and the error
callback (if defined) is called.

global Boolean Enables (if true) or disables (if false) the triggering of so-called global
functions. These are functions that can be attached to elements that trigger
at various points or conditions during an Ajax call. We’ll be discussing them
in detail in section 8.8. If omitted, the default is to enable the triggering of
global functions.

contentType String The content type to be specified on the request. If omitted, the default is
application/x-www-form-urlencoded, the same type used as the default for
form submissions.

success Function A function invoked if the response to the request indicates a success status
code. The response body is returned as the first parameter to this function
and formatted according to the specification of the dataType property.
The second parameter is a string containing a status value—in this case,
always success.

error Function A function invoked if the response to the request returns an error status
code. Three arguments are passed to this function: the XHR instance, a
status message string (in this case, always error), and an optional excep-
tion object returned from the XHR instance.

complete Function A function called upon completion of the request. Two arguments are
passed: the XHR instance and a status message string of either success or
error. If either a success or error callback is also specified, this function is
invoked after the callback is called.

beforeSend Function A function invoked prior to initiating the request. This function is passed the
XHR instance and can be used to set custom headers or to perform other
pre-request operations.

async Boolean If specified as false, the request is submitted as a synchronous request,
By default, the request is asynchronous.

processData Boolean If set to false, prevents the data passed from being processed into URL-
encoded format. By default, the data is URL-encoded into a format suitable
for use with requests of type application/x-www-form-urlencoded.

ifModified Boolean If true, allows a request to succeed only if the response content has not
changed since the last request according to the Last-Modified header. If
omitted, no header check is performed.

Table 8.2 Options for the $.ajax() utility function (continued)

Name Type Description

252 CHAPTER 8
Talk to the server with Ajax
That’s a lot of options to keep track of, but it’s unlikely that more than a few of
them will be used for any one request. Even so, wouldn’t it be convenient if we
could set default values for these options for pages where we’re planning to make
a large number of requests?

8.4.2 Setting request defaults
Obviously the last question in the previous section was a setup. As you might have
suspected, jQuery provides a way for us to set up a default set of Ajax properties
that will be used when we don’t override their values. This can make pages that
initiate lots of similar Ajax calls much simpler.

 The function to set up the list of Ajax defaults is $.ajaxSetup(), and its syntax
is as follows:

At any point in script processing, usually at page load (but can be at any point of
the page authors’ choosing), this function can be used to set up defaults to be
used for all subsequent calls to $.ajax().

NOTE Defaults set with this function aren’t applied to the load() command. For
utility functions such as $.get() and $.post(), the HTTP method can’t
be overridden by use of these defaults. Setting a default type of GET won’t
cause $.post() to use the GET HTTP method.

Let’s say that we are setting up a page where, for the majority of Ajax requests
(made with the utility function rather than the load() command), we want to set
up some defaults so that we don’t need to specify them on every call. We can, as
the first statement in the header <script> element, write

$.ajaxSetup({
 type: 'POST',
 timeout: 5000,

Command syntax: $.ajaxSetup

$.ajaxSetup(properties)

Establishes the passed set of properties as the defaults for subsequent calls to $.ajax().

Parameters
properties (Object) An object instance whose properties define the set of default Ajax

properties. These are the same properties described for the $.ajax()
function in table 8.2.

Returns
Undefined.

Taking full control of an Ajax request 253
 dataType: 'html',
 error: function(xhr) {
 $('#errorDisplay)
 .html('Error: ' + xhr.status + ' ' + xhr.statusText);
 }
})

This would ensure that every subsequent Ajax call (again, except via load())
would use these defaults, unless explicitly overridden in the properties passed to
the Ajax utility function being used. Note the defaulting of an error callback. It’s
quite common for error, complete, and even beforeSend callbacks that should be
applied to all Ajax invocations to be specified in this way.

 Now, what about those global functions that were controlled by the global
property?

8.4.3 Global functions
In addition to the ability to specify default functions to be executed for all Ajax
requests by establishing them as defaults with $.ajaxSetup(), jQuery also allows
us to attach functions to specific DOM elements. These functions will be triggered
during the various phases of Ajax request processing or when a request ultimately
succeeds or fails.

 For example, to attach a function to an element with an id of errorConsole
whose purpose is to display error messages, we write

$('#errorConsole').ajaxError(reportError);

The function reportError will be called in the event that any Ajax request fails.
 When this, or any other of these global functions, is invoked, the first param-

eter passed to the callback function consists of a JavaScript Object instance with
the following two properties:

■ type—A string that contains the type of global function invoked—ajax-
Error, for example.

■ target—A reference to the DOM element to which the global function was
attached. In the case of the previous example, it’s the element with the id
of errorConsole.

We’ll call this construct the Global Callback Info object. Some global function types
are passed additional parameters (as we’ll see shortly), but this common first
parameter can be used to identify what global function type triggered the call-
back and to which element the function was attached.

 The commands that can be used to attach these global functions are ajax-
Start(), ajaxSend(), ajaxSuccess(), ajaxError(), ajaxComplete(), and ajaxStop().

254 CHAPTER 8
Talk to the server with Ajax
As the syntax for the commands that attach each of these function types are iden-
tical, they are presented in the following single syntax description:

Each of these global callbacks is invoked at a certain point during the processing
of an Ajax request or conditionally depending upon the response status, assum-
ing that global functions were enabled for the Ajax request. Table 8.3 describes
when each global callback type is invoked and what parameters are passed to it.

Command syntax: Ajax global functions

ajaxStart(callback)
ajaxSend(callback)
ajaxSuccess(callback)
ajaxError(callback)
ajaxComplete(callback)
ajaxStop(callback)

Attaches the passed function to all matched elements invoked when the specified point in
the processing of an Ajax request takes place.

Parameters
callback (Function) The callback function to be attached. See table 8.3 for information

on when the callback is invoked and what parameters it will be passed.

Returns
The wrapped set.

Table 8.3 Global Ajax callbacks, listed in order of firing

Global callback type When invoked Parameters

ajaxStart When a jQuery Ajax function or com-
mand is started, but before the XHR
instance is created

■ A Global Callback Info object with
type set to ajaxStart

ajaxSend After the XHR instance has been cre-
ated, but before it’s sent to the server

■ A Global Callback Info object with
type set to ajaxSend

■ The XHR instance
■ The properties used by the

$.ajax() function

ajaxSuccess After the request has returned from the
server and the response contains a
success status code

■ A Global Callback Info object with
type set to ajaxSuccess

■ The XHR instance
■ The properties used by the

$.ajax() function

continued on next page

Taking full control of an Ajax request 255
Let’s put together a simple example of how some of these commands can easily
be used to report the success or failure of an Ajax request. The layout of our test
page (it’s too simple to be called a lab) is as shown in figure 8.7 and is available in
the file chapter8/listing.8.6.html.

 On this page we have defined three fieldsets: one that contains buttons that
will initiate Ajax requests, one that contains an area for success messages, and one
that contains an area for error messages. The HTML markup to set up this struc-
ture is suitably simple.

ajaxError After the request has returned from the
server and the response contains a fail-
ure status code

■ A Global Callback Info object with
type set to ajaxError

■ The XHR instance
■ The properties used by the

$.ajax() function
■ An exception object returned by the

XHR instance, if any

ajaxComplete After the request has returned from the
server and after any declared ajaxSuc-
cess or ajaxError callbacks have been
invoked

■ A Global Callback Info object with
type set to ajaxComplete

■ The XHR instance
■ The properties used by the

$.ajax() function

ajaxStop After all other Ajax processing is com-
plete and any other applicable global
callbacks have been invoked

■ A Global Callback Info object with
type set to ajaxStop

Table 8.3 Global Ajax callbacks, listed in order of firing (continued)

Global callback type When invoked Parameters

Figure 8.7 The initial layout of the page we’ll use to examine the use of the Ajax
global callbacks

256 CHAPTER 8
Talk to the server with Ajax
<body>
 <fieldset>
 <legend>Initiate Ajax Requests</legend>
 <div>
 <button type="button" id="goodButton">
 Initiate successful request
 </button>
 <button type="button" id="badButton">
 Initiate failed request
 </button>
 </div>
 </fieldset>

 <fieldset>
 <legend>Success display</legend>
 <div id="successDisplay"></div>
 </fieldset>

 <fieldset>
 <legend>Error display</legend>
 <div id="errorDisplay"></div>
 </fieldset>
</body>

The ready handler for the page has three tasks:

1 Set up the click handlers for the buttons

2 Establish a global function as a success listener attached to the success area

3 Establish a global function as a failure listener attached to the error area

Setting up the click handlers for the buttons is straightforward.

$('#goodButton').click(function(){
 $.get('reflectData.jsp');
});
$('#badButton').click(function(){
 $.get('returnError.jsp');
});

The good button is set up to initiate an Ajax request to a resource that will return a
success status, and the bad button initiates a request to a resource that always
returns an error status.

 Now we use the ajaxSuccess() command to establish a success listener
attached to the <div> element with the id of successDisplay as follows:

$('#successDisplay').ajaxSuccess(function(info){
 $(info.target)
 .append('<div>Success at '+new Date()+'</div>');
});

Taking full control of an Ajax request 257
This establishes a function that will be called when an Ajax request completes suc-
cessfully. This callback is passed a Global Callback Info instance whose target
identifies the bound element—in this case, successDisplay. We use that reference
to construct a success message and display it in the success display area.

 The binding of the error callback is similar.

$('#errorDisplay').ajaxError(function(info,xhr){
 $(info.target)
 .append('<div>Failed at '+new Date()+'</div>')
 .append('<div>Status: ' + xhr.status + ' ' +
 xhr.statusText+'</div>');
});

Using the ajaxError() command, we bind a callback function that will be invoked
when an Ajax request fails. In this case, the XHR instance is passed to the func-
tion, and we use it to give the user information about the nature of the error.

 Because each function is bound to only one global function type, the use of the
type field of the Global Callback Info instance isn’t needed. But notice how the two
functions perform some similar processing? How can we combine these functions
into a single function instance that uses the type field to operate more efficiently?

 With the page displayed in the browser, click each button a number of times
(the messages have timestamps, so it’s easy to discern the order in which they are
displayed). You might end up with a display such as shown in figure 8.8.

Figure 8.8 Clicking the buttons reveals how the callback functions get information
and how they know which element they are attached to.

258 CHAPTER 8
Talk to the server with Ajax
Before we move on to the next chapter, let’s put all this grand knowledge to use,
shall we?

8.5 Putting it all together

It’s time for another comprehensive example. Let’s put a little of everything we’ve
learned so far to work: selectors, DOM manipulation, advanced JavaScript, events,
effects, and Ajax. And to top it all off, we’ll implement another jQuery command!

 For this example, we’ll once again return to The Boot Closet page. To review,
look back at figures 8.2, 8.3, 8.5, and 8.6 because we’re going to continue to
enhance this page.

 In the detailed information of the boots listed for sale (evident in figure 8.3),
terms are used that our customers may not be familiar with—terms like Goodyear
welt and stitch-down construction. We’d like to make it easy for customers to find out
what these terms mean because an informed customer is usually a happy cus-
tomer. And happy customers buy things!

 We could be all 1998 about it and provide a glossary page that customers nav-
igate to for reference, but that would move the focus away from where we want
it—the pages where they can buy our stuff! We could be a little more modern
about it and open a pop-up window to show the glossary or even the definition of
the term in question. But even that’s being a tad old-fashioned.

 If you’re thinking ahead, you might be wondering if we could use the title
attribute of DOM elements to display a tooltip (sometimes called a flyout) contain-
ing the definition when customers hover over the term with the mouse cursor.
Good thinking! That allows the definition to be shown in-place without the need
for the customers to have to move their focus elsewhere.

 But the title attribute approach presents some problems for us. First, the fly-
out only appears if the mouse cursor hovers over the element for a few seconds—
and we’d like to be a bit more overt about it, displaying the information immedi-
ately after clicking a term—but, more importantly, some browsers will truncate
the text of a title flyout to a length far too short for our purposes.

 So we’ll build our own!
 We’ll somehow identify terms that have definitions, change their appearance

to allow the user to easily identify such terms, and instrument them so that a
mouse click will display a flyout containing a description of the term. Subse-
quently clicking the flyout will remove it from the display.

 Figure 8.9 displays a portion of our page showing the behavior we wish
to add.

Putting it all together 259
In the top part of the figure we see the Features description of the item with the
terms Full-grain and Cambrelle highlighted. Clicking Full-grain causes the flyout
containing its definition to be displayed as shown in the bottom part of the figure.

 We could hard-code everything to make this happen right on the page, but
we’re smarter than that. As with our extensions to manipulate the select elements,
we want to create a reusable component to use elsewhere on this, or any other,
site. So once again, being jQuery-savvy, we’ll implement it as a jQuery command.

8.5.1 Implementing the flyout behavior

As we recall, adding a jQuery command is accomplished by use of the $.fn prop-
erty. We’ll call our new plugin that looks up the definitions of terms The Termifier,
and the command will be named termifier().

 The termifier() command will be responsible for instrumenting each ele-
ment in its matched set to achieve the following goals:

■ Establish a click handler on each matched element that initiates the dis-
play of The Termifier flyout.

■ Once clicked, the term defined by the current element will be looked up
using a server-side resource.

■ Once received, the definition of the term will be displayed in a flyout using
a fade-in effect.

Figure 8.9
The before and after shots
of the behavior that we’ll be
adding to the page

260 CHAPTER 8
Talk to the server with Ajax
■ The flyout will be instrumented to fade out once clicked within its
boundaries.

■ The URL of the server-side resource, as well as the CSS class assigned to
the flyout element, can be assignable by the page author but will have rea-
sonable defaults.

The code that creates a jQuery command that meets these goals is shown in list-
ing 8.8 and can be found in the file chapter8/bootcloset/jquery.jqia.termifier.js.

(function($) {
 $.fn.termifier = function(options) {
 options = $.extend({
 lookupResource: 'getTerm',
 flyoutClass: 'lookerUpperFlyout'
 },options||{});
 this.attr('title','Click me for my definition!');
 return this.click(function(event){
 $.ajax({
 url: options.lookupResource,
 type: 'GET',
 data: {term: this.innerHTML},
 dataType: 'html',
 success: function(data) {
 $('<div></div>')
 .css({
 position: 'absolute',
 left: event.pageX,
 top: event.pageY,
 cursor: 'pointer',
 display: 'none'
 })
 .html(data)
 .addClass(options.flyoutClass)
 .click(function(){
 $(this).fadeOut(1500,function(){$(this).remove();});
 })
 .appendTo('body')
 .fadeIn();
 }
 });
 return false;
 });
 }
})(jQuery);

Listing 8.8 The implementation of the termifier() command

Defines
command API

b

Merges options
with defaults

c
Establishes
click handler
on terms

d

Initiates request
for term definitione

Acts upon
response data

f

Establishes click
handler on flyout

g

Attaches flyout to
DOM and fade in

h

Putting it all together 261
Perhaps not as much code as expected, but there’s a lot going on in there! Let’s
take it one step at a time.

 First, we use the pattern that we learned in chapter 7 to establish the API for
the termifier() command b. The only parameter expected is an object whose
properties serve as our options. To be friendly, we provide a default set that we
merge into the passed options using the services of the $.extend() utility function
c. The defined options are as follows:

■ lookupResource—Specifies the URL of the server-side resource to be used
■ flyoutClass—The CSS class name applied to newly created flyout elements

As a helpful tip to our customers, we add a title attribute to the target element
so that if they hover the mouse cursor over the highlighted term, they will see a
message letting them know that clicking the term will do something wonderful.

 We establish a click handler on every element in the matched set d. Remem-
ber that the function context (this) for a jQuery command is the matched set, so
applying other jQuery commands to the matched set is as easy as calling the com-
mands on this.

 In the listener for the click event, we initiate the Ajax call that will retrieve the
term definition. For maximum control, we use the $.ajax() function e and pass
it an object that defines the following options:

■ The URL specified by the command options (either the default or one pro-
vided by the page author)

■ An HTTP method of GET (because the request is clearly idempotent)
■ A request parameter named term that’s set to the content of the event tar-

get (the function context within the listener)
■ Identification of the expected response data as HTML
■ A success callback f that uses the response data to create the flyout

A lot of the more interesting things happen in the success callback for the Ajax
request. First, a new and empty <div> element is created, and then the following
operations are performed on it (using the magic of jQuery chaining again):

■ CSS styles are added to the <div> element that absolutely position it at the
point of the mouse click event, change the mouse cursor to the hand
shape, and hide the element from view.

■ The response data, passed as the first parameter to the success callback
and which we know contains the term definition, is inserted as the content
of the <div> element.

262 CHAPTER 8
Talk to the server with Ajax
■ The CSS class identified by the flyoutClass option is added to the <div>.
■ A click handler is established on the flyout <div> g that will cause it to

slowly fade when clicked and then to be removed from the DOM tree once
the fade effect has concluded.

■ The newly created flyout <div> is added to the DOM by appending it to the
<body> element.

■ And finally, the flyout <div> is displayed by fading it in using the default
rate h.

The implementation of the termifier() command makes sure to return the
wrapped set as the result of the command (by returning the wrapped set as
returned by the click() command) so that our new command can participate in
any jQuery command chain.

 Now, let’s see what it takes to apply this command to our Boot Closet page.

8.5.2 Using The Termifier
Because we rolled all the complex logic of creating and manipulating The Termi-
fier flyout into the termifier() command, using this new jQuery command on
the Boot Closet page is relatively simple. But first we have some interesting deci-
sions to make.

 We need to decide how to identify the terms on the page. Remember, we need
to construct a wrapped set of elements whose content contains the term elements
for the command to operate on. We could use a element with a specific
class name; perhaps something like

Goodyear welt

Creating a wrapped set of these elements would be as easy as $('span.term').
 But some might feel that the markup is a bit wordy. Instead, we’ll lever-

age the little-used HTML tag <abbr>. The <abbr> tag was added to HTML 4 in order
to help identify abbreviations in the document. Because the tag is intended purely
for identifying document elements, none of the browsers do much with these tags
either in the way of semantics or visual rendition, so it’s perfect for our use.

NOTE HTML 43 defines a few more of these document-centric tags such as
<cite>, <dfn>, and <acronym>. The HTML 5 Draft Specification4

3 http://www.w3.org/TR/html4/
4 http://www.w3.org/html/wg/html5/

http://www.w3.org/TR/html4/
http://www.w3.org/html/wg/html5/

Putting it all together 263
proposal adds even more of these document-centric tags whose purpose
is to provide semantics rather than provide layout or visual rendition
directives. Among such tags are <section>, <article>, and <aside>.

Therefore, the first thing that we need to do is modify the server-side resource
that returns the item details to enclose terms that have glossary definitions in
<abbr> tags. Well, as it turns out, the getDetails.jsp resource already does that.
But because the browsers don’t do anything with the <abbr> tag, we might not
have even noticed unless we’d already taken a look inside the JSP or PHP file. This
resource returns JSON data such as the following for an example item:

{
 name: 'Chippewa Harness Boot',
 sku: '7141922',
 height: '13"',
 lining: 'leather',
 colors: 'Black, Crazy Horse',
 price: '$188.00',
 features: '<abbr>Full-grain</abbr> leather uppers. Leather
 lining. <abbr>Vibram</abbr> sole. <abbr>Goodyear welt</abbr>.'
}

Note how the terms Full-grain, Vibram and Goodyear welt are identified using the
<abbr> tag.

 Now, on to the page itself. Starting with the code of listing 8.6 as a starting
point, let’s see what we need to add to the page in order to use The Termifier. We
need to bring the new command into the page, so we add the following statement
to the <head> section (after jQuery itself has loaded):

<script type="text/javascript"
 src="jquery.jqia.termifier.js"></script>

We need to apply the termifier() command to any <abbr> tags added to the page
when item information is loaded, so we add a callback to the load() command
that fetched the item information. That callback uses The Termifier to instru-
ment all <abbr> elements. The augmented load() command (with changes in
bold) is as follows:

$('#detailsDisplay').load(
 'getDetails.jsp',
 { style: styleValue },
 function(){
 $('abbr').termifier({
 lookupResource: 'getTerm.jsp'
 });
 }
);

➥

264 CHAPTER 8
Talk to the server with Ajax
The added callback creates a wrapped set of all <abbr> elements and applies the
termifier() command to them, specifying a server-side resource of getTerm.jsp
that overrides the command’s default.

 And that’s it.
 Because we wisely encapsulated all the heavy lifting in our reusable jQuery

command, using it on the page is even easier than pie! And we can as easily use it
on any other page or any other site. Now that’s what engineering is all about!

 The only remaining task is to alter the appearance of the text elements so that
users know which are clickable terms. To the CSS file, we add the following CSS
properties for the <abbr> tag:

color: aqua;
cursor: pointer;
border-bottom: 1px aqua dotted;

These styles give the terms a link-ish appearance but with the subtle difference of
using a dotted underline. This invites the users to click the terms, yet keeps them
distinct from any true links on the remainder of the page.

 The new page can be found in the file chapter8/bootcloset/boot.closet.3.html.
Because the changes we made to the code of listing 8.6 are minimal (as we dis-
cussed), we’ll spare some paper and not include the entire page listing here.

 The updated page with our new functionality in action is shown in figure 8.10.
 Our new command is useful and powerful, but there’s always…

8.5.3 Room for improvement

Our brand-spankin’-new jQuery command is useful as is, but it does have some
minor issues and the potential for some major improvements. To hone your
skills, here’s a list of possible changes you could make to this command or to the
Boot Closet page:

■ The server-side resource is passed the term in a request parameter named
term. Add an option to the command giving the page author the ability to
specify the name of the query parameter. Our client-side command
shouldn’t dictate how the server-side code is written.

■ Add an option (or options) that allows the page author to control the fade
durations or, perhaps, even to use alternate effects.

■ The Termifier flyout stays around until the customer clicks it or until
the page is unloaded. Add a timeout option to the command that auto-
matically makes the flyout go away if it’s still displayed after the time-
out has expired.

Putting it all together 265
■ Clicking the flyout to close it introduces a usability issue because the text of
the flyout can’t be selected for cut-and-paste. Modify the code so that it
closes the flyout if the user clicks anywhere on the page except on the flyout.

■ It’s possible for multiple flyouts to be displayed if the user doesn’t dismiss
one flyout before clicking another term, even when a new style is selected.
Add code to remove any previous flyout before displaying a new flyout and
when a new style is picked.

■ We don’t do any error handling in our command. How would you enhance
the command to gracefully deal with server-side errors?

Figure 8.10 Our customer learns what Stitch-down construction is all about.

266 CHAPTER 8
Talk to the server with Ajax
■ We achieved the appealing drop shadows in our images by using PNG
files with partial transparencies. Although most browsers handle this file
format well, IE6 does not and displays the PNG files with white back-
grounds. To deal with this we could also supply GIF formats for the images
without the drop shadows. How would you enhance the page to detect
when IE6 is being used and to replace all the PNG references with their
corresponding GIFs?

■ While we’re talking about the images, we only have one photo per boot
style, even when multiple colors are available. Assuming that we have
photo images for each possible color, how would you enhance the page to
show the appropriate image when the color is changed?

Can you think of other improvements to make to this page or the termifier()
command? Share your ideas and solutions at this book’s discussion forum, which
you can find at http://www.manning.com/bibeault.

8.6 Summary

Not surprisingly, this is one of the longest chapters in this book. Ajax is a key part
of Rich Internet Applications, and jQuery is no slouch in providing a rich set of
tools for us to work with.

 For loading HTML content into DOM elements, the load() command provides
an easy way to grab the content from the server and make it the content of any
wrapped set of elements. Whether a GET or POST method is used is determined
by whether data needs to be passed to the server or not.

 When a GET is required, jQuery provides the utility functions $.get() and
$.getJSON(); the latter is useful when JSON data is returned from the server. To
force a POST, the $.post() utility function can be used.

 When maximum flexibility is required, the $.ajax() utility function, with its
ample assortment of options, lets us control most aspects of an Ajax request. All
other Ajax features in jQuery use the services of this function to provide their
functionality.

 To make managing the bevy of options less of a chore, jQuery provides the
$.ajaxSetup() utility function that allows us to set default values for any fre-
quently used options to the $.ajax() function (and to all of the other Ajax func-
tions that use the services of $.ajax()).

 To round out the Ajax toolset, jQuery also allows us to monitor the progress
of Ajax requests and associate these events with DOM elements via the

http://www.manning.com/bibeault

Summary 267
ajaxStart(), ajaxSend(), ajaxSuccess(), ajaxError(), ajaxComplete(), and
ajaxStop() commands.

 With this impressive collection of Ajax tools under our belts, it’s easy to enable
Rich Internet Application functionality in our web applications. And remember,
if there’s something that jQuery doesn’t provide, we’ve seen that it’s easy to
extend jQuery by leveraging its existing features. Or, perhaps, there’s already a
plugin—official or otherwise—that adds exactly what you need!

 Which is the subject of our next chapter…

Prominent, powerful,
and practical plugins
This chapter covers
■ An overview of the jQuery plugins
■ The official Form Plugin
■ The official Dimensions Plugin
■ The Live Query Plugin
■ The UI Plugin
268

The Form Plugin 269
In the first eight chapters of this book, we focused on the capabilities that the core
jQuery library makes available to us as page authors. But that’s the tip of the ice-
berg! The immense collection of available jQuery plugins is impressive and gives us
even more tools, all based on the jQuery core, to work with.

 The creators of the core jQuery library carefully chose the functions needed by
the vast majority of page authors and created a framework on which plugins can
readily be built. This keeps the core footprint as small as possible and lets us, the
page authors, decide how we want to spend the rest of our bandwidth allowance
by picking and choosing what additional functionality is important enough to
add to our pages.

 It’d be an impossible task to try to cover all of the jQuery plugins in the space
of a chapter, perhaps even in the space of a single book, so we had to choose
which plugins to talk about here. It was a tough call, and the plugins we included
are those that we felt were either important enough or useful enough to the
majority of web application developers to warrant coverage.

 Non-inclusion of a plugin in this chapter is most certainly not an indictment
of a plugin’s usefulness or quality! We just had to make some hard decisions.

 You can find information on all the available plugins by visiting http://docs
.jquery.com/Plugins or http://jquery.com/plugins/most_popular.

 We also can’t completely cover the plugins that we will discuss, but this chapter
should give you a good basic understanding of the plugins and when they can be
applied. Consult the official documentation for each plugin to fill in any gaps in
the coverage here.

 Let’s start by looking at a plugin that we previously mentioned on a number
of occasions.

9.1 The Form Plugin

Dealing with forms can be a hassle. Each control type has its particular quirks,
and form submission can often take unintended paths. Core jQuery has a number
of methods to help tame forms, but there’s only so much that it can do for us. The
purpose of the official Form Plugin is to help fill these gaps and help us take con-
trol of form controls.

 This plugin can be found at http://jquery.com/plugins/project/form and resides
in the file jquery.form.js.

http://docs.jquery.com/Plugins
http://jquery.com/plugins/project/form
http://docs.jquery.com/Plugins
http://jquery.com/plugins/most_popular

270 CHAPTER 9
Prominent, powerful, and practical plugins
 It augments the form functionalities in three areas:

■ Getting the values of form controls
■ Clearing and resetting form controls
■ Submitting forms (including file uploads) via Ajax

Let’s start with getting form control values.

9.1.1 Getting form control values
The Form Plugin gives us two ways to get the values of form controls: as an
array of values or as a serialized string. There are three methods that the Form
Plugin provides to obtain control values: fieldValue(), formSerialize(), and
fieldSerialize().

 Let’s look at grabbing field values first.

Getting control values
We can get the values of form controls using the fieldValue() command. At first
glance, you might think that fieldValue() and val() are redundant. But prior to
jQuery 1.2, the val() command was considerably less capable, and fieldValue()
was designed to make up for its deficiencies.

 The first major difference is that fieldValue() returns an array of all the val-
ues for form controls in its wrapped set, whereas val() only returns the value of
the first element (and only if that element is a form control). In fact, fieldValue()
always returns an array, even if it only has one value or no values to return.

 Another difference is that fieldValue() ignores any non-control elements in
the wrapped set. If we create a set containing all elements on a page, an array
that contains only as many control values as fieldValue() finds will be
returned. But not all controls have values in this returned array: like the val()
command, fieldValue(), by default, returns values only for controls that are
deemed successful.

 So what’s a successful control? It’s not a control that can afford a stable of fancy
sports cars, but a formal definition in the HTML Specification1 that determines
whether a control’s value is significant or not and whether it should be submitted
as part of the form.

 We won’t go into exhaustive detail here; but, in a nutshell, successful controls
are those that have name attributes, aren’t disabled, and are checked (for check-
able controls like check boxes and radio buttons). Some controls, like reset and

1 http://www.w3.org/TR/REC-html40/

http://jquery.com/plugins
http://www.w3.org/TR/REC-html40/

The Form Plugin 271
button controls, are always considered unsuccessful and never participate in a
form submission. Others, like <select> controls, must have a selected value to be
considered successful.

 The fieldValue() command gives us the choice whether to include unsuccess-
ful values or not; its syntax is as follows:

We’ve set up another handy lab page to demonstrate the workings of this com-
mand. You’ll find this page in the file chapter9/form/lab.get.values.html; when
displayed in your browser, it will appear as shown in figure 9.1.

Command syntax: fieldValue

fieldValue(excludeUnsuccessful)

Collects the values of all successful form controls in the wrapped set and returns them as
an array of strings. If no values are found, an empty array is returned.

Parameters
excludeUnsuccessful (Boolean) If true or omitted, specifies that any unsuccessful

controls in the wrapped set be ignored.

Returns
A String array of the collected values.

Figure 9.1 The Get Form Values Laboratory helps us to understand the operation of the
fieldValue() and the serialize() commands.

http://jquery.com/plugins
http://jquery.com/plugins

272 CHAPTER 9
Prominent, powerful, and practical plugins
Bring up this page, and leaving the controls in their initial state, click the Get
Successful Values button. This causes the following command to be executed:

$('#testForm *').fieldValue()

This creates a wrapped set of all children of the test form, including all the labels
and <div> elements, and executes the fieldValue() command on it. Because this
command ignores all but form controls and, without a parameter, only includes
successful controls, the results displayed on the page are

['some text','Three','cb.2','radio.2','Lorem ipsum dolor sit amet,
 consectetuer adipiscing elit.']

As expected, the values for the text field, the dropdown, the checked check box,
the checked radio button, and the text area are collected into an array.

 Now go ahead and click the Get All Values button, which executes the command

$('#testForm *').fieldValue(false)

The false parameter to this command instructs it not to exclude unsuccessful
controls, and we can see the more inclusive results as follow:

['some text','Three','One','Two','Three','Four','Five','cb.1',
 'cb.2','cb.3','radio.1','radio.2','radio.3','Lorem ipsum dolor
 sit amet, consectetuer adipiscing elit.','','','','']

Note that not only have the values for the unchecked check boxes and radio but-
tons been included but also empty strings for the values for the four buttons.

 Now, have some fun playing around with the values of the controls and observ-
ing the behavior of the two forms of the fieldValue() command until you feel
you’ve got it down.

 Getting the values of the controls in an array can be useful when we want to
process the data in some way; if we want to create a query string from the data, the
serialize commands will do that for us. Let’s see how.

Serializing control values
When we want to construct properly formatted and encoded query strings from
the values of form controls, we turn to the formSerialize() and fieldSerialize()
commands. Both of these wrapper methods collect values from the wrapped set
and return a formatted query string with the names and values properly URL-
encoded. The formSerialize() method accepts a form in the wrapped set and
serializes all of the successful child controls. The fieldSerialize() command seri-
alizes all of the controls in the wrapped set and is useful for serializing only a por-
tion of a form.

 The syntaxes of these commands are as follow:

➥

➥
➥

The Form Plugin 273
The semantic parameter to formSerialize() deserves special note. When specified
as true, the serialized values will be in the order that they would be in if the form
were submitted through the conventional means, making any submission of these
values exactly emulate a browser submission. We should only use this when abso-
lutely necessary (it’s usually not) because there’s a performance penalty to be paid.

WARNING The semantic flag will cause the order of the parameters to be specified
in the submitted data in semantic order, but what the server-side code
does with this order isn’t under the control of the client-side code. For
example, when using servlets, a call to the getParameterMap() method
of the request instance won’t preserve the submitted order.

We can use the Get Form Values Laboratory page to observe the behavior of these
commands. Load the page, and leaving the controls be, click the Serialize Form
button. This will execute a formSerialize() command on the test form as follows:

$('#testForm').formSerialize()

Command syntax: formSerialize

formSerialize(semantic)

Creates and returns a properly formatted and encoded query string from the values of all
successful controls in the wrapped form.

Parameters
semantic (Boolean) Specifies that the order of the values in the query string follows

the semantic order of the elements—the order in which the elements are
declared in the form. This option can be much slower than allowing
random order.

Returns
The generated query string.

Command syntax: fieldSerialize

fieldSerialize(excludeUnsuccessful)

Creates and returns a properly formatted and encoded query string from the values of con-
trols in the wrapped form.

Parameters
excludeUnsuccessful (Boolean) If true or omitted, specifies that any unsuccessful

controls in the wrapped set be ignored.

Returns
The generated query string.

274 CHAPTER 9
Prominent, powerful, and practical plugins
This results in

text=some%20text&dropdown=Three&cb=cb.2&radio=radio.2&
 textarea=Lorem%20ipsum%20dolor%20sit%20amet%2C%20conse
 ctetuer%20adipiscing%20elit.

Notice that all successful form controls have their names and values collected,
and the query string created using this data has been URL-encoded.

 Clicking the Serialize Fields button executes the command

$('#testForm input').fieldSerialize()

The wrapped set created by this selector includes only a subset of the form’s con-
trols: those of type input. The resulting query string, which includes only the
wrapped control elements that are successful, is as follows:

text=some%20text&cb=cb.2&radio=radio.2

One reason that we might want to serialize form controls into a query string is to
use as the submission data for an Ajax request. But wait! If we want to submit a
form via Ajax rather than through the normal process, we can turn to yet more
features of the Form Plugin. But before we get to that, let’s examine a few com-
mands that allow us to manipulate the form controls’ values.

9.1.2 Clearing and resetting form controls

The Form Plugin provides two commands to affect the values of a form’s controls.
The clearForm() command clears all fields in a wrapped form, whereas the
resetForm() command resets the fields.

 “Ummm, what’s the difference?” you ask.
 When clearForm() is called to clear form controls, they are affected as follows:

■ Text, password, and text area controls are set to empty values.
■ <select> elements have their selection unset.
■ Check boxes and radio buttons are unchecked.

When resetForm() is called to reset controls, the form’s native reset() method is
invoked. This reverts the value of the controls to that specified in the original
HTML markup. Controls like text fields revert to the value specified in their value
attribute, and other control types revert to settings specified by checked or
selected attributes.

 Once again, we’ve set up a lab page to demonstrate this difference. Locate the
file chapter9/form/lab.reset.and.clear.html, and display it in your browser. You
should see the display shown in figure 9.2.

➥
➥

The Form Plugin 275
Note that this familiar form has been initialized with values via its HTML markup.
The text field and text area have been initialized via their value attributes, the
dropdown has had one of its options selected, and one check box and one radio
button have been checked.

 Click the Clear Form button, and watch what happens. The text field and text
area are cleared, the dropdown has no selection, and all check boxes and radio
buttons are unchecked.

 Now click the Reset Form button, and note how the controls all revert to their
original values. Change the values of each control, and click Reset Form, noting
how, once again, the original values are restored.

 The syntaxes for these commands are as follow:

Command syntax: clearForm

clearForm()

Clears the value of any controls in the wrapped set or that are descendants of elements in
the wrapped set

Parameters
none

Returns
The wrapped set

Figure 9.2 The Clear and Reset Laboratory shows us the difference between a reset and a clear.

276 CHAPTER 9
Prominent, powerful, and practical plugins
Now let’s see how the Form Plugin helps us to submit forms via Ajax requests.

9.1.3 Submitting forms through Ajax

Back in chapter 8, we saw how easy jQuery makes initiating Ajax requests, but the
Form Plugin makes things even easier. We could use the serialization commands
introduced in section 9.1.1, but wait! There’s more! The Form Plugin makes it
even easier to hijack form requests.

 The Form Plugin introduces two new commands for submitting forms via
Ajax: one that initiates an Ajax request under script control, passing data in a tar-
get form as the request’s parameters, and another that instruments any form to
reroute its submission as an Ajax request.

 Both approaches use the jQuery Ajax core functions to perform the Ajax
request, so all the global jQuery hooks continue to be applied even when using
these methods in place of the core jQuery Ajax API.

 Let’s start by examining the first approach.

Grabbing form data for an Ajax request
When we developed the e-commerce examples of chapter 8, we encountered a
number of situations in which we needed to grab values from form controls to
send them to the server via an Ajax request—a common real-world requirement.
We saw that the core Ajax function made this a simple affair, particularly when we
only needed to grab a handful of form values.

 The combination of the Form Plugin’s serializeForm() method and the core
Ajax functions makes submitting all the controls in a form even easier. But even
easier than that, the Form Plugin makes submitting an entire form through Ajax
almost trivial with the ajaxSubmit() command.

 This command, when applied to a wrapped set containing a form, grabs the
names and values of all the successful controls in the target form and submits
them as an Ajax request. We can supply information on how to make the request

Command syntax: resetForm

resetForm()

Calls the native reset() method of forms in the wrapped set

Parameters
none

Returns
The wrapped set

The Form Plugin 277
to the method, or we can allow the request to default from the settings on the tar-
get form.

 Let’s look at its syntax.

The options parameter can be used to specify exactly how the request is to be made.
The optional properties are described in table 9.1, and all properties have defaults
designed to make it easy to generate requests with the minimum of fuss and bother.
It’s common to call this method with no options and let all the defaults apply.

Command syntax: ajaxSubmit

ajaxSubmit(options)

Generates an Ajax request using the successful controls within the form in the wrapped set.
The options parameter can be used to specify optional settings, or these settings can be
defaulted as described in the following table.

Parameters
options (Object|Function) An optional object hash containing properties as described in

table 9.1. If the only desired option is a success callback, it can be passed in
place of the options hash.

Returns
The wrapped set.

Table 9.1 The optional properties for the ajaxSubmit() command, listed according to likelihood
of use

Name Description

url (String) The URL to which the Ajax request will be submitted. If omitted, the URL will
be taken from the action attribute of the target form.

type (String) The HTTP method to use when submitting the request, such as GET or POST. If
omitted, the value specified by the target form’s method attribute is used. If not spec-
ified and the form has no method attribute, GET is used.

dataType (String) The expected data type of the response, which determines how the response
body will be post-processed. If specified, it must be one of the following:

■ xml—Treated as XML data. Any success callback will be passed the response-
XML document.

■ json—Treated as a JSON construct. The JSON is evaluated, and the result is
passed to any success callback.

■ script—Treated as JavaScript. The script will be evaluated in the global context.

If omitted, no post-processing of the data (except as specified by other options such
as target) takes place.

continued on next page

278 CHAPTER 9
Prominent, powerful, and practical plugins
target (String|Object|Element) Specifies a DOM element or elements to receive the
response body as content. This can be a string depicting a jQuery selector, a jQuery
wrapper containing the target elements, or a direct element reference. If omitted, no
element receives the response body.

beforeSubmit (Function) Specifies a callback function invoked prior to initiating the Ajax request.
This callback is useful for performing any pre-processing operations including the vali-
dation of form data. If this callback returns the value false, the form submission
is cancelled.
This callback is passed the following three parameters:

■ An array of the data values passed to the request as parameters. This is an array of
objects; each contains two properties, name and value, containing the name and
value of a request parameter.

■ The jQuery matched set that the command was applied to.
■ The options object that was passed to the command.

If omitted, no pre-processing callback is invoked.

success (Function) Specifies a callback invoked after the request has completed and returned
as response with successful status.
This callback is passed the following three parameters:

■ The response body as interpreted according to the dataType option.
■ A string containing success.
■ The jQuery matched set that the command was applied to.

If omitted, no success callback is invoked.
If this is the only option to be specified, this function can be passed directly to the
command in place of the options hash.
Note that no provisions have been made for a callback upon error conditions.

clearForm (Boolean) If specified and true, the form is cleared after a successful submission.
See clearForm() for semantics.

resetForm (Boolean) If specified and true, the form is reset after a successful submission. See
resetForm() for semantics.

semantic (Boolean) If specified and true, the form parameters are arranged in semantic order.
The only difference this makes is in the location of the parameters submitted for input
element of type image when the form is submitted by clicking that element. Because
there’s overhead associated with this processing, this option should be enabled only if
parameter order is important to the server-side processing and image input elements
are used in the form.

other options Any options that are available for the core jQuery $.ajax() function, as described in
table 8.2, can be specified and will pass through to the lower-level call.

Table 9.1 The optional properties for the ajaxSubmit() command, listed according to likelihood
of use (continued)

Name Description

The Form Plugin 279
Despite the number of options, calls to ajaxSubmit() are frequently quite simple.
If all we need to do is submit the form to the server (and don’t have anything to
do when it completes), the call is as Spartan as

$('#targetForm').ajaxSubmit();

If we want to load the response into a target element or elements:

$('#targetForm').ajaxSubmit({ target: '.target' });

If we want to handle the response on our own in a callback:

$('#targetForm').ajaxSubmit(function(response){
 /* do something with the response */
});

And so on. Because there are sensible defaults for all options, we only need to
specify as much information as needed to tune the submission to our desires.

WARNING Because the options hash is passed to the beforeSubmit callback, you
might be tempted to modify it. Tread carefully! It’s obviously too late to
change the beforeSubmit callback because it’s already executing, but
you can add or change other simple settings like resetForm or clear-
Form. Be careful with any other changes; they could cause the operation
to go awry. Please note that you can’t add or change the semantic prop-
erty because its work is already over by the time the beforeSubmit call-
back is invoked.

If you were wondering if a lab page had been set up for this command, wonder no
more! Bring up the page chapter9/form/lab.ajaxSubmit.html in your browser,
and you’ll see the display in figure 9.3.

NOTE Note that, because we’re going to be submitting requests to the server,
you must run this page under an active web server as described for the
examples of chapter 8 in section 8.2.

This lab presents a now-familiar form that we can operate upon with the ajax-
Submit() command. The topmost pane contains the form itself; the middle pane
contains a control panel that allows us to add the resetForm or clearForm options to
the call; and a results pane will display three important bits of information when
the command is invoked—the parameter data that was submitted to the request,
the options hash that was passed to the command, and the response body.

 If you care to inspect the code of the lab, you’ll note that the first two items
of information are displayed by a beforeSubmit callback, and the third by a

280 CHAPTER 9
Prominent, powerful, and practical plugins
success callback. (For clarity, the beforeSubmit function isn’t shown as part of the
options display.)

 When the Test button is clicked, a request is initiated via an ajaxSubmit() com-
mand applied to a wrapped set containing the form of the first pane. The URL of
the request defaults to the action of that form: reflectData.jsp, which formats
an HTML response depicting the parameters passed to the request.

 Leaving all controls as they are upon initial load, click the Test button. You’ll
see the results as shown in figure 9.4.

 The Submitted data, as expected, reflects the names and values of all success-
ful controls; note the absence of unchecked check boxes and radio buttons. This
perfectly mimics the submission of data that would occur if the form were to be
submitted normally.

 The Options used to make the request are also shown, allowing us to see how
the request was made as we change the options in the Control Panel. For example,

Figure 9.3 The ajaxSubmit Laboratory lets us play around with the workings of the ajaxSubmit()
method.

The Form Plugin 281
if we check the Reset Form check box and click Test, we’ll see how the resetForm
option has been added to the method call.

 The parameters detected by the server-side resource (by default, a JSP) are
shown last. We can compare the response with the Submitted data to make sure
that they always jive.

 Run through various scenarios in the lab, changing form data and options to
suit your whims, and observe the results. This should allow you to get a good
understanding of how the ajaxSubmit() method operates.

 In this section, we’ve assumed that we want to initiate a request using a form’s
data under script control. We’d want to do this when an event other than a nor-
mal semantic submission event takes place—perhaps, clicking a button other
than a submit button (as in the lab page) or a mouse event such as the one we
used to invoke The Termifier requests in the examples of chapter 8. But some-
times, perhaps most often, the request submission will be the result of a normal
semantic submission event.

 Let’s see how the Form Plugin helps us set that up.

Hijacking a form’s submission
The ajaxSubmit() method is great for those times when we want to initiate a
request under script control as a result of an event other than a form submission;
but, often, we want to take a conventional form submission and hijack it, sending
it to the server as an Ajax request rather than the usual full-page refresh.

Figure 9.4 The Results pane shows us the data sent to the request, the options used to invoke the
command, and the response body reflecting the data passed to the server resource.

282 CHAPTER 9
Prominent, powerful, and practical plugins
 We could leverage our knowledge of event handling and the ajaxSubmit()
command to reroute the submission ourselves. As it turns out, we won’t have to;
the Form Plugin anticipates this need with the ajaxForm() method.

 This method instruments the form so that the submission is blocked when the
form is submitted through one of the normal semantics events (such as clicking a
submit button or pressing the Enter key when the form has focus) and an Ajax
request that emulates the request is initiated.

 ajaxForm() uses ajaxSubmit() under the covers, so it’s not surprising that their
syntaxes are similar.

Typically, we apply ajaxForm() to a form in the ready handler; then, we can forget
about it and let the command apply instrumentation to reroute the form submis-
sion on our behalf.

 It’s possible, indeed customary, to declare the markup for HTML forms as if
they are going to be submitted normally and to let ajaxForm() pick up these val-
ues from the declaration of the form. For times when users have disabled Java-
Script, the form degrades gracefully and submits normally without us having to
do anything special whatsoever. How convenient!

 If, at some point after a form has been bound with ajaxForm(), we need to
remove the instrumentation to let the form submit normally, the ajaxForm-
Unbind() command will accomplish that.

 For fans of the lab pages, an ajaxForm Laboratory can be found in the file
chapter9/form/lab.ajaxForm.html. Loaded into a browser, this page will appear as
shown in figure 9.5.

Command syntax: ajaxForm

ajaxForm(options)

Instruments the target form so that when submission of the form is triggered, the submis-
sion reroutes through an Ajax request initiated via the ajaxSubmit() command. The
options parameter passed to this method is passed on to the ajaxSubmit() call.

Parameters
options (Object|Function) An optional object hash containing properties as described in

table 9.1. If the only desired option is a success callback, it can be passed in
place of the options hash.

Returns
The wrapped set.

The Form Plugin 283
Command syntax: ajaxFormUnbind

ajaxFormUnbind()

Removes the instrumentation applied to the form in the wrapped set so that its submission
can occur normally

Parameters
none

Returns
The wrapped set

Figure 9.5 The ajaxForm Laboratory page allows us to observe the hijacking of form submission to
an Ajax request.

284 CHAPTER 9
Prominent, powerful, and practical plugins
This lab looks and works a lot like the ajaxSubmit Laboratory with a few impor-
tant changes:

■ The Test button has been removed and the Submit me! button has been
added to the form.

■ The Control Panel allows us to specify whether the semantic property is
added to the options.

■ An input element of type image has been added so that we can observe the
difference in behavior that occurs when semantic is set to true.

This form can be submitted in the following three ways:

■ Clicking the Submit me! button
■ Pressing the Enter key while the focus is on a focusable element
■ Clicking the Input image control (hibiscus blossom)

In any of these cases, you’ll see that the page isn’t refreshed; the form submission
is rerouted through an Ajax request whose results are shown in the bottom pane
of the page. Once again, play around with the controls on this page to become
familiar with how the ajaxForm() command operates. When you have it down, we
have one more Form Plugin subject to tackle.

9.1.4 Uploading files

A somewhat hidden, but useful, feature of the Form Plugin is its ability to auto-
matically detect and deal with forms that need to upload files specified by input
elements of type file. Because XHR is unable to accommodate such requests, the
ajaxSubmit() command (and by proxy ajaxForm()) reroutes the request to a
dynamically created and hidden <iframe>, while setting the content type of the
request correctly as multipart/form-data.

 The server code must be written to handle such file upload requests and mul-
tipart forms; but, from the viewpoint of the server, the request looks like any other
multipart request generated by a conventional form submission. And from the
perspective of the page code, this works exactly like a regular ajaxSubmit().

 Bravo!
 Now let’s set our sights on another useful jQuery plugin.

The Dimensions Plugin 285
9.2 The Dimensions Plugin

Knowing the exact position and dimensions of an element is sometimes key to
creating Rich Internet Applications. For example, when implementing dropdown
menus, we want the menu to appear in a precise position in relation to its trigger-
ing element.

 Core jQuery has the width(), height(), and offset() commands but lacks the
ability to precisely locate an element in all circumstances. That’s where the
Dimensions Plugin comes in.

 Let’s take a run through its API.

9.2.1 Extended width and height methods

The Dimensions Plugin extends the core width() and height() commands so
that they can be used to obtain the width or height of the window and document
objects; something the core commands can’t do. The syntaxes for these extended
commands are as follow:

Command syntax: width

width()

Returns the width of the first element, window, or document object in the wrapped set.
If the first wrapped element isn’t the window or the document, the core jQuery command
is called.

Parameters
none

Returns
The width of the window, document, or element.

Command syntax: height

height()

Returns the height of the first element, window, or document object in the wrapped set.
If the first wrapped element isn’t the window or the document, the core jQuery command
is called.

Parameters
none

Returns
The height of the window, document, or element.

286 CHAPTER 9
Prominent, powerful, and practical plugins
These extended commands don’t interfere with the corresponding core com-
mands when passed a value as a parameter (in order to set the width or height of
elements), except when the first element is the window or document element. In
such cases, the commands act as if no parameter was passed and the width or
height of the window or document is returned. Be warned, and code accordingly.

 The width() and height() commands return the dimensions assigned to the
content of an element, but sometimes we want to account for other aspects of
the box model, such as any padding or border applied to the element. For such
occasions, the Dimensions Plugin provides two sets of commands that take these
other dimensions into account.

 The first of these, innerWidth() and innerHeight(), measure not only the con-
tent of the element but any padding applied to it as well. The second set, outer-
Width() and outerHeight(), include not only the padding but also any border
and, optionally, margins.

Command syntax: innerWidth and innerHeight

innerWidth()
innerHeight()

Returns the inner width or height of the first element in the wrapped set. The inner dimen-
sion includes the content and any padding applied to the element.

Parameters
none

Returns
The inner width or height of the first element in the wrapped set.

Command syntax: outerWidth and outerHeight

outerWidth()
outerHeight()

Returns the outer width or height of the first element in the wrapped set. The outer dimen-
sion includes the content, any padding, and any border applied to the element.

Parameters
options (Object) An object hash that accepts a single option, margin, which

specifies whether margins should be accounted for in the calculation.
The default is false.

Returns
The outer width or height of the first element in the wrapped set.

The Dimensions Plugin 287
Note that, for all the inner and outer methods, specifying window or document
have the same effect.

 Now let’s learn about the other dimensions this plugin allows us to locate.

9.2.2 Getting scroll dimensions

As has long been true for user interfaces of all types, content doesn’t always fit in the
space allotted to it. This issue has been addressed via the use of scrollbars, which
allow users to scroll through all the content even if it can’t all be seen within a view-
port at once. The web is no different; content frequently overflows its bounds.

 We may need to know the scrolled state of the window or of content elements
that allow scrolling when trying to place new content (or move existing content)
in relation to the window or scrolled element. Additionally, we may want to affect
the scrolled position of the window or scrolled element.

 The Dimensions Plugin allows us to obtain or set the scrolled position of these
elements with the scrollTop() and scrollLeft() methods.

Wrapping either window or document produces the same results.
 Do you want to play with this in a lab page? If so, bring up the file chapter9/

dimensions/lab.scroll.html, and you’ll see the display in figure 9.6.
 This lab page allows us to apply top and left scroll values to a test subject and

to the window itself; it uses the getter version of the scrollTop() and scrollLeft()
commands to display the scroll values of the scroll dimensions at all times.

 The Lab Control Panel pane of this page contains two text boxes in which
to enter numeric values to be passed to the scrollTop() and scrollLeft()

Command syntax: scrollTop and scrollLeft

scrollTop(value)
scrollLeft(value)

Gets or sets the scroll dimensions for the window, document, or scrollable content element.
Scrolled elements are content-containing elements with a CSS overflow, overflow-x, or
overflow–y value of scroll or auto.

Parameters
value (Number) The value, in pixels, to which the scroll top or left dimension is set.

Unrecognized values are defaulted to 0. If omitted, the current value of the top or
left scroll dimension is obtained and returned.

Returns
If a value parameter is provided, the wrapped set is returned. Otherwise, the requested
dimension is returned.

288 CHAPTER 9
Prominent, powerful, and practical plugins
commands, as well as three radio buttons that allow us to choose which target the
commands are applied to. We can choose the Window, the Document, or the Test
subject <div> element. Note that we set the height and width of the <body> ele-
ment of the page to the ridiculous size of 2000 pixels square to force the window
to show scrollbars.

 The Apply button applies the specified values to the specified target, and the
Restore button sets the scroll values for all targets back to 0. Below the buttons, a
section shows the current values for the three targets in real time.

 The Test subject pane contains the test subject: a 360 by 200 pixel <div> ele-
ment that contains an image that’s much larger than can be displayed in that size.

Figure 9.6 The Scrolling Lab lets us observe the effects of the scrollTop() and
scrollLeft() methods.

The Dimensions Plugin 289
The CSS overflow value for this element is set to scroll, causing scrollbars to
appear so that we can pan around the image.

 Work through the following exercises using this page:

■ Exercise 1—Using the scrollbars on the Test subject, pan around the image.
Watch the Results display, and note how the current scroll values are kept
up to date. A scroll event handler established on that element calls the
scrollTop() and scrollLeft() methods to obtain these values for display.

■ Exercise 2—Repeat the steps of exercise 1, except this time pan around the
page using the window’s scrollbars. Watch the Results (unless you move
them off-screen), and note how the window’s scroll values change as you
pan around the page. Also, notice how the values for the Document stay in
lockstep with those of the Window, emphasizing that, for the scroll meth-
ods, specifying either the window or the document performs the same
action. We’ve included both the window and the document as targets to
convince you of this point.

■ Exercise 3—Click the Restore button to set everything to normal. Select the
Test subject as the target, and enter scroll values into the text boxes, such
as 100 and 100. Click the Apply button. Oh! What a pretty waterfall! Test
other values to see how they affect the Test subject when the Apply button
calls the scrollTop() and scrollLeft() methods.

■ Exercise 4—Repeat exercise 3 with the Window as the target.
■ Exercise 5—Repeat exercise 3 with the Document as the target. Convince

yourself that, whether you specify the Window or the Document as the tar-
get, the same thing happens in all cases.

9.2.3 Of offsets and positions

We might, at first, think that obtaining the position of an element is a simple task.
All we need to do is to figure out where the element is in relation to the window
origin, right? Well, no.

 When the top and left CSS values are applied to an element, these values are
in relation to the element’s offset parent. In simple cases this offset parent is the
window (or, more precisely, the <body> element loaded into the window); but, if
any ancestor of an element has a CSS position value of relative or absolute, the
closest such ancestor is the element’s offset parent. This concept is also referred
to as the positioning context of the element.

 When determining the location of an element, it’s important to know which
position we’re asking for. Do we want to know the position of the element in

290 CHAPTER 9
Prominent, powerful, and practical plugins
relation to the window origin or to its offset parent? Other factors can also be
involved. For example, do we want dimensions such as border accounted for?

 The Dimensions Plugin handles all of that for us, starting with obtaining the
offset parent.

When we want to obtain the relative position of an element from its offset parent,
we can use the position() command.

This command is useful for when we want to reposition an element in relation to
its current location, but sometimes we want to know the position of an element in
relation to the <body> element (regardless of what its offset parent is) and to have
a little more control over how the calculation is made. For those times, the
Dimensions Plugin provides the offset() command.

Command syntax: offsetParent

offsetParent

Returns the offset parent (positioning context) for the first element in the wrapped set. This
is the closest ancestor with a position value of relative or absolute, or the <body> ele-
ment if no such ancestor is found. This method should only be applied to visible elements.

Parameters
none

Returns
The offset parent element.

Command syntax: position

position()

Returns the position values (top and left) of the first element in the wrapped set relative to
its offset parent.

Parameters
none

Returns
An object with two properties, top and left, containing the position values of the element
relative to its positioning context (offset parent).

The Dimensions Plugin 291
To ensure that the values returned from this method are accurate, we express
dimensions and positions of the elements on the page in pixel values. The default
settings for this method usually give an accurate representation; but, if we’re
more interested in speed than in accuracy (for example, if we’re using this
method on many elements in a tight loop), we might want to explore how the
lite option and other settings work in our situation.

 Let’s move away from the realm of positions and measurements and look at
another plugin that’s helpful on pages with lots of dynamic elements and event
handling.

Command syntax: offset

offset(options,results)

Returns offset information for the first element in the wrapped set. By default, the informa-
tion is relative to the <body> element, and the manner in which it’s calculated is controlled
by the settings in the options parameter.

Parameters
options (Object) An object hash containing settings that control how the method per-

forms its calculations. The possible values are as follows:
■ relativeTo—(Element) Specifies an ancestor element of the wrapped ele-

ment to base the relative offset on. This element should have a position
value of relative or absolute. If omitted, the default is the <body> element.

■ lite—(Boolean) Specifies that certain browser-specific optimizations be
skipped in the calculations. This will increase performance at the price of
accuracy. Defaults to false.

■ scroll—(Boolean) Specifies whether scroll offsets should be taken into
account. Defaults to true.

■ padding—(Boolean) Specifies whether padding should be included in the
calculation. Defaults to false.

■ border—(Boolean) Specifies whether borders should be included in the cal-
culation. Defaults to false.

■ margin—(Boolean) Specifies whether margins should be included in the cal-
culation. Defaults to true.

results (Object) An optional object to receive the results of the method. If omitted, a
new object is created, populated with the results and returned as the value of
the method. If specified, the passed object is augmented with the result prop-
erties, and the wrapped set is returned from the method. This is useful when
you want the method to participate in a jQuery command chain.

Returns
The wrapped set if a results object is specified, the results object if not. The results
object contains properties top and left, as well as scrollTop and scrollLeft unless the
scroll option is explicitly set to false.

292 CHAPTER 9
Prominent, powerful, and practical plugins
9.3 The Live Query Plugin

If you’ve grokked some of the higher-level concepts presented in this book,
you’ll have noted that jQuery has a profound effect on the structure of the pages
that we write, using it to best advantage. Employing the precepts of Unobtrusive
JavaScript, our pages usually consist of the HTML markup in the body and a
ready handler that sets up the behavior of the page, including establishing the
event handlers for the elements defined within the body.

 Not only does jQuery make it incredibly easy to set up our pages in this way, it
also makes it easy for us to change the page radically during its loaded lifetime.
During the life cycle of the page, many DOM elements that didn’t exist when the
ready handler was executed can later be added to the DOM tree. When adding such
elements, we frequently must establish event handlers as we create the elements to
define their behavior, as we did for the initially loaded elements. The novice web
author might churn out lots of repeated, cut-and-pasted code, but more experi-
enced developers factor out common elements into functions or JavaScript classes.

 But wouldn’t it be nice if we could declare the behavior of all elements that will
ever exist on the page in the ready handler regardless of whether they exist at
page load or not?

 Seems like a pipe dream, doesn’t it? But it’s not; the Live Query Plugin allows
us to do just that!

 Live Query lets us establish the following behaviors for DOM elements based
on their match to a jQuery selector that we define:

■ Establish events handlers for elements that match the selector
■ Trigger a function to be executed when any element matches the selector
■ Trigger a function to be executed when any element no longer matches

the selector

The Live Query Plugin also allows us to unbind any of these behaviors at any time.
 We’ll start our overview of Live Query by looking at how it allows us to estab-

lish event handlers for DOM elements whether they exist or not.

9.3.1 Establishing proactive event handlers
The Live Query Plugin allows us to establish event handlers in a proactive fash-
ion—establishing event handlers on elements that match a jQuery selector now
or at anytime in the future. The established handlers apply, not only to existing
elements that match the selector when the handler is established, but also to
any elements that might match the selector pattern later on in the life cycle of the

The Live Query Plugin 293
page—including existing elements that might be changed to match the pattern
and newly created elements that match.

 When such elements are changed so that they no longer match the selector, han-
dlers established by Live Query are automatically removed from those elements.

 The changes that affect whether an element matches the selector pattern or
not hinge on using jQuery methods. If the elements are mucked about with out-
side the realm of jQuery, obviously Live Query loses the hooks it needs to keep
track of the elements. If we absolutely need to make changes outside jQuery’s con-
trol, Live Query does have a way to help us deal with that; we’ll get to that later.

 All of the Live Query behaviors, including event listeners, are established on
elements using the livequery() method. The format that establishes proactive
event handlers is as follows:

This form of livequery() is called exactly like the jQuery bind() command. Like
bind(), it establishes the handler for all elements in the matched set. But it also auto-
matically establishes the handler on any elements that match the selector pattern at
any time while the page is loaded. It also unbinds the listener from any elements,
including those from the original matched set, that no longer match the pattern.

 This is immensely powerful. It allows us to set up the behavior of elements that
match a selector of our choosing once in the ready handler, without having to
worry about keeping track of such things later as elements are changed or added
to the page. How cool is that?

 The establishment of event handlers is a special case—a common one, which
is why it gets special attention—of performing actions when elements are
changed (or added) so that they match or no longer match the original selector
pattern. We might like to do a multitude of other things at such points, and Live
Query doesn’t disappoint us.

Command syntax: livequery

livequery(event,listener)

Establishes a function as the event handler for the specified event type on all elements in the
matched set and any elements that will match the selector of the matched set at a later point.

Parameters
event (String) The type of event for which to establish the listener. This is the same

set of events as used with the jQuery bind() command.
listener (Function) The function to establish as the event listener. The function context

(this) for each invocation is the matched element.

Returns
The wrapped set.

294 CHAPTER 9
Prominent, powerful, and practical plugins
9.3.2 Defining match and mismatch listeners

If we want to perform an action (other than binding or unbinding event handlers)
when elements make a transition into or out of the state of matching a particular
selector, we can use another form of the livequery() command.

If we only want to establish the optional mismatch listener, we can’t do so by pass-
ing null as the first parameter to this method because this causes the second
parameter to be established as the match listener just as if it had been passed as
the first argument. Instead, we pass in a no-op function as the first parameter:

$('div.whatever').livequery(
 function(){},
 function(){ /* mismatch actions go here */ }
);

As with the event listeners established by Live Query, the change causing the tran-
sition into or out of the matched state automatically triggers these functions when
the change is performed by a jQuery method. But what about those times when we
can’t use jQuery for such changes?

9.3.3 Forcing Live Query evaluation
If we effect changes to elements that cause them to transition into or out of the
matched state for Live Query listeners that we’ve established through means
other than jQuery functions, we can force Live Query to trigger its listeners with a
utility function.

Command syntax: livequery

livequery(onmatch,onmismatch)

Establishes callback functions invoked when elements transition into or out of the state of
matching the selector for the matched set.

Parameters
onmatch (Function) Specifies a function that serves as the match listener. This function

is invoked for any element (established as the function context) that transi-
tions into the matched state. If any existing elements match at the time of
this method call, the function is called immediately for each such element.

onmismatch (Function) Specifies an optional function that serves as the mismatch lis-
tener. This function is invoked for any element (established as the function
context) that transitions out of the matched state. If omitted, no mismatch
listener is established.

Returns
The wrapped set.

The Live Query Plugin 295
We’ve seen that Live Query automatically removes event listeners when an ele-
ment leaves the matched state and that we can establish a mismatch listener to do
whatever we want on such mismatch transitions. But what do we do when we want
to take a sledgehammer to the listeners?

9.3.4 Expiring Live Query listeners
In the same way that jQuery provides an unbind() command to undo the action
of bind(), Live Query provides its own means to undo the establishment of Live
Query event handlers and match/mismatch handlers—the expire() command,
which sports many parameter formats.

Function syntax: $.livequery.run

$.livequery.run()

Forces Live Query to perform a global evaluation of elements, triggering any appropriate
listeners. This is useful when changes to elements are made outside the control of
jQuery methods.

Parameters
none

Returns
Undefined.

Command syntax: expire

expire()
expire(event,listener)
expire(onmatch,onmismatch)

Removes listeners associated with the selector of the match set. The format without param-
eters removes all listeners associated with the selector. See the description of the parame-
ters below for how they affect this command.

Parameters
event (String) Specifies that event listeners for the event type be unbound. If no lis-

tener is specified, all listeners for the event type are removed.

listener (Function) When specified, only the specific listener is unbound from the
selector (for the specified event type).

onmatch (Function) Specifies the match listener that’s to be unbound from the selector.

mismatch (Function) If present, specifies the mismatch listener to be unbound from
the selector.

Returns
The wrapped set.

296 CHAPTER 9
Prominent, powerful, and practical plugins
We’ve provided a lab page to help illustrate the use of these techniques. Bring up
the file chapter9/livequery/lab.livequery.html in your browser, and you’ll see the
display of figure 9.7.

 This lab page displays three panes: the Control Panel with buttons that do
interesting things, a Test Subjects container, and the Console, which displays
messages to let us know what’s going on.

 The setup for this page bears some explanation. In the ready handler, the
Control Panel buttons are instrumented to perform their respective actions once
clicked (refer to the file for details if interested), and two Live Query statements
are executed:

$('div.testSubject').livequery('click',
 function(){
 $(this).toggleClass('matched');
 }
);
$('div.matched').livequery(
 function(){ reportMatch(this,true); },
 function(){ reportMatch(this,false); }
);

The first of these statements establishes a Live Query event handler for all <div>
elements with the class testSubject b. These elements include the single test

Figure 9.7 The Live Query Lab lets us observe Live Query in action.

Establishes a proactive
click event handler

b

Establishes match and
mismatch handlers

c

The Live Query Plugin 297
subject already resident when the page is loaded (see figure 9.7), as well as all
future test subject elements that will be created after clicking the Add New Test
Subject button. Not only is the click event handler (whose activity we’ll discuss in a
minute) immediately established on the existing test subject element, but the click
handler will automatically be added to any future test subjects dynamically added to
the page (which will all be created as <div> elements with class testSubject).

 The click handler causes the class matched to be toggled for the target of the
event. To make it easy to see which test subjects have this class and which do not,
we set up CSS rules so that elements without the class have a black border and
white background, and elements with the class are rendered with a thicker
maroon border and khaki background. We’re all about trendy Web 2.0 colors!

 The second of these statements establishes match and mismatch handlers for
all <div> elements with the class matched c. Each of these handlers issues a mes-
sage to the Console, announcing that an element has become matched or mis-
matched respectively. Because no elements on the page possess the matched class
at page load, the Console is empty when the page is initially displayed.

 Now, let’s see what the Control Panel buttons do:

■ Add New Test Subject—This button adds a new test subject <div> element
to the page. The element is created with an id of testSubject#, where # is
a running count, and a class of testSubject. One such element is pre-
populated in Test Subjects via HTML markup.

■ Expire Match Handlers—This button executes the statement $('div

.matched').expire();, which causes the match and mismatch handlers we
established in the ready handler to expire.

■ Expire Event Handler—This button executes the statement $('div.testSub-
ject').expire();, which causes the proactive event handler we established
in the ready handler to expire.

Now that we understand how the lab is wired, let’s run through some exercises:

■ Exercise 1—Load the page, and click within the bounds of Test Subject 1.
Because the Live Query event handler for the click event that we estab-
lished causes the matched class to be toggled (in this case added) to the ele-
ment, we see that the element changes colors as displayed in figure 9.8.
Additionally, because the addition of the matched class causes the element
to match the selector we used to establish the match and mismatch
handlers, we see that the match handler has fired and written a message to
the Console.

298 CHAPTER 9
Prominent, powerful, and practical plugins
■ Exercise 2—Click Test Subject 1 again. This toggles the matched class,
removing it from the element. The element returns to its original appear-
ance, and the mismatch handler is triggered because the element no
longer matches the selector, resulting in a Console message to that effect.

■ Exercise 3—Click the Add New Test Subject button. A new test subject <div>
element is added to the page. Because this element is created with the class
of testSubject, it now matches the selector used to establish the proactive
click handler that toggles the matched class. This triggers Live Query to
automatically bind the click handler to this new element (the code to add
this element doesn’t bind any handlers to the newly created element). To
test this supposition, click the newly created Test Subject 2. We see that it
changes rendition and that a match handler has been called on its behalf,
proving that the click handler for toggling the matched class of the element
was automatically added to the newly created element. See the evidence in
figure 9.9.

Figure 9.8
The addition of the matched
class to the test subject triggers
a change in rendition, as well as
the established match handler.

Figure 9.9
The fact that the newly added Test
Subject 2 reacts to clicks in the
same way as Test Subject 1 proves
that Live Query has automatically
added the click handler, as well as
the match and mismatch handlers,
to the newly created element.

Introduction to the UI Plugin 299
■ Exercise 4—Experiment with the Add New Test Subject button and Test
Subjects until you’re convinced that the event, match, and mismatch han-
dlers are always automatically added to the test subject elements whenever
appropriate.

■ Exercise 5—Play around with expiring Live Query handlers. Reload the
page so that you start with fresh settings, and add a test subject or two to
the page with the Add New Test Subject button. Now click the Expire
Match Handlers button, which expires the match and mismatch handlers
that were established on the Test Subjects. Notice that, when you click the
Test Subjects, no match/mismatch messages appear in the Console, prov-
ing that the handlers have been removed. The click event handler still
toggles the matched class because the element still changes appearance
when clicked.

■ Exercise 6—Click the Expire Event Handler button. This expires the Live
Query click handler for the Test Subjects. Note that the Test Subjects are
now unresponsive to mouse clicks and that they retain the state they had
when you clicked the button.

It doesn’t take much imagination to see the power that this plugin brings to pages
in Rich Internet Applications where elements are changing all the time, includ-
ing popping into and out of existence. By allowing us to establish the behaviors of
these events up front, the Live Query Plugin helps us minimize the amount of
code we need to write when changing and adding elements to the page.

 Now, let’s move on to one more important and useful plugin.

9.4 Introduction to the UI Plugin

When it comes to Rich Internet Applications, the UI is king. It’s not surprising
that many jQuery plugins focus on enabling rich user interfaces. In this section,
we’ll introduce the official UI Plugin, an important and recent addition to the
jQuery family. Because it’s an important component, we’d love to cover this plu-
gin to the same depth that we examined core jQuery; but reality intervenes, and
practical space considerations prevent more extensive coverage.

 We’ll extensively cover two of the essential methods defined by this plugin—
the ones that provide support for drag-and-drop on our pages—giving you a
good feel for how the remainder of the plugin operates. Then, we’ll provide an
overview of the remainder of the plugin to demonstrate what it can do to bring

300 CHAPTER 9
Prominent, powerful, and practical plugins
Rich Internet Application functionality to our pages. For more details regarding
these areas, please visit http://docs.jquery.com/ui.

 The UI Plugin provides three major areas of support: mouse interaction, wid-
gets, and visual effects. The drag-and-drop operations fall under the category of
mouse interaction; that’s where we’ll start.

9.4.1 Mouse interactions

Interacting with the mouse pointer is an integral and core part of any GUI.
Although many simple mouse pointer interactions are built into web interfaces
(clicking, for example), the web doesn’t natively support some advanced interac-
tion styles available to desktop applications. A prime example of this deficiency is
the lack of support for drag-and-drop.

 Drag-and-drop is an ubiquitous interaction technique for desktop user inter-
faces. For example, in the GUI file manager for any desktop system, we easily
copy files or move them around the filesystem by dragging and dropping them
from folder to folder or even delete them by dragging and dropping them onto
a Trash or Wastebasket icon. But as prevalent as this interaction style is within
desktop applications, it’s as sparse in web applications, mainly because modern
browsers don’t natively support drag-and-drop. Correctly implementing it is a
daunting task.

 “Daunting?” you scoff. “A few captured mouse events and some CSS fiddling.
What’s the big deal?”

 Although the high-level concepts aren’t that difficult to grasp, it turns out that
implementing the nuances of drag-and-drop support, particularly in a robust
and browser-independent manner, can become painful quickly. But in the same
way that jQuery and its plugins have eased our pain before, they do so again with
support for web-enabled drag-and-drop.

 But before we can drag and drop, we first need to learn how to drag.

Dragging things around
Although we’d be hard-pressed to find the term draggable in most dictionaries, it’s
the term that’s commonly applied to items that can be dragged about in a drag-
and-drop operation. Likewise, it’s the term that the UI Plugin uses to describe
such elements and as the name of the method that applies this ability to elements
in a matched set.

http://docs.jquery.com/ui

Introduction to the UI Plugin 301
We must include at least the two following files to use the draggable() command
(in addition to the core jQuery script file):

ui.mouse.js
ui.draggable.js

To obtain extended options, we also include the following:

ui.draggable.ext.js

The options, both basic and extended, supported by this method are shown in
table 9.2.

Command syntax: draggable

draggable(options)

Makes the elements in the wrapped set draggable according to the specified options.

Parameters
options (Object) An object hash of the options to be applied to the draggable elements,

as described in table 9.2. With no options specified, the elements are freely
draggable anywhere within the window.

Returns
The wrapped set.

Table 9.2 Basic and extended options for the draggable() command

Name Description

Basic options

helper (String|Function) Specifies exactly what is to be dragged. If specified as origi-

nal (the default), the original item is dragged. If clone is specified, a copy of
the element is created for dragging. You can also specify a function that
accepts the original DOM element as its parameter and returns an element to
be dragged. This is most often a clone of the original element with a transfor-
mation of some type applied—for example, function(e){return
$(e).clone().css('color','green')}.

ghosting (Boolean) If true, a synonym for helper:'clone'.

handle (jQuery|Element) An alternate element, or jQuery wrapped set containing an
element, that serves as the drag handle—the item clicked on to initiate the
drag operation. This element is frequently a child element of the draggable
but can be any element on the page.

continued on next page

302 CHAPTER 9
Prominent, powerful, and practical plugins
preventionDistance (Number) The number of pixels that the mouse pointer needs to be moved
after a click for a drag operation to commence. This can be used to help pre-
vent accidental dragging. If omitted, the default is 0.

dragPrevention (Array) An array of selectors of child elements that shouldn’t initiate a drag
operation when clicked. The default is ['input','textarea','but-
ton','select','option']. This is useful for preventing the start of drag
operation when an embedded control is clicked, for example.

cursorAt (Object) Specifies the spatial relationship between the mouse pointer and the
draggable object while a drag operation is under way. The specified object can
define properties of top, left, bottom or right. For example, an object
of {top:5,left:5} causes the pointer to be positioned 5 pixels from the
upper-left corner of the dragged element. If omitted, the pointer maintains its
original relative position at the point of the mouse click that initiates the drag.

appendTo (String|Element) Specifies an element that the dragged helper is appended
to at the end of the drag operation. Specifying the string parent (the default)
leaves the helper in its original hierarchy.

start (Function) A callback function called when a drag operation starts. Its func-
tion context (this) is set to the draggable element, and it’s passed two
parameters: the event instance in which the target property is set to the
draggable element and an object containing the following properties:

■ helper—Current helper element
■ position—Object containing properties top and left, specifying the

position of the mouse at the start of the drag operation
■ offset—Object specified for cursorAt
■ draggable—Internal JavaScript draggable object (not very useful)
■ options—Options hash used to create the draggable

stop (Function) A callback function called when the drag operation completes. It’s
passed the same two parameters as the start callback. The position
property of the second parameter reports the location of the upper-left corner
of the draggable.

drag (Function) A callback function continuously invoked while a drag operation is
underway. It’s passed the same two parameters as the start callback. The
position property of the second parameter reports the location of the
upper-left corner of the draggable.

Extended options

axis (String) Constrains the axis along which the draggable can be moved: x for
the horizontal axis and y for the vertical axis. If omitted, no axis constraints
are imposed.

continued on next page

Table 9.2 Basic and extended options for the draggable() command (continued)

Name Description

Introduction to the UI Plugin 303
If you thought we were going to pass up an opportunity for a fun lab page to dem-
onstrate these options, guess again! But before we get to that, let’s take a look at
the other three methods related to draggables.

 If we want to make a draggable element no longer draggable, the draggable-
Destroy() command removes its draggability.

containment (String|Object|Element) Specifies the bounds within which the draggable can be
moved. If omitted, no containment is imposed. Can be specified as the following:

■ parent—Contains the draggable within its parent so that no scrollbars need
be added to the parent

■ document—Contains the draggable within the current document so that no
scrollbars need be added to the window

■ a selector—Identifies the containing element
■ an object—Specifies a bounding rectangle relative to the parent with the

properties left, right, top, and bottom

effect (Array) An array of two strings that applies a fade effect to cloned helpers.
Can be specified as ['fade','fade'], ['fade',''], or ['','fade'].
This may seem like an odd way to specify the effects, but it allows for future
support for additional effects types; currently, only fade is supported.

grid (Array) An array of two numbers that specify a rectangular grid defining dis-
crete locations that the draggable can be moved to—for example, [100,100].
The origin of the grid is relative to the original location of the draggable. If
omitted, no grid constraint is placed on movement.

opacity (Number) Specifies the opacity of the dragged helper during the drag opera-
tion as a value between 0.0 and 1.0 (inclusive). If omitted, the opacity of the
dragged helper is unchanged.

revert (Boolean) If true, the draggable is moved back to its original position when
the drag operation concludes. If omitted or specified as false, the location
isn’t reverted.

Command syntax: draggableDestroy

draggableDestroy()

Removes draggability from the elements in the wrapped set

Parameters
none

Returns
The wrapped set

Table 9.2 Basic and extended options for the draggable() command (continued)

Name Description

304 CHAPTER 9
Prominent, powerful, and practical plugins
If all we want to do is to temporarily suspend an element’s draggability and restore
it at a later time, we disable draggability with draggableDisable() and restore it
with draggableEnable().

Through the use of the UI Draggables Lab, let’s examine the draggable options.
Bring up the page chapter9/ui/lab.draggables.html in your browser, and you’ll
see the display of figure 9.10.

 This lab page sports a now-familiar layout: a Control Panel pane contains con-
trols that allow us to specify the options for draggable(), a Test Subject pane
contains an image element to serve as the draggable test subject, and a Console
pane reports information about an ongoing drag operation.

 When the Apply button (found in the Control Panel) is clicked, the specified
options are collected and a draggable() command is issued. The format of the
command is displayed below the Apply button. (For clarity, only the options spec-
ified via the Control Panel are displayed. The callbacks added to the options to
effect the display in the Console pane aren’t shown but are included in the com-
mand that’s issued.) You’ll observe the actions of the Disable and Enable buttons
in exercise 3. The Reset button restores the option controls to initial conditions
and destroys any draggable capability set on the test subject.

Command syntax: draggableDisable

draggableDisable()

Suspends draggability of the wrapped draggable elements without removing the draggability
information or options

Parameters
none

Returns
The wrapped set

Command syntax: draggableEnable

draggableEnable()

Restores draggability to any draggables in the matched set that have been disabled via
draggableDisable()

Parameters
none

Returns
The wrapped set

Introduction to the UI Plugin 305
Let’s dig into this lab and start some exercises!
 Exercise 1—For the first exercise, we’ll create a simple draggable with all

options defaulted. Bring up the UI Draggables Lab page in your browser, and
leave all option controls as they are upon load; they are set so that their initial
conditions specify no options.

 Try to click and drag the Test Subject dragon image. Nothing much happens
unless you’re using OS X, in which case you will see something happen. OS X
allows you to drag images off of web pages to copy them to your local system via

Figure 9.10 The UI Draggables Lab page allows us to play around with most of the options available
for draggable items.

306 CHAPTER 9
Prominent, powerful, and practical plugins
drag-and-drop. Don’t confuse this system-enabled drag-and-drop with the oper-
ations we’re going to enable on our pages.

 Now, click the Apply button, and observe that the executed command is dis-
played as follows:

$('#testSubject').draggable({});

Try dragging the dragon image again. Note how you can make the dragon fly
around the browser window. (No flapping wings though—that’d be a more
advanced animation!) Also, note how you can move the image to the edges of the
window and, when moved to the extreme right, it causes a horizontal scrollbar to
appear where none was before (in most browsers).

 Drop the dragon, and pick him up again. Move him around as many times as
you like. Observe how the values in the console are kept up to date during a drag
operation. This is effected using the start, stop, and drag callbacks.

 Exercise 2—Reload the page to restore initial conditions. If you’re using Firefox
or Camino, these browsers have an annoying feature: Form controls aren’t
restored to initial conditions when you reload a page using the Reload toolbar
button. To cause the page to reload to initial conditions, move the text focus to
the URL address field and hit the Enter key.

 Now, set the helper option to Original, click the Apply button, and drag the
Test Subject image around the window. You should notice no difference from
the behavior of exercise 1 because Original is the default setting when helper is
Unspecified. Change the value to Clone, and click Apply.

 Now when you drag the image, you see a copy of the image being dragged
about rather than the original element. Once you conclude the drag, the clone
disappears.

 Exercise 3—Leaving everything as you left it at the end of exercise 2, click the
Disable button, and note the command that’s issued:

$('#testSubject').draggableDisable();

Try to drag the dragon. Nothing happens. Now click the Enable button, which
issues the following command:

$('#testSubject').draggableEnable();

Note that you can drag again and that the original options (in this case the clone
helper) are still in effect, demonstrating the difference between draggable-
Destroy(), which removes drag capability completely, and draggableDisable(),
which only suspends it until draggableEnable() is called.

Introduction to the UI Plugin 307
 Exercise 4—Reset the Lab, and choose True for the revert option, and click
Apply. Drag the test subject, and note how it moves back to its original location
when the operation concludes. Now, select Clone for the helper, click Apply, and
repeat the exercise. Note that revert is applied to the clone.

 Exercise 5—Reset the Lab, and experiment with the setting of the axis option.
You can use this option to constrain the movement during a drag to the horizon-
tal or vertical planes.

 Exercise 6—In this exercise, we’ll turn our attention to the containment option.
You’ll want to increase the height of your browser window to as much as your
screen will allow; hopefully, your resolution will cause some extra space to be
shown below the Console pane.

 Up to this point, we’ve left containment unspecified. Recall how you were able
to move the dragon anywhere within the browser window. Now choose Docu-
ment, and click Apply. When you drag the image note two important things:

■ You can no longer move the image beyond the edges of the window, so no
scrollbars appear where there were previously none.

■ You can’t move the image below the bottom of the Console pane where the
document stops but the window doesn’t.

Now change the setting to Parent, and click Apply. When a drag operation is
started, note how you can only drag the image around the inside of the Test Sub-
ject pane (a <fieldset> element), which is the parent of the test subject element.
Note, also, that this is true even if the drag operation started outside the parent
(as a result of a previous drag operation that was not constrained to the parent).

 Exercise 7—Choose a helper option of Clone, and observe the effect of the
Effect option on the helper in its various settings.

 Exercise 8—Reset the Lab, and specify an Opacity of 0.5. Observe how the
opacity of the dragged element is affected whether the original element or a
helper clone is being dragged.

 Exercise 9—Reset the Lab, and set the preventionDistance option to a large
value such as 200. After clicking Apply, start a drag operation by clicking the edge
of the dragon’s left wing and moving the mouse pointer to the right. You traverse
almost the entire width of the dragon (whose image width is 250 pixels) before
the drag operation starts. It would be rare to set this option to such a large value,
but we did so here for illustration of the behavior of the option. More often, this
would be set to a much smaller value to prevent accidental movements of a few
pixels from initiating an unintended drag operation.

308 CHAPTER 9
Prominent, powerful, and practical plugins
 Exercise 10—Reset the Lab, and specify grid values of 100 and 100. After click-
ing Apply, note how the image can now only be dragged in discrete movements of
100 pixels in either direction. Play around with other values to observe their
behavior on the drag movement.

 Exercise 11—Reset the Lab, and enter values of 10 and 10 for the cursorAt
option. Click the Apply button. When a drag operation is started, the relative
position of the image and mouse pointer is set so that the pointer is positioned 10
pixels in either direction, relative to the upper-left corner of the image (near the
tip of the wing) no matter where the pointer was positioned within the image at
the start of the drag.

 Exercise 12—Go nuts! Play around with the settings of the lab, individually and
in concert, until you feel confident that you understand how they each affect the
drag operation of draggable elements.

 Dragging things around the screen is all well and good, but is it really useful?
It’s fun for a time, but like playing with a yo-yo (unless we’re true aficionados), it
loses its charm quickly. In practical applications, we could use it to allow users to
move modular elements around the screen (and if we’re nice, we’d remember
their chosen positions in cookies or other persistence mechanisms), or in games
or puzzles.

 Drag operations truly shine when there’s something interesting to drop dragged
elements on. Let’s see how we can make droppables to go with our draggables.

Dropping dragged things
The flip side of the coin from draggables is droppables—elements that can accept
dragged items and do something interesting when such an event occurs. Creating
droppable items from page element is similar to creating draggables; in fact, it’s
even easier because there are fewer options to worry about.

 And like draggables, droppables are split into two script files: the basic file that
defines the droppable() command and its basic options and an option file that con-
tains the extended options. These files are

ui.droppable.js
ui.droppable.ext.js

The syntax for the droppable() command is as follows:

Introduction to the UI Plugin 309
Once an element is instrumented as a droppable, it exists in one of three states:
inactive, active, and armed.

 Inactive state is the droppable’s normal state where it stays most of the time,
waiting to detect when a drag operation starts. When a drag starts, the droppable
determines if the draggable is a suitable element for dropping (we’ll discuss the
concept of suitability in a moment) and, if so (and only if so), enters active state. In
active state, the droppable monitors the drag operation, waiting until either the
drag operation terminates, in which case the droppable returns to inactive state,
or the draggable hovers over the droppable. When a suitable draggable element
hovers over the droppable element, it enters armed state.

 If the drag operation terminates while the droppable is in armed state, the
draggable is considered to have been dropped onto the droppable. If the dragga-
ble continues to move so that it no longer hovers over the droppable, the drop-
pable returns to active state.

 Wow, that’s a load of state changes to keep track of! The diagram of figure 9.11
should help you keep it all straightened out.

 As with draggables, a basic set of options is available in the primary script file,
and a set of extended options is available if the additional script file is included.
Both sets of options are described in table 9.3.

 When we looked at creating draggables, we saw that we could create a perfectly
serviceable draggable without specifying any options to the draggable() method—
not so with droppable(). Although nothing bad will happen if we don’t specify any
options when we make a call to droppable(), nothing good will happen either.
A droppable created without an accept option does a pretty good impersonation
of a brick.

 By default, a droppable won’t consider any draggable suitable. And a droppa-
ble that we can’t drop anything on isn’t useful, is it? To create a droppable that we

Command syntax: droppable

droppable(options)

Establishes the elements in the wrapped set as droppables, or elements on which dragga-
bles can be dropped.

Parameters
options (Object) The options applied to the droppable elements. See table 9.3 for

details.

Returns
The wrapped set.

310 CHAPTER 9
Prominent, powerful, and practical plugins
Table 9.3 Basic and extended options for the droppable() command

Name Description

Basic options

accept (String|Function) Specifies which draggables are suitable for dropping on the droppa-
bles. This can be a string describing a jQuery selector or a function that returns true to
specify that a draggable is acceptable. When a function is specified, it’s invoked with
the candidate draggable passed as its only parameter.

tolerance (String) A string value that defines how a draggable must be positioned in relation to the
droppable in order to arm the droppable. The possible values are as follow:

■ touch—Arms the droppable if the draggable touches the droppable, or if any part
of the draggable overlaps the droppable

■ pointer—Arms the droppable if the mouse pointer enters the droppable during a
drag operation

■ intersect—Arms the droppable if 50% of the draggable intersects the droppable
■ fit—Arms the droppable if the draggable is completely contained within the droppable

continued on next page

Figure 9.11 As a suitable draggable moves about the page, the droppable moves
between its various states.

Introduction to the UI Plugin 311
can drop something on, we need to specify an accept option that defines the
draggables that the droppable should consider suitable.

 Because nothing drives home concepts like playing with them yourself, we cre-
ated a Droppables Lab. Bring up the file of chapter9/ui/lab.droppables.html, and
you’ll see the display of figure 9.12.

 Similar to the other labs, there’s a Control Panel that lets us specify the options
to be applied to the droppable after clicking the Apply button. The Disable,

activate (Function) A callback function invoked when a drag operation for an acceptable dragga-
ble commences—when the droppable makes a transition from inactive to active state.
The function context (this) is set to the droppable element. This function is passed the
event instance and an object that contains information about the operation with the
following properties:

■ draggable—The draggable instance
■ droppable—The droppable instance
■ element—The draggable element
■ helper—The draggable helper
■ options—The options passed to droppable()

deactivate (Function) A callback function invoked when the droppable reverts to inactive state. This
can be a transition from either active or armed state. The function context (this) is set
to the droppable element, and this function is passed the same parameters as
described for the activate callback.

over (Function) A callback function invoked when the droppable makes a transition from
active to armed state as a result of the draggable meeting the criteria defined by the
tolerance option. The function context (this) is set to the droppable element, and
this function is passed the same parameters as described for the activate callback.

out (Function) A callback function invoked when the droppable makes a transition from
armed to active state because of the draggable leaving the droppable as defined by the
criteria specified by the tolerance option. The function context (this) is set to the
droppable element, and this function is passed the same parameters as described for
the activate callback.

drop (Function) A callback function invoked when the draggable is dropped on the armed
droppable. The function context (this) is set to the droppable element, and this func-
tion is passed the same parameters as described for the activate callback.

Extended options

activeClass (String) A CSS class name applied to the droppable when it’s in active state.

hoverClass (String) A CSS class name applied to the droppable when a suitable draggable is hover-
ing over it—when the droppable is in armed state.

Table 9.3 Basic and extended options for the droppable() command (continued)

Name Description

312 CHAPTER 9
Prominent, powerful, and practical plugins
Enable, and Reset buttons serve functions similar to their counterparts in the
Draggables Lab.

 In the Test Subjects Pane are six draggable elements and an element (which
we’ll call the Drop Zone) that will become droppable after clicking the Apply but-
ton. Below the Drop Zone are grayed-out text elements that read Activate, Over,
Out, Drop, and Deactivate. When a corresponding droppable callback (added to
the droppable behind the scenes by the lab) is invoked, the appropriate text
element, which we’ll refer to as a callback indicator, is momentarily highlighted to
indicate that the callback has fired.

Figure 9.12 The UI Droppables Lab lets us examine the effect of the various options on
drag-and-drop operations.

Introduction to the UI Plugin 313
 Let’s dig in and get the skinny on droppables using this lab.
 Exercise 1—In this exercise, we’re going to begin familiarizing ourselves with

the Accept option, which is what tells the droppable what constitutes a suitable (or
acceptable) draggable. Although this option can be set to any jQuery selector
(or even a function that can programmatically make suitability determinations),
for the purpose of the lab, we’ll concentrate on elements that possess particular
class names. In particular, we can specify a selector that includes any of the class
names flower, dog, motorcycle, and water by checking the appropriate check
boxes of the Accept option controls.

 The six draggable image elements on the left side of the Test Subject pane are
each assigned one or two of these class names based on what appears in the
image. For example, the upper-left draggable possesses the class names dog and
flower (because both a dog and some flowers appear in the photo), whereas the
lower-middle image is defined with the class names motorcycle and water (a
Yamaha V-Star and the Colorado River, to be precise).

 Before clicking Apply, try to drag and drop any of these elements on the Drop
Zone. Aside from the dragging, not much happens. Carefully observe the call-
back indicators, and note how they don’t change. This should be no surprise
because, at outset, no droppable even exists on the page.

 Now, leaving all controls in their initial conditions (including all accept check
boxes checked), click the Apply button. The executed command includes an
accept option that specifies a selector that matches all four class names.

 Once again, try to drag any of the images to the Drop Zone while observing
the callback indicators. This time, you’ll see the Activate indicator briefly high-
light, or throb, when you begin moving any of the images, indicating that the
droppable has noticed that a drag operation has commenced and that the drag-
gable is acceptable for dropping.

 Drag the image over and out of the Drop Zone a number of times. The over
and out callbacks are invoked (as shown by the corresponding indicators) at the
appropriate times. Now, drop the image outside the confines of the Drop Zone,
and watch the Deactivate indicator throb.

 Finally, repeat the drag operation except, this time, drop the image on top of
the Drop Zone. The Drop indicator throbs (indicating that the drop callback was
invoked). Note, also, that the Drop Zone is wired to display the most recent image
that was dropped upon it.

 Exercise 2—Uncheck all of the accept check boxes, and click Apply. No matter
which image you choose, no callback indicators throb, and nothing happens

314 CHAPTER 9
Prominent, powerful, and practical plugins
when you drop an image on the Drop Zone. Without a meaningful accept option,
our Drop Zone has become a brick.

 Exercise 3—Try checking at least one accept check box, say Flower, and note
how only images with flowers in them (known to the page as such because the
class name flower was defined for them) are construed to be acceptable items.

 Try again with whatever combinations of acceptable class names you like until
you’re comfortable with the concept of the accept option.

 Exercise 4—Reset the controls, check the activeClass radio button green-
Border, and click Apply. This supplies an activeClass option to the droppable
that specifies a class name that defines (you guessed it) a green border.

 Now, when you begin to drag an image that’s acceptable to the droppable (as
defined by the accept option), the black border around the Drop Zone is replaced
by a green border. If you have trouble getting this to work for you on your own
pages, note that you need to be mindful of CSS precedence rules. When an active-
Class class name is applied, it must be able to override the rule that assigns the
default visual rendition that you wish to supplant. This is also true of hoverClass.

 Exercise 5—Check the hoverClass radio button labeled RedBorder, and click
Apply. When an acceptable image is dragged over the Drop Zone, the border
changes from green (as a result of the activeClass setting) to red.

 Experiment with these two option settings until you’re comfortable with the
timing in the drag operation where each option triggers a class change.

 Exercise 6—For this exercise, choose each of the various tolerance radio but-
tons, and note how the setting affects when the droppable makes the transition
from active to armed state (as described by the definition of this option in
table 9.3). This transition can easily be observed by setting the hoverClass option
or when the Over callback indicator throbs.

 Like their counterpart draggables, droppables can be destroyed, temporarily
disabled, and then re-enabled. The methods to do so are as follow:

Command syntax: droppableDestroy

droppableDestroy()

Removes the ability to serve as a droppable from all elements in the wrapped set

Parameters
none

Returns
The wrapped set

Introduction to the UI Plugin 315
Drag-and-drop is a useful interaction technique for many purposes. It’s fre-
quently used to indicate association but may also be used to rearrange the order
of elements. This latter use is common enough to warrant direct support by the
UI Plugin. Let’s look into that.

Other mouse interaction methods
The remaining category of commands in the mouse interaction category of the
UI Plugin are sortables, selectables and resizables. The methods in these categories
leverage the drag-and-drop capability to allow elements to be reordered within a
container and resized, respectively.

 As with the UI Plugin commands we’ve examined so far, each of these operates
by applying methods to a matched set and passing in an object hash that specifies
the options. For complete details, please refer to http://docs.jquery.com/UI.

 In addition to dynamic drag-and-drop and other mouse interaction opera-
tions, the UI Plugin also provides a number of widgets that we can use to extend
the basic set of user interface elements that are natively provided by HTML.

Command syntax: droppableDisable

droppableDisable()

Suspends droppability of the wrapped droppable elements without removing the droppability
information or options

Parameters
none

Returns
The wrapped set

Command syntax: droppableEnable

droppableEnable()

Restores droppability to any droppables in the matched set that had been disabled via
droppableDisable()

Parameters
none

Returns
The wrapped set

http://docs.jquery.com/UI

316 CHAPTER 9
Prominent, powerful, and practical plugins
9.4.2 UI widgets and visual effects

Although we’d love to go into great detail regarding the extensive set of user
interface widgets that the UI Plugin provides, reality intervenes. In lieu of any
deep discussion, we’ll at least give you a taste of what’s available, so you’ll know
what to go look up in the online documentation.

 The following lists the available widgets with short descriptions. Visit http://
docs.jquery.com/ui for more details.

 Accordion—A simple widget that creates expanding and contracting levels out
of simple markup, such as lists or nested <div> elements.

 Tabs—A widget for creating tabbed sets with a fairly interesting and potentially
complicated set of options. Anchor elements are used to specify the tabs, and their
href attributes are used to identify the tabbed sections (using page-internal hash
references). This widget accounts for usage of the back button and can be config-
ured to open a specific tab on page load.

 Calendar—A widget that provides a dynamic date picker, which is associated
with an input element. This widget is highly configurable and can appear on-
page or within a dialog box.

 Dialog—A modal dialog box widget with move and resize capability.
 Slider—A control that creates a slider (similar to that available for desktop

applications) that can be integrated into a form via hidden elements. The control
can be oriented in various ways, and its minimum and maximum values are com-
pletely configurable.

 Table—A sortable table widget that’s considered robust and fast.
 In addition to these widgets, the following visual effects are provided:
 Shadow—Generates a drop shadow for specified elements.
 Magnifier—Causes the contents of elements to enlarge (magnify) upon mouse

proximity.
 With these UI elements at our disposal, we gain many options for creating

great Rich Internet Applications. As they say, “But wait! There’s more!” The
jQuery community is willing to share their enhancements to jQuery. Visit http://
jquery.com/plugins for some insight into the many—and we do mean many—
plugins that have been published by other jQuery users.

9.5 Summary

From the outset, jQuery’s creators designed it to provide an easy, but robust,
plugin architecture. The idea was that the core jQuery download would stay small

http://docs.jquery.com/ui
http://docs.jquery.com/ui
http://jquery.com/plugins
http://jquery.com/plugins

The end? 317
and limber, providing only those core features required by most web application
authors and leaving the rest to plugins that could be included as needed. That
strategy has served jQuery well as the community of its users has created and pub-
lished a vast array of plugins that any user of jQuery can download and employ.

 Taking a survey of some of the more often-used plugins, we saw a wide range
of functionality that enhances the core jQuery feature set.

 The Form Plugin provides wrapped methods that allow us to deal with form
elements in a controlled fashion, even allowing us to instrument forms for easy
submission through Ajax requests rather than the traditional full-page refresh.

 Getting accurate (or even quick-and-dirty estimates) of the position and
dimensions of DOM elements is provided by the Dimensions Plugin, which is
essential when trying to accurately place elements on the page in relation to one
another or to the page origin.

 Another plugin that’s indispensable is the Live Query Plugin, which allows us
to register event handlers for elements that don’t even exist yet. This seemingly
non-causal ability is an enormous advantage for pages in which we expect DOM
elements to be frequently created and destroyed over the lifetime of the page.

 The UI Plugin, which we unfortunately weren’t able to fully explore, provides
such essential user interface capabilities as drag-and-drop, sorting, and a handful
of useful user interface widgets.

 And that’s just the beginning. Drop in on http://jquery.com/plugins for a list of
other available plugins. More and more get added all the time!

9.6 The end?

Hardly!
 Even though we’ve presented the entire jQuery API within the confines of

this book, it would have been impossible to show you all the many ways that this
broad API can be used on your pages. The examples that we presented were cho-
sen specifically to lead you down the path of discovering how you can use jQuery
to solve the problems that you encounter on a day-to-day basis on your web
application pages.

 jQuery is a living project. Heck, it was quite a chore for your authors to keep
up with the rapid developments in the library over the course of writing this
book. The core library is constantly evolving into a more useful resource, and
more and more plugins are appearing on practically a daily basis.

 We urge you to keep track of the development in the jQuery community and
sincerely hope that this book has been a great help in starting you on writing

http://jquery.com/plugins

318 CHAPTER 9
Prominent, powerful, and practical plugins
better Rich Internet Applications in less time and with less code than you might
have ever believed possible.

 We wish you health and happiness, and may all your bugs be easily solvable!

appendix: JavaScript
that you need to know

but might not!

This appendix covers
■ Which JavaScript concepts are important for

effectively using jQuery

■ JavaScript Object basics
■ How functions are first-class objects

■ Determining (and controlling) what
this means

■ What’s a closure?
319

320 APPENDIX
JavaScript that you need to know but might not!
One of the great benefits that jQuery brings to our web applications is the ability to
implement a great deal of scripting-enabled behavior without having to write a
whole lot of script ourselves. jQuery handles the nuts-and-bolts details so that we
can concentrate on the job of making our applications do what they need to do!

 For the first few chapters in this book, we only needed rudimentary JavaScript
skills to code and understand those examples. With the chapters on advanced
topics such as event handling, animations, and Ajax, we must understand a hand-
ful of fundamental JavaScript concepts to make effective use of the jQuery library.
You may find that a lot of things that you, perhaps, took for granted in JavaScript
(or took on blind faith) will start to make more sense.

 We’re not going to go into an exhaustive study of all JavaScript concepts—
that’s not the purpose of this book. The purpose of this book is to get us up and
running with effective jQuery in the shortest time possible. To that end, we’ll con-
centrate on the fundamental concepts that we need to make the most effective use
of jQuery in our web applications.

 The most important of these concepts centers around the manner in which
JavaScript defines and deals with functions, specifically the way in which func-
tions are first-class objects in JavaScript. What do we mean by that? Well, in order to
understand what it means for a function to be an object, let alone a first-class one,
we must first make sure that we understand what a JavaScript object itself is all
about. So let’s dive right in.

A.1 JavaScript Object fundamentals

The majority of object-oriented (OO) languages define a fundamental Object
type of some kind from which all other objects are derived. Likewise, in Java-
Script, the fundamental Object serves as the basis for all other objects, but that’s
where the comparison stops. At its basic level, the JavaScript Object has little in
common with the fundamental object defined by its OO brethren languages.

 At first glance, a JavaScript Object may seem like a boring and mundane item.
Once created, it holds no data and exposes little in the way of semantics. But
those limited semantics do give it a great deal of potential.

 Let’s see how.

A.1.1 How objects come to be

A new object comes into existence via the new operator paired with the Object
constructor. Creating an object is as easy as

var shinyAndNew = new Object();

JavaScript Object fundamentals 321
It could be even easier (as we’ll see shortly), but this will do for now.
 But what can we do with this new object? It seemingly contains nothing: no

information, no complex semantics, nothing. Our brand-new, shiny object doesn’t
get interesting until we start adding things to it—things known as properties.

A.1.2 Properties of objects
Like their server-side counterparts, JavaScript objects can contain data and pos-
sess methods (well…sort of, but that’s getting ahead of ourselves). Unlike those
server-side brethren, these elements aren’t pre-declared for an object; we create
them dynamically as needed.

 Take a look at the following code fragment:

var ride = new Object();
ride.make = 'Yamaha';
ride.model = 'V-Star Silverado 1100';
ride.year = 2005;
ride.purchased = new Date(2005,3,12);

We create a new Object instance and assign it to a variable named ride. We then
populate this variable with a number of properties of different types: two strings, a
number, and an instance of the Date type.

 We don’t need to declare these properties prior to assigning them; they come
into being merely by the act of our assigning a value to them. That’s mighty pow-
erful juju that gives us a great deal of flexibility. But before we get too giddy, let’s
remember that flexibility always comes with a price!

 For example, let’s say that in a subsequent part of the page, we want to change
the value of the purchase date:

ride.purchased = new Date(2005,2,1);

No problem…unless we make an inadvertent typo such as

ride.purcahsed = new Date(2005,2,1);

There’s no compiler to warn us that we’ve made a mistake; a new property named
purcahsed is cheerfully created on our behalf, leaving us to wonder later on why
the new date didn’t take when we reference the correctly spelled property.

 With great power comes great responsibility (where have we heard that
before?), so type carefully!

NOTE JavaScript debuggers such as Firebug for Firefox can be lifesavers when
dealing with such issues. Because typos such as these frequently result in
no JavaScript errors, relying on JavaScript consoles or error dialog boxes
is usually less than effective.

322 APPENDIX
JavaScript that you need to know but might not!
From this example, we’ve learned that an instance of the JavaScript Object, which
we’ll simply refer to as an object from here forward, is a collection of properties, each
of which consists of a name and a value. The name of a property is a string, and the
value can be any JavaScript object, be it a Number, String, Date, Array, basic
Object, or any other JavaScript object type (including, as we shall see, functions).

 This makes the primary purpose of an Object instance to serve as a container
for a named collection of other objects. This may remind you of concepts in other
languages: a Java map for example, or dictionaries or hashes in other languages.

 When referencing properties, we can chain references to properties of objects
serving as the properties of a parent object. Let’s say that we add a new property
to our ride instance that captures the owner of the vehicle. This property is
another JavaScript object that contains properties such as the name and occupa-
tion of the owner:

var owner = new Object();
owner.name = 'Spike Spiegel';
owner.occupation = 'bounty hunter';
ride.owner = owner;

To access the nested property, we write

var ownerName = ride.owner.name;

There are no limits to the nesting levels we can employ (except the limits of good
sense). When finished—up to this point—our object hierarchy looks as shown in
figure A.1.

 Note how each value is a distinct instance of a JavaScript type.

Figure A.1 Our object hierarchy shows that Objects are containers for named references to other
Objects or JavaScript built-in objects.

JavaScript Object fundamentals 323
By the way, there’s no need for all the intermediary variables (such as owner) we’ve
created for illustrative purposes in these code fragments. In a short while, we’ll
see more efficient and compact ways to declare objects and their properties.

 Up to this point, we’ve referenced properties of an object by using the dot
(period character) operator; but, as it turns out, that’s a synonym for a more gen-
eral operator for performing property referencing.

 What if, for example, we have a property named color.scheme? Do you notice
the period in the middle of the name? It throws a monkey wrench into the works
because the JavaScript interpreter will try to look up scheme as a nested property
of color.

 “Well, just don’t do that!” you say. But what about space characters? What about
other characters that could be mistaken for delimiters rather than as part of a
name? And most importantly, what if we don’t even know what the property name is
but have it as a value in another variable or as the result of an expression evaluation?

 For all these cases the dot operator is inadequate, and we must use the more
general notation for accessing properties. The format of the general property ref-
erence operator is

object[propertyNameExpression]

where propertyNameExpression is a JavaScript expression whose evaluation as a
string forms the name of the property to be referenced. For example, all three of
the following references are equivalent:

ride.make
ride['make']
ride['m'+'a'+'k'+'e']

as well as

var p = 'make';
ride[p];

Using the general reference operator is the only way to reference properties
whose names don’t form valid JavaScript identifiers, such as

ride["a property name that's rather odd!"]

which contains characters not legal for JavaScript identifiers, or whose names are
the values of other variables.

 Building up objects by creating new instances with the new operator and
assigning each property using separate assignment statements can be a tedious
affair. In the next section, we’ll look at a more compact and easy-to-read notation
for declaring our objects and their properties.

324 APPENDIX
JavaScript that you need to know but might not!
A.1.3 Object literals

In the previous section, we created an object that modeled some of the properties
of a motorcycle, assigning it to a variable named ride. To do so, we used two new
operations, an intermediary variable named owner, and a bunch of assignment
statements. This is tedious—as well as wordy and error-prone—and makes it dif-
ficult for us to visually grasp the structure of the object during a quick inspection
of the code.

 Luckily, we can use a notation that’s more compact and easier to visually scan.
Consider the following statement:

var ride = {
 make: 'Yamaha',
 model: 'V-Star Silverado 1100',
 year: 2005,
 purchased: new Date(2005,3,12),
 owner: {
 name: 'Spike Spiegel',
 occupation: 'bounty hunter'
 }
};

Using an object literal, this fragment creates the same ride object that we built up
with assignment statements in the previous section.

 This notation, which has come to be termed JSON (JavaScript Object Nota-
tion1), is much preferred by most page authors over the multiple-assignment
means of object building. Its structure is simple; an object is denoted by a match-
ing pair of braces, within which properties are listed delimited by commas. Each
property is denoted by listing its name and value separated by a colon character.

NOTE Technically, JSON has no means to express date values, primarily because
JavaScript itself lacks any kind of date literal. When used in script, the
Date constructor is usually employed as shown in the previous example.
When used as an interchange format, dates are frequently expressed
either as a string containing the ISO 8601 format or a number expressing
the date as the millisecond value returned by Date.getTime().

As we can see by the declaration of the owner property, object declarations can
be nested.

1 For more information, you can visit http://www.json.org/.

http://www.json.org/

JavaScript Object fundamentals 325
 By the way, we can also express arrays in JSON by placing the comma-
delimited list of elements within square brackets as in the following:

var someValues = [2,3,5,7,11,13,17,19,23,29,31,37];

As we’ve seen in the examples presented in this section, object reference are fre-
quently stored in variables or in properties of other objects. Let’s take a look at a
special case of the latter scenario.

A.1.4 Objects as window properties

Up to this point, we’ve seen two ways to store a reference to a JavaScript object:
variables and properties. These two means of storing references use differing
notation, as shown in the following snippet:

var aVariable =
 'Before I teamed up with you, I led quite a normal life.';

someObject.aProperty =
 'You move that line as you see fit for yourself.';

These two statements each assign a String instance (created via literals) to a vari-
able and an object property respectively using assignment operations. (Kudos to
you if you can identify the source of the obscure quotes; no cheating with Google!
There was a clue earlier in the chapter.)

 But are these statements really performing different operations? As it turns
out, they’re not!

 When the var keyword is used at the top level, outside the body of any contain-
ing function, it’s only a programmer-friendly notation for referencing a property
of the pre-defined JavaScript window object. Any reference made in top-level
scope is implicitly made on the window instance.

 This means that all of the following statements are equivalent:

var foo = bar;

and

window.foo = bar;

and

foo = bar;

Regardless of which notation is used, a window property named foo is created (if
it’s not already in existence) and assigned the value of bar. Also, note that because
bar is unqualified, it’s assumed to be a property on window.

326 APPENDIX
JavaScript that you need to know but might not!
 It probably won’t get us into conceptual trouble to think of top-level scope as
window scope because any unqualified references at the top level are assumed to be
window properties. The scoping rules get more complex when we delve deeper
into the bodies of functions—much more complex, in fact—but we’ll be address-
ing that soon enough.

 That pretty much covers things for our overview of the JavaScript Object. The
important concepts to take away from this discussion are

■ A JavaScript object is an unordered collection of properties.
■ Properties consist of a name and a value.
■ Objects can be declared using object literals.
■ Top-level variables are properties of window.

Now, let’s discuss what we meant when we referred to JavaScript functions as first-
class objects.

A.2 Functions as first-class citizens

In many traditional OO languages, objects can contain data, and they can possess
methods. In these languages the data and the methods are usually distinct con-
cepts; JavaScript walks a different path.

 Functions in JavaScript are considered objects like any of the other object
types that are defined in JavaScript, such as Strings, Numbers, or Dates. Like
other objects, functions are defined by a JavaScript constructor—in this case
Function—and can be

■ Assigned to variables
■ Assigned as a property of an object
■ Passed as a parameter
■ Returned as a function result
■ Created using literals

Because functions are treated in the same way as other objects in the language, we
say that functions are first-class objects.

 But you might be thinking to yourself that functions are fundamentally differ-
ent from other object types like String or Number because they possess not only a
value (in the case of a Function instance, its body) but also a name.

 Well, not so fast!

Functions as first-class citizens 327
A.2.1 What’s in a name?
A large percentage of JavaScript programmers operate under a false assumption
that functions are named entities. Not so. If you’re one of these programmers,
you’ve been fooled by a Jedi mind trick. As with other instances of objects—be they
Strings, Dates, or Numbers—functions are referenced only when they are assigned to
variables, properties, or parameters.

 Let’s consider objects of type Number. We frequently express instances of Number
by their literal notation such as 213. The statement

213;

is perfectly valid, but it is also perfectly useless. The Number instance isn’t all that
useful unless it has been assigned to a property or a variable, or bound to a param-
eter name. Otherwise, we have no way to reference the disembodied instance.

 The same applies to instances of Function objects.
 “But, but, but…” you might be saying, “what about the following code?”

function doSomethingWonderful() {
 alert('does something wonderful');
}

“Doesn’t that create a function named doSomethingWonderful?”
 No, it doesn’t. Although that notation may seem familiar and is ubiquitously

used to create top-level functions, it’s the same syntactic sugar used by var to create
window properties. The function keyword automatically creates a Function
instance and assigns it to a window property created using the function “name”
(what we referred to earlier as a Jedi mind trick) as in the following:

doSomethingWonderful = function() {
 alert('does something wonderful');
}

If that looks weird to you, consider another statement using the exact same for-
mat, except this time using a Number literal:

aWonderfulNumber = 213;

There’s nothing strange about that, and the statement assigning a function to a
top-level variable (a.k.a. window property) is no different; a function literal is used
to create an instance of Function and then is assigned to the variable doSome-
thingWonderful in the same way that our Number literal 213 was used to assign a
Number instance to the variable aWonderfulNumber.

 If you’ve never seen the syntax for a function literal, it might seem odd. It’s
composed of the keyword function, followed by its parameter list enclosed in
parentheses, then followed by the function body.

328 APPENDIX
JavaScript that you need to know but might not!
 When we declare a top-level named function, a Function instance is created
and assigned to a property of window that’s automatically created using the so-
called function name. The Function instance itself no more has a name than a
Number literal or a String literal. Figure A.2 illustrates this concept.

Remember that, when a top-level variable is created in an HTML page, the vari-
able is created as a property of the window instance. Therefore, the following state-
ments are all equivalent:

function hello(){ alert('Hi there!'); }

hello = function(){ alert('Hi there!'); }

window.hello = function(){ alert('Hi there!'); }

Although this may seem like syntactic juggling, it’s important to understanding
that Function instances are values that can be assigned to variables, properties, or
parameters just like instances of other object types. And like those other object
types, nameless disembodied instances aren’t of any use unless they’re assigned to
a variable, property, or parameter through which they can be referenced.

 We’ve seen examples of assigning functions to variables and properties, but what
about passing functions as parameters? Let’s take a look at why and how we do that.

Gecko browsers and function names

Browsers based on the Gecko layout engine, such as Firefox and Camino, store the
name of functions defined using the top-level syntax in a nonstandard property of
the function instance named name. Although this may not be of much use to the
general development public, particularly considering its confinement to Gecko-
based browsers, it’s of great value to writers of browser plugins and debuggers.

Figure A.2 A Function instance is a nameless object like the Number 213 or any other
JavaScript value. It’s named only by references that are made to it.

Functions as first-class citizens 329
A.2.2 Functions as callbacks

Top-level functions are all well and good when our code follows a nice and
orderly synchronous flow, but the nature of HTML pages—once loaded—is far
from synchronous. Whether we are handling events, instituting timers, or making
Ajax requests, the nature of the code in a web page is asynchronous. And one of
the most prevalent concepts in asynchronous programming is the notion of a call-
back function.

 Let’s take the example of a timer. We can cause a timer to fire—let’s say in five
seconds—by passing the appropriate duration value to the window.setTimeout()
method. But how does that method let us know when the timer has expired so
that we can do whatever it is that we’re waiting around for? It does so by invoking
a function that we supply.

 Let’s consider the following code:

function hello() { alert('Hi there!'); }

setTimeout(hello,5000);

We declare a function named hello and set a timer to fire in 5 seconds, expressed
as 5000 milliseconds by the second parameter. In the first parameter to the set-
Timeout() method, we pass a function reference. Passing a function as a parame-
ter is no different than passing any other value—just as we passed a Number in the
second parameter.

 When the timer expires, the hello function is called. Because the setTime-
out() method makes a call back to a function in our own code, that function is
termed a callback function.

 This code example would be considered naïve by most advanced JavaScript cod-
ers because the creation of the hello name is unnecessary. Unless the function is to
be called elsewhere in the page, there’s no need to create the window property hello
to momentarily store the Function instance to pass it as the callback parameter.

 The more elegant way to code this fragment is

setTimeout(function() { alert('Hi there!'); },5000);

in which we express the function literal directly in the parameter list, and no
needless name is generated. This is an idiom that we’ll often see used in
jQuery code when there is no need for a function instance to be assigned to a
top-level property.

 The functions we’ve created in the examples so far are either top-level func-
tions (which we know are top-level window properties) or assigned to parameters

330 APPENDIX
JavaScript that you need to know but might not!
in a function call. We can also assign Function instances to properties of objects,
and that’s where things get really interesting. Read on…

A.2.3 What’s this all about?

OO languages automatically provide a means to reference the current instance of
an object from within a method. In languages like Java and C++, a variable
named this points to that current instance. In JavaScript, a similar concept exists
and even uses the same this keyword, which also provides access to an object
associated with a function. But OO programmers beware! The JavaScript imple-
mentation of this differs from its OO counterparts in subtle but significant ways.

 In class-based OO languages, the this pointer generally references the
instance of the class within which the method has been declared. In JavaScript,
where functions are first-class objects that aren’t declared as part of anything, the
object referenced by this—termed the function context—is determined not by how
the function is declared but by how it’s invoked.

 This means that the same function can have different contexts depending on
how it’s called. That may seem freaky at first, but it can be quite useful.

 In the default case, the context (this) of an invocation of the function is the
object whose property contains the reference used to invoke the function. Let’s
look back to our motorcycle example for a demonstration, amending the object
creation as follows (additions highlighted in bold):

var ride = {
 make: 'Yamaha',
 model: 'V-Star Silverado 1100',
 year: 2005,
 purchased: new Date(2005,3,12),
 owner: {name: 'Spike Spiegel',occupation: 'bounty hunter'},
 whatAmI: function() {
 return this.year+' '+this.make+' '+this.model;
 }
};

To our original example code, we add a property named whatAmI that references a
Function instance. Our new object hierarchy, with the Function instance assigned
to the property named whatAmI, is shown in figure A.3.

 When the function is invoked through the property reference as in

var bike = ride.whatAmI();

the function context (the this reference) is set to the object instance pointed to
by ride. As a result, the variable bike gets set to the string 2005 Yamaha V-Star

Functions as first-class citizens 331
Silverado 1100 because the function picks up the properties of the object through
which it was invoked via this.

 The same is true of top-level functions. Remember that top-level functions are
properties of window, so their function contexts, when called as top-level func-
tions, are the window objects.

 Although that may be the usual and implicit behavior, JavaScript gives us the
means to explicitly control what’s used as the function context. We can set the func-
tion context to whatever we want by invoking a function via the Function methods
call() or apply().

 Yes, as first-class objects, even functions have methods as defined by the Func-
tion constructor.

 The call() method invokes the function specifying, as its first parameter, the
object to serve as the function context, while the remainder of the parameters
become the parameters of the called function—the second parameter to call()
becomes the first argument of the called function and so on. The apply() method
works in a similar fashion except that its second parameter is expected to be an
array of objects that become the arguments to the called function.

 Confused? It’s time for a more comprehensive example. Consider the code of
listing A.1 (found in the downloadable code as appendixA/function.context.html).

Figure A.3 This model clearly shows that the function isn’t part of the Object but is only referenced
from the Object property named whatAmI.

332 APPENDIX
JavaScript that you need to know but might not!
<html>
 <head>
 <title>Function Context Example</title>
 <script>
 var o1 = {handle:'o1'};
 var o2 = {handle:'o2'};
 var o3 = {handle:'o3'};
 window.handle = 'window';

 function whoAmI() {
 return this.handle;
 }

 o1.identifyMe = whoAmI;

 alert(whoAmI());
 alert(o1.identifyMe());
 alert(whoAmI.call(o2));
 alert(whoAmI.apply(o3));

 </script>
 </head>

 <body>
 </body>
</html>

In this example, we define three simple objects, each with a handle property that
makes it easy to identify the object given a reference b. We also add a handle
property to the window instance so that it’s also readily identifiable.

 We then define a top-level function that returns the value of the handle prop-
erty for whatever object that serves as its function context c and assign the same
function instance to a property of object o1 named identifyMe d. We can say that
this creates a method on o1 named identifyMe, although it’s important to note
that the function is declared independently of the object.

 Finally, we issue four alerts, each of which uses a different mechanism to
invoke the same function instance. When loaded into a browser, the sequence of
four alerts is as shown in figure A.4.

Listing A.1 Demonstrating that the value of the function context is dependent on
how the function is invoked

b

c

d

e

f
g

h

Functions as first-class citizens 333
This sequence of alerts illustrates the following:

■ When the function is called directly as a top-level function, the function
context is the window instance e.

■ When called as a property of an object (o1 in this case), the object becomes
the function context of the function invocation f. We could say that the
function acts as a method for that object—as in OO languages. But take care
not to get too blasé about this analogy. You can be led astray if you’re not
careful, as the remainder of this example’s results will show.

Figure A.4
The object serving as the function
context changes with the manner
in which the function is called.

334 APPENDIX
JavaScript that you need to know but might not!
■ Employing the call() method of Function causes the function context to
be set to whatever object is passed as the first parameter to call()—in this
case, o2 g. In this example, the function acts like a method to o2, even
though it has no association whatsoever—even as a property—with o2.

■ As with call(), using the apply() method of Function sets the function con-
text to whatever object is passed as the first parameter h. The difference
between these two methods only becomes significant when parameters are
passed to the function (which we didn’t do in this example for simplicity).

This example page clearly demonstrates that the function context is determined
on a per invocation basis and that a single function can be called with any object
acting as its context. It’s, therefore, probably never correct to say that a function is
a method of an object. It’s much more correct to state the following:

A function f acts as a method of object o when o serves as the function context of the
invocation of f.

As a further illustration of this concept, consider the effect of adding the follow-
ing statement to our example:

alert(o1.identifyMe.call(o3));

Even though we reference the function as a property of o1, the function context
for this invocation is o3, further emphasizing that it’s not how a function is
declared but how it’s invoked that determines its function context.

 When using jQuery commands and functions that employ callbacks, this
proves to be an important concept. We saw this concept in action early on (even if
you didn’t realize it at the time) in section 2.3.3 where we supplied a callback
function to the filter() method of $ and that function was sequentially invoked
with each element of the wrapped set serving as its function context in turn.

 Now that we understand how functions can act as methods of objects, let’s turn
our attention to another advanced function topic that will play an important role
in effective usage of jQuery—closures.

A.2.4 Closures

To page authors coming from a traditional OO or procedural programming back-
ground, closures are often an odd concept to grasp; whereas, to those with a func-
tional programming background, they’re a familiar and cozy concept. For the
uninitiated, let’s answer the question: What are closures?

 Stated as simply as possible, a closure is a Function instance coupled with the
local variables from its environment that are necessary for its execution.

Functions as first-class citizens 335
 When a function is declared, it has the ability to reference any variables that
are in its scope at the point of declaration. These variables are carried along with
the function even after the point of declaration has gone out of scope, closing the
declaration.

 The ability for callback functions to reference the local variables in effect when
they were declared is an essential tool for writing effective JavaScript. Using a
timer once again, let’s look at the illustrative example in listing A.2 (the file
appendixA/closure.html).

<html>
 <head>
 <title>Closure Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.js"></script>
 <script>
 $(function(){
 var local = 1;
 window.setInterval(function(){
 $('#display')
 .append('<div>At '+new Date()+' local='+local+'</div>');
 local++;
 },3000);
 });
 </script>
 </head>

 <body>
 <div id="display"></div>
 </body>
</html>

In this example, we define a ready handler that fires after the DOM loads. In this
handler, we declare a local variable named local b and assign it a numeric value
of 1. We then use the window.setInterval() method to establish a timer that will
fire every 3 seconds c. As the callback for the timer, we specify an inline function
that references the local variable and shows the current time and the value of
local, by writing a <div> element into an element named display that’s defined
in the page body e. As part of the callback, the local variable’s value is also
incremented d.

Listing A.2 Gaining access to the environment of a function declaration
through closures

b

c

d

e

336 APPENDIX
JavaScript that you need to know but might not!
 Prior to running this example, if we were unfamiliar with closures, we might
look at this code and see some problems. We might surmise that, because the call-
back will fire off three seconds after the page is loaded (long after the ready han-
dler has finished executing), the value of local is undefined during the execution
of the callback function. After all, the block in which local is declared goes out of
scope when the ready handler finishes, right?

 But on loading the page and letting it run for a short time, we see the display
as shown in figure A.5.

 It works! But how?
 Although it is true that the block in which local is declared goes out of scope

when the ready handler exits, the closure created by the declaration of the func-
tion, which includes local, stays in scope for the lifetime of the function.

NOTE You might have noted that the closure, as with all closures in JavaScript,
was created implicitly without the need for explicit syntax as is required in
some other languages that support closures. This is a double-edged sword
that makes it easy to create closures (whether you intend to or not!) but
can make them difficult to spot in the code.

Unintended closures can have unintended consequences. For exam-
ple, circular references can lead to memory leaks. A classic example of
this is the creation of DOM elements that refer back to closure variables,
preventing those variables from being reclaimed.

Figure A.5 Closures allow callbacks to access their environment even if that
environment has gone out of scope.

Summary 337
Another important feature of closures is that a function context is never
included as part of the closure. For example, the following code won’t execute as
we might expect:

...
this.id = 'someID';
$('*').each(function(){
 alert(this.id);
});

Remember that each function invocation has its own function context so that, in
the code above, the function context within the callback function passed to each()
is an element from the jQuery wrapped set, not the property of the outer function
set to 'someID'. Each invocation of the callback function displays an alert box
showing the id of each element in the wrapped set in turn.

 When access to the object serving as the function context in the outer function
is needed, we can employ a common idiom to create a copy of the this reference
in a local variable that will be included in the closure. Consider the following
change to our example:

this.id = 'someID';
var outer = this;
$('*').each(function(){
 alert(outer.id);
});

The local variable outer, which is assigned a reference to the outer function’s
function context, becomes part of the closure and can be accessed in the callback
function. The changed code now displays an alert showing the string 'someID' as
many times as there are elements in the wrapped set.

 We’ll find closures indispensable when creating elegant code using jQuery
commands that utilize asynchronous callbacks, which is particularly true in the
areas of Ajax requests and event handling.

A.3 Summary

JavaScript is a language that’s widely used across the web, but it’s often not deeply
used by many of the page authors writing it. In this chapter, we introduced some
of the deeper aspects of the language that we must understand to use jQuery
effectively on our pages.

 We saw that a JavaScript Object primarily exists to be a container for other
objects. If you have an OO background, thinking of an Object instance as an
unordered collection of name/value pairs may be a far cry from what you think of

338 APPENDIX
JavaScript that you need to know but might not!
as an object, but it’s an important concept to grasp when writing JavaScript of even
moderate complexity.

 Functions in JavaScript are first-class citizens that can be declared and refer-
enced in a manner similar to the other object types. We can declare them using
literal notation, store them in variables and object properties, and even pass them
to other functions as parameters to serve as callback functions.

 The term function context describes the object that’s referenced by the this
pointer during the invocation of a function. Although a function can be made to
act like a method of an object by setting the object as the function context, func-
tions aren’t declared as methods of any single object. The manner of invocation
(possibly explicitly controlled by the caller) determines the function context of
the invocation.

 Finally, we saw how a function declaration and its environment form a closure
allowing the function, when later invoked, to access those local variables that
become part of the closure.

 With these concepts firmly under our belts, we’re ready to face the challenges
that confront us when writing effective JavaScript using jQuery on our pages.

index
Symbols

$
as function namespace 154
as namespace prefix 9
avoiding name collisions

189
defining locally 164
in plugins 189
in ready handler 165
naming conflicts 14
sharing with other libraries

164
$() 6

adding wrapper methods
216

for element creation 11
$.ajax() 249, 261, 278
$.ajaxSetup() 252
$.browser 157, 247
$.each() 169
$.extend() 177, 191, 210, 261
$.fn 199, 246, 259
$.get() 236, 252
$.getJSON() 237, 241
$.getScript() 180
$.grep() 170
$.inArray() 175
$.livequery.run() 294
$.makeArray() 175
$.map() 172
$.noConflict() 164, 189, 192
$.post() 248, 252
$.styleFloat 163

$.trim() 9, 168
$.unique() 176

A

abbr element 262
ActiveX control 218
Adaptive Path 218
add() 36, 247
addClass() 59
adding a wrapper method

199–201
adding select options 159
after() 73
Ajax 218–226

comprehensive 258–266
comprehensive jQuery API

249–252
diagrammed 223
Form Plugin, using 276–284
form submission via 276–

284
GET 235–236
Global Callback Info object

253
global functions 254–258
growth catalyst 2
HTTP requests 233–234
iframes, using 218
initilizing 219
loading content 226
loadng scripts 181
POST requests 248–249
ready state handler 221

request life cycle 223
request parameters 221
responses 223–224
responseText 223
responseXML 223
setting defaults 252–253
uploading files 284
XML, not using 223

ajaxForm Lab 282, 284
ajaxForm() 282
ajaxFormUnbind() 282
ajaxSubmit Lab 279–280
ajaxSubmit() 277, 279
alpha filters 62
andSelf() 47
animate () 145, 148
animations

CSS properties 146
custom drop 148–150
custom fading 147
custom puff 150–151
custom scale 148
easing 147
stopping 145
using Flash 127

anonymous event handler
86

anonymous functions 165
anonymous listeners 86
API. See jQuery API
append() 70
appending content 70, 72
appendTo() 71
appetizer menu 113–124
339

340 INDEX
Application Programming
Interface. See jQuery API

arrays, filtering 170–172
assigning properties 51
Asynchronous JavaScript and

XML. See Ajax
attr() 52, 54–55
attribute selectors 22
attributes 49

applying 56–58
diagrammed 50
Internet Explorer limita-

tions 56
normalized values 53
removing 56
setting 54–56
values, fetching 52–54

augmenting wrapped sets 38

B

Basic Event Model 84
before() 73
behavior, separating from

structure 4
bind() 98, 293
black box 225
blur() 102, 107
Boot Closet page 264–266
box model 161, 286

diagrammed 162
browser detection 155–161

alternatives 156–157
jQuery flags 157–163

bubble phase 94
bubbling 88–90

stopping 91

C

callback functions 329–330
Camino 155–160, 328

reloading 306
capability detection 156
capture phase 94
cascading dropdowns 237–245
Cascading Style Sheets 2

class names 58, 67
comma operator 38

chain 7
managing 45–47

chaining 45–47
change() 102, 231
child selector 21
children() 43
class names

adding, removing 58–60
fetching 67

Clear and Reset Lab 274
clearForm() 275
click() 102, 107
clone() 45, 78
closures 84, 90, 211, 334–337
code consistency, reusability

186
collapsible list, implementing

128–134
collecting properties 52
collisions, naming 187–189
command chain 7

managing 45–47
commands 17
commerce 229
container selector 23
contains() 44
content scrolling 287
contents() 43
copying

address information 202–
206

elements 78
creating DOM elements 11
creating utility functions 194,

196–199
cross-browser Ajax 219
CSS

absolute positioning 150
hiding elements 128
inline vs block 128
offset parent 289
opacity 142, 147
overflow 289
relative positioning 149
styling lists 132
See also Cascading Style

Sheet
css() 61–62, 132, 200
CSS3 6

custom animations 145–151
custom attributes 52–53
custom properties 211
custom selectors 27–30

D

data conversion 173
data translation 172–176
Date 195
date formatting 195–199
dblclick() 102
defining functions 193
dependent dropdowns 237
DHTML 49
dimensions 286–289
Dimensions Plugin 285–291

height() 285
innerHeight() 286
innerWidth() 286
offset() 290
offsetParent() 290
outerHeight() 286
outerWidth() 286
position() 290
scrollLeft() 287
scrollTop() 287
width() 285

Dimensions Plugin Scrolling
Lab 287

exercises 289
disabling form elements 13
DOCTYPE 161
Document Object Model

(DOM) 10, 17, 49–58
cloning elements 78
copying elements 70, 78–80
creating new elements 11
event bubbling 88–90
form elements 79–80
generating elements 31–32
manipulation 68
moving elements 70–80
NodeList 50
removing elements 76–77
replacing elements 77
setting content 68
wrapping elements 75

document ready handler 9

INDEX 341
document scrolling 288
DOM elements, positioning

285–291
DOM Level 0 85–87
DOM Level 1 84
DOM Level 2 91–96
DOM manipulation 258
DOM. See Document Object

Model (DOM)
Double Submit Problem 57
drag-and-drop 300
draggable() 300, 304
draggableDestroy() 303
draggableDisable() 304
draggableEnable() 304
draggables 300–308

axis of movement 307
constraining 307
containment 307
grid 308
required files 301
suitability concept 309

dropdowns 237
droppable() 308
droppableDestroy() 314
droppableDisable() 315
droppableEnable() 315
droppables 308–315

drop event 309
options 309
required files 308
state transition diagram

309
states 309

dynamically loading scripts
180–183

E

each() 13, 51, 90, 148, 200, 211,
246, 337

easing 147
Easing Plugin 147
effects 127

custom drop 148
custom fading 147
custom puff 150
custom scale 148
fading 140

hide 127
show 127
sliding 143–144

elements
abbr 262
animating 135–145
attributes 49–58
cloning 78
content 68–70
copying 70, 78–80
event handlers 85
fading 140
form elements 79–80
listeners 85
moving 70–80
properties 49–58
removing 76–77
replacing 77
selecting 17
setting content 68
showing and hiding 127–

130
sliding 143–144
span 262
styling 58–68
title attribute 258
toggling 134
wrapping 75

empty() 77
emptying select elements

246
encodeURIComponent() 221
end() 46
error callback 253
error() 102
event handlers 83

anonymous 86
as attributes 86
removing 103
toggling 108–110

event handling
hovering 110–112
proactive 292–293

Event instance 87, 104
cancelBubble 91
normalizing 104
preventDefault() 106
stopPropagation() 91, 106
target 107

event models
Basic 85–87
DOM Level 0 85–87
DOM Level 2 91–96
Internet Explorer 97
jQuery 98–124
Netscape 85–87

event propagation 106
diagrammed 95

event, toggling 108
event-driven interfaces 83
events 112–124

addEventListener() 92
attachEvent() 97
binding 98
bubble phase 94
bubbling 88–90
cancelling propagation 91
capture phase 94
establishing multiple 92–94
Event instance 88
key codes 105
modifier keys 105
propagation 94–96
semantic actions 106
srcElement 88
stopping propagation 106
target element 88
triggering 106–107

expando 211
expire() 295
extending jQuery 13, 186–216

comprehensive examples
245

defining wrapper methods
199–216

emptying select elements
246

implementation functions
212–214

in $ namespace 192–193
loading select elements 246
motivations 186–187
naming files 188
The Termifier 260–264
utility functions 192–193

extending objects 176–180

342 INDEX
F

fadeIn() 141
fadeOut() 141
fadeTo() 142
fieldSerialize() 272
fieldValue() 270–272
filesystem browsing 128
filter selectors 29
filter() 41, 202
filtering data 170–172
filtering wrapped sets 40
find selectors 29
find() 44
Firebug 321
Firefox 155, 160, 321, 328

reload vs. refresh 140
reloading 306

fixed-width output 193–
194

flags 154
$.boxModel 161
$.browser 157
$.styleFloat 163

Flash 127
float styles, browser differ-

ences 163
flyout 258
focus() 102, 107
form controls

clearing 274–276
resetting 274–276
serializing 272–274
submission order 273
successful concept 270

form elements 79–80
Form Plugin 80, 269–284

ajaxForm Lab 282
ajaxForm() 282
ajaxFormUnbind() 282
ajaxSubmit Lab 279
ajaxSubmit() 277
Clear and Reset Lab 274
clearForm() 275
download location 269
fieldSerialize() 272
fieldValue() 271
formSerialize() 272
Get Form Value Lab 271

resetForm() 275
uploading files 284

form submission
hijacking 281–284
semantic events 282
via Ajax 281–284
via focusable element 284

formatting fixed-width out-
put 194

forms, serializing 227
formSerialize() 272
Function

apply() 331
as first-class object 326
call() 331
function keyword opera-

tion 327
naming 327–328

function context 84, 200,
330–331

functional programming 334
functions

as callbacks 329–330
as methods 328, 334
assigning context 331
context 330
function literal 327
top-level 327

G

Gecko 158, 328
GET 221, 227, 234, 261
Get Form Value(s) Lab 271,

273
get() 35
GIF 266
global Ajax functions 253–258
Global Callback Info object 253
global flags 154
global namespace 14

polluting 198
Google 218
Graphical User Interface

(GUI) 83
drag-and-drop 300

grep 170
GUI. See Graphical User

Interface (GUI)

H

halting form submission 91
hasClass() 67
hash as parameter 190–192
height() 63–64, 285
hide() 127, 135
hover() 111
hovering 110–112
HTML 5 Draft Specification

262
HTML Specification 270
html() 7, 68
HTML, generation 31–32
HTTP. See Hypertext Trans-

fer Protocol (HTTP)
Hypertext Transfer Protocol

(HTTP) 83, 248
methods 221, 227

effects on caching 234
status codes 222

I

idempotent requests 234
iframe 284
implementation functions 213
index() 36
information overload 128, 130
inheritance 176
innerHeight() 286
innerWidth() 286
insertAfter() 73
insertBefore() 73
inserting dynamic HTML 74
Internet Explorer 155, 158,

160
box model 161
event handling limitations

96
Event Model 97

inverting selectors 29–30
is() 45, 67, 132, 135
iterating 51

properties and collections
169–170

INDEX 343
J

Java Swing 83
JavaScript

. operator 323
adding select options 158
advanced example 258
closure variables 335
closures 84, 211, 334–337
creating objects 320
Date 195
dot operator 323
dynamic creation of

properties 321
essential concepts 320
extending objects 176
for loop 169
for-in loop 169
Function 84
function contexts 84, 200
function keyword 327
functions 326
general reference operator

323
getAttribute() 53
isNaN() 173
libraries 14
libraries, using with jQuery

163–167
NaN 173
navigator 155
new operator 320
nonstandard property

names 323
Number 174
Object 84, 320–326
object hash 191
Object literals 324–325
object properties 321–323
object property diagram

322
object-oriented 176
property references 322
prototype property 177
regular expressions 172,

198
setAttribute() 53
String 168, 172, 174
top-level scope 325

Unobtrusive JavaScript 3–5
var keyword explained 325
window properties 325
XML and 223

Jedi mind tricks 327
Jesse James Garrett 218
jQuery 2–5

$() 6
add() 36
browser detection flags

157–163
chaining 7, 186, 200, 261
chains 45–47
commands 17
contains() 44
CSS implementation 20
custom selectors 27–30
document ready handler 9
DOM manipulation 17
essential JavaScript

concepts 319
Event Model 99
extending 12–13, 186–216
flags 154
global Ajax commands 254
manipulating objects 167–

180
plugins 268–317
selectors 17–30
translating data 172–176
trimming strings 168
using with other libraries

14, 163–167
utility functions 8, 154
wrapper 6–7

jQuery API
$.ajax() 249
$.ajaxSetup 252
$.boxModel 161
$.browser 157
$.each() 169
$.extend() 177
$.get() 234–236
$.getJSON() 237
$.getScript() 180
$.grep() 170
$.inArray() 175
$.makeArray() 175
$.map() 172

$.noConflict 164
$.post() 248
$.styleFloat 163
$.trim() 9, 168
$.unique() 176
addClass() 59
after() 73
ajaxComplete() 254
ajaxError() 254
ajaxSend() 254
ajaxStart() 254
ajaxStop() 254
ajaxSuccess() 254
andSelf() 47
animate() 145
append() 70
appendTo() 71
attr() 52, 54–55
before() 73
bind() 98
blur() 102, 107
change() 102
children() 43
click() 102, 107
clone() 78
contents() 43
css() 61–62
dblclick() 102
each() 13, 51
empty() 77
end() 46
error() 102
fadeIn() 141
fadeOut() 141
fadeTo() 142
filter() 41
find() 44
focus() 102, 107
get() 35
hasClass() 67
height() 63–64
hide() 135
hover() 111
html() 7, 68
index() 36
insertAfter() 73
insertBefore() 73
is() 45
jQuery() 6

344 INDEX
jQuery API (continued)
keydown() 102
keypress() 102
keyup() 102
load() 102, 226
mousedown() 102
mousemove() 102
mouseout() 102
mouseup() 102
next() 43
nextAll() 43
noConflict() 14
not() 39
one() 102
parent() 43
parents() 43
prepend() 73
prependTo() 73
prev() 43
prevAll() 43
ready() 10
removeAttr() 56
removeClass() 59
resize() 102
scroll() 102
select() 102, 107
serialize() 227
serializeArray() 228
show() 136
siblings() 43
size() 34
slice() 42
slideDown() 143
slideToggle() 144
slideUp() 144
stop() 145
submit() 102, 107
toggle() 108, 137
toggleClass() 59
trigger() 106
unbind() 103
unload() 102
val() 79–80
width() 63–64
wrap() 75

jQuery Effects Lab 138–144
JSON 236, 241, 263, 277, 324

array example 325
array notation 241

as Ajax response 223
JavaScript Dates and 324
object example 324

JSP 225

K

keydown() 102
keypress() 102
keyup() 102
Konqueror 161

L

Laboratory pages
ajaxForm Lab 282
ajaxSubmit Lab 279
Clear and Reset Lab 274
Dimensions Plugin Scrolling

Lab 287
Get Form Value Lab 271
Get Form Values 271
Live Query Lab 296
Move and Copy Lab 72
Selectors Lab 17
UI Draggables Lab 304
UI Droppables Lab 311
Wrapped Set Lab 33

leveraging jQuery 186
libraries, using with jQuery 14
listeners 83

match and mismatch 294
proactive 292–293

Live Query Lab 296
Live Query Plugin 292–299

$.livequery.run() 294
capabilities 292
expire() 295
expiring listeners 295
forcing evaluation 294

livequery() 293–294
load() 102, 226, 231, 252, 263
loading content

Ajax 224–226
dynamic data 229–233
jQuery 226–228
select elements 246

M

match handler 298
match listeners 294
merging objects 179
merging options 210
method 334
Microsoft 218
MIME type in Ajax response

223
mismatch handler 298
mismatch listeners 294
mousedown() 102
mousemove() 102
mouseout() 102
mouseup() 102
Move and Copy Lab 72
-moz-opacity 62
multi-browser support 159
multipart forms 284
multiple class names 58

N

name collisions 187–189
namespace, global 198
NaN 174
navigator object 155
nesting selectors 23
.NET framework 83
Netscape Communications

Corporation 84
Netscape Event Model 84
Netscape Navigator 84
next() 43
nextAll() 43
noConflict() 14
NodeList 50, 175
non-idempotent requests

234
normalizing event targets 88
not() 39
Number.NaN 174

O

Object
literals 324–325
properties 321–323

INDEX 345
object detection 156, 247
feasibility 158
for Ajax 219

object hash 190–192
object orientation 176
object-oriented JavaScript

176
objects, extending 176
Observable pattern 92
offset parent 289
offset() 290
offsetParent() 290
offsets 289–291
OmniWeb 155, 157, 160
one() 102
online retailers 229
onload handler, alternative

to 9
onresize 65
Opera 155, 157, 160, 247
operator 323
options hash 190–192, 261

extensive example 208
used for wrapper method

261
OS X, dragging images from

browser 305
outerHeight() 286
outerWidth() 286
Outlook Web Access 218
overflow 289

P

page rendering 161
parameters 190–192
parent() 43
parents() 43
parsing ZIP codes 172
patterns

necessity in Rich Internet
Applications 5

Observable 92
options hash 192
progressive disclosure

113
repetitiveness 186
responsibilities and 5
structure and 4

Photomatic jQuery extension
206–216

PHP 225
plain text response 223
plugins 268–317

creating 186–216
Dimensions 149
Dimensions Plugin 285–291
Easing 147
Form Plugin 269–284
Live Query Plugin 292–299
on the web 269
strategy 269
UI Plugin 299–316

PNG files 266
position() 290
positional selectors 24–27
positioning 289
positions 289–291
POST 221, 227, 234, 248–249
prepend() 73
prependTo() 73
prev() 43
prevAll() 43
proactive event handling 292
product description page

231–233
progressive disclosure 113, 128
propagation of events 94–96
properties 49

diagrammed 50
of JavaScript objects 321–

323
property referencing 322
Prototype 192

using with jQuery 14, 163–
167

prototype 177, 199

Q

query string 221, 227, 274
quirks mode 161

R

read-only status, applying
201–206

ready handler 165

ready state handler 222–223
ready() 10
real-time data 229
regular expression 170
relational selectors 20
removeAttr() 56
removeClass() 59
removing elements 77
removing wrapped set

elements 39
rendering

quirks mode 161
strict mode 161

rendering engine 158
replacing elements 77
reporting Ajax errors 253
request header 155
request parameters 221, 227,

236, 264
requests

idempotent 234
non-idempotent 234, 248

resetForm() 275
resize() 102
resources

Form Plugin download 269
jQuery plugins 188
plugins 269
quirksmode.org 161
UI Plugin URL 300

response 223–224
JSON 236

responseText 220, 223, 226
responseXML 223
retail web sites 229
reusability 186
reusable components 167
RIA. See Rich Internet Appli-

cation (RIA)
Rich Internet Application

(RIA) 2, 17, 92, 218, 237

S

Safari 155, 160, 247
problems loading scripts

181
scripts, dynamic loading 180–

183

346 INDEX
scroll() 102
scrollbars 288
scrolling dimensions 287–289
scrollLeft() 287
scrollTop() 287
select() 102, 107
selecting check boxes 27
selectors 3, 6, 17–30, 258

attribute 20, 22–24
basic 19–20
child 20–24
container 20, 23–24
CSS syntax 17
custom 27–30
filter 29
find 29
form-related 29
inverting 29–30
nesting 23
positional 24–27
regular expression syntax

22
relational 20–24
XPath plugin 30

Selectors Lab 17
self-disabling form 57
semantic actions 83, 106
serialize() 227
serializeArray() 228
serializeForm() 276
server setup 225
server-side

resources 225
state 248
templating 230

servlet 225
setting width 63
show() 127, 136
siblings() 43
size() 34
slice() 42
slideDown() 143
slideshows 206–209
slideToggle() 144
slideUp() 144
sniffing 155–161
spoofing 155
stop() 145
strict mode 161

string trimming 168
styles, setting 61–67
styling 58–68
submit() 102, 107
submitting forms

Ajax 276–284
subsettting wrapped sets 42–

43

T

Termifier, The 259
test-driven development

208
text() 69
this 330–334
thumbnail images 206
timers 83
title attribute 258, 261
toggle() 108, 134–137
toggleClass() 59
toggling display state 134
Tomcat web server 225
tooltip 258
top-level flags and functions

154
translating data 173
translation 172–176
Trash 300
trigger() 106
trimming 168

U

UI Draggables Lab 304–305
UI Droppables Lab 311–313
UI Plugin 299–316

accordian 316
calendar 316
dialog 316
download location 300
draggable() 300
draggableDestroy() 303
draggableDisable() 304
draggableEnable() 304
draggables 300–308
drop shadow 316
drop zones 312
droppable() 308

droppableDestroy() 314
droppableDisable() 315
droppableEnable() 315
droppables 308–315
Droppables Lab 311
magnify 316
mouse interactions 300–315
required files 301
resizables 315
selectables 315
slider 316
sortables 315
table 316
tabs 316
UI Draggables Lab 304
widgets 316

UI principles
gradual transition 135
progrssive disclosure 128

unbind() 103, 295
United States Postal Codes

172
unload() 102
Unobtrusive JavaScript 3, 87,

115, 230, 292
practical application 209

unsuccessful form elements
79

uploading via Ajax 284
URI encoding 221, 227
URL 221, 227

encoding 272
user agent detection 155–161
user interface, annoyances 49
utility functions 8, 154

V

val() 79–80, 231, 270
variables as part of closure

335
viewport scrolling 287

W

W3C 159
box model 161

W3C DOM Specification 84
Wastebasket 300

INDEX 347
web server 225
width and height 64
width() 63–64, 285
wiki 57
window

origin 289
properties 325
scrolling 288

window.event 87, 97, 104
window.setInterval() 335
window.setTimeout() 329
wrap() 75
wrapped set 7, 32, 43–44

adding elements 36–39
as array 34
augmenting 36–43
determining size 34
filtering 40
iterating over 51
manipulation 32

obtaining elements from
34–36

removing elements 39–42
subsetting 42–43

Wrapped Set Lab 33
wrapper 7
wrapper methods

applying multiple opera-
tions 201–206

defining 199–216
implementation functions

212–214
mainaining state 210

X

X11 83
XHR. See XMLHttpRequest

(XHR)
XHTML 53

XML 236, 277
XML DOM 223
XMLHTTP 218
XMLHttpRequest (XHR) 218

instance creation 219
instantiating 219
making the request 221–222
methods and properties

219
ready state handler 221
responses 223–224
responseText 223
responseXML 223
status 222

XPath selectors plugin 30

Z

zebra-striping 2
ZIP Codes 172

	jQuery in Action
	foreword
	preface
	acknowledgments
	Bear Bibeault
	Yehuda Katz

	about this book
	Audience
	Roadmap
	Code conventions
	Code downloads
	Author Online

	about the authors
	about the title
	about the cover illustration
	Introducing jQuery
	1.1 Why jQuery?
	1.2 Unobtrusive JavaScript
	1.3 jQuery fundamentals
	1.3.1 The jQuery wrapper
	1.3.2 Utility functions
	1.3.3 The document ready handler
	1.3.4 Making DOM elements
	1.3.5 Extending jQuery
	1.3.6 Using jQuery with other libraries

	1.4 Summary

	Creating the wrapped element set
	2.1 Selecting elements for manipulation
	2.1.1 Using basic CSS selectors
	2.1.2 Using child, container, and attribute selectors
	2.1.3 Selecting by position
	2.1.4 Using custom jQuery selectors

	2.2 Generating new HTML
	2.3 Managing the wrapped element set
	2.3.1 Determining the size of the wrapped set
	2.3.2 Obtaining elements from the wrapped set
	2.3.3 Slicing and dicing the wrapped element set
	2.3.4 Getting wrapped sets using relationships
	2.3.5 Even more ways to use a wrapped set
	2.3.6 Managing jQuery chains

	2.4 Summary

	Bringing pages to life with jQuery
	3.1 Manipulating element properties and attributes
	3.1.1 Manipulating element properties
	3.1.2 Fetching attribute values
	3.1.3 Setting attribute values
	3.1.4 Removing attributes
	3.1.5 Fun with attributes

	3.2 Changing element styling
	3.2.1 Adding and removing class names
	3.2.2 Getting and setting styles
	3.2.3 More useful style-related commands

	3.3 Setting element content
	3.3.1 Replacing HTML or text content
	3.3.2 Moving and copying elements
	3.3.3 Wrapping elements
	3.3.4 Removing elements
	3.3.5 Cloning elements

	3.4 Dealing with form element values
	3.5 Summary

	Events are where it happens!
	4.1 Understanding the browser event models
	4.1.1 The DOM Level 0 Event Model
	4.1.2 The DOM Level 2 Event Model
	4.1.3 The Internet Explorer Event Model

	4.2 The jQuery Event Model
	4.2.1 Binding event handlers using jQuery
	4.2.2 Removing event handlers
	4.2.3 Inspecting the Event instance
	4.2.4 Affecting the event propagation
	4.2.5 Triggering event handlers
	4.2.6 Other event-related commands

	4.3 Putting events (and more) to work
	4.4 Summary

	Sprucing up with animations and effects
	5.1 Showing and hiding elements
	5.1.1 Implementing a collapsible list
	5.1.2 Toggling the display state of elements

	5.2 Animating the display state of elements
	5.2.1 Showing and hiding elements gradually
	5.2.2 Fading elements into and out of existence
	5.2.3 Sliding elements up and down
	5.2.4 Stopping animations

	5.3 Creating custom animations
	5.3.1 A custom scale animation
	5.3.2 A custom drop animation
	5.3.3 A custom puff animation

	5.4 Summary

	jQuery utility functions
	6.1 Using the jQuery flags
	6.1.1 Detecting the user agent
	6.1.2 Determining the box model
	6.1.3 Detecting the correct float style to use

	6.2 Using other libraries with jQuery
	6.3 Manipulating JavaScript objects and collections
	6.3.1 Trimming strings
	6.3.2 Iterating through properties and collections
	6.3.3 Filtering arrays
	6.3.4 Translating arrays
	6.3.5 More fun with JavaScript arrays
	6.3.6 Extending objects

	6.4 Dynamically loading scripts
	6.5 Summary

	Extending jQuery with custom plugins
	7.1 Why extend?
	7.2 The jQuery plugin authoring guidelines
	7.2.1 Naming files and functions
	7.2.2 Beware the $
	7.2.3 Taming complex parameter lists

	7.3 Writing custom utility functions
	7.3.1 Creating a data manipulation utility function
	7.3.2 Writing a date formatter

	7.4 Adding new wrapper methods
	7.4.1 Applying multiple operations in a wrapper method
	7.4.2 Retaining state within a wrapper method

	7.5 Summary

	Talk to the server with Ajax
	8.1 Brushing up on Ajax
	8.1.1 Creating an XHR instance
	8.1.2 Initiating the request
	8.1.3 Keeping track of progress
	8.1.4 Getting the response

	8.2 Loading content into elements
	8.2.1 Loading content with jQuery
	8.2.2 Loading dynamic inventory data

	8.3 Making GET and POST requests
	8.3.1 Getting data with jQuery
	8.3.2 Getting JSON data
	8.3.3 Making POST requests

	8.4 Taking full control of an Ajax request
	8.4.1 Making Ajax requests with all the trimmings
	8.4.2 Setting request defaults
	8.4.3 Global functions

	8.5 Putting it all together
	8.5.1 Implementing the flyout behavior
	8.5.2 Using The Termifier
	8.5.3 Room for improvement

	8.6 Summary

	Prominent, powerful, and practical plugins
	9.1 The Form Plugin
	9.1.1 Getting form control values
	9.1.2 Clearing and resetting form controls
	9.1.3 Submitting forms through Ajax
	9.1.4 Uploading files

	9.2 The Dimensions Plugin
	9.2.1 Extended width and height methods
	9.2.2 Getting scroll dimensions
	9.2.3 Of offsets and positions

	9.3 The Live Query Plugin
	9.3.1 Establishing proactive event handlers
	9.3.2 Defining match and mismatch listeners
	9.3.3 Forcing Live Query evaluation
	9.3.4 Expiring Live Query listeners

	9.4 Introduction to the UI Plugin
	9.4.1 Mouse interactions
	9.4.2 UI widgets and visual effects

	9.5 Summary
	9.6 The end?

	appendix: JavaScript that you need to know but might not!
	A.1 JavaScript Object fundamentals
	A.1.1 How objects come to be
	A.1.2 Properties of objects
	A.1.3 Object literals
	A.1.4 Objects as window properties

	A.2 Functions as first-class citizens
	A.2.1 What’s in a name?
	A.2.2 Functions as callbacks
	A.2.3 What’s this all about?
	A.2.4 Closures

	A.3 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

